WO2010112601A1 - Antenne radioelectrique a cornieres de decouplage ameliorees - Google Patents

Antenne radioelectrique a cornieres de decouplage ameliorees Download PDF

Info

Publication number
WO2010112601A1
WO2010112601A1 PCT/EP2010/054457 EP2010054457W WO2010112601A1 WO 2010112601 A1 WO2010112601 A1 WO 2010112601A1 EP 2010054457 W EP2010054457 W EP 2010054457W WO 2010112601 A1 WO2010112601 A1 WO 2010112601A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
elastic material
reflector
antenna according
antenna
Prior art date
Application number
PCT/EP2010/054457
Other languages
English (en)
Inventor
Christian Desagulier
Original Assignee
Astrium Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium Sas filed Critical Astrium Sas
Priority to US13/260,833 priority Critical patent/US20120026056A1/en
Priority to EP10712947.0A priority patent/EP2415118B1/fr
Priority to ES10712947T priority patent/ES2530571T3/es
Publication of WO2010112601A1 publication Critical patent/WO2010112601A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/20Resilient mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal

Definitions

  • the present invention relates to the field of radio antennas with reflectors, and relates in particular to an antenna for a spacecraft, such as a telecommunications satellite.
  • Spacecraft antennas must comply with specifications concerning, in particular, the reflectivity of their reflectors, but also the mechanical strength of the means for connecting reflectors to spacecraft, which are subjected to the acoustic and dynamic vibratory stresses induced by space launchers. These antennas must also comply with specifications concerning their thermoelastic behavior in orbit. The level of the acoustic demands induced by the launchers being very difficult to predict, it is preferable that these antennas are almost insensitive to acoustic forces, to limit the risk of under-sizing or over-dimensioning means connecting reflectors to spacecraft.
  • FIGS. 1 and 1 show an example of a radio antenna 10 (FIG. 1) for telecommunications satellites, operating at frequencies between about 12 GHz and 18 GHz (Ku-band), of a known type.
  • the reflector 12 of the antenna 10 comprises a shell 14 of the sandwich type formed of a honeycomb structure on which are affixed a front skin - commonly called active skin - and a rear skin, each of these skins consisting of a fold of carbon fibers embedded in an epoxy resin.
  • the shell 14 of the reflector 12 is supported by a rigid rear structure 16 of this reflector.
  • This rear structure 16 is for example formed of tubular elements arranged in a hexagon centered on an axis of the reflector. In the example shown in the figures, these tubular elements have, seen in section, a rectangular shape.
  • the rear structure 16 is connected to the rear skin of the shell 14 by angles 18
  • Figure la able to ensure the mechanical strength of the antenna when launching and putting into orbit the satellite equipped with this antenna, and a thermomechanical decoupling between the reflector 12 and the rear structure 16 when the satellite is in orbit. Furthermore, the rear structure 16 is carried by a support arm 19 intended to provide the connection between the antenna 10 and the satellite.
  • the carbon fibers of the folds of the above-mentioned front and rear skins are arranged in the form of triaxial fabrics which are characterized by quasi-isotropic mechanical properties and by the presence of through openings which are regularly distributed over their surface. These openings allow a reduction of the mass of the reflector, and communicate with honeycomb cells of the honeycomb structure so that this type of reflector is insensitive to vibratory stresses, in particular to acoustic stresses during the launch of the satellite equipped with the antenna 10.
  • the composite materials used in these antennas give them a great lightness, which is an essential advantage in the field of space applications.
  • the reflectivity properties of the perforated reflectors of the type described above are not satisfactory at frequencies between about 20 GHz and 40 GHz (Ka band).
  • Solutions have been proposed, which consist, from an antenna of the type described above, to reduce the size of the openings of the active skin, or even to replace the active skin openwork with a full skin, but the antennas and obtained proved to be too sensitive to acoustic demands.
  • the tolerances relating to the reflector profiles are more stringent, which leads to more stringent requirements in terms of manufacturing accuracy and stability over time of the reflectors, typically of the order of 30.
  • RMS compared to 150 ⁇ m RMS for satellites operating at lower frequencies of the Ku band.
  • the sandwich structures of the type described above which comprise perforated skins formed of a single ply of composite material, do not make it possible to easily satisfy the levels of requirement inherent to a functioning in the Ka band.
  • the invention aims in particular to provide a simple, economical and effective solution to these problems, to avoid the aforementioned drawbacks.
  • It relates in particular to a radio antenna for a space satellite, able to operate at frequencies of the band Ka, and satisfying the requirements imposed on this type of antenna, in particular with regard to the sensitivity of the antenna to the vibratory stresses induced by the launchers, the accuracy of manufacture of the profile of the antenna reflector and the stability of this profile over time, and in general the thermomechanical behavior of the antenna in orbit.
  • the invention proposes for this purpose a radio antenna, in particular for spacecraft, comprising a reflector and support means of this reflector, the reflector comprising a shell adapted to reflect the radio waves, and a rigid rear structure carried by the means support and connected to the shell by decoupling brackets distributed around an axis of the shell and each comprising a first base fixed on the reflector shell, a flexible metal strip or a second base fixed on the rigid rear structure, and a central metal blade connecting the aforementioned first base to the flexible metal strip or to the second aforementioned base and capable of damping a transverse component of vibration of the shell.
  • each of said decoupling angles comprises at least one of its ends, a layer of an elastic material capable of damping at least one axial component of vibration of the shell.
  • the aforementioned elastic material layer is interposed between said first base and the shell, or between said flexible metal strip or said second base and said rigid rear structure.
  • Each decoupling angle can thus comprise either a single layer of elastic material arranged at one end of the angle, or two layers of elastic material respectively arranged at both ends of the angle.
  • the layer of elastic material of each angle can significantly reduce the impact of vibrational stresses, including acoustic, on the support means of the reflector of the antenna.
