WO2010112641A1 - Method for the production of biofuels by heterogeneous catalysis employing a metal zincate as precursor of solid catalysts - Google Patents

Method for the production of biofuels by heterogeneous catalysis employing a metal zincate as precursor of solid catalysts Download PDF

Info

Publication number
WO2010112641A1
WO2010112641A1 PCT/ES2010/000141 ES2010000141W WO2010112641A1 WO 2010112641 A1 WO2010112641 A1 WO 2010112641A1 ES 2010000141 W ES2010000141 W ES 2010000141W WO 2010112641 A1 WO2010112641 A1 WO 2010112641A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
transesterification
reaction
carried out
activation
Prior art date
Application number
PCT/ES2010/000141
Other languages
Spanish (es)
French (fr)
Inventor
Pedro Jésus MAIRELES TORRES
Jose Santamaría González
Ramon Moreno Tost
Juan Miguel Rubio Cabellero
Josefa María MERIDA ROBLES
Enriique Rodriguez Castellon
Antonio Jimenez Lopez
Original Assignee
Universidad De Malaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Malaga filed Critical Universidad De Malaga
Publication of WO2010112641A1 publication Critical patent/WO2010112641A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/02Preparation of carboxylic acid esters by interreacting ester groups, i.e. transesterification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention describes the use of solid catalysts, obtained by calcining a ccommuno of an alkaline earth metal or a divalent transition metal, for the production of biofuels, and in particular biodiesel, by transesterification under mild conditions of temperature and atmospheric pressure , of vegetable or animal oils or fats, with low molecular weight alcohols.
  • the biodiesel is formed by a mixture of fatty acid esters obtained by transesterification of triglycerides present in vegetable oils and animal fats with low molecular weight alcohols (mainly methanol or ethanol).
  • biodiesel slightly increases the emissions of nitrogen oxides, although this inconvenience can be mitigated with a specific adjustment of the injection or by the use of specific catalysts for selective removal of NOx after post-combustion, and raises viscosity problems at low temperatures, which can be solved by the use of additives.
  • the transesterification process involves reacting triglycerides, major components of vegetable fats (vegetable oils) and animals (tallow), with methanol or ethanol.
  • Triglycerides are lipids formed by esterification of the three hydroxyl groups of a glycerin molecule with three fatty acid molecules saturated or unsaturated.
  • the transesterification process results in the generation of fatty acid ethyl esters (FAEE, Fatty Acid Ethyl Ester in English) or fatty acid methyl esters (FAME, Fatty Acid Methyl Ester in English), respectively.
  • FEE Fatty Acid Ethyl Ester in English
  • FAME Fatty Acid Methyl Ester in English
  • the overall reaction between one mole of triglyceride and three of methanol leads to one mole of glycerin and three moles of FAME. Said reaction can be carried out both in the absence and in the presence of catalyst. In any case, the formation of DMARD is normally favored by using an excess amount of alcohol with respect to the stoichiometric ratio.
  • the reaction between triglycerides and methanol, which are immiscible, is accelerated by strong agitation, as it facilitates contact between these two phases.
  • the transesterification reaction can be carried out in the absence of catalyst and stirring, using methanol under supercritical conditions (temperatures above 239.5 ° C and pressures above 81 bar; US6187939, US6288251).
  • these drastic reaction conditions involve the use of specific, high-cost equipment, which greatly limits their use for the treatment of low-quality cheap fats (high acidity and high water content).
  • the use of catalysts is a widespread practice, so that the speed of reaction is sufficiently high and high yields in biodiesel are obtained quickly, distinguishing homogeneous and heterogeneous catalytic processes, as well as solid and liquid catalysts.
  • the catalyst used in this homogeneous process cannot be reused, since it is lost in the neutralization and washing stages.
  • the use of a solid catalyst, in a heterogeneous catalytic process reduces the problems associated with homogeneous catalysis, since the solid catalyst can be separated from the reaction medium by simple physical procedures (filtration and / or centrifugation).
  • solid catalysts that have been proposed for triglyceride transesterification reactions, which can be classified as acidic, basic and enzymatic.
  • active acid catalysts are mesoporous silicas functionalized with sulfonic groups (US7122688), carbons derived from polysaccharides functionalized with sulphonic groups [Green Chem. 9 (2007) 434] and vanadium pentoxide (EP2000522), although the latter catalyst is active at 225 0 C and pressures between 35 and 60 Kg / cm 2 .
  • IFP Iron Oxide Powder
  • a mixture of zinc and calcium oxides prepared by precipitation of the corresponding nitrates and subsequent calcination at 600-900 0 C has also been shown to be active in the transesterification of palm kernel oil with methanol, but to obtain higher FAME contents than 94% after 1 hour of reaction at 60 0 C, require the use of 10% by weight of activated catalyst at 700 0 C and a methanokaceite molar ratio of 30: 1 [Appl. Catal. A: Gen. 341 (2008) 77-85].
  • Other metal oxides that have also shown their usefulness as solid catalysts are those based on mixed oxides of V and P [Appl. Catal. A: Gen. 320 (2007) 1] and Fe-Zn [Appl. Catal. A: Gen. 314 (2006) 148].
  • lipases as biocatalysts (enzymatic catalysts) for the transesterification of triglycerides with alcohols (US7473791) has been proposed.
  • the solid catalyst must be able to be reused and eliminate the homogeneous contribution to the catalytic process of transesterification of triglycerides with low molecular weight alcohols, associated with the existence of solubilized basic species in the reaction medium.
  • the invention object of the present patent application implies, in addition to the advantages already mentioned in relation to heterogeneous catalysis compared to homogeneous processes, a series of technical advantages that provide a solution to technical problems not solved by the alternatives that constitute the state of the technique: 1 - Simplicity, reproducibility and easy escalation of the synthesis. '-
  • the precursor of the active catalyst is stable in air.
  • the decomposition or activation temperature of the catalyst is lower than that of other basic solid catalysts.
  • the present invention proposes a heterogeneous method of obtaining biofuels, particularly biodiesel, by catalytic transesterification using a metallic ccommune, particularly an alkaline earth metal or a divalent transition metal, as a precursor to active solid catalysts.
  • the thermal activation of the metallic cyero used as a precursor can be carried out in a wide range of temperatures.
  • the amount of precursor that can be used, and consequently of the resulting catalyst, so that the process is efficient, is also variable.
  • the oils or fats that can be used as a substrate are also diverse, as well as their degree of acidity or their water content. Acceptable reaction conditions are also variable without the process being efficient.
  • the nature of the precursor, the resulting catalyst, and the process conditions allow catalyst recycling and reuse of the precursor.
  • Figure 1 X-ray diffractograms obtained after treating calcium cyere dihydrate at different temperatures. From top to bottom: room temperature, from 100 to 800 0 C at intervals of 100 0 C, and after cooling to room temperature.
  • biodiesel is defined as a mixture of esters of low molecular weight alcohols, preferably methanol or ethanol, with fatty acids.
  • the preferred embodiment of the present invention involves the use of calcium ccommune dihydrate as a precursor of the active solid catalyst.
  • the kinetics of the transesterification process is enhanced by the use of a 4% precursor weight, 12: 1 methanol radical oil ratios and 1000 rpm stirring speed, reaching 95% FAME yields after 45 minutes of reaction.
