WO2010106712A1 - エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム - Google Patents

エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム Download PDF

Info

Publication number
WO2010106712A1
WO2010106712A1 PCT/JP2009/069682 JP2009069682W WO2010106712A1 WO 2010106712 A1 WO2010106712 A1 WO 2010106712A1 JP 2009069682 W JP2009069682 W JP 2009069682W WO 2010106712 A1 WO2010106712 A1 WO 2010106712A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
emission intensity
etching
waveforms
change
Prior art date
Application number
PCT/JP2009/069682
Other languages
English (en)
French (fr)
Inventor
利浩 森澤
大輔 白石
智己 井上
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US13/144,097 priority Critical patent/US8486290B2/en
Priority to CN2009801544289A priority patent/CN102282654B/zh
Priority to KR1020117013255A priority patent/KR101215367B1/ko
Publication of WO2010106712A1 publication Critical patent/WO2010106712A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/68Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using high frequency electric fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0037Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by spectrometry

Definitions

  • the present invention relates to an etching apparatus and a method for classifying light emission intensity waveforms during an etching process and selecting a waveform that influences the etching process result in an analysis apparatus for monitoring plasma emission in the etching apparatus, and more particularly, to a waveform.
  • the present invention relates to a method of classifying wavelengths based on the similarity of “shape” to select a representative wavelength, and a method of quantitatively determining a waveform having a small change.
  • an etching process is performed in which a substance is ionized using plasma and the substance on the wafer is removed by the action of the substance (reaction on the wafer surface).
  • a substance is ionized using plasma and the substance on the wafer is removed by the action of the substance (reaction on the wafer surface).
  • reaction on the wafer surface There are various materials to be ionized, and the materials on the wafer are also varied depending on the product function.
  • an organic material resist is applied and the shape is formed by photolithography, and then an etching process is performed.
  • a substance for adjusting the reaction speed to obtain a predetermined shape is also introduced.
  • a wide variety of substances are reacting in the chamber container where the etching process is performed.
  • an etching spectrometer that performs processing using plasma is equipped with an emission spectroscope (OES) so that the generation state of the plasma can be monitored.
  • OES emission spectroscope
  • Patent Document 1 Japanese Patent Laid-Open No. 6-2224098
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-60585
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-244254 A
  • Patent Document 4 JP 2003-17471 A
  • Patent Document 5 JP 2005-340547 A
  • Patent Document 6 JP 9-306894 A
  • Patent Document 1 an emission spectrum (OES) from plasma in a chamber is acquired, a substance in the chamber is specified in real time based on information of spectral lines corresponding to the substance, and a relative concentration level thereof is discriminated. It is shown.
  • OES emission spectrum
  • Patent Document 2 principal component analysis is performed using a correlation coefficient of a light emission waveform, and a principal component that influences a process or a chamber state is identified by comparing a reference principal component with a principal component obtained at the time of manufacturing. For example, a method of performing control such as detecting an end point is shown.
  • Patent Document 3 as in Patent Document 2, a method of performing principal component analysis using a correlation coefficient of a light emission waveform and comparing a reference principal component with a principal component at the time of manufacturing is shown. Instead of directly monitoring the plasma emission spectrum, a method for controlling the film thickness is shown for the reflected emission intensity of the wafer surface using plasma emission as a light source.
  • Patent Document 4 discloses a method for controlling plasma processing by modeling the relationship between a process amount monitoring result during processing such as OES and a process processing result, and obtaining an optimum recipe.
  • a process amount monitoring result during processing such as OES
  • a process processing result such as OES
  • a process processing result such as OES
  • Patent Document 4 discloses a method for controlling plasma processing by modeling the relationship between a process amount monitoring result during processing such as OES and a process processing result, and obtaining an optimum recipe.
  • a process amount monitoring result during processing such as OES
  • a process processing result such as OES
  • Patent Document 4 discloses a method for controlling plasma processing by modeling the relationship between a process amount monitoring result during processing such as OES and a process processing result, and obtaining an optimum recipe.
  • Patent Document 5 discloses a method of preparing a waveform change pattern in a database in advance for detecting an end point, and detecting the end point according to the pattern when it matches a specific pattern during the etching process. Has been.
  • the patterns are based on three types of ascending, descending, and flat, and are set in detail for each degree of change.
  • Patent Document 6 discloses a method in which an optimum wavelength is automatically determined by connecting to a plasma processing apparatus, spectroscopically analyzing plasma emission, and detecting and analyzing changes in intensity over time for each waveform.
  • Patent Document 7 a method is shown in which the intensities of P radiation wavelengths are monitored over time to generate a correlation existing between the radiation wavelengths, and the state is detected in comparison with the previous plasma treatment. Yes.
  • Patent Document 1 it is possible to limit the emission wavelength from the emission peak caused by the same substance, but it is not possible to classify the emission at a wavelength other than the spectral line setting information according to the substance. Can not.
  • the waveform there is no description of a method for evaluating the commonality of the change, and the wavelength classification based on the reaction cannot be performed.
  • Patent Document 4 only describes taking out a wavelength having a waveform having a large change by principal component analysis, and does not indicate that a plurality of waveforms are classified.
  • an object of the present invention is to select a small number of representative wavelengths from waveforms at many wavelengths without setting information on substances and chemical reactions, and to analyze etching data that requires a large number of man-hours. It is an object of the present invention to provide an etching apparatus, an analysis apparatus, an etching processing method, and an etching processing program that can reduce and efficiently perform setting of monitoring and monitoring of etching.
  • the outline of a typical one is that the computer system obtains emission intensity waveform acquisition means for acquiring emission intensity waveforms along a plurality of etching processing time axes in plasma emission data during one or more etching processes performed in the past. And a correlation matrix between the waveform change presence / absence determining means for determining presence / absence of a change in the plurality of light emission intensity waveforms acquired by the light emission intensity waveform acquiring means and the light emission intensity waveform determined to be changed by the waveform change presence / absence determining means
  • the waveform correlation matrix calculation means for calculating the waveform and each column or row of the correlation matrix calculated by the waveform correlation matrix calculation means is a vector corresponding to the emission intensity waveform, and the similarity between the emission intensity waveforms based on the vector value And classifying the emission intensity waveform into groups, and selecting a representative emission intensity waveform from the group classified by the waveform classification means.
  • the selected representative emission intensity waveform is specified as the emission intensity waveform that affects the etching performance or the etching process result on the wafer, and the wavelength at which the emission intensity waveform is obtained is determined as the emission wavelength to be monitored.
  • representative waveform selection means to be displayed on the terminal.
  • the effects obtained by typical ones can automatically select the emission wavelength to be monitored and monitored without setting information on substances and chemical reactions, thus reducing the analysis of etching data that requires a lot of man-hours.
  • the etching apparatus is equipped with a spectroscope (OES) and has means for acquiring OES data for each etching process.
  • the emission spectrometer is connected to a storage device or a database, and includes means for storing OES data in the storage device or database.
  • a means for obtaining OES data from a storage device or a database may be provided in an analyzer connected to the etching apparatus, or may be configured such that the etching process is observed by the analyzer.
  • etching in order to determine whether etching is abnormal or normal, there are provided means for setting judgment criteria, and means for storing judgment results in a storage device or database, or displaying / notifying the user.
  • a means for setting a target etching process result is provided, and the etching process condition (etching time, gas flow rate, pressure, voltage, temperature) is based on an error between the actual etching process result and the target. ), And a means for setting the obtained condition in the etching apparatus.
  • a waveform is obtained from the OES data, and the presence or absence of the waveform change or a waveform with a large change is found by the function of calculating and evaluating the amount of change with respect to the variation in emission intensity. .
  • a function that correlates the relationship between the etching process result and the light emission intensity of the selected waveform obtains a standard for etching abnormality / normality, determines abnormality / normality, analyzes and evaluates the etching process, and sets the etching process conditions.
  • the etching process result is controlled by adjusting.
  • the correlation coefficient with the waveform of another etching process is obtained, and the function that correlates with the etching process result is used to determine the abnormality / normality of the etching and determine abnormality / normality.
  • the etching process result is controlled by analyzing and evaluating the etching process and adjusting the etching process condition. The function of modeling the relationship between the correlation coefficient and the etching processing result with a mathematical formula enables estimation and prediction of the etching processing result.
  • FIG. 1 is a diagram showing an example of a spectrum and a waveform by an emission spectrometer OES used in an etching apparatus according to an embodiment of the present invention
  • FIG. 2 is an emission intensity used in the etching apparatus according to an embodiment of the present invention
  • FIG. 3 is a diagram showing an example of a waveform used in the etching apparatus according to an embodiment of the present invention and a result of principal component analysis thereof.
  • FIG. 1 shows an example of emission data obtained by the emission spectrometer OES.
  • the emission intensity spectrum distribution with time 104 on the x-axis and wavelength 105 on the y-axis can be expressed as a bitmap.
  • Bitmaps 101, 102, and 103 depict light emission phenomena for a plurality of wafers.
  • the emission spectrum distribution 111 of the emission intensity at a certain point in time that it is globally convex near the center of the monitor wavelength, and there are peaks at a number of wavelength positions. Further, it can be seen that the emission intensity along the processing time at a specific wavelength, that is, the emission intensity changes with the progress of the etching process according to the waveforms 121 and 122, and the emission phenomenon changes at the time 107 when the etching process content is changed. .
  • the performance of the etching process can be confirmed by monitoring the light emission phenomenon caused by this plasma. For example, when the etching apparatus is started up, it is determined whether a predetermined reaction has occurred and the etching process is confirmed. In mass production, the emission is monitored by detecting the emission during continuous wafer fabrication, and the emission data is used as end point detection for determining the end point of the etching process.
  • the emission data can be monitored in parallel with the etching process during the etching process, so that the emission state can be determined efficiently, and for mass production, each time a wafer is started. It is important that the light emission state can be automatically determined.
  • the wavelength where the peak occurs in the spectrum and its intensity are analyzed. This is because light emission is observed at a specific wavelength depending on the substance in the chamber.
  • the emission spectrum distribution 111 since several tens of peaks are observed, it is difficult to identify a substance having a large influence on the etching process. Therefore, it is necessary to identify a substance that affects the etching performance and limit the wavelength to be monitored for determination.
  • Etching is a chemical reaction based on a physical reaction. In this reaction, a certain substance (molecular structure) is changed to another substance (molecular structure), and these changes are naturally highly correlated.
  • the cause of the correlation of the emission intensity based on this reaction is as shown in FIG.
  • the wavelength of light emission can be limited so that only [Substance 1] is a substance to be monitored.
  • the emission spectrum has a feature related to substance duplication.
  • spectral lines of silicon fluoride SiF are generated at wavelengths of 334.6 [nm], 336.3 [nm], 436.8 [nm], 440.1 [nm], and 777.0 [nm].
  • One kind of substance emits light at a plurality of wavelengths. Therefore, there is a correlation between waveforms at these wavelengths based on the state of the substance.
  • the wavelength can be efficiently limited.
  • Principal component analysis is an analysis method that decomposes a combination in which each data item changes simultaneously or independently as a principal component based on the magnitude of the change, based on the correlation matrix of data among multiple data items. It is. A combination of changes between data items is obtained as a principal component (eigenvector). The magnitude of the change or the ratio of the main component to the overall change can be obtained as a contribution rate.
  • the waveform (1) 311, the waveform (2) 312, the waveform (5) 315, the waveform (6) 316, and the waveform (7) 317 And a group of waveform (3) 313 and waveform (4) 314.
  • the second principal component is divided into a set of waveform (1) 311 and waveform (2) 312 and a set of waveform (5) 315, waveform (6) 316, and waveform (7) 317.
  • the waveform (1) 311 and the waveform (2) 312 are very close values, so it can be seen that the change is highly common.
  • the relationship between the waveform (5) 315, the waveform (6) 316, and the waveform (7) 317 cannot be determined numerically.
  • the present embodiment first, in a plurality of waveforms of OES data, it is determined whether or not each waveform has changed, and similar waveforms are classified based on a correlation matrix for a plurality of waveforms having changes.
  • monitoring the etching process in particular, determining whether the etching is abnormal or normal, analyzing and evaluating the etching process result, and further adjusting the conditions to improve the accuracy of the etching process result Can do.
  • the etching process result is a result of inspecting and quantifying the etched wafer, and is a quantitative value of various dimensions, properties, number, and differences before and after the etching process. Further, in order to determine whether or not there is a change in each waveform, the magnitude of the change with respect to the variation is evaluated. As a result, it is possible to quantitatively determine the presence or absence of a waveform change including variation.
  • FIG. 4 is a block diagram showing the configuration of an etching apparatus according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing the system configuration of the etching process control of the etching apparatus according to an embodiment of the present invention.
  • an etching apparatus 401 includes a chamber 402, an electrode 403, a wafer 405, an electrode 406, an exhaust system 407, a gas supply system 408, an apparatus controller / external communication apparatus 409, a spectrometer (OES) 410, and a computer that is a computer system.
  • a storage device 411, a terminal screen, and a user interface 412 are provided.
  • a window 421 is provided in the chamber 402, and plasma light 422 is incident on a spectroscope (OES) 410.
  • the etching apparatus 401 is connected via a network 432 to an inspection apparatus 431, a database (DB) 433, and an OES data analysis system 434 that is a computer system.
  • DB database
  • OES data analysis system 434 that is a computer system.
  • the etching apparatus 401 is provided with a chamber 402, and etching is performed in the chamber 402.
  • the wafer 405 is disposed so as to be sandwiched between the electrodes 403 and 406, and the surface of the wafer 405 is etched by generating plasma 404 between the electrodes 403 and 406.
  • a gas material necessary for etching is introduced from the gas supply system 408, and the gas after the etching reaction is exhausted from the exhaust system 407.
  • the plasma 404 emits light, and the light intensity is detected for each wavelength of the light 422 by the spectroscope (OES) 410.
  • Light inside the chamber 402 is taken through the window 421.
  • the spectroscope (OES) 410 and the device controller / external communication device 409 are connected to a computer / storage device 411 installed in the etching device 401, and the spectrum / waveform is calculated by the computer / storage device 411 for etching. Monitor the process.
  • the computer / storage device 411 can store a plurality of OES data. Etching abnormality / normality is determined according to the monitor result, and the etching process conditions are adjusted.
  • the computer / storage device 411 is connected to a screen / user interface 412, and the user performs settings necessary for calculation processing via the screen / user interface 412 and confirms the calculation processing result.
  • the spectroscope (OES) 410, the computer / storage device 411, and the screen / user interface 412 may be configured as independent analyzers to observe plasma emission.
  • the spectroscope (OES) 410 and the device controller / external communication device 409 are connected to a database (DB) 433 via a network 432, and can store data related to OES data, etching processing conditions, and start history in the database 433.
  • DB database
  • an inspection apparatus 431 for measuring the etching processing results such as line width before / after etching, CD (minimum gate dimension in LSI chip) and film thickness is also connected to the network 432, and the inspection results are stored in the database 433. Stored.
  • the OES data stored in the database 433, the data related to the etching process, and the inspection result are analyzed and evaluated by the OES data analysis system 434.
  • the etching condition can be adjusted in the computer / storage device 411 to reflect the inspection result.
  • the system configuration of the etching process control is as shown in FIG. 5, and various abnormality / determination processes are performed by the functions 511 to 528 shown in FIG.
  • the functions 511 to 528 are common to the computer / storage device 411 mounted on the etching apparatus 401 and the OES data analysis system 434.
  • each processing by the functions 511 to 528 may be processing only by the computer / storage device 411 and processing only by the OES data analysis system 434.
  • an object to be classified by the lot / wafer / step-specific OES data search / acquisition function 511 which is a light emission intensity waveform acquisition means.
  • a waveform change presence / absence determination function 521 that is a waveform change presence / absence determination means removes a waveform having no change
  • a waveform correlation matrix calculation function 522 that is a waveform correlation matrix calculation means obtains a correlation matrix to obtain a waveform classification means.
  • the waveform is classified by the waveform classification function 523.
  • a waveform is specified by a representative waveform selection function 524, which is a representative waveform selection means, and the emission intensity at that wavelength is monitored by performing an etching process with the wavelength from which the waveform is obtained as the wavelength to be monitored.
  • Abnormality / normality is determined by the abnormality / normality determination function 527 depending on the magnitude of the emission intensity.
  • a lot is a unit for etching a plurality of wafers continuously.
  • a step means a unit of processing under a certain condition when a single wafer is continuously processed under a plurality of conditions in the same chamber.
  • the waveform to be classified is acquired by the OES data search / acquisition function 511 for each lot / wafer / step, and whether or not the waveform has changed.
  • the waveform having no change is removed by the determination function 521, the correlation matrix is calculated by the waveform correlation matrix calculation function 522, the waveform is classified by the waveform classification function 523, and the waveform is selected by the representative waveform selection function 524.
  • the etching processing result measured by the inspection apparatus 431 is stored in the database 433, and the etching corresponding to the lot / wafer / step of the waveform previously classified by the inspection / retrieval / acquisition function 512 for the lot / wafer / step. Get the processing result.
  • the quality of the etching process is associated with the emission intensity at the wavelength of the selected waveform, or the relationship between the etching process result and the emission intensity is analyzed and evaluated by the regression analysis function 525.
  • Abnormal / normal determination criteria are set, and abnormal / normal is determined by the abnormal / normal determination function 527 based on the emission intensity of the wavelength selected during the etching process.
  • the error between the target etching process result and the actual etching process result is evaluated, and the etching process result is adjusted by the etching condition adjusting function 528 by referring to the emission intensity of the monitored wavelength and adjusting the etching process condition at the time of the etching process. Can be controlled.
  • a target waveform is acquired by a lot / wafer / step-specific OES data search / acquisition function 511, and a waveform correlation matrix is obtained. What is necessary is just to obtain
  • the etching process result corresponding to the target waveform is acquired from the lot / wafer / step inspection result search / acquisition function 512, and the quality of the etching process result is correlated with the obtained correlation coefficient, or the etching process result
  • the relationship with the correlation coefficient is obtained by the regression analysis function 525, an abnormality / normality judgment criterion is set, and the abnormality / normality judgment function 527 determines the abnormality / normality based on the emission intensity of the wavelength selected during the etching process.
  • the error between the target etching process result and the actual etching process result is evaluated, and the etching process condition at the time of performing the etching process is adjusted by the etching condition adjustment function 528 with reference to the correlation coefficient in the waveform of the monitored wavelength. By doing so, the etching process result can be controlled.
  • the etching processing result prediction function 526 performs the etching processing from the correlation coefficient between the waveform obtained during the etching processing and the reference waveform. The result can be estimated.
  • FIG. 6 is an explanatory diagram for explaining the correlation of waveforms in the etching apparatus according to an embodiment of the present invention
  • FIG. 8 is an explanatory diagram for explaining an outline of a calculation method of cluster analysis in the etching apparatus according to the embodiment of the present invention.
  • FIG. 9 is a diagram of 15 in the etching apparatus according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of a waveform of wavelengths, FIG.
  • FIG. 10 is a diagram showing an example of a correlation matrix of 15 wavelengths in the etching apparatus according to one embodiment of the present invention
  • FIG. 11 is in the etching apparatus according to one embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of the cluster analysis result based on the correlation matrix of the 15 wavelength waveform
  • FIG. 12 is a graph of the 15 wavelength waveform in the etching apparatus according to the embodiment of the present invention. It illustrates an example of a-loop-specific correlation matrix
  • FIG. 13 is a diagram illustrating a 3-wavelength of the waveform was selected in the etching apparatus according to an embodiment of the present invention.
  • a method of classifying waveforms using a correlation matrix between waveforms and selecting a representative waveform for waveforms at a plurality of wavelengths in OES data in a plurality of etching processes is called waveform correlation cluster analysis.
  • the classification of the waveforms means that the waveforms having similar shapes are grouped into the same group, that is, a cluster. Since the waveform is a “line” representing the intensity along the time axis, the similarity of the shape can be evaluated by the correlation coefficient.
  • Fig. 6 shows four waveform graphs.
  • four waveforms are drawn with time [seconds] 601 on the x-axis and emission intensity 602 on the y-axis.
  • the waveform A611, the waveform B612, and the waveform C613 are close, but based on the covariant characteristics of the chemical reaction, the waveform A611 and the waveform D614 that are similar in shape should be a common group. is there.
  • the waveform B612 is “ ⁇ 1”
  • the waveform C613 is “0”
  • the waveform D614 is “1”. That is, if the correlation coefficient is close to “1”, the waveforms are similar. On the contrary, if it is away from “1”, the waveform is not similar.
  • the correlation between the waveform A611 and another waveform can be expressed as a vector 621.
  • the waveform B612, the waveform C613, and the waveform D614 can be similarly expressed as a vector 622, a vector 623, and a vector 624.
  • the vectors 621 and 624 of the waveform A611 and the waveform D614 are compared, they match.
  • the vector 622 and the vector 623 of the waveform B612 and the waveform C613 are not close to each other. Therefore, by using this vector, the similarity of various waveforms can be quantified, and the waveforms can be numerically classified.
  • This vector is called a waveform correlation vector.
  • the waveform correlation vector is obtained by arranging correlation coefficients with each waveform, it can be obtained by calculating a correlation matrix such as the matrix 631 shown in FIG.
  • This correlation matrix R is calculated by the following equations (1) to (4) from the emission intensity data (data number n, waveform number m) x ij at each sampling time point.
  • k and l are indexes corresponding to the waveforms, and are numbers from 0 to (m ⁇ 1), and the correlation matrix R is an m ⁇ m matrix.
  • the bar “-” above the variable means average.
  • Fig. 7 shows an overview of waveform correlation cluster analysis using six waveforms as an example.
  • waveform graph 641 six waveforms (1) to (6) are drawn with time [seconds] 642 on the x-axis and light emission intensity 643 on the y-axis.
  • Each waveform is the emission intensity with respect to the etching processing time, for example, at emission wavelengths such as wavelengths 515 [nm] and 803 [nm].
  • Waveforms (1), (2), and (3) overlap in the entire time range and are similar waveforms.
  • Waveform (4) thin solid line
  • Waveform (4) has a slightly higher emission intensity than waveforms (1), (2), and (3).
  • the waveform (5) (thick dotted line) and the waveform (6) (dotted line) have low emission intensity.
  • a correlation matrix 651 between these waveforms is calculated, and waveform correlation vectors ((1) 652, (2) 653, to (6) 654) of other waveforms with respect to a certain waveform in each row or each column of the correlation matrix 651 of this waveform.
  • Fig. 7 shows vectorization for each column.
  • the waveform correlation vectors of waveforms (1), (2), and (3) are very close to each other.
  • the waveform correlation vector of the waveform (4) has a small correlation coefficient value between the waveforms (5) and (6) but a large correlation coefficient value in the waveforms (1), (2), and (3), that is, the waveform (1). , (2), close to the waveform correlation vector of (3).
  • the values of the waveforms (5) and (6) are different from the waveform correlation vectors of the waveforms (1) to (4). Therefore, the waveforms can be classified by performing cluster analysis on these waveform correlation vectors (for example, classification can be made into group 1 (702) and group 2 (703) based on the cluster analysis result (dendrogram) 701 in FIG. 7).
  • Cluster analysis first forms a new cluster (clustering) by integrating the two clusters with the shortest distance for the point position in the coordinate space. After clustering, the shortest distance is further searched, and clustering is repeated until one cluster is finally obtained. Data can be classified according to several clusters in the middle of clustering. Since the waveform correlation vector can be expressed as a position in a multivariate coordinate space, the waveform can be classified by cluster analysis.
  • the example of classification shown in FIG. 8 is indicated by a position in a two-dimensional space.
  • the distance evaluation 1 (710) the distance between all positions (1) to (5) is obtained, and the shortest position combination (2) (3) is obtained.
  • the positions (2) and (3) are set as the cluster 721, and the position 722 representing the two positions is determined by the center of gravity.
  • the distance evaluation 2 (730) the distance between the cluster 731 and the positions (1), (4), and (5) other than the cluster is obtained, and the combination of the shortest position (1) and the cluster 731 is obtained.
  • the position (1) is clustered to obtain the cluster 741, and the representative position is changed from the position 742 to the position 743.
  • the distance evaluation 3 (750) the distance between the cluster 751 and the position (4) (5) is obtained, and the combination of the shortest position (4) (5) is obtained.
  • the positions (4) and (5) are newly set as the cluster 761, and a representative position 762 is obtained. In this way, one cluster is finally obtained.
  • the classification is determined by the cluster 751 and the cluster 761.
  • the k-means method is a method of obtaining a cluster by determining the number of divisions in advance and obtaining a combination of a representative position that minimizes the sum from each data position and data close to the representative position. This algorithm is as follows.
  • the data set is randomly divided into the specified number of divisions to make the initial cluster.
  • the self-organizing map is a method in which multi-dimensional vector data is arranged closer to a two-dimensional map as the data difference (distance) is closer.
  • a vector value is set at each position of the two-dimensional map, and the vector value at each position of the map is adjusted by the value of each data by repeated calculation to obtain the arrangement of each data on the map.
  • the arrangement of data in two dimensions is obtained, and the data is classified based on this arrangement.
  • a method of classifying based on the waveform correlation vector and obtaining a representative waveform will be described using the waveform of 15 wavelengths shown in FIG. 9 as an example.
  • the waveform shown in FIG. 9 is a change in emission intensity with respect to time [seconds].
  • the waveform to be classified refers to a waveform at a wavelength that becomes a peak in a spectrum highly related to a substance. For example, as shown in the emission spectrum distribution 111 of FIG. 1, there are a large number of waveforms, and the number of waveforms to be subjected to waveform classification is large.
  • FIG. 10 shows a correlation matrix calculated from the waveforms of 15 wavelengths shown in FIG. 9 based on the above formulas (1) to (4).
  • Each row and column of the matrix corresponds to a waveform and is numbered from (1) to (15).
  • waveforms showing similar trends have positive correlation coefficients and are particularly similar. In the case of waveforms, the correlation coefficient is close to 1.
  • the correlation coefficient between waveforms that tend to face each other is negative.
  • each row or column of the correlation matrix is a vector
  • a waveform correlation vector for each waveform can be obtained.
  • the result of cluster analysis of this waveform correlation vector is shown in a dendrogram 1001 in FIG.
  • the waveforms on the left side in FIG. 11 from the positions are classified into groups.
  • To determine the number of classifications refer to values such as the distance between clusters, the average of waveform correlation vectors contained in clusters, and the minimum and maximum values of correlation coefficients in waveform correlation vectors contained in clusters. do it.
  • FIG. 12 shows a correlation matrix between waveforms belonging to each group as a result of the three classifications.
  • the correlation coefficient is close to 1.
  • the reference is based on the one with a particularly high correlation coefficient value in the group as the representative
  • the waveform with the maximum correlation coefficient in the waveform in each group is the representative waveform. And it is sufficient.
  • waveform (12) 1121 is representative
  • waveform (6) 1122 in group 1 is waveform (6) 1122
  • waveform (5) 1123 is representative.
  • FIG. 13 shows a selected waveform 1201 of three wavelengths.
  • Group 1 was classified as an upward trend similar to waveform (12) 1211
  • Group 2 was classified as waveform (6) 1212 rising and falling
  • Group 3 was classified as waveform (5) 1213.
  • the wavelength of these waveforms can be the wavelength to be monitored.
  • the waveform having a set of correlation coefficients closest to the average of the correlation coefficients of the waveforms in each group may be representative.
  • an average of waveforms in the same group may be taken in order to reduce variation.
  • the waveform at the wavelength designated from the OES data that is, the emission intensity can be monitored in the subsequent actual etching process. If an abnormal or normal determination criterion is set, it is possible to determine whether the etching process is abnormal or normal and monitor the etching apparatus and the etching process.
  • etching performance can be evaluated during the actual etching process, and the etching process result can be estimated.
  • the etching of the subsequent etching process can be performed by monitoring the waveform and emission intensity of the wavelength specified during the etching process and inspecting the etching process result as necessary. You can adjust the conditions.
  • FIG. 14 is a diagram showing an example of the waveform of eight etching processes at the same wavelength in the etching apparatus according to one embodiment of the present invention
  • FIG. 15 is a diagram of 8 at the same wavelength in the etching apparatus according to one embodiment of the present invention.
  • FIG. 16 is a diagram illustrating an example of a correlation matrix of waveforms
  • FIG. 16 is a diagram illustrating an example of a cluster analysis result based on a correlation matrix of eight waveforms at the same wavelength in the etching apparatus according to an embodiment of the present invention
  • FIG. It is a figure which shows an example of the intensity
  • FIG. 14 shows a change 1301 of the waveform for each etching process at the same wavelength for the etching process for 8 times.
  • FIG. 15 shows the correlation matrix for waveforms (1) to (8).
  • the value of the correlation coefficient between the waveforms (1) to (4) is large, and the value of the correlation coefficient between the waveforms (5) to (8) is also large.
  • Cluster analysis is performed using each row or each column of the correlation matrix as a waveform correlation vector.
  • the resulting dendrogram 1501 is shown in FIG.
  • the branch positions 1502 and 1503 could be classified into (1) (2) (3) (4) clusters and (5) (6) (7) (8) clusters.
  • the branch positions 1502 and 1503 could be classified into (1) (2) (3) (4) clusters and (5) (6) (7) (8) clusters.
  • the etching rate has increased and the gate dimensions have become smaller in response to this change. That is, since the decrease in light emission is delayed, the etching rate is increased. Therefore, when the emission intensity is high, it can be determined that an abnormality has occurred.
  • the etching process can be performed. It is possible to determine whether or not the etching process is abnormal at the time of waveform acquisition.
  • FIG. 18 is a diagram showing an example of changes in emission intensity, waveform correlation coefficient, and CD bias for each etching process in the etching apparatus according to one embodiment of the present invention.
  • a correlation coefficient with another waveform is obtained with a certain one waveform as a reference.
  • this corresponds to calculating the correlation coefficient with the index k fixed.
  • etching of the correlation coefficient (1) to are the first column (1, 0.999, 0.992, 0.936, 0.885, 0.919, 0.938, 0.841) of the correlation matrix shown in FIG. .
  • FIG. 18 shows changes in emission intensity, correlation coefficient based on waveform (1), and CD bias for eight etching processes.
  • CD Cross Dimension
  • the CD bias is the difference between the width of the resist formed on the gate when the gate is etched and the gate size as a result of the etching process.
  • the emission intensity change 1701 for each etching process is obtained by plotting the emission intensity at the determination time 1631 in FIG. 17 for each etching process.
  • the CD bias change 1721 for each etching process has already decreased in the etching process (4).
  • the correlation coefficient value is decreased in the etching process (4).
  • the change in the emission intensity during the etching process that is, the waveform has an effect on the etching process performance, not the information on the emission intensity at a certain point in time. Therefore, if the etching process is monitored by the correlation coefficient, the etching process can be accurately determined.
  • the waveform for the entire etching process time was used for the calculation of the correlation coefficient here, but even if the waveform up to a certain point until the etching process is used, the waveform for a certain time range during the entire etching process is used. May be used to calculate the correlation coefficient.
  • the etching process result is estimated at the stage of performing the etching process, and the estimated value is obtained. Based on this, it is possible to determine whether the etching process is monitored, abnormal or normal.
  • a is a coefficient and b is an intercept.
  • the coefficient and intercept can be determined by multiple regression analysis using actual values. Whether the etching process is monitored with the estimated value based on the equation (5) can be monitored if the correlation coefficient between the actual value of the output y by the model and the estimated value is high (close to 1). And it is sufficient.
  • judgment criteria such as upper limit and lower limit may be set.
  • the number of terms of input x and output y may be multivariate.
  • the coefficient of the equation may be determined by multiple regression analysis as in the case of determining the coefficient and intercept of equation (5).
  • the coefficient may be determined by regression analysis called PLS (Partial Last Square) method.
  • FIG. 19 is a diagram showing an example of a waveform including variation in the etching apparatus according to the embodiment of the present invention, and shows whether there is a change in intensity.
  • FIG. 20 is a diagram showing an example of a histogram with respect to light emission intensity of a waveform including variation in the etching apparatus according to one embodiment of the present invention, and
  • FIG. 21 is a waveform of the waveform including variation in the etching apparatus according to one embodiment of the present invention.
  • FIG. 22 is a diagram illustrating an example
  • FIG. 22 is a diagram illustrating an example of a histogram with respect to light emission intensity of a waveform including variation in the etching apparatus according to the embodiment of the present invention
  • FIG. 23 is the etching apparatus according to the embodiment of the present invention
  • FIG. 24 is a diagram illustrating an example of the distortion, kurtosis, and change index of a waveform including variations in the etching apparatus according to one embodiment of the present invention. .
  • the change is quantified to determine whether there is a change in the waveform. Since waveform data includes variation, the effect of variation must be removed in order to evaluate the rate of change or curvature, and the manner of change (when change occurs and the magnitude of change) varies depending on the waveform. Therefore, in order to determine the reference time point / intensity for change detection, the waveform must be analyzed in advance.
  • FIG. 19 shows a waveform 1 (1803) having a change and a waveform 2 (1813) having a variation but no change.
  • the intensity frequency of the waveform 2 (1813) has a normal distribution centered on a certain intensity.
  • Waveform 1 (1803) increases in intensity and includes a variation, and converges to a certain intensity.
  • FIG. 20 shows a histogram comparing the frequency of occurrence of the intensity of these waveforms.
  • the x-axis is the intensity
  • the y-axis is the data occurrence frequency at the x-axis intensity.
  • the distribution 1912 of the waveform 2 is a normal distribution centered on the intensity of the average 1922 of the waveform 2.
  • the distribution 1911 of the waveform 1 is an asymmetric distribution, and the average 1921 of the waveform 1 is shifted from the peak which is the mode of the distribution. This peak is also sharper than the normal distribution.
  • the skewness ⁇ 1 is defined by the following equation (6), and the kurtosis ⁇ 2 is defined by the following equation (7).
  • the formula is based on the population from which the bias (constraints) in the sample is removed.
  • x is the target data, that is, a sample of emission intensity.
  • is a standard deviation and is defined by the above equation (8).
  • n is the number of data.
  • the formula based on the population is shown, but even if the skewness and kurtosis are calculated by the formula based on the sample, the target distribution bias can be quantified. If both skewness and kurtosis are 0 (zero), a normal distribution is obtained. That is, if it is close to 0, the waveform includes only variation and the intensity is constant.
  • the waveform is varied with variation. If the skewness is a positive value, the distribution base is long on the right side. If the kurtosis is positive, the distribution is sharper than the normal distribution.
  • the histogram may have a normal distribution.
  • FIG. 21 shows an example of such a waveform [waveform 3 (2003)], and FIG. 22 shows its histogram.
  • the presence or absence of a change in waveform cannot be determined based on the skewness and kurtosis.
  • the range of the intensity change of the waveform (maximum and minimum range) may be focused. Since there may be a case where the variation itself falls within a large intensity range, whether or not there is a change cannot be determined by focusing only on the absolute value of the range. Therefore, the change is quantified by the ratio of the range and the variation.
  • this waveform is obtained by adding a variation to the smoothed waveform f (t) 2207.
  • the range of variation is the difference between the maximum variation 2204 that is the upper envelope of the waveform and the minimum variation 2205 that is the lower envelope of the waveform.
  • this variation range is set to 6 ⁇ ( ⁇ is a standard deviation).
  • 6 ⁇ is about 3 points out of 1000 data (probability is 1% or less), and it is within the range that almost all data can be satisfied, and ⁇ is stable when there are more than tens of points. This is a reasonable definition of the range. This assumption is expressed by the following equation (9).
  • max means the maximum value
  • min means the minimum value
  • E means the expected value of the variable.
  • This index is called the change index. If there is no change in the waveform, that is, if the smoothed waveform f (t) is approximately constant, the change index is about 6. If there is a change, the change index is greater than 6. Only the sampled emission intensity is used to calculate the change index.
  • the presence or absence of waveform change can be determined by the skewness, kurtosis, and change index.
  • an upper limit and a lower limit are set, and if all fall within the upper and lower limits, the waveform may be left unchanged.
  • the upper limit of skewness and kurtosis is 1, the lower limit is -1, the upper limit of the change index is 8, and the lower limit is 4.
  • the waveform range for obtaining the skewness, kurtosis, and change index may be the entire etching processing time range or a specific time point range.
  • FIG. 25 and FIG. 26 are flowcharts showing an etching processing method of the etching apparatus according to one embodiment of the present invention.
  • FIG. 25 shows an etching processing method in the etching apparatus that automatically determines a wavelength to be monitored.
  • FIG. An etching process method for automatically determining a wavelength to be monitored and monitoring the etching process in association with the etching process result is shown as an example of determining whether the etching process is abnormal or normal in the etching apparatus.
  • OES data in one or more etching processes that have already been performed are stored in the computer / storage device of the apparatus.
  • step 2401 waveforms at one or more wavelengths in one or more etching processes are acquired (step 2401). That is, this is a process in which the computer of the etching apparatus extracts data from the storage device.
  • the wavelength of the waveform is excluded from the monitoring target because it is caused by a substance that does not affect etching. However, if the purpose is to monitor that the waveform does not always change during the etching process, the wavelength is monitored.
  • a correlation matrix between waveforms is calculated for a waveform having a change (step 2403), and each column or each row of the obtained correlation matrix is used as a vector to obtain a waveform correlation vector corresponding to each waveform ( Step 2404).
  • the waveform is classified based on the waveform correlation vector of each waveform (step 2405).
  • the cluster analysis described above may be used, or the k-means method or the self-organizing map may be used.
  • a representative waveform is selected and the wavelength of the waveform is specified (step 2406).
  • the maximum value of the average value of the correlation coefficient, the minimum value of the correlation coefficient, the maximum value, etc. of the waveforms classified into the same group are used. Good. This determines the wavelength to be monitored.
  • the processes having a change in the waveform are classified.
  • ⁇ Judgment criteria must be established for the abnormal / normal judgment of etching process. For this purpose, it is only necessary to automatically determine the reference such as normalizing the range of the average ⁇ 3 ⁇ using the average or variation of waveforms at a plurality of the same wavelengths. Or it is determined as appropriate in the manual. If it is classified into a plurality of etching processes with the same wavelength, the reference is determined based on the difference in emission intensity between the groups.
  • the correlation coefficient value based on the reference waveform may be used as a reference instead of the reference relating to the emission intensity.
  • the wavelength specified in step 2406 and the abnormality / normality criterion are set in the etching apparatus (step 2407).
  • a reference waveform is also set.
  • step 2408 to step 2412 of the wafer etching process abnormality / normality determination is automatically performed.
  • Etching is performed to acquire OES data from the OES monitor, and a waveform at the wavelength set in step 2407 is acquired (step 2409).
  • step 2410 determination is made based on the abnormality / normality determination criteria set in step 2407 (step 2410).
  • step 2410 If it is determined in step 2410 that there is an abnormality, countermeasures for abnormality are implemented (step 2411).
  • the etching apparatus is a process of automatically stopping the process or applying an interlock, or a process of notifying an operator of an abnormality, exchanging parts, and adjusting conditions.
  • step 2410 determines normal, step 2408 to step 2412 are repeated.
  • the waveform acquired in step 2409 may be stored in a storage device, the result of measuring the etching process result in the inspection apparatus may be acquired in the etching apparatus, and the relationship between the emission intensity and the etching process result may be subjected to regression analysis.
  • a reference waveform may be set, and a regression analysis may be performed on the relationship between the correlation coefficient between the waveform and the obtained waveform and the etching processing result.
  • step 2409 the waveform and the etching processing condition in the etching processing are stored in the storage device, and the etching processing result as the inspection result is acquired in the etching device, The target value of the etching process result is acquired, and the etching process condition is adjusted with reference to the waveform emission intensity based on the difference between the inspected etching process result and the target value.
  • the adjusted processing conditions may be used as the processing conditions for the next etching process.
  • VM Virtual Metrology
  • APC Advanced Process Control
  • the process result is estimated directly from the light emission intensity, and the target value of the etching process result is obtained.
  • Etching process conditions can be adjusted according to the difference.
  • the method of using the waveform may be a correlation coefficient with the reference waveform as well as the emission intensity.
  • VM Virtual Metrology
  • the OES data analysis system 434 acquires waveforms at one or more wavelengths in one or more etching processes (step 2501).
  • step 2502 it is determined whether or not the acquired waveform has changed.
  • the skewness, kurtosis, and change index described above may be used.
  • a correlation matrix between waveforms is calculated for a waveform having a change (step 2503), and each column or each row of the obtained correlation matrix is used as a vector to obtain a waveform correlation vector corresponding to each waveform ( Step 2504).
  • the waveform is classified based on the waveform correlation vector of each waveform (step 2505).
  • the cluster analysis described above may be used, or the k-means method or the self-organizing map may be used.
  • a representative waveform is selected and the wavelength of the waveform is specified (step 2506).
  • the maximum value of the average value of the correlation coefficient, the minimum value of the correlation coefficient, the maximum value, etc. of the waveforms classified into the same group are used. Good. This determines the wavelength to be monitored.
  • the processes having a change in the waveform are classified.
  • the emission intensity at the wavelength specified in step 2506 is associated with the etching processing result (step 2507).
  • the etching process result measured by the inspection result is stored in the database 433.
  • the relationship between the light emission intensity and the etching processing result may be associated using statistical analysis such as regression analysis. For example, discriminant analysis, mean / variance test, neural network, and SVM (Support Vector Machine) can be used as long as the relationship with the quality of the etching process results.
  • a reference waveform may be defined, and a correlation coefficient with the waveform may be associated with a relationship between etching processing results. Based on the quality of the etching process result, the reference of the emission intensity or the correlation coefficient can be determined.
  • the wavelength specified in step 2506 and the abnormality / normality determination criteria are set (step 2508).
  • a reference waveform is also set.
  • abnormality / normality is determined using the OES data analysis system 434 in the system environment via the network instead of the etching apparatus 401. If desired, the OES data analysis system 434 is set.
  • the criterion for determination may be set for the waveform itself, or may be set for the etching process result using VM (Virtual Metrology).
  • Etching is performed to acquire OES data from the OES monitor, and a waveform at the wavelength set in step 2508 is acquired (step 2510).
  • the waveform must be stored in a database so that the system can acquire the waveform.
  • step 2511 determination is made based on the abnormality / normality determination criteria set in step 2508 (step 2511).
  • VM Virtual Metrology
  • the etching process result is estimated from the obtained waveform, and the determination is made.
  • step 2512 When it is determined in step 2511 that there is an abnormality, abnormality countermeasures are implemented (step 2512).
  • step 2511 If it is determined normal in step 2511, the processing from step 2409 to step 2513 is repeated.
  • step 2507 is not necessary when determining the abnormality / normality determination criterion only by the waveform without associating it with the etching processing result.
  • step 2507 is to analyze and evaluate the etching process result in association with the etching process result. It may be analyzed manually instead of automatically.
  • the waveform and the etching process condition in the etching process are stored in the database 433 in step 2510, and the etching process result as the inspection result is also stored in the database 433.
  • the target value of the etching process result is acquired, and the etching process condition is adjusted with reference to the waveform emission intensity based on the difference between the inspected etching process result and the target value.
  • the adjusted processing conditions may be used as the processing conditions for the next etching process.
  • the process result is estimated directly from the light emission intensity, and the target value of the etching process result is obtained.
  • Etching process conditions can be adjusted according to the difference.
  • the method of using the waveform may be a correlation coefficient with the reference waveform as well as the emission intensity.
  • the magnitude of the change in the waveform of the OES data can be quantified and the presence or absence of the change can be determined, for example, the amount of the substance does not change inside the chamber because it does not contribute to the etching reaction.
  • Wavelength can be specified.
  • representative wavelengths can be selected from waveforms at a plurality of wavelengths, for example, dimensions such as LSI gate dimensions, step dimensions, wiring widths, aspect ratios (tapered shapes), and LER (Line Edge Roughness). It is possible to evaluate and analyze the relationship by limiting the wavelength such as the property such as LWR (Line Width Roughness), the number of foreign matters, the number of chip defects, the etching rate, and the etching amount such as the etching amount. Moreover, since the number of sample data for etching can be reduced by limiting the wavelength of light emission, the number of steps for obtaining the etching conditions can be reduced.
  • LWR Line Width Roughness
  • the etching apparatus when the etching apparatus is started up, it is possible to determine whether a predetermined reaction has occurred by classifying the waveform of the OES data in the same type of apparatus in the past in advance, and the start-up can be made efficient. .
  • the emission wavelength to be monitored can be selected, it is possible to prepare for abnormal / normal determination efficiently.
  • the “shape” similarity between waveforms is obtained by performing classification processing based on similarity determination from the row or column vector of the correlation matrix expressing the similarity between waveforms from the correlation matrix of each waveform. Classification by is possible. Overall similarities and partial similarities can be evaluated together, and the etching processing time range is not limited. Since the waveform “shape” is evaluated, information on the substance and information on the chemical reaction can be made unnecessary for the classification process.
  • the waveform change can be quantified by evaluating the correlation coefficient between the waveform at the wavelength and the reference waveform when the etching process is repeatedly performed based on the waveform of the etching process at a specific wavelength. By using this correlation coefficient, it is possible to determine whether it is abnormal or normal, analyze and evaluate the etching process result, adjust the conditions of the etching process, and model the relationship with the etching process result. Can be estimated.
  • the present invention relates to an etching apparatus and an analysis apparatus that monitors plasma emission in the etching apparatus, and a plurality of signals during the process are processed even if the process is not etching or the object of the process is not a wafer or a semiconductor device. And a computer for processing signals, and can be widely applied to devices and systems for monitoring processes.
  • OES spectroscope
  • Waveform correlation matrix calculation Function 523 ... Waveform classification function 524 ... Representative waveform selection function 525 ... Regression analysis function 526 ... Etching process result prediction function 527 ... Abnormality / normality determination function 528 ... Etching condition adjustment function 601 ... Time, 602 ... Intensity, 611, 612, 613, 614 ... waveform, 621, 622, 623, 24 ... waveform correlation vector, 631 ... correlation matrix, 641 ... waveform graph, 642 ... time, 643 ... intensity, 651 ... correlation matrix of waveform, 652, 653, 654 ... waveform correlation vector, 701 ... cluster analysis result (tree diagram) , 702 ... Group 1, 703 ... Group 2, 710 ...
  • Waveform 3 distribution 2104 ... Waveform 3 average, 2301,2311,2321,2331 ... Waveform graph and skewness, kurtosis, change index 2302, 2312, 2322, 2332 ... time 2303, 2313, 323,2333 ... strength.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

物質や化学反応の情報を設定すること無しに、多くの波長における波形から、代表的な少数の波長を選定することができ、大きな工数のかかるエッチングデータの解析を削減して、効率的にエッチングのモニタ・監視の設定を行うことができるエッチング装置である。エッチング装置において、複数のエッチング処理時間軸に沿った発光強度波形を取得するロット・ウェハ・ステップ別OESデータ検索・取得機能511と、複数の発光強度波形において変化の有無を判定する波形変化有無判定機能521と、発光強度波形間の相関行列を算出する波形相関行列算出機能522と、発光強度波形をグループに分類する波形分類機能523と、グループより代表的な発光強度波形を選定する代表波形選定機能524とを備えた。

Description

エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム
 本発明は、エッチング装置、およびエッチング装置におけるプラズマの発光をモニタする分析装置において、エッチング処理中の発光強度の波形を分類して、エッチング処理結果に影響する波形を選定する方法に関し、特に、波形“形状”の類似性に基づき波長を分類して、代表的な波長を選定する方法、また変化の小さな波形を定量的に判定する方法に関するものである。
 ウェハ上に形成される半導体装置などの微細形状を得るために、プラズマを利用して物質を電離し、その物質の作用(ウェハ表面における反応)によりウェハ上の物質を取り去るエッチング処理が行われる。電離する物質は様々であり、ウェハ上の物質も製品機能に応じて多種多様である。
 さらに、ウェハ上に形状を形成するために、有機系物質のレジストを塗布してホトリソグラフィーにより形状を形成してからエッチング処理を行う。また、所定の形状を得るために反応の速さを調節するための物質も導入される。エッチング処理を行っているチャンバ容器内では多種多様な物質が反応しあっている。
 プラズマによる電離現象は発光現象を伴うため、プラズマを利用して処理を行うエッチング装置には、発光分光器(OES;Optical Emission Spectroscopy)を搭載し、プラズマの発生状態をモニタできるようにしている。
 従来、このOESデータより反応に影響する物質や、発光の変化を取り出す方法としては、特開平6-224098号公報(特許文献1)、特開2001-60585号公報(特許文献2)、特開2001-244254号公報(特許文献3)、特開2003-17471号公報(特許文献4)、特開2005-340547号公報(特許文献5)、特開平9-306894号公報(特許文献6)、特表2001-521280号公報(特許文献7)に記載のものがあった。
 特許文献1では、チャンバ内のプラズマからの発光スペクトル(OES)を取得し、物質に応じたスペクトル線の情報に基づき実時間でチャンバ内の物質を特定して、その相対濃度レベルを判別する方法が示されている。
 特許文献2では、発光波形の相関係数を用いて主成分分析し、参照する主成分と製造実行時に得られる主成分を比較することでプロセスやチャンバの状況に影響のある主成分を特定し、例えば終点を検出するといった制御を行う方法が示されている。
 特許文献3では、特許文献2と同様に、発光波形の相関係数を用いて主成分分析し、参照する主成分と製造実行時の主成分を比較する方法が示されている。プラズマの発光スペクトルを直接にモニタするのではなく、プラズマ発光を光源としたウェハ表面の反射発光強度を対象とし、膜厚を制御する方法が示されている。
 特許文献4では、OESといった処理中のプロセス量のモニタ結果とプロセス処理結果との関係をモデル化し、最適なレシピを求めることでプラズマ処理を制御する方法が示されている。特にOESデータを主成分分析し変化の大きな波形となっている波長を取り出すことについての記載がある。
 特許文献5では、特に終点検出のために、予め波形変化のパターンをデータベースに準備しておき、エッチング処理中に特定のパターンと一致したときに、そのパターンに応じて終点を検知する方法が示されている。パターンは上昇、下降、平坦の3種類に基づき、さらにその変化の度合い毎に詳細に設定するとしている。
 特許文献6では、プラズマ処理装置に接続し、プラズマ発光を分光し強度の時間変化を波形別に検出・分析して最適な波長を自動的に決定する方法が示されている。
 特許文献7では、P個の放射波長の各強度を処理時間を追ってモニタして放射波長間に存在する相関関係を生成し、以前のプラズマ処理と比較して状態を検出する方法が示されている。
特開平6-224098号公報 特開2001-60585号公報 特開2001-244254号公報 特開2003-17471号公報 特開2005-340547号公報 特開平9-306894号公報 特表2001-521280号公報
 しかしながら、特許文献1に記載の方法では、同一物質に起因する発光のピークより発光波長を限定することは可能だが、物質に応じたスペクトル線の設定情報以外の波長での発光を分類することはできない。また、波形に関して、その変化の共通性については評価する方法の記載は無く、反応に基づく波長の分類はできない。
 また、特許文献2に記載の方法では、主成分分析による主成分を評価することにより共通に変化する全波長領域での発光強度変化(波形に相当)を評価できるが、波長間の波形の部分的な違いを評価して波長を分類することはできない。
 また、特許文献3に記載の方法でも、特許文献2に記載の方法と同様に、波長を分類することはできない。
 また、特許文献4に記載の方法では、主成分分析により変化の大きな波形となる波長を取り出すことが記載されているだけであり、複数の波形を分類するといったことについては示されていない。
 また、特許文献5に記載の方法では、変化パターンの分類には予めパターンを登録しておかなければならないので、エッチング処理内容に応じて様々に変化する波形を分類することはできない。
 また、特許文献6に記載の方法では、プラズマ発光の発光強度の時間変化を分析し、プラズマ処理の終点より前の時点における発光強度のレベルと終点より後の時点における発光強度のレベルとの差分を検出しているが、これでは2つの強度差に基づく波形変化のみしか評価できないため、様々に変化の仕方が異なる波形を分類するには不十分であった。
 また、特許文献7に記載の方法では、放射波長間に存在する相関関係を生成し、その相関の主成分の主成分ベクトル間の角度に基づきエッチング処理の終点を検出しているが、主成分は複数の波長における共通の変化をとりまとめたものであり、そのベクトル間の角度を調べても、複数の波長での共通の変化があったことが見出せるだけであり、様々に変化する波形より代表的な波長を見出すことはできない。
 そこで、本発明の目的は、物質や化学反応の情報を設定すること無しに、多くの波長における波形から、代表的な少数の波長を選定することができ、大きな工数のかかるエッチングデータの解析を削減して、効率的にエッチングのモニタ・監視の設定を行うことができるエッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラムを提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
 すなわち、代表的なものの概要は、計算機システムは、過去に実施した1回以上のエッチング処理中のプラズマ発光データにおける、複数のエッチング処理時間軸に沿った発光強度波形を取得する発光強度波形取得手段と、発光強度波形取得手段で取得された複数の発光強度波形において変化の有無を判定する波形変化有無判定手段と、波形変化有無判定手段で変化が有ると判定された発光強度波形間の相関行列を算出する波形相関行列算出手段と、波形相関行列算出手段で算出された相関行列の各列、または各行を、発光強度波形に対応したベクトルとし、ベクトルの値に基づき発光強度波形間の類似性を評価して、発光強度波形をグループに分類する波形分類手段と、波形分類手段で分類されたグループより代表的な発光強度波形を選定し、選定した代表的な発光強度波形をエッチング性能またはウェハでのエッチング処理結果に影響のある発光強度波形として特定し、その発光強度波形が得られた波長をモニタすべき発光波長として決定して端末に表示させる代表波形選定手段とを備えたものである。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
 すなわち、代表的なものによって得られる効果は、物質や化学反応の情報を設定すること無しに、モニタ・監視すべき発光波長を自動的に選定できるため、大きな工数のかかるエッチングデータの解析を削減して、効率的にエッチングのモニタ・監視の設定ができ、異常・正常を判定できる。また、物質や化学反応の登録もれ、もしくはマニュアル判断による現象の判断間違いといったミスを防止できる。
本発明の一実施の形態に係るエッチング装置で使用する発光分光器OESによるスペクトルおよび波形の一例を示す図である。 本発明の一実施の形態に係るエッチング装置で使用する発光強度の相関関係に関する原因を説明するための説明図である。 本発明の一実施の形態に係るエッチング装置で使用する波形とその主成分分析結果の一例を示す図である。 本発明の一実施の形態に係るエッチング装置の構成を示す構成図である。 本発明の一実施の形態に係るエッチング装置のエッチング処理制御のシステム構成を示す構成図である。 本発明の一実施の形態に係るエッチング装置における波形の相関関係を説明するための説明図である。 本発明の一実施の形態に係るエッチング装置におけるクラスター分析の概要を説明するための説明図である。 本発明の一実施の形態に係るエッチング装置におけるクラスター分析の計算法の概要を説明するための説明図である。 本発明の一実施の形態に係るエッチング装置における15波長の波形の一例を示す図である。 本発明の一実施の形態に係るエッチング装置における15波長の相関行列の一例を示す図である。 本発明の一実施の形態に係るエッチング装置における15波長の波形の相関行列に基づくクラスター分析結果の一例を示す図である。 本発明の一実施の形態に係るエッチング装置における15波長の波形のグループ別の相関行列の一例を示す図である。 本発明の一実施の形態に係るエッチング装置における選定した3波長の波形を示す図である。 本発明の一実施の形態に係るエッチング装置における同一波長における8回のエッチング処理の波形の一例を示す図である。 本発明の一実施の形態に係るエッチング装置における同一波長における8波形の相関行列の一例を示す図である。 本発明の一実施の形態に係るエッチング装置における同一波長における8波形の相関行列に基づくクラスター分析結果の一例を示す図である。 本発明の一実施の形態に係るエッチング装置における同一波長における波形の強度判定基準の一例を示す図である。 本発明の一実施の形態に係るエッチング装置におけるエッチング処理毎の発光強度、波形の相関係数、CDバイアスの変化の一例を示す図である。 本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の一例を示す図である。 本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の発光強度に対するヒストグラムの一例を示す図である。 本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の一例を示す図である。 本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の発光強度に対するヒストグラムの一例を示す図である。 本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形のばらつき範囲を説明するための説明図である。 本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の歪度、尖度、変化指数の一例を示す図である。 本発明の一実施の形態に係るエッチング装置のエッチング処理方法を示すフローチャートである。 本発明の一実施の形態に係るエッチング装置のエッチング処理方法を示すフローチャートである。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 まず、本発明の概要について説明する。
 本発明では、エッチング装置は分光器(OES)を搭載し、エッチング処理の毎にOESデータを取得する手段を備えている。発光分光器は記憶装置やデータベースと接続されており、記憶装置やデータベースへOESデータを格納する手段を備えている。OESデータより複数の波形を取得して、波形を分類、代表波形を求めてエッチングをモニタする手段、さらには異常・正常を判定する手段、エッチング処理結果を解析・評価する手段、エッチング処理条件を調整する手段とを備え、それらのため、記憶装置やデータベースからOESデータを取得する手段を備えている。なお、これらの各手段はエッチング装置に接続された分析装置に備えられてもよく、分析装置によりエッチング処理を観察するような構成であってもよい。
 また、エッチングの異常・正常を判定するためには、判定基準を設定する手段、および判定結果を記憶装置やデータベースに格納するか、ユーザーに表示・通知するための手段を備えている。
 また、エッチング処理結果とOESデータの発光強度や波形の相関係数を対応付けるためには、エッチング処理結果を記憶装置やデータベースに格納する手段、およびエッチング処理結果を記憶装置やデータベースより取得する手段を備え、発光強度や波形の相関係数とエッチング処理結果との関係を求める手段、および発光強度や波形の相関係数からエッチング処理結果を推定・予測する手段を備えている。
 エッチング処理条件を調整するためには、目標とするエッチング処理結果を設定する手段を備え、実際のエッチング処理結果と目標との誤差に基づきエッチング処理条件(エッチング時間、ガス流量、圧力、電圧、温度)の調整量を算出する手段を備え、求めた条件をエッチング装置に設定する手段を備えている。
 本発明では、まず、OESデータより波形を取得し、発光強度のばらつきに対する変化量の大きさを算出・評価する機能により、波形の変化の有無、もしくは変化の大きい波形を見出すようになっている。
 また、1回以上のエッチング処理におけるOESデータより複数の波形を取得し、波形の相関行列を算出して波形毎の相関係数ベクトルを求め、各波形の相関係数ベクトルより波形を分類する機能、および分類毎の相関係数ベクトルより代表波形を決める機能を有することで、特に物質と発光波長の関係や化学反応関係の情報を利用すること無しに、自動的にモニタ・監視すべき発光波長を求めるようになっている。
 また、エッチング処理結果と選定した波形の発光強度の関係を対応付ける機能により、エッチングの異常・正常の基準を求めて、異常・正常を判定し、またエッチング処理を解析・評価、さらにエッチング処理条件を調整してエッチング処理結果を制御している。
 また、あるエッチング処理での波形を基準として、他のエッチング処理での波形との相関係数を求め、エッチング処理結果と対応付ける機能により、エッチングの異常・正常の基準を求めて異常・正常を判定し、またエッチング処理を解析・評価、さらにエッチング処理条件を調整してエッチング処理結果を制御している。相関係数とエッチング処理結果との関係を数式でモデル化する機能により、エッチング処理結果を推定・予測できるようになっている。
 以下、本発明における上記各手段および上記各機能の具体的な実施の形態について説明する。
 まず、図1~図3により、本発明の一実施の形態に係るエッチング装置で使用する基本技術および基本処理について説明する。図1は本発明の一実施の形態に係るエッチング装置で使用する発光分光器OESによるスペクトルおよび波形の一例を示す図、図2は本発明の一実施の形態に係るエッチング装置で使用する発光強度の相関関係に関する原因を説明するための説明図、図3は本発明の一実施の形態に係るエッチング装置で使用する波形とその主成分分析結果の一例を示す図である。
 まず、発光分光器OESによる発光データの一例を図1に示す。
 図1に示すように、時間104をx軸、波長105をy軸にとった発光強度スペクトル分布はビットマップとして表現できる。ビットマップ101、102、103は複数のウェハに対する発光現象を描画したものである。
 ある時点での発光強度の発光スペクトル分布111により、モニタ波長の中心付近で大域的に凸状となっており、また、多数の波長位置においてピークが存在することがわかる。また、特定の波長における処理時間に沿っての発光強度、すなわち波形121、122によりエッチングの処理が進むにつれ発光強度は変化し、またエッチング処理内容の変更時点107に発光現象が変化することがわかる。
 このプラズマによる発光現象をモニタすることで、エッチング処理の性能を確認できる。例えば、エッチング装置の立ち上げ時においては、所定の反応が起こっているかを判断してエッチング処理を確認する。また、量産においては、ウェハの連続着工で発光をモニタすることにより異常を検知し、またエッチングの処理終了時点を判定する終点検出として発光データを活用する。
 特に、発光データはエッチング処理を行っている最中に同時並行してエッチング状況をモニタすることができるため、発光状態を効率的に判定できること、さらに量産で利用するためにはウェハ着工の度に自動的に発光状態を判定できることが重要である。
 このような判定を行うためには、スペクトルでピークが発生しているところの波長とその強度を解析する。これはチャンバ内の物質に応じて特定の波長で発光が観察されるためである。しかしながら、発光スペクトル分布111に示したように、数十のピークが観察されるため、エッチング処理に影響が大きな物質を特定していくことが困難となる。そこで、エッチング性能に影響のある物質を特定して、判定のためにモニタすべき波長を限定できなければならない。
 エッチングは物質的な反応に基づく、化学的な反応である。この反応は、ある物質(分子構成)が他の物質(分子構成)に変わるものであり、それらの変化には自ずと高い相関がある。この反応に基づく発光強度の相関の原因については、図2に示す通りである。
 図2において、1次系201では、物質[A]が[B]、[C]に分解され、また、反応の過程は式202で定められる。
 2次系203では、2つの物質[A]が[C]となり、反応過程は式204となる。多数の物質が[C]となる高次系205でも反応過程は式206となる。
 すなわち、物質の増減の関係は各反応で1つの物質において説明できることとなる。例えば、[物質1]が[物質2]と[物質3]と変わる反応211では、物質1(231)が減少すれば、それに応じて物質2(232)、物質3(233)が増加するというように波形間に相関関係がある。
 そこで、例えば、モニタすべき物質は[物質1]だけとするといったように、発光の波長を限定できる。
 さらに、発光のスペクトルには物質の重複に関する特徴がある。例えば、フッ化珪素SiFのスペクトル線は波長334.6[nm]、336.3[nm]、436.8[nm]、440.1[nm]、777.0[nm]において発生すように、1種類の物質は複数の波長において発光する。従って、これらの波長における波形間にもその物質の状態に基づき、相関関係がでる。
 そこで、このような波形の相関に基づき、反応を代表する物質に対応する発光の波長をモニタすれば、効率的に波長を限定することができる。
 また、主成分分析とは複数のデータ項目間におけるデータの相関行列より、それぞれのデータ項目が同時に変化する、もしくは独立に変化するといった組合せを、変化の大きさに基づき主成分として分解する分析方法である。データ項目間の変化の組合せは主成分(固有ベクトル)として求まる。変化の大きさ、もしくは全体の変化に対する主成分の占める割合は寄与率として求まる。
 波形とその主成分分析結果(第3主成分まで)の一例は図3に示す通りである。波形のグラフより、波形(1)311、波形(2)312、波形(7)317の組、波形(3)313、波形(4)314の組、波形(5)315、波形(6)316の組で類似していることがわかる。
 主成分の各波形における正負で分類することを検討すると、第1主成分では、波形(1)311、波形(2)312、波形(5)315、波形(6)316、波形(7)317の組と、波形(3)313、波形(4)314の組に分けることができる。
 これは上昇と下降の波形の組合せに分類できていることになる。しかしながら、第2主成分によれば波形(1)311、波形(2)312の組と、波形(5)315、波形(6)316、波形(7)317の組に分かれる。
 これは、図3の321に示す部分での変化により、寄与率13%の変化の共通性で分類してしまったためである。
 そこで、第1主成分の固有ベクトルの大きさで判断することを検討しても、波形(1)311と波形(2)312が非常に近い値であるため変化に共通性が高いとわかるが、波形(5)315、波形(6)316、波形(7)317との関係については、数値的に判断できない。
 主成分分析では、大きな変化を分類することができるが、より細かな変化については定量的に分類することは困難であり、すなわち自動分類に活用できない。
 そこで、本実施の形態では、まず、OESデータの複数の波形において、各波形の変化の有無を判定し、変化がある複数の波形について相関行列に基づき類似する波形を分類して代表的な波形を求め、エッチング処理をモニタすることで、特に、エッチングの異常、もしくは正常を判定すること、エッチング処理結果を解析・評価すること、さらにエッチング処理結果の精度を向上するための条件調整を行うことができる。
 なお、エッチング処理結果とは、エッチング処理したウェハを検査して定量化した結果であり、各種の寸法、性状、個数、またエッチング処理前後の差についての定量値である。また、各波形における変化の有無の判定するため、ばらつきに対する変化の大きさを評価する。これにより、ばらつきを含む波形の変化の有無を定量的に判定できる。
 次に、図4および図5により、本発明の一実施の形態に係るエッチング装置の構成および動作について説明する。図4は本発明の一実施の形態に係るエッチング装置の構成を示す構成図、図5は本発明の一実施の形態に係るエッチング装置のエッチング処理制御のシステム構成を示す構成図である。
 図4において、エッチング装置401は、チャンバ402、電極403、ウェハ405、電極406、排気系407、ガス供給系408、装置コントローラ・外部通信装置409、分光器(OES)410、計算機システムである計算機・記憶装置411、端末である画面・ユーザーインターフェース412から構成され、チャンバ402には窓421が設けられ、プラズマによる光422を分光器(OES)410に入射させている。
 また、エッチング装置401は、ネットワーク432を介して、検査装置431、データベース(DB)433、計算機システムであるOESデータ解析システム434に接続されている。
 エッチング装置401には、チャンバ402が設置され、このチャンバ402内にてエッチングが行われる。ウェハ405は電極403、406に挟まれるように配置され、この電極403、406間にプラズマ404を発生させることでウェハ405表面をエッチングする。
 なお、プラズマ404の発生に関しては必ずしも電極によらなくてもよい。エッチングに必要なガス材料はガス供給系408より導入され、エッチング反応後のガスは排気系407より排気される。
 プラズマ404は発光を伴い、この光を分光器(OES)410により光422の波長別に発光強度を検知する。窓421を通してチャンバ402内部の光を取る。分光器(OES)410および装置コントローラ・外部通信装置409は、エッチング装置401に設置された計算機・記憶装置411と接続されており、計算機・記憶装置411によりスペクトル、波形を計算処理して、エッチング処理をモニタする。
 計算機・記憶装置411には複数のOESデータを格納できる。モニタ結果に応じてエッチングの異常・正常を判定し、さらにエッチング処理条件を調整する。計算機・記憶装置411は画面・ユーザーインターフェース412と接続されており、画面・ユーザーインターフェース412を介して、ユーザーは計算処理に必要な設定を行い、また計算処理結果を確認する。
 なお、分光器(OES)410、計算機・記憶装置411、画面・ユーザーインターフェース412を独立した分析装置としてプラズマの発光を観察する構成であってもよい。
 分光器(OES)410および装置コントローラ・外部通信装置409は、ネットワーク432を介してデータベース(DB)433に接続されており、OESデータやエッチング処理条件、着工来歴に関するデータをデータベース433に格納できる。
 また、エッチング前/後の線幅、CD(LSIチップ内の最小ゲート寸法)や膜厚といったエッチング処理結果を計測する検査装置431も同様にネットワーク432に接続されており、検査結果はデータベース433に格納される。データベース433に格納されたOESデータ、エッチング処理に関するデータおよび検査結果をOESデータ解析システム434により解析・評価する。
 また、データベース433に格納された検査結果を、エッチング装置401の装置コントローラ・外部通信装置409によりエッチング装置401で取得することで、検査結果を反映して計算機・記憶装置411においてエッチング条件を調整できる。
 また、エッチング処理制御のシステム構成は図5に示す通りであり、図5に示す各機能511~528により、各種の異常・判定処理を実施している。
 また、エッチング装置401に搭載されている計算機・記憶装置411と、OESデータ解析システム434において各機能511~528は共通としている。
 また、機能511~528による各処理については、計算機・記憶装置411だけの処理、OESデータ解析システム434だけの処理としてもよい。
 エッチング装置401においてOESデータの波形を分類し、エッチングの異常・正常を判定するためには、まず、発光強度波形取得手段であるロット・ウェハ・ステップ別OESデータ検索・取得機能511により分類の対象となる波形を取得し、波形変化有無判定手段である波形変化有無判定機能521により変化の無い波形を取り除き、波形相関行列算出手段である波形相関行列算出機能522で相関行列を求めて波形分類手段である波形分類機能523により波形を分類する。
 代表波形選定手段である代表波形選定機能524により波形を特定し、その波形が得られた波長をモニタすべき波長として、エッチング処理を行ってその波長での発光強度をモニタする。発光強度の大きさにより異常・正常判定機能527により異常・正常を判定する。
 なお、ロットは複数のウェハをまとめて連続的にエッチング処理する単位である。ステップとは、同一チャンバにおいて1枚のウェハを複数の条件で連続的に処理する際の、ある1つの条件での処理の単位を意味する。
 また、エッチング処理結果と対応付けてエッチングの異常・正常を判定するためには、まず、ロット・ウェハ・ステップ別OESデータ検索・取得機能511により分類の対象となる波形を取得し、波形変化有無判定機能521により変化の無い波形を取り除き、波形相関行列算出機能522で相関行列を求めて波形分類機能523により波形を分類し、代表波形選定機能524により波形を選定する。
 さらに、検査装置431で計測したエッチング処理結果はデータベース433に格納されており、ロット・ウェハ・ステップ別検査結果検索・取得機能512により、先に分類した波形のロット・ウェハ・ステップに対応するエッチング処理結果を取得する。
 エッチング処理結果の良否と選定した波形の波長における発光強度を対応付けるか、もしくはエッチング処理結果と発光強度の関係を回帰分析機能525により解析・評価する。
 異常・正常の判定基準を定め、エッチング処理時に選定した波長の発光強度により異常・正常判定機能527により異常・正常を判定する。目標のエッチング処理結果と実際のエッチング処理結果の誤差を評価し、モニタした波長の発光強度を参照してそのエッチング処理実施時のエッチング処理条件をエッチング条件調整機能528により調整することによりエッチング処理結果を制御できる。
 1つの波長において、複数のエッチング処理における波形の相関係数によりエッチング処理をモニタするためには、ロット・ウェハ・ステップ別OESデータ検索・取得機能511により対象となる波形を取得し、波形相関行列算出機能522によりある一回の波形を基準とし他の波形との相関係数を求めればよい。
 また、ロット・ウェハ・ステップ別検査結果検索・取得機能512より対象となる波形に対応するエッチング処理結果を取得し、エッチング処理結果の良否と求めた相関係数を対応付けるか、もしくはエッチング処理結果と相関係数との関係を回帰分析機能525により求めて異常・正常の判定基準を定め、エッチング処理時に選定した波長の発光強度により異常・正常判定機能527により異常・正常を判定する。
 目標のエッチング処理結果と実際のエッチング処理結果の誤差を評価し、モニタした波長の波形での相関係数を参照して、そのエッチング処理の実施時のエッチング処理条件をエッチング条件調整機能528により調整することにより、エッチング処理結果を制御できる。
 さらには、回帰分析機能525により求めたエッチング処理結果と相関係数の関係に基づき、エッチング処理結果予測機能526により、エッチング処理時に得られた波形と基準にした波形との相関係数よりエッチング処理結果を推定できる。
 次に、図6~図13により、本発明の一実施の形態に係るエッチング装置における複数の波長における波形を分類して、代表的な波形より波長を求める方法について説明する。図6は本発明の一実施の形態に係るエッチング装置における波形の相関関係を説明するための説明図、図7は本発明の一実施の形態に係るエッチング装置におけるクラスター分析の概要を説明するための説明図、図8は本発明の一実施の形態に係るエッチング装置におけるクラスター分析の計算法の概要を説明するための説明図、図9は本発明の一実施の形態に係るエッチング装置における15波長の波形の一例を示す図、図10は本発明の一実施の形態に係るエッチング装置における15波長の相関行列の一例を示す図、図11は本発明の一実施の形態に係るエッチング装置における15波長の波形の相関行列に基づくクラスター分析結果の一例を示す図、図12は本発明の一実施の形態に係るエッチング装置における15波長の波形のグループ別の相関行列の一例を示す図、図13は本発明の一実施の形態に係るエッチング装置における選定した3波長の波形を示す図である。
 複数のエッチング処理でのOESデータにおける、複数波長での波形について、各波形間の相関行列を用いて波形を分類し、代表波形を選定する方法を波形相関クラスター分析と呼ぶ。
 この波形を分類するということは、波形の“形状”が類似しているものを同一のグループ、すなわちクラスターとしてまとめることである。波形は時間軸に沿った強度を表す“線”であるので、形状の類似は相関係数により評価できる。
 図6に4つの波形のグラフを示す。図6には、x軸に時間[秒]601、y軸に発光の強度602として4つの波形を描いている。
 強度の大きさに注目すると波形A611、波形B612、波形C613が近いが、化学反応の共変的な特徴に基づけば、形状が類似している波形A611と波形D614が共通のグループとなるべきである。
 相関係数によれば波形A611に対し、波形B612は“-1”、波形C613は“0”、波形D614は“1”となる。つまり相関係数が“1”に近ければ波形が類似していることとなる。逆に“1”から離れていればその波形とは類似していないこととなる。
 波形A611に対する他波形との相関関係はベクトル621と表記できる。波形B612、波形C613、波形D614についても同様にベクトル622、ベクトル623、ベクトル624と表記できる。波形A611と波形D614のベクトル621、ベクトル624を比較すると一致している。
 一方、波形B612、波形C613のベクトル622、ベクトル623はそれぞれ近い値となるものは無い。そこで、このベクトルを用いれば各種波形の類似を定量化でき、数値的に波形を分類できる。このベクトルを波形相関ベクトルと呼ぶ。
 波形相関ベクトルは、各波形との相関係数を並べたものであるため、図6に示す行列631のような相関行列を算出すれば求められる。
 この相関行列Rはサンプリング時点毎の発光強度データ(データ数n、波形数m)xijより、以下の式(1)~(4)により算出される。
Figure JPOXMLDOC01-appb-M000001
 ここで、k、lは波形に対応するインデクスであり、0~(m-1)の数となり、相関行列Rはm×mの行列となる。変数の上のバー“-”は平均を意味する。
 図7に6つの波形を例とした波形相関クラスター分析の概要を示す。
 波形グラフ641には、x軸に時間[秒]642、y軸に発光の強度643として6つの波形(1)~(6)を描いている。各波形は例えば波長515[nm]、803[nm]といった発光波長での、エッチング処理時間に関する発光強度である。
 波形(1)、(2)、(3)は全時間範囲で重なっており、類似した波形である。波形(4)(太い実線)は波形(1)、(2)、(3)より少し発光強度が高い。
 一方波形(5)(太い点線)、波形(6)(点線)は発光強度が低い。これら波形間の相関行列651を算出し、この波形の相関行列651の各行、または各列をある波形に対する他波形の波形相関ベクトル((1)652、(2)653、~(6)654)とする。
 図7では列ごとにベクトル化している。波形(1)、(2)、(3)の波形相関ベクトルは各要素の値がとても近い。波形(4)の波形相関ベクトルは、波形(5)と(6)との相関係数値は小さいが波形(1)、(2)、(3)の相関係数値は大きく、すなわち波形(1)、(2)、(3)の波形相関ベクトルと近い。一方、波形(5)、(6)は波形(1)~(4)の波形相関ベクトルとは値が離れる。そこでこれらの波形相関ベクトルをクラスター分析することにより波形を分類できる(例えば、図7のクラスター分析結果(樹形図)701により、グループ1(702)、グループ2(703)に分類できる)。
 クラスター分析は、まず座標空間上の点位置を対象として、最短の距離となる2つのクラスターを統合して新たなクラスターを形成する(クラスター化)。クラスター化後に、さらに最短の距離を探索し、最後に1つのクラスターになるまでクラスター化を繰り返すという方法である。クラスター化の途中の幾つかのクラスターに応じてデータを分類できる。波形相関ベクトルは多変量の座標空間における位置として表現できるため、クラスター分析により波形を分類できる。
 このクラスター分析の概要を図8に示す。
 図8に示す分類の例は2次元空間上の位置で示している。まず、距離評価1(710)では位置(1)~(5)の全ての位置間の距離を求めて、最短の位置の組合せ(2)(3)を求める。統合1(720)において位置(2)(3)をクラスター721とし、2つの位置を代表する位置722を重心により決める。
 継いで、距離評価2(730)ではクラスター731とクラスター以外の位置(1)(4)(5)との距離を求めて、最短の位置(1)とクラスター731の組合せを求める。統合2(740)では位置(1)をクラスター化してクラスター741を求め、また、代表する位置を位置742から位置743とする。
 距離評価3(750)ではクラスター751と位置(4)(5)との距離を求め、最短の位置(4)(5)の組合せを求める。
 そして、統合3(760)では位置(4)(5)を新たにクラスター761とし、代表となる位置762を求める。このようにして最後には1つのクラスターが得られる。2つに分類する場合、クラスター751とクラスター761により分類が定まる。
 クラスターを形成することでデータを分類する方法として、k-means法、および自己組織化マップを用いることも可能である。k-means法とは、予め分割数を定めておき、各データ位置からの総和が最小となるような代表位置とその代表位置に近いデータの組合せを求めることで、クラスターを得る方法である。このアルゴリズムは次に示す通りである。
 1.指定した分割数に、データ集合をランダムに分割し、初期クラスターとする。
 2.各クラスターに含まれるデータの重心位置を計算する。
 3.全データについて、2.で計算した各クラスターの重心位置に最も近いクラスターにデータを割り当てる。
 4.前回の反復とクラスターに含まれるデータが変わらないならばクラスター化終了。そうでなければ2.に戻り、再度処理を繰り返す。
 自己組織化マップは、多次元のベクトルデータについて、データの差(距離)が近いものほど2次元でのマップ上で近くに配置する方法である。2次元のマップの各位置にベクトルの値を設定し、繰り返し計算でマップ各位置のベクトル値を各データの値により調整し、マップ上に各データの配置を求める。結果として2次元上でのデータの配置が得られるので、この配置に基づきデータを分類することになる。分類結果やクラスター同士の位置関係が確認しやすいという利点がある。
 波形相関ベクトルを参照して波形を分割した後に、代表波形を求める。
 波形相関ベクトルに基づき分類し、代表波形を求める方法を、図9に示す15波長の波形を例にして説明する。
 図9に示す波形は時間[秒]に対する発光強度の変化である。分類の対象となる波形は、物質との関連が高いスペクトルでのピークとなる波長における波形を参照する。スペクトルでピークとなる波長は、例えば、図1の発光スペクトル分布111に示すように、多数存在するため波形分類の対象となる波形は多数となる。
 図9に示す15波長の波形を、上記式(1)~(4)に基づき算出した相関行列を図10に示す。
 行列の行、列はそれぞれいずれも波形に対応し、(1)~(15)まで番号をつけている。図9において、幾つかの波長は上昇傾向を示し、また、幾つかの波形は下降傾向を示しているように、同様の傾向を示す波形同士は正の相関係数となり、特に類似している波形同士の場合、相関係数は1に近くなる。
 一方、相対する傾向となる波形同士(1つの波形は上昇、もうひとつの波形は下降)の相関係数は負となる。
 相関行列の各行、または各列をベクトルとすれば波形毎の波形相関ベクトルが得られる。この波形相関ベクトルをクラスター分析した結果を、図11の樹形図1001に示す。
 3分類する場合には樹形図1001の3つまでの分岐位置1002、1003、1004において、その位置より図11において左側にある波形をそれぞれのグループとして分類する。
 分類数を決めるためには、クラスター間の距離の大きさ、もしくはクラスターに含まれる波形相関ベクトルの平均や、クラスターに含まれる波形相関ベクトル中の相関係数の最小値、最大値といった値を参照すればよい。
 3分類した結果の、各グループに属する波形同士による相関行列を図12に示す。
 類似した波形同士の相関行列であるため、相関係数は1に近い値となる。代表波形を求めるためには、グループ内の特に高い相関係数値で類似しているものを代表とする基準とすれば、各グループ内の波形において相関係数の平均が最大となるものを代表波形とすればよい。
 グループ1では波形(12)1121、グループ2では波形(6)1122、グループ3では波形(5)1123が代表となる。
 図13に選定した3波長の波形1201を示す。グループ1は波形(12)1211と類似の上昇傾向、グループ2は波形(6)1212は上昇して下降、グループ3は波形(5)1213の下降傾向と分類された。これらの波形の波長をモニタすべき波長とできる。
 グループ内のいずれの波形とも平均的な波形を代表とするという基準とすれば、各グループ内波形の相関係数の平均に最も近い相関係数の組を持つ波形を代表とすればよい。代表的な波形の形状を求めるためには、ばらつきを低減するために同一グループの波形そのものの平均をとればよい。
 このようにしてモニタする波長を求めれば、以降の実際のエッチング処理時にOESデータより指定した波長における波形、すなわち発光強度をモニタできる。異常もしくは正常の判定基準を設定しておけば、エッチング処理の異常、正常判定をしてエッチング装置やエッチング処理を監視できる。
 検査によって得られた複数のエッチングの処理結果と選定した波長における波形、すなわち発光強度との関係を解析・評価でき、さらに、波形、発光強度とエッチング処理結果との関係を数式などによりモデル化しておけば、実際のエッチング処理時にエッチングの性能を評価し、またエッチング処理結果を推定できる。
 さらに、エッチング処理条件との関係もモデル化しておけば、エッチング処理時に指定した波長の波形、発光強度をモニタし、また必要に応じエッチング処理結果を検査することで、以降のエッチング処理でのエッチング条件を調整できる。
 次に、図14~図17により、本発明の一実施の形態に係るエッチング装置におけるある特定の波長におけるエッチング処理毎の波形の違いをモニタ、解析・評価するための方法について説明する。図14は本発明の一実施の形態に係るエッチング装置における同一波長における8回のエッチング処理の波形の一例を示す図、図15は本発明の一実施の形態に係るエッチング装置における同一波長における8波形の相関行列の一例を示す図、図16は本発明の一実施の形態に係るエッチング装置における同一波長における8波形の相関行列に基づくクラスター分析結果の一例を示す図、図17は本発明の一実施の形態に係るエッチング装置における同一波長における波形の強度判定基準の一例を示す図である。
 図14に8回分のエッチング処理についての、同一波長における波形のエッチング処理毎の変化1301を示す。
 同一種類のLSI製品の膜をエッチングしたときの波形であり、レシピ(エッチング処理条件)も同じである。エッチング処理を実施した順番は(1)、(2)、(3)と、順に(8)までとなっており、始めのうちの[(1)(2)(3)(4)]1311に対して、それ以降の[(5)(6)(7)(8)]1312は、時間[秒]1302について発光強度の低下が遅くなり、波形が大きく異なった。そこで、この違いに基づき波形相関クラスター分析により波形を分類する。
 図15に波形(1)~(8)についての相関行列を示す。
 波形(1)~(4)の間の相関係数の値が大きく、また波形(5)~(8)の間の相関係数の値も大きい。相関行列の各行、または各列を波形相関ベクトルとして、クラスター分析をする。
 結果の樹形図1501を図16に示す。
 クラスター間の距離に基づき、分岐位置1502と1503で(1)(2)(3)(4)のクラスターと(5)(6)(7)(8)のクラスターに分類できた。これにより、同一波長における一連のエッチング処理での波形を分類することで、(1)(2)(3)(4)までエッチング処理を行った後にエッチング処理に変化が発生したと、計算機処理にて自動的に判断できる。
 この変化に対応して、例えば、エッチングレートが上昇し、ゲート寸法が細くなってしまったとする。すなわち発光の低下が遅くなったためエッチングレートが上昇したことになる。よって発光強度が高い場合には異常が発生したと判断することができる。
 図17の同一波長における波形のエッチング処理毎の変化1601に示すように、発光強度低下が遅れていることを判定する時点1631と強度を判定する基準1632を設定しておくことで、エッチング処理での波形取得時点にエッチング処理の異常判定を行うことができる。
 次に、図18により、本発明の一実施の形態に係るエッチング装置におけるある特定の波長におけるエッチング処理毎の波形の違いを、相関係数により定量化して、エッチング処理をモニタする方法について説明する。図18は本発明の一実施の形態に係るエッチング装置におけるエッチング処理毎の発光強度、波形の相関係数、CDバイアスの変化の一例を示す図である。
 ここでは、上記図14に示す8波形を例にし、上記図15および図17も用いて説明する。
 まず、ある1つの波形を基準として、他の波形との相関係数を求める。上記式(1)~(4)において、インデクスkを固定して相関係数を算出することに相当し、例えば、波形(1)を基準とした場合、相関係数のエッチング(1)~(8)までの変化は、図15に示す相関行列の1列目(1、0.999、0.992、0.936、0.885、0.919、0.938、0.841)となる。
 図18に8回のエッチング処理についての、発光強度、波形(1)を基準とした場合の相関係数、CDバイアスの変化を示す。
 CD(Critical Dimension)とはゲート寸法であり、特にLSIチップ内で幅が狭いゲートのことを指す。CDバイアスとは、ゲートをエッチングする際のゲート上に形成されるレジストの幅とエッチング処理結果のゲート寸法との差である。
 エッチング処理毎の発光強度変化1701は、図17における判定時点1631における発光強度をエッチング処理毎にプロットしたものである。
 図17の(1)(2)(3)(4)に示す強度と(5)(6)(7)(8)に示す強度とは明らかな強度差がある。
 ところが、エッチング処理毎のCDバイアス変化1721によれば、エッチング処理(4)において既にCDバイアスが低下してしまっている。エッチング処理毎の相関係数変化1711によれば、CDバイアス変化1721と同様に、エッチング処理(4)において相関係数値の低下が見られる。
 これは、ある1時点の発光強度の情報ではなく、エッチング処理中の発光強度の変化、すなわち波形がエッチング処理性能に効いているためである。そこで、相関係数によりエッチング処理をモニタすれば、精度よくエッチング処理を判定できる。
 なお、ここでの相関係数の算出にはエッチング処理時間全体での波形を用いたが、エッチング処理中までのある時点までの波形を用いても、ある全エッチング処理中のある時間範囲の波形を用いて相関係数を算出してもよい。
 相関係数を用いてモニタする際、相関係数の値とエッチング処理結果の対応付けを、数式に基づき定量化しておけば、エッチング処理を実施した段階でエッチング処理結果を推定し、推定値に基づきエッチング処理のモニタや異常、正常を判定できる。
 1つの波長における波長の相関係数を入力xとし、1つのエッチング処理結果を出力yとして1次の線形関係によりモデル化する場合、数式は以下の式(5)となる。
Figure JPOXMLDOC01-appb-M000002
 ここで、aは係数、bは切片である。この係数、切片は実績値を用いた重回帰分析により決定できる。式(5)に示す数式に基づく推定値でエッチング処理をモニタするかの判断については、モデルによる出力yの実績値と推定値の相関係数が高ければ(1に近ければ)モニタ可能であるとすればよい。
 異常、正常の判定については上限、下限といった判定基準を設定すればよい。入力xと出力yの項数については、それぞれ多変量としてもよい。入力xのみ多変量とする場合には、式(5)の係数、切片決定と同様に重回帰分析により式の係数を決定すればよい。
 入力x、出力y共に多変量とする場合にはPLS(Partial Least Square)法という回帰分析により係数を決定すればよい。
 次に、図19~図24により、本発明の一実施の形態に係るエッチング装置における波形、すなわちエッチング処理時間に対する発光強度の変化に対する変化の有無を判定する方法について説明する。図19は本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の一例を示す図であり、強度変化有りと無しを示している。図20は本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の発光強度に対するヒストグラムの一例を示す図、図21は本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の一例を示す図、図22は本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の発光強度に対するヒストグラムの一例を示す図、図23は本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形のばらつき範囲を説明するための説明図、図24は本発明の一実施の形態に係るエッチング装置におけるばらつきを含む波形の歪度、尖度、変化指数の一例を示す図である。
 まず、波形の変化の有無を判定するために、変化を定量化する。波形データは、ばらつきを含むため、変化率や曲率で評価するにはばらつきの影響を取り除かなければならず、また、変化の仕方(変化の発生する時点や変化の大きさ)は波形により多様であるため、変化検出の基準時点・強度を定めるには、予め波形を分析しておかなければならない。
 変化率・曲率による変化有無の判定は、実用において多くの制約や限定が入ることとなる。そこで、ばらつきを含んだ波形の発光強度データを集計して、その統計量により定量化する方法をとっている。
 図19に変化の有る波形1(1803)と、ばらつきを含むが変化の無い波形2(1813)を示す。
 ばらつきは白色雑音的、すなわちばらつき発生の頻度は正規分布に従うものとする。よって波形2(1813)の強度の発生頻度は、ある一定の強度を中心とした正規分布となる。波形1(1803)は、ばらつきを含みながら、強度が上昇し、ある強度に収束する。
 これら波形の強度の発生頻度を比較したヒストグラムを図20に示す。
 図20において、x軸は強度、y軸はx軸の強度におけるデータの発生頻度である。波形2の分布1912は、波形2の平均1922の強度を中心とした正規分布となる。
 一方、波形1の分布1911は非対称な分布となり、波形1の平均1921と分布の最頻値であるピークがずれる。このピークが正規分布よりも鋭くなることも特徴である。
 このような頻度分布の違いを定量化するためには、歪度、尖度という統計量を用いればよい。
 歪度γ1は、以下の式(6)、尖度γ2は、以下の式(7)で定義される。なお、式は標本における偏り(制約条件)を取り除いた母集団に基づくものである。
Figure JPOXMLDOC01-appb-M000003
 ここでxは対象とするデータであり、すなわち発光強度のサンプルである。σは標準偏差であり、上記式(8)で定義されている。nはデータ数である。
 ここでは、母集団に基づく式を示したが、標本に基づく式により歪度、尖度を算出しても、目的である分布の偏りを定量化できる。歪度、尖度とも0(ゼロ)ならば正規分布となる。つまり0に近ければ、波形はばらつきだけを含んで、強度一定である。
 逆に、0から離れた値、例えば、1などの値をとなるならば波形はばらつきをもちながらも変化があることとなる。なお、歪度は正の値ならば右側に分布の裾野が長く、尖度は正ならば正規分布よりも尖った分布となる。
 しかしながら、波形が3次関数、5次関数といった変化をもつ場合にはヒストグラムが正規分布となるような場合がある。
 図21に、そのような波形の例[波形3(2003)]、図22に、そのヒストグラムを示す。このような場合には歪度、尖度で波形の変化有無を判定できない。
 波形3(2003)のような波形と、図19に示す波形2(1803)の違いを判定するためには、波形の強度変化の範囲(最大と最小の範囲)に着目すればよい。ばらつき自体が大きな強度の範囲となる場合も考えられるので、範囲の絶対値にだけ着目しても変化有無を判定できない。そこで範囲とばらつきの比率により変化を定量化する。
 図23を用いて、範囲とばらつきの比率による変化の定量化を説明する。
 波形3(2203)をサンプリングされた波形(データはz(t);tは時点)とすると、この波形は平滑化波形f(t)2207にばらつきを加えたものである。ばらつきの範囲は、波形の上側の包絡であるばらつき最大2204と波形の下側の包絡であるばらつき最小2205の差である。
 そこで、このばらつきの範囲を6σ(σは標準偏差)とおく。6σは、データ1000件中3点程度(確率1%以下)が、この範囲を逸脱するだけの、ほぼ全てのデータが満たす範囲であり、またデータが数十点以上ある場合にはσは安定して算出されるので、範囲の定義として妥当である。この仮定は以下の式(9)で表現される。
Figure JPOXMLDOC01-appb-M000004
 ここで、maxは最大値、minは最小値を意味する。
 ばらつきσを求めるために、2つの連続する発光強度に着目する。なお、平滑化波形f(t)2207の連続する時間間隔での変化Δf(t)=f(t+Δt)-f(t)は、ばらつきσよりも小さいと、現実的な波形の特徴を鑑み、仮定する。
 2つの連続する強度z(t)、z(t+Δt)の差の分散とばらつきσの関係は、以下の式(10)のように求まる。
Figure JPOXMLDOC01-appb-M000005
 ここでEは変数の期待値を意味する。
 式(9)に、式(10)のσを代入し、変形することにより、以下の式(11)を得る。
Figure JPOXMLDOC01-appb-M000006
 そこで、以下の式(12)により変化の有無を定量化する指数を定義する。
Figure JPOXMLDOC01-appb-M000007
 この指数を変化指数と呼ぶ。もしも波形に変化が無い場合、すなわち平滑化波形f(t)が、およそ一定である場合、変化指数は6程度となる。もし変化がある場合には変化指数は6よりも大きな値となる。変化指数の算出にはサンプリングされた発光強度だけを用いる。
 以上により歪度、尖度、変化指数で波形変化の有無が判定できる。いずれについても上限、下限を設定し、全てが上限、下限の範囲に収まるならば波形は変化無しとすればよい。例えば、歪度、尖度の上限を1、下限を-1とし、変化指数の上限を8、下限を4とおく。
 図24に示した波形の例によれば、波形(1)2301では変化指数が上限を超えるため波形変化あり、波形(2)2311では歪度が下限を超え、尖度、変化指数とも上限を超えるため波形変化ありと判定できる。
 一方、波形(3)2321、波形(4)2331では歪度、尖度、変化指数のいずれも上限、下限の範囲に収まるため波形変化無しと判定できる。
 なお、歪度、尖度、変化指数を求めるための波形の範囲については、全エッチング処理時間の範囲であっても、ある特定の時点の範囲であってもかまわない。
 次に、図25および図26により、これまでに示した波形相関クラスター分析、および波形変化の有無判定を活用した、モニタすべき波長を自動的に決定するエッチング装置、またエッチング処理結果と対応付けてエッチング処理をモニタするエッチング処理方法について説明する。図25および図26は本発明の一実施の形態に係るエッチング装置のエッチング処理方法を示すフローチャートであり、図25はモニタすべき波長を自動的に決定するエッチング装置におけるエッチング処理方法、図26はモニタすべき波長を自動的に決定し、エッチング処理結果と対応付けてエッチング処理をモニタするエッチング処理方法を示しており、エッチング装置におけるエッチング処理の異常・正常判定の例としている。
 まず、既に実施された1回以上のエッチング処理におけるOESデータが装置の計算機・記憶装置に格納されているものとする。
 モニタすべき波長を自動的に決定するエッチング装置におけるエッチング処理方法としては図25に示すように、1回以上のエッチング処理における、1つ以上の波長での波形を取得する(ステップ2401)。すなわち、エッチング装置の計算機が記憶装置よりデータを取り出す処理である。
 そして、取得した波形の変化有無を判定する(ステップ2402)。判定には、例えば、先に記載した歪度、尖度、変化指数を利用すればよい。波形に変化が無いと判定されたならば、その波形の波長はエッチングに影響しない物質に起因するとして、モニタの対象から除外する。ただし、エッチング処理において常に波形に変化が発生しないことをモニタすることを目的とするならば、その波長はモニタの対象となる。
 そして、変化の有る波形を対象として、波形間の相関行列を算出し(ステップ2403)、得られた相関行列の各列、または各行をベクトルとし、各波形に対応した波形相関ベクトルを取得する(ステップ2404)。
 そして、各波形の波形相関ベクトルに基づき波形分類する(ステップ2405)。分類には、例えば先に記載したクラスター分析を利用してもよいし、またk-means法、自己組織化マップを利用してもよい。
 そして、代表波形を選定し、その波形の波長を特定する(ステップ2406)。代表波形の選定には、例えば先に記載したように、同一グループに分類された各波形同士の、相関係数の平均値の最大値や、相関係数の最小値、最大値などを用いればよい。これによりモニタすべき波長が定まる。同一波長の複数のエッチング処理における波形を分類した場合には、波形に変化があった処理について分類されることとなる。
 エッチング処理の異常・正常判定のためには、判定の基準を定めなければならない。これには複数の同一波長における波形の平均やばらつきを利用して、例えば、平均±3σの範囲を正常とするなどと基準を自動決定すればよい。もしくはマニュアルで適宜決定する。同一波長の複数のエッチング処理に分類しているならば、グループ間の発光強度の差に基づき基準を決定する。発光強度に関する基準ではなく、基準とする波形に基づく相関係数の値を基準としてもよい。
 そして、ステップ2406で特定した波長と異常・正常判定基準をエッチング装置に設定する(ステップ2407)。波形の相関係数を利用する場合には基準とする波形も設定する。
 以降、ウェハのエッチング処理の繰り返しステップ2408~ステップ2412において、異常・正常判定を自動的に行う。
 エッチング処理を行い、OESモニタによるOESデータを取得し、ステップ2407で設定した波長における波形を取得する(ステップ2409)。
 そして、ステップ2407で設定した異常・正常判定基準に基づき判定する(ステップ2410)。
 ステップ2410で異常と判定された場合には、異常対策が実施される(ステップ2411)。例えば、エッチング装置としては自動的に処理をストップする、インターロックを掛けるといった処理であり、または異常を作業者などに通知し、部品交換する、条件を調整するといった作業である。
 ステップ2410で正常と判定された場合は、ステップ2408~ステップ2412の処理を繰り返す。
 エッチング処理結果と対応付けて、エッチング処理結果を解析・評価するためには、ステップ2407において特に異常・正常判定基準を設定する必要は無い。ステップ2409で取得した波形を記憶装置に格納しておき、また検査装置においてエッチング処理結果を測定した結果をエッチング装置に取得し、発光強度とエッチング処理結果の関係を回帰分析すればよい。基準とする波形を設定しておき、その波形と得られた波形との相関係数とエッチング処理結果の関係を回帰分析してもよい。
 またエッチング処理結果の精度を向上するためには、ステップ2409で波形とそのエッチング処理でのエッチング処理条件を記憶装置に格納しておき、検査結果であるエッチング処理結果をエッチング装置に取得するとともに、エッチング処理結果の目標値を取得し、検査したエッチング処理結果と目標値との差により、波形の発光強度を参照してエッチング処理条件を調整する。調整した処理条件を次回のエッチング処理時の処理条件とすればよい。
 なお、VM(Virtual Metrology)活用APC(Advanced Process Control)のように、エッチング処理結果と発光強度の関係が式で定まるならば、発光強度より直接に処理結果を推定し、エッチング処理結果の目標値との差により、エッチング処理条件を調整できる。波形の利用方法については、発光強度だけでなく基準とする波形との相関係数であってもよい。なお処理中に装置から得られるデータにより検査結果を推定することをVM(Virtual Metrology)と呼ぶ。
 また、プラズマ発光のための分析装置がエッチング装置に搭載される構成となっていても、外部コントローラを介して情報をやり取りすることで同様の処理を実現できる。
 次に、モニタすべき波長を自動的に決定し、エッチング処理結果と対応付けてエッチング処理をモニタするエッチング処理方法としては図26に示すように、まず、既に実施された1回以上のエッチング処理におけるOESデータがデータベース433に格納されているとする。OESデータ解析システム434では、1回以上のエッチング処理における、1つ以上の波長での波形を取得する(ステップ2501)。
 そして、取得した波形の変化有無を判定する(ステップ2502)。判定には、例えば先に記載した歪度、尖度、変化指数を利用すればよい。
 そして、変化の有る波形を対象として、波形間の相関行列を算出し(ステップ2503)、得られた相関行列の各列、または各行をベクトルとし、各波形に対応した波形相関ベクトルを取得する(ステップ2504)。
 そして、各波形の波形相関ベクトルに基づき波形分類する(ステップ2505)。分類には、例えば先に記載したクラスター分析を利用してもよいし、またk-means法、自己組織化マップを利用してもよい。
 そして、代表波形を選定し、その波形の波長を特定する(ステップ2506)。代表波形の選定には、例えば、先に記載したように、同一グループに分類された波形同士の、相関係数の平均値の最大値や、相関係数の最小値、最大値などを用いればよい。これによりモニタすべき波長が定まる。同一波長の複数のエッチング処理における波形を分類した場合には、波形に変化があった処理について分類されることとなる。
 そして、ステップ2506で特定した波長における発光強度とエッチング処理結果を対応付ける(ステップ2507)。
 なお、検査結果で測定されるエッチング処理結果はデータベース433に格納されているとする。発光強度とエッチング処理結果との関係を、回帰分析といった統計解析を利用して対応付けを行えばよい。エッチング処理結果の良否との関係ならば、例えば判別分析や平均・分散の検定、ニューラルネットワークやSVM(Support Vector Machine)も利用できる。基準とする波形を定め、その波形との相関係数とエッチング処理結果の関係を対応付けしてもよい。エッチング処理結果の良否に基づき、発光強度もしくは相関係数の基準を決定できる。
 そして、ステップ2506で特定した波長と異常・正常判定基準を設定する(ステップ2508)。波形の相関係数を利用する場合には基準とする波形も設定する。設定については、エッチング装置で直接に異常・正常を判定したい場合にはエッチング装置に設定し、エッチング装置401ではなくネットワークを介したシステム環境においてOESデータ解析システム434を利用して異常・正常を判定したい場合には、OESデータ解析システム434に設定する。判定の基準については波形そのものに関して設定してもよく、またはVM(Virtual Metrology)を活用するとしてエッチング処理結果に関して設定してもよい。
 以降、ウェハのエッチング処理の繰り返し、ステップ2509~ステップ2513において、異常・正常判定を自動的に行う。
 エッチング処理を行い、OESモニタによるOESデータを取得し、ステップ2508で設定した波長における波形を取得する(ステップ2510)。OESデータ解析システムで異常・正常判定を行う場合にはデータベースに波形を格納し、システムで取得可能としていなければならない。
 そしてステップ2508で設定した異常・正常判定基準に基づき判定する(ステップ2511)。VM(Virtual Metrology)活用の場合には得られた波形よりエッチング処理結果を推定してから判定する。
 ステップ2511で異常と判定された場合には、異常対策が実施される(ステップ2512)。
 ステップ2511で正常と判定された場合は、ステップ2409~ステップ2513の処理を繰り返す。
 なお、エッチング処理結果と対応付けること無しに、波形だけで異常・正常判定基準を決める場合にはステップ2507は不要となる。または、ステップ2507は、エッチング処理結果と対応付けてエッチング処理結果を解析・評価することでもある。自動的に処理せず、マニュアルで分析してもよい。
 また、エッチング処理結果の精度を向上するためには、ステップ2510で波形とそのエッチング処理でのエッチング処理条件をデータベース433に格納しておき、検査結果であるエッチング処理結果もデータベース433に格納する。
 OESデータ解析システム434では、エッチング処理結果の目標値を取得し、検査したエッチング処理結果と目標値との差により、波形の発光強度を参照してエッチング処理条件を調整する。調整した処理条件を次回のエッチング処理時の処理条件とすればよい。
 なお、VM(Virtual Metrology)活用APC(Advanced Process Control)のように、エッチング処理結果と発光強度の関係が式で定まるならば、発光強度より直接に処理結果を推定し、エッチング処理結果の目標値との差により、エッチング処理条件を調整できる。波形の利用方法については、発光強度だけでなく基準とする波形との相関係数であってもよい。
 以上のように、本実施の形態では、OESデータの波形について変化の大きさを定量化し、変化の有無を判定できるため、例えば、エッチング反応に寄与しないためにチャンバ内部で物質の量が変化しない波長を特定できる。もしくはエッチング反応に大きく影響して物質の量が大きく変化する発光の波長を特定できる。これにより終点検出用の波長を選定できる。
 また、複数の波長における波形から、代表的な波長を選定することができるため、例えば、LSIのゲート寸法、段差寸法、配線幅、アスペクト比(テーパー形状)といった寸法や、LER(Line Edge Roughness)やLWR(Line Width Roughness)といった性状、また異物数、チップ不良数、さらにはエッチングレート、エッチング量といったエッチング処理結果に影響する波長を限定して関係を評価・分析できる。また発光の波長を限定できることにより、エッチングのサンプルデータ数を少なくすることができるため、エッチングの条件出し工数を削減できる。
 また、エッチング装置の立ち上げ時においては、過去の同一種類の装置でのOESデータの波形を事前に分類しておくことにより、所定の反応が起こっているかを判断でき、立ち上げを効率化できる。また、モニタすべき発光波長を選定できるため、効率的に異常・正常の判定を準備できる。
 量産においては、OESデータはウェハ着工の度に取得できるため、波形の形状に基づき、すなわち反応の仕方の違いに基づき、着工の度に異常検知できる。
 メンテナンスの際にも、代表的な波長によりセッティングの良否を判定でき、さらに波形に基づき判定できるため、効率的かつ高精度に性能を確認できる。
 波形の分類では、各波形の相関行列より、波形同士の類似関係を表現する相関行列の行、または列ベクトルより類似性判定に基づく分類処理を行うことにより、波形同士の“形状”の類似性による分類が可能となる。全体的な類似・部分的な類似をまとめて評価でき、またエッチング処理時間範囲を限定することもない。波形“形状”の評価であるため、物質に関する情報、化学反応に関する情報も本分類処理については不要とすることができる。
 また、複数のエッチング処理において波形の相関係数を利用してエッチング処理をモニタすることで、異常、もしくは正常を判定することができる。
 また、複数のエッチング処理において、同一の波長での複数の波形を類似性に基づき分類することで、複数回のエッチング処理において違いが発生したエッチング処理を判断できる。
 特定の波長でのあるエッチング処理の波形を基準として、エッチング処理を繰り返し実施したときにその波長での波形と基準の波形との相関係数を評価することで、波形の変化を定量化できる。この相関係数により、異常、もしくは正常を判定、エッチング処理結果を解析・評価、エッチング処理の条件を調整でき、さらにエッチング処理結果との関係をモデル化することで、相関係数よりエッチング処理結果を推定できる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 本発明は、エッチング装置、およびエッチング装置におけるプラズマの発光をモニタする分析装置に関し、プロセスがエッチングでなくても、またプロセスの対象がウェハや半導体装置でなくても、プロセス処理中の複数の信号を取得する手段を備えており、信号を処理する計算機を備えて、プロセスをモニタする装置やシステムに広く適用可能である。
 101、102、103…発光スペクトルのビットマップ、104…時間、105…波長、106…発光強度のゲージ、107…エッチング処理内容の変更時点、111…発光スペクトル分布、121、122…波形、201…1次系反応、202…1次系反応式、203…2次系反応、204…2次系反応式、205…高次系反応、206…高次系反応式、211…化学反応式、221…時間、222…発光強度、231、232、233…波形、301…時間、302…強度、311、312、313、314、315、316、317…波形、401…エッチング装置、402…チャンバ、403…電極、404…プラズマ、405…ウェハ、406…電極、407…排気系、408…ガス供給系、409…装置コントローラ・外部通信装置、410…分光器(OES)、411…計算機・記憶装置、412…画面・ユーザーインターフェース、421…窓、422…光、431…検査装置、432…ネットワーク、433…データベース(DB)、434…OESデータ解析システム、511…ロット・ウェハ・ステップ別OESデータ検索・取得機能、512…ロット・ウェハ・ステップ別検査結果検索・取得機能、521…波形変化有無判定機能、522…波形相関行列算出機能、523…波形分類機能、524…代表波形選定機能、525…回帰分析機能、526…エッチング処理結果予測機能、527…異常・正常判定機能、528…エッチング条件調整機能、601…時間、602…強度、611、612、613、614…波形、621、622、623、624…波形相関ベクトル、631…相関行列、641…波形グラフ、642…時間、643…強度、651…波形の相関行列、652、653、654…波形相関ベクトル、701…クラスター分析結果(樹形図)、702…グループ1、703…グループ2、710…距離評価1、720…統合1、721…クラスター、722…重心、730…距離評価2、731…クラスター、732…重心、740…統合2、741…クラスター、742…前回のクラスターの重心、743…重心、750…距離評価3、751…クラスター、752…重心、760…統合3、761…クラスター、762…重心、801…波形グラフ、901…波形相関行列、1001…樹形図、1002、1003、1004…分岐位置、1101、1102、1103…波形の相関行列、1111、1112、1113…相関係数の平均、1121、1122、1123…代表の波形、1201…選定した3波長の波形グラフ、1202…時間、1203…強度、1211、1212、1213…波形、1301…同一波長における波長のエッチング処理毎の変化グラフ、1302…時間、1303…強度、1311、1312…波形、1401…波形相関行列、1501…樹形図、1502、1503…分岐位置、1601…同一波長における波長のエッチング処理毎の変化グラフ、1602…時間、1603…強度、1611、1612…波形、1631…判定時点、1632…強度判定基準、1701…エッチング処理毎の発光強度変化、1711…エッチング処理毎の相関係数変化、1721…エッチング処理毎のCDバイアス変化、1702、1712、1722…エッチング処理(着工順)、1703…強度、1713…相関係数、1723…CDバイアス、1801、1811…時間、1802、1812…強度、1803、1813…波形、1901…強度、1902…データ発生頻度、1911…波形1の分布、1912…波形2の分布、1921…波形1強度平均、1922…波形2強度平均、2001…時間、2002…強度、2003…波形、2004…範囲、2101…強度、2102…データ発生頻度、2103…波形3の分布、2104…波形3平均、2301、2311、2321、2331…波形グラフと歪度、尖度、変化指数、2302、2312、2322、2332…時間、2303、2313、2323、2333…強度。

Claims (13)

  1.  プラズマエッチング処理を行うためのチャンバと、プラズマを生成するための電極と、ガス供給・排気系と、前記プラズマの発光をモニタするための分光器と、前記分光器でモニタした信号を処理し、その処理結果を端末に表示させる計算機システムを備えたエッチング装置であって、
     前記計算機システムは、
     過去に実施した1回以上のエッチング処理中のプラズマ発光データにおける、複数のエッチング処理時間軸に沿った発光強度波形を取得する発光強度波形取得手段と、
     前記発光強度波形取得手段で取得された複数の前記発光強度波形において変化の有無を判定する波形変化有無判定手段と、
     前記波形変化有無判定手段で変化が有ると判定された前記発光強度波形間の相関行列を算出する波形相関行列算出手段と、
     前記波形相関行列算出手段で算出された相関行列の各列、または各行を、前記発光強度波形に対応したベクトルとし、前記ベクトルの値に基づき前記発光強度波形間の類似性を評価して、前記発光強度波形をグループに分類する波形分類手段と、
     前記波形分類手段で分類された前記グループより代表的な発光強度波形を選定し、選定した前記代表的な発光強度波形をエッチング性能またはウェハでのエッチング処理結果に影響のある発光強度波形として特定し、その発光強度波形が得られた波長をモニタすべき発光波長として決定して前記端末に表示させる代表波形選定手段とを備えたことを特徴とするエッチング装置。
  2.  請求項1記載のエッチング装置において、
     前記発光強度波形取得手段で取得する発光強度波形は、任意に指定した複数の波長における発光強度波形であることを特徴とするエッチング装置。
  3.  請求項1記載のエッチング装置において、
     前記発光強度波形取得手段で取得する発光強度波形は、発光スペクトル上でピークとなっている波長における波形であることを特徴とするエッチング装置。
  4.  請求項1記載のエッチング装置において、
     前記発光強度波形取得手段で取得する発光強度波形は、複数のエッチング処理での同一の波長での発光強度波形であることを特徴とするエッチング装置。
  5.  請求項1記載のエッチング装置において、
     前記波形分類手段は、クラスター分析、k-means法、または自己組織化マップを使用して、前記ベクトルの値に基づき前記発光強度波形間の類似性を評価することを特徴とするエッチング装置。
  6.  請求項1記載のエッチング装置において、
     前記波形変化有無判定手段は、前記発光強度波形の強度に関し、歪度、尖度、および前記強度のばらつきに対する強度変化範囲の値を求め、求めた前記歪度、前記尖度、前記強度のばらつきに対する強度変化範囲の値に基づいて、エッチング処理中に強度に変化があったかを判定することを特徴とするエッチング装置。
  7.  請求項6記載のエッチング装置において、
     前記ばらつきとは、前記発光強度波形の連続した強度の差の二乗平均の平方であり、
     前記強度変化範囲とは、前記発光強度波形の強度の最大値と最小値の差であり、
     前記ばらつきに対する強度変化範囲の値とは、前記強度変化範囲を前記ばらつきで除し、2の平方根を掛けた値であることを特徴とするエッチング装置。
  8.  請求項6記載のエッチング装置において、
     前記波形変化有無判定手段は、
     前記歪度が-1.0から1.0の値であり、
     前記尖度が-1.0から1.0の値であり、
     前記ばらつきに対する強度変化範囲の値が4から8のときに、
     前記発光強度波形は白色雑音的であって、強度に変化が無いと判定することを特徴とするエッチング装置。
  9.  プラズマの発光をモニタするための分光器と、前記分光器でモニタした信号を処理し、その処理結果を端末に表示させる計算機システムを備えた分析装置であって、
     前記計算機システムは、
     過去に実施した1回以上のエッチング処理中のプラズマ発光データにおける、複数のエッチング処理時間軸に沿った発光強度波形を取得する発光強度波形取得手段と、
     前記発光強度波形取得手段で取得された複数の前記発光強度波形において変化の有無を判定する波形変化有無判定手段と、
     前記波形変化有無判定手段で変化が有ると判定された前記発光強度波形間の相関行列を算出する波形相関行列算出手段と、
     前記波形相関行列算出手段で算出された相関行列の各列、または各行を、前記発光強度波形に対応したベクトルとし、前記ベクトルの値に基づき前記発光強度波形間の類似性を評価して、前記発光強度波形をグループに分類する波形分類手段と、
     前記波形分類手段で分類された前記グループより代表的な発光強度波形を選定し、選定した前記代表的な発光強度波形をエッチング性能またはウェハでのエッチング処理結果に影響のある発光強度波形として特定し、その発光強度波形が得られた波長をモニタすべき発光波長として決定して前記端末に表示させる代表波形選定手段とを備えたことを特徴とする分析装置。
  10.  エッチング装置または前記エッチング装置の分析装置を制御する計算機システムにより、
     過去に実施した1回以上のエッチング処理中のプラズマ発光データにおける、複数のエッチング処理時間軸に沿った発光強度波形を取得し、
     取得した複数の前記発光強度波形において変化の有無を判定し、
     変化が有ると判定された前記発光強度波形間の相関行列を算出し、
     前記相関行列の各列、または各行を、前記発光強度波形に対応したベクトルとし、前記ベクトルの値に基づき前記発光強度波形間の類似性を評価して、前記発光強度波形をグループに分類し、
     前記波形分類手段で分類された前記グループより代表的な発光強度波形を選定し、選定した前記代表的な発光強度波形の波長における発光強度とエッチング処理結果との関係を対応付けて、以降のエッチング処理実施時において、エッチング処理中の発光強度データから、前記代表的な発光強度波形の波長における発光強度をモニタすることを特徴とするエッチング処理方法。
  11.  エッチング装置または前記エッチング装置の分析装置を制御する計算機システムにより、
     過去に実施した複数のエッチング処理について、エッチング処理結果と、エッチング処理中のプラズマ発光データにおける同一波長でのエッチング処理時間軸に沿った発光強度波形を取得し、
     ある1つのエッチング処理での前記発光強度波形と、残り全てのエッチング処理での前記発光強度波形との相関係数を求め、
     前記発光強度波形の相関係数とエッチング処理結果との関係を対応付けて、エッチング処理実施時に前記発光強度波形の相関係数の値に基づきウェハでのエッチング処理をモニタすることを特徴とするエッチング処理方法。
  12.  請求項11記載のエッチング処理方法において、
     前記計算機システムにより、前記相関係数の値に基づく前記ウェハでの前記エッチング処理のモニタでは、前記発光強度波形の前記相関係数とエッチング処理結果との関係を代数式によりモデル化し、前記エッチング処理により得られた前記発光強度波形の相関係数を用いてエッチング処理結果を推定することを特徴とするエッチング処理方法。
  13.  エッチング処理を行うために計算機システムを、
     過去に実施した1回以上のエッチング処理中のプラズマ発光データにおける、複数のエッチング処理時間軸に沿った発光強度波形を取得する発光強度波形取得手段と、
     前記発光強度波形取得手段で取得された複数の前記発光強度波形において変化の有無を判定する波形変化有無判定手段と、
     前記波形変化有無判定手段で変化が有ると判定された前記発光強度波形間の相関行列を算出する波形相関行列算出手段と、
     前記波形相関行列算出手段で算出された相関行列の各列、または各行を、前記発光強度波形に対応したベクトルとし、前記ベクトルの値に基づき前記発光強度波形間の類似性を評価して、前記発光強度波形をグループに分類する波形分類手段と、
     前記波形分類手段で分類された前記グループより代表的な発光強度波形を選定し、選定した前記代表的な発光強度波形をエッチング性能またはウェハでのエッチング処理結果に影響のある発光強度波形として特定し、その発光強度波形が得られた波長をモニタすべき発光波長として決定して前記端末に表示させる代表波形選定手段として機能させることを特徴とするエッチング処理プログラム。
PCT/JP2009/069682 2009-03-17 2009-11-20 エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム WO2010106712A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/144,097 US8486290B2 (en) 2009-03-17 2009-11-20 Etching apparatus, analysis apparatus, etching treatment method, and etching treatment program
CN2009801544289A CN102282654B (zh) 2009-03-17 2009-11-20 蚀刻装置、分析装置、蚀刻处理方法、以及蚀刻处理程序
KR1020117013255A KR101215367B1 (ko) 2009-03-17 2009-11-20 에칭 장치, 분석 장치, 에칭 처리 방법, 및 에칭 처리 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-063896 2009-03-17
JP2009063896A JP5383265B2 (ja) 2009-03-17 2009-03-17 エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム

Publications (1)

Publication Number Publication Date
WO2010106712A1 true WO2010106712A1 (ja) 2010-09-23

Family

ID=42739378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069682 WO2010106712A1 (ja) 2009-03-17 2009-11-20 エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム

Country Status (6)

Country Link
US (1) US8486290B2 (ja)
JP (1) JP5383265B2 (ja)
KR (1) KR101215367B1 (ja)
CN (1) CN102282654B (ja)
TW (1) TWI384573B (ja)
WO (1) WO2010106712A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142625A (ja) * 2015-02-02 2016-08-08 西日本高速道路エンジニアリング四国株式会社 異常音の検出方法及びその検出値を用いた構造物の異常判定方法、並びに、振動波の類似度検出方法及びその検出値を用いた音声認識方法
US9464936B2 (en) 2013-03-15 2016-10-11 Hitachi High-Technologies Corporation Plasma processing apparatus and analyzing apparatus
US9767997B2 (en) 2013-07-18 2017-09-19 Hitachi High-Technologies Corporation Plasma processing apparatus and operational method thereof
CN114270472A (zh) * 2019-08-22 2022-04-01 东京毅力科创株式会社 用于等离子体刻蚀中的端点检测的合成波长
US11569135B2 (en) 2019-12-23 2023-01-31 Hitachi High-Tech Corporation Plasma processing method and wavelength selection method used in plasma processing
JP2023522479A (ja) * 2021-04-13 2023-05-30 ヴェリティー インストルメンツ,インコーポレイテッド スペクトル・フィルタリングのためのシステム、機器、及び方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346254B2 (ja) * 2009-08-26 2013-11-20 株式会社日立ハイテクノロジーズ 半導体製造装置の制御装置及び制御方法
EP2549523A4 (en) * 2010-03-16 2016-03-30 Mizuho Information & Res Inst SYSTEM, METHOD AND PROGRAM FOR PREDICTING A FINISHED FORM RESULTING FROM PLASMA PROCESSING
JP5699795B2 (ja) 2011-05-12 2015-04-15 富士通セミコンダクター株式会社 半導体装置の製造方法及半導体製造装置
JP5648157B2 (ja) 2011-12-28 2015-01-07 株式会社日立ハイテクノロジーズ 半導体製造装置
JP6002487B2 (ja) 2012-07-20 2016-10-05 株式会社日立ハイテクノロジーズ 分析方法、分析装置、及びエッチング処理システム
US9330990B2 (en) * 2012-10-17 2016-05-03 Tokyo Electron Limited Method of endpoint detection of plasma etching process using multivariate analysis
US9508042B2 (en) * 2012-11-05 2016-11-29 National Cheng Kung University Method for predicting machining quality of machine tool
US9435742B2 (en) * 2013-01-21 2016-09-06 Sciaps, Inc. Automated plasma cleaning system
US9360367B2 (en) 2013-01-21 2016-06-07 Sciaps, Inc. Handheld LIBS spectrometer
US9243956B2 (en) 2013-01-21 2016-01-26 Sciaps, Inc. Automated multiple location sampling analysis system
US9952100B2 (en) 2013-01-21 2018-04-24 Sciaps, Inc. Handheld LIBS spectrometer
US9267842B2 (en) 2013-01-21 2016-02-23 Sciaps, Inc. Automated focusing, cleaning, and multiple location sampling spectrometer system
JP6173851B2 (ja) * 2013-09-20 2017-08-02 株式会社日立ハイテクノロジーズ 分析方法およびプラズマエッチング装置
CN103839851A (zh) * 2014-03-17 2014-06-04 上海华虹宏力半导体制造有限公司 终点判断方法
JP6220319B2 (ja) * 2014-07-17 2017-10-25 株式会社日立ハイテクノロジーズ データ解析方法及びプラズマエッチング方法並びにプラズマ処理装置
KR102186070B1 (ko) * 2014-09-17 2020-12-07 세메스 주식회사 기판 처리 장치 및 플라즈마 처리 방법
US9664565B2 (en) 2015-02-26 2017-05-30 Sciaps, Inc. LIBS analyzer sample presence detection system and method
US9651424B2 (en) 2015-02-26 2017-05-16 Sciaps, Inc. LIBS analyzer sample presence detection system and method
JP6553398B2 (ja) 2015-05-12 2019-07-31 株式会社日立ハイテクノロジーズ プラズマ処理装置、データ処理装置およびデータ処理方法
JP6549917B2 (ja) 2015-06-26 2019-07-24 株式会社日立ハイテクノロジーズ プラズマ処理装置およびそのデータ解析装置
US10209196B2 (en) 2015-10-05 2019-02-19 Sciaps, Inc. LIBS analysis system and method for liquids
WO2017087378A1 (en) 2015-11-16 2017-05-26 Tokyo Electron Limited Advanced optical sensor and method for plasma chamber
JP6650258B2 (ja) * 2015-12-17 2020-02-19 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理装置の運転方法
US9939383B2 (en) 2016-02-05 2018-04-10 Sciaps, Inc. Analyzer alignment, sample detection, localization, and focusing method and system
CN109075066B (zh) 2016-03-31 2023-08-04 东京毅力科创株式会社 使用无晶片干式清洗发射光谱来控制干式蚀刻过程的方法
JP6850799B2 (ja) 2016-07-05 2021-03-31 株式会社ソニー・インタラクティブエンタテインメント アーム駆動装置
US10453653B2 (en) 2016-09-02 2019-10-22 Tokyo Electron Limited Endpoint detection algorithm for atomic layer etching (ALE)
KR102520779B1 (ko) 2016-11-18 2023-04-11 도쿄엘렉트론가부시키가이샤 제조 공정에서 입자 유도 아크 검출을 위한 조성 발광 분광법
KR20190121864A (ko) 2017-03-17 2019-10-28 도쿄엘렉트론가부시키가이샤 에칭 메트릭 향상을 위한 표면 개질 제어
KR101935394B1 (ko) * 2017-06-01 2019-04-03 주식회사 씨케이엘 제품 테스트 장치 및 이를 갖는 제품 테스트 설비
CN107728589B (zh) * 2017-09-25 2019-11-15 华南理工大学 一种柔性ic基板蚀刻显影工艺过程的在线监控方法
CN113924474A (zh) 2019-05-23 2022-01-11 东京毅力科创株式会社 使用高光谱成像的半导体过程的光学诊断
KR102132212B1 (ko) * 2019-06-13 2020-07-09 한국기초과학지원연구원 플라즈마 상태 진단 방법 및 장치
JP7413081B2 (ja) * 2020-02-28 2024-01-15 東京エレクトロン株式会社 基板処理システム
JP7467292B2 (ja) 2020-03-13 2024-04-15 東京エレクトロン株式会社 解析装置、解析方法及び解析プログラム
KR102375527B1 (ko) 2020-06-30 2022-03-18 주식회사 프라임솔루션 다채널 광스펙트럼 분석을 위한 머신러닝 모델을 이용한 플라즈마 식각공정 진단장치 및 이를 이용한 플라즈마 식각공정 진단방법
CN115349164A (zh) * 2021-03-15 2022-11-15 株式会社日立高新技术 等离子处理装置以及等离子处理方法
US20220392785A1 (en) * 2021-06-07 2022-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Small gas flow monitoring of dry etcher by oes signal
WO2023162856A1 (ja) * 2022-02-22 2023-08-31 株式会社Screenホールディングス 基板処理装置管理システム、支援装置、基板処理装置、チャンバ間性能比較方法およびチャンバ間性能比較プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217448A (ja) * 2001-11-29 2005-08-11 Hitachi Ltd 発光分光処理装置及びプラズマ処理方法
JP2006317371A (ja) * 2005-05-16 2006-11-24 Shimadzu Corp 発光分光分析方法及び発光分光分析装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877032A (en) * 1995-10-12 1999-03-02 Lucent Technologies Inc. Process for device fabrication in which the plasma etch is controlled by monitoring optical emission
US5347460A (en) 1992-08-25 1994-09-13 International Business Machines Corporation Method and system employing optical emission spectroscopy for monitoring and controlling semiconductor fabrication
US5711843A (en) * 1995-02-21 1998-01-27 Orincon Technologies, Inc. System for indirectly monitoring and controlling a process with particular application to plasma processes
US5658423A (en) * 1995-11-27 1997-08-19 International Business Machines Corporation Monitoring and controlling plasma processes via optical emission using principal component analysis
JPH09306894A (ja) 1996-05-17 1997-11-28 Sony Corp 最適発光スペクトル自動検出システム
US6153115A (en) 1997-10-23 2000-11-28 Massachusetts Institute Of Technology Monitor of plasma processes with multivariate statistical analysis of plasma emission spectra
US6368975B1 (en) 1999-07-07 2002-04-09 Applied Materials, Inc. Method and apparatus for monitoring a process by employing principal component analysis
US6741944B1 (en) * 1999-07-20 2004-05-25 Tokyo Electron Limited Electron density measurement and plasma process control system using a microwave oscillator locked to an open resonator containing the plasma
US6413867B1 (en) 1999-12-23 2002-07-02 Applied Materials, Inc. Film thickness control using spectral interferometry
US6603538B1 (en) * 2000-11-21 2003-08-05 Applied Materials, Inc. Method and apparatus employing optical emission spectroscopy to detect a fault in process conditions of a semiconductor processing system
JP4128339B2 (ja) 2001-03-05 2008-07-30 株式会社日立製作所 試料処理装置用プロセスモニタ及び試料の製造方法
JP3708031B2 (ja) 2001-06-29 2005-10-19 株式会社日立製作所 プラズマ処理装置および処理方法
CN100361278C (zh) * 2002-08-30 2008-01-09 株式会社日立高新技术 判定半导体制造工艺状态的方法和半导体制造装置
US6952657B2 (en) * 2003-09-10 2005-10-04 Peak Sensor Systems Llc Industrial process fault detection using principal component analysis
JP2005340547A (ja) 2004-05-28 2005-12-08 Hitachi High-Technologies Corp プラズマ処理装置
CN100372074C (zh) * 2004-09-02 2008-02-27 上海宏力半导体制造有限公司 等离子体刻蚀机台在预防维护工艺后的监控方法
JP4324701B2 (ja) * 2005-03-30 2009-09-02 株式会社島津製作所 発光分光分析装置
GB0508706D0 (en) * 2005-04-28 2005-06-08 Oxford Instr Plasma Technology Method of generating and using a plasma processing control program
JP4906556B2 (ja) 2007-03-27 2012-03-28 株式会社日立ハイテクノロジーズ プラズマエッチング装置およびプラズマエッチング方法
JP4547396B2 (ja) 2007-05-07 2010-09-22 株式会社日立製作所 試料処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217448A (ja) * 2001-11-29 2005-08-11 Hitachi Ltd 発光分光処理装置及びプラズマ処理方法
JP2006317371A (ja) * 2005-05-16 2006-11-24 Shimadzu Corp 発光分光分析方法及び発光分光分析装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464936B2 (en) 2013-03-15 2016-10-11 Hitachi High-Technologies Corporation Plasma processing apparatus and analyzing apparatus
US9767997B2 (en) 2013-07-18 2017-09-19 Hitachi High-Technologies Corporation Plasma processing apparatus and operational method thereof
US11424110B2 (en) 2013-07-18 2022-08-23 Hitachi High-Tech Corporation Plasma processing apparatus and operational method thereof
JP2016142625A (ja) * 2015-02-02 2016-08-08 西日本高速道路エンジニアリング四国株式会社 異常音の検出方法及びその検出値を用いた構造物の異常判定方法、並びに、振動波の類似度検出方法及びその検出値を用いた音声認識方法
CN114270472A (zh) * 2019-08-22 2022-04-01 东京毅力科创株式会社 用于等离子体刻蚀中的端点检测的合成波长
US11569135B2 (en) 2019-12-23 2023-01-31 Hitachi High-Tech Corporation Plasma processing method and wavelength selection method used in plasma processing
JP2023522479A (ja) * 2021-04-13 2023-05-30 ヴェリティー インストルメンツ,インコーポレイテッド スペクトル・フィルタリングのためのシステム、機器、及び方法
JP7419566B2 (ja) 2021-04-13 2024-01-22 ヴェリティー インストルメンツ,インコーポレイテッド スペクトル・フィルタリングのためのシステム、機器、及び方法

Also Published As

Publication number Publication date
CN102282654A (zh) 2011-12-14
TWI384573B (zh) 2013-02-01
US20110315661A1 (en) 2011-12-29
KR20110084302A (ko) 2011-07-21
TW201037779A (en) 2010-10-16
CN102282654B (zh) 2013-10-23
JP2010219263A (ja) 2010-09-30
US8486290B2 (en) 2013-07-16
KR101215367B1 (ko) 2012-12-26
JP5383265B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5383265B2 (ja) エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム
US20190064751A1 (en) Retrieval apparatus and retrieval method
US6952657B2 (en) Industrial process fault detection using principal component analysis
US9727049B2 (en) Qualitative fault detection and classification system for tool condition monitoring and associated methods
JP5648157B2 (ja) 半導体製造装置
KR101571928B1 (ko) 분석 방법, 분석 장치 및 에칭 처리 시스템
US20040147121A1 (en) Method and system for manufacturing a semiconductor device
CN112840205B (zh) 基于设计及噪声的关注区域
CN113092981B (zh) 晶圆数据检测方法及系统、存储介质及测试参数调整方法
JP6549917B2 (ja) プラズマ処理装置およびそのデータ解析装置
US20050010374A1 (en) Method of analysis of NIR data
JP4568786B2 (ja) 要因分析装置および要因分析方法
US20160203957A1 (en) Data analysis method for plasma processing apparatus, plasma processing method and plasma processing apparatus
GB2561879A (en) Spectroscopic analysis
Chouichi et al. Chamber-to-chamber discrepancy detection in semiconductor manufacturing
US11404253B2 (en) Plasma processing apparatus and analysis method for analyzing plasma processing data
US20060085165A1 (en) Method for determining a failure of a manufacturing condition, system for determining a failure of a manufacuring condition and method for manufacturing an industrial product
TW201620057A (zh) 晶圓的良率判斷方法以及晶圓合格測試的多變量偵測方法
CN111044504B (zh) 一种考虑激光诱导击穿光谱不确定性的煤质分析方法
JP4948238B2 (ja) 分布解析方法および装置、異常設備推定方法および装置、上記分布解析方法または異常設備推定方法をコンピュータに実行させるためのプログラム、並びに上記プログラムを記録したコンピュータ読み取り可能な記録媒体
KR101895707B1 (ko) 플라즈마 공정의 식각 종료점 진단방법
WO2024150704A1 (ja) コンピュータプログラム、分析方法及び分析装置
CN110286094B (zh) 一种基于聚类分析的光谱模型转移方法
Kerdprasop et al. Feature Selection Technique to Improve Performance Prediction in a Wafer Fabrication Process
CN118090658A (zh) 气体纯度检测方法、装置、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154428.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117013255

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13144097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841914

Country of ref document: EP

Kind code of ref document: A1