  • the shell of the reflector comprises a full front skin, that is to say, not perforated. Due to their elastic material layer, the high damping capacity of the angles makes it possible to use a full front skin, able to provide the reflector with optimal reflectivity properties, while limiting the risks of underwear. sizing of the reflector support means.
  • said elastic material has a Young's modulus of between 0.25 MPa and 1 MPa, a tensile strength of between 0.1 MPa and 0.5 MPa, and an elongation at break of between 20% and 40%. %.
  • said layer of elastic material of each angle is thus able to optimally dampen the vibratory stresses to which the antenna is likely to be subjected, in particular when this antenna equips a spacecraft.
  • said elastic material is a foam and comprises at least one compound belonging to the group of polyimides.
  • Each angle may further comprise a sandwich structure comprising two skins of composite material affixed on either side of said layer of elastic material.
  • brackets can in particular allow the brackets to be fixed to the reflector by a method similar to a method usually used for fixing the angles of the reflectors of the type Convention described above, which may be of considerable economic interest.
  • the elastic material may comprise an adhesive comprising an elastomer or silicone or polyurethane compound.
  • the elastic material is chosen not to degrade at space operating temperatures in orbit, and more precisely at temperatures between -180 0 C and +200 0 C.
  • the front skin and the back skin are made of a composite material comprising fibers embedded in a cured resin.
  • These fibers are advantageously carbon fibers arranged so as to optimize the isotropy of the mechanical and thermal properties of these skins.
  • these fibers may for example be arranged in the form of two folds of taffeta fabric crossed at angles of plus or minus 45 degrees or in the form of three to six plies of symmetrically draped fiber sheets (0 °, + 60 °, - 60 °).
  • the antenna is advantageously configured to operate in a predetermined frequency band of the microwave spectrum. waves, this frequency band being in particular included in the Ka band.
  • FIG. 1, already described, is a schematic perspective view of a radio antenna of a known type
  • FIG. 1a is a view on a larger scale of the detail Ia of FIG. 1;
  • FIG. 2 is a view similar to Figure la, a radio antenna according to the invention.
  • Figure 2 shows a portion of the reflector 20 of a radio antenna according to an embodiment of the invention.
  • This reflector 20 is generally of the same type as the reflector 12 of the prior art shown in FIGS. 1 and 1a, but the reflector 20 comprises a shell 22 with a full front skin and decoupling brackets 24 of a new type, in accordance with FIG. to the invention.
  • the terms “front”, “back” and “lateral” are used with reference to the direction of transmission of the antenna.
  • the shell 22 of the reflector 20 has substantially the shape of a paraboloid of revolution about an axis of the reflector.
  • the front skin (not visible in Figure 2) of the shell 22 is made of a conventional composite material, of the type comprising a fabric of structural fibers, for example carbon, embedded in an epoxy resin or the like.
  • the structural fibers of the front skin are woven so as to ensure optimal isotropy of the mechanical behavior of the skin before 22, and so that the front skin 22 is full.
  • these structural fibers are for example arranged in the form of two folds of taffeta fabrics crossed at angles of plus or minus 45 degrees or in the form of three to six plies of plies of fibers draped symmetrically (0 °, +60 °, -60 °). This type of structure makes it possible in particular to optimize the accuracy and stability over time of the profile of the front skin.
  • the shell 22 further comprises a rear skin 26 which is made of a composite material similar to that described above, of the front skin, and which thus has the same advantages.
  • the reflector 20 comprises a rigid rear structure 28 formed of tubular elements 29 of substantially rectangular section, and similar to the rear structure 16 of the reflector 12 of the prior art.
  • the rear structure 28 is connected to the shell 22 of the reflector by the brackets 24, which each comprise a central metal blade 30.
  • One end of the blade 30 has a first base 32 for attachment to the rear skin 26 of the shell 22, and another end of the blade 30 is fixed to a flexible metal strip 34 fixed on a lateral face 36 of a tubular element 29 of the rear structure 28.
  • the flexible strip 34 and, to a lesser extent, the central blade 30, allow by their elasticity to damp the transverse component, that is to say perpendicular to the axis of the shell 22, vibrations of the shell 22.
  • each bracket 24 comprises in in addition to a layer of elastic material 38, interposed between the base 32 of the angle and the rear skin 26 of the shell 22, to damp the axial component of any vibration of the shell 22.
  • the elastic material 38 is a polyimide foam chosen not to degrade at temperatures between -180 0 C and +200 0 C, and to meet the spatial standards relating to degassing, typically specifying a total loss of mass ( TML) less than about 1%.
  • This foam is furthermore chosen to have thermomechanical properties such that this foam affects as little as possible the thermomechanical behavior of the reflector 20.
  • Foam is chosen to have a thermoelastic coefficient as low as possible.
  • the polyimide foam has a density of between 10 kg / m and 20 kg / m 3 , a tensile strength of between 0.1 MPa and 0.5 MPa, a Young's modulus of between 0.25 MPa and 1 MPa, and an elongation at rupture between 20% and 40%.
  • the aforementioned physical parameters are chosen according to the level of damping and mechanical decoupling required between the shell 22 and the rear structure 28 of the reflector.
  • each bracket 24 may comprise a layer of elastic material of the type described above, interposed between the central plate 30 of the bracket 24 and the rear structure 28 of the reflector.
  • each bracket 24 is fixed on a front face 40 of a tubular element 29 of the rear structure 28, for example by a second base similar to the first base 32 mentioned above and connected to the end of the central blade 30 opposite to the first base 32.
  • the foam layer can thus be interposed between the second base and the front face 40 of the tubular element 29, to allow good damping of the axial vibration component of the shell 22 .
  • the layer of elastic material may be integrated in a sandwich structure, and in particular be inserted between two full skins, for example of a type similar to that of the skins of the shell 22.
  • This feature allows in particular, for fixing the brackets 24 to the rear skin 26 of the reflector, to use a fixing method similar to a conventional method of fixing the angles of the reflectors of known type.
  • the rear structure 28 is of tubular type, but the invention is also compatible with rear structures of other types, such as planar structures, paraboloidal, or the like, for example composite sandwich type.
  • the front skin of the reflector may of course have a shape different from that described above by way of example without departing from the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