  • the catalysts obtained by thermal activation of calcium c institutionse dihydrate are particularly active in the transesterification of sunflower and soybean oil with methanol, causing the formation of methyl esters of fatty acids present in these oils (FAME).
  • FAME methyl esters of fatty acids present in these oils
  • Calcium c Marie dihydrate is stable in air against water and carbon dioxide;
  • the catalysts obtained can be recycled, since calcium and zinc oxides are the raw materials for the synthesis of calcium ccommune dihydrate; the catalyst obtained by activation at 400 0 C can be used for at least three catalytic cycles an hour, with yields FAME over 85% when 4% is used in weight zincate dihydrate calcium molar ratio metanohaceite 12: 1 .
  • a series of non-limiting examples are described below, which show the flexibility and advantages of the present invention, and especially the use of this precursor for obtaining an active catalyst in the transesterification of vegetable oils with methanol, for the production of biodiesel.
  • EXAMPLE Ij Reaction of catalytic transesterification of triglycerides to obtain biodiesel with catalysts obtained by heat treatment of calcium cyere dihydrate, with percentages by weight between 1 and 4% of precursor.
  • the basic heterogeneous transesterification reaction of triglycerides contained in sunflower oil begins with a catalyst activation stage.
  • the previously weighed catalyst is activated in an inert atmosphere of helium (other gases can be used, although avoiding the use of air, since the carbon dioxide present in it could react with the catalyst at high temperature), in a tubular furnace (they can used alternative devices) at the temperature of 400 0 C, using a heating rate of 20 ° C / min, and remaining one hour (shorter times result in less active catalysts) at the temperature of 400 0 C.
  • the thermal-differential and thermogravimetric analysis of calcium c institutions reflects, between room temperature and 1000 0 C, a total weight loss of 26.3%, associated with the elimination of hydroxyl groups (dehydroxylation process) and hydration water (dehydration process ). Thus a load of 4% by weight of precursor corresponds to approximately 3% by weight of catalyst.
  • the calcium precursor and the catalyst obtained after thermal activation at 400 0 C is determined by atomic absorption technique (ICP-AA). The values found were 19.9 and 25.1% CaO for the precursor, before and after activation, which are very close to the respective theoretical values of 18.2 and 25.6%. Chemical analysis indicates that calcium cuouse dihydrate has no potassium in its chemical composition.
  • the zincate dihydrate calcium is transformed into a mixture of zinc oxide and calcium oxide , as confirmed by the X-ray diffraction data.
  • One of the most relevant aspects of the catalyst obtained at 400 0 C is its high specific surface area (76.7 m ⁇ g "1 ) and pore volume (0.144 crn ⁇ g " 1 ).
  • the pore size distribution is relatively narrow, centered around 4.3 nm, which allows triglyceride molecules to access the catalyst's basic sites.
  • the materials used in the transesterification reaction are basically: sunflower oil, methanol and catalyst.
  • the reaction is carried out in a discontinuous reactor of complete mixing under N 2 atmosphere, with reflux, magnetic stirring and at the temperature of 60 0 C. This temperature is achieved by a silicone bath heated by a heating plate.
  • the complete mixing batch reactor has three mouths and a gas inlet.
  • the central mouth is connected to a cooling system, to keep the volume of methanol constant inside the reactor.
  • One of the mouths located at the ends is used in the aliquot extraction process for later analysis, while on the other the reactor temperature is controlled by a thermometer.
  • the system is in continuous agitation, to obtain optimum contact between phases, by means of a magnetic stirrer whose speed range is from 100 rpm to 1000 rpm.
  • Sunflower oil 25 g
  • the catalyst is introduced into the reactor without cutting off the helium current to prevent the entry of air and therefore of CO 2 .
  • the methanol (16.5 ce) is poured and the reactor is sealed. Magnetic stirring allows the contact of the two immiscible phases (methanol and oil).
  • the assembly of the complete mixing batch reactor is confined within a gas extraction hood, to prevent possible problems caused by methanol leaks in the assembly.
  • the separation process consists of a stage of extraction, filtration, neutralization and decantation.
  • the extraction step is to obtain a sample aliquot (1.5 ml) of the reaction medium, by means of a syringe.
  • the filtration step is then carried out by means of a microfilter, in order to remove the catalyst particles present.
  • the neutralization step is based on the addition of 1 ml of the 0.1 M solution of HCl, to neutralize the remaining basic catalyst residues. Subsequently we reach the stage of decantation, adding 1.5 ml of dichloromethane and vigorous stirring to the sample. Two phases are obtained: an organic phase (ester phase) and an aqueous phase (alcoholic phase).
  • the ester phase also contains dichloromethane and traces of methanol that must be removed before analyzing the biodiesel phase. For this, the solution is maintained for 5 hours in a sand bath at a temperature of 90 0 C. The samples were analyzed by high performance liquid chromatography.
  • HPLC HPLC with a JASCO device equipped with a quaternary gradient pump (PU-2089), an ultraviolet detector (MD-2015), an automatic injector (AS-2055) and a column oven (co-2065).
  • the column used was PHENOMENEX LUNA Cl 8 (250 mm x 4.6 mm x 5 ⁇ m).
  • the solvents were microfiltered and degassed with helium.
  • the injection volumes in the column were 15 ⁇ L, with a constant column temperature equal to 40 0 C.
  • the purified samples were previously prepared for analysis in the HPLC, dissolving 80 ⁇ l of the sample in 10 ml of the isopropanol / hexane mixture (5: 4 v / v).
  • the triglyceride areas of the unreacted oil have been recorded, as have the areas of methyl esters (biodiesel or FAME) and mono-, diglycerides and free fatty acids.
  • EXAMPLE 2 Reaction of catalytic transesterification of triglycerides to obtain biodiesel with catalysts obtained by activating calcium ccommune dihydrate at different temperatures.
  • This example demonstrates the influence of the activation temperature of calcium cyere dihydrate on the catalytic behavior in the transesterification of sunflower oil with methanol. Temperatures of 350, 400, 500 and 800 0 C were used, a weight percentage of calcium ccommune dihydrate of 1%, methanol: oil molar ratios of 12: 1 and a reaction temperature of 60 0 C. After thermal activation at 350 0 C, the catalyst obtained needs a reaction time of 3 hours to reach a yield of 89% ( Figure 3). However, with temperatures at or above 400 0 C, the values obtained are higher over the entire range of reaction times studied, and two hours yields FAME are over 85%.
  • EXAMPLE 3 Reaction of catalytic transesterification of triglycerides to obtain biodiesel with a catalyst obtained after calcining calcium ccommune dihydrate at 400 0 C. in different reuse cycles.
  • the catalyst obtained after calcining the calcium zincate dihydrate in inert atmosphere at 400 0 C was used in several cycles of reuse.
  • the solid catalyst is separated from the solution (reagents and reaction products) by centrifugation at 7000 rpm for 7 minutes. Then the catalyst obtained in the centrifugation process is reused, but without performing the previous activation stage.
  • the results obtained are shown in Figure 5, where it is observed that this catalyst can be used for at least three 1-hour catalytic cycles, with FAME yields greater than 86%.
  • the catalyst obtained after activating calcium zincate dihydrate 400 0 C has been used to study the influence of the acidity of the oil on the performance of FAME.
  • different amounts of oleic acid C 18 H 34 O 2

