WO2010101188A1 - Resin-coated metallic material with excellent planar-direction thermal conductivity - Google Patents

Resin-coated metallic material with excellent planar-direction thermal conductivity Download PDF

Info

Publication number
WO2010101188A1
WO2010101188A1 PCT/JP2010/053449 JP2010053449W WO2010101188A1 WO 2010101188 A1 WO2010101188 A1 WO 2010101188A1 JP 2010053449 W JP2010053449 W JP 2010053449W WO 2010101188 A1 WO2010101188 A1 WO 2010101188A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
conductive particles
heat
metal material
thermal conductivity
Prior art date
Application number
PCT/JP2010/053449
Other languages
French (fr)
Japanese (ja)
Inventor
岳志 児嶋
平野 康雄
五十嵐 哲也
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020117020364A priority Critical patent/KR101316981B1/en
Priority to CN201080009307.8A priority patent/CN102333646B/en
Publication of WO2010101188A1 publication Critical patent/WO2010101188A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/38Paints containing free metal not provided for above in groups C09D5/00 - C09D5/36
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20963Heat transfer by conduction from internal heat source to heat radiating structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a resin-coated metal material having excellent surface direction heat conductivity, and in particular, an electronic device in which a heat source is in local contact with the metal material and high heat conductivity in the surface direction is strongly required.
  • the present invention relates to a resin-coated metal material suitably used as a material for parts (including electrical equipment parts and optical equipment parts). Examples of such electronic equipment components include a heat sink, a back chassis such as a thin television, and a metal casing (casing) that houses an electronic equipment component incorporating a heat source.
  • heat dissipating members that dissipate the heat generated from the heat sources inside the electronic devices.
  • heat dissipation members that are in local contact with heat sources, such as the back chassis of flat-screen televisions, can quickly diffuse the generated heat over a large area, that is, the thermal conductivity in the surface direction of the heat dissipation member. It is required to be excellent. If the thermal conductivity in the plane direction is low, a temperature gradient is generated in the plane direction, causing in-plane temperature dispersion, resulting in defects such as color irregularities on the light emitting surface and cracks in the glass substrate. .
  • the heat dissipating member is made of a metal material such as a steel plate and the heat source is in contact with the metal material
  • the heat conductivity in the surface direction can be increased instead of the heat conductivity in the thickness direction of the metal material.
  • the heat transfer path from the heat source to the steel plate and the outside can be considered in two directions: the thickness direction and the surface direction.
  • the heat transfer distance in the thickness direction is short, so the effect of increasing the heat transfer amount due to the improvement in the heat conductivity in the thickness direction is very small, whereas the heat transfer area in the surface direction is very wide, so the heat conductivity in the surface direction is This is because a dramatic increase in the amount of heat transfer due to can be expected.
  • Patent Document 1 discloses a metal material having a coating layer containing minute carbon fibers (typically carbon nanotubes) having an average aspect ratio of 3 or more as a material that can efficiently absorb and dissipate heat.
  • minute carbon fibers typically carbon nanotubes
  • the present invention has been made by paying attention to the above circumstances, and an object thereof is to provide a resin-coated metal material having excellent surface direction thermal conductivity.
  • the resin-coated metal material of the present invention is a resin-coated metal material in which at least one surface of a metal substrate is coated with a resin film containing thermally conductive particles, and image analysis is performed on a scanning electron micrograph of a cross section in the plane direction of the resin film. Then, the heat conductive particles observed in the measurement visual field satisfy the following requirements (1) to (3).
  • the average value of the oblateness represented by the value obtained by dividing the maximum length of the heat conducting particles by the minimum length (maximum length / minimum length) is 3.0 or more
  • the frequency ratio of the heat conducting particles existing in the range where the inclination angle is 0 ° or more and less than 30 ° is 40% or more.
  • the area ratio of the heat conductive particles is 30% or more.
  • the resin film has a surface direction thermal conductivity of 1.5 W / mK or more.
  • the thermally conductive particles are copper, aluminum, or graphite.
  • the resin-coated metal material is used for electronic equipment parts.
  • the present invention includes electronic device parts having the above resin-coated metal material within the scope of the present invention.
  • the present invention is configured as described above, a resin-coated metal material having high thermal conductivity in the surface direction could be provided.
  • a resin-coated metal material having high thermal conductivity in the surface direction could be provided.
  • a heat sink or a back chassis such as a thin TV that is particularly required to have high thermal conductivity in the surface direction. It is suitably used as a material for electronic device parts.
  • FIG. 1 is a diagram schematically showing thermally conductive particles in a resin film.
  • FIG. 9 is an inclination angle number distribution graph of 9 (example of the present invention). 3 shows No. 1 of Example 1. It is a photograph which shows the SEM image and image analysis result of 9 (invention example). 4 shows No. 1 of Example 1. It is a photograph which shows the SEM image of 11 (comparative example), and an image analysis result.
  • FIG. 14 is a photograph showing SEM images of 14 and 16 (examples of the present invention) and image analysis results. 6A shows No. 1 of Example 1.
  • FIG. 2 is a photograph showing SEM images and image analysis results of 2 to 5 (comparative examples). 6B shows No. 1 of Example 1.
  • FIG. 9 is an inclination angle number distribution graph of 9 (example of the present invention). 3 shows No. 1 of Example 1. It is a photograph which shows the SEM image and image analysis result of 9 (invention example). 4 shows No. 1 of Example 1. It is a photograph
  • FIG. 6 is a photograph showing SEM images of 6 to 8 (comparative examples) and image analysis results.
  • FIG. 7 is a schematic diagram for explaining the configuration of the measurement apparatus for the planar thermal conductivity used in the present invention.
  • FIG. It is an inclination angle number distribution graph of 9, 14, and 16 (invention example).
  • 9A shows No. 1 of Example 1.
  • FIG. 6 is an inclination angle number distribution graph of 2 to 6 (comparative example).
  • 9B shows No. 1 of Example 1.
  • It is an inclination angle number distribution graph of 7, 8, and 11 (comparative example).
  • 10A shows No. 1 of Example 1.
  • FIG. It is a photograph which shows the SEM image and image analysis apparatus of 9, 10, 12, 15 (invention example).
  • 10B shows No. 1 of Example 1.
  • FIG. 1 is a photograph which shows the SEM image and image analysis apparatus of 9, 10, 12, 15 (invention example).
  • the present inventors are particularly suitable as a material for a heat radiating member in which a heat source is locally in contact with the heat radiating member and high thermal conductivity in the surface direction is strongly required.
  • the desired high surface direction thermal conductivity cannot be obtained by simply adding a large amount of high thermal conductivity particles having high thermal conductivity into the resin film (see, for example, Nos. 3 and 4 in Table 2).
  • the shape and direction of the heat conduction particles are appropriately controlled. As a result, the present invention was completed.
  • the resin-coated metal material of the present invention is a resin in which a resin film containing heat conductive particles is coated on at least one surface (heat source side) of a metal substrate, and a scanning electron micrograph of a cross section in the plane direction of the resin film.
  • the (SEM photograph) is subjected to image analysis, the heat conductive particles observed in the measurement visual field satisfy the following requirements (1) to (3).
  • the average value of the oblateness represented by the value obtained by dividing the maximum length of the heat conducting particles by the minimum length (maximum length / minimum length) is 3.0 or more
  • the frequency ratio of the heat conducting particles existing in the range where the inclination angle is 0 ° or more and less than 30 ° is 40% or more.
  • the area ratio of the heat conductive particles is 30% or more.
  • the characteristic part of the present invention is that the above requirements (1) to (3) are defined as requirements that greatly contribute to the improvement of the thermal conductivity in the plane direction. As demonstrated in the examples described later, in the present invention, it is necessary to satisfy all of the above three requirements. If any one of the requirements does not satisfy the present invention, desired characteristics cannot be obtained.
  • FIG. 1 is a diagram schematically showing thermally conductive particles obtained by an image analysis means described in detail later.
  • the flatness defined in (1) above is calculated by the ratio (maximum length / minimum length) between the maximum length shown in FIG. 1 and the minimum length calculated based on the maximum length.
  • the minimum length is the length when the width of the parallel line is the minimum when the heat conducting particles are sandwiched between two straight lines parallel to the maximum length.
  • a value obtained by dividing the maximum length by the minimum length is defined as “the flatness of the heat conducting particles”.
  • the inclination angle (direction) defined in (2) above is the angle formed between the horizontal line in the surface direction and the line that extends the maximum length and intersects the horizontal line as shown in FIG.
  • the angle formed with the horizontal line in the surface direction means an angle with respect to a direction parallel to the surface of the resin film in a plane perpendicular to the surface of the resin film.
  • 0 ° or more and less than 90 ° shall be “more than or less than” and from 90 ° to 180 ° or less. Is “super, below”. Note that only 90 ° is included in the region of “80 ° or more and less than 90 °” or “over 90 ° and 100 ° or less”. As a result, the frequencies of all the particles existing within the inclination angle range of 0 to 180 ° can be expressed as the frequencies of the particles existing within the inclination angle range of 0 to 90 °.
  • the lower diagram of FIG. 2 is an arrangement of the tilt angle number distribution graph (tilt angle 0 to 180 °) shown in the upper diagram of FIG. 2 as described above, and exists within the range of the tilt angle 0 to 90 °.
  • the frequency of the heat conductive particles is shown in units of 10 °.
  • the sum of the frequencies existing in the range of the tilt angle of 0 to 30 ° is set within the range of the tilt angle of 0 to 90 °.
  • the value divided by the entire frequency (total frequency) existing in is defined as “frequency ratio of thermally conductive particles existing in a range where the inclination angle is 0 ° or more and less than 30 °”.
  • FIG. 3 shows No. 1 of Example 1 that satisfies all the requirements (1) to (3).
  • 9 is a photograph showing the SEM image of Example 9 (example of the present invention) and the image analysis result, and FIG. 11 (comparative example).
  • a large number of particles having a predetermined flat shape and having a predetermined inclination angle are present substantially continuously in the plane direction while being appropriately overlapped.
  • a heat path path
  • the direction of heat flow is indicated by ⁇ in the image analysis result of FIG.
  • FIG. 5 show results showing SEM images and image analysis results, as in FIG. It can be seen that a heat path useful for improvement is formed.
  • FIGS. 6A, 6B and 11 show No. 1 which does not satisfy any of the requirements (1) to (3). 2 to 8 and 18 (both are comparative examples). 6A, FIG. 6B, and FIG. 11, it can be seen that the heat path useful for improving the thermal conductivity in the plane direction is blocked, as in FIG. 4 described above.
  • the thermal conductivity in the surface direction of the resin film is 1.5 W / mK or more (preferably 1.55 W / mK or more, more preferably 1. 6 W / mK or higher, more preferably 1.65 W / mK or higher, and even more preferably 1.7 W / mK or higher).
  • a resin film having a very high thermal conductivity of 2.0 W / mK or more, and further 2.5 W / mK or more was obtained.
  • the thermal conductivity in the surface direction is determined by the “optical AC method” manufactured by a dedicated measuring device [Shinku-Riko. Inc.] (currently Alpac Riko. Inc.). Based on the thermal diffusivity obtained using the thermal constant measuring device PIT-R1 type]], it is calculated based on the following formula (1).
  • This apparatus is particularly useful as an apparatus for measuring the thermal diffusivity in the surface direction of a thin sample having a thickness of 0.3 mm or less.
  • Thermal conductivity in plane direction (W / mK) Thermal diffusivity ( ⁇ 10 ⁇ 6 ⁇ m 2 / sec) ⁇ specific heat (J / gK) ⁇ density (g / cm 3 ) ... (1)
  • FIG. 7 is a schematic diagram illustrating the configuration of the measurement apparatus used in the present invention.
  • a sample plate set in the apparatus (a manufacturing method will be described later) is irradiated with alternating waveform light, and the shutter is moved in the direction of the plate surface of the sample to emit light.
  • the thermal diffusivity D is calculated based on the following formula (2).
  • the method for preparing the sample plate to be set in the above measuring apparatus is as follows.
  • a resin film sample for measuring the thermal diffusivity (in the examples described later, a resin-coated polyimide film cut into a width of about 5 mm and a length of about 10 mm is used) is prepared.
  • the size of the sample to be cut may be about 5 mm in width, and the length may be slightly longer than 10 mm.
  • the light receiving surface of the sample is blackened.
  • an attached carbon spray (not shown) is used, and the sample is blackened by spraying the carbon spray so that the surface is uniformly black from a location about 30 cm away from the sample.
  • a sample plate with a thermocouple is attached to the side opposite to the light receiving surface of the sample.
  • a necessary and minimum amount of silver paste is applied to the intersection of the thermocouple sample plate and the sample plate, and the sample and the thermocouple are bonded.
  • the resin film is thin, a warpage of the sample may be observed. In this case, the sample may be cut longer and fixed to the thermocouple sample plate.
  • this sample plate is set in the above-described measuring apparatus.
  • the specific heat of the resin film sample in the above formula (1) was measured at room temperature using a differential scanning calorimeter (DSC220C manufactured by Seiko Instruments Inc.).
  • the vertical and horizontal sizes (mm) are accurately measured using a caliper.
  • the film thickness (micrometer) was calculated
  • the SEM image may be unclear.
  • a SEM photograph is printed, a PET film is stretched thereon, and the part of the additive
  • An image traced with black magic may be used for image analysis.
  • the average value of the flatness of the heat conducting particles is preferably as large as possible, preferably 3.2 or more, and more preferably 3.5 or more.
  • the upper limit of the average value of the flatness is not particularly limited from the viewpoint of the thermal conductivity in the surface direction, but is preferably about 20.0 in view of applicability and the like. More preferably 0.
  • the area ratio of the heat conductive particles is preferably as large as possible, preferably 32% or more, more preferably 35% or more.
  • the upper limit of the area ratio is not particularly limited from the viewpoint of the thermal conductivity in the plane direction. However, when workability and corrosion resistance are taken into consideration, the upper limit of the area ratio is preferably approximately 60%, more preferably 55%. .
  • the heat conductive particles used in the present invention are not particularly limited, and those usually used for heat radiating members and the like can be used. Specifically, those having a high thermal conductivity of about 30 W / mK or more are preferably used, and representative examples include copper, aluminum, graphite, Al 2 O 3 , SiC, and the like. These are known per se as having high thermal conductivity, but when added to the resin film by appropriately controlling their shape, inclination angle, etc., as demonstrated in the examples below. The surface direction thermal conductivity of can be kept high.
  • the preferable average particle diameter of the heat conductive particles is generally 1 to 40 ⁇ m, more preferably 1.5 to 35 ⁇ m.
  • the average particle diameter can be measured by, for example, a laser diffraction / scattering method (micro-track method).
  • the average particle size provided by the manufacturer may be referred to.
  • heat conductive particles used in the present invention may be used as the heat conductive particles used in the present invention.
  • copper such as 1200YP manufactured by Mitsui Mining & Mining & Smelting Co., Ltd .; MH-8802 manufactured by Asahi Kasei Chemicals Corporation
  • Aluminum such as MC-606, ME-12, M-701, GX-2134, BS-200; SP-20 manufactured by Nippon Graphite Industry Co., Ltd., Ito Graphite Mining Co., Ltd.
  • graphite such as SRP-7, CNP15, and the like.
  • the shape of the metal material used in the present invention is not particularly limited, and typically includes a metal plate, but other pipe materials, wire materials, bar materials, deformed materials, and the like can also be used. Further, the type of the metal material is not particularly limited, and those usually used for a housing of an electronic device component can be used. Taking a metal plate as an example, typically, a steel plate is exemplified, and a cold rolled steel plate, a hot rolled steel plate, a stainless steel plate and the like are exemplified.
  • various galvanized steel sheets such as electrogalvanized steel sheet (EG), hot dip galvanized steel sheet (GI), alloyed hot dip galvanized steel sheet (GA), Al-Zn galvanized steel sheet, and Cu galvanized steel sheet;
  • EG electrogalvanized steel sheet
  • GI hot dip galvanized steel sheet
  • GA alloyed hot dip galvanized steel sheet
  • Al-Zn galvanized steel sheet and Cu galvanized steel sheet
  • a steel plate that has been subjected to a surface treatment such as chromate treatment or phosphate treatment
  • a steel plate that has been subjected to a non-chromate treatment may be used.
  • a nonferrous metal plate is also applicable.
  • the resin film containing the heat conductive particles only needs to be formed on at least one surface (heat source side) of the metal material, and thereby, heat from the heat source is quickly diffused and transferred in the surface direction of the metal material. be able to.
  • the resin film may be provided not only on one side but also on both sides.
  • the resin (base resin) constituting the resin film used in the present invention is not particularly limited, and it is preferable to select an appropriate resin mainly depending on the use of the metal material.
  • the characteristic part of the present invention is the place where the requirements of the heat conductive particles useful for improving the planar thermal conductivity are specified, and the other requirements are not particularly limited as long as the effects of the present invention are not impaired. Because.
  • the metal material of the present invention is suitably used for a casing of an electronic device component and also requires good workability, it is preferable to use a polyester resin or an epoxy resin, a blend thereof or a modified resin. .
  • the present invention is not limited to this, and various resins useful for improving processability can be appropriately selected and used.
  • a resin suitable for improving corrosion resistance can be selected and used. Modification of the resin used in the present invention can be appropriately performed by those skilled in the art depending on the use of the metal material.
  • the resin film may be added with additive components that are usually added to the resin film.
  • the additive component include a rust preventive pigment, an antistatic agent, a weather resistance improving agent, and the like, and can be added within a range not impairing the function of the present invention.
  • well-known heat dissipation additives typically carbon black, oxides such as Co, Ni, Cu, Mn, Ag, Sn, sulfide, carbide, etc., and further TiO 2. 2 , ceramics, iron oxide, aluminum oxide, barium sulfate, silicon oxide, etc. may be added.
  • another film may be provided on the resin film, and such a metal material is also included in the scope of the present invention.
  • a known clear film may be coated on a resin film for the purpose of improving scratch resistance and fingerprint resistance.
  • the resin-coated metal material of the present invention is obtained by applying a coating material in which the above base resin, heat-conductive particles and, if necessary, other additives are dissolved or dispersed in a solvent, to the surface of the metal material by a known coating method and then drying. Alternatively, it can be manufactured by heat baking treatment.
  • the coating method is not particularly limited. For example, a roll coater method is applied to the surface of a base material that has been subjected to a pretreatment (for example, phosphate treatment, chromate treatment, etc.) after cleaning the surface. And a coating method using a spray method, a curtain flow coater method, etc., passing through a hot air drying oven, drying, or baking hardening.
  • the content of the heat conductive particles contained in the paint differs depending on the kind of the particles and the kind of resin or solvent used in combination, and it is difficult to determine uniquely, but generally, the paint 100
  • the amount is preferably about 10 to 70 parts by weight, more preferably about 15 to 65 parts by weight with respect to parts by weight.
  • the content of the base resin contained in the paint is different depending on the type of the resin and the type of thermally conductive particles and solvent used in combination, and it is difficult to determine uniquely.
  • the amount is preferably about 5 to 35 parts by mass, more preferably about 7 to 33 parts by mass with respect to 100 parts by mass of the paint.
  • an electrogalvanized steel plate (plate thickness 0.8 mm, Zn deposition amount 20 g / m 2 ) was prepared.
  • Each of the coating materials prepared as described above was applied to the original plate with a bar coater, baked at a maximum temperature (PMT) of 220 ° C. for 2 minutes, and then dried to have a resin film having a thickness of 10 to 20 ⁇ m.
  • a resin-coated metal plate was obtained.
  • the above-mentioned requirements (1) to (1) defined in the present invention are obtained by cutting the resin-coated metal plate obtained in this way on a surface parallel to the resin film and cutting it to about 15 mm ⁇ 25 mm according to the measurement procedure described above. 3) was measured.

