WO2010110143A1 - 石炭ガス化排水の処理方法 - Google Patents

石炭ガス化排水の処理方法 Download PDF

Info

Publication number
WO2010110143A1
WO2010110143A1 PCT/JP2010/054539 JP2010054539W WO2010110143A1 WO 2010110143 A1 WO2010110143 A1 WO 2010110143A1 JP 2010054539 W JP2010054539 W JP 2010054539W WO 2010110143 A1 WO2010110143 A1 WO 2010110143A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal gasification
wastewater
ammonia
treatment
cod
Prior art date
Application number
PCT/JP2010/054539
Other languages
English (en)
French (fr)
Inventor
谷津愛和
中原敏次
朝田裕之
中田博之
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201080011489.2A priority Critical patent/CN102348648B/zh
Publication of WO2010110143A1 publication Critical patent/WO2010110143A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents

Definitions

  • the present invention relates to a method for treating coal gasification wastewater, and more specifically, efficiently removes COD components such as SS, fluorine, cyanide, selenium and ammonia contained in the gas washing wastewater generated in the coal gasification step,
  • the present invention relates to a method for treating coal gasification wastewater to obtain treated water of good water quality that can be discharged or reused.
  • Coal is the richest reserve of fossil fuels, has a wide range of existence on the earth, and is said to become the main fuel for thermal power generation in the future.
  • Coal gasification combined power generation that combines gas turbine power generation and steam turbine power generation, which are more efficient than conventional thermal power generation, and coal gas that incorporates fuel cell power generation in order to effectively use limited fossil fuels Fuel cell power generation is attracting attention.
  • Coal gasification combined power generation is a coal gasification furnace that converts carbon monoxide and hydrogen into gas fuels by partially oxidizing the coal, and a gas purification device that removes dust, sulfur, etc. from the generated gas
  • This is a power generation system that combines a gas turbine combined cycle power plant using the refined gas as fuel.
  • Coal gas is required to use the same gas turbine body as the liquefied natural gas-fired gas turbine.
  • FIG. 7 is a process system diagram of an example of a coal gasification combined power generation facility.
  • pulverized coal is conveyed from the pulverized coal conveying device 101 by an air stream, and sent to the coal gasification furnace 102 together with oxygen.
  • the pulverized coal is partially oxidized at 1,500 to 1,800 ° C. and 2 to 3 MPa, and the generated gas containing carbon monoxide and hydrogen as main components is sent to the syngas cooler 103 from the top of the furnace.
  • the generated slag is discharged from the furnace bottom.
  • the gas passes through the dust filter 104 and the dust is removed, the gas is washed with water in the washing tower 105. Waste water generated in the water washing tower 105 is sent to the waste water treatment device 106.
  • the water-washed gas is sent to the desulfurization tower 108 through the COS converter 107, and the sulfur content is removed.
  • the purified gas is sent to the gas turbine 109 and combusted to drive the turbine 109.
  • the exhaust from the gas turbine 109 is sent to the exhaust heat recovery boiler 110, and the steam turbine 111 is driven by the steam generated by recovering the exhaust heat.
  • coal gasification wastewater contains COD components such as SS, fluorine, cyanide and ammonia, selenium, etc. It is necessary to remove and treat to the quality of water that can be discharged or water that can be reused.
  • coal gasification wastewater treatment technology includes thermal hydrolysis of coal gasification wastewater, decomposition of cyanide, removal of metals separated and precipitated from the cyano complex, and wet catalytic oxidation of COD components.
  • a removal method has been proposed (Patent Document 1).
  • Patent Document 2 a method of performing catalytic wet oxidation treatment on non-catalytic wet oxidation treatment for cyanide-containing wastewater has been proposed.
  • a method for treating fluorine in wastewater a method of coagulating and precipitating by adding a calcium compound, a magnesium compound, or an aluminum compound to the wastewater is known, and an ammonia stripping method is known for treating ammonia. ing.
  • the coal gasification wastewater to be treated in the present invention contains high-concentration SS, COD components such as fluorine, cyanide, and ammonia, selenium, etc. in addition to high-concentration SS.
  • COD components such as fluorine, cyanide, and ammonia, selenium, etc.
  • JP 2007-289841 A JP-A-8-290174 Japanese Patent Laid-Open No. 9-290297
  • the present invention has been made in view of the above-described conventional situation, and includes SS, fluorine, cyanide, selenium, ammonia, and COD components contained in coal gasification wastewater such as gas washing wastewater generated in the coal gasification step. It aims at providing the processing method of the coal gasification waste_water
  • the method for treating coal gasification wastewater of the present invention is a method for treating coal gasification wastewater, (1) Fluorine removal step for removing fluorine by coagulation precipitation; (2) a cyanide decomposition step for decomposing cyanide by wet oxidation or thermal hydrolysis; (3) a selenium treatment step for reducing selenate ions with a metal reductant, and (4) a COD / ammonia removal step for removing COD and / or ammonia, wherein (1) is performed prior to (2) It is characterized by that.
  • the method for treating coal gasification waste water according to claim 2 is the method according to claim 1, wherein the cyan decomposition step is a non-catalytic wet oxidation step, the COD / ammonia removal step is a catalytic wet oxidation step, (1), (2), (3), (4) in order.
  • the method for treating coal gasification wastewater according to claim 3 is the method according to claim 1, wherein the cyan decomposition step is a non-catalytic wet oxidation step, the COD / ammonia removal step is a catalytic wet oxidation step, (1), (2), (4), (3) in that order.
  • the method for treating coal gasification wastewater according to claim 4 is the method according to claim 1, wherein the cyan decomposition step is a non-catalytic wet oxidation step, the COD / ammonia removal step is an ammonia stripping step, Is in the order of (1), (2), (3), (4).
  • the method for treating coal gasification wastewater according to claim 5 is the method according to claim 1, wherein the COD / ammonia removal step is a biological treatment step, and the order of each step is (1), (2), (3), (4) It is characterized by the order.
  • a method for treating coal gasification wastewater according to claim 6 is the denitrification method according to claim 4, wherein the biological treatment step uses an autotrophic denitrifying bacterium having ammonia ions as electron donors and nitrite ions as electron acceptors. Including a process.
  • the method for treating coal gasification wastewater according to claim 7 is characterized in that in any one of claims 1 to 6, it has an advanced treatment step of treating the treated water in the COD / ammonia removal step.
  • coal gasification wastewater of the present invention According to the method for treating coal gasification wastewater of the present invention, SS, fluorine, cyanide, selenium, ammonia, and COD components contained in coal gasification wastewater such as gas washing wastewater generated in the coal gasification process are efficiently removed. Thus, it is possible to obtain treated water with good water quality that can be discharged or reused.
  • the method for treating coal gasification wastewater of the present invention comprises the following steps (1) to (4), wherein step (1) is performed prior to step (2).
  • Fluorine removal step for removing fluorine by coagulation precipitation
  • Cyanide decomposition step for decomposing cyanide by wet oxidation or thermal hydrolysis
  • Selenium treatment step for reducing selenate ions by metal reductant
  • COD / ammonia removal step for removing COD and / or ammonia
  • the coal gasification wastewater to be treated is wastewater discharged from a coal gasification process such as gas cleaning wastewater discharged from a water washing tower of the above-mentioned coal gasification combined power generation facility.
  • a coal gasification process such as gas cleaning wastewater discharged from a water washing tower of the above-mentioned coal gasification combined power generation facility.
  • the treatment method of the coal gasification process from which gasification wastewater is discharged For example, the moving bed type Lurgi method, the spouted bed type Copper-Stochek method, the fluidized bed type Winkler method, and the pressurized fluidized bed
  • the high gas method of the type and the Texaco method of the pressurized spouted bed type can be exemplified.
  • the method of the present invention is suitably applied to the treatment of coal gasification wastewater such as combined coal gasification combined power generation and coal gasification fuel cell power generation that require a large-scale coal gasification device and requires stable operation over a long period of time. be able to.
  • the water quality of coal gasification wastewater discharged from such a coal gasification process is as follows. pH: 7-9 SS: 20-1000mg / L Fluorine: 20 to 2000 mg / L Cyan: 10-150mg / L Selenium: 0.5-10mg / L Ammonia: 2000 to 4000 mg / L (as N) COD: 200-1500 mg / L
  • Examples of the method for removing fluorine by coagulation precipitation include the following methods. (1) A calcium compound is added to the waste water to form hardly soluble calcium fluoride by the following reaction, which is separated and removed. Ca 2+ + 2F ⁇ ⁇ CaF 2 (2) A magnesium compound is added to the waste water, and fluorine ions are adsorbed on magnesium hydroxide and removed by the following reaction. Mg 2+ + 2OH ⁇ + F ⁇ ⁇ Mg (OH) 2 ⁇ F ⁇ (3) An aluminum compound is added to the waste water, and fluorine ions are adsorbed and removed by aluminum hydroxide by the following reaction. Al 3+ + 3OH ⁇ + F ⁇ ⁇ Al (OH) 3 ⁇ F ⁇
  • the above methods (1) to (3) can be carried out in combination of any two or more, and in particular, by removing the fluorine with the magnesium compound (2) after removing the fluorine with the calcium compound (1), Fluorine can be removed to a high degree. In the method using the magnesium compound (2) or the aluminum compound (3), fluorine can be highly removed only by this method.
  • the treatment with the magnesium compound of (2) or the aluminum compound of (3) may be carried out at a subsequent stage of (1) as an advanced treatment after the treatment with the calcium compound of (1).
  • SS in waste water can be removed at the same time as fluorine by performing a coagulation sedimentation treatment.
  • the wastewater is not made acidic to pH.
  • Neutral to alkaline treatment is required.
  • the method of (1) using a calcium compound can be carried out at pH neutral to alkaline (specifically, pH 6 to 9)
  • the method of (2) using a magnesium compound is alkaline (specifically Can be treated at a pH of 9 or more, preferably 11 or more
  • the method (3) using an aluminum compound is preferred because the treatment can be carried out at a pH neutrality (specifically, pH 6 to 8).
  • calcium salts such as calcium chloride (CaCl 2 ) can be used in addition to basic calcium compounds such as calcium oxide (CaO) and calcium hydroxide (Ca (OH) 2 ).
  • the amount added is preferably about 1 to 3 times equivalent to the fluorine ions in the wastewater in terms of Ca.
  • an acid such as hydrochloric acid (HCl) or sulfuric acid (H 2 SO 4 ) or an alkali such as sodium hydroxide (NaOH) or potassium hydroxide (KOH) is added as necessary so that the above pH condition is satisfied. It is preferable.
  • nonionic polymer flocculants such as polyacrylamide, polyethylene oxide, urea-formalin resin, polyaminoalkyl methacrylate, polyethyleneimine, polydiallylammonium halide, Cationic polymer flocculants such as chitosan, anionic polymer flocculants such as sodium polyacrylate, polyacrylamide partial hydrolyzate, partially sulfomethylated polyacrylamide, poly (2-acrylamide) -2-methylpropane sulfate, etc. 1 type (s) or 2 or more types can be used.
  • nonionic polymer flocculants such as polyacrylamide, polyethylene oxide, urea-formalin resin, polyaminoalkyl methacrylate, polyethyleneimine, polydiallylammonium halide, Cationic polymer flocculants such as chitosan, anionic polymer flocculants such as sodium polyacrylate, polyacrylamide partial hydrolyzate, partially sulfomethylated polyacrylamide
  • anionic polymer flocculants are excellent in agglomeration effect and can be used particularly preferably.
  • the amount of the polymer flocculant added is usually about 0.1 to 5 mg / L, although it varies depending on the quality of the wastewater to be treated and the type of polymer flocculant used.
  • magnesium salts such as magnesium sulfate (MgSO 4 ) and magnesium chloride (MgCl 2 ) can be used, and the amount added is determined by experimentally determining the amount of fluorine adsorbed on magnesium hydroxide.
  • the fluorine concentration of the treated water is 10 mg / L or less, it is 10 to 20 times (weight ratio) of the fluorine to be removed in terms of Mg.
  • an alkali such as KOH.
  • the flocculant used for the flocculation treatment after adding the magnesium compound to the wastewater the same one as in the case of the calcium compound can be used, and the amount added is the quality of the wastewater to be treated and the polymer flocculant used. Usually, it is about 0.1 to 5 mg / L although it varies depending on the type.
  • an aluminum salt such as aluminum sulfate (Al 2 (SO 4 ) 3 , sulfate band), polyaluminum chloride (PAC), etc.
  • Al 2 (SO 4 ) 3 sulfate band
  • PAC polyaluminum chloride
  • the addition amount thereof is fluorine of aluminum hydroxide.
  • the adsorption amount is experimentally determined and determined. Generally, when the fluorine concentration of the treated water is 10 mg / L or less, it is 1 to 10 times (weight ratio) of fluorine to be removed in terms of Al. If necessary so that the pH conditions described above, HCl, acid or NaOH, such H 2 SO 4, it is preferable to add an alkali such as KOH.
  • the aggregating agent used for the aggregating treatment after adding the aluminum compound to the waste water the same one as in the case of the calcium compound can be used, and the amount added is the quality of the waste water to be treated and the polymer aggregating agent used. Usually, it is about 0.1 to 5 mg / L although it varies depending on the type.
  • the separated sludge separated by the coagulation sedimentation treatment is returned and added to the wastewater to be treated, and calcium fluoride is precipitated with the returned sludge as the core, thereby increasing the sludge concentration and reducing the sludge. Volume can be reduced.
  • FIG. 1 is a system diagram showing an example of a fluorine removal step (1) suitable for the present invention.
  • the method using the calcium compound (1) and the method (2) using the magnesium compound are used in combination.
  • coal gasification wastewater which is raw water
  • first reaction tank 2 of the Ca coagulation sedimentation step I coal gasification wastewater
  • a calcium compound such as Ca (OH) 2
  • the solution is introduced into the first pH adjusting tank 3
  • acid such as HCl and H 2 SO 4 is added, and stirred at pH 6-9 to precipitate CaF 2
  • Aggregation treatment is performed by adding a polymer flocculant and stirring.
  • the agglomerated water is subjected to solid-liquid separation in the first sedimentation tank 5, a part of the separated CaF 2 sludge is returned to the first reaction tank 2 and the remainder is discharged out of the system.
  • the returned sludge may be introduced into the raw water tank 1. Further, the return sludge may be mixed with the calcium compound in advance and added to the first reaction tank 2. The amount of returned sludge is preferably about 20 to 50 times that of the generated sludge.
  • the treated water of the Ca coagulation precipitation step I that is, the separated water of the first precipitation tank 5 is then introduced into the second reaction tank 6 of the Mg coagulation precipitation step II, and the magnesium compound such as MgSO 4 and the remaining calcium are removed.
  • alkali such as NaOH and stir at pH 10-11.
  • Mg (OH) 2 is precipitated, and fluorine is adsorbed on the Mg (OH) 2, and is then introduced into the second aggregating tank 8, and a polymer flocculant is added and agitation is performed.
  • the agglomerated water is solid-liquid separated in the second sedimentation tank 9, a part of the separated sludge is returned to the second reaction tank 6, and the remainder is discharged out of the system.
  • transduce return sludge into the 1st reaction tank 2 of a Ca coagulation sedimentation process.
  • the amount of the returned sludge is preferably an amount so that the SS concentration in the reaction tank at the return destination is 2000 to 10,000 mg / L from the viewpoint of scale prevention.
  • Na 2 CO 3 is added to remove Ca remaining in the treated water of the Ca coagulation precipitation step I, and carbon dioxide gas may be used in addition to Na 2 CO 3 .
  • the addition amount is preferably about 1 to 2 times equivalent to Ca.
  • the separated water in the second sedimentation tank 9 may be fed to the next process as it is, but as shown in FIG. 1, it is possible to highly remove SS by filtering with a filtration device 10 such as a sand filter. It is preferable in preventing clogging and scale failure due to SS in the subsequent process.
  • fluorine in coal gasification wastewater is highly removed to 10 mg / L or less.
  • fluorine in coal gasification wastewater it is preferable that fluorine in coal gasification wastewater is highly removed to 10 mg / L or less.
  • the oxidative decomposition of cyan is carried out in a neutral or alkaline manner, but neutral is preferable when the COD component is also oxidized and decomposed at the same time. In the absence of an oxidizing agent, this cyanide hydrolysis is alkaline.