Abstract

The present invention relates to the use of solid catalysts, obtained by calcination of a zincate of an alkaline earth metal or of a divalent transition metal, for the production of biofuels (biodiesel) through transesterification of vegetable or animal oils or fats with low-molecular-weight alcohols under mild temperature and atmospheric pressure conditions. In addition to the advantages of the heterogeneous catalysis itself, the invention also offers the following advantages: simplicity, reproducibility and easy scaling of synthesis; the precursor of the active catalyst is stable in air; the temperature of decomposition or activation of the catalyst is lower than that of other basic solid catalysts; the kinetics of the reaction are similar to those described in homogenous catalytic reactions and significantly faster than in the case of other solid catalysts.

Description

Título Title
Procedimiento de producción de biocarburantes mediante catálisis heterogénea empleando un cincato metálico como precursor de catalizadores sólidosProduction method of biofuels by heterogeneous catalysis using a metallic cincato as a precursor of solid catalysts
Sector técnicoTechnical sector
La presente invención describe el empleo de catalizadores sólidos, obtenidos por calcinación de un cincato de un metal alcalinotérreo o de un metal de transición divalente, para la producción de biocarburantes, y de forma particular biodiésel, mediante transesterifϊcación en condiciones suaves de temperatura y presión atmosférica, de aceites o grasas vegetales o animales, con alcoholes de bajo peso molecular.The present invention describes the use of solid catalysts, obtained by calcining a cincato of an alkaline earth metal or a divalent transition metal, for the production of biofuels, and in particular biodiesel, by transesterification under mild conditions of temperature and atmospheric pressure , of vegetable or animal oils or fats, with low molecular weight alcohols.
Técnica anteriorPrior art
El biodiésel está formado por una mezcla de esteres de ácidos grasos obtenidos por transesterifϊcación de los triglicéridos presentes en aceites vegetales y grasas animales con alcoholes de bajo peso molecular (principalmente, metanol o etanol).The biodiesel is formed by a mixture of fatty acid esters obtained by transesterification of triglycerides present in vegetable oils and animal fats with low molecular weight alcohols (mainly methanol or ethanol).
El empleo de este biocombustible presenta numerosas ventajas sobre otros combustibles de origen fósil [Biores. Technol. 70 (1999) 1-15], destacando su origen renovable ya que las fuentes de triglicéridos son las grasas de origen vegetal o animal, su alto poder lubricante que protege el motor reduciendo su desgaste, y su carácter biodegradable. Además, cuando se emplea en motores diesel, bien puro o mezclado con diesel derivado del petróleo, reduce de forma significativa las emisiones nocivas como CO, hidrocarburos aromáticos y no quemados, materia particulada y óxidos de azufre. No obstante, el uso de biodiésel aumenta ligeramente las emisiones de óxidos de nitrógeno, si bien este inconveniente se puede mitigar con un reglaje específico de la inyección o mediante el empleo de catalizadores específicos de eliminación selectiva de NOx tras postcombustión, y plantea problemas de viscosidad a bajas temperaturas, lo que puede solucionarse mediante el empleo de aditivos.The use of this biofuel has numerous advantages over other fossil fuels [Biores. Technol 70 (1999) 1-15], highlighting its renewable origin since the sources of triglycerides are fats of vegetable or animal origin, its high lubricating power that protects the engine by reducing its wear, and its biodegradable character. In addition, when used in diesel engines, either pure or mixed with petroleum-derived diesel, it significantly reduces harmful emissions such as CO, aromatic and unburned hydrocarbons, particulate matter and sulfur oxides. However, the use of biodiesel slightly increases the emissions of nitrogen oxides, although this inconvenience can be mitigated with a specific adjustment of the injection or by the use of specific catalysts for selective removal of NOx after post-combustion, and raises viscosity problems at low temperatures, which can be solved by the use of additives.
El proceso de transesterificación consiste en hacer reaccionar los triglicéridos, componentes mayoritarios de las grasas vegetales (aceites vegetales) y animales (sebo), con metanol o etanol. Los triglicéridos son lípidos formados por esterificación de los tres grupos hidroxilo de una molécula de glicerina con tres moléculas de ácidos grasos saturados o insaturados. En función de que el alcohol sea etanol o metanol, el proceso de transesterificación resulta en la generación de esteres etílicos de ácidos grasos (FAEE, Fatty Acid Ethyl Ester en inglés) o de esteres metílicos de ácidos grasos (FAME, Fatty Acid Methyl Ester en inglés), respectivamente. En el caso de que el alcohol empleado sea metanol, la reacción de transesterificación transcurre conforme a las siguientes tres etapas reversibles:The transesterification process involves reacting triglycerides, major components of vegetable fats (vegetable oils) and animals (tallow), with methanol or ethanol. Triglycerides are lipids formed by esterification of the three hydroxyl groups of a glycerin molecule with three fatty acid molecules saturated or unsaturated. Depending on whether the alcohol is ethanol or methanol, the transesterification process results in the generation of fatty acid ethyl esters (FAEE, Fatty Acid Ethyl Ester in English) or fatty acid methyl esters (FAME, Fatty Acid Methyl Ester in English), respectively. In the event that the alcohol used is methanol, the transesterification reaction proceeds according to the following three reversible stages:
R1COOCH2 HOCH2 R 1 COOCH 2 HOCH 2
| Catalizador | *| Catalyst | *
R2COOCH + CH3OH < > R2COOCH + R1COOCH3 R 2 COOCH + CH 3 OH <> R 2 COOCH + R 1 COOCH 3
R3COOCH2 R3COOCH2 R 3 COOCH 2 R 3 COOCH 2
Tríglicérído DigfícérídoDiglyceride Triglyceride
HOCH, _ . „ . HOCH2 HOCH, _. „. HOCH 2
I 2 Catalizador | z I 2 Catalyst | z
R2COOCH + CH3OH < >* HOCH + R2COOCH3 R 2 COOCH + CH 3 OH < > * HOCH + R 2 COOCH 3
R3COOCH2 R3COOCH2 R 3 COOCH 2 R 3 COOCH 2
Diglicέrido MonoglicέridoDigicέrido Monoglicέrido
HOC I H 2 * * C-a_twali-zad ^or HOC ¡ H2 ' HOC I H 2 * * C-a_twali-zad ^ or HOC ¡H 2 '
HOCH + CH3OH ^ V > HOCH + R3COOCH3 HOCH + CH 3 OH ^ V> HOCH + R 3 COOCH 3
R3COOCH2 HOCH2 R 3 COOCH 2 HOCH 2
Monoglicérido Glicerína Alquil-ésterMonoglyceride Glycerin Alkyl ester
La reacción global entre un mol de triglicérido y tres de metanol conduce a un mol de glicerina y tres moles de FAME. Dicha reacción puede realizarse tanto en ausencia como en presencia de catalizador. En cualquier caso, la formación de FAME se favorece normalmente empleando una cantidad de alcohol en exceso con respecto a la relación estequiométrica. La reacción entre los triglicéridos y el metanol, que son inmiscibles, se acelera mediante fuerte agitación, ya que facilita el contacto entre estas dos fases.The overall reaction between one mole of triglyceride and three of methanol leads to one mole of glycerin and three moles of FAME. Said reaction can be carried out both in the absence and in the presence of catalyst. In any case, the formation of DMARD is normally favored by using an excess amount of alcohol with respect to the stoichiometric ratio. The reaction between triglycerides and methanol, which are immiscible, is accelerated by strong agitation, as it facilitates contact between these two phases.
No obstante, la reacción de transesterificación puede llevarse a cabo en ausencia de catalizador y de agitación, empleando metanol en condiciones supercríticas (temperaturas superiores a 239.5 °C y presiones superiores a 81 bar; US6187939, US6288251). Sin embargo, estas condiciones drásticas de reacción suponen el empleo de equipamiento específico, de alto coste, lo que limita en gran medida su empleo para el tratamiento de grasas baratas de baja calidad (alta acidez y alto contenido en agua). En consecuencia, el empleo de catalizadores es una práctica generalizada, con objeto de que la velocidad de reacción sea suficientemente alta y se obtengan rendimientos elevados en biodiésel de forma rápida, distinguiéndose procesos catalíticos homogéneos y heterogéneos, a la par que catalizadores sólidos y líquidos.However, the transesterification reaction can be carried out in the absence of catalyst and stirring, using methanol under supercritical conditions (temperatures above 239.5 ° C and pressures above 81 bar; US6187939, US6288251). However, these drastic reaction conditions involve the use of specific, high-cost equipment, which greatly limits their use for the treatment of low-quality cheap fats (high acidity and high water content). Consequently, the use of catalysts is a widespread practice, so that the speed of reaction is sufficiently high and high yields in biodiesel are obtained quickly, distinguishing homogeneous and heterogeneous catalytic processes, as well as solid and liquid catalysts.
A escala industrial, el proceso más extendido emplea catalizadores básicos tales como KOH, NaOH o sus correspondientes metóxidos, disueltos en el metanol [Biores. Technol., 92 (2004) 297, US4303590], que mediante catálisis homogénea favorecen la transesterificación de triglicéridos con metanol. También se ha propuesto el empleo de catalizadores ácidos para realizar directamente la transesterificación, pero las velocidades de reacción son más lentas que el proceso catalítico básico. Todos los procesos homogéneos requieren de etapas de neutralización, así como intensivas de lavado, tanto del biodiésel como de la fase alcohólica, lo que genera un volumen importante de efluentes acuosos que deben tratarse antes de su vertido [Bioresource Technology 70 (1999) 1-15]. Además, el catalizador empleado en este proceso homogéneo no puede reutilizarse, ya que se pierde en las etapas de neutralización y lavado. El empleo de un catalizador sólido, en un proceso catalítico heterogéneo, reduce los problemas asociados a la catálisis homogénea, ya que el catalizador sólido puede separarse del medio de reacción mediante procedimientos físicos sencillos (filtración y/o centrifugación). Existen numerosos catalizadores sólidos que han sido propuestos para reacciones de transesterificación de triglicéridos, que pueden clasificarse en ácidos, básicos y enzimáticos.On an industrial scale, the most widespread process employs basic catalysts such as KOH, NaOH or their corresponding methoxides, dissolved in methanol [Biores. Technol., 92 (2004) 297, US4303590], which by homogenous catalysis favor the transesterification of triglycerides with methanol. The use of acid catalysts has also been proposed to directly carry out the transesterification, but the reaction rates are slower than the basic catalytic process. All homogeneous processes require stages of neutralization, as well as intensive washing, both of the biodiesel and the alcoholic phase, which generates a significant volume of aqueous effluents that must be treated before discharge [Bioresource Technology 70 (1999) 1- fifteen]. In addition, the catalyst used in this homogeneous process cannot be reused, since it is lost in the neutralization and washing stages. The use of a solid catalyst, in a heterogeneous catalytic process, reduces the problems associated with homogeneous catalysis, since the solid catalyst can be separated from the reaction medium by simple physical procedures (filtration and / or centrifugation). There are numerous solid catalysts that have been proposed for triglyceride transesterification reactions, which can be classified as acidic, basic and enzymatic.