Abstract

A resin-coated metallic material comprising a metallic base, at least one surface of which has been coated with a resinous coating film containing thermally conductive particles. When a photograph of a planar-direction section of the resinous coating film taken with a scanning electron microscope is subjected to image analysis, the thermally conductive particles observed in the field of view satisfy the following requirements (1) to (3). (1) The thermally conductive particles have an aspect ratio, which is the value obtained by dividing the maximum length by the minimum length of the particles (maximum length/minimum length), of 3.0 or higher on average, (2) when the thermally conductive particles are examined for the angle of inclination of the longest axis with the planar-direction horizontal line, the frequency of thermally conductive particles having an angle of inclination of 0º or larger but less than 30º is 40% or higher, and (3) the areal proportion of the thermally conductive particles is 30% or higher.

Description

面方向熱伝導性に優れた樹脂塗装金属材Resin-coated metal material with excellent surface direction thermal conductivity
 本発明は、面方向熱伝導性に優れた樹脂塗装金属材に関し、特に、熱源が当該金属材に対して局所的に接触しており、面方向における高い熱伝導性が強く要求される電子機器部品(電気機器部品や光学機器部品を含む。)の素材として好適に用いられる樹脂塗装金属材に関するものである。このような電子機器部品としては、例えば、ヒートシンク、薄型テレビなどのバックシャーシ(back chassis)、熱源を内蔵する電子機器部品を収容する金属製筐体(ケーシング)などが挙げられる。 The present invention relates to a resin-coated metal material having excellent surface direction heat conductivity, and in particular, an electronic device in which a heat source is in local contact with the metal material and high heat conductivity in the surface direction is strongly required. The present invention relates to a resin-coated metal material suitably used as a material for parts (including electrical equipment parts and optical equipment parts). Examples of such electronic equipment components include a heat sink, a back chassis such as a thin television, and a metal casing (casing) that houses an electronic equipment component incorporating a heat source.
 電子機器などの高性能化・小型化が益々進むにつれ、電子機器内部の熱源から発生する熱を放熱させる放熱部材の研究が活発に行なわれている。このうち、薄型テレビのバックシャーシなどのように熱源が局所的に接触している放熱部材では、発生した熱を迅速に広い面積に拡散させること、すなわち、放熱部材の面方向における熱伝導性に優れていることが要求される。面方向熱伝導性が低いと面方向に温度勾配が生じて面内温度のバラツキ(dispersion)が生じ、発光面の色むら(color unevenness)やガラス基板の割れなどの不具合が発生するからである。 As the performance and miniaturization of electronic devices and the like progress, research on heat dissipating members that dissipate the heat generated from the heat sources inside the electronic devices is actively conducted. Of these, heat dissipation members that are in local contact with heat sources, such as the back chassis of flat-screen televisions, can quickly diffuse the generated heat over a large area, that is, the thermal conductivity in the surface direction of the heat dissipation member. It is required to be excellent. If the thermal conductivity in the plane direction is low, a temperature gradient is generated in the plane direction, causing in-plane temperature dispersion, resulting in defects such as color irregularities on the light emitting surface and cracks in the glass substrate. .
 特に放熱部材が鋼板などの金属材で構成されており、熱源が当該金属材と接触している場合、当該金属材の厚さ方向の熱伝導率ではなく面方向の熱伝導率を高めることが極めて重要である。熱源が鋼板などの放熱部材と接触する場合、熱源から鋼板さらに外部へ伝熱する経路としては、厚さ方向と面方向の二つが考えられるが、鋼板のように板厚が薄い金属材では、厚さ方向の伝熱距離が短いため厚さ方向の熱伝導率向上による伝熱量増加の効果は非常に小さいのに対し、面方向の伝熱面積は非常に広いため面方向の熱伝導率向上による伝熱量の飛躍的な増加が期待できるからである。 In particular, when the heat dissipating member is made of a metal material such as a steel plate and the heat source is in contact with the metal material, the heat conductivity in the surface direction can be increased instead of the heat conductivity in the thickness direction of the metal material. Very important. When the heat source is in contact with a heat radiating member such as a steel plate, the heat transfer path from the heat source to the steel plate and the outside can be considered in two directions: the thickness direction and the surface direction. The heat transfer distance in the thickness direction is short, so the effect of increasing the heat transfer amount due to the improvement in the heat conductivity in the thickness direction is very small, whereas the heat transfer area in the surface direction is very wide, so the heat conductivity in the surface direction is This is because a dramatic increase in the amount of heat transfer due to can be expected.
 しかしながら、放熱部材に関する研究の多くは、熱源を内蔵する電子機器部品からの熱を外部に速やかに拡散させるとの観点から、放熱部材の厚さ方向における熱伝導率の向上に重点がおかれ、放熱部材の面方向における熱伝導率はあまり留意されていないのが実情である。例えば特許文献1には、熱の吸収と放散を効率よく行なうことができる材料として、平均アスペクト比が3以上の微小炭素繊維(代表的にはカーボンナノチューブ)を含有する被覆層を備えた金属材料が開示されているが、熱伝導率の測定方法を参酌すると、厚さ方向の熱伝導率のみを評価していると思われる。 However, much research on the heat dissipation member focuses on improving the thermal conductivity in the thickness direction of the heat dissipation member, from the viewpoint of quickly diffusing heat from the electronic device part incorporating the heat source to the outside. The fact is that the thermal conductivity in the surface direction of the heat dissipating member has not been paid much attention. For example, Patent Document 1 discloses a metal material having a coating layer containing minute carbon fibers (typically carbon nanotubes) having an average aspect ratio of 3 or more as a material that can efficiently absorb and dissipate heat. However, it is considered that only the thermal conductivity in the thickness direction is evaluated in consideration of the measurement method of thermal conductivity.
特開2005-199666号公報JP 2005-199666 A
 本発明は上記事情に着目してなされたものであって、その目的は、面方向熱伝導性に優れた樹脂塗装金属材を提供することにある。 The present invention has been made by paying attention to the above circumstances, and an object thereof is to provide a resin-coated metal material having excellent surface direction thermal conductivity.
 本発明の樹脂塗装金属材は、金属基材の少なくとも片面に熱伝導粒子を含む樹脂皮膜が被覆された樹脂塗装金属材であって、樹脂皮膜の面方向断面の走査型電子顕微鏡写真を画像解析したとき、測定視野中に観察される熱伝導粒子が下記(1)~(3)の要件を満足する。
(1)熱伝導粒子の最大長を最小長で割った値(最大長/最小長)で表される扁平率の平均値が3.0以上であり、
(2)熱伝導粒子の最大長が面方向の水平線となす傾斜角を測定したとき、傾斜角が0°以上30°未満の範囲内に存在する熱伝導粒子の度数割合が40%以上であり、
(3)熱伝導粒子の面積率が30%以上である。
The resin-coated metal material of the present invention is a resin-coated metal material in which at least one surface of a metal substrate is coated with a resin film containing thermally conductive particles, and image analysis is performed on a scanning electron micrograph of a cross section in the plane direction of the resin film. Then, the heat conductive particles observed in the measurement visual field satisfy the following requirements (1) to (3).
(1) The average value of the oblateness represented by the value obtained by dividing the maximum length of the heat conducting particles by the minimum length (maximum length / minimum length) is 3.0 or more,
(2) When the inclination angle between the maximum length of the heat conducting particles and the horizontal line in the plane direction is measured, the frequency ratio of the heat conducting particles existing in the range where the inclination angle is 0 ° or more and less than 30 ° is 40% or more. ,
(3) The area ratio of the heat conductive particles is 30% or more.
 本発明の好ましい実施形態において、上記樹脂皮膜の面方向熱伝導率は1.5W/mK以上である。 In a preferred embodiment of the present invention, the resin film has a surface direction thermal conductivity of 1.5 W / mK or more.
 本発明の好ましい実施形態において、上記熱伝導粒子は、銅、アルミニウム、または黒鉛である。 In a preferred embodiment of the present invention, the thermally conductive particles are copper, aluminum, or graphite.
 本発明の好ましい実施形態において、上記の樹脂塗装金属材は電子機器部品に用いられる。 In a preferred embodiment of the present invention, the resin-coated metal material is used for electronic equipment parts.
 本発明には、上記の樹脂塗装金属材を有する電子機器部品も本発明の範囲内に包含される。 The present invention includes electronic device parts having the above resin-coated metal material within the scope of the present invention.
 本発明は上記のように構成されているため、面方向における熱伝導性が高い樹脂塗装金属材を提供することができた。本発明の金属材を用いれば、金属材に接触している熱源によって生じる温度勾配の低下を防止できるため、特に面方向における高い熱伝導性が強く要求されるヒートシンクや薄型テレビなどのバックシャーシなどの電子機器部品の素材として好適に用いられる。 Since the present invention is configured as described above, a resin-coated metal material having high thermal conductivity in the surface direction could be provided. By using the metal material of the present invention, it is possible to prevent a decrease in temperature gradient caused by a heat source in contact with the metal material. Therefore, a heat sink or a back chassis such as a thin TV that is particularly required to have high thermal conductivity in the surface direction. It is suitably used as a material for electronic device parts.