  • an alkali such as NaOH is added to the wastewater to be treated as necessary, preferably at pH 9 or more, more preferably at pH 10 or more, most preferably at pH 11-12.
  • the thermal hydrolysis treatment is preferably performed while heating to 101 to 210 ° C., more preferably 120 to 180 ° C., and maintaining the pressure to maintain the liquid phase of the wastewater to be treated.
  • the reaction rate of thermal hydrolysis is slow, which is not preferable.
  • the temperature of the thermal hydrolysis treatment is less than 101 ° C.
  • the reaction rate is slow, and it may take a long time for the thermal hydrolysis treatment.
  • the higher the temperature of the thermal hydrolysis treatment the faster the hydrolysis reaction.
  • the temperature of the thermal hydrolysis treatment exceeds 210 ° C., a pressure-resistant structure of 2 MPa or more is required, and the cost of equipment and operation management increases. There is a fear.
  • the temperature of the thermal hydrolysis treatment is 180 ° C. or less, the treatment can be performed at a pressure of 1 MPa or less.
  • the time for the thermal hydrolysis treatment can be appropriately selected according to the temperature of the thermal hydrolysis treatment. For example, when the thermal hydrolysis treatment is continuously performed at 160 ° C., the average residence time in the thermal hydrolysis treatment system is preferably 1 hour or longer.
  • the oxidizing agent used for wet oxidation is not particularly limited, and examples thereof include oxygen gas, oxygen-enriched air, air, and hydrogen peroxide. These may be used alone or in combination of two or more. Of these, hydrogen peroxide is particularly preferably used because it is liquid and easy to handle and has good oxidative decomposition performance of the COD component.
  • the amount of oxidant used is not particularly limited, but it should be 1.1 to 3 times, especially 1.5 to 2.5 times the theoretical amount required for oxidative decomposition of cyanide in the wastewater and COD components. It is preferable.
  • the heating temperature condition in this wet oxidation may be the same as in the above-mentioned thermal hydrolysis, but the pH condition may be neutral to alkaline as described above, but the COD component is also oxidized and decomposed simultaneously. It is preferable to use neutral conditions. Therefore, when the treated water in the fluorine removal step (1) is alkaline, an acid such as HCl or H 2 SO 4 is added to adjust the pH to near neutrality, and then subjected to a wet oxidation treatment. Is preferred.
  • Cyanide in the waste water supplied to the cyan decomposition step (2) exists as an iron cyanide complex.
  • this cyan decomposition step (2) is preferably a non-catalytic wet oxidation step without using a catalyst.
  • FIG. 2 is a system diagram showing an example of a cyan decomposition step (2) suitable for the present invention.
  • wastewater to be treated (treated water in the fluorine removal step (1) in the present invention) is first introduced into the pH adjustment tank 11.
  • an acid such as H 2 SO 4 is added to adjust the pH to about pH 7, and then heated by the heat exchanger 12 (and a heater (not shown)) and introduced into the wet oxidation reaction tower 13.
  • An oxidant such as H 2 O 2 is injected into the inflow water of the reaction tower 13, and cyanide in the waste water is wet oxidatively decomposed in the presence of the oxidant in the reaction tower 13.
  • the effluent water (treated water) of the reaction tower 13 is heat-exchanged with the inflow water of the reaction tower 13 by the heat exchanger 12 and then fed to the next step. Nitrogen gas and carbon dioxide generated by the decomposition of cyan are discharged from the upper part of the reaction tower 13.
  • cyan decomposition step (2) it is preferable to highly remove cyan in the coal gasification wastewater to 1 mg / L or less.
  • Specific treatment methods in the selenium treatment step (3) include a method using metal iron as the metal reductant and a method using an alloy or mixture of metal titanium and other metals such as aluminum.
  • the method using iron reductant is to bring wastewater adjusted to pH 5 or less into contact with iron, reduce selenate by the following reaction, and co-precipitate the precipitated selenium together with iron ions by the following reaction.
  • iron reductant metallic iron
  • a pH adjuster is added to the wastewater to be treated to adjust the pH to 5 or less, preferably 2 to 3.
  • the pH adjusting agent used can be suitably used HCl, and H 2 SO 4 and the like. If the pH of the wastewater to be treated exceeds 5, when it is brought into contact with iron, it may take time to elute the iron into the wastewater to be treated or iron may not be sufficiently eluted into the wastewater to be treated.
  • the pH of the wastewater to be treated is 5 or less, it is not always necessary to adjust the pH. It is preferable that the wastewater to be treated has a pH of 2 to 3 because iron is eluted quickly and contributes to the reaction.
  • iron with which the wastewater adjusted to pH 5 or less is brought into contact examples include pure iron, crude steel, alloy steel, and other iron alloys.
  • the iron is preferably in the form of a large surface area such as iron fine particles, iron wire, and granular iron, the maximum diameter is preferably 3 mm or less, and more preferably 0.1 to 1 mm.
  • the content rate of iron is 85 weight% or more.
  • the wastewater can be brought into contact with a column filled with iron fine particles, iron wire, granular iron or the like.
  • contact can be made by adding fine iron particles, iron wire, granular iron or the like to the wastewater to be treated in the reaction tank.
  • the contact time between wastewater and iron is usually preferably 2 to 30 minutes, but can be controlled by measuring the pH value or oxidation-reduction potential of the wastewater to be treated. That is, when the acid is consumed due to dissolution of iron, the pH in the system rises to pH 5 to 7 as a criterion for determining an appropriate contact time. Since the oxidation-reduction potential decreases as the oxidizing substance is reduced, the arrival of the oxidation-reduction potential below ⁇ 100 mV can be used as a reference for determining an appropriate contact time.
  • the temperature of the waste water when contacting with iron is not particularly limited. However, heating to 40 ° C. or higher, particularly about 60 to 70 ° C., can increase the reduction efficiency of selenic acid. It is preferable to warm.
  • the pH of the water to be treated is preferably 9 or more by adding an alkali agent. If the pH is less than 9, there is a possibility that aggregation of iron flocks and the like is insufficient.
  • divalent iron ions in water become water-insoluble ferrous hydroxide, and trivalent iron ions become water-insoluble ferric hydroxide.
  • the reduced selenium is adsorbed on the flocs of iron hydroxide to be produced, and is agglomerated and separated. Further, when fluorine is present in the waste water, a part of the fluorine is also adsorbed on the iron floc and is aggregated and separated. In addition, by setting the pH to 9 or more, other metal ions in which the hydroxide is water-insoluble also become hydroxide and form a floc. At this time, suspended substances, reduced selenium, fluoride components and the like contained in the wastewater are adsorbed on the iron floc and aggregate at the same time. Furthermore, when iron ultrafine particles are suspended in water, the iron ultrafine particles are also adsorbed and aggregated by the iron flocs. In addition, when the reaction system is open to the air, the divalent iron ions undergo air oxidation, and some of them become ferric oxide fine particles, and the ferric oxide fine particles are adsorbed on the iron floc. Aggregate.
  • the alkali agent for the pH of the waste water after contact with iron 9 or more is not particularly limited, for example, NaOH, KOH, slaked lime (Ca (OH) 2), sodium carbonate (Na 2 CO 3), carbonate Potassium (K 2 CO 3 ), carbide soot and the like can be used, but NaOH or Ca (OH) 2 can be particularly preferably used.
  • a polymer flocculant can be further added.
  • the polymer flocculant to be used is not particularly limited, and examples thereof include nonionic polymer flocculants such as polyacrylamide, polyethylene oxide, urea-formalin resin, polyaminoalkyl methacrylate, polyethyleneimine, polydiallylammonium halide, chitosan and the like.
  • anionic polymer flocculant such as cationic polymer flocculant, polyacrylic acid sodium, polyacrylamide partial hydrolyzate, partially sulfomethylated polyacrylamide, poly (2-acrylamide) -2-methylpropane sulfate Or 2 or more types can be used.
  • anionic polymer flocculants are excellent in agglomeration effect and can be used particularly preferably.
  • the amount of the polymer flocculant added is usually about 0.1 to 5 mg / L, although it varies depending on the quality of the wastewater and the type of polymer flocculant used.
  • solid-liquid separation is performed to remove flocs generated by the flocculation treatment and to separate water to be treated.
  • Arbitrary solid-liquid separation methods such as precipitation, filtration, centrifugation, and membrane separation, can be used.
  • the separated sludge obtained by solid-liquid separation may be returned to the coagulation process.
  • the separated sludge may be added to the waste water after contact with iron after being modified by adding alkali.
  • FIG. 3 is a system diagram showing an example of the selenium treatment step (3) suitable for the present invention.
  • the wastewater to be treated (for example, the water to be treated in the cyan decomposition step (2)) is treated with HCl or the like in the pH adjustment tank 21.
  • the acid is added to adjust the pH to 5 or lower, and then heated by the heat exchanger 22, and then introduced into the iron packed tower 23. While passing through the iron packed tower 23, selenic acid in the waste water is reduced.
  • the effluent water of the iron packed tower 23 is heat-exchanged with the inflow water of the iron packed tower 23 by the heat exchanger 23, and then introduced into the reaction tank 24, and the pH is adjusted to 9 or more by adding an alkaline agent such as NaOH.
  • the effluent water from the reaction tank 24 is then fed to the coagulation tank 25 and coagulated by addition of a polymer coagulant, and then the coagulated sludge is solid-liquid separated in the settling tank 26, and the separated water is treated as treated water outside the system. Is discharged.
  • the separated water in the sedimentation tank 26 may be fed to the next process as it is, but may be fed to the next process after being filtered by the filtration device 27 to highly remove SS.
  • a part of the separated sludge in the sedimentation tank 26 may be returned to the reaction tank 24. Moreover, you may add to the reaction tank, after mixing beforehand with NaOH added to the reaction tank 24 in that case. Further, the returned sludge may be added to the coagulation tank 25.
  • the method using an alloy or a mixture of metal titanium and another metal other than metal titanium as the metal reductant makes the treated wastewater contact with an alloy or mixture of metal titanium and another metal, and the other Selenium is reduced by eluting part of the metal. Since most of the reduced selenium precipitates on the metal surface, the treated water can be treated water. However, if necessary, after the reduction treatment, the pH is adjusted to precipitate the eluted metal, which is separated by solid-liquid separation. The metal is removed to obtain treated water.
  • an alloy or a mixture of titanium metal and another metal other than metal titanium is used.
  • Various metals can be used as the metal to be alloyed with or mixed with titanium metal, but it is preferable that the sludge composed of hydroxide generated by pH adjustment after elution of metal exhibits a white color. When the sludge is white, it is easier to dispose of the sludge than when it is colored brown or the like.
  • the metal that produces white sludge include aluminum, zinc, tin, and copper. In particular, aluminum, zinc, and tin are excellent in terms of solubility and can be suitably used.
  • the metal other than metal titanium may be only one kind of metal, but may be a mixture or alloy of two or more kinds of metals.
  • any of solid solution, intermetallic compound, and covalent alloy can be used.
  • an alloying method for example, a method using a difference in ionization tendency of metal, an electrolytic method, a melting method, or the like can be employed.
  • titanium metal and other metals can be used as a mixture without being alloyed.
  • metallic titanium in the form of powder, granule, fiber, and other metals in the form of powder, granule, fiber, etc. are mixed in the same form Alternatively, different forms can be mixed to form a mixture.
  • the shape of the alloy or mixture of titanium and another metal is preferably one having a large surface area.
  • a powdery product, a granular material, a fibrous material, or a fine thin film having a particle size of about 10 ⁇ m to 5 mm is suitable.
  • the reduction reactor may be, for example, a reduction reaction tank in which a selenium-containing wastewater is introduced into a reaction tank and a powdery, fine-grained alloy or mixture is added. It is also possible to use a packed tower in which waste water is passed through the packed bed.
  • the other metal When the wastewater to be treated is brought into contact with an alloy or a mixture of titanium metal and another metal, the other metal is eluted and dissolved in the wastewater. When the metal elutes into ions, a strong reducing action occurs, and selenium in the wastewater is reduced. Since this metal elution is neutral and takes a long time, it is preferable to promote acid elution by adding an acid to the selenium-containing wastewater. Examples of the acid to be added include HCl and H 2 SO 4 .
  • the amount of acid added is preferably set according to the amount of metal to be eluted.
  • the metal elution amount is generally proportional to the acid addition amount, and the acid addition amount can be determined by a relational expression obtained in advance by experiments. Further, the elution amount of the metal can be set according to the hexavalent selenium concentration to be reduced.
  • Al 0 , Zn 0 , and Se 0 represent zero-valent, that is, non-ionized Al, Zn, and Se, respectively.
  • the selenium reduction treatment performance is greatly improved as compared with the treatment by single contact of metal titanium or other metal.
  • metals other than titanium such as aluminum and zinc are dissolved, electrons move through titanium that hardly dissolves even in the presence of acid, and selenium is reduced on the titanium surface. It may be expressed.
  • the ratio T / M between the volume T of metallic titanium and the volume M of other metals is preferably 1/3 or more, particularly preferably 1/2 or more.
  • the ratio T / M is 1/3 or more, the selenium reduction performance is improved. The reason for this is that since the proportion of titanium metal is high, the amount of electrons generated during the dissolution of other metals moves to the surface of the titanium metal, and the amount of selenium reduced on the surface of the metallic titanium increases. It is thought to be to do.
  • the ratio T / M is less than 1/3, the ratio of titanium metal is low, and thus electrons generated during dissolution of other metals are emitted from the surface of the other metals. It is considered that the performance of selenium reduction treatment decreases because the amount of electrons that increase and the amount of electrons that move to the metal titanium surface and contribute to the reduction of selenium decreases.
  • this ratio T / M is preferably 3/1 or less, particularly 1/1 or less. More preferably, this ratio T / M is 1/3 to 3/1, in particular 1/2 to 1/1.
  • Al is particularly suitable (hereinafter, a method using metal titanium and aluminum may be referred to as “Al / Ti method”).
  • T a method using metal titanium and aluminum
  • A a method using metal titanium and aluminum
  • T / A is 1/3 to 3/1, particularly 1/2 to 2/1, selenium is removed very efficiently. be able to.
  • Reduced selenium for example, hexavalent selenium
  • hexavalent selenium is mostly converted to zero-valent selenium, which is deposited on the titanium surface of the alloy or mixture and removed from the waste water. Residual selenium is reduced from hexavalent to low valent selenium, for example, tetravalent selenium, and is easily precipitated by agglomeration.
  • the treated wastewater it is preferable to subject the treated wastewater to a reduction treatment and then agglomerate the reduction treatment water.
  • the agglomeration treatment is performed by adjusting the pH of the reduction treatment water, precipitating the eluted metal as an insoluble compound such as hydroxide, and solid-liquid separation of the precipitated metal compound.
  • the pH of the reduced water is usually adjusted by adding an alkali such as NaOH, KOH, Ca (OH) 2 or the like.
  • an alkali such as NaOH, KOH, Ca (OH) 2 or the like.
  • the metal used with the metal titanium is aluminum
  • an alkali is added to the reduction-treated water, and the dissolved aluminum is precipitated as aluminum hydroxide.
  • the pH is preferably adjusted to 5 to 8 by adding an alkali. If the pH is too low or too high than this range, the aluminum hydroxide will dissolve, which is inappropriate.
  • the metal used together with the metal titanium is zinc, the pH can be adjusted to 9 to 10, and in the case of tin, the pH can be adjusted to around pH 8 to precipitate these as hydroxides.
  • an organic flocculant or an inorganic flocculant can be added to improve solid-liquid separation.
  • the solid-liquid separation when performing the solid-liquid separation operation can adopt any commonly used method, and it can be treated with the treated water by precipitation, filtration, centrifugation, membrane separation, etc. Separated into sludge composed of insoluble metal compounds.