Entre los catalizadores ácidos activos se encuentran sílices mesoporosas funcionalizadas con grupos sulfónicos (US7122688), carbones derivados de polisacáridos funcionalizados con grupos sulfónicos [Green Chem. 9 (2007) 434] y pentóxido de vanadio (EP2000522), aunque este último catalizador es activo a 225 0C y presiones entre 35 y 60 Kg/cm2.Among the active acid catalysts are mesoporous silicas functionalized with sulfonic groups (US7122688), carbons derived from polysaccharides functionalized with sulphonic groups [Green Chem. 9 (2007) 434] and vanadium pentoxide (EP2000522), although the latter catalyst is active at 225 0 C and pressures between 35 and 60 Kg / cm 2 .
Entre los catalizadores básicos más empleados se encuentra el CaO [Bioresource Technology 70 (1999) 249-253; Energy & Fuels 20 (2006) 1310-1314; Appl. Catal. B 73 (2007) 317-326; Appl. Catal. A 334 (2008) 357-365], aunque también se han usado MgO y óxidos mixtos Mg-Al derivados de hidrotalcitas de Mg-Al (WO2006002087, WO2006050925). Otros catalizadores sólidos usados poseen sitios básicos de tipo Lewis, como son aquellos basados en guanidinas ancladas en soportes inorgánicos o poliméricos [J. Mol. Catal. A: Chem. 109 (1996) 37-44]. En la mayoría de estos ejemplos se ha trabajado en condiciones suaves de temperatura (desde temperatura ambiente a 80 0C) y presión atmosférica, aunque otros óxidos metálicos han resultado ser activos en condiciones más drásticas de presión y temperatura. Así, el Instituto Francés delAmong the most commonly used basic catalysts is CaO [Bioresource Technology 70 (1999) 249-253; Energy & Fuels 20 (2006) 1310-1314; Appl. Catal. B 73 (2007) 317-326; Appl. Catal. A 334 (2008) 357-365], although MgO and Mg-Al mixed oxides derived from Mg-Al hydrotalcites (WO2006002087, WO2006050925) have also been used. Other solid catalysts used have basic Lewis-type sites, such as those based on guanidines anchored in inorganic or polymeric supports [J. Mol. Catal. A: Chem. 109 (1996) 37-44]. In most of these examples has been worked under mild conditions of temperature (from room temperature to 80 0 C) and atmospheric pressure, although other metal oxides have proved to be active in more drastic conditions of pressure and temperature. Thus, the French Institute of
Petróleo (IFP) ha patentado catalizadores basados en óxido de cinc, óxido de aluminio y aluminato de cinc con estructura tipo espinela, que catalizan la reacción de transesterifícación de triglicéridos a temperaturas entre 170 y 250 0C, y presiones de 10-60 atm (US5908946). También el IFP ha demostrado el potencial de óxidos mixtos de Ti y Al y óxidos mixtos de Sb y Al, en similares condiciones experimentales (US2005266139). Un catalizador basado en TiO2 soportado sobre sílice también se ha patentado para la obtención de biodiésel (WO2006094986) a temperaturas comprendidas entre (100-250 °C) y la presión autógena generada por el metanol. A altas temperaturas (150-350 0C) y presiones entre 0.5-2 atm, un óxido de estaño sulfatado también ha demostrado ser activo en reacciones de transesterificación (US 7442668).Oil (IFP) it has patented catalysts based on zinc oxide, aluminum oxide and zinc aluminate spinel type structure, which catalyze the transesterification reaction of triglycerides at temperatures between 170 and 250 0 C, and pressures of 10-60 atm ( US5908946). IFP has also demonstrated the potential of mixed oxides of Ti and Al and mixed oxides of Sb and Al, under similar experimental conditions (US2005266139). A TiO2-based catalyst supported on silica has also been patented to obtain biodiesel (WO2006094986) at temperatures between (100-250 ° C) and the autogenous pressure generated by methanol. At high temperatures (150-350 0 C) and pressures between 0.5-2 atm, a sulfated tin oxide has also proven active in transesterification reactions (US 7442668).
Una mezcla de óxidos de cinc y de calcio preparada por precipitación de los correspondientes nitratos y posterior calcinación a 600-900 0C ha demostrado también ser activa en la transesterificación de aceite de grano de palma con metanol, pero para obtener contenidos en FAME superiores al 94% después de 1 hora de reacción a 60 0C, requieren el empleo de un 10% en peso de catalizador activado a 700 0C y una relación molar metanokaceite de 30:1 [Appl. Catal. A: Gen. 341 (2008) 77-85]. Otros óxidos metálicos que también han mostrado su utilidad como catalizadores sólidos son los basados en óxidos mixtos de V y P [Appl. Catal. A: Gen. 320 (2007) 1] y Fe-Zn [Appl. Catal. A: Gen. 314 (2006) 148].A mixture of zinc and calcium oxides prepared by precipitation of the corresponding nitrates and subsequent calcination at 600-900 0 C has also been shown to be active in the transesterification of palm kernel oil with methanol, but to obtain higher FAME contents than 94% after 1 hour of reaction at 60 0 C, require the use of 10% by weight of activated catalyst at 700 0 C and a methanokaceite molar ratio of 30: 1 [Appl. Catal. A: Gen. 341 (2008) 77-85]. Other metal oxides that have also shown their usefulness as solid catalysts are those based on mixed oxides of V and P [Appl. Catal. A: Gen. 320 (2007) 1] and Fe-Zn [Appl. Catal. A: Gen. 314 (2006) 148].
Además, se ha propuesto el empleo de lipasas como biocatalizadores (catalizadores enzimáticos) para la transesterificación de triglicéridos con alcoholes ( US7473791).In addition, the use of lipases as biocatalysts (enzymatic catalysts) for the transesterification of triglycerides with alcohols (US7473791) has been proposed.
La adición de compuestos tales como esteres cíclicos de bajo peso molecular (tetrahidrofurano, 1,2 dioxano, tere- butil metil éter, di-isopropil éter, di-etil éter) a la mezcla de reacción triglicérido-alcohol también ha sido descrita y patentada [Biomass Bionergy 11 (1996) 43, J. Am. OiI Chem. Soc. 75 (1998) 1167, US2003083514, US6712867].The addition of compounds such as low molecular weight cyclic esters (tetrahydrofuran, 1,2 dioxane, terebutyl methyl ether, di-isopropyl ether, di-ethyl ether) to the triglyceride-alcohol reaction mixture has also been described and patented [Biomass Bionergy 11 (1996) 43, J. Am. OiI Chem. Soc. 75 (1998) 1167, US2003083514, US6712867].
No obstante todo lo anterior, aunque se han propuesto varios catalizadores sólidos para la producción de biodiésel mediante un proceso catalítico heterogéneo, siguen existiendo importantes limitaciones que dificultan su implantación a nivel industrial, y no son aún una alternativa viable al proceso homogéneo. Entre estos inconvenientes, cabe destacar la menor velocidad de reacción del proceso heterogéneo y la necesidad de temperaturas elevadas (en algunos casos de hasta 800 0C) de activación del catalizador sólido, ya que es necesario eliminar el agua y el carbonato de la superficie del catalizador, para generar sitios básicos fuertes. Además, el catalizador sólido debe poder reutilizarse y eliminar la contribución homogénea al proceso catalítico de transesterificación de triglicéridos con alcoholes de bajo peso molecular, asociada a la existencia de especies básicas solubilizadas en el medio de reacción. La invención objeto de la presente solicitud de patente supone, además de las ventajas ya mencionadas en relación con la catálisis heterogénea frente a los procesos homogéneos, una serie de ventajas técnicas que aportan solución a problemas técnicos no resueltos por las alternativas que constituyen el estado de la técnica: 1 - Simplicidad, reproducibilidad y fácil escalado de la síntesis. ' - El precursor del catalizador activo es estable en aire.Notwithstanding the foregoing, although several solid catalysts have been proposed for the production of biodiesel through a heterogeneous catalytic process, there are still important limitations that hinder its implementation at the industrial level, and are not yet a viable alternative to the homogeneous process. Among these drawbacks, it is worth mentioning the lower reaction speed of the heterogeneous process and the need for high temperatures (in some cases up to 800 0 C) of activation of the solid catalyst, since it is necessary to remove water and carbonate from the surface of the catalyst, to generate strong basic sites. In addition, the solid catalyst must be able to be reused and eliminate the homogeneous contribution to the catalytic process of transesterification of triglycerides with low molecular weight alcohols, associated with the existence of solubilized basic species in the reaction medium. The invention object of the present patent application implies, in addition to the advantages already mentioned in relation to heterogeneous catalysis compared to homogeneous processes, a series of technical advantages that provide a solution to technical problems not solved by the alternatives that constitute the state of the technique: 1 - Simplicity, reproducibility and easy escalation of the synthesis. '- The precursor of the active catalyst is stable in air.
1 - La temperatura de descomposición o activación del catalizador es inferior a la de otros catalizadores sólidos básicos. 1 - The decomposition or activation temperature of the catalyst is lower than that of other basic solid catalysts.
1 - La cinética de la reacción es similar a la descrita en reacciones de catálisis homogénea, y significativamente más rápida que en el caso de otros catalizadores sólidos. 1 - The kinetics of the reaction is similar to that described in homogeneous catalysis reactions, and significantly faster than in the case of other solid catalysts.
Divulgación de la invenciónDisclosure of the invention
La presente invención propone un procedimiento heterogéneo de obtención de biocarburantes, particularmente biodiésel, mediante transesterificación catalítica usando un cincato metálico, particularmente un metal alcalinotérreo o un metal de transición divalente, como precursor de catalizadores sólidos activos.The present invention proposes a heterogeneous method of obtaining biofuels, particularly biodiesel, by catalytic transesterification using a metallic cincate, particularly an alkaline earth metal or a divalent transition metal, as a precursor to active solid catalysts.
La activación térmica del cincato metálico empleado como precursor puede realizarse en un amplio rango de temperaturas. La cantidad de precursor empleable, y consecuentemente de catalizador resultante, con objeto de que el proceso sea eficiente, también es variable. Los aceites o grasas susceptibles de ser utilizados como sustrato también son diversos, así como su grado de acidez o su contenido en agua. Las condiciones de la reacción aceptables también son variables sin que el proceso deje ser eficiente. Por otro lado, la naturaleza del precursor, del catalizador resultante, y las condiciones del proceso, permiten el reciclado del catalizador y la reutilización del precursor.The thermal activation of the metallic cincato used as a precursor can be carried out in a wide range of temperatures. The amount of precursor that can be used, and consequently of the resulting catalyst, so that the process is efficient, is also variable. The oils or fats that can be used as a substrate are also diverse, as well as their degree of acidity or their water content. Acceptable reaction conditions are also variable without the process being efficient. On the other hand, the nature of the precursor, the resulting catalyst, and the process conditions, allow catalyst recycling and reuse of the precursor.