Antenne radioélectrique, en particulier pour engin spatial, comprenant un réflecteur (20) et des moyens de support de ce réflecteur, le réflecteur comprenant une coque (22) apte à réfléchir les ondes radioélectriques, et une structure arrière rigide (28) portée par les moyens de support et reliée à la coque (22) par des cornières de découplage (24), caractérisée en ce que chacune desdites cornières de découplage (24) comprend, à l'une au moins de ses extrémités, une couche de matière élastique (38) apte à amortir au moins une composante axiale de vibrations de la coque (22).

Description

ANTENNE RADIOELECTRIQUE A CORNIERES DE DECOUPLAGE
AMELIOREES
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se rapporte au domaine des antennes radioélectriques à réflecteurs, et concerne en particulier une antenne pour un engin spatial, tel qu'un satellite de télécommunications.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les antennes d'engins spatiaux doivent être conformes à des spécifications concernant notamment la réflectivité de leurs réflecteurs, mais aussi la tenue mécanique des moyens de liaison des réflecteurs aux engins spatiaux, qui sont soumis aux sollicitations vibratoires acoustiques et dynamiques induites par les lanceurs spatiaux. Ces antennes doivent en outre être conformes à des spécifications concernant leur comportement thermoélastique en orbite. Le niveau des sollicitations acoustiques induites par les lanceurs étant très difficile à prévoir, il est préférable que ces antennes soient quasiment insensibles aux efforts acoustiques, pour limiter les risques de sous dimensionnement ou de sur dimensionnement des moyens de liaison des réflecteurs aux engins spatiaux.
Les figures 1 et la représentent un exemple d'antenne radioélectrique 10 (figure 1) pour satellite de télécommunications, fonctionnant à des fréquences comprises entre 12 GHz et 18 GHz environ (bande Ku) , d'un type connu.
Le réflecteur 12 de l'antenne 10 comprend une coque 14 du type sandwich formée d'une structure en nid d'abeilles sur laquelle sont apposées une peau avant - couramment appelée peau active - et une peau arrière, chacune de ces peaux étant constituée d'un pli de fibres de carbone noyées dans une résine époxy.
La coque 14 du réflecteur 12 est supportée par une structure arrière rigide 16 de ce réflecteur. Cette structure arrière 16 est par exemple formée d'éléments tubulaires agencés selon un hexagone centré sur un axe du réflecteur. Dans l'exemple représenté sur les figures, ces éléments tubulaires ont, vus en section, une forme rectangulaire.
La structure arrière 16 est reliée à la peau arrière de la coque 14 par des cornières 18
(figure la) aptes à assurer la tenue mécanique de l'antenne lors du lancement et de la mise en orbite du satellite équipé de cette antenne, ainsi qu'un découplage thermomécanique entre le réflecteur 12 et la structure arrière 16 lorsque le satellite est en orbite. Par ailleurs, la structure arrière 16 est portée par un bras de support 19 destiné à assurer la liaison entre l'antenne 10 et le satellite.
Les fibres de carbone des plis des peaux avant et arrière précitées sont agencées sous la forme de tissus triaxiaux qui se caractérisent par des propriétés mécaniques quasi-isotropes et par la présence d'ajours traversants qui sont régulièrement répartis sur leur surface. Ces ajours permettent une réduction de la masse du réflecteur, et communiquent avec des alvéoles de la structure en nid d'abeilles de sorte que ce type de réflecteur est peu sensible aux sollicitations vibratoires, en particulier aux sollicitations acoustiques lors du lancement du satellite équipé de l'antenne 10.
D'une manière générale, les matériaux composites employés dans ces antennes leur confèrent une grande légèreté, ce qui constitue un avantage essentiel dans le domaine des applications spatiales.
Toutefois, les propriétés de réflectivité des réflecteurs ajourés du type décrit ci-dessus ne sont pas satisfaisantes aux fréquences comprises entre 20 GHz et 40 GHz environ (bande Ka) .
Des solutions ont été proposées, qui consistent, à partir d'une antenne du type décrit ci- dessus, à réduire la dimension des ajours de la peau active, ou même à remplacer la peau active ajourée par une peau pleine, mais les antennes ainsi obtenues se sont révélées trop sensibles aux sollicitations acoustiques .
En outre, à ces fréquences plus élevées, les tolérances relatives aux profils des réflecteurs sont plus strictes, ce qui conduit à des exigences plus sévères en termes de précision de fabrication et de stabilité dans le temps des réflecteurs, typiquement de l'ordre de 30 μm RMS, à comparer à 150 μm RMS pour les satellites opérant aux fréquences inférieures de la bande Ku. Or, les structures sandwich du type décrit ci-dessus, qui comportent des peaux ajourées formées d'un unique pli de matériau composite, ne permettent pas de satisfaire aisément les niveaux d'exigence inhérents à un fonctionnement dans la bande Ka.
EXPOSÉ DE L'INVENTION
L'invention a notamment pour but d'apporter une solution simple, économique et efficace à ces problèmes, permettant d'éviter les inconvénients précités.
Elle a notamment pour objet une antenne radioélectrique pour satellite spatial, apte à fonctionner aux fréquences de la bande Ka, et satisfaisant les exigences imposées à ce type d'antenne, notamment en ce qui concerne la sensibilité de l'antenne aux sollicitations vibratoires induites par les lanceurs, la précision de fabrication du profil du réflecteur de l'antenne et la stabilité de ce profil dans le temps, et d'une manière générale le comportement thermomécanique de l'antenne en orbite.