  • the metal eluted during the reduction treatment is insolubilized by pH adjustment and solid-liquid separation of the reduced treated water, separated from the water, and discharged as treated water containing no metal. Further, when the eluted metal is precipitated as an insoluble compound, for example, aluminum hydroxide, reduced low-valent selenium remaining in the water is also adsorbed on the aluminum hydroxide flocs and is precipitated by a coprecipitation phenomenon.
  • an insoluble compound for example, aluminum hydroxide
  • Another preferred method for precipitating dissolved aluminum is a method of precipitating as calcium aluminate, adding a calcium compound to the reduction-treated water, adjusting the pH to 9 or higher, and coagulating.
  • the calcium compound to be added include Ca (OH) 2 , CaO, and CaCl 2 .
  • Use of Ca (OH) 2 is preferable because it becomes a calcium source and also acts as an alkali for pH adjustment.
  • an arbitrary alkali is added to adjust the pH.
  • the pH is adjusted to 9 or more, preferably 9-12. When the pH is lower than 9, it is difficult to produce calcium aluminate.
  • coal gasification wastewater contains components other than cyan, such as thiocyanate and formic acid, and ammonia as a nitrogen component, these are removed in the COD / ammonia removal step (4).
  • the following treatments (a) to (c) can be employed, and two or more of these can also be combined.
  • oxidizing agent used, and examples thereof include oxygen gas, oxygen-enriched air, air, hydrogen peroxide, ozone, and hypochlorite.
  • amount of oxidizer added it is preferably 1.1 to 3 times the theoretical amount necessary for oxidizing ammonia, COD components, etc., and 1.5 to 2.5 times. Is more preferable.
  • the temperature of wet catalytic oxidation is not particularly limited, but is preferably 101 to 210 ° C, more preferably 120 to 180 ° C.
  • the wastewater to be treated is pressurized to a pressure that maintains the liquid phase. If the wet catalytic oxidation temperature is less than 101 ° C., the rate of the oxidation reaction is slow, and it may take a long time to decompose and remove ammonia, COD components, and the like. The higher the wet catalyst oxidation temperature, the faster the oxidative decomposition proceeds. However, when the wet catalyst oxidation temperature exceeds 210 ° C, a pressure-resistant structure of 2 MPa or more is required, which may increase the cost of equipment and operation management. .
  • the catalyst used for wet catalytic oxidation for example, ruthenium, rhodium, palladium, osmium, iridium, platinum, iron, cobalt, nickel, copper, gold, tungsten, and other metals, and these metals are insoluble or sparingly soluble in water. 1 type or 2 types or more, such as these compounds, can be mentioned.
  • These metal catalysts or metal compound catalysts are preferably used by being supported on a carrier.
  • the carrier include one or more of magnesia, alumina, titania, silica gel, silica-alumina, zirconia, activated carbon, diatomaceous earth, cordierite, and the supported amount is 0 with respect to the carrier. It is preferably about 2 to 1% by weight.
  • FIG. 4 is a system diagram showing an example of a catalytic wet oxidation step as a COD / ammonia removal step (4) suitable for the present invention, where wastewater to be treated (for example, treated water in the selenium treatment step (3)) After heating from the storage tank 31 by a heat exchanger 32 (and a heater (not shown)), it is introduced into the catalyst packed tower 33 together with an oxidizing agent such as oxygen. While passing through the catalyst packed tower 33, ammonia and COD components in the wastewater are catalytically oxidized and decomposed in the presence of an oxidizing agent. The effluent water from the catalyst packed tower 33 is heat-exchanged by the heat exchanger 32, and then pH-adjusted in a pH-adjusting tank 34 as necessary, and discharged out of the system.
  • wastewater to be treated for example, treated water in the selenium treatment step (3)
  • ammonia stripping after adding alkali such as NaOH to the wastewater to be treated to adjust the alkalinity to about pH 10-12, the wastewater is brought into countercurrent contact with air in a diffusion tower. The ammonia ions in it are separated as ammonia gas.
  • This stripping tower may be filled with a packing such as a cascade ring in order to increase the contact efficiency. Further, steam may be supplied to the stripping tower for heating together with air.
  • the temperature be 40 to 90 ° C. and the gas (air) / liquid (drainage) flow rate ratio (G / L volume ratio) be 500 or more.
  • ammonia in the waste water is removed, but other COD components remain. Therefore, when the ammonia stripping process is adopted as the COD / ammonia removal process (4) and the COD component is not removed in the preceding stage, an advanced treatment process such as catalytic wet oxidation is further provided in the subsequent stage.
  • the COD component is preferably removed. However, the COD component can also be removed by employing wet oxidation in the above-described step (2).
  • exhaust gas containing ammonia is discharged, and this exhaust gas is diluted with air to an ammonia concentration of 1% or less as necessary, and then heated to about 300 to 400 ° C. to produce iron, platinum, It is preferable to decompose ammonia into nitrogen by contacting with a gas treatment catalyst such as ruthenium, tungsten, or titanium oxide.
  • a gas treatment catalyst such as ruthenium, tungsten, or titanium oxide.
  • Biological treatment is not particularly limited, but because the treated wastewater contains ammonia, autotrophic denitrifying bacteria using ammonia ions as electron donors and nitrite ions as electron acceptors. It is preferable to perform biological treatment including a denitrification step using (ANAMMOX bacteria).
  • ANAMMOX bacteria can generate nitrogen gas by reacting ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor under anoxic conditions (Microbiology 142 (1996), p2187-). 2196 etc.)
  • ammonia nitrogen can be oxidized using the oxidizing power of nitrite nitrogen, so nitrogen can be removed with an oxygen consumption equivalent to the theoretical amount, saving energy. be able to.
  • organic substances such as methanol, the cost can be saved.
  • This ANAMOX bacteria is an autotrophic bacterium, and the amount of excess sludge generated per nitrite nitrogen to be reduced is less than one-fifth compared to denitrifying bacteria that use organic matter to denitrify, and waste Generation amount can be greatly reduced.
  • Nitrite nitrogen as an electron acceptor involved in this reaction can be obtained by partially oxidizing ammonia nitrogen in wastewater, and may be introduced from other systems, or a separate chemical may be used. good.
  • the type of reaction tank is a column filled with a carrier suitable for adhering microorganisms such as sand, synthetic resin, gel, etc., and the wastewater to be treated is passed in an upward or downward flow, and nitrogen on the surface of the carrier.
  • a method is used in which a denitrification reaction proceeds by contacting a compound with a microorganism.
  • the carrier used here is preferably one having a large specific surface area, and in particular, a granular shape having a particle size of about 0.1 to 10 mm, or a shape such as a string shape, a cylindrical shape, or a gear shape is known.
  • the carrier is preferably flowed gently in water, and is flowed by a gas generated by denitrification, a gas injected from the outside, a stirrer, or the like.
  • denitrifying microorganisms that grow in suspension in water can be used, and the reaction is achieved by increasing the concentration of microorganisms in the system by reducing the amount of microorganisms flowing out of the system by solid-liquid separation of the grown microorganisms. Increasing the reaction rate per tank volume is also preferred.
  • various conventionally known methods such as precipitation, flotation, centrifugation, and filtration can be applied to the solid-liquid separation means used.
  • raw water is injected upward from the bottom of the reaction tank, and sludge is blocked or granulated without using a bacterial adhesion carrier to form a sludge bed of granular sludge with a particle size of 0.5 to several mm.
  • a USB (Upflow Sludge Bed) method is also suitable in which microorganisms are formed and retained at a high concentration in the reaction tank and subjected to high load treatment.
  • the COD / ammonia removing step (4) highly removes ammonia in coal gasification wastewater to N to 60 mg / L or less, or COD components to 15 mg / L or less.
  • the present invention is characterized in that among the steps (1) to (4) described above, the step (1) is performed before the step (2).
  • the order of the other steps is not particularly limited, but it is preferable to employ the following aspects (A) to (C).
  • the cyan decomposition step is a non-catalytic wet oxidation step
  • the COD / ammonia removal step is a catalytic wet oxidation step
  • the order of each step is (1), (2), (3), (4)
  • the cyan decomposition step is a non-catalytic wet oxidation step
  • the COD / ammonia removal step is a catalytic wet oxidation step
  • the order of each step is (1), (2), (4), (3) To do.
  • the cyanide decomposition step is a non-catalytic wet oxidation step
  • the COD / ammonia removal step is an ammonia stripping step or a biological treatment step
  • the order of each step is (1), (2), (3), The order is (4).
  • the fluorine removal step (1) By making the fluorine removal step (1) by coagulation sedimentation the first step, it is possible to preferentially remove fluorine with high corrosiveness and prevent equipment corrosion at a later stage. That is, for example, if fluorine is present in the wet oxidation process, hydrofluoric acid is generated and causes corrosion of the apparatus, which is not preferable. Further, in steps (2) to (4), the processing efficiency is increased by raising the temperature by heating, but if fluorine is present under such high temperature conditions, titanium, stainless steel, etc. used in these steps Steel materials are corroded by high concentrations of fluorine. Therefore, it is preferable that the step (1) is the first step and fluorine is preferentially removed.
  • SS in the coal gasification wastewater can also be removed in this step (1), and problems such as blockage of the subsequent catalyst packed tower and the like can be avoided. Also in the point which can do, it is preferable that a process (1) is made into the 1st process.
  • step (3) an acid is added to the waste water to elute the metal in the metal reductant.
  • the wastewater becomes acidic, and when cyanide is present in the wastewater, it is volatilized as hydrogen cyanide (HCN).
  • Hydrogen cyanide is a harmful substance, and it is not preferable to volatilize it for safety and health. Therefore, it is preferable to remove cyan in step (2) prior to step (3).
  • the precipitated SS component is dissolved by the addition of an acid, there is less fear of clogging due to the washing step of the reductant, etc.
  • the free metal can then be removed.
  • step (4) is a catalytic wet oxidation step
  • the steps (3) and (4) May be performed first, even if it is in order of step (1) ⁇ step (2) ⁇ step (3) ⁇ step (4), step (1) ⁇ step (2) ⁇ step ( 4)
  • the order of step (3) may be used.
  • step (4) is a biological treatment step such as the denitrification step using the above-mentioned ANAMMOX bacteria, as in the case of the above-described catalytic wet oxidation step, if the steps (1) and (2) are prioritized, Either step (3) or step (4) may be performed first.
  • the method of FIG. 5 is a wet process shown in FIG. 2 after removing SS and fluorine in the step (1) performed by combining the aggregation precipitation treatment with Ca salt and the aggregation precipitation treatment with Mg salt shown in FIG. Step (2) for decomposing cyanide by oxidation is performed. That is, after adjusting the pH in a pH adjusting tank, it is heated in a heat exchanger (not shown) and wet oxidized in the presence of an oxidizing agent in a wet oxidation reaction tower to decompose cyanide. At this time, the COD component is also decomposed. Subsequently, the treated water of this process (2) is sent to the selenium treatment process (3) shown in FIG. 3 through a relay tank.
  • this step (3) passes through the relay tank and is sent to the catalyst wet oxidation treatment step (4) shown in FIG. 4 to decompose and remove the COD component and ammonia. Since this catalyst wet oxidation-treated water is usually alkaline with a pH of about 9 to 10, it is discharged after adjusting the pH to about 6 to 8 by adding an acid in a pH adjusting tank as necessary.
  • the method shown in FIG. 6 is different from that shown in FIG. 5 in that ammonia stripping is performed instead of catalytic wet oxidation as step (4), and the other configurations are the same, and steps (1) to (3) are the same. The same is done.
  • ammonia stripping step as described above, exhaust gas containing ammonia is discharged, and this is processed. Further, since the treated water is alkaline with a pH of about 10 to 11, it is discharged after adjusting the pH to about 6 to 8 by adding an acid in a pH adjusting tank as necessary.
  • Fluorine concentration 15 mg / L or less Ammonia concentration: 60 mg / L or less (as N) COD concentration: 15 mg / L or less Selenium concentration: 0.1 mg / L or less Cyanide concentration: 1 mg / L or less high water quality treated water can be obtained, which can be discharged or reused as industrial water in some cases.
  • Example 1 The coal gasification wastewater was treated by the treatment procedure shown in FIG.
  • the processing conditions of each process are as follows.
  • Step (1) SS, fluorine aggregation treatment>
  • the aggregation precipitation treatment by adding Ca salt (using Ca (OH) 2 ) and the addition of Mg salt (using MgSO 4 ) shown in FIG. 1 were performed under the following conditions.
  • Polymer flocculant Anionic polymer flocculant “Cliff Rock PA331” manufactured by Kurita Kogyo Co., Ltd., addition amount 3 mg / L
  • Step (2) wet oxidation treatment>
  • the wet oxidation treatment shown in FIG. 2 was performed on the treated water in step (1) under the following conditions. Hydrogen peroxide (H 2 O 2 ) was mixed with the effluent as an oxidizing agent and heated, and then passed through a pressure vessel (reaction tower). The treated water was cooled and the pressure was released.
  • H 2 O 2 Hydrogen peroxide
  • acid HCl
  • NaOH alkali
  • Water flow SV 15 / hr HCl addition amount: Added so that the iron elution amount is 3000 mg / L
  • pH 10
  • Polymer flocculant Anionic polymer flocculant “Cliff Rock PA331” manufactured by Kurita Kogyo Co., Ltd., addition amount 3 mg / L
  • Step (4) Catalyst wet oxidation treatment>
  • the catalyst wet oxidation treatment shown in FIG. 4 was performed on the treated water in step (3) under the following conditions.
  • Oxygen (O 2 ) was used as the oxidizing agent.
  • Table 1 shows the quality of treated wastewater and treated water in each process together with the discharge standard value.
  • “-” indicates that no measurement is performed or no data is available. The same applies to Table 2 and later.
  • the order of the step (3) and the step (4) is interchanged, and the processing is performed under the same conditions in the order of the step (1) ⁇ the step (2) ⁇ the step (4) ⁇ the step (3).
  • similar processing results were obtained.
  • Example 2 Simulating the treated water in step (2), the following simulated water drainage with the following water quality was prepared, and selenium treatment was performed by the Al / Ti method under the following conditions. This process is similarly performed except that aluminum and titanium are used as the metal reductant in FIG.
  • Table 2 shows the processing results.
  • Example 3 The coal gasification wastewater was treated by the treatment procedure shown in FIG. Of the steps (1) to (4), the processing conditions and processing procedures of the steps (1) to (3) are the same as those in the first embodiment. However, in step (2), the amount of H 2 O 2 added was 4000 mg / L, and the reaction time was 1 hr. In step (3), the amount of HCl added was such that the iron elution amount was 1600 mg / L.
  • Process conditions for step (4) are as follows.
  • the exhaust gas was diluted with air to an NH 3 concentration of 1% or less, heated, and decomposed into N 2 using a gas treatment catalyst (iron-based catalyst) under the following conditions.
  • a gas treatment catalyst iron-based catalyst
  • Table 3 shows the quality of treated wastewater and treated water in each process together with the discharge standard value. Table 3 also shows the properties of the treatment gas obtained by treating the exhaust gas discharged by ammonia stripping.
  • the SS of the treated water of the step (2) is higher than that of the treated water of the step (1) because iron hydroxide precipitates from the iron cyanide complex salt. This is because T-Fe: 50 mg / L of the treated water of 1) becomes Fe (OH) 3 and is detected as SS at 96 mg / L.
  • Table 4 The same applies to Table 4 below.
  • Example 4 In Example 3, with respect to the coal gasification wastewater having a low water fluorine concentration shown in Table 4, the steps (2) to ( 4) and exhaust gas treatment were performed, and the results are shown in Table 4.
  • SS fluorine aggregation treatment>
  • aggregation precipitation was performed by adding Al salt (sulfuric acid band) with aggregation precipitation as a one-stage treatment.
  • Polymer flocculant Anionic polymer flocculant “Cliff Rock PA331” manufactured by Kurita Kogyo Co., Ltd., addition amount 3 mg / L
  • the present invention it is possible to efficiently remove all SS, fluorine, cyanide, selenium, ammonia and COD components in coal gasification wastewater, which can be discharged or reused. It turns out that the treated water of water quality can be obtained.
  • the pH of the treated water in step (4) is slightly higher than the discharge standard value, but this treated water may be adjusted by adding an acid as appropriate.
  • the method for treating coal gasification wastewater of the present invention it is possible to efficiently remove all pollutants in the coal gasification wastewater and to obtain treated water with good water quality that can be discharged or reused. it can.