En resumen, el procedimiento de transesterificación usando cincatos metálicos como precursores es eficiente y eficaz en un margen amplio de condiciones.In summary, the transesterification process using metal cincates as precursors is efficient and effective in a wide range of conditions.
Descripción de las figuras Figura 1. Difractogramas de rayos X obtenidos después de tratar a diferentes temperaturas el cincato calcico dihidrato. De arriba abajo: temperatura ambiente, desde 100 hasta 800 0C a intervalos de 100 0C, y después de enfriar a temperatura ambiente. Figura 2. Rendimiento en FAME (%) en función del tiempo de reacción, cuando se varía el porcentaje de cincato de calcio dihidrato empleado. Las condiciones de reacción han sido: temperatura de activación= 8000C, relación molar metanol:aceite= 12:1, velocidad de agitación= 1000 rpm, temperatura de reacción= 60 0C.Description of the figures Figure 1. X-ray diffractograms obtained after treating calcium cincate dihydrate at different temperatures. From top to bottom: room temperature, from 100 to 800 0 C at intervals of 100 0 C, and after cooling to room temperature. Figure 2. Yield in DMARD (%) as a function of the reaction time, when the percentage of calcium cincate dihydrate used is varied. The reaction conditions have been: activation temperature = 800 0 C, molar ratio methanol: oil = 12: 1, stirring speed = 1000 rpm, reaction temperature = 60 0 C.
Figura 3. Rendimiento en FAME (%) en función del tiempo de reacción, cuando se varía la temperatura de activación del cincato de calcio dihidrato. Las condiciones de reacción han sido: 1% en peso de precursor respecto al aceite de girasol, relación molar metanol:aceite= 12:1, temperatura de reacción= 60 0C, velocidad de agitación= 1000 rpm.Figure 3. Yield in DMARD (%) as a function of reaction time, when the activation temperature of calcium cincate dihydrate is varied. The reaction conditions have been: 1% by weight of precursor with respect to sunflower oil, molar ratio methanol: oil = 12: 1, reaction temperature = 60 0 C, stirring speed = 1000 rpm.
Figura 4. Rendimiento en FAME en función del tiempo de reacción. Condiciones de reacción: 4% en peso de precursor respecto al aceite de girasol, temperatura de activación= 400 0C, relación molar metanol:aceite= 12:1, temperatura de reacción= 60 0C, velocidad de agitación= 1000 rpm.Figure 4. Performance in FAME as a function of reaction time. Reaction conditions: 4% by weight of precursor with respect to sunflower oil, activation temperature = 400 0 C, molar ratio methanol: oil = 12: 1, reaction temperature = 60 0 C, stirring speed = 1000 rpm.
Figura 5. Rendimiento en FAME en tres ciclos de reutilización, y después de permanecer el cincato de calcio dihidrato 14 días en contacto con el aire. Condiciones de reacción: 4% en peso de precursor respecto al aceite de girasol, temperatura de activación^ 4000C, relación molar metanol:aceite= 12:1, temperatura de reacción= 6O0C, tiempo de reacción= 1 hora, velocidad de agitación= 1000 rpm.Figure 5. Performance in FAME in three cycles of reuse, and after remaining the calcium cincate dihydrate 14 days in contact with the air. Reaction conditions: 4% by weight of precursor with respect to sunflower oil, activation temperature ^ 400 0 C, molar ratio methanol: oil = 12: 1, reaction temperature = 6O 0 C, reaction time = 1 hour, speed stirring = 1000 rpm.
Maneras de realización de la invenciónWays of carrying out the invention
En esta invención se define biodiésel como una mezcla de esteres de alcoholes de bajo peso molecular, preferentemente metanol o etanol, con ácidos grasos.In this invention, biodiesel is defined as a mixture of esters of low molecular weight alcohols, preferably methanol or ethanol, with fatty acids.
La realización preferente de la presente invención implica el uso de cincato de calcio dihidrato como precursor del catalizador sólido activo.The preferred embodiment of the present invention involves the use of calcium cincate dihydrate as a precursor of the active solid catalyst.
La síntesis del cincato calcico dihidrato se realiza siguiendo el método propuesto por Sharma [J Electrochem. Soc. 133 (1986) 2215-2219]. Dicho método, de forma simplificada, consiste en suspender 5 g de óxido de cinc (ZnO, < 1 mm, 99.9%, Aldrich) en 500 mi de una disolución al 20% en peso de hidróxido potásico (KOH, Rectapur Prolabo), en un recipiente de 1000 mi, manteniéndose con fuerte agitación durante una hora. A continuación, sin suspender la agitación magnética, se van añadiendo lentamente, y en este orden 50 g de Ca(OH)2 (95%, A.C.S. Reagent Sigma Aldrich), 73 mi agua desionizada y 109.9 g de óxido de cinc (ZnO, < 1 mm, 99.9%, Aldrich). La mezcla de reactivos se mantiene en agitación a 200 rpm durante 72 horas. Tras este tiempo, el sólido obtenido se filtra a vacío y se procede al lavado del mismo con agua desionizada, hasta que el pH de las aguas de lavado es cercano a 11. Finalizado el proceso de lavado, el sólido se seca a 60 0C en estufa, obteniéndose finalmente el cincato calcico dihidrato (CaZn2(OH)6 .2H2O), y de cuya utilidad se da muestra en los modos de realización descritos en la presente solicitud de patente.The synthesis of calcium cincate dihydrate is carried out following the method proposed by Sharma [J Electrochem. Soc. 133 (1986) 2215-2219]. Said method, in a simplified manner, consists in suspending 5 g of zinc oxide (ZnO, <1 mm, 99.9%, Aldrich) in 500 ml of a 20% by weight solution of potassium hydroxide (KOH, Rectapur Prolabo), in a 1000 ml container, keeping with strong agitation for one hour. Then, without suspending the magnetic stirring, they are added slowly, and in this order 50 g of Ca (OH) 2 (95%, ACS Reagent Sigma Aldrich), 73 my deionized water and 109.9 g of zinc oxide (ZnO, <1 mm, 99.9%, Aldrich). The reagent mixture is kept under stirring at 200 rpm for 72 hours. After this time the solid obtained is filtered under vacuum and is washed with deionized water thereof, until the pH of the washing waters is close to 11. After the washing process, the solid dried at 60 0 C in the oven, finally obtaining the calcium cincate dihydrate (CaZn 2 (OH) 6 .2H 2 O), and whose usefulness is shown in the embodiments described in the present patent application.
Particularmente, la cinética del proceso de transesterificación se ve mejorada por el empleo de un 4% en peso de precursor, relaciones molares metanolraceite de 12:1 y velocidad de agitación de 1000 rpm, alcanzando rendimientos en FAME del 95% después de 45 minutos de reacción.Particularly, the kinetics of the transesterification process is enhanced by the use of a 4% precursor weight, 12: 1 methanol radical oil ratios and 1000 rpm stirring speed, reaching 95% FAME yields after 45 minutes of reaction.
Los catalizadores obtenidos por activación térmica del cincato de calcio dihidrato son particularmente activos en la transesterificación de aceite de girasol y soja con metanol, originando la formación de esteres metílicos de los ácidos grasos presentes en estos aceites (FAME). En el proceso de transesterificación con aceite de girasol se obtuvo una conversión cercana al 100% en un tiempo de reacción de 1 hora cuando el porcentaje en peso de precursor fue del 4%. La única diferencia observada entre los cromatogramas del aceite de soja y de girasol es la presencia de un nuevo pico de FAME en el cromatograma del aceite de soja, debido a la formación de linolenato de metilo a partir de la transesterificación del triglicérido derivado del ácido linolénico y metanol. Además, se pueden tratar aceites con índice de acidez de 1.1° y porcentajes en agua del 0.2% sin una disminución drástica del rendimiento en FAME.The catalysts obtained by thermal activation of calcium cincate dihydrate are particularly active in the transesterification of sunflower and soybean oil with methanol, causing the formation of methyl esters of fatty acids present in these oils (FAME). In the process of transesterification with sunflower oil, a conversion close to 100% was obtained in a reaction time of 1 hour when the precursor weight percentage was 4%. The only difference observed between the chromatograms of soybean oil and sunflower oil is the presence of a new peak of FAME in the chromatogram of soybean oil, due to the formation of methyl linolenate from the transesterification of triglyceride derived from linolenic acid and methanol In addition, oils with acidity index of 1.1 ° and water percentages of 0.2% can be treated without a drastic decrease in FAME performance.
El cincato de calcio dihidrato es estable en airé frente al agua y dióxido de carbono; los catalizadores obtenidos pueden reciclarse, ya que los óxidos de calcio y de cinc son las materias primas para la síntesis del cincato de calcio dihidrato; el catalizador obtenido por activación a 400 0C puede utilizarse al menos durante tres ciclos catalíticos de una hora, con rendimientos a FAME superiores al 85%, cuando se emplea 4% en peso de cincato de calcio dihidrato y relación molar metanohaceite de 12:1. A continuación se describen una serie de ejemplos, de carácter no limitativo, que dan muestra de la flexibilidad y de las ventajas de la presente invención, y en especial del uso de este precursor para la obtención de un catalizador activo en la transesterificación de aceites vegetales con metanol, para la producción de biodiésel. EJEMPLO Ij Reacción de transesterificación catalítica de triglicéridos para obtención de biodiésel con catalizadores obtenidos mediante tratamiento térmico del cincato de calcio dihidrato, con porcentajes en peso entre 1 y 4% de precursor.Calcium cincate dihydrate is stable in air against water and carbon dioxide; The catalysts obtained can be recycled, since calcium and zinc oxides are the raw materials for the synthesis of calcium cincate dihydrate; the catalyst obtained by activation at 400 0 C can be used for at least three catalytic cycles an hour, with yields FAME over 85% when 4% is used in weight zincate dihydrate calcium molar ratio metanohaceite 12: 1 . A series of non-limiting examples are described below, which show the flexibility and advantages of the present invention, and especially the use of this precursor for obtaining an active catalyst in the transesterification of vegetable oils with methanol, for the production of biodiesel. EXAMPLE Ij Reaction of catalytic transesterification of triglycerides to obtain biodiesel with catalysts obtained by heat treatment of calcium cincate dihydrate, with percentages by weight between 1 and 4% of precursor.
La reacción de transesterificación heterogénea básica de los triglicéridos contenidos en el aceite de girasol comienza con una etapa de activación del catalizador. El catalizador previamente pesado se activa en atmósfera inerte de helio (pueden emplearse otros gases, aunque evitando el uso de aire, puesto que el dióxido de carbono presente en el mismo podría reaccionar con el catalizador a alta temperatura), en un horno tubular (pueden emplearse dispositivos alternativos) a la temperatura de 400 0C, utilizando una rampa de calentamiento de 20 °C/min, y permaneciendo una hora (tiempos menores dan lugar a catalizadores menos activos) a la temperatura de 400 0C.The basic heterogeneous transesterification reaction of triglycerides contained in sunflower oil begins with a catalyst activation stage. The previously weighed catalyst is activated in an inert atmosphere of helium (other gases can be used, although avoiding the use of air, since the carbon dioxide present in it could react with the catalyst at high temperature), in a tubular furnace (they can used alternative devices) at the temperature of 400 0 C, using a heating rate of 20 ° C / min, and remaining one hour (shorter times result in less active catalysts) at the temperature of 400 0 C.