L' invention propose à cet effet une antenne radioélectrique, en particulier pour engin spatial, comprenant un réflecteur et des moyens de support de ce réflecteur, le réflecteur comprenant une coque apte à réfléchir les ondes radioélectriques, et une structure arrière rigide portée par les moyens de support et reliée à la coque par des cornières de découplage réparties autour d'un axe de la coque et comprenant chacune une première embase fixée sur la coque du réflecteur, une lamelle métallique souple ou une seconde embase fixée sur la structure arrière rigide, et une lame métallique centrale reliant la première embase précitée à la lamelle métallique souple ou à la seconde embase précitée et apte à amortir une composante transversale de vibrations de la coque. Selon l'invention, chacune desdites cornières de découplage comprend, à l'une au moins de ses extrémités, une couche d'une matière élastique apte à amortir au moins une composante axiale de vibrations de la coque. De plus, la couche de matière élastique précitée est interposée entre ladite première embase et la coque, ou entre ladite lamelle métallique souple ou ladite seconde embase et ladite structure arrière rigide . Chaque cornière de découplage peut ainsi comprendre soit une unique couche de matière élastique agencée à l'une des extrémités de la cornière, soit deux couches de matière élastique respectivement agencées aux deux extrémités de la cornière. La couche de matière élastique de chaque cornière permet de réduire considérablement l'impact de sollicitations vibratoires, notamment acoustiques, sur les moyens de support du réflecteur de l'antenne.
Cela permet de limiter le niveau de tenue mécanique exigé pour les moyens de support, et cela rend ainsi plus aisé le dimensionnement de ces moyens de support.
Dans un mode de réalisation préféré de l'invention, la coque du réflecteur comprend une peau avant pleine, c'est-à-dire non ajourée. La grande capacité d'amortissement des cornières, du fait de leur couche de matière élastique, rend en effet possible l'utilisation d'une peau avant pleine, apte à doter le réflecteur de propriétés de réflectivité optimales, tout en limitant les risques de sous-dimensionnement des moyens de support du réflecteur .
Dans le mode de réalisation préféré de l'invention, ladite matière élastique présente un module de Young compris entre 0.25 MPa et 1 MPa, une résistance en traction comprise entre 0.1 MPa et 0.5 MPa, et un allongement à rupture compris entre 20% et 40%.
La couche de matière élastique de chaque cornière est ainsi apte à amortir d'une manière optimale les sollicitations vibratoires auxquelles l'antenne est susceptible d'être soumise, en particulier lorsque cette antenne équipe un engin spatial . Dans le mode de réalisation préféré de l'invention, ladite matière élastique est une mousse et comprend au moins un composé appartenant au groupe des polyimides .
Chaque cornière peut en outre comprendre une structure sandwich comprenant deux peaux en matériau composite apposées de part et d'autre de ladite couche de matière élastique.
Cela peut en particulier permettre la fixation des cornières au réflecteur par un procédé semblable à un procédé utilisé habituellement pour la fixation des cornières des réflecteurs du type conventionnel décrit ci-dessus, ce qui peut présenter un intérêt économique considérable.
En variante, la matière élastique peut comprendre un adhésif comprenant un composé d'élastomère ou de silicone ou de polyuréthane .
Lorsque l'antenne équipe un engin spatial, la matière élastique est choisie pour ne pas se dégrader aux températures opérationnelles spatiales en orbite, et plus précisément aux températures comprises entre -1800C et +2000C.
Dans le mode de réalisation préféré de l'invention, la peau avant et la peau arrière sont réalisées en un matériau composite comprenant des fibres noyées dans une résine durcie. Ces fibres sont avantageusement des fibres de carbone agencées de manière à optimiser l'isotropie des propriétés mécaniques et thermiques de ces peaux.
Pour cela, ces fibres peuvent par exemple être agencées sous la forme de deux plis de tissus taffetas croisés selon des angles de plus ou moins 45 degrés ou sous la forme de trois à six plis de nappes de fibres drapées de façon symétrique (0°,+60°,- 60°) .
Ces modes d' agencement des fibres permettent en outre d'améliorer la précision et la stabilité des profils des peaux par rapport aux peaux à un seul pli des réflecteurs conventionnels.
D'une manière générale, l'antenne est avantageusement configurée pour fonctionner dans une bande de fréquences prédéterminée du spectre des micro- ondes, cette bande de fréquences pouvant être en particulier comprise dans la bande Ka.
L'utilisation d'une face active non ajourée, rendue possible par l'invention, est en effet particulièrement avantageuse dans la bande Ka, comme cela a été expliqué ci-dessus.
BRÈVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise, et d'autres détails, avantages et caractéristiques de celle-ci apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1, déjà décrite, est une vue schématique en perspective d'une antenne radioélectrique d'un type connu ;
- la figure la, déjà décrite, est une vue à plus grande échelle du détail Ia de la figure 1 ;
- la figure 2 est une vue semblable à la figure la, d'une antenne radioélectrique selon l'invention. EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PREFERE
La figure 2 représente une partie du réflecteur 20 d'une antenne radioélectrique selon un mode de réalisation de l'invention.