Landscapes

  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Industrial Gases (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

 石炭ガス化工程において発生するガス洗浄排水等の石炭ガス化排水中に含まれるSS、フッ素、シアン、セレン、アンモニア、COD成分を効率よく除去して、放流可能な或いは再利用可能な良好な水質の処理水を得る。下記(1)~(4)の工程を含み、(1)を(2)よりも先に行う石炭ガス化排水の処理方法。(1)凝集沈殿によりフッ素を除去するフッ素除去工程。(2)湿式酸化または熱加水分解によりシアンを分解するシアン分解工程。(3)金属還元体によりセレン酸イオンを還元処理するセレン処理工程。(4)CODおよび/またはアンモニアを除去するCOD/アンモニア除去工程。

Description

石炭ガス化排水の処理方法
 本発明は、石炭ガス化排水の処理方法に係り、詳しくは、石炭ガス化工程において発生するガス洗浄排水中に含まれるSS、フッ素、シアン、セレン、アンモニア等のCOD成分を効率よく除去し、放流可能な或いは再利用可能な良好な水質の処理水を得る石炭ガス化排水の処理方法に関する。
 石炭をガス化して生成する水素、炭化水素、一酸化炭素などを含むガスを利用して、ガスタービンや燃料電池による発電が計画されている。石炭は、化石燃料の中で最も埋蔵量に富み、地球上における存在領域が広く、将来は火力発電用燃料の主力になると言われている。限られた化石燃料を有効に利用するために、従来型の火力発電に比べて効率の高いガスタービン発電と蒸気タービン発電を併用する石炭ガス化複合発電や、さらに燃料電池発電を組み入れた石炭ガス化燃料電池発電が注目されている。
 石炭ガス化複合発電は、石炭を部分酸化することにより、一酸化炭素と水素を主成分とするガス燃料に変換する石炭ガス化炉、その生成ガスから煤塵、硫黄分などを除去するガス精製装置、その精製ガスを燃料とするガスタービン複合サイクル発電プラントを組み合わせた発電方式である。ガスタービン本体は、液化天然ガス焚きのガスタービンと同じものがそのまま使えることが石炭ガスに求められている。
 図7は、石炭ガス化複合発電設備の一例の工程系統図である。この例においては、微粉炭搬送装置101から微粉炭が気流により搬送され、酸素とともに石炭ガス化炉102に送り込まれる。微粉炭は1,500~1,800℃、2~3MPaで部分酸化され、生成した一酸化炭素と水素を主成分とするガスは炉頂からシンガスクーラ103に送られる。発生したスラグは、炉底から排出される。ガスは、ダストフィルタ104を通過して煤塵が除去された後、水洗塔105において水により洗浄される。水洗塔105で発生する排水は、排水処理装置106に送られる。水洗されたガスは、COS転換器107を経て脱硫塔108へ送られ、硫黄分が除去される。精製されたガスはガスタービン109に送られ、燃焼してタービン109を駆動する。ガスタービン109の排気は、排熱回収ボイラ110へ送られ、排熱が回収されて発生する蒸気により蒸気タービン111が駆動される。
 このような石炭ガス化複合発電設備の水洗塔105において発生するガス洗浄排水、即ち、石炭ガス化排水には、SS、フッ素、シアン、アンモニア等のCOD成分、セレンなどが含まれるため、これらを除去して、放流可能な水質または再利用可能な水質まで処理する必要がある。
 従来、石炭ガス化排水の処理技術としては、石炭ガス化排水を、熱加水分解してシアンを分解し、シアノ錯体から分離析出した金属類を除去した後、COD成分を湿式触媒酸化することにより除去する方法が提案されている(特許文献1)。
 また、シアン含有排水について、無触媒湿式酸化処理した後、触媒湿式酸化処理する方法が提案されている(特許文献2)。
 また、セレン酸等の生物阻害物質を含む排水を、鉄と接触させてこれらを還元した後、凝集処理することにより除去し、その後生物処理する方法が提案されている(特許文献3)。
 なお、排水中のフッ素の処理方法としては、排水にカルシウム化合物やマグネシウム化合物、或いはアルミニウム化合物を添加して凝集沈殿処理する方法が知られており、アンモニアの処理についてはアンモニアストリッピング法が知られている。
 上記従来法によれば、排水中のフッ素や、シアン、セレン、アンモニア等を個々に処理することはできる。しかし、本発明で処理対象とする石炭ガス化排水は、高濃度のSSの他、高濃度のフッ素、シアン化合物、アンモニア等のCOD成分、セレン等を含有するものであるのに対して、現状では、このような石炭ガス化排水中のSS、フッ素、シアン化合物、アンモニア等のCOD成分、セレンをすべて、放流可能な或いは再利用可能な水質まで処理することができる処理方法は提供されていない。
特開2007-289841号公報 特開平8-290174号公報 特開平9-290297号公報
 本発明は上記従来の実情に鑑みてなされたものであって、石炭ガス化工程において発生するガス洗浄排水等の石炭ガス化排水中に含まれるSS、フッ素、シアン、セレン、アンモニア、COD成分を効率よく除去して、放流可能な或いは再利用可能な良好な水質の処理水を得る石炭ガス化排水の処理方法を提供することを目的とする。
 本発明(請求項1)の石炭ガス化排水の処理方法は、石炭ガス化排水を処理する方法であって、
(1)凝集沈殿によりフッ素を除去するフッ素除去工程、
(2)湿式酸化または熱加水分解によりシアンを分解するシアン分解工程、
(3)金属還元体によりセレン酸イオンを還元処理するセレン処理工程、並びに
(4)CODおよび/またはアンモニアを除去するCOD/アンモニア除去工程
を含み、(1)を(2)よりも先に行うことを特徴とする。
 請求項2の石炭ガス化排水の処理方法は、請求項1において、シアン分解工程が無触媒の湿式酸化工程であり、COD/アンモニア除去工程が触媒湿式酸化工程であり、各工程の順序が、(1)、(2)、(3)、(4)の順であることを特徴とする。
 請求項3の石炭ガス化排水の処理方法は、請求項1において、シアン分解工程が無触媒の湿式酸化工程であり、COD/アンモニア除去工程が触媒湿式酸化工程であり、各工程の順序が、(1)、(2)、(4)、(3)の順であることを特徴とする。
 請求項4の石炭ガス化排水の処理方法は、請求項1において、シアン分解工程が無触媒の湿式酸化工程であり、COD/アンモニア除去工程工程がアンモニアのストリッピング工程であり、各工程の順序が(1)、(2)、(3)、(4)の順であることを特徴とする。
 請求項5の石炭ガス化排水の処理方法は、請求項1において、COD/アンモニア除去工程が生物処理工程であり、各工程の順序が(1)、(2)、(3)、(4)の順であることを特徴とする。
 請求項6の石炭ガス化排水の処理方法は、請求項4において、生物処理工程が、アンモニアイオンを電子供与体、亜硝酸イオンを電子受容体とする独立栄養性脱窒細菌を用いた脱窒工程を含むことを特徴とする。
 請求項7の石炭ガス化排水の処理方法は、請求項1ないし6のいずれかにおいて、COD/アンモニア除去工程の処理水を処理する高度処理工程を有することを特徴とする。
 本発明の石炭ガス化排水の処理方法によれば、石炭ガス化工程において発生するガス洗浄排水等の石炭ガス化排水中に含まれるSS、フッ素、シアン、セレン、アンモニア、COD成分を効率よく除去して、放流可能な或いは再利用可能な良好な水質の処理水を得ることができる。
本発明に係るフッ素除去工程(1)の実施の形態の一例を示す系統図である。 本発明に係るシアン分解工程(2)の実施の形態の一例を示す系統図である。 本発明に係るセレン処理工程(3)の実施の形態の一例を示す系統図である。 本発明に係るCOD/アンモニア除去工程(4)の実施の形態の一例を示す系統図である。 本発明の石炭ガス化排水の処理方法の実施の形態の一例を示す系統図である。 本発明の石炭ガス化排水の処理方法の実施の形態の他の例を示す系統図である。 石炭ガス化複合発電設備の一例を示す工程系統図である。
 以下に本発明の実施の形態を詳細に説明する。
 本発明の石炭ガス化排水の処理方法は、以下の(1)~(4)の工程を備え、工程(1)を工程(2)よりも先に行うことを特徴とする。
 (1)凝集沈殿によりフッ素を除去するフッ素除去工程
 (2)湿式酸化または熱加水分解によりシアンを分解するシアン分解工程
 (3)金属還元体によりセレン酸イオンを還元処理するセレン処理工程
 (4)CODおよび/またはアンモニアを除去するCOD/アンモニア除去工程
 本発明において、処理対象とする石炭ガス化排水は、前述の石炭ガス化複合発電設備の水洗塔から排出されるガス洗浄排水等の石炭ガス化プロセスから排出される排水であり、このような石炭ガス化排水が排出される石炭ガス化プロセスの処理方式に特に制限はなく、例えば、移動床式のルルギ法、噴流床式のコッパース-トチェク法、流動床式のウィンクラー法、加圧流動床式のハイガス法、加圧噴流床式のテキサコ法などを挙げることができる。本発明方法は、大型の石炭ガス化装置が採用され、長期間の安定した運転が要求される石炭ガス化複合発電、石炭ガス化燃料電池発電などの石炭ガス化排水の処理に好適に適用することができる。
 通常、このような石炭ガス化プロセスから排出される石炭ガス化排水の水質は次の通りである。
  pH:7~9
  SS:20~1000mg/L
  フッ素:20~2000mg/L
  シアン:10~150mg/L
  セレン:0.5~10mg/L
  アンモニア:2000~4000mg/L(Nとして)
  COD:200~1500mg/L
 以下にこのような石炭ガス化排水を処理する本発明の上記工程(1)~(4)を各工程毎に説明する。
[フッ素除去工程(1)]
 まず、凝集沈殿によりフッ素を除去するフッ素除去工程(1)について説明する。
 凝集沈殿によるフッ素の除去方法としては、次のような方法が挙げられる。
(1) 排水にカルシウム化合物を添加して、以下の反応で難溶性のフッ化カルシウムを生成させ、これを分離除去する。
   Ca2++2F → CaF
(2) 排水にマグネシウム化合物を添加して以下の反応でフッ素イオンを水酸化マグネシウムに吸着させて除去する。
   Mg2++2OH+F → Mg(OH)・F
(3) 排水にアルミニウム化合物を添加して以下の反応で水酸化アルミニウムにフッ素イオンを吸着させて除去する。
   Al3++3OH+F → Al(OH)・F
 上記(1)~(3)の方法はいずれか2種以上を組み合わせて行うこともでき、特に(1)のカルシウム化合物によるフッ素除去後に、(2)のマグネシウム化合物によるフッ素除去を行うことにより、フッ素を高度に除去することができる。(2)のマグネシウム化合物または(3)のアルミニウム化合物を用いる方法では、この方法のみでフッ素を高度に除去することができる。この(2)のマグネシウム化合物または(3)のアルミニウム化合物による処理は、(1)のカルシウム化合物による処理後の高度処理として、(1)の後段で行っても良い。
 (1)~(3)のいずれの方法も、凝集沈殿処理を行うことにより、フッ素と共に排水中のSSも同時に除去することができる。
 なお、排水中にシアンが含まれる場合、pH酸性条件では、シアン化水素の揮散の問題があるため、シアン分解工程(2)に先立つフッ素除去工程(1)においては、排水をpH酸性とすることなく、中性~アルカリ性で処理を行う必要がある。
 この点、(1)のカルシウム化合物による方法はpH中性~アルカリ性(具体的には、pH6~9)で処理を行うことができ、また、(2)のマグネシウム化合物による方法ではアルカリ性(具体的にはpH9以上、好ましくは11以上)で処理を行うことができ、(3)のアルミニウム化合物による方法はpH中性(具体的にはpH6~8)で処理を行うことができ好ましい。
 (1)のカルシウム化合物としては、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))等の塩基性カルシウム化合物の他、塩化カルシウム(CaCl)等のカルシウム塩を用いることができ、その添加量はCa換算で排水中のフッ素イオンに対して1~3倍当量程度とするのが好ましい。
 また、上述のpH条件となるように必要に応じて、塩酸(HCl)、硫酸(HSO)等の酸または水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)等のアルカリを添加することが好ましい。
 排水にカルシウム化合物を添加した後の凝集処理に用いる凝集剤としては、ポリアクリルアミド、ポリエチレンオキシド、尿素-ホルマリン樹脂などのノニオン性高分子凝集剤、ポリアミノアルキルメタクリレート、ポリエチレンイミン、ハロゲン化ポリジアリルアンモニウム、キトサンなどのカチオン性高分子凝集剤、ポリアクリル酸ナトリウム、ポリアクリルアミド部分加水分解物、部分スルホメチル化ポリアクリルアミド、ポリ(2-アクリルアミド)-2-メチルプロパン硫酸塩などのアニオン性高分子凝集剤などの1種または2種以上を使用することができる。これらの高分子凝集剤の中で、アニオン性高分子凝集剤は凝集効果に優れているので、特に好適に使用することができる。高分子凝集剤の添加量は、被処理排水の水質や用いる高分子凝集剤の種類によっても異なるが通常、0.1~5mg/L程度である。
 (2)のマグネシウム化合物としては、硫酸マグネシウム(MgSO)、塩化マグネシウム(MgCl)等のマグネシウム塩を用いることができ、その添加量は水酸化マグネシウムに対するフッ素の吸着量を実験的に求め決定するが、一般的には、処理水のフッ素濃度を10mg/L以下にする場合、Mg換算で、除去するフッ素の10~20倍(重量比)である。
 また、上述のpH条件となるように必要に応じて、HCl、HSO等の酸またはNaOH、KOH等のアルカリを添加することが好ましい。
 排水にマグネシウム化合物を添加した後の凝集処理に用いる凝集剤としては、上記カルシウム化合物の場合と同様のものを用いることができ、その添加量は、被処理排水の水質や用いる高分子凝集剤の種類によっても異なるが通常、0.1~5mg/L程度である。
 (3)のアルミニウム化合物としては、硫酸アルミニウム(Al(SO、硫酸バンド)、ポリ塩化アルミニウム(PAC)などのアルミニウム塩を用いることができ、その添加量は水酸化アルミニウムに対するフッ素の吸着量を実験的に求め決定するが、一般的には、処理水のフッ素濃度を10mg/L以下にする場合、Al換算で除去するフッ素の1~10倍(重量比)である。
 また、上述のpH条件となるように必要に応じて、HCl、HSO等の酸またはNaOH、KOH等のアルカリを添加することが好ましい。