El análisis térmico-diferencial y termogravimétrico del cincato calcico dihidrato refleja, entre temperatura ambiente y 1000 0C, una pérdida de peso total del 26.3%, asociada a la eliminación de grupos hidroxilo (proceso de deshidroxilación) y agua de hidratación (proceso de deshidratación). Así una carga del 4% en peso de precursor corresponde aproximadamente a un 3% en peso de catalizador. El contenido en calcio del precursor y del catalizador obtenido después de la activación térmica a 400 0C se determina mediante la técnica de absorción atómica (ICP-AA). Los valores encontrados han sido de 19.9 y 25.1% CaO para el precursor, antes y después de activación, que son muy próximos a los respectivos valores teóricos del 18.2 y 25.6%. El análisis químico indica que el cincato de calcio dihidrato no presenta potasio en su composición química.The thermal-differential and thermogravimetric analysis of calcium cincate dihydrate reflects, between room temperature and 1000 0 C, a total weight loss of 26.3%, associated with the elimination of hydroxyl groups (dehydroxylation process) and hydration water (dehydration process ). Thus a load of 4% by weight of precursor corresponds to approximately 3% by weight of catalyst. The calcium precursor and the catalyst obtained after thermal activation at 400 0 C is determined by atomic absorption technique (ICP-AA). The values found were 19.9 and 25.1% CaO for the precursor, before and after activation, which are very close to the respective theoretical values of 18.2 and 25.6%. Chemical analysis indicates that calcium cincate dihydrate has no potassium in its chemical composition.
Después de su activación a 400 0C, durante una hora, con una velocidad de calentamiento desde temperatura ambiente hasta 4000C de 20°C/min, el cincato de calcio dihidrato se transforma en una mezcla de óxido de cinc y óxido de calcio, como confirman los datos de difracción de rayos X.After activation at 400 0 C for one hour, with a heating rate from room temperature to 400 0 C of 20 ° C / min, the zincate dihydrate calcium is transformed into a mixture of zinc oxide and calcium oxide , as confirmed by the X-ray diffraction data.
Uno de los aspectos más relevantes del catalizador obtenido a 400 0C es su alta superficie específica (76.7 m^g"1) y volumen de poros (0.144 crn^g"1). La distribución de tamaños de poros es relativamente estrecha, centrada alrededor de 4.3 nm, lo que permite el acceso de las moléculas de triglicéridos a los sitios básicos del catalizador.One of the most relevant aspects of the catalyst obtained at 400 0 C is its high specific surface area (76.7 m ^ g "1 ) and pore volume (0.144 crn ^ g " 1 ). The pore size distribution is relatively narrow, centered around 4.3 nm, which allows triglyceride molecules to access the catalyst's basic sites.
Los materiales utilizados en la reacción de transesterificación son básicamente: aceite de girasol, metanol y catalizador. La reacción se realiza en un reactor discontinuo de mezcla completa bajo atmósfera de N2, con reflujo, agitación magnética y a la temperatura de 60 0C. Esta temperatura se consigue mediante un baño de silicona calentado por una placa calefactora.The materials used in the transesterification reaction are basically: sunflower oil, methanol and catalyst. The reaction is carried out in a discontinuous reactor of complete mixing under N 2 atmosphere, with reflux, magnetic stirring and at the temperature of 60 0 C. This temperature is achieved by a silicone bath heated by a heating plate.
El reactor discontinuo de mezcla completa presenta tres bocas y una entrada de gases. La boca central está conectada a un sistema refrigerante, para mantener el volumen de metanol constante en el interior del reactor. Una de las bocas situadas en los extremos se emplea en el proceso de extracción de alícuotas para su posterior análisis, mientras que por la otra se controla la temperatura del reactor mediante un termómetro.The complete mixing batch reactor has three mouths and a gas inlet. The central mouth is connected to a cooling system, to keep the volume of methanol constant inside the reactor. One of the mouths located at the ends is used in the aliquot extraction process for later analysis, while on the other the reactor temperature is controlled by a thermometer.
El sistema se encuentra en continua agitación, para obtener un óptimo contacto entre fases, mediante un agitador magnético cuyo rango de velocidad va desde 100 rpm hasta 1000 rpm. El aceite de girasol (25 g) se precalienta a 60 °C en el reactor. El catalizador se introduce en el reactor sin cortar la corriente de helio para evitar la entrada de aire y por tanto de CO2. Posteriormente, y con agitación magnética continua, se vierte el metanol (16.5 ce) y se sella el reactor. La agitación magnética permite el contacto de las dos fases inmiscibles (metanol y aceite). El montaje del reactor discontinuo de mezcla completa está confinado dentro de una campana de extracción de gases, para prevenir posibles problemas provocados por fugas de metanol en el montaje.The system is in continuous agitation, to obtain optimum contact between phases, by means of a magnetic stirrer whose speed range is from 100 rpm to 1000 rpm. Sunflower oil (25 g) is preheated to 60 ° C in the reactor. The catalyst is introduced into the reactor without cutting off the helium current to prevent the entry of air and therefore of CO 2 . Subsequently, and with continuous magnetic stirring, the methanol (16.5 ce) is poured and the reactor is sealed. Magnetic stirring allows the contact of the two immiscible phases (methanol and oil). The assembly of the complete mixing batch reactor is confined within a gas extraction hood, to prevent possible problems caused by methanol leaks in the assembly.
El proceso de separación consta de una etapa de extracción, filtración, neutralización y decantación. La etapa de extracción es la obtención de una alícuota de muestra (1.5 mi) del medio de reacción, mediante una jeringuilla. A continuación se lleva a cabo la etapa de filtración mediante un microfiltro, con el fin de eliminar las partículas de catalizador presente. La etapa de neutralización se basa en la adición de 1 mi de la disolución 0,1 M de HCl, para neutralizar los restos de catalizador básico que puedan quedar. Posteriormente llegamos a la etapa de decantación, adicionando a la muestra 1.5 mi de diclorometano y agitación vigorosa. Se obtienen dos fases: una fase orgánica (fase éster) y otra acuosa (fase alcohólica).The separation process consists of a stage of extraction, filtration, neutralization and decantation. The extraction step is to obtain a sample aliquot (1.5 ml) of the reaction medium, by means of a syringe. The filtration step is then carried out by means of a microfilter, in order to remove the catalyst particles present. The neutralization step is based on the addition of 1 ml of the 0.1 M solution of HCl, to neutralize the remaining basic catalyst residues. Subsequently we reach the stage of decantation, adding 1.5 ml of dichloromethane and vigorous stirring to the sample. Two phases are obtained: an organic phase (ester phase) and an aqueous phase (alcoholic phase).
La fase éster contiene además diclorometano y trazas de metanol que se deben eliminar antes del análisis de la fase biodiésel. Para ello se mantiene la disolución durante 5 horas en un baño de arena a la temperatura de 90 0C. Las muestras se analizaron mediante cromatografía líquida de alta resoluciónThe ester phase also contains dichloromethane and traces of methanol that must be removed before analyzing the biodiesel phase. For this, the solution is maintained for 5 hours in a sand bath at a temperature of 90 0 C. The samples were analyzed by high performance liquid chromatography.
(HPLC) con un equipo JASCO equipado con una bomba cuaternaria de gradiente (PU- 2089), un detector ultravioleta (MD-2015), un inyector automático (AS-2055) y un horno de columna (co-2065). La columna utilizada fue PHENOMENEX LUNA Cl 8 (250 mm x 4,6 mm x 5 μm). Los disolventes se microfiltraron y desgasificaron con helio. Se utilizó un gradiente lineal desde 100% de metanol hasta 50% - 50% de metanol- isopropanol:hexano (5:4 v/v). Los volúmenes de inyección en la columna fueron de 15 μL, con una temperatura de la columna constante e igual a 40 0C. Las muestras purificadas fueron previamente preparadas para su análisis en el HPLC, disolviéndose 80 μl de la muestra en 10 mi de la mezcla isopropanol/hexano (5:4 v/v).(HPLC) with a JASCO device equipped with a quaternary gradient pump (PU-2089), an ultraviolet detector (MD-2015), an automatic injector (AS-2055) and a column oven (co-2065). The column used was PHENOMENEX LUNA Cl 8 (250 mm x 4.6 mm x 5 μm). The solvents were microfiltered and degassed with helium. A linear gradient from 100% methanol to 50% - 50% methanol-isopropanol: hexane (5: 4 v / v). The injection volumes in the column were 15 μL, with a constant column temperature equal to 40 0 C. The purified samples were previously prepared for analysis in the HPLC, dissolving 80 μl of the sample in 10 ml of the isopropanol / hexane mixture (5: 4 v / v).
Para el análisis de los esteres metílicos (biodiésel) se ha empleado un detector de diodos array, a una longitud de onda de 205 nm. Los dobles enlaces C=C de las cadenas alquílicas de los ácidos grasos absorben en la región UV del espectro electromagnético.For the analysis of methyl esters (biodiesel) an array diode detector has been used, at a wavelength of 205 nm. The double bonds C = C of the alkyl chains of the fatty acids absorb in the UV region of the electromagnetic spectrum.
Se han registrado las áreas de los triglicéridos del aceite que no han reaccionado, al igual que las áreas de los esteres metílicos (biodiésel o FAME) y de mono-, diglicéridos y ácidos grasos libres.The triglyceride areas of the unreacted oil have been recorded, as have the areas of methyl esters (biodiesel or FAME) and mono-, diglycerides and free fatty acids.
Se tomaron muestras a determinados tiempos de reacción y se procedió al análisis del contenido en esteres metílicos, FAME, de la fase lipídica.Samples were taken at certain reaction times and the content of methyl esters, FAME, of the lipid phase was analyzed.
En la Figura 1 se presentan los difractogramas de rayos X del cincato de calcio dihidrato, a temperatura ambiente y después de su activación a distintas temperaturas, donde puede observarse que a 400 0C sólo aparecen señales de difracción del ZnO cristalino (*), mientras que el CaO cristalino es visible a partir de una temperatura de 500 0C. Después de calcinar a 8000C y enfriar, el sólido está formado por una mezcla de CaO y ZnO cristalinos. El aumento del porcentaje de precursor favorece la formación de FAME (Figura 2), y así después de su activación a 800 0C, con un 4% de precursor se obtienen rendimientos a FAME superiores al 93% con un tiempo de reacción de 1 hora, relaciones molares metanol:aceite de 12:1 y una temperatura de reacción de 60 0C. La influencia del peso de precursor empleado se observa sobre todo al menor tiempo de reacción, ya que, a partir de dos horas, los rendimientos a FAME son similares (> 85%).In Figure 1 the X - ray diffractograms of zincate dihydrate calcium occur at room temperature and after activation at different temperatures, which can be seen that at 400 0 C only appear diffraction signals crystal ZnO (*), while that the crystalline CaO is visible from a temperature of 500 0 C. After calcining at 800 0 C and cooling, the solid is formed by a mixture of crystalline CaO and ZnO. The increase in the precursor percentage favors the formation of FAME (Figure 2), and thus after its activation at 800 0 C, with a 4% precursor, FAME yields greater than 93% are obtained with a reaction time of 1 hour , molar ratios methanol: oil of 12: 1 and a reaction temperature of 60 0 C. The influence of the precursor weight used is observed mainly at the shortest reaction time, since, after two hours, the yields to FAME They are similar (> 85%).