Ce réflecteur 20 est globalement du même type que le réflecteur 12 de l'art antérieur représenté sur les figures 1 et la, mais le réflecteur 20 comprend une coque 22 à peau avant pleine et des cornières de découplage 24 d'un nouveau type, conformément à 1' invention . Dans ce qui suit, les termes « avant », « arrière » et « latéral », sont utilisés en référence à la direction d'émission de l'antenne.
D'une manière connue, la coque 22 du réflecteur 20 a sensiblement la forme d'un paraboloïde de révolution autour d'un axe du réflecteur.
La peau avant (non visible sur la figure 2) de la coque 22 est réalisée en un matériau composite conventionnel, du type comportant un tissu de fibres structurales, par exemple de carbone, noyées dans une résine époxy ou analogue.
Les fibres structurales de la peau avant sont tissées de manière à assurer une isotropie optimale du comportement mécanique de la peau avant 22, et de sorte que la peau avant 22 soit pleine. Pour cela, ces fibres structurales sont par exemple agencées sous la forme de deux plis de tissus taffetas croisés selon des angles de plus ou moins 45 degrés ou sous la forme de trois à six plis de nappes de fibres drapées de façon symétrique (0 ° , +60 ° , -60 ° ) . Ce type de structure permet notamment d'optimiser la précision et la stabilité dans le temps du profil de la peau avant.
La coque 22 comporte en outre une peau arrière 26 qui est réalisée en un matériau composite analogue à celui, décrit ci-dessus, de la peau avant, et qui présente ainsi les mêmes avantages.
Le réflecteur 20 comprend une structure arrière rigide 28 formée d'éléments tubulaires 29 à section sensiblement rectangulaire, et semblable à la structure arrière 16 du réflecteur 12 de l'art antérieur . La structure arrière 28 est reliée à la coque 22 du réflecteur par les cornières 24, qui comprennent chacune une lame métallique centrale 30. Une extrémité de la lame 30 comporte une première embase 32 de fixation sur la peau arrière 26 de la coque 22, et une autre extrémité de la lame 30 est fixée à une lamelle métallique souple 34 fixée sur une face latérale 36 d'un élément tubulaire 29 de la structure arrière 28. D'une manière connue, la lamelle souple 34 et, dans une moindre mesure, la lame centrale 30, permettent par leur élasticité d' amortir la composante transversale, c'est-à-dire perpendiculaire à l'axe de la coque 22, de vibrations de cette coque 22. Selon l'invention, chaque cornière 24 comprend en outre une couche de matière élastique 38, interposée entre l'embase 32 de la cornière et la peau arrière 26 de la coque 22, pour amortir la composante axiale d'éventuelles vibrations de la coque 22. Dans le mode de réalisation représenté sur la figure 2, la matière élastique 38 est une mousse de polyimide choisie pour ne pas se dégrader aux températures comprises entre -1800C et +2000C, et pour satisfaire les normes spatiales relatives au dégazage, spécifiant typiquement une perte totale de masse (TML) inférieure à 1% environ.
Cette mousse est en outre choisie pour présenter des propriétés thermomécaniques telles que cette mousse affecte le moins possible le comportement thermomécanique du réflecteur 20. En particulier, la mousse est choisie pour présenter un coefficient thermoélastique aussi faible que possible.
Par ailleurs, la mousse de polyimide présente une densité comprise entre 10 kg/m et 20 kg/m3, une résistance en traction comprise entre 0.1 MPa et 0.5 MPa, un module de Young compris entre 0.25 MPa et 1 MPa, et un allongement à rupture compris entre 20% et 40%. Les paramètres physiques précités sont choisis en fonction du niveau d'amortissement et de découplage mécanique requis entre la coque 22 et la structure arrière 28 du réflecteur.
En variante ou de manière complémentaire, chaque cornière 24 peut comporter une couche de matière élastique du type décrit ci-dessus, interposée entre la lame centrale 30 de la cornière 24 et la structure arrière 28 du réflecteur.
Dans ce cas, il est préférable que chaque cornière 24 soit fixée sur une face avant 40 d'un élément tubulaire 29 de la structure arrière 28, par exemple par une seconde embase semblable à la première embase 32 précitée et raccordée à l'extrémité de la lame centrale 30 opposée à la première embase 32. La couche de mousse peut ainsi être interposée entre la seconde embase et la face avant 40 de l'élément tubulaire 29, pour permettre un bon amortissement de la composante axiale de vibrations de la coque 22.
En variante encore, la couche de matière élastique peut être intégrée dans une structure sandwich, et être en particulier intercalée entre deux peaux pleines, par exemple d'un type analogue à celui des peaux de la coque 22. Cette caractéristique permet notamment, pour la fixation des cornières 24 à la peau arrière 26 du réflecteur, d'utiliser un procédé de fixation semblable à un procédé de fixation conventionnel des cornières des réflecteurs de type connu.
Il est également possible, sans sortir du cadre de l'invention, de remplacer la mousse de polyimide par un adhésif souple composé d'élastomère ou de silicone, ou encore composé de polyuréthane . Dans le mode de réalisation représenté, la structure arrière 28 est du type tubulaire, mais l'invention est également compatible avec des structures arrière d'autres types, telles que des structures planes, paraboloïdales, ou analogue, par exemple du type sandwich composite.
La peau avant du réflecteur peut bien entendu avoir une forme différente de celle décrite ci- dessus à titre d'exemple sans sortir du cadre de 1' invention .