 排水にアルミニウム化合物を添加した後の凝集処理に用いる凝集剤としては、上記カルシウム化合物の場合と同様のものを用いることができ、その添加量は、被処理排水の水質や用いる高分子凝集剤の種類によっても異なるが通常、0.1~5mg/L程度である。
 上記(1)の処理において、凝集沈殿処理で分離された分離汚泥の返送を行って被処理排水に添加し、返送汚泥を核としてフッ化カルシウムを析出させることにより、汚泥濃度を高め、汚泥の減容化ができる。
 以下に、図1を参照して、フッ素除去工程(1)をより具体的に説明する。
 図1は、本発明に好適なフッ素除去工程(1)の一例を示す系統図であり、前述の(1)のカルシウム化合物による方法と(2)のマグネシウム化合物による方法を併用するものである。
 図1において、原水である石炭ガス化排水を、原水槽1を経て、まずCa凝集沈殿工程Iの第1反応槽2に導入し、Ca(OH)等のカルシウム化合物を添加して攪拌し、次いで、第1pH調整槽3に導入してHCl、HSO等の酸を添加してpH6~9で攪拌することによりCaFを析出させ、更に、第1凝集槽4に導入して高分子凝集剤を添加して攪拌することにより、凝集処理する。凝集処理水は、第1沈殿槽5で固液分離し、分離されたCaF汚泥の一部を第1反応槽2に返送すると共に残部を系外へ排出する。なお、返送汚泥は原水槽1に導入しても良い。また、返送汚泥を予めカルシウム化合物と混合して第1反応槽2に添加しても良い。
 この返送汚泥量は、発生汚泥に対して20~50倍程度とすることが好ましい。
 Ca凝集沈殿工程Iの処理水、即ち、第1沈殿槽5の分離水は、次いで、Mg凝集沈殿工程IIの第2反応槽6に導入し、MgSO等のマグネシウム化合物と、残留するカルシウムを炭酸カルシウムとして沈殿させるための炭酸源として炭酸ナトリウム(NaCO)を添加して攪拌し、次いで第2pH調整槽7に導入してNaOH等のアルカリを添加してpH10~11で攪拌することによりMg(OH)を析出させると共に、これにフッ素を吸着させ、更に、第2凝集槽8に導入して高分子凝集剤を添加して攪拌することにより、凝集処理する。凝集処理水は、第2沈殿槽9で固液分離し、分離された汚泥の一部を第2反応槽6に返送すると共に残部を系外へ排出する。なお、返送汚泥はCa凝集沈殿工程の第1反応槽2に導入しても良い。
 この返送汚泥量は、返送先の反応槽内のSS濃度が、2000~10000mg/Lとなるような量とするのが、スケール防止上、好ましい。
 このMg凝集沈殿工程IIにおいて、NaCOはCa凝集沈殿工程Iの処理水に残留するCa除去のために添加され、NaCO以外に炭酸ガスであっても良い。その添加量は、Caに対して1~2倍当量程度とすることが好ましい。
 なお、第2沈殿槽9の分離水は、そのまま次工程に送給しても良いが、図1に示す如く、砂濾過器等の濾過装置10で濾過してSSを高度に除去することが、後工程におけるSSによる閉塞やスケール障害を防止する上で好ましい。
 本発明においては、このようなフッ素除去工程(1)において、石炭ガス化排水中のフッ素を10mg/L以下に高度に除去することが好ましい。このように、石炭ガス化排水中のフッ素を除去することにより、後工程で熱処理を行った場合や、酸化処理を行った場合に、フッ素やフッ酸等による装置腐食を防止することができる。
[シアン分解工程(2)]
 次に、湿式酸化または熱加水分解によりシアンを分解するシアン分解工程(2)について説明する。
 湿式酸化は酸化剤を用いてシアンを酸化分解するものであり、熱加水分解は、酸化剤を用いることなく、シアンを加水分解するものである。シアンの湿式酸化または熱加水分解により、シアンは以下の反応でアンモニアに分解される。
  2CN+O+HO → 2HCO +N
  CN+2HO → HCOO+NH
 また、このシアン分解工程(2)では、特に、湿式酸化を行った場合、シアンと共に、排水中のCOD成分も分解除去することができる。
 酸化剤を用いる場合、このシアンの酸化分解は中性ないしアルカリ性で行われるが、COD成分も同時に酸化分解する場合は、中性が好ましい。酸化剤を用いない場合、このシアンの加水分解は、アルカリ性で行われる。
 酸化剤を用いず熱加水分解によりシアンを分解する場合、被処理排水に必要に応じてNaOH等のアルカリを添加して好ましくはpH9以上、より好ましくはpH10以上、最も好ましくはpH11~12のアルカリ性として、好ましくは101~210℃、より好ましくは120~180℃に加熱すると共に、被処理排水が液相を保つ圧力に保持して熱加水分解処理を行う。
 ここで、排水のpHが9未満であると、熱加水分解の反応速度が遅く、好ましくない。また、熱加水分解処理の温度が101℃未満であると、反応速度が遅く、熱加水分解処理に長時間を要するおそれがある。熱加水分解処理の温度が高いほど、加水分解反応は速やかに進行するが、熱加水分解処理の温度が210℃を超えると、2MPa以上の耐圧構造が必要となり、設備と運転管理の費用が嵩むおそれがある。熱加水分解処理の温度が180℃以下であると、1MPa以下の圧力で処理することができる。熱加水分解処理の時間は、熱加水分解処理の温度に応じて適宜選択することができる。例えば、熱加水分解処理を160℃で連続的に行う場合、熱加水分解処理系内の平均滞留時間は1時間以上であることが好ましい。
 一方、湿式酸化を行う場合に用いる酸化剤としては特に制限はなく、酸素ガス、酸素濃縮空気、空気、過酸化水素などを挙げることができる。これらは1種を単独で用いても良く、2種以上を併用しても良い。これらのうち、特に過酸化水素は、液体で取扱いが容易であるうえ、COD成分の酸化分解性能が良いので好適に使用される。
 酸化剤の使用量には特に制限はないが、排水中のシアン、更にはCOD成分の酸化分解に必要な理論量の1.1~3倍、特に1.5~2.5倍程度とすることが好ましい。
 この湿式酸化の場合の加熱温度条件としては、上述の熱加水分解の場合と同等で良いが、pH条件については、前述の如く、中性~アルカリ性で良いが、COD成分も同時に酸化分解するためには、中性条件とすることが好ましい。従って、前述のフッ素除去工程(1)の処理水がアルカリ性である場合には、HCl、HSO等の酸を添加して、中性付近にpH調整した後、湿式酸化処理に供することが好ましい。
 なお、このシアン分解工程(2)に供される排水中のシアンは鉄シアン錯体の形態として存在している。このような排水に対して触媒を用いて湿式酸化を行うと、鉄が析出して触媒の活性を低下させる。
 従って、このシアン分解工程(2)は触媒を用いない無触媒の湿式酸化工程であることが好ましい。
 以下に、図2を参照して、シアン分解工程(2)をより具体的に説明する。
 図2は、本発明に好適なシアン分解工程(2)の一例を示す系統図であり、被処理排水(本発明ではフッ素除去工程(1)の処理水)を、まずpH調整槽11に導入してHSO等の酸を添加してpH7程度にpH調整した後、熱交換器12(および図示しない加熱器)で加熱して湿式酸化反応塔13に導入する。この反応塔13の流入水には、H等の酸化剤が注入され、排水中のシアンは反応塔13内で酸化剤の存在下、湿式酸化分解される。反応塔13の流出水(処理水)は、熱交換器12で反応塔13の流入水と熱交換された後、次工程へ送給される。シアンの分解で生成した窒素ガス、炭酸ガスは、反応塔13の上部から排出される。
 本発明においては、このようなシアン分解工程(2)において、石炭ガス化排水中のシアンを1mg/L以下に高度に除去することが好ましい。
[セレン処理工程(3)]
 次に、金属還元体によりセレン酸イオンを還元処理するセレン処理工程(3)について説明する。
 セレン処理工程(3)の具体的な処理方法としては、金属還元体として金属鉄を用いる方法と、金属チタンとアルミニウム等の他の金属との合金または混合物を用いる方法とが挙げられる。
 鉄還元体(金属鉄)を用いる方法は、pH5以下に調整した排水を鉄と接触させて、以下の反応でセレン酸を還元処理し、析出したセレンを鉄イオンと共に、以下の反応で共沈させて凝集処理するものである。
  3Fe+SeO 2-+8H → 3Fe2++Se+4H
  Fe2++Se+2OH → Fe(OH)・Se
 この方法では、まず被処理排水にpH調整剤を加えてpH5以下、好ましくはpH2~3に調整する。使用するpH調整剤には特に制限はないが、HCl、HSO等を好適に使用することができる。被処理排水のpHが5を超えると、鉄と接触させたとき、被処理排水への鉄の溶出に時間がかかり、或いは被処理排水に鉄が十分に溶出しないおそれがある。被処理排水のpHが5以下である場合は、必ずしもpH調整を行う必要はない。被処理排水のpHが2~3であると、速やかに鉄が溶出して反応に寄与するので好ましい。
 pH5以下に調整した排水を接触させる鉄としては、純鉄、粗鋼、合金鋼、その他の鉄合金などを挙げることができる。鉄は、鉄微粒子、鉄網線、粒状鉄など表面積の大きい形状であることが好ましく、最大径が3mm以下であることが好ましく、0.1~1mmであることがより好ましい。また、鉄が鉄合金であるときは、鉄の含有率が85重量%以上であることが好ましい。
 pH5以下の被処理排水と鉄を接触させる方法には特に制限はなく、例えば、鉄微粒子、鉄網線、粒状鉄などを充填したカラムに排水を通水することにより接触させることができる。或いは、反応槽内において被処理排水に鉄微粒子、鉄網線、粒状鉄などを加えることにより接触させることができる。
 排水と鉄の接触時間は、通常2~30分とすることが好ましいが、被処理排水のpH値或いは酸化還元電位を測定して制御することが可能である。即ち、鉄の溶解により酸が消費されることにより系内のpHが上昇し、pH5~7となることを適切な接触時間を判断する基準とすることができる。酸化還元電位は、酸化性物質が還元されることにより低下するので、酸化還元電位が-100mV以下に到達することを適切な接触時間を判断する基準とすることができる。
 pHを5以下に調整した被処理排水と鉄を接触させることにより、鉄は2価の鉄イオンとなって水中に溶出する。2価の鉄イオンは、セレン酸と反応する。
 なお、鉄と接触させる際の排水の温度については特に制限はないが、40℃以上、特に60~70℃程度に加温した方が、セレン酸の還元効率を高めることができることから、適宜加温することが好ましい。
 鉄と接触することにより水中のセレン酸を還元した後の凝集処理の方法には特に制限はないが、アルカリ剤を添加することにより、水中の2価の鉄イオンおよび3価の鉄イオンを水不溶性の水酸化第一鉄および水酸化第二鉄とし、鉄フロックを形成して凝集することが好ましい。アルカリ剤の添加により、被処理水のpHを9以上とすることが好ましい。このpHが9未満であると、鉄フロックなどの凝集が不十分となるおそれがある。被処理水のpHを9以上とすることにより、次式のように、水中の2価の鉄イオンは水不溶性の水酸化第一鉄となり、3価の鉄イオンは水不溶性の水酸化第二鉄となる。
  Fe2++2NaOH → Fe(OH)+2Na
  Fe3++3NaOH → Fe(OH)+3Na
 このとき、還元されたセレンは、生成する水酸化鉄のフロックに吸着され、凝集分離される。さらに、排水中にフッ素が存在する場合、フッ素の一部も、鉄フロックに吸着され、凝集分離される。またpHを9以上にすることにより、水酸化物が水不溶性であるその他の金属イオンも、同様に水酸化物となってフロックを形成する。また、この際、排水に含まれる懸濁物質、還元されたセレン、フッ化物成分などは、鉄フロックに吸着されて同時に凝集する。さらに、水中に鉄の超微粒子が浮遊している場合は、鉄の超微粒子も鉄フロックに吸着されて凝集する。また、反応系が空気に開放されている場合は、2価の鉄イオンが空気酸化を受けて、一部が酸化第二鉄の微粒子となり、酸化第二鉄の微粒子は鉄フロックに吸着されて凝集する。
 鉄と接触した後の排水のpHを9以上にするためのアルカリ剤には特に制限はなく、例えば、NaOH、KOH、消石灰(Ca(OH))、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、カーバイド滓など使用することができるが、NaOHまたはCa(OH)を特に好適に使用することができる。
 このアルカリ剤の添加による凝集処理の際に、さらに高分子凝集剤を添加することができる。高分子凝集剤の添加により、フロックが粗大化し、固液分離が容易になる。使用する高分子凝集剤には特に制限はなく、例えば、ポリアクリルアミド、ポリエチレンオキシド、尿素-ホルマリン樹脂などのノニオン性高分子凝集剤、ポリアミノアルキルメタクリレート、ポリエチレンイミン、ハロゲン化ポリジアリルアンモニウム、キトサンなどのカチオン性高分子凝集剤、ポリアクリル酸ナトリウム、ポリアクリルアミド部分加水分解物、部分スルホメチル化ポリアクリルアミド、ポリ(2-アクリルアミド)-2-メチルプロパン硫酸塩などのアニオン性高分子凝集剤などの1種または2種以上を使用することができる。これらの高分子凝集剤の中で、アニオン性高分子凝集剤は凝集効果に優れているので、特に好適に使用することができる。高分子凝集剤の添加量は、排水の水質、用いる高分子凝集剤の種類によっても異なるが、通常0.1~5mg/L程度である。
 凝集処理後、固液分離を行うことにより、凝集処理により生成したフロックを除去し、被処理水を分離する。固液分離方法には特に制限はなく、沈殿、濾過、遠心分離、膜分離など任意の固液分離方法を使用することができる。
 なお、固液分離で得られた分離汚泥は、凝集工程へ返送しても良い。この場合において、この分離汚泥にアルカリを添加して改質した後鉄接触後の排水に添加しても良い。
 以下に、図3を参照して、鉄還元体を用いるセレン処理工程(3)をより具体的に説明する。
 図3は、本発明に好適なセレン処理工程(3)の一例を示す系統図であり、被処理排水(例えば、シアン分解工程(2)の被処理水)は、pH調整槽21でHCl等の酸が添加されてpH5以下にpH調整された後、熱交換器22で加温され、次いで、鉄充填塔23に導入される。鉄充填塔23を通過する間に排水中のセレン酸が還元される。鉄充填塔23の流出水は、熱交換器23で鉄充填塔23の流入水と熱交換した後、反応槽24に導入され、NaOH等のアルカリ剤の添加によりpH9以上にpH調整される。反応槽24の流出水は、次いで凝集槽25に送給され、高分子凝集剤の添加により凝集処理された後、沈殿槽26で凝集汚泥が固液分離され、分離水が処理水として系外へ排出される。この沈殿槽26の分離水はこのまま次工程へ送給しても良いが、濾過装置27で濾過してSSを高度に除去した後、次工程に送給しても良い。
 沈殿槽26の分離汚泥の一部は、反応槽24に返送しても良い。またその際、反応槽24に添加するNaOHと予め混合した後反応槽に添加しても良い。また、返送汚泥は凝集槽25に添加しても良い。