EJEMPLO 2: Reacción de transesterificación catalítica de triglicéridos para la obtención de biodiésel con catalizadores obtenidos mediante activación de cincato de calcio dihidrato a diferentes temperaturas.EXAMPLE 2: Reaction of catalytic transesterification of triglycerides to obtain biodiesel with catalysts obtained by activating calcium cincate dihydrate at different temperatures.
Este ejemplo demuestra la influencia de la temperatura de activación del cincato de calcio dihidrato sobre el comportamiento catalítico en la transesterificación de aceite de girasol con metanol. Se emplearon temperaturas de 350, 400, 500 y 800 0C, un porcentaje en peso de cincato de calcio dihidrato del 1%, relaciones molares metanol:aceite de 12:1 y una temperatura de reacción de 60 0C. Después de la activación térmica a 350 0C, el catalizador obtenido necesita un tiempo de reacción de 3 horas para alcanzar un rendimiento del 89% (Figura 3). Sin embargo, con temperaturas iguales o superiores a 400 0C, los valores obtenidos son superiores en todo el intervalo de tiempos de reacción estudiados, y a las dos horas los rendimientos en FAME son superiores al 85%.This example demonstrates the influence of the activation temperature of calcium cincate dihydrate on the catalytic behavior in the transesterification of sunflower oil with methanol. Temperatures of 350, 400, 500 and 800 0 C were used, a weight percentage of calcium cincate dihydrate of 1%, methanol: oil molar ratios of 12: 1 and a reaction temperature of 60 0 C. After thermal activation at 350 0 C, the catalyst obtained needs a reaction time of 3 hours to reach a yield of 89% (Figure 3). However, with temperatures at or above 400 0 C, the values obtained are higher over the entire range of reaction times studied, and two hours yields FAME are over 85%.
Esta mayor actividad catalítica observada, después de la activación del cincato de calcio dihidrato a temperaturas iguales o superiores a 400 0C, se atribuye al mayor grado de deshidroxilación del óxido de calcio presente en este catalizador, aunque el óxido de cinc también debe contribuir al proceso catalítico de transesterifϊcación. El empleo de un 4% en peso de precursor y una temperatura de activación de 400This higher catalytic activity observed after activation zincate dihydrate calcium at or above 400 0 C temperature is attributed to the higher degree of dehydroxylation of calcium oxide present in the catalyst, although zinc oxide should also contribute to Catalytic transesterification process. The use of 4% by weight of precursor and an activation temperature of 400
0C mejora la cinética del proceso catalítico de transesterificación de aceite de girasol con metanol en comparación con otros catalizadores sólidos. Así se obtienen rendimientos en FAME del 73% a los 30 minutos de reacción, 94% a los 45 minutos, y se alcanza el 100% a los 60 minutos (Figura 4). 0 C improves the kinetics of the catalytic process of transesterification of sunflower oil with methanol compared to other solid catalysts. Thus, FAME yields of 73% are obtained at 30 minutes of reaction, 94% at 45 minutes, and 100% is reached at 60 minutes (Figure 4).
EJEMPLO 3: Reacción de transesterificación catalítica de triglicéridos para la obtención de biodiésel con un catalizador obtenido después de calcinar el cincato de calcio dihidrato a 400 0C. en diferentes ciclos de reutilización.EXAMPLE 3: Reaction of catalytic transesterification of triglycerides to obtain biodiesel with a catalyst obtained after calcining calcium cincate dihydrate at 400 0 C. in different reuse cycles.
El catalizador obtenido después de calcinar el cincato calcico dihidrato en atmósfera inerte a 400 0C se ha empleado en varios ciclos de reutilización. Para los ensayos de reutilización, el catalizador sólido se separa de la disolución (reactivos y productos de reacción) por centrifugación a 7000 rpm durante 7 minutos. A continuación se vuelve a utilizar el catalizador obtenido en el proceso de centrifugación, pero sin realizar la etapa previa de activación. Los resultados obtenidos se muestran en la Figura 5, donde se observa que este catalizador puede emplearse al menos durante tres ciclos catalíticos de 1 hora, con rendimientos en FAME superiores al 86%.The catalyst obtained after calcining the calcium zincate dihydrate in inert atmosphere at 400 0 C was used in several cycles of reuse. For reuse tests, the solid catalyst is separated from the solution (reagents and reaction products) by centrifugation at 7000 rpm for 7 minutes. Then the catalyst obtained in the centrifugation process is reused, but without performing the previous activation stage. The results obtained are shown in Figure 5, where it is observed that this catalyst can be used for at least three 1-hour catalytic cycles, with FAME yields greater than 86%.
En esta Figura 5, se presenta también la actividad catalítica después de dejar el cincato de calcio dihidrato en contacto con el aire durante 14 días, y activar a 4000C. Con un 4% en peso de precursor se observan rendimientos superiores al 91%. El análisis de los gases emitidos por espectrometría de masas (EGA-MS) en función de la temperatura es muy similar al del precursor fresco, lo que demuestra que el cincato calcico dihidrato es estable frente a la humedad y dióxido de carbono de la atmósfera. EJEMPLO 4j Reacción de transesterifícación catalítica de triglicéridos para la obtención de biodiésel con un catalizador obtenido después de calcinar el cincato de calcio dihidrato a 400 0C empleando un aceite con un índice de acidez de 1.1° y porcentajes en agua superiores al 0.1%.In this Figure 5, the catalytic activity is also presented after leaving the calcium cincate dihydrate in contact with the air for 14 days, and activating at 400 0 C. With 4% by weight of precursor yields greater than 91% are observed. . The analysis of gases emitted by mass spectrometry (EGA-MS) as a function of temperature is very similar to that of the fresh precursor, which demonstrates that calcium cincate dihydrate is stable against moisture and carbon dioxide in the atmosphere. EXAMPLE 4j Catalytic transesterification reaction of triglycerides to obtain biodiesel with a catalyst obtained after calcining the calcium cincate dihydrate at 400 0 C using an oil with an acid number of 1.1 ° and water percentages greater than 0.1%.
El catalizador obtenido después de activar el cincato de calcio dihidrato a 400 0C se ha utilizado para estudiar la influencia de la acidez del aceite sobre el rendimiento en FAME. Para ello se han adicionado al aceite de girasol diferentes cantidades de ácido oleico (C18H34O2), para conseguir valores de acidez de 0.55° y 1.1° (acidez típica de un aceite vegetal usado).The catalyst obtained after activating calcium zincate dihydrate 400 0 C has been used to study the influence of the acidity of the oil on the performance of FAME. To this end, different amounts of oleic acid (C 18 H 34 O 2 ) have been added to sunflower oil, to achieve acid values of 0.55 ° and 1.1 ° (typical acidity of a used vegetable oil).
Según los resultados obtenidos de actividad para reacciones con el 4% de cincato de calcio dihidrato, se observa que la acidez apenas afecta a la actividad de nuestro catalizador (Tabla 1) Mientras que con el aceite virgen de girasol con un índice de 0.2° se alcanzan conversiones cercanas al 100% a la hora de reacción, un aumento de la acidez a 1.1° produce una disminución moderada de la actividad bajando tan solo un 12% la conversión. Esta disminución de actividad puede atribuirse a que el aumento de ácidos grasos libres en el medio de reacción favorece la solubilización de la fase activa (CaO), por formación de los correspondientes oleatos calcicos. En presencia de un índice de acidez de 0.55° no hay aparente disminución de la actividad catalítica.According to the results obtained from activity for reactions with 4% calcium cincate dihydrate, it is observed that acidity hardly affects the activity of our catalyst (Table 1) While with virgin sunflower oil with an index of 0.2 ° reach conversions close to 100% at the time of reaction, an increase in acidity at 1.1 ° produces a moderate decrease in activity by only 12% lowering the conversion. This decrease in activity can be attributed to the fact that the increase in free fatty acids in the reaction medium favors the solubilization of the active phase (CaO), by formation of the corresponding calcium oleates. In the presence of an acid value of 0.55 ° there is no apparent decrease in catalytic activity.
% en peso de Tiempo H2O Acidez Rendimiento FAME precursor (h) (wt%) O (%)% by weight of Time H 2 O Acidity Yield FAME precursor (h) (wt%) O (%)
1 3 < 0.1 < 0.2 1001 3 <0.1 <0.2 100
1 3 0.2 < 0.2 791 3 0.2 <0.2 79
1 3 1.0 < 0.2 611 3 1.0 <0.2 61
4 1 < 0.1 < 0.2 1004 1 <0.1 <0.2 100
4 1 < 0.1 0.55 99.74 1 <0.1 0.55 99.7
4 1 < 0.1 1.1 88.34 1 <0.1 1.1 88.3
Tabla 1. Influencia de la presencia de agua y ácidos grasos libres en el aceite de girasol sobre el rendimiento en FAME (temperatura de activación= 4000C, 4% en peso de cincato de calcio dihidrato, relación molar metanol: aceite de girasol= 12:1 , temperatura de reacción= 600C)Table 1. Influence of the presence of water and free fatty acids in sunflower oil on the yield in FAME (activation temperature = 400 0 C, 4% by weight of calcium cincate dihydrate, molar ratio methanol: sunflower oil = 12: 1, reaction temperature = 60 0 C)
En relación a la presencia de agua en el aceite, los resultados obtenidos muestran el efecto negativo de la concentración de agua presente en el aceite, observándose un descenso del 20% de la conversión después de 3 horas de reacción, para el caso de aceites con un contenido en agua igual que un aceite usado (Tabla I)). Siendo, como era de esperar, mucho mayor el efecto negativo del agua a mayores concentraciones, ya que para el 1% H2O se registra un descenso del 40% de conversión.In relation to the presence of water in the oil, the results obtained show the negative effect of the concentration of water present in the oil, observing a 20% decrease in the conversion after 3 hours of reaction, in the case of oils with a water content the same as a used oil (Table I)). As expected, the negative effect of water at higher concentrations is much greater, since for 1% H 2 O there is a 40% decrease in conversion.
La concentración de agua afecta parcialmente al catalizador, descendiendo la conversión en FAME. Una explicación de esta disminución de actividad radicaría en la hidroxilación del CaO, para originar Ca(OH)2 de menor actividad. Water concentration partially affects the catalyst, lowering the conversion to FAME. An explanation of this decrease in activity would lie in the hydroxylation of CaO, to cause Ca (OH) 2 of lower activity.