図1は、樹脂皮膜中の熱伝導粒子を模式的に示す図である。FIG. 1 is a diagram schematically showing thermally conductive particles in a resin film. 図2は、実施例1のNo.9(本発明例)の傾斜角度数分布グラフである。FIG. 9 is an inclination angle number distribution graph of 9 (example of the present invention). 図3は、実施例1のNo.9(本発明例)のSEM画像および画像解析結果を示す写真である。3 shows No. 1 of Example 1. It is a photograph which shows the SEM image and image analysis result of 9 (invention example). 図4は、実施例1のNo.11(比較例)のSEM画像および画像解析結果を示す写真である。4 shows No. 1 of Example 1. It is a photograph which shows the SEM image of 11 (comparative example), and an image analysis result. 図5は、実施例1のNo.14、16(本発明例)のSEM画像および画像解析結果を示す写真である。FIG. 14 is a photograph showing SEM images of 14 and 16 (examples of the present invention) and image analysis results. 図6Aは、実施例1のNo.2~5(比較例)のSEM画像および画像解析結果を示す写真である。6A shows No. 1 of Example 1. FIG. 2 is a photograph showing SEM images and image analysis results of 2 to 5 (comparative examples). 図6Bは、実施例1のNo.6~8(比較例)のSEM画像および画像解析結果を示す写真である。6B shows No. 1 of Example 1. FIG. 6 is a photograph showing SEM images of 6 to 8 (comparative examples) and image analysis results. 図7は、本発明に用いられる面方向熱伝導率の測定装置の構成を説明する概略図である。FIG. 7 is a schematic diagram for explaining the configuration of the measurement apparatus for the planar thermal conductivity used in the present invention. 図8は、実施例1のNo.9、14、16(本発明例)の傾斜角度数分布グラフである。FIG. It is an inclination angle number distribution graph of 9, 14, and 16 (invention example). 図9Aは、実施例1のNo.2~6(比較例)の傾斜角度数分布グラフである。9A shows No. 1 of Example 1. FIG. 6 is an inclination angle number distribution graph of 2 to 6 (comparative example). 図9Bは、実施例1のNo.7、8、11(比較例)の傾斜角度数分布グラフである。9B shows No. 1 of Example 1. It is an inclination angle number distribution graph of 7, 8, and 11 (comparative example). 図10Aは実施例1のNo.9、10、12、15(本発明例)のSEM画像および画像解析装置を示す写真である。10A shows No. 1 of Example 1. FIG. It is a photograph which shows the SEM image and image analysis apparatus of 9, 10, 12, 15 (invention example). 図10Bは実施例1のNo.17、19、20(本発明例)のSEM画像および画像解析装置を示す写真である。10B shows No. 1 of Example 1. FIG. It is a photograph which shows the SEM image of 17, 19, and 20 (example of this invention) and an image-analysis apparatus. 図11は実施例1のNo.18(比較例)のSEM画像および画像解析装置を示す写真である。11 shows No. 1 of Example 1. It is a photograph which shows the SEM image of 18 (comparative example), and an image analyzer. 図12Aは、実施例1のNo.9、10、12(本発明例)の傾斜角度数分布グラフである。12A shows No. 1 of Example 1. FIG. It is an inclination angle number distribution graph of 9, 10, and 12 (example of this invention). 図12Bは、実施例1のNo.15、17(本発明例)の傾斜角度数分布グラフである。12B shows No. 1 of Example 1. FIG. 15 is an inclination angle number distribution graph of 15 and 17 (examples of the present invention). 図12Cは、実施例1のNo.19、20(本発明例)の傾斜角度数分布グラフである。12C shows No. 1 of Example 1. FIG. 19 is an inclination angle number distribution graph of 19 and 20 (examples of the present invention). 図13は、実施例1のNo.18(比較例)の傾斜角度数分布グラフである。13 shows No. 1 of Example 1. 18 is a graph showing the number of inclination angles distributed in 18 (comparative example).
 本発明者らは、電子機器用の放熱部材のなかでも、特に熱源が放熱部材に局所的に接しており、面方向における高い熱伝導性が強く要求される放熱部材の素材として好適に用いられる樹脂塗装金属材を提供するため、検討を重ねてきた。その結果、所望とする高い面方向熱伝導率は、樹脂皮膜中に熱伝導率が高い高熱伝導粒子を単純に多く添加するだけでは得られず(例えば表2のNo.3、4を参照)、熱伝導粒子の形状や方向(面方向の水平線に対する粒子の傾きの程度であって「傾斜角」で定義される。)が適切に制御されたものを樹脂皮膜中に所定の面積率で存在させることによって初めて得られることを見出し、本発明を完成した。 Among the heat radiating members for electronic devices, the present inventors are particularly suitable as a material for a heat radiating member in which a heat source is locally in contact with the heat radiating member and high thermal conductivity in the surface direction is strongly required. In order to provide resin-coated metal materials, investigations have been repeated. As a result, the desired high surface direction thermal conductivity cannot be obtained by simply adding a large amount of high thermal conductivity particles having high thermal conductivity into the resin film (see, for example, Nos. 3 and 4 in Table 2). In the resin film, the shape and direction of the heat conduction particles (the degree of inclination of the particles with respect to the horizontal line in the plane direction, defined by the “inclination angle”) are appropriately controlled. As a result, the present invention was completed.
 すなわち、本発明の樹脂塗装金属材は、金属基材の少なくとも片面(熱源側)に熱伝導粒子を含む樹脂皮膜が被覆された樹脂であって、樹脂皮膜の面方向断面の走査型電子顕微鏡写真(SEM写真)を画像解析したとき、測定視野中に観察される熱伝導粒子が下記(1)~(3)の要件を満足するところに特徴がある。
(1)熱伝導粒子の最大長を最小長で割った値(最大長/最小長)で表される扁平率の平均値が3.0以上であり、
(2)熱伝導粒子の最大長が面方向の水平線となす傾斜角を測定したとき、傾斜角が0°以上30°未満の範囲内に存在する熱伝導粒子の度数割合が40%以上であり、
(3)熱伝導粒子の面積率が30%以上である。
That is, the resin-coated metal material of the present invention is a resin in which a resin film containing heat conductive particles is coated on at least one surface (heat source side) of a metal substrate, and a scanning electron micrograph of a cross section in the plane direction of the resin film. When the (SEM photograph) is subjected to image analysis, the heat conductive particles observed in the measurement visual field satisfy the following requirements (1) to (3).
(1) The average value of the oblateness represented by the value obtained by dividing the maximum length of the heat conducting particles by the minimum length (maximum length / minimum length) is 3.0 or more,
(2) When the inclination angle between the maximum length of the heat conducting particles and the horizontal line in the plane direction is measured, the frequency ratio of the heat conducting particles existing in the range where the inclination angle is 0 ° or more and less than 30 ° is 40% or more. ,
(3) The area ratio of the heat conductive particles is 30% or more.
 このように本発明の特徴部分は、面方向熱伝導率の向上に大きく寄与する要件として、上記(1)~(3)の要件を規定したところにある。後記する実施例で実証したように、本発明では上記三つの要件を全て満足することが必要であり、いずれか一つの要件が本発明を満足しないものは、所望の特性が得られない。 Thus, the characteristic part of the present invention is that the above requirements (1) to (3) are defined as requirements that greatly contribute to the improvement of the thermal conductivity in the plane direction. As demonstrated in the examples described later, in the present invention, it is necessary to satisfy all of the above three requirements. If any one of the requirements does not satisfy the present invention, desired characteristics cannot be obtained.
 まず、図1を参照しながら、上記(1)に規定する扁平率、および上記(2)に規定する傾斜角を詳しく説明する。図1は、後に詳しく説明する画像解析手段によって得られる熱伝導粒子を模式的に示す図である。 First, the flatness defined in the above (1) and the inclination angle defined in the above (2) will be described in detail with reference to FIG. FIG. 1 is a diagram schematically showing thermally conductive particles obtained by an image analysis means described in detail later.
 上記(1)に規定する扁平率は、図1に示す最大長と、この最大長に基づいて算出される最小長との比(最大長/最小長)によって算出される。最小長は、最大長に平行な2本の直線で熱伝導粒子をはさんだとき、平行線の幅が最小となるときの長さとする。本発明では、最大長を最小長で割った値を「熱伝導粒子の扁平率」と定義する。 The flatness defined in (1) above is calculated by the ratio (maximum length / minimum length) between the maximum length shown in FIG. 1 and the minimum length calculated based on the maximum length. The minimum length is the length when the width of the parallel line is the minimum when the heat conducting particles are sandwiched between two straight lines parallel to the maximum length. In the present invention, a value obtained by dividing the maximum length by the minimum length is defined as “the flatness of the heat conducting particles”.
 上記(2)に規定する傾斜角(方向)は、図1に示すように面方向の水平線と、最大長を延長して水平線と交わる線とのなす角度とする。ここで、面方向の水平線となす角度とは、樹脂皮膜の表面に垂直な平面内において、樹脂被膜の表面に平行な方向に対する角度を意味する。次に、後記する解析手順に従い、傾斜角0~180°の範囲内に存在する熱伝導粒子の個数(度数)を10°毎に測定して傾斜角度数分布グラフを作成する。参考のため、後記する実施例の表1のNo.9の傾斜角度数分布グラフを図2の上図に示す。図2の横軸に傾斜角(10°、20°、最大180°まで)をプロットし、それぞれの傾斜角に対し、0°以上10°未満、10°以上20°未満などに存在する熱伝導粒子の度数(個)を棒グラフで示している。本発明では、傾斜角0°以上10°未満と170°超180°以下の結果は、いわば鏡像体(enantiomer)の関係にあるため同等とみなし、それぞれの傾斜角範囲内に存在する熱伝導粒子の度数を足し合わせる。全傾斜角範囲(0~180°)を10°毎に分割するに当たっては、上記例に示すように、0°以上90°未満までは「以上、未満」とし、90°超から180°以下までは「超、以下」とする。なお、90°のみは「80°以上90°未満」または「90°超100°以下」の領域に入れることにした。これにより、傾斜角0~180°の範囲内に存在する全ての粒子の度数を、傾斜角0~90°の範囲内に存在する粒子の度数として表すことができる。 The inclination angle (direction) defined in (2) above is the angle formed between the horizontal line in the surface direction and the line that extends the maximum length and intersects the horizontal line as shown in FIG. Here, the angle formed with the horizontal line in the surface direction means an angle with respect to a direction parallel to the surface of the resin film in a plane perpendicular to the surface of the resin film. Next, according to the analysis procedure described later, the number of thermal conductive particles (degrees) existing in the range of the tilt angle of 0 to 180 ° is measured every 10 °, and the tilt angle number distribution graph is created. For reference, No. 1 in Table 1 of Examples described later is used. The upper graph of FIG. The horizontal axis of FIG. 2 plots the inclination angle (10 °, 20 °, up to 180 °), and the heat conduction existing at 0 ° to less than 10 °, 10 ° to less than 20 °, etc. for each inclination angle. The frequency (number) of particles is shown as a bar graph. In the present invention, the results of the inclination angle of 0 ° or more and less than 10 ° and more than 170 ° and 180 ° or less are considered to be equivalent because of the relationship of the enantiomer, so that the heat conductive particles existing in the respective inclination angle ranges. Add the frequencies. When dividing the entire inclination angle range (0 to 180 °) every 10 °, as shown in the above example, 0 ° or more and less than 90 ° shall be “more than or less than” and from 90 ° to 180 ° or less. Is “super, below”. Note that only 90 ° is included in the region of “80 ° or more and less than 90 °” or “over 90 ° and 100 ° or less”. As a result, the frequencies of all the particles existing within the inclination angle range of 0 to 180 ° can be expressed as the frequencies of the particles existing within the inclination angle range of 0 to 90 °.
 図2の下図は、図2の上図に示す傾斜角度数分布グラフ(傾斜角0~180°)を上記のようにして整理したものであり、傾斜角0~90°の範囲内に存在する熱伝導粒子の度数を、10°単位で示したものである。本発明では、このようにして得られた図2の下図の傾斜角度数分布グラフに基づき、傾斜角0~30°の範囲内に存在する度数の合計を、傾斜角0~90°の範囲内に存在する度数全体(全度数)で除した値を、「傾斜角が0°以上30°未満の範囲内に存在する熱伝導粒子の度数割合」と定義する。 The lower diagram of FIG. 2 is an arrangement of the tilt angle number distribution graph (tilt angle 0 to 180 °) shown in the upper diagram of FIG. 2 as described above, and exists within the range of the tilt angle 0 to 90 °. The frequency of the heat conductive particles is shown in units of 10 °. In the present invention, based on the slope angle distribution graph shown in the lower part of FIG. 2 obtained as described above, the sum of the frequencies existing in the range of the tilt angle of 0 to 30 ° is set within the range of the tilt angle of 0 to 90 °. The value divided by the entire frequency (total frequency) existing in is defined as “frequency ratio of thermally conductive particles existing in a range where the inclination angle is 0 ° or more and less than 30 °”.