 一方、金属還元体として、金属チタンと金属チタン以外の他の金属との合金または混合物を用いる方法は、被処理排水を、金属チタンと他の金属との合金または混合物と接触させ、該他の金属の一部を溶出させることによりセレンを還元するものである。還元されたセレンは大部分金属表面に析出するので還元処理水を処理水とすることもできるが、必要に応じ、還元処理後、pH調整して溶出金属を析出させ、固液分離して析出金属を除去して、処理水を得る。
 この還元処理では、金属チタンと、金属チタン以外の他の金属との合金または混合物を使用する。金属チタンと合金化または混合する金属は、各種の金属を使用できるが、金属溶出後のpH調整により生成する水酸化物からなる汚泥が白色を呈する金属であることが好ましい。汚泥が白色であると、褐色などに着色している場合に比べて、汚泥の処分が容易である。白色の汚泥を生成する金属としては、アルミニウム、亜鉛、スズ、銅などがあり、特に、アルミニウム、亜鉛、スズは溶解性の面でも優れており、好適に使用できる。金属チタン以外の他の金属は、1種の金属のみでもよいが、2種以上の複数金属の混合または合金であってもよい。
 金属チタンと他の金属との合金は、固溶体、金属間化合物、共有合金のいずれをも使用できる。合金化方法としては、例えば、金属のイオン化傾向の差を利用する方法、電解法、溶融法などを採用することができる。
 また、本発明では、金属チタンと他の金属とを、合金化しないで、混合物として使用することもできる。具体的には、粉状物、粒状物、繊維状物などの形態の金属チタンと、粉状物、粒状物、繊維状物などの形態の他の金属とを、同種の形態を混合して、または、異種の形態を混合して混合物とすることができる。
 チタンと他の金属との合金または混合物の形状は、表面積が大きいものであることが好ましい。例えば、粒径10μm~5mm程度の粉状物、粒状物、繊維状物、微細薄膜などが好適である。
 被処理排水を、チタンと他の金属との合金または混合物と接触させる方法に制限はなく、任意の形式の還元反応器で接触させることができる。還元反応器として、例えば、反応槽にセレン含有排水を導入するとともに粉状、細粒状の合金または混合物を添加するようにした還元反応槽であってもよく、粒状、繊維状などの合金または混合物を充填し、充填層に排水を通水する充填塔であってもよい。
 被処理排水を金属チタンと他の金属との合金または混合物と接触させると、排水中に他の金属が溶出し、溶解する。金属が溶出してイオンになる際に、強い還元作用が生じ、排水中のセレンは還元される。この金属の溶出は中性では長時間を要するために、セレン含有排水に酸を添加して金属の溶出を促進することが好ましい。添加する酸としては、例えば、HCl、HSOなどを挙げることができる。酸の添加量は、溶出させる金属の量に応じて設定することが好ましい。金属の溶出量は概ね酸の添加量と比例関係にあり、予め実験によって求めた関係式により、酸の添加量を定めることができる。また、金属の溶出量は、還元処理すべき6価セレン濃度に応じて設定することができる。
 被処理排水中に溶出したセレン以外の金属、例えば、アルミニウム、亜鉛は、セレン酸イオンと下式のように反応して、セレンを還元すると考えられる。なお、Al、Zn、Seはそれぞれ0価のすなわちイオン化していないAl、Zn、Seを表す。
 2Al+SeO 2-+8H → 2Al3++Se+4H
 3Zn+SeO 2-+8H → 3Zn2++Se+4H
 金属チタンと他の金属との合金化または混合による共存状態下で排水と接触させると、金属チタンまたは他の金属の単独接触による処理に比べ、大幅にセレン還元処理性能が向上する。その理由として、アルミニウム、亜鉛などのチタン以外の金属が溶解して、酸が存在してもほとんど溶解しないチタンを通して電子が移動し、チタン表面でセレンが還元され、その際に何らかの電気的効果が発現している可能性が考えられる。
 金属チタンの容積Tと他の金属の容積Mとの比T/Mは、1/3以上、特に1/2以上であることが好ましい。この比T/Mが1/3以上であるとセレン還元処理性能が良好になる。この理由は、金属チタンの割合が高いため、他の金属の溶解の際に生じた電子が金属チタンの表面に移動する量が増加し、該金属チタンの表面で還元されるセレンの量が増加するためであると考えられる。これに対し、この比T/Mが1/3未満であると、金属チタンの割合が低いため、他の金属の溶解の際に生じた電子のうち、該他の金属の表面で放出されてしまう電子の量が増加すると共に、金属チタン表面まで移動してセレンの還元に寄与する電子の量が減少するために、セレン還元処理性能が低下するものと考えられる。
 なお、他の金属の充填容量を一定とし、かつこの比T/Mを大きくする場合、良好な還元処理性能が維持されるものの、多量の金属チタンが必要になると共に、これら他の金属および金属チタンを充填する装置の容積を大きくする必要がある。このため、この比T/Mは3/1以下、特に1/1以下であることが好ましい。より好ましくは、この比T/Mは1/3~3/1、特に1/2~1/1である。
 他の金属としては特にアルミニウムが好適である(以下、金属チタンとアルミニウムを用いる方法を「Al/Ti法」と称す場合がある。)。この場合、金属チタンの容積をTとし、アルミニウムの容積をAとした場合、T/Aが1/3~3/1特に1/2~2/1であると、極めて効率よくセレンを除去することができる。
 還元されたセレン、例えば、6価セレンは大部分が0価のセレンとなり、合金または混合物のチタン表面に析出して、排水から除去される。残余のセレンは6価から低価数例えば、4価のセレンに還元され、凝集処理により沈殿しやすい形態となる。
 このようにして被処理排水を還元処理後、還元処理水を凝集処理するのが好ましい。凝集処理は、還元処理水のpHを調整して、溶出した金属を水酸化物などの不溶性化合物として析出させ、析出した金属化合物を固液分離することによって行われる。
 還元処理水のpH調整は、通常、NaOH、KOH、Ca(OH)などのアルカリを添加して行う。金属チタンとともに使用した金属がアルミニウムの場合は、還元処理水にアルカリを添加し、溶解アルミニウムを水酸化アルミニウムとして析出させる。この際、アルカリの添加によりpHを5~8に調整することが好ましい。この範囲よりもpHが低過ぎたり高過ぎたりすると水酸化アルミニウムが溶解するので、不適当である。金属チタンとともに使用した金属が亜鉛の場合はpHを9~10に、スズの場合はpH8前後にpH調整することにより、これらを水酸化物として析出させることができる。
 pH調整によって金属化合物を析出させる際、有機凝集剤や無機凝集剤を添加して、固液分離性を向上させることができる。
 析出した金属化合物を水中から分離するために、固液分離操作を行う際の固液分離は、通常用いられる任意の方法を採用でき、沈殿、濾過、遠心分離、膜分離などにより、処理水と不溶性金属化合物からなる汚泥とに分離する。
 還元処理水のpH調整、固液分離により、還元処理時に溶出した金属が不溶化され、水中から分離され、金属を含まない処理水として排出することができる。また、この溶出金属が不溶性化合物、例えば、水酸化アルミニウムとして析出する際、水中に残留する還元された低価のセレンも水酸化アルミニウムのフロックに吸着され、共沈現象により析出する。
 また、セレン含有排水にフッ素やホウ素が共存している場合、金属チタンとともに使用する金属としてアルミニウムを採用すると、還元処理後、pH調整により水酸化アルミニウムが析出する際に、フッ素やホウ素も共沈現象により析出する。
 溶解アルミニウムを析出させる別の好ましい方法は、アルミン酸カルシウムとして析出させる方法であり、還元処理水にカルシウム化合物を添加し、pH9以上に調整して凝集処理する。添加するカルシウム化合物としては、例えば、Ca(OH)、CaO、CaClがある。Ca(OH)を用いると、カルシウム源になるとともにpH調整のアルカリとしても働き、好ましい。他のカルシウム化合物を用いるときは、任意のアルカリを添加し、pH調整する。このpHは9以上、好ましくは9~12に調整する。pHが9より低いとアルミン酸カルシウムの生成が困難である。
 このようにして、溶解アルミニウムがアルミン酸カルシウムとして析出する際、水中の還元された低価のセレンもアルミン酸カルシウムのフロックに吸着され、共沈現象により析出する。
 この凝集沈殿では、次の反応が行われていると想定される。
 2Al(OH)+Ca(OH)+Se → CaAl・Se+4H
 アルミン酸カルシウムとの共沈によるセレン除去は、水酸化アルミニウムによる場合よりセレン除去効果が優れている。この理由は明らかでないが、還元が不十分なセレンもアルミン酸カルシウムにより除去されることによるものと推定される。
 また、被処理排水にフッ素やホウ素が含まれている場合、アルミン酸カルシウムが析出する際、フッ素やホウ素も同時に析出させて除去することができる。
 本発明においては、このようなセレン処理工程(3)により、石炭ガス化排水中のセレンを0.1mg/L以下に高度に除去することが好ましい。
[COD/アンモニア除去工程(4)]
 次に、石炭ガス化排水中のCODおよび/またはアンモニアを除去するCOD/アンモニア除去工程(4)について説明する。
 石炭ガス化排水は、シアンの他に、チオシアン、ギ酸といったCODとなる成分や、窒素成分としてアンモニアを含むため、これらをCOD/アンモニア除去工程(4)で除去する。COD/アンモニア除去工程(4)としては、次の(a)~(c)の処理を採用することができ、これらの2種以上を組み合わせて行うこともできる。
 (a) 触媒湿式酸化
 (b) アンモニアストリッピング
 (c) 生物処理
 (a)触媒湿式酸化の場合、被処理排水を酸化剤の存在下に、水相を維持する圧力下で加温し、高温において酸化触媒と接触させ、COD成分、アンモニアなどを酸化分解する。湿式触媒酸化により、排水中のCOD成分であるSO、Sは、SOまで、SCNは、Nガス、COガスとSOに、NHは、Nガスまで分解され、無害化される。
 使用する酸化剤に特に制限はなく、酸素ガス、酸素濃縮空気、空気、過酸化水素、オゾン、次亜塩素酸塩などを挙げることができる。酸化剤の添加量に特に制限はないが、アンモニア、COD成分などを酸化するために必要な理論量の1.1~3倍であることが好ましく、1.5~2.5倍であることがより好ましい。
 湿式触媒酸化の温度に特に制限はないが、101~210℃であることが好ましく、120~180℃であることがより好ましい。湿式触媒酸化においては、被処理排水が液相を保つ圧力に加圧される。湿式触媒酸化の温度が101℃未満であると、酸化反応の速度が遅く、アンモニア、COD成分などの分解除去に長時間を要するおそれがある。湿式触媒酸化の温度が高いほど、酸化分解は速やかに進行するが、湿式触媒酸化の温度が210℃を超えると、2MPa以上の耐圧構造が必要となり、設備と運転管理の費用が嵩むおそれがある。
 湿式触媒酸化に用いる触媒に特に制限はなく、例えば、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、鉄、コバルト、ニッケル、銅、金、タングステンなどの金属、これらの金属の水不溶性または水難溶性の化合物などの1種または2種以上を挙げることができる。これらの金属触媒または金属化合物触媒は、担体に担持させて使用することが好ましい。担体としては、例えば、マグネシア、アルミナ、チタニア、シリカゲル、シリカ-アルミナ、ジルコニア、活性炭、珪藻土、コージェライトなどの1種または2種以上を挙げることができ、その担持量は、担体に対して0.2~1重量%程度であることが好ましい。
 以下に、図4を参照して、触媒湿式酸化によるCOD/アンモニア除去工程(4)をより具体的に説明する。
 図4は、本発明に好適なCOD/アンモニア除去工程(4)としての触媒湿式酸化工程の一例を示す系統図であり、被処理排水(例えば、セレン処理工程(3)の処理水)を、貯槽31から熱交換器32(および図示しない加熱器)で加温した後、酸素等の酸化剤と共に触媒充填塔33に導入する。触媒充填塔33を通過する間に、排水中のアンモニアやCOD成分が酸化剤の存在下に接触酸化分解される。触媒充填塔33の流出水は熱交換器32で熱交換された後、必要に応じてpH調整槽34でpH調整され、系外へ排出される。
 (b)のアンモニアストリッピングの場合、被処理排水に必要に応じてNaOH等のアルカリを添加してpH10~12程度のアルカリ性に調整した後、放散塔で空気と向流接触させることにより、排水中のアンモニアイオンをアンモニアガスとして分離する。
 この放散塔には、接触効率を高めるために、カスケードリング等の充填物を充填しても良い。また、放散塔には、空気と共に加熱のためにスチームを供給しても良い。
 アンモニアストリッピングの条件としては特に制限はないが、温度40~90℃、ガス(空気)/液(排水)流量比(G/L体積比)500以上とすることが好ましい。
 なお、アンモニアストリッピングでは、排水中のアンモニアは除去されるが、その他のCOD成分が残留する。従って、COD/アンモニア除去工程(4)としてアンモニアストリッピング工程を採用する場合であって、前段でCOD成分が除去されていない場合には、この後段に更に触媒湿式酸化等の高度処理工程を設け、COD成分を除去することが好ましい。ただし、前述の工程(2)において、湿式酸化を採用することにより、COD成分も除去することができる。
 また、アンモニアストリッピングでは、アンモニアを含む排ガスが排出されるため、この排ガスは、必要に応じて空気によりアンモニア濃度1%以下に希釈した後、300~400℃程度に加熱して、鉄、白金、ルテニウム、タングステン、酸化チタン等のガス処理触媒と接触させてアンモニアを窒素にまで分解することが好ましい。
 (c)生物処理としては、特に制限はないが、被処理排水中にはアンモニアが含まれているため、アンモニアイオンを電子供与体、亜硝酸イオンを電子受容体とする独立栄養性脱窒細菌(ANAMMOX菌)を用いた脱窒工程を含む生物処理を行うことが好ましい。
 即ち、ANAMMOX菌は、無酸素条件下でアンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体として両者を反応させ、窒素ガスを生成することができる(Microbiology 142(1996), p2187-2196等) 。この方法によれば、亜硝酸性窒素の持つ酸化力を用いてアンモニア性窒素を酸化することができるため、理論量と同程度の酸素消費量で窒素除去を行うことができ、エネルギーを節約することができる。また、メタノール等の有機物を添加する必要がないため、そのコストを節約できる。このANAMMOX菌は独立栄養細菌であり、有機物を利用して脱窒を行う脱窒細菌に比べると、還元する亜硝酸性窒素当たりに発生する余剰汚泥量が5分の1以下であり、廃棄物の発生量を大幅に低減することができる。この反応に関与する電子受容体としての亜硝酸性窒素は排水中のアンモニア性窒素を一部酸化することで得ることができ、また、他系統から導入しても良く、別途薬品を用いても良い。