Claims

REVENDICATIONS
1. Antenne radioélectrique, en particulier pour engin spatial, comprenant un réflecteur (20) et des moyens de support (19) de ce réflecteur, le réflecteur comprenant une coque (22) apte à réfléchir les ondes radioélectriques, et une structure arrière rigide (28) portée par les moyens de support et reliée à la coque (22) par des cornières de découplage (24) réparties autour d'un axe de la coque (22) et comprenant chacune une première embase (32) fixée sur la coque (22) du réflecteur, une lamelle métallique souple (34) ou une seconde embase fixée sur la structure arrière rigide (28), et une lame métallique centrale (30) reliant ladite première embase (32) à ladite lamelle métallique souple ou à ladite seconde embase et apte à amortir une composante transversale de vibrations de la coque (22), l'antenne étant caractérisée en ce que chacune desdites cornières de découplage (24) comprend, à l'une au moins de ses extrémités, une couche de matière élastique (38) apte à amortir au moins une composante axiale de vibrations de la coque (22), ladite couche de matière élastique (38) étant interposée entre ladite première embase (32) et la coque (22), ou entre ladite lamelle métallique souple ou ladite seconde embase et ladite structure arrière rigide (28).
2. Antenne selon la revendication 1, caractérisée en ce que la coque (22) comprend une peau avant pleine.
3. Antenne selon la revendication 1 ou 2, caractérisée en ce que ladite matière élastique présente un module de Young compris entre 0.25 MPa et 1 MPa.
4. Antenne selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ladite matière élastique présente une résistance en traction comprise entre 0.1 MPa et 0.5 MPa.
5. Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ladite matière élastique présente un allongement à rupture compris entre 20% et 40%.
6. Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ladite matière élastique est une mousse.
7. Antenne selon la revendication 6, caractérisée en ce que ladite matière élastique comprend au moins un composé appartenant au groupe des polyimides .
8. Antenne selon la revendication 6 ou 7, caractérisée en ce que chacune desdites cornières de découplage (24) comprend au moins une structure sandwich comprenant deux peaux en matériau composite apposées de part et d' autre de ladite couche de matière élastique (38) .
9. Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ladite matière élastique comprend un adhésif comprenant un composé d'élastomère ou de silicone ou de polyuréthane .
10. Antenne selon l'une quelconque des revendications 1 à 9, caractérisée en ce qu'elle est configurée pour fonctionner dans une bande de fréquences prédéterminée du spectre des micro-ondes comprise dans la bande Ka.
PCT/EP2010/054457 2009-04-02 2010-04-02 Antenne radioelectrique a cornieres de decouplage ameliorees WO2010112601A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/260,833 US20120026056A1 (en) 2009-04-02 2010-04-02 Radio antenna with improved decoupling angles
EP10712947.0A EP2415118B1 (fr) 2009-04-02 2010-04-02 Antenne radioelectrique a cornieres de decouplage ameliorees
ES10712947T ES2530571T3 (es) 2009-04-02 2010-04-02 Antena radioeléctrica con perfiles angulares de desacoplamiento mejorados