 次に、図3および図4を参照しながら、本発明の有用性を詳しく説明する。このうち図3は、上記(1)~(3)の要件をすべて満足する実施例1のNo.9(本発明例)のSEM画像および画像解析結果を示す写真であり、図4は、上記(3)の要件を満足しない実施例1のNo.11(比較例)の写真である。 Next, the usefulness of the present invention will be described in detail with reference to FIG. 3 and FIG. Among these, FIG. 3 shows No. 1 of Example 1 that satisfies all the requirements (1) to (3). 9 is a photograph showing the SEM image of Example 9 (example of the present invention) and the image analysis result, and FIG. 11 (comparative example).
 図3に示すように、本発明例では、所定の扁平形状を有し、且つ所定傾斜角の粒子が、面方向に向ってほぼ連続して、適度に重なり合いながら多数存在している。その結果、熱の通り道(経路)が面方向に向って形成され、面方向熱伝導率が高くなると考えられる。参考のため、図3の画像解析結果には熱の流れ方向を→で示している。 As shown in FIG. 3, in the example of the present invention, a large number of particles having a predetermined flat shape and having a predetermined inclination angle are present substantially continuously in the plane direction while being appropriately overlapped. As a result, it is considered that a heat path (path) is formed in the surface direction and the surface direction thermal conductivity is increased. For reference, the direction of heat flow is indicated by → in the image analysis result of FIG.
 これに対し、比較例では、図4に示すように面方向にわたって粒子が存在しない空洞箇所がいくつも存在している。そのため、面方向の熱の通り道が分断され、面方向熱伝導率が低くなると考えられる。 On the other hand, in the comparative example, as shown in FIG. 4, there are many hollow portions where no particles exist in the plane direction. Therefore, it is considered that the heat path in the surface direction is divided and the surface direction thermal conductivity is lowered.
 参考のため、上記以外の実施例1の結果を図5、図6A、図6B、図10Aから図10Cおよび図11に示す。このうち図5、図10Aおよび図10Bは、上記(1)~(3)の要件をすべて満足する実施例1のNo.9、10、12、14、15、16、17、19、20(いずれも本発明例)のSEM画像および画像解析結果を示す写真であり、前述した図3と同様に、面方向熱伝導率向上に有用な熱の経路が形成されていることが分かる。一方、図6A、図6Bおよび図11は、上記(1)~(3)のいずれかの要件を満足しないNo.2~8および18(いずれも比較例)の写真である。図6A、図6Bおよび図11では、前述した図4と同様に、面方向熱伝導率向上に有用な熱の経路が遮断されていることが分かる。 For reference, the results of Example 1 other than the above are shown in FIG. 5, FIG. 6A, FIG. 6B, FIG. 10A to FIG. Among these, FIG. 5, FIG. 10A and FIG. 10B show No. 1 of Example 1 which satisfies all the requirements (1) to (3). 9, 10, 12, 14, 15, 16, 17, 19, and 20 (all of the examples of the present invention) are photographs showing SEM images and image analysis results, as in FIG. It can be seen that a heat path useful for improvement is formed. On the other hand, FIGS. 6A, 6B and 11 show No. 1 which does not satisfy any of the requirements (1) to (3). 2 to 8 and 18 (both are comparative examples). 6A, FIG. 6B, and FIG. 11, it can be seen that the heat path useful for improving the thermal conductivity in the plane direction is blocked, as in FIG. 4 described above.
 上記(1)~(3)の要件をすべて満足する樹脂塗装金属材は、樹脂皮膜の面方向熱伝導率が1.5W/mK以上(好ましくは1.55W/mK以上、より好ましくは1.6W/mK以上、更に好ましくは1.65W/mK以上、更により好ましくは1.7W/mK以上)と高いものである。本発明によれば、後記する実施例に示すように、樹脂皮膜の面方向熱伝導率が2.0W/mK以上、更には2.5W/mK以上と、非常に高いものが得られた。 In the resin-coated metal material that satisfies all the above requirements (1) to (3), the thermal conductivity in the surface direction of the resin film is 1.5 W / mK or more (preferably 1.55 W / mK or more, more preferably 1. 6 W / mK or higher, more preferably 1.65 W / mK or higher, and even more preferably 1.7 W / mK or higher). According to the present invention, as shown in the examples to be described later, a resin film having a very high thermal conductivity of 2.0 W / mK or more, and further 2.5 W / mK or more was obtained.
 ここで、面方向の熱伝導率は、専用の測定装置[真空理工株式会社(Shinku-Riko.Inc.)(現アルパック理工株式会社(ULVAC-RIKO.Inc.))製の「光交流法熱定数測定装置PIT-R1型」]を用いて得られる熱拡散率をもとに、下式(1)に基づいて算出されるものである。この装置は、特に厚さ0.3mm以下の薄い試料の面方向の熱拡散率を測定するための装置として有用である。
 面方向の熱伝導率(W/mK)
=熱拡散率(×10-6 ×m2/sec)×比熱(J/gK)×密度(g/cm3
                     ・・・(1)
Here, the thermal conductivity in the surface direction is determined by the “optical AC method” manufactured by a dedicated measuring device [Shinku-Riko. Inc.] (currently Alpac Riko. Inc.). Based on the thermal diffusivity obtained using the thermal constant measuring device PIT-R1 type]], it is calculated based on the following formula (1). This apparatus is particularly useful as an apparatus for measuring the thermal diffusivity in the surface direction of a thin sample having a thickness of 0.3 mm or less.
Thermal conductivity in plane direction (W / mK)
= Thermal diffusivity (× 10 −6 × m 2 / sec) × specific heat (J / gK) × density (g / cm 3 )
... (1)
 上記(1)式における熱拡散率の測定方法を、図7を参照しながら説明する。図7は、本発明に用いられる上記測定装置の構成を説明する概略図である。図7に示すように、上記の測定装置では、装置内にセットした試料板(作製方法は後記する。)に交流波形の光を照射し、シャッターを試料の板面方向に移動させて光を遮蔽しながら、試料の板面方向の移動距離Lと、光が照射される面と反対側の面に取り付けられた熱電対により測定される交流温度Tacの絶対値の対数(ln|Tac|)の勾配dとから、下式(2)に基づいて熱拡散率Dを算出する。以下の実施例では、測定環境は大気中、室温であり、測定周波数[下式(2)中のf]は0.1Hzとした。
 熱拡散率D(m /sec)=π×f(Hz)/d (m-2) ・・・(2)
A method of measuring the thermal diffusivity in the above equation (1) will be described with reference to FIG. FIG. 7 is a schematic diagram illustrating the configuration of the measurement apparatus used in the present invention. As shown in FIG. 7, in the above measuring apparatus, a sample plate set in the apparatus (a manufacturing method will be described later) is irradiated with alternating waveform light, and the shutter is moved in the direction of the plate surface of the sample to emit light. The logarithm (ln | Tac |) of the absolute value of the AC temperature Tac measured by a moving distance L in the plate surface direction of the sample while being shielded and a thermocouple attached to the surface opposite to the surface irradiated with light And the thermal diffusivity D is calculated based on the following formula (2). In the following examples, the measurement environment was air and room temperature, and the measurement frequency [f in the following formula (2)] was 0.1 Hz.
Thermal diffusivity D (m 2 / sec) = π × f (Hz) / d 2 (m −2 ) (2)
 上記の測定装置にセットする試料板の作製方法は以下のとおりである。 The method for preparing the sample plate to be set in the above measuring apparatus is as follows.
 まず、熱拡散率測定用の樹脂皮膜試料(後記する実施例では、幅約5mm×長さ約10mmにカットした樹脂塗装ポリイミド膜を使用)を用意する。カットする試料のサイズは、幅が5mm程度あれば良く、長さは10mmより若干長くなっていても構わない。 First, a resin film sample for measuring the thermal diffusivity (in the examples described later, a resin-coated polyimide film cut into a width of about 5 mm and a length of about 10 mm is used) is prepared. The size of the sample to be cut may be about 5 mm in width, and the length may be slightly longer than 10 mm.
 次に、図7に示すように、上記試料の受光面を黒化処理する。詳細には付属のカーボンスプレー(図示せず)を用い、試料から約30cm離れた場所から表面が一様に黒くなるようにカーボンスプレーを吹きかけて試料を黒化させる。更に、試料の受光面とは反対側に熱電対付試料板を取り付ける。具体的には、図7に示すように、熱電対試料板と試料板の交差点に銀ペーストを必要且つ最小限の量だけ塗布し、試料と熱電対を接着する。その際、樹脂皮膜が薄いと.試料の反り(warpage)が見られることがあるが、その場合、長めに試料をカットして熱電対試料板に固定しても良い。 Next, as shown in FIG. 7, the light receiving surface of the sample is blackened. In detail, an attached carbon spray (not shown) is used, and the sample is blackened by spraying the carbon spray so that the surface is uniformly black from a location about 30 cm away from the sample. Furthermore, a sample plate with a thermocouple is attached to the side opposite to the light receiving surface of the sample. Specifically, as shown in FIG. 7, a necessary and minimum amount of silver paste is applied to the intersection of the thermocouple sample plate and the sample plate, and the sample and the thermocouple are bonded. At this time, if the resin film is thin, a warpage of the sample may be observed. In this case, the sample may be cut longer and fixed to the thermocouple sample plate.
 このようにして受光面が黒化処理され、受光面の反対側に電対試料板が取り付けられた試料板が得られるので、この試料板を上記の測定装置にセットする。 Since the light receiving surface is blackened in this way and a sample plate having a couple sample plate attached to the opposite side of the light receiving surface is obtained, this sample plate is set in the above-described measuring apparatus.
 また、上記(1)式における樹脂皮膜試料の比熱は、示差走査熱量計(Differential scanning calorimetry,セイコーインスツルメンツ(Seiko Instruments Inc.)製のDSC220C)を用いて室温で測定した。また、上記(1)式における上記樹脂皮膜試料の密度[重さ/(縦×横×厚さ)]を正確に測定するため、ノギスを用いて縦と横のサイズ(mm)を正確に測定し、扁平率の測定に用いたSEM断面写真から膜厚(μm)を求めた。 In addition, the specific heat of the resin film sample in the above formula (1) was measured at room temperature using a differential scanning calorimeter (DSC220C manufactured by Seiko Instruments Inc.). In addition, in order to accurately measure the density [weight / (length × width × thickness)] of the resin film sample in the formula (1), the vertical and horizontal sizes (mm) are accurately measured using a caliper. And the film thickness (micrometer) was calculated | required from the SEM cross-sectional photograph used for the measurement of flatness.
 このようにして得られた熱拡散率、比熱、および密度を上記(1)式に代入し、面方向の熱伝導率を算出した。 The thermal diffusivity, specific heat, and density thus obtained were substituted into the above equation (1), and the thermal conductivity in the plane direction was calculated.
 次に、上記(1)~(3)の測定手順を詳細に説明する。 Next, the measurement procedures (1) to (3) will be described in detail.
 まず、樹脂塗装金属材の樹脂皮膜と平行する面で切断し、樹脂皮膜の面方向断面を露出させる。この樹脂皮膜面方向断面を、走査電子顕微鏡(Carl Zeiss社製、SUPRA35)を用いてSEM断面写真を撮影する。観察倍率は1500倍とし、1視野当たり600μm×800μmの観察領域におけるSEMの反射電子像を撮影し、合計20箇所観察した(n数=20)。撮影したSEM写真を画像解析装置(ニレコ製、LUZEX AP 2006.11版)で処理し、最大長および最小長、平均面積率を求めた。なお、樹脂皮膜に含まれる熱伝導粒子などの添加剤の種類によってはSEM画像が不鮮明なことがあるが、その場合は、SEM写真を印刷し、その上にPETフィルムを張り、添加剤の部分を黒マジックでトレースした画像を画像解析に用いてもよい。 First, cut in a plane parallel to the resin film of the resin-coated metal material to expose the cross section in the surface direction of the resin film. A cross-sectional photograph of the SEM cross section is taken of the cross section in the resin film surface direction using a scanning electron microscope (SUPRA35, manufactured by Carl Zeiss). The observation magnification was 1500 times, and SEM reflected electron images were taken in an observation region of 600 μm × 800 μm per field of view, and a total of 20 places were observed (n number = 20). The photographed SEM photograph was processed with an image analyzer (manufactured by Nireco, LUZEX AP AP 2006.11 version), and the maximum length, minimum length, and average area ratio were determined. Depending on the type of additive such as heat conductive particles contained in the resin film, the SEM image may be unclear. In that case, a SEM photograph is printed, a PET film is stretched thereon, and the part of the additive An image traced with black magic may be used for image analysis.
 上記(1)について、本発明では、熱伝導粒子の扁平率の平均値は大きい程よく、好ましくは3.2以上であり、より好ましくは3.5以上である。なお、上記扁平率の平均値の上限は、面方向熱伝導性の観点からは特に限定されないが、塗工性(applicability)などを考慮すると、おおむね、20.0であることが好ましく、19.0であることがより好ましい。 Regarding the above (1), in the present invention, the average value of the flatness of the heat conducting particles is preferably as large as possible, preferably 3.2 or more, and more preferably 3.5 or more. The upper limit of the average value of the flatness is not particularly limited from the viewpoint of the thermal conductivity in the surface direction, but is preferably about 20.0 in view of applicability and the like. More preferably 0.
 また、上記(2)について、本発明では、傾斜角0°以上30°未満の範囲内に存在する熱伝導粒子の度数割合は多い程よく、好ましくは42%以上であり、より好ましくは45%以上である。 As for the above (2), in the present invention, the higher the frequency ratio of the heat conducting particles existing in the range of the inclination angle of 0 ° or more and less than 30 °, the better, preferably 42% or more, more preferably 45% or more. It is.
 また、上記(3)について、本発明では、熱伝導粒子の面積率は大きい程よく、好ましくは32%以上であり、より好ましくは35%以上である。なお、上記面積率の上限は、面方向熱伝導性の観点からは特に限定されないが、加工性や耐食性などを考慮すると、おおむね、60%であることが好ましく、55%であることがより好ましい。 As for the above (3), in the present invention, the area ratio of the heat conductive particles is preferably as large as possible, preferably 32% or more, more preferably 35% or more. The upper limit of the area ratio is not particularly limited from the viewpoint of the thermal conductivity in the plane direction. However, when workability and corrosion resistance are taken into consideration, the upper limit of the area ratio is preferably approximately 60%, more preferably 55%. .
 以上、本発明を特徴付ける上記(1)~(3)の要件について説明した。 The requirements (1) to (3) that characterize the present invention have been described above.
 本発明に用いられる熱伝導粒子は特に限定されず、放熱部材などに通常用いられるものを使用することができる。具体的には、熱伝導率が約30W/mK以上の高い熱伝導率を有するものが好ましく用いられ、代表的には銅、アルミニウム、黒鉛、Al 、SiCなどが挙げられる。これらはそれ自体、高い熱伝導率を有するものとして知られているが、後記する実施例で実証したように、これらの形状や傾斜角などを適切に制御することによって樹脂皮膜中に添加したときの面方向熱伝導率を高く維持することができた。 The heat conductive particles used in the present invention are not particularly limited, and those usually used for heat radiating members and the like can be used. Specifically, those having a high thermal conductivity of about 30 W / mK or more are preferably used, and representative examples include copper, aluminum, graphite, Al 2 O 3 , SiC, and the like. These are known per se as having high thermal conductivity, but when added to the resin film by appropriately controlling their shape, inclination angle, etc., as demonstrated in the examples below. The surface direction thermal conductivity of can be kept high.
 上記熱伝導粒子の好ましい平均粒径は、おおむね、1~40μmであり、より好ましくは1.5~35μmである。平均粒径は、例えばレーザー回折・散乱法(マイクロトラック法(micro-track method))により測定することができる。後記する実施例のように市販品を用いる場合は、メーカー提供の平均粒径を参照すれば良い。詳細には、上記熱伝導粒子の平均粒径は、樹脂皮膜の厚さとの関係で適切に制御することが好ましい。樹脂皮膜の厚さに対して熱伝導粒子の平均粒径が大き過ぎると、樹脂皮膜中の熱伝導粒子の傾斜角のバラツキが大きくなり、上記(2)の要件を満足しなくなる恐れがあるからである。具体的には、樹脂皮膜の厚さに対して熱伝導粒子の平均粒径を、おおむね、0.1~5倍の範囲内に制御することが好ましい。 The preferable average particle diameter of the heat conductive particles is generally 1 to 40 μm, more preferably 1.5 to 35 μm. The average particle diameter can be measured by, for example, a laser diffraction / scattering method (micro-track method). When using a commercial product as in the examples described later, the average particle size provided by the manufacturer may be referred to. Specifically, it is preferable to appropriately control the average particle diameter of the heat conductive particles in relation to the thickness of the resin film. If the average particle size of the heat conductive particles is too large with respect to the thickness of the resin film, the variation in the inclination angle of the heat conductive particles in the resin film becomes large, and the above requirement (2) may not be satisfied. It is. Specifically, it is preferable to control the average particle diameter of the heat conductive particles within a range of about 0.1 to 5 times the thickness of the resin film.
 本発明に用いられる熱伝導粒子は市販品を用いても良い。具体的には後記する実施例で用いたもの以外に、例えば、三井金属鉱業(Mitsui Mining&Smelting CO.,Ltd.)製の1200YPなどの銅;旭化成ケミカルズ(Asahi Kasei Chemicals Corporation)製のMH-8802、MC-606、ME-12、M-701、GX-2134、BS-200などのアルミニウム;日本黒鉛工業(Nippon Graphite Industory Co.,Ltd)製のSP-20、伊藤黒鉛鉱業(Ito Kokuen Co,Ltd)製のSRP-7、CNP15などの黒鉛などが例示される。 Commercially available products may be used as the heat conductive particles used in the present invention. Specifically, in addition to those used in the examples described below, for example, copper such as 1200YP manufactured by Mitsui Mining & Mining & Smelting Co., Ltd .; MH-8802 manufactured by Asahi Kasei Chemicals Corporation Aluminum such as MC-606, ME-12, M-701, GX-2134, BS-200; SP-20 manufactured by Nippon Graphite Industry Co., Ltd., Ito Graphite Mining Co., Ltd. And graphite such as SRP-7, CNP15, and the like.
 本発明に用いられる金属材の形状は特に限定されず、代表的には金属板が挙げられるが、それ以外の管材、線材、棒材、異形材なども用いることができる。また、金属材の種類も特に限定されず、電子機器部品の筐体などに通常用いられるものを使用することができる。金属板を例に挙げると、代表的には鋼板が挙げられ、冷延鋼板、熱延鋼板、ステンレス鋼板などが例示される。また、電気亜鉛めっき鋼板(EG)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、Al-Znめっき鋼板などのAl系めっき鋼板、Cu系めっき鋼板などの各種めっき鋼板;クロメート処理(chromate treatment)やリン酸塩処理などの表面処理が施された鋼板;ノンクロメート処理が施された鋼板を用いても良い。あるいは、非鉄金属板も適用可能である。 The shape of the metal material used in the present invention is not particularly limited, and typically includes a metal plate, but other pipe materials, wire materials, bar materials, deformed materials, and the like can also be used. Further, the type of the metal material is not particularly limited, and those usually used for a housing of an electronic device component can be used. Taking a metal plate as an example, typically, a steel plate is exemplified, and a cold rolled steel plate, a hot rolled steel plate, a stainless steel plate and the like are exemplified. Also, various galvanized steel sheets such as electrogalvanized steel sheet (EG), hot dip galvanized steel sheet (GI), alloyed hot dip galvanized steel sheet (GA), Al-Zn galvanized steel sheet, and Cu galvanized steel sheet; A steel plate that has been subjected to a surface treatment such as chromate treatment or phosphate treatment; a steel plate that has been subjected to a non-chromate treatment may be used. Or a nonferrous metal plate is also applicable.
 上記の熱伝導粒子を含む樹脂皮膜は、上記金属材の少なくとも片面(熱源側)に形成されていれば良く、これにより、熱源からの熱を金属材の面方向に速やかに拡散、伝熱させることができる。樹脂皮膜は、片面だけでなく両面に設けられていても良い。 The resin film containing the heat conductive particles only needs to be formed on at least one surface (heat source side) of the metal material, and thereby, heat from the heat source is quickly diffused and transferred in the surface direction of the metal material. be able to. The resin film may be provided not only on one side but also on both sides.
 本発明に用いられる樹脂皮膜を構成する樹脂(ベース樹脂)は特に限定されず、主に金属材の用途に応じ、適切な樹脂を選択することが好ましい。上述したように本発明の特徴部分は、面方向熱伝導率の向上に有用な熱伝導粒子の要件を特定したところにあり、その他の要件は、本発明の作用を損なわない限り、特に限定されないからである。本発明の金属材は電子機器部品の筐体に好適に用いられ、良好な加工性も要求されることを考慮すると、ポリエステル系樹脂またはエポキシ系樹脂、それらのブレンド物や変性樹脂の使用が好ましい。勿論これに限定する趣旨ではなく、加工性向上に有用な種々の樹脂を適宜選択して用いることができる。更に耐食性なども要求される場合には、耐食性向上に適した樹脂を選択して用いることができる。本発明に用いられる樹脂の改変は、金属材の用途に応じ、当業者が適切に行なうことができる。 The resin (base resin) constituting the resin film used in the present invention is not particularly limited, and it is preferable to select an appropriate resin mainly depending on the use of the metal material. As described above, the characteristic part of the present invention is the place where the requirements of the heat conductive particles useful for improving the planar thermal conductivity are specified, and the other requirements are not particularly limited as long as the effects of the present invention are not impaired. Because. In consideration of the fact that the metal material of the present invention is suitably used for a casing of an electronic device component and also requires good workability, it is preferable to use a polyester resin or an epoxy resin, a blend thereof or a modified resin. . Of course, the present invention is not limited to this, and various resins useful for improving processability can be appropriately selected and used. Furthermore, when corrosion resistance is also required, a resin suitable for improving corrosion resistance can be selected and used. Modification of the resin used in the present invention can be appropriately performed by those skilled in the art depending on the use of the metal material.
 上記樹脂皮膜は、上記の熱伝導粒子と樹脂のほか、樹脂皮膜に通常添加される添加成分を添加しても良い。上記添加成分としては、例えば防錆顔料、帯電防止剤、耐候性改善剤などが例示され、本発明の作用を損なわない範囲で添加することができる。あるいは放熱性の向上を目的として、周知の放熱性添加剤(代表的にはカーボンブラックのほか、Co,Ni,Cu,Mn,Ag,Snなどの酸化物、硫化物、カーバイドなど、更にはTiO 、セラミックス、酸化鉄、酸化アルミニウム、硫酸バリウム、酸化ケイ素など)を添加しても良い。 In addition to the above heat conductive particles and resin, the resin film may be added with additive components that are usually added to the resin film. Examples of the additive component include a rust preventive pigment, an antistatic agent, a weather resistance improving agent, and the like, and can be added within a range not impairing the function of the present invention. Alternatively, for the purpose of improving heat dissipation, well-known heat dissipation additives (typically carbon black, oxides such as Co, Ni, Cu, Mn, Ag, Sn, sulfide, carbide, etc., and further TiO 2. 2 , ceramics, iron oxide, aluminum oxide, barium sulfate, silicon oxide, etc.) may be added.
 また、上記樹脂皮膜の上に他の皮膜を有していても良く、このような金属材も本発明の範囲内に包含される。例えば、耐疵付き性(scratch resistance)及び耐指紋性(fingerprint resistance)の向上を目的として、周知のクリアー皮膜を樹脂皮膜の上に被覆しても良い。 Further, another film may be provided on the resin film, and such a metal material is also included in the scope of the present invention. For example, a known clear film may be coated on a resin film for the purpose of improving scratch resistance and fingerprint resistance.
 本発明の樹脂塗装金属材は、上記のベース樹脂および熱伝導粒子、必要に応じて他の添加剤を溶剤に溶解あるいは分散した塗料を、公知の塗装法で金属材の表面に塗布して乾燥し、或いは加熱焼付け処理することによって製造することができる。塗装方法は特に限定されないが、例えば表面を清浄化して、必要に応じて塗装前処理(例えばリン酸塩処理、クロメート処理など)を施した基材の表面に、ロールコーター法(roll coater method)、スプレー法、カーテンフローコーター法(curtain flow coater method)などを用いて塗料を塗工し、熱風乾燥炉を通過させて乾燥し、或いは焼付け硬化させる方法などが挙げられる。 The resin-coated metal material of the present invention is obtained by applying a coating material in which the above base resin, heat-conductive particles and, if necessary, other additives are dissolved or dispersed in a solvent, to the surface of the metal material by a known coating method and then drying. Alternatively, it can be manufactured by heat baking treatment. The coating method is not particularly limited. For example, a roll coater method is applied to the surface of a base material that has been subjected to a pretreatment (for example, phosphate treatment, chromate treatment, etc.) after cleaning the surface. And a coating method using a spray method, a curtain flow coater method, etc., passing through a hot air drying oven, drying, or baking hardening.
 上記塗料中に含まれる熱伝導粒子の含有量は、当該粒子の種類や組み合わせて用いられる樹脂や溶剤の種類などによっても相違し、一義的に決定することは困難であるが、おおむね、塗料100質量部に対し、約10~70質量部であることが好ましく、より好ましくは約15~65質量部である。同様に、上記塗料中に含まれるベース樹脂の含有量は、当該樹脂の種類や組み合わせて用いられる熱伝導粒子や溶剤の種類などによっても相違し、一義的に決定することは困難であるが、おおむね、塗料100質量部に対し、約5~35質量部であることが好ましく、より好ましくは約7~33質量部である。 The content of the heat conductive particles contained in the paint differs depending on the kind of the particles and the kind of resin or solvent used in combination, and it is difficult to determine uniquely, but generally, the paint 100 The amount is preferably about 10 to 70 parts by weight, more preferably about 15 to 65 parts by weight with respect to parts by weight. Similarly, the content of the base resin contained in the paint is different depending on the type of the resin and the type of thermally conductive particles and solvent used in combination, and it is difficult to determine uniquely. In general, the amount is preferably about 5 to 35 parts by mass, more preferably about 7 to 33 parts by mass with respect to 100 parts by mass of the paint.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.
実施例1
 (I)塗料の調製
 以下に示す記号A~Dの熱伝導粒子と;キシレンとシクロヘキサノンの混合溶剤(キシレン:シクロヘキサノン=1:1)と;ポリエステル系樹脂(東洋紡績株式会社(TOYOBO CO.,Ltd)製の有機溶剤可溶型ポリエステル樹脂「バイロン(VYLON,登録商標)650」)とメラミン樹脂(住友化学株式会社(Sumitomo Chemical Co.,Ltd.)製の「スミマール(SUMIMAL,登録商標)M-40ST」、固形分80%)を質量比(乾燥比)100:20で混合したベース樹脂(マトリックス樹脂)とを、表1に示す比率で混合し、ハンドホモジナイザー(hand homogenizer)で強く撹拌して塗料を調製した(表1のNo.2~20)。参考のため、表1には、記号A~Dの平均粒径(メーカー表示)も転記した。また、比較のため、熱伝導粒子を添加せずベース樹脂のみを含むものも用意した(表1のNo.1)。
 記号A :球状銅粉 (三井金属鉱山製の1300Y)
 記号B1:凹凸状銅粉 (三井金属鉱山製のMA-C08J)
 記号B2:凹凸状銅粉 (三井金属鉱山製のMA-C04J)
 記号C1:扁平状銅粉 (三井金属鉱山製の1100YP)
 記号C2:扁平状銅粉 (三井金属鉱山製の1400YP)
 記号C3:扁平状銅粉 (三井金属鉱山製の1300YP)
 記号C4:(福田金属箔工業製の2L3N)
 記号D :扁平状アルミ粉(旭化成ケミカルズ製のGX-40A)
Example 1
(I) Preparation of paint Heat conductive particles of symbols A to D shown below; a mixed solvent of xylene and cyclohexanone (xylene: cyclohexanone = 1: 1); polyester resin (TOYOBO CO., Ltd ) Organic solvent soluble polyester resin “VYLON (registered trademark) 650”) and melamine resin (Sumitomo Chemical Co., Ltd.) “SUMIMAL (registered trademark) M- 40ST ", solid content 80%) and a base resin (matrix resin) mixed at a mass ratio (drying ratio) of 100: 20, and mixed at a ratio shown in Table 1 and stirred vigorously with a hand homogenizer. Paints were prepared (Nos. 2 to 20 in Table 1). For reference, the average particle sizes (designated by manufacturers) of symbols A to D are also transcribed in Table 1. For comparison, a sample containing only the base resin without adding heat conductive particles was also prepared (No. 1 in Table 1).
Symbol A: Spherical copper powder (Mitsui Metal Mining 1300Y)
Symbol B1: Concave and convex copper powder (MA-C08J manufactured by Mitsui Metal Mine)
Symbol B2: Uneven copper powder (MA-C04J manufactured by Mitsui Mining & Mining)
Symbol C1: Flat copper powder (1100YP manufactured by Mitsui Mining Co., Ltd.)
Symbol C2: Flat copper powder (1400YP manufactured by Mitsui Mining & Mining)
Symbol C3: flat copper powder (1300YP manufactured by Mitsui Mining & Mining)
Symbol C4: (2L3N manufactured by Fukuda Metal Foil Industry)
Symbol D: Flat aluminum powder (GX-40A manufactured by Asahi Kasei Chemicals)
 (II)本発明で規定する要件(1)~(3)の測定
 本発明で規定する要件(1)の熱伝導粒子の扁平率、要件(2)の傾斜角が0°以上30°未満の範囲内に存在する熱伝導粒子の度数割合、および要件(3)の熱伝導粒子の面積率を、以下のようにして測定した。
(II) Measurement of requirements (1) to (3) defined in the present invention The flatness of the heat conduction particles of requirement (1) defined in the present invention, and the inclination angle of requirement (2) is 0 ° or more and less than 30 ° The frequency ratio of the heat conductive particles existing in the range and the area ratio of the heat conductive particles of requirement (3) were measured as follows.
 まず、原板として、電気亜鉛めっき鋼板(板厚0.8mm、Zn付着量20g/m2)を用意した。この原板に、上記のようにして調製した各塗料をバーコーターで塗布し、最高到達温度(PMT)220℃で2分間焼付けを行なった後、乾燥し、厚さ10~20μmの樹脂皮膜を有する樹脂塗装金属板を得た。 First, as an original plate, an electrogalvanized steel plate (plate thickness 0.8 mm, Zn deposition amount 20 g / m 2 ) was prepared. Each of the coating materials prepared as described above was applied to the original plate with a bar coater, baked at a maximum temperature (PMT) of 220 ° C. for 2 minutes, and then dried to have a resin film having a thickness of 10 to 20 μm. A resin-coated metal plate was obtained.
 このようにして得られた樹脂塗装金属板の樹脂皮膜と平行する面で切断し、約15mm×25mmにカットしたものについて、前述した測定手順に従い、本発明で規定する上記要件(1)~(3)を測定した。 The above-mentioned requirements (1) to (1) defined in the present invention are obtained by cutting the resin-coated metal plate obtained in this way on a surface parallel to the resin film and cutting it to about 15 mm × 25 mm according to the measurement procedure described above. 3) was measured.
 (III)面方向熱伝導率の測定
 熱拡散率測定用樹脂皮膜サンプル作製に用いる基材として、テフロン(TEFLON,登録商標)処理ポリイミド膜(東レ・デュポン製「カプトン500F」、厚さ125μm)を用意した。この原板に、上記(II)と同様にして各塗料を塗布し、厚さ10~20μmの樹脂皮膜を有する樹脂塗装ポリイミド膜を得た。この樹脂皮膜から、幅約5mm×長さ約10mmにカットした測定試料を用い、前述した方法により面方向熱伝導率を測定した。測定に用いる樹脂皮膜サンプルはポリイミド膜から剥がして使用した。本実施例では、面方向熱伝導率が1.5W/mK以上のものを合格(○)とする。
(III) Measurement of thermal conductivity in the plane direction As a base material used for preparing a resin film sample for thermal diffusivity measurement, a TEFLON (registered trademark) -treated polyimide film ("Kapton 500F" manufactured by Toray DuPont, thickness 125 μm) is used. Prepared. Each paint was applied to the original plate in the same manner as in the above (II) to obtain a resin-coated polyimide film having a resin film with a thickness of 10 to 20 μm. The surface direction thermal conductivity was measured by the above-described method using a measurement sample cut from this resin film into a width of about 5 mm and a length of about 10 mm. The resin film sample used for the measurement was peeled off from the polyimide film. In the present example, the one having a surface direction thermal conductivity of 1.5 W / mK or more is regarded as acceptable (◯).
 これらの結果を表2にまとめて記載する。 These results are summarized in Table 2.
 参考のため、No.9、10、12、14、15、16、17、19、20(本発明例)、並びにNo.2~8、11および18(比較例)の傾斜角度数分布グラフ(傾斜角0~90°)を、図8、図9A、図9B、図12Aから図12Cおよび図13にそれぞれ示す。図8中のNo.9のグラフは、前述した図2の下図と同じである。 For reference, No. 9, 10, 12, 14, 15, 16, 17, 19, 20 (examples of the present invention), and The inclination angle number distribution graphs (inclination angles 0 to 90 °) of 2 to 8, 11 and 18 (comparative examples) are shown in FIGS. 8, 9A, 9B, 12A to 12C and 13 respectively. No. in FIG. The graph of 9 is the same as the lower diagram of FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、以下のように考察することができる。まず、樹脂皮膜中の熱伝導粒子が本発明で規定する上記(1)~(3)の要件を全て満足するNo.9、10、12~17、19、20は、熱伝導粒子を添加しないNo.1に比べ、高い面方向熱伝導率が得られた。 From Table 2, it can be considered as follows. First, No. 1 in which the heat conductive particles in the resin film satisfy all the requirements (1) to (3) defined in the present invention. Nos. 9, 10, 12 to 17, 19, and 20 are No. in which no heat conducting particles are added. Compared to 1, a higher surface direction thermal conductivity was obtained.
 これに対し、上記と同じ熱伝導粒子を添加したにもかかわらず、本発明で規定する要件のいずれかを満足しない以下の例は、所望の特性が得られなかった。詳細には、上記(1)の扁平率を満足しないNo.4;上記(1)の扁平率と上記(2)の度数割合を満足しなおNo.3;上記(1)の扁平率と上記(3)の面積率を満足しないNo.2、5、7;上記(1)~(3)の要件を全て満足しないNo.6;上記(3)の面積率を満足しないNo.8、10、18は、いずれも高い面方向熱伝導率が得られなかった。 In contrast, in spite of the addition of the same heat conductive particles as described above, the following examples that do not satisfy any of the requirements defined in the present invention did not provide the desired characteristics. In detail, No. which does not satisfy the aspect ratio of the above (1). 4; satisfying the flatness ratio of the above (1) and the frequency ratio of the above (2); 3: No. that does not satisfy the flatness ratio of (1) and the area ratio of (3). 2, 5, 7; No. that does not satisfy all the requirements (1) to (3) above. 6: No. not satisfying the area ratio of (3) above. No high thermal conductivity in the plane direction was obtained for 8, 10, and 18.

Claims (5)

  1.  金属基材の少なくとも片面に熱伝導粒子を含む樹脂皮膜が被覆された樹脂塗装金属材であって、
     前記樹脂皮膜の面方向断面の走査型電子顕微鏡写真を画像解析したとき、測定視野中に観察される熱伝導粒子が下記(1)~(3)の要件を満足することを特徴とする面方向熱伝導性に優れた樹脂塗装金属材。
     (1)熱伝導粒子の最大長を最小長で割った値(最大長/最小長)で表される扁平率の平均値が3.0以上であり、
     (2)熱伝導粒子の最大長が面方向の水平線となす傾斜角を測定したとき、傾斜角が0°以上30°未満の範囲内に存在する熱伝導粒子の度数割合が40%以上であり、
     (3)熱伝導粒子の面積率が30%以上である。
    A resin-coated metal material in which a resin film containing heat conductive particles is coated on at least one side of a metal substrate,
    When the scanning electron micrograph of the cross section in the plane direction of the resin film is subjected to image analysis, the heat conduction particles observed in the measurement visual field satisfy the following requirements (1) to (3): Resin-coated metal material with excellent thermal conductivity.
    (1) The average value of the oblateness represented by the value obtained by dividing the maximum length of the heat conducting particles by the minimum length (maximum length / minimum length) is 3.0 or more,
    (2) When the inclination angle between the maximum length of the heat conducting particles and the horizontal line in the plane direction is measured, the frequency ratio of the heat conducting particles existing in the range where the inclination angle is 0 ° or more and less than 30 ° is 40% or more. ,
    (3) The area ratio of the heat conductive particles is 30% or more.
  2.  前記樹脂皮膜の面方向熱伝導率は1.5W/mK以上である請求項1に記載の樹脂塗装金属材。 The resin-coated metal material according to claim 1, wherein the resin film has a surface direction thermal conductivity of 1.5 W / mK or more.
  3.  前記熱伝導粒子は、銅、アルミニウム、または黒鉛である請求項1または2に記載の樹脂塗装金属材。 The resin-coated metal material according to claim 1 or 2, wherein the thermally conductive particles are copper, aluminum, or graphite.
  4.  電子機器部品に用いられる請求項1または2に記載の樹脂塗装金属材。 Resin-coated metal material according to claim 1 or 2 used for electronic equipment parts.
  5.  請求項4に記載の樹脂塗装金属材を有する電子機器部品。 An electronic device part having the resin-coated metal material according to claim 4.
PCT/JP2010/053449 2009-03-04 2010-03-03 Resin-coated metallic material with excellent planar-direction thermal conductivity WO2010101188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117020364A KR101316981B1 (en) 2009-03-04 2010-03-03 Resin-coated metallic material with excellent planar-direction thermal conductivity
CN201080009307.8A CN102333646B (en) 2009-03-04 2010-03-03 Resin-coated metallic material with excellent planar-direction thermal conductivity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-051133 2009-03-04
JP2009051133 2009-03-04

Publications (1)

Publication Number Publication Date
WO2010101188A1 true WO2010101188A1 (en) 2010-09-10

Family

ID=42709743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053449 WO2010101188A1 (en) 2009-03-04 2010-03-03 Resin-coated metallic material with excellent planar-direction thermal conductivity

Country Status (6)

Country Link
JP (1) JP5337742B2 (en)
KR (1) KR101316981B1 (en)
CN (1) CN102333646B (en)
MY (1) MY161391A (en)
TW (1) TWI430881B (en)
WO (1) WO2010101188A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096351B1 (en) * 2015-05-22 2017-12-13 ABB Technology Oy Thermal interface foil
KR102406261B1 (en) * 2017-05-15 2022-06-10 주식회사 아모그린텍 Graphite-polymer composite material
KR102383953B1 (en) * 2017-05-15 2022-04-07 주식회사 아모그린텍 Graphite-polymer composite material
KR102476070B1 (en) * 2017-06-23 2022-12-12 세키스이가가쿠 고교가부시키가이샤 Heat radiation sheet, manufacturing method of heat radiation sheet, and laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261974A (en) * 2000-03-13 2001-09-26 Hitachi Chem Co Ltd Paste composition
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material
JP2005330484A (en) * 2004-05-18 2005-12-02 Sgl Carbon Ag Latent heat storage material, processes for producing the same and processes for using the same
JP2008290440A (en) * 2007-04-24 2008-12-04 Nippon Steel Corp Surface treatment metal, and its manufacturing process and surface treatment liquid
JP2008303263A (en) * 2007-06-06 2008-12-18 Teijin Ltd Thermally conductive coating material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759620B2 (en) * 1995-01-31 1998-05-28 株式会社神戸製鋼所 Resin-coated metal plate and method of manufacturing the same
JPH1044330A (en) * 1996-08-06 1998-02-17 Toppan Printing Co Ltd Decorative material and its manufacture
JP2003198173A (en) * 2001-12-27 2003-07-11 Nec Tokin Corp Electromagnetic wave shielding sheet which functions as thermal radiator and electromagnetic wave suppressing sheet which functions as thermal radiator
JP4167048B2 (en) * 2002-12-10 2008-10-15 愛三工業株式会社 Thermally conductive coating and method for forming the same
JP4288188B2 (en) * 2004-01-19 2009-07-01 新日本製鐵株式会社 Surface-treated metal material with excellent heat absorption and dissipation characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261974A (en) * 2000-03-13 2001-09-26 Hitachi Chem Co Ltd Paste composition
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material
JP2005330484A (en) * 2004-05-18 2005-12-02 Sgl Carbon Ag Latent heat storage material, processes for producing the same and processes for using the same
JP2008290440A (en) * 2007-04-24 2008-12-04 Nippon Steel Corp Surface treatment metal, and its manufacturing process and surface treatment liquid
JP2008303263A (en) * 2007-06-06 2008-12-18 Teijin Ltd Thermally conductive coating material

Also Published As

Publication number Publication date
TWI430881B (en) 2014-03-21
MY161391A (en) 2017-04-14
KR101316981B1 (en) 2013-10-11
JP2010228449A (en) 2010-10-14
CN102333646B (en) 2014-07-02
CN102333646A (en) 2012-01-25
KR20110111526A (en) 2011-10-11
JP5337742B2 (en) 2013-11-06
TW201043456A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2010101188A1 (en) Resin-coated metallic material with excellent planar-direction thermal conductivity
JP4527587B2 (en) Painted metal material with excellent heat dissipation and electronic equipment parts using the same
JP7213621B2 (en) semiconductor equipment
US7279218B2 (en) Coated body having excellent thermal radiation property used for members of electronic device
JP2010137562A (en) Method of manufacturing insulating heat conductive sheet, insulating heat conductive sheet and radiating member
CN105143381A (en) Heat dissipating sheet
CN1840589A (en) Paint composition with excellent electromagnetic absorption and electro-conductivity and metal plate coated with the same
JP5547570B2 (en) Conductive paste
JP6489979B2 (en) Heat dissipation component and manufacturing method thereof
KR101850099B1 (en) Heat radiation ink composition and manufacturing method of the same heat radiation material
US20210332281A1 (en) Heat radiation material, method for producing heat radiation material, heat radiation material kit, and heat generator
KR20180126250A (en) composition of Heat-radiating paint
JP3563731B2 (en) Painted body for electronic equipment with excellent heat dissipation and conductivity
JP6331385B2 (en) Coated copper nanoparticles, copper nanoparticle dispersion, and method for producing conductive substrate
JP4188857B2 (en) Coated body for electronic device members with excellent heat dissipation and electronic device parts
WO2005002844A1 (en) Resin-coated metal sheet
KR20140004452A (en) Heat release devices using the heat release paint for led lamp
JP5368396B2 (en) Resin-coated metal material and electronic device parts using the metal material
JP2011099791A (en) Radiation shielding sheet
KR20180129192A (en) Heat spreader
JP2009196126A (en) Resin-coated aluminum material excellent in machinability, electric conductivity, and radiation property
JP2008238575A (en) Conductive resin coated metal plate
JP2004134722A (en) Cabinet for electric/electronic apparatus with high cooling power
KR20150088381A (en) Pigment composition for radiating heat
WO2017090775A1 (en) Coated metal sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009307.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6262/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117020364

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748782

Country of ref document: EP

Kind code of ref document: A1