 反応槽の型式としては、砂や合成樹脂、ゲルなどの微生物が付着するのに適した担体を充填したカラムに、上向流または下向流で被処理排水を通水し、担体表面で窒素化合物と微生物を接触させて脱窒反応を進行させる方式が用いられる。ここで用いる担体は、比表面積が大きいものが好適であり、特に粒径0.1~10mm程度の顆粒状、或いはひも状、筒状、歯車状などの形状が知られている。担体は水中で緩やかに流動されることが好ましく、脱窒により発生するガスや、外部から注入するガス、撹拌機などにより流動される。
 また、水中に浮遊状態で生育する脱窒微生物を利用することもでき、生育した微生物を固液分離することにより系外へ流出する微生物量を少なくし、系内の微生物濃度を高めることで反応槽容積当たりの反応速度を高めることも好んで行われる。この場合、用いられる固液分離手段には、沈殿、浮上、遠心分離、濾過など従来公知の各種方法が適用可能である。
 また、原水を反応槽の下部より上向流で注入させ、菌の付着担体を用いることなく、汚泥をブロック化または粒状化させて粒径0.5~数mmのグラニュール汚泥の汚泥床を形成させ、反応槽中に高濃度で微生物を保持して高負荷処理を行うUSB (Upflow Sludge Bed:上向流汚泥床)方式も好適である。
 なお、このANAMMOX菌による生物脱窒処理を行う場合、被処理排水中にBOD成分が含まれているとANAMMOX菌以外の他の細菌も生育するようになるため、従来の生物学的硝化・脱窒により、予めBODを除去することが好ましい。
 本発明では、このCOD/アンモニア除去工程(4)により、石炭ガス化排水中のアンモニアをNとして60mg/L以下に、或いはCOD成分を15mg/L以下に高度に除去することが好ましい。
[各工程の処理順序について]
 本発明においては、以上説明した工程(1)~(4)のうち、工程(1)を工程(2)よりも先に行うことを特徴とする。その他の工程順については特に制限はないが、次の(A)~(C)の態様を採用することが好ましい。
(A) シアン分解工程を無触媒の湿式酸化工程とし、COD/アンモニア除去工程を触媒湿式酸化工程とし、各工程の順序を、(1)、(2)、(3)、(4)の順とする。
(B) シアン分解工程を無触媒の湿式酸化工程とし、COD/アンモニア除去工程を触媒湿式酸化工程とし、各工程の順序を(1)、(2)、(4)、(3)の順とする。
(C) シアン分解工程を無触媒の湿式酸化工程とし、COD/アンモニア除去工程工程をアンモニアのストリッピング工程または生物処理工程とし、各工程の順序を(1)、(2)、(3)、(4)の順とする。
 以下に、この工程順について説明する。
 凝集沈殿によるフッ素除去工程(1)を第1工程とすることにより、腐食性の高いフッ素を優先して除去して後段での設備腐食を防止することができる。即ち、例えば、湿式酸化工程にフッ素が存在すると、フッ酸が生成して装置腐食の原因となり、好ましくない。また、工程(2)~(4)では、加熱により温度を高くすることで、処理効率が高められるが、このような高温条件下にフッ素が存在すると、これらの工程で用いられるチタンやステンレス等の鋼材が高濃度のフッ素により腐食を受ける。従って、工程(1)を第1工程とし、フッ素を優先して除去することが好ましい。
 また、このような凝集処理を優先して行うことにより、石炭ガス化排水中のSSも、この工程(1)で除去することができ、後段の触媒充填塔等の閉塞といった問題も回避することができる点においても、工程(1)を第1工程とすることが好ましい。
 また、工程(3)においては、金属還元体の金属を溶出させるために排水に酸を添加する。このとき、排水は酸性になり、排水中にシアンが存在する場合は、シアン化水素(HCN)として揮散する。シアン化水素は有害物質であり、安全衛生上揮散させることは好ましくない。従って、工程(3)に先立ち、工程(2)でシアンを除去することが好ましい。
 また、アンモニアストリッピングでは、アルカリ性条件で処理されるが、この際、排水中にシアンが含まれていると、シアン化水素が一部揮散するため、ガス処理触媒への悪影響が懸念される。
 また、排水中のシアンが、金属錯体の形態で存在する場合は、シアンの分解に伴い金属が遊離するため、条件によって析出する。特にアルカリ性で金属水酸化物として析出するものが多い。
 このため、シアン処理後の排水をそのままアンモニアストリッピングで処理すると、放散塔内でSSや、スケール化による閉塞が懸念される。
 金属還元体によるセレン処理では、酸の添加により析出SS分が溶解することや、還元体の洗浄工程等により閉塞の懸念が少ないことや、還元体の後段に配置される凝集沈殿で、シアン処理後遊離した金属が除去できる。
 これらのことから、工程(2)のシアン処理後に金属還元体による工程(3)、アンモニアストリッピングによる工程(4)の順で処理することが好ましい。
 工程(4)が触媒湿式酸化工程である場合、上述のアンモニアストリッピングにおけるような問題はなく、従って、工程(1),(2)を優先して行なえば、工程(3)と工程(4)とはどちらを先に行っても良く、工程(1)→工程(2)→工程(3)→工程(4)の順であっても、工程(1)→工程(2)→工程(4)→工程(3)の順であっても良い。
 工程(4)が前述のANAMMOX菌を用いる脱窒工程のような生物処理工程である場合も前述の触媒湿式酸化工程の場合と同様に工程(1),(2)を優先して行えば、工程(3)と工程(4)とはどちらを先に行っても良い。
[工程手順例]
 以下に、本発明に係る工程(1)~(4)の処理手順の一例を示す図5,6を参照して、本発明に好適な処理手順を説明するが、本発明で採用し得る処理手順は何ら図5,6に示すものに限定されるものではない。
 図5の方法は、図1示すCa塩による凝集沈殿処理とMg塩による凝集沈殿処理とを組み合わせて行う工程(1)でSSとフッ素を除去した後、中継槽を経て、図2に示す湿式酸化によりシアンを分解する工程(2)を行う。即ち、pH調整槽でpH調整した後熱交換器(図示せず)で加熱して湿式酸化反応塔で酸化剤の存在下に湿式酸化処理してシアンを分解する。この際、COD成分も分解する。
 次いで、この工程(2)の処理水を中継槽を経て図3に示すセレン処理工程(3)に送給する。即ち、酸を添加してpH調整した後、金属還元体と接触させ、その後、凝集沈殿処理する。好ましくは更に濾過装置で濾過する。
 この工程(3)の処理水は中継槽を経て、図4に示す触媒湿式酸化処理の工程(4)に送給してCOD成分とアンモニアの分解除去を行う。この触媒湿式酸化処理水は通常pH9~10程度のアルカリ性であるため、必要に応じてpH調整槽で酸を添加してpH6~8程度に調整した後放流する。
 図6に示す方法は、図5において、工程(4)として触媒湿式酸化の代りにアンモニアストリッピングを行う点が異なり、その他は同様の構成とされており、工程(1)~(3)は同様に実施される。
 アンモニアストリッピング工程では、前述の如く、アンモニアを含む排ガスが排出されるため、これを処理する。また、処理水はpH10~11程度のアルカリ性であるため、必要に応じてpH調整槽で酸を添加してpH6~8程度に調整した後放流する。
 本発明では、以上の工程(1)~(4)の一連の処理を行うことにより、
  フッ素濃度:15mg/L以下
  アンモニア濃度:60mg/L以下(Nとして)
  COD濃度:15mg/L以下
  セレン濃度:0.1mg/L以下
  シアン濃度:1mg/L以下
の高水質処理水を得、これを放流ないしは場合によっては工業用水として再利用することが可能となる。
 以下に実施例を挙げて本発明をより具体的に説明する。
[実施例1]
 図5に示す処理手順で石炭ガス化排水の処理を行った。
 各工程の処理条件等は次の通りである。
<工程(1):SS、フッ素の凝集沈殿処理>
 図1に示すCa塩(Ca(OH)を使用)添加による凝集沈殿処理とMg塩(MgSOを使用)添加による凝集沈殿処理を以下の条件で行った。
(Ca凝集条件)
  Ca添加量=2500mg/L as Ca
  pH=7
  高分子凝集剤:栗田工業(株)製アニオン系高分子凝集剤「クリファームPA893」,添加量3mg/L
(Mg凝集条件)
 (Ca凝集沈殿処理上澄み水に対して実施)
  Mg添加量=500mg/L as Mg
  pH=11
  高分子凝集剤:栗田工業(株)製アニオン系高分子凝集剤「クリフロックPA331」,添加量3mg/L
<工程(2):湿式酸化処理>
 工程(1)の処理水に対して、図2に示す湿式酸化処理を以下の条件で実施した。
 排水に酸化剤として過酸化水素(H)を混合して加熱した後、圧力容器(反応塔)に通水し、処理水は冷却し、圧力開放した。
(湿式酸化処理条件)
 温度=170℃
 圧力=0.9MPa
 初期pH=7
 酸化剤(H)添加量=8000mg/L
 反応時間:2hr
<工程(3):セレン処理>
 工程(2)の湿式酸化処理水に対して、図3に示すセレン処理を以下の条件で実施した。
 排水に酸(HCl)を添加した後、鉄を充填したカラムに通水した後、アルカリ(NaOH)を添加して凝集沈殿処理した。
(Se/還元体処理条件)
 還元体=鉄
 温度=70℃(還元体通水後放冷)
 通水SV=15/hr
 HCl添加量:鉄溶出量が3000mg/Lとなるよう添加
(凝集条件)
 pH=10
 高分子凝集剤:栗田工業(株)製アニオン系高分子凝集剤「クリフロックPA331」,添加量3mg/L
<工程(4):触媒湿式酸化処理>
 工程(3)の処理水に対して、図4に示す触媒湿式酸化処理を以下の条件で実施した。酸化剤としては酸素(O)を用いた。
(触媒湿式酸化条件)
 温度=160℃
 圧力=0.9MPa
 充填物=1重量%Pt担持/TiO
 SV=2/hr
 O注入量=NH,CODに対して1.2倍当量
 被処理排水および各工程の処理水の水質を放流基準値と共に表1に示す。
 なお、表1において「-」は測定を行っていないこと或いはデータ無しであることを示す。表2以降についても同様である。
Figure JPOXMLDOC01-appb-T000001
 なお、上記実施例において、工程(3)と工程(4)との順を入れ代え、工程(1)→工程(2)→工程(4)→工程(3)の順で同様の条件で処理を行ったところ、同様の処理結果が得られた。
[実施例2]
 工程(2)の処理水を模擬して、以下の水質の模擬排水を調製し、以下の条件でAl/Ti法によるセレン処理を行った。この処理は、図3において、金属還元体としてアルミニウムとチタンを用いること以外は同様に実施される。
(原水水質)
 T-Se=5mg/L(Se(VI))
 CODMn=490mg/L(ギ酸=4900mg/L)
 NH-N=4900mg/L
(還元体による処理条件)
 還元体:Al/Ti=1/1(体積比)
 温度:65℃
 Al溶出量:1500mg/L
 SV:5/hr(Alに対して)
(凝集条件)
 pH=7
 処理結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、Al/Ti法によるセレンの処理でも、鉄還元体を用いる場合と同様にセレンを十分に除去することができ、本発明に係る工程(3)として有効であることが分かる。
[実施例3]
 図6に示す処理手順で石炭ガス化排水の処理を行った。
 工程(1)~(4)のうち、工程(1)~(3)の処理条件および処理手順は実施例1におけると同様である。
 ただし、工程(2)において、H添加量は4000mg/Lとし、反応時間は1hrとした。
 また、工程(3)において、HCl添加量は、鉄溶出量が1600mg/Lとなるような量とした。
 工程(4)の処理条件は次の通りである。
<工程(4):アンモニアストリッピング>
 工程(3)の処理水に対して実施した。
 排水にNaOHを添加してpH10とした後、カスケードリングの充填物を充填した充填塔式放散塔上部より供給し、下部よりスチームおよび空気を吹き込んだ。
(ストリッピング条件)
 G/L=500(空気/排水体積比)
 温度=80℃
 充填物=カスケードリング
 充填物充填高さ=4m
 排ガスは、空気でNH濃度1%以下に希釈した後、加熱し、ガス処理触媒(鉄系触媒)を用いて以下の条件でNに分解処理した。
(排ガス処理条件)
 温度=300~400℃
 SV=5000/hr
 被処理排水および各工程の処理水の水質を放流基準値と共に表3に示す。
 表3には、アンモニアストリッピングで排出された排ガスを処理して得られた処理ガスの性状も併記した。
Figure JPOXMLDOC01-appb-T000003
 なお、表3において、工程 (1)の処理水よりも工程(2)の処理水の方がSSが増加しているのは、鉄シアン錯塩から水酸化鉄が析出するためであり、工程(1)の処理水のT-Fe:50mg/Lが、Fe(OH)となり、SSとして96mg/L検出されることによる。後掲の表4においても同様である。
[実施例4]
 実施例3において、表4に示す水質のフッ素濃度が低い石炭ガス化排水に対して、工程(1)を以下のAl塩による凝集処理としたこと以外は同様にして、工程(2)~(4)と排ガス処理を行い、結果を表4に示した。
<工程(1):SS、フッ素の凝集処理>
 図1において、凝集沈殿を1段処理として、Al塩(硫酸バンド)添加による凝集沈殿処理を行った。
(Al凝集条件)
 硫酸バンド添加量=10000mg/L
 pH=7
 高分子凝集剤:栗田工業(株)製アニオン系高分子凝集剤「クリフロックPA331」,添加量3mg/L
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、本発明によれば、石炭ガス化排水中のSS、フッ素、シアン、セレン、アンモニアおよびCOD成分のすべてを効率的に除去して、放流可能な、或いは再利用可能な良好な水質の処理水を得ることができることが分かる。なお、以上の実施例で、工程(4)の処理水のpHは、放流基準値よりも若干高いが、この処理水は、適宜酸を添加してpH調整すれば良い。
 本発明の石炭ガス化排水の処理方法によれば、石炭ガス化排水中のすべての汚染物質を効率的に除去して、放流可能な或いは再利用可能な良好な水質の処理水とすることができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2009年3月24日付で出願された日本特許出願(特願2009-072215)に基づいており、その全体が引用により援用される。

Claims (12)

  1.  石炭ガス化排水を処理する方法であって、
    (1)凝集沈殿によりフッ素を除去するフッ素除去工程、
    (2)湿式酸化または熱加水分解によりシアンを分解するシアン分解工程、
    (3)金属還元体によりセレン酸イオンを還元処理するセレン処理工程、並びに
    (4)CODおよび/またはアンモニアを除去するCOD/アンモニア除去工程
    を含み、(1)を(2)よりも先に行うことを特徴とする石炭ガス化排水の処理方法。
  2.  シアン分解工程が無触媒の湿式酸化工程であり、COD/アンモニア除去工程が触媒湿式酸化工程であり、各工程の順序が、(1)、(2)、(3)、(4)の順であることを特徴とする請求項1に記載の石炭ガス化排水の処理方法。
  3.  シアン分解工程が無触媒の湿式酸化工程であり、COD/アンモニア除去工程が触媒湿式酸化工程であり、各工程の順序が、(1)、(2)、(4)、(3)の順であることを特徴とする請求項1に記載の石炭ガス化排水の処理方法。
  4.  シアン分解工程が無触媒の湿式酸化工程であり、COD/アンモニア除去工程工程がアンモニアのストリッピング工程であり、各工程の順序が(1)、(2)、(3)、(4)の順であることを特徴とする請求項1に記載の石炭ガス化排水の処理方法。
  5.  COD/アンモニア除去工程が生物処理工程であり、各工程の順序が(1)、(2)、(3)、(4)の順であることを特徴とする請求項1に記載の石炭ガス化排水の処理方法。
  6.  生物処理工程が、アンモニアイオンを電子供与体、亜硝酸イオンを電子受容体とする独立栄養性脱窒細菌を用いた脱窒工程を含むことを特徴とする請求項5に記載の石炭ガス化排水の処理方法。
  7.  COD/アンモニア除去工程の処理水を処理する高度処理工程を有することを特徴とする請求項1ないし6のいずれかに記載の石炭ガス化排水の処理方法。
  8.  フッ素除去工程が、以下の(1)~(3)のいずれか1以上の工程を含むことを特徴とする請求項1ないし7のいずれかに記載の石炭ガス化排水の処理方法。
    (1) 排水にカルシウム化合物を添加して、難溶性のフッ化カルシウムを生成させ、これを分離除去する工程
    (2) 排水にマグネシウム化合物を添加してフッ素イオンを水酸化マグネシウムに吸着させて除去する工程
    (3) 排水にアルミニウム化合物を添加して水酸化アルミニウムにフッ素イオンを吸着させて除去する工程
  9.  フッ素除去工程が、(1)のカルシウム化合物によるフッ素除去後に、(2)のマグネシウム化合物によるフッ素除去または(3)のアルミニウム化合物によるフッ素除去を行う工程であることを特徴とする請求項8に記載の石炭ガス化排水の処理方法。
  10.  シアン分解工程が、フッ素除去工程の処理水をpH中性条件に調整した後、酸化剤として過酸化水素を添加して加熱する湿式酸化工程であることを特徴とする請求項1ないし9のいずれかに記載の石炭ガス化排水の処理方法。
  11.  セレン処理工程が、pH5以下に調整した排水を鉄と接触させて、セレン酸を還元処理し、析出したセレンを鉄イオンと共に、共沈させて凝集処理する工程であることを特徴とする請求項1ないし10のいずれかに記載の石炭ガス化排水の処理方法。
  12.  セレン処理工程が、排水を、金属チタンとアルミニウム、亜鉛及びスズよりなる群から選ばれる1種又は2種以上の金属チタン以外の他の金属との合金または混合物と接触させて、該他の金属の一部を溶出させることによりセレンを還元する工程であることを特徴とする請求項1ないし10のいずれかに記載の石炭ガス化排水の処理方法。
PCT/JP2010/054539 2009-03-24 2010-03-17 石炭ガス化排水の処理方法 WO2010110143A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080011489.2A CN102348648B (zh) 2009-03-24 2010-03-17 煤气化废水的处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-072215 2009-03-24
JP2009072215A JP5417927B2 (ja) 2009-03-24 2009-03-24 石炭ガス化排水の処理方法

Publications (1)

Publication Number Publication Date
WO2010110143A1 true WO2010110143A1 (ja) 2010-09-30

Family

ID=42780835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054539 WO2010110143A1 (ja) 2009-03-24 2010-03-17 石炭ガス化排水の処理方法

Country Status (4)

Country Link
JP (1) JP5417927B2 (ja)
KR (1) KR101653129B1 (ja)
CN (1) CN102348648B (ja)
WO (1) WO2010110143A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011441A (zh) * 2011-09-23 2013-04-03 宝山钢铁股份有限公司 一种含氰、氟、氨氮废水的深度处理方法
JP2014028353A (ja) * 2012-06-25 2014-02-13 Konoike Constr Ltd 濁水の処理方法
CN103663767A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 均相催化湿式氧化处理杂质含量高的含氰废水的方法
JP2015128746A (ja) * 2014-01-07 2015-07-16 オルガノ株式会社 セレン含有水の処理装置およびセレン含有水の処理方法
CN108911410A (zh) * 2018-08-02 2018-11-30 合肥中亚环保科技有限公司 一种煤化工废水深度处理系统及其处理方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810639B2 (ja) * 2011-06-03 2015-11-11 栗田工業株式会社 セレン含有水の処理方法及び処理装置
JP5817993B2 (ja) * 2011-10-21 2015-11-18 Jfeエンジニアリング株式会社 フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置
CN102491487B (zh) * 2011-11-29 2014-04-16 华东理工大学 含氰废水的深度处理方法
JP5871270B2 (ja) * 2012-03-30 2016-03-01 一般財団法人電力中央研究所 セレン含有液の処理システム、湿式脱硫装置及びセレン含有液の処理方法
JP2014008501A (ja) * 2012-07-03 2014-01-20 Mitsubishi Heavy Ind Ltd 排水処理システム及び複合発電設備
JP2014097475A (ja) * 2012-11-15 2014-05-29 Kurita Water Ind Ltd 石炭ガス化排水の処理方法
US20150315054A1 (en) 2012-11-30 2015-11-05 Organo Corporation System for treating coal gasification wastewater, and method for treating coal gasification wastewater
CN103113001B (zh) * 2013-02-27 2013-11-27 哈尔滨工业大学 一种提高煤气化废水总氮去除率的吸附降解同步脱氮装置及其废水处理方法
JP6053593B2 (ja) * 2013-03-27 2016-12-27 千代田化工建設株式会社 セレン含有排水の処理方法
JP6329448B2 (ja) * 2014-07-03 2018-05-23 オルガノ株式会社 排水処理方法及び排水処理装置
CN104962745A (zh) * 2015-07-14 2015-10-07 广西大学 一种资源化利用香蕉茎叶与电解锰阳极泥的方法
CN104962734A (zh) * 2015-07-14 2015-10-07 广西大学 一种资源化利用菠萝皮与电解锰阳极泥的方法
CN105217864B (zh) * 2015-09-25 2017-08-22 浙江奇彩环境科技股份有限公司 分散蓝60生产过程中双氰前馏分废水的处理工艺
CA3011393A1 (en) * 2016-02-10 2017-08-17 Evoqua Water Technologies Llc Treatment of dissolved selenium
CN106145219A (zh) * 2016-08-11 2016-11-23 李宝全 一种高性价比净水剂
CN107021590B (zh) * 2017-04-24 2020-02-21 莱芜市泰山焦化有限公司 基于煤饼高度干馏逐级分离降低蒸氨废水有害成分的方法
CN107416955A (zh) * 2017-05-31 2017-12-01 成都原端新材料科技有限公司 一种脱氮剂及其制备方法
CN107337299B (zh) * 2017-08-25 2020-09-29 辽宁工程技术大学 一种除氟净水剂及其制备方法
CN109956537B (zh) * 2019-03-26 2021-10-15 河北科技大学 一种含丙酮氰醇废水的处理方法
CN110183043A (zh) * 2019-05-29 2019-08-30 国家能源投资集团有限责任公司 浓盐水的处理装置
CN111252747A (zh) * 2020-01-19 2020-06-09 石家庄惠洁科技有限公司 一种硝酸低成本清洁生产再利用工艺
JP7332501B6 (ja) * 2020-02-26 2024-02-26 水ing株式会社 アンモニア性窒素含有排水の処理方法及び処理装置
CN111646661A (zh) * 2020-05-25 2020-09-11 北京城市排水集团有限责任公司 一种基于污泥热水解分相消化的能量回收与制肥工艺
JP7318869B2 (ja) * 2020-06-08 2023-08-01 株式会社片山化学工業研究所 シアン化合物を含む廃水処理方法、シアン化合物を含む廃水を処理するための薬剤の自動制御システム
CN112176185B (zh) * 2020-09-28 2022-07-01 江西永兴特钢新能源科技有限公司 一种锂云母焙烧浸出液除氟的方法
CN113121000B (zh) * 2021-05-25 2022-07-15 浙江欣华园艺工程有限公司 市政用蓄水池净化系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813230B2 (ja) * 1980-07-28 1983-03-12 栗田工業株式会社 フツ化物イオン含有水の処理方法
JPH05317716A (ja) * 1992-05-13 1993-12-03 Nippon Shokubai Co Ltd 廃水処理用触媒、その製造方法、および、その触媒を用いた廃水の処理方法
JPH09136099A (ja) * 1995-11-10 1997-05-27 Kurita Water Ind Ltd セレン含有水の処理方法
JPH10314797A (ja) * 1997-05-16 1998-12-02 Kurita Water Ind Ltd フッ化物イオンおよびcod成分含有水の処理方法
JPH11333455A (ja) * 1998-05-26 1999-12-07 Nippon Shokubai Co Ltd 金属イオンを含む水の処理方法および排水の浄化方法
JP2000237769A (ja) * 1999-02-25 2000-09-05 Nippon Parkerizing Co Ltd シアン含有廃液の処理方法、及びその装置
JP2001293488A (ja) * 2000-04-14 2001-10-23 Nippon Shokubai Co Ltd 排水の処理方法
JP2006334508A (ja) * 2005-06-02 2006-12-14 Nippon Parkerizing Co Ltd シアン・アンモニア含有廃液の同時連続処理方法および同時連続処理装置
JP2007216225A (ja) * 2007-04-23 2007-08-30 Electric Power Dev Co Ltd 石炭ガス化排水の処理方法
JP2007289841A (ja) * 2006-04-24 2007-11-08 Kurita Water Ind Ltd 石炭ガス化排水の処理方法及び処理装置
JP2008093602A (ja) * 2006-10-13 2008-04-24 Idemitsu Kosan Co Ltd 排水処理方法および排水処理装置
JP2009011915A (ja) * 2007-07-03 2009-01-22 Kurita Water Ind Ltd セレン含有排水の処理方法及び処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290174A (ja) 1995-04-19 1996-11-05 Osaka Gas Co Ltd シアン含有廃水の処理方法
JPH0910548A (ja) * 1995-06-29 1997-01-14 Mitsubishi Heavy Ind Ltd フッ素含有排水の処理方法
JP3739480B2 (ja) * 1995-10-31 2006-01-25 栗田工業株式会社 排煙脱硫排水の処理方法
JP4382167B2 (ja) 1996-04-26 2009-12-09 電源開発株式会社 火力発電所排水の処理方法
JP4809080B2 (ja) * 2006-03-08 2011-11-02 協和化学工業株式会社 フッ素イオンを含有する排水の処理方法および排水処理剤
JP5261950B2 (ja) * 2006-07-04 2013-08-14 栗田工業株式会社 セレン含有排水の処理方法及び処理装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813230B2 (ja) * 1980-07-28 1983-03-12 栗田工業株式会社 フツ化物イオン含有水の処理方法
JPH05317716A (ja) * 1992-05-13 1993-12-03 Nippon Shokubai Co Ltd 廃水処理用触媒、その製造方法、および、その触媒を用いた廃水の処理方法
JPH09136099A (ja) * 1995-11-10 1997-05-27 Kurita Water Ind Ltd セレン含有水の処理方法
JPH10314797A (ja) * 1997-05-16 1998-12-02 Kurita Water Ind Ltd フッ化物イオンおよびcod成分含有水の処理方法
JPH11333455A (ja) * 1998-05-26 1999-12-07 Nippon Shokubai Co Ltd 金属イオンを含む水の処理方法および排水の浄化方法
JP2000237769A (ja) * 1999-02-25 2000-09-05 Nippon Parkerizing Co Ltd シアン含有廃液の処理方法、及びその装置
JP2001293488A (ja) * 2000-04-14 2001-10-23 Nippon Shokubai Co Ltd 排水の処理方法
JP2006334508A (ja) * 2005-06-02 2006-12-14 Nippon Parkerizing Co Ltd シアン・アンモニア含有廃液の同時連続処理方法および同時連続処理装置
JP2007289841A (ja) * 2006-04-24 2007-11-08 Kurita Water Ind Ltd 石炭ガス化排水の処理方法及び処理装置
JP2008093602A (ja) * 2006-10-13 2008-04-24 Idemitsu Kosan Co Ltd 排水処理方法および排水処理装置
JP2007216225A (ja) * 2007-04-23 2007-08-30 Electric Power Dev Co Ltd 石炭ガス化排水の処理方法
JP2009011915A (ja) * 2007-07-03 2009-01-22 Kurita Water Ind Ltd セレン含有排水の処理方法及び処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011441A (zh) * 2011-09-23 2013-04-03 宝山钢铁股份有限公司 一种含氰、氟、氨氮废水的深度处理方法
CN103011441B (zh) * 2011-09-23 2013-12-25 宝山钢铁股份有限公司 一种含氰、氟、氨氮废水的深度处理方法
JP2014028353A (ja) * 2012-06-25 2014-02-13 Konoike Constr Ltd 濁水の処理方法
CN103663767A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 均相催化湿式氧化处理杂质含量高的含氰废水的方法
JP2015128746A (ja) * 2014-01-07 2015-07-16 オルガノ株式会社 セレン含有水の処理装置およびセレン含有水の処理方法
CN108911410A (zh) * 2018-08-02 2018-11-30 合肥中亚环保科技有限公司 一种煤化工废水深度处理系统及其处理方法

Also Published As

Publication number Publication date
CN102348648B (zh) 2014-06-04
CN102348648A (zh) 2012-02-08
KR101653129B1 (ko) 2016-09-01
JP2010221151A (ja) 2010-10-07
KR20110129863A (ko) 2011-12-02
JP5417927B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5417927B2 (ja) 石炭ガス化排水の処理方法
JP3739480B2 (ja) 排煙脱硫排水の処理方法
TWI418521B (zh) Treatment method and treatment device of selenium - containing wastewater
JP5637713B2 (ja) 排水の処理方法及び処理装置
CN103787537B (zh) 一种污水的处理方法及其应用
JP4611928B2 (ja) 石炭ガス化排水の処理方法及び処理装置
JP5047715B2 (ja) 石炭ガス化排水の処理方法及び処理装置
JP4877103B2 (ja) セレン含有排水の処理方法及び処理装置
JP3811522B2 (ja) 火力発電所排水の処理方法
CN104556543A (zh) 一种含硒废水的处理方法
JP4656848B2 (ja) 汚泥処理方法
JP5109505B2 (ja) セレン含有排水の処理方法及び処理装置
JPH0947790A (ja) 排煙脱硫排水の処理方法
CN104556540B (zh) 一种含硒废水的处理方法
JP3425000B2 (ja) 排煙脱硫排水の処理方法
JP4507267B2 (ja) 水処理方法
JP2014097475A (ja) 石炭ガス化排水の処理方法
JP6213044B2 (ja) セレン含有水の処理方法及び処理装置
JPH09155368A (ja) 排煙脱硫排水の処理方法
JP4382167B2 (ja) 火力発電所排水の処理方法
JP3425001B2 (ja) 火力発電所の非定常排水の処理方法
CN113526562B (zh) 一种臭氧微气泡氧化法处理含砷烟尘制备臭葱石的方法
JP2006218343A (ja) セレン含有排水の処理方法および処理装置
JP2014155912A (ja) セレン含有排水の処理システムおよびセレン含有排水の処理方法
JPH11267668A (ja) 排水処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011489.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117018988

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755941

Country of ref document: EP

Kind code of ref document: A1