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952151 2009-04-02
FR0952151A FR2944155B1 (fr) 2009-04-02 2009-04-02 Antenne radioelectronique a cornieres de decouplage ameliorees

Publications (1)

Publication Number Publication Date
WO2010112601A1 true WO2010112601A1 (fr) 2010-10-07

Family

ID=41210426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054457 WO2010112601A1 (fr) 2009-04-02 2010-04-02 Antenne radioelectrique a cornieres de decouplage ameliorees

Country Status (5)

Country Link
US (1) US20120026056A1 (fr)
EP (1) EP2415118B1 (fr)
ES (1) ES2530571T3 (fr)
FR (1) FR2944155B1 (fr)
WO (1) WO2010112601A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405532A1 (fr) * 2010-06-03 2012-01-11 Raytheon Company Structure légère de fixation d'antenne
WO2016142591A1 (fr) * 2015-03-10 2016-09-15 Airbus Defence And Space Sas Réflecteur d'antenne, en particulier pour engin spatial
WO2019002702A1 (fr) * 2017-06-30 2019-01-03 Arianegroup Sas Système d'interface modulaire pour un réflecteur d'antenne, en particulier d'une antenne d'un engin spatial tel qu'un satellite notamment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981686B1 (fr) 2011-10-21 2016-05-20 Snecma Turbomachine comprenant un recepteur a helices contrarotatives supporte par une enveloppe structurale fixee au carter intermediaire
US9680229B2 (en) 2013-06-28 2017-06-13 The Boeing Company Modular reflector assembly for a reflector antenna
US11398682B2 (en) * 2020-04-03 2022-07-26 Lockheed Martin Corporation Hosted, compact, large-aperture, multi-reflector antenna system deployable with high-dissipation feed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665606A1 (fr) * 1994-01-31 1995-08-02 Space Systems / Loral Inc. Réflecteur d'antenne en une membrane ultra légère et mince
EP0957288A2 (fr) * 1998-05-12 1999-11-17 TRW Inc. Amortisseur de vibrations d'antenne de vaisseau spatial
DE29914904U1 (de) * 1999-08-25 1999-12-30 Michel, Oliver, 41564 Kaarst Satellitenempfänger und Vorrichtung zum Abdecken eines Satellitenempfängers
US20060102825A1 (en) * 2004-11-12 2006-05-18 Harless Richard I Flexure elastomer antenna isolation system
EP1785642A2 (fr) * 2003-07-22 2007-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Liaison modulaire pour l'amortissement de vibrations mécaniques