Claims

Reivindicaciones Claims
1. Procedimiento de producción de biocarburantes mediante catálisis heterogénea de triglicéridos con alcoholes caracterizado porque comprende las siguientes etapas: a. Activación térmica del precursor de un catalizador sólido básico, b. Transesterificación, c. Extracción del producto de la transesterificación, d. Filtración del producto de la transesterificación con el fin de eliminar las partículas de catalizador presentes, e. Neutralización de los restos de catalizador persistentes en el producto de la transesterificación tras su extracción y filtración, f. Decantación y obtención de las fases orgánica (fase éster) y acuosa (fase alcohólica), y g. Eliminación de las trazas de alcohol y de sus derivados de la fase éster mediante tratamiento térmico.1. Procedure for the production of biofuels by heterogeneous triglyceride catalysis with alcohols characterized in that it comprises the following stages: a. Thermal activation of the precursor of a basic solid catalyst, b. Transesterification, c. Extraction of the transesterification product, d. Filtration of the transesterification product in order to remove the catalyst particles present, e. Neutralization of persistent catalyst residues in the transesterification product after extraction and filtration, f. Decantation and obtaining of the organic (ester phase) and aqueous (alcohol phase) phases, and g. Elimination of traces of alcohol and its derivatives of the ester phase by heat treatment.
2. Procedimiento según la reivindicación anterior caracterizado porque el precursor del catalizador sólido básico consiste en un cincato metálico.2. Method according to the preceding claim characterized in that the precursor of the basic solid catalyst consists of a metallic cincato.
3. Procedimiento según la reivindicación anterior caracterizado porque el precursor consiste en un cincato de un metal alcalinotérreo o de un metal de transición divalente. 3. Method according to the preceding claim, characterized in that the precursor consists of a cincato of an alkaline earth metal or a divalent transition metal.
4. Procedimiento según la reivindicación anterior caracterizado porque el precursor consiste en cincato calcico dihidrato. 4. Method according to the preceding claim characterized in that the precursor consists of calcium cincate dihydrate.
5. Procedimiento según la reivindicación anterior caracterizado porque la activación térmica del precursor del catalizador sólido básico se realiza a una temperatura comprendida en el rango 350 — 8000C. 5. Method according to the preceding claim characterized in that the thermal activation of the precursor of the basic solid catalyst is carried out at a temperature in the range 350-800 0 C.
6. Procedimiento según la reivindicación anterior caracterizado porque la activación se realiza en atmósfera inerte de un gas noble.Method according to the preceding claim characterized in that the activation is carried out in an inert atmosphere of a noble gas.
7. Procedimiento según la reivindicación anterior caracterizado porque la activación se realiza en atmósfera inerte de helio.7. Method according to the preceding claim characterized in that the activation is carried out in an inert atmosphere of helium.
8. Procedimiento según la reivindicación 6 ó 7 caracterizado por la activación se realiza utilizando una rampa de calentamiento de 2O0C /min.8. Method according to claim 6 or 7 characterized by activation is performed using a heating ramp of 2O 0 C / min.
9. Procedimiento según cualquiera de las reivindicaciones 5 a 8 caracterizado porque la activación térmica del precursor del catalizador sólido básico se realiza a 4000C.Method according to any one of claims 5 to 8, characterized in that the thermal activation of the precursor of the basic solid catalyst is carried out at 400 ° C.
10. Procedimiento según cualquiera de las reivindicaciones 5 a 9 caracterizado porque el tiempo de permanencia a la temperatura de activación es 1 hora. Method according to any one of claims 5 to 9, characterized in that the residence time at the activation temperature is 1 hour.
11. Procedimiento según la reivindicación anterior caracterizado porque la activación se realiza en un horno tubular.11. Method according to the preceding claim characterized in that the activation is carried out in a tubular oven.
12. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque los sustratos de la transesterificación comprenden aceites o grasas animales o vegetales y un alcohol de bajo peso molecular.12. Method according to any of the preceding claims characterized in that the transesterification substrates comprise animal or vegetable oils or fats and a low molecular weight alcohol.
13. Procedimiento según la reivindicación anterior caracterizado porque los aceites o grasas vegetales proceden de girasol o soja.13. Method according to the preceding claim characterized in that the vegetable oils or fats come from sunflower or soy.
14. Procedimiento según cualquiera de las reivindicaciones 12 a 13 caracterizado porque el alcohol de bajo peso molecular es metanol. 14. Method according to any of claims 12 to 13 characterized in that the low molecular weight alcohol is methanol.
15. Procedimiento según cualquiera de las reivindicaciones 12 a 14 caracterizado porque la transesterificación de realiza en un reactor discontinuo de mezcla completa bajo atmósfera de N2, con reflujo, agitación magnética y a una temperatura de reacción de 600C.15. Method according to any of claims 12 to 14, characterized in that the transesterification is carried out in a discontinuous reactor of complete mixing under N 2 atmosphere, with reflux, magnetic stirring and at a reaction temperature of 60 0 C.
16. Procedimiento según la reivindicación anterior caracterizado porque el reactor está conectado a un sistema refrigerante para mantener constante el volumen de alcohol y porque permite monitorizar la temperatura de reacción.16. Method according to the preceding claim characterized in that the reactor is connected to a refrigerant system to keep the volume of alcohol constant and because it allows the reaction temperature to be monitored.
17. Procedimiento según la reivindicación 15 ó 16 caracterizado porque la temperatura de reacción de la etapa de transesterificación se obtiene mediante un baño de silicona calentado por una placa calefactora. 17. Method according to claim 15 or 16, characterized in that the reaction temperature of the transesterification stage is obtained by a silicone bath heated by a heating plate.
18. Procedimiento según cualquiera de las reivindicaciones 12 a 17 caracterizado porque las condiciones de reacción son: 1 - 4% en peso de precursor activado térmicamente a 4000C respecto a la cantidad de aceite sustrato, relación molar metanolraceite 12:1, temperatura de reacción de transesterificación 6O0C, y velocidad de agitación de la mezcla de reacción 1000 rpm. 18. Method according to any of claims 12 to 17 characterized in that the reaction conditions are: 1-4% by weight of thermally activated precursor at 400 0 C with respect to the amount of substrate oil, 12: 1 methanol radical ratio, temperature of 6O 0 C transesterification reaction, and stirring speed of the reaction mixture 1000 rpm.
19. Procedimiento según la reivindicación anterior caracterizado porque las condiciones de reacción son: 4% en peso de precursor activado térmicamente a 4000C respecto a la cantidad de aceite sustrato, relación molar metanohaceite 12:1, temperatura de reacción de transesterificación 6O0C, y velocidad de agitación de la mezcla de reacción 1000 rpm. 19. Method according to the preceding claim characterized in that the reaction conditions are: 4% by weight of thermally activated precursor at 400 0 C with respect to the amount of substrate oil, 12: 1 methaneite molar ratio, 6O 0 C transesterification reaction temperature , and stirring speed of the reaction mixture 1000 rpm.
20. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque la filtración del producto de la transesterificación una vez extraído se realiza mediante un microfiltro. 20. Method according to any of the preceding claims characterized in that the filtration of the transesterification product once extracted is carried out by means of a microfilter.
21. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque la neutralización del producto de la transesterificación extraído y filtrado se realiza mediante HCl.21. Method according to any of the preceding claims characterized in that the neutralization of the extracted and filtered transesterification product is carried out by HCl.
22. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque la decantación se realiza añadiendo diclorometano y agitando vigorosamente la mezcla resultante.22. Method according to any of the preceding claims characterized in that the decantation is carried out by adding dichloromethane and vigorously stirring the resulting mixture.
23. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque la eliminación de diclorometano y de las trazas de alcohol de la fase éster tras la etapa de decantación se realiza calentando la misma durante 5 horas en un baño de arena a 900C. 23. Method according to any of the preceding claims characterized in that the removal of dichloromethane and alcohol traces from the ester phase after the decantation stage is carried out by heating it for 5 hours in a sand bath at 90 0 C.
PCT/ES2010/000141 2009-04-01 2010-03-27 Method for the production of biofuels by heterogeneous catalysis employing a metal zincate as precursor of solid catalysts WO2010112641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200900932A ES2345866B2 (en) 2009-04-01 2009-04-01 PROCEDURE FOR THE PRODUCTION OF BIOFUELS THROUGH HETEROGENIC CATALYSIS USING A METALLIC CINCATE AS A PRECURSOR OF SOLID CATALYSTS.
ESP200900932 2009-04-01

Publications (1)

Publication Number Publication Date
WO2010112641A1 true WO2010112641A1 (en) 2010-10-07

Family

ID=42735973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000141 WO2010112641A1 (en) 2009-04-01 2010-03-27 Method for the production of biofuels by heterogeneous catalysis employing a metal zincate as precursor of solid catalysts

Country Status (2)

Country Link
ES (1) ES2345866B2 (en)
WO (1) WO2010112641A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111023A1 (en) 2011-02-14 2012-08-23 Council Of Scientific & Industrial Research (An Indian Registered Body Incorporated Under The Registration Of Societies Act (Act Xxxi Of 1860) Improved process for the preparation of fatty acid alkyl esters (biodiesel) from triglyceride oils using eco-friendly solid base catalysts
WO2016156749A1 (en) 2015-04-03 2016-10-06 Easyl Method for manufacturing calcium zincate crystals, and the uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHAWALIT NGAMCHARUSSRIVICHAI ET AL.: "Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernthe oil", APPLIED CATALYSIS A: GENERAL, vol. 341, 10 March 2008 (2008-03-10), pages 77 - 85 *
LOPEZ GRANADOS, M. ET AL.: "Biodiesthe from sunflower oil by using activated calcium oxide", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 73, 9 January 2007 (2007-01-09), pages 317 - 326 *
MARTIN ALONSO, D. ET AL.: "Biodiesthe preparation using Li/CaO catalysts: Activation process and homogeneous contribution", CATALYSIS TODAY, vol. 143, 5 November 2008 (2008-11-05), pages 167 - 171 *
MASATO KOUZU ET AL.: "Calcium dioxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesthe production", FUEL, vol. 87, 20 November 2007 (2007-11-20), pages 2798 - 2806 *
MASATO KOUZU ET AL.: "Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol", APPLIED CATALYSIS A: GENERAL, vol. 335, 9 December 2008 (2008-12-09), pages 94 - 99 *
ZHENQIANG YANG ET AL.: "Soybean oil transesterification osee zinc oxide modified with alkali earth metals", FUTHE PROCESSING TECHNOLOGY, vol. 88, 7 May 2007 (2007-05-07), pages 631 - 638 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111023A1 (en) 2011-02-14 2012-08-23 Council Of Scientific & Industrial Research (An Indian Registered Body Incorporated Under The Registration Of Societies Act (Act Xxxi Of 1860) Improved process for the preparation of fatty acid alkyl esters (biodiesel) from triglyceride oils using eco-friendly solid base catalysts
US9029583B2 (en) 2011-02-14 2015-05-12 Council Of Scientific & Industrial Research Process for the preparation of fatty acid alkyl esters (biodiesel) from triglyceride oils using eco-friendly solid base catalysts
WO2016156749A1 (en) 2015-04-03 2016-10-06 Easyl Method for manufacturing calcium zincate crystals, and the uses thereof
US10472248B2 (en) 2015-04-03 2019-11-12 Easyl Method for manufacturing calcium zincate crystals, and the uses thereof

Also Published As

Publication number Publication date
ES2345866B2 (en) 2011-10-24
ES2345866A1 (en) 2010-10-04

Similar Documents

Publication Publication Date Title
Mansir et al. Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review
Guldhe et al. Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts
de Lima et al. Heterogeneous basic catalysts for biodiesel production
ES2331754T3 (en) PROCEDURE FOR THE MANUFACTURE OF ETHICAL ESTERS OF FATTY ACIDS FROM TRIGLICERIDS AND ALCOHOLS.
Avhad et al. A review on recent advancement in catalytic materials for biodiesel production
Sangar et al. Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst
Babu et al. Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst
Marinković et al. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives
Dawodu et al. Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst
Endalew et al. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils
Shu et al. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst
Brito et al. Zeolite Y as a heterogeneous catalyst in biodiesel fuel production from used vegetable oil
Liu et al. Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production
Zabeti et al. Activity of solid catalysts for biodiesel production: a review
Rattanaphra et al. Simultaneous conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia
Kouzu et al. Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review
ES2433072T3 (en) Use of fuels or fuel additives based on modified structure triglycerides
RU2428460C2 (en) Hydrocarbon fuel obtaining method
Li et al. Solid superacid catalyzed fatty acid methyl esters production from acid oil
Sánchez-Cantú et al. Direct synthesis of calcium diglyceroxide from hydrated lime and glycerol and its evaluation in the transesterification reaction
Olutoye et al. Synthesis of FAME from the methanolysis of palm fatty acid distillate using highly active solid oxide acid catalyst
Syamsuddin et al. Synthesis of glycerol free-fatty acid methyl esters from Jatropha oil over Ca–La mixed-oxide catalyst
Foroutan et al. Generation of biodiesel from edible waste oil using ZIF-67-KOH modified Luffa cylindrica biomass catalyst
Saikia et al. Sulphonated cellulose-based carbon as a green heterogeneous catalyst for biodiesel production: process optimization and kinetic studies
Abdala et al. Efficient biodiesel production from algae oil using Ca-doped ZnO nanocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758088

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758088

Country of ref document: EP

Kind code of ref document: A1