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1144475B (de) * 1961-05-06 1963-02-28 Bayer Ag Verfahren zur Herstellung von Urethangruppen enthaltenden Schaumstoffen
US3620987A (en) * 1969-11-21 1971-11-16 Upjohn Co Preparation of polymer foam
US5178709A (en) * 1985-04-15 1993-01-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a reflector of fiber reinforced plastic material
US5900442A (en) * 1995-05-12 1999-05-04 Imperial Chemical Industries Plc Flexible polyurethane foams
US6515636B2 (en) * 2001-04-12 2003-02-04 Lockheed Martin Corporation Active array antenna with flexible membrane elements and tensioning arrangement
US7173575B2 (en) * 2005-01-26 2007-02-06 Andrew Corporation Reflector antenna support structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665606A1 (fr) * 1994-01-31 1995-08-02 Space Systems / Loral Inc. Réflecteur d'antenne en une membrane ultra légère et mince
EP0957288A2 (fr) * 1998-05-12 1999-11-17 TRW Inc. Amortisseur de vibrations d'antenne de vaisseau spatial
DE29914904U1 (de) * 1999-08-25 1999-12-30 Michel, Oliver, 41564 Kaarst Satellitenempfänger und Vorrichtung zum Abdecken eines Satellitenempfängers
EP1785642A2 (fr) * 2003-07-22 2007-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Liaison modulaire pour l'amortissement de vibrations mécaniques
US20060102825A1 (en) * 2004-11-12 2006-05-18 Harless Richard I Flexure elastomer antenna isolation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE NASA NASA SCIENTIFIC AND TECHNICAL INFORMATION OFFICE, WASHINGTON, DC, US; 1 April 1984 (1984-04-01), BAMFORD, R. M.: "Decoupling a reflecting layer from its support structure.", XP001383162 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405532A1 (fr) * 2010-06-03 2012-01-11 Raytheon Company Structure légère de fixation d'antenne
US8274446B2 (en) 2010-06-03 2012-09-25 Raytheon Company Lightweight antenna attachment structure
WO2016142591A1 (fr) * 2015-03-10 2016-09-15 Airbus Defence And Space Sas Réflecteur d'antenne, en particulier pour engin spatial
FR3033670A1 (fr) * 2015-03-10 2016-09-16 Airbus Defence & Space Sas Reflecteur d'antenne, en particulier pour engin spatial
WO2019002702A1 (fr) * 2017-06-30 2019-01-03 Arianegroup Sas Système d'interface modulaire pour un réflecteur d'antenne, en particulier d'une antenne d'un engin spatial tel qu'un satellite notamment
FR3068522A1 (fr) * 2017-06-30 2019-01-04 Airbus Safran Launchers Sas Systeme d'interface modulaire pour un reflecteur d'antenne, en particulier d'une antenne d'un engin spatial tel qu'un satellite notamment.
JP2020525355A (ja) * 2017-06-30 2020-08-27 アリアングループ・エス・ア・エス 特に衛星のような宇宙飛行体の、特にアンテナ用のアンテナ反射器用のモジュラーインターフェースシステム
US11189912B2 (en) 2017-06-30 2021-11-30 Arianegroup Sas Modular interface system for an antenna reflector, in particular for an antenna of a space craft, such as a satellite, in particular
JP7043528B2 (ja) 2017-06-30 2022-03-29 アリアングループ・エス・ア・エス 特に衛星のような宇宙飛行体の、特にアンテナ用のアンテナ反射器用のモジュラーインターフェースシステム

Also Published As

Publication number Publication date
EP2415118A1 (fr) 2012-02-08
US20120026056A1 (en) 2012-02-02
FR2944155B1 (fr) 2016-05-13
ES2530571T3 (es) 2015-03-03
FR2944155A1 (fr) 2010-10-08
EP2415118B1 (fr) 2014-11-12

Similar Documents

Publication Publication Date Title
EP2415118B1 (fr) Antenne radioelectrique a cornieres de decouplage ameliorees
FR2550663A1 (fr) Structure de reflecteur de rayonnement electromagnetique
EP2356027B1 (fr) Système de fixation entre deux composants, tels qu'un moteur d'aéronef et son mât d'accrochage
FR2925118A1 (fr) Panneau de support d'abradable dans une turbomachine
EP1767452A1 (fr) Rotor de giravion à pales articulées en battement et en traînée
WO2011033206A1 (fr) Piece comportant une structure et un element en alliage a memoire de forme
WO2011092411A1 (fr) Systeme de decouplage pour arbre rotatif d'un turboreacteur d'aeronef
EP0962741B1 (fr) Dispositif de liaison provisoire et de séparation pyrotechinique de deux emsembles non metalliques
FR2871436A1 (fr) Aeronef muni d'un carenage ventral, et carenage ventral.
EP2648281B1 (fr) Réflecteur d'antenne reconfigurable
EP2415117B1 (fr) Antenne radioelectrique comportant des moyens de rigidification améliorés
FR2920042A1 (fr) Composant structurel absorbant les impulsions
FR2948431A1 (fr) Revetement isolant a masse amplifiee
EP1932758B1 (fr) Revétement absorbant
FR2918036A1 (fr) Dispositif formant bord d'attaque pour une voilure d'aeronef et voilure equipee d'un tel dispositif.
EP2415114B1 (fr) Antenne radioelectrique
EP3071483B1 (fr) Structure porteuse de satellite comportant un dispositif de liaison amortissante
WO2019145663A1 (fr) Dispositif pliable/déployable comprenant au moins quatre secteurs gauches reliés par des charnières
EP2886467B1 (fr) Dispositif antichoc pour structure dépliable
EP3910739A1 (fr) Antenne radiofréquence auto-déployable
FR2971233A1 (fr) Substrat amortissant pour panneau structurel de satellite
FR2876438A1 (fr) Article d'isolation cryogenique, procede de mise en oeuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation
WO2012056155A2 (fr) Structure de bord d'attaque notamment pour entrée d'air de nacelle de moteur d'aéronef
FR3117996A1 (fr) Partie d’aéronef comportant un dispositif de liaison entre deux structures
EP2444687B1 (fr) Revêtement isolant à masse amplifiée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010712947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13260833

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE