WO2010100056A2 - Antibodies against a proliferating inducing ligand (april) - Google Patents
Antibodies against a proliferating inducing ligand (april) Download PDFInfo
- Publication number
- WO2010100056A2 WO2010100056A2 PCT/EP2010/052254 EP2010052254W WO2010100056A2 WO 2010100056 A2 WO2010100056 A2 WO 2010100056A2 EP 2010052254 W EP2010052254 W EP 2010052254W WO 2010100056 A2 WO2010100056 A2 WO 2010100056A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- april
- binding
- binding compound
- human
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2875—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/32—Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"
Definitions
- the present invention relates to isolated antibodies or fragments thereof which binds to human APRIL, polynucleotides encoding such antibodies and host cells producing said antibodies.
- the antibodies can be used to inhibit immune cell proliferation and/or survival, to treat cancer and to treat an inflammatory disease.
- APRIL is expressed as a type-II transmembrane protein, but unlike most other TNF family members it is mainly processed as a secreted protein and cleaved in the Golgi apparatus where it is cleaved by a furin convertase to release a soluble active form (Lopez-Fraga et al, 2001, EMBO Rep 2, 945-51,).
- APRIL assembles as a non- covalently linked homo-trimer with similar structural homology in protein fold to a number of other TNF family ligands (Wallweber et al. s 2004, MoI Biol 343, 283-90).
- APRIL binds two TNF receptors: B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) (reviewed in Kimberley et al., 2009, J Cell Physiol. 218(l):l-8).
- BCMA B cell maturation antigen
- TACI transmembrane activator and calcium modulator and cyclophilin ligand interactor
- HSPGs heparan sulphate proteoglycans
- APRIL shows high homology (30%) to another member of the TNF superfamily, B cell activating factor belonging to the TNF family (BAFF or B Lymphocyte stimulator, BLyS), with which it shares binding to its receptors, BCMA and TACI.
- BAFF is also known to bind a unique receptor, BAFF-Receptor, and through this mediates crucial survival signals during B cell development (reviewed in Kimberley et al., 2009, JCeIl Physiol. 218(1): 1 -8).
- APRIL and BAFF have been suggested to form mixed trimers (Roschke et al., 2002, J Immunol. 169(8):4314-21). Such mixed trimers were found to occur at a higher prevalence in rheumatoid arthritis (RA) patients.
- APRIL is predominantly expressed by immune cell subsets such as monocytes, macrophages, dendritic cells, neutrophils, B-cells, and T-cells, many of which also express BAFF.
- APRIL can be expressed by non-immune cells such as osteoclasts, epithelial cells and a variety of tumour tissues (reviewed in Kimberley et al., 2009, J Cell Physiol. 218(1): 1-8).
- APRIL The function of APRIL was established using mouse genetic models. hAPRIL transgenic mice develop normally, but showed enhanced T cell survival and elevated levels of IgM antibodies (Stein et al., 2002, J Clin Invest 109, 1587-98). In addition, T cell independent type H responses were enhanced. Aged hAPRIL transgenic mice displayed extreme enlargement and re-organisation of the lymph system and enlarged spleen due to infiltration of CD5 positive B cells, a phenotype closely resembling human B-CLL (Planelles et al., 2004, Cancer Cell 6, 399-408).
- APRIL deficient mice were found to have decreased levels of IgA in circulation and upon challenge with a T- cell dependent antigen (Castigli et al., 2004, Proc Natl Acad Sci USA 101, 3903-8; Varfolomeev et al., 2004, MoI Cell Biol 24, 997-1006).
- CSR class-switch recombination
- APRIL was demonstrated to be less critical than BAFF in B cell maintenance, but was shown to have a role in B cell signalling and drive both proliferation and survival of human and murine B cells in- vitro (reviewed in Kimberley et al., 2009, J Cell Physiol. 218(l):l-8). .
- APRIL was originally identified based on its expression in cancer cells (Hahne et al., 1998, J Exp Med 188, 1185-90). High expression levels of APRIL mRNA were found in a panel of tumour cell lines as well as human primary tumours such as colon, and a lymphoid carcinoma. In addition, APRIL transfected murine fibroblast NIH-3T3 cells were shown to grow more rapidly in immunodeficient mice. More importantly, blocking APRIL using a soluble APRIL receptor was shown to inhibit tumour growth of lung and colon carcinomas (Rennert et al., 2000, J Exp Med 192, 1677-84).
- Chronic Lymphocytic Leukaemia (CLL) B cells express both APRIL and APRIL- receptors .
- APRIL protected CLL cells against spontaneous and drug-induced apoptosis and stimulated NF- ⁇ B activation (reviewed in Kimberley et al., 2009, J Cell Physiol 218(l):l-8).
- a retrospective study under 95 CLL patients showed increased levels of APRIL in serum, which correlated with disease progression and overall patient survival, with a poorer prognosis for patients with high APRIL serum levels (Planelles et al., 2007, Haematologica 92, 1284-5).
- APRIL Increased levels of APRIL was shown to be expressed in Hodgkin's lymphoma, Non-Hodgkin's lymphoma (NHL) and Multiple Myeloma (MM) (reviewed in Kimberley et al., 2009, J Cell Physiol. 218(1): 1-8).
- a retrospective study in DLBCL patients (NHL) showed that high APRIL expression in cancer lesions correlated with a poor survival rate (Schwaller et al., 2007, Blood 109, 331-8).
- NHL and MM cell- lines it was shown that treatment with APRIL or BAFF increased survival via NF- ⁇ B activation and up-regulation of pro-survival proteins (reviewed in Kimberley et al., 2009,JCeIl Physiol. 218(l):l-8).
- MM cells were shown to undergo apoptosis when cultured in the presence of TACI-Fc. Since BAFF- receptor was less effective in enhancing apoptosis, this indicates that APRIL, and not BAFF is primarily responsible for enhanced survival in these cells (Abe et al., 2006, Leukemia 20, 1313-5).
- APRIL was also found to be over-expressed in a number of cell lines derived from solid tumours. Indeed, APRIL was able to stimulate in-vitro proliferation of a number of these cell lines (reviewed in Kimberley et al..2009, J Cell Physiol. 218(1): 1-8).
- APRIL Due to its role in B cell biology APRIL also plays a role in many autoimmune diseases. Indeed, atacicept (a commercial TACI-Fc preparation) is already in numerous clinical trials for treatment of several autoimmune diseases (reviewed in Gatto et al., 2008, Curr Opin Imestig Drugs. 9(11):1216-27). Increased serum levels of APRIL and
- BAFF have been reported in many SLE patients (Koyama et al., 2005, Ann Rheum Dis 64, 1065-7).
- a retrospective analysis revealed that APRIL serum levels tended to correlate with anti-dsDNA antibody litres.
- Evidence that APRIL may play a functional role in SLE was obtained by testing the effect of TACI-Fc fusion protein into lupus prone mice (Gross et al., 2000, Nature 404, 995-9), which prevented disease development and prolonged survival. - A -
- APRIL expression has also been linked to Multiple Sclerosis (MS).
- MS Multiple Sclerosis
- APRIL plays a crucial role in the survival and proliferative capacity of several B-cell malignancies, and potentially also some solid tumours.
- APRIL is also emerging as a key player in inflammatory diseases or autoimmunity.
- strategies to antagonise APRIL are a therapeutic goal for a number of these diseases.
- clinical studies targeting APRIL with TACI-Fc are currently ongoing for treatment of several autoimmune diseases.
- TACI-Fc also targets BAFF, a factor involved in normal B-cell maintenance.
- Antibodies directed against APRIL have been described in WO9614328, WO2001/60397, WO2002/94192, WO9912965, WO2001/196528 and WO9900518.
- This invention describes antibodies targeting APRIL specifically.
- the antibodies in this invention fully block the binding of APRIL to TACI and at least partially to BCMA.
- Some antibodies according to the invention fully block the binding to both BCMA and TACI.
- Such molecules are useful in a therapy for a number of conditions in which circulating soluble APRIL correlates with disease activity and progression. Since expression levels of APRIL can be used as diagnostic and prognostic markers for different diseases, these antibodies can also be applied in such tests.
- the invention provides binding compounds such as isolated antibodies or antibody fragments which bind to human APRIL.
- the binding compound blocks binding to TACI and BCMA.
- the APRIL binding compound of the invention includes one or more of the antibody CDRs (Complementary Determining Regions) selected from SEQ
- the binding compound is a chimeric antibody, human antibody, humanized antibody or a fragment thereof.
- the invention provides a binding compound which bind to human APRIL comprising antibody heavy chain CDRs SEQ ID NOs: 9, 10 and 11 , or variants of any said sequences; and antibody light chain CDRs SEQ ID NOs: 12, 13 and 14, or variants of any said sequences.
- the invention provides a binding compound which bind to human APRIL comprising antibody heavy chain CDRs SEQ ID NOs: 15, 16 and 17 or variants of any said sequences; and antibody light chain CDRs SEQ ID NOs: 18, 19 and 20 or variants of any said sequences.
- the invention comprises a binding compound which bind to human APRIL comprising an antibody heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 5 and a antibody light chain variable region comprising the amino acid sequence selected from the group of SEQ ID NO: 6.
- the invention comprises a binding compound which bind to human APRIL comprising a antibody heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 7 and a antibody light chain variable region comprising the amino acid sequence of SEQ ID NO: 8.
- the invention comprises an antibody, wherein the heavy chain has the variable region sequence of SEQ ID NO: 5 and is joined to a IgGl constant region and the light chain has the sequence of SEQ ID NO: 6 and is joined to the K constant region.
- the constant region is from mouse or human origin. More in particular, the antibody is hAPRIL.OlA.
- the invention comprises an antibody, wherein the heavy chain has the variable region sequence of SEQ ID NO: 7 and is joined to a IgGl constant region and the light chain has the sequence of SEQ ID NO: 8 and is joined to the K constant region.
- the constant region is from mouse or human origin.
- the antibody is hAPRIL.03A.
- the invention comprises a variant of a binding compound which bind to human APRIL, wherein any of said variant(s) may comprise up to three amino acid modifications in the previous identified CDRs of each the antibody heavy and light chain variable regions.
- the invention comprises a variant of a binding compound which binds to human APRIL, wherein any of said variant(s) may comprise up to three amino acid modifications in each of the previous identified CDRs in each of the antibody heavy and light chain variable regions.
- the invention comprises a variant of a binding compound which binds to human APRIL, wherein any of said variants) may comprise up to three amino acid modifications in the previous identified CDR sequences in each of the antibody heavy and light chain variable regions.
- the invention also comprises a binding compound that fully blocks the binding of APRIL with human TACI and at least partially blocks the binding with human BCMA.
- the invention comprises a binding compound that fully blocks the binding of APRIL with human TACI and with human BCMA.
- the invention comprises a binding compound which bind to human APRIL, wherein the binding compound binds human APRIL with a KD of about 10 nM or lower; and blocks binding of human TACI and/or human BCMA to human APRIL with an IC 50 of about 2 nM or lower.
- the invention also comprises a binding compound which binds to human APRIL wherein the binding compound has the same epitope specificity as the antibodies described above Ie. competes for the binding epitope of the antibodies described above.
- the invention comprises a binding compound which competes for a binding epitope on human APRIL with any of the antibodies described above, and binds human APRIL with a K D of about 10 nM or lower.
- the epitope on human APRIL is the epitope which bind to the antibodies hAPRIL.OlA and hAPRIL.03A, preferably hAPRIL.OlA.
- the invention comprises a binding compound which competes for a binding epitope on human APRIL with any of the antibodies described above and binds to human APRIL with about the same K D as an antibody having a heavy chain comprising the amino acid sequence of SEQ ID NO: 5 and a light chain comprising the amino acid sequence of SEQ ID NO: 6.
- the invention comprises a binding compound which competes for a binding epitope on human APRIL with any of the compounds described above and binds to human APRIL with about the same K D as an antibody having a heavy chain comprising the amino acid sequence of SEQ ID NO: 7 and a light chain comprising the amino acid sequence of SEQ ID NO: 8.
- the invention comprises a binding compound which competes for a binding epitope on human APRIL with any of the antibodies described above and blocks binding of human TACI and/or human BCMA to human APRIL with an IC50 of about 2 nM or lower.
- the invention comprises a binding compound which binds to the conformational human APRIL epitope SMPSHP (preferably IRSMPSHPDRA) optionally supported by TLFR and/or QDVTFTMGQ.
- the invention comprises a binding compound which binds to the conformational human APRIL epitope VSREGQGRQ optionally supported by
- the binding compound of the invention is a chimeric antibody or a fragment thereof.
- the binding compound of the invention is a human antibody or a fragment thereof.
- the binding compound of the invention is a humanized antibody or a fragment thereof.
- the invention comprises a binding compound, preferably a humanized antibody, with the above identified CDR' s and a human heavy chain constant region variant and a human light chain constant region variant, wherein each constant region variant comprises up to 20 conservatively modified amino acid substitutions.
- the binding compound of the invention is an antibody fragment selected from Fab, Fab', Fab' -SH, Fv, scFv, F(ab') 2 , bispecif ⁇ c mAb or a diabody fragment.
- the invention also comprises the binding compound as described above which inhibits the proliferation and survival of B-cells.
- the invention also comprises nucleic acids encoding the anti-APRIL binding compound of the invention. Included in the invention are nucleic acids encoding any one of the amino acid sequences enclosed in SEQ ID NOS: 5 to 20. Also included within the invention are nucleic acids comprising SEQ ID NOS 1, 2, 3 or 4. In addition, the invention also comprises the nucleic acids encoding the variants of the amino acid sequences as described hereinabove.
- the invention also comprises cells and expression vectors comprising nucleic acids encoding the binding compound of the invention.
- the invention comprises a method of producing a binding compound of the invention comprising: (a) culturing the host cell comprising a nucleic acid encoding an antibody or antibody fragment of the invention in culture medium under conditions wherein the nucleic acid sequence is expressed, thereby producing polypeptides comprising tihe light and heavy chain variable regions; and (b) recovering the polypeptides from the host cell or culture medium.
- the invention also comprises compositions comprising a binding compound of the invention in combination with a pharmaceutically acceptable carrier or diluent.
- the invention also comprises a method of inhibiting the proliferation and/or survival of an immune cell, comprising administering to a subject in need thereof a therapeutically effective amount of a binding compound of the invention.
- the method may be used to treat cancer.
- the method may be use to treat an autoimmune or inflammatory disease.
- the invention comprises a method of inhibiting the proliferation and/or survival of an immune cell, comprising administering to a subject in need thereof a therapeutically effective amount of a binding compound of the invention, and further comprising measuring B cell proliferation and/or survival ex vivo in a sample derived from the subject, wherein an inhibition of the proliferation and/or survival of the B cell indicates that the treatment should be continued.
- the invention comprises a method of inhibiting the proliferation and/or survival of an immune cell, comprising administering to a subject in need thereof a therapeutically effective amount of a binding compound of the invention, and further comprising measuring B cell proliferation and/or survival ex vivo in a sample derived from the subject, wherein an increase in B cell proliferation and/or survival predicts the likelihood that the treatment will be successful.
- the invention also comprises an immunoconjugate comprising an anti-APRIL binding compound of the invention, linked to a therapeutic agent such as a bacterial toxin or a radiotoxin.
- a therapeutic agent such as a bacterial toxin or a radiotoxin.
- cytotoxic agents include taxol, cytochalasin B, mitomycin, etoposide and vincristine or other antimetabolites, alkylating agents, antibiotics and antimitotics.
- the invention also comprises a method of inhibiting the proliferation and/or survival of an immune cell, comprising contacting an immune cell with a binding compound of the present invention.
- the method comprises further administering a second therapeutic agent or treatment modality.
- anti-APRIL binding compounds can be combined with a treatment that is considered to be standard of care in cancer or autoimmune or inflammatory disease. Rationale for such combinations is that concurrent increased immune inhibition by anti-APRIL will induce or facilitate initial clinical response to standard of care treatment, induce durable clinical response and long-term immune control of disease.
- binding compounds of the present invention are used diagnostically.
- binding compounds of the invention are used to measure B cell proliferation and/or survival ex vivo in a sample derived from the subject, wherein an inhibition of the proliferation and/or survival of the B cell indicates that the treatment with the binding compound as described here above should be continued.
- binding compounds according to the invention are isolated antibodies or antibody fragments which bind to human APRIL.
- antibody refers to any form of antibody that exhibits the desired biological activity, such as inhibiting binding of a ligand to its receptor, or by inhibiting ligand- induced signaling of a receptor.
- antibody is used in the broadest sense and specifically covers, but is not limited to, monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, and multispecific antibodies (e.g., bispecific antibodies).
- Antibody fragment and “antibody binding fragment” mean antigen-binding fragments and analogues of an antibody, typically including at least a portion of the antigen binding or variable regions (e.g. one or more CDRs) of the parental antibody.
- An antibody fragment retains at least some of the binding specificity of the parental antibody.
- an antibody fragment retains at least 10% of the parental binding activity when that activity is expressed on a molar basis.
- an antibody fragment retains at least 20%, 50%, 70%, 80%, 90%, 95% or 100% or more of the parental antibody's binding affinity for the target.
- antibody fragments include, but are not limited to, Fab, Fab', F(ab') 2 , and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules, e.g., sc-Fv, unibodies (technology from Genmab); nanobodies (technology from Domantis); domain antibodies (technology from Ablynx); and multispecific antibodies formed from antibody fragments.
- Engineered antibody variants are reviewed in HoUiger and Hudson, 2005, Nat. Biotechnol.23, ⁇ 26-m6.
- a "Fab fragment” is comprised of one light chain and the C H 1 and variable regions of one heavy chain.
- the heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule.
- An "Fc" region contains two heavy chain fragments comprising the C H I and C H 2 domains of an antibody.
- the two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains.
- a "Fab 1 fragment” contains one light chain and a portion of one heavy chain that contains the VH domain and the C HI domain and also the region between the C H I and C H domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab 1 fragments to form a F(ab') 2 molecule.
- a “F(ab') 2 fragment” contains two light chains and two heavy chains containing a portion of the constant region between the C H I and C H 2 domains, such that an interchain disulfide bond is formed between the two heavy chains.
- a F(ab') ⁇ fragment thus is composed of two Fab' fragments that are held together by a disulfide bond . between the two heavy chains.
- the "Fv region” comprises the variable regions from both the heavy and light chains, but lacks the constant regions.
- a “single-chain Fv antibody” refers to antibody fragments comprising the V H and V L domains of an antibody, wherein these domains are present in a single polypeptide chain.
- the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the scFv to form the desired structure for antigen binding.
- scFv see Pluckthun,1994, THE PHARMACOLOGY OF MONOCLONAL ANTIBODIES, vol. 113, Rosenburg and Moore eds. Springer- Verlag, New York, pp. 269-315. See also, International Patent Application Publication No. WO 88/01649 and U.S. Pat. Nos. 4,946, 778 and 5,260,203.
- a “diabody” is a small antibody fragment with two antigen-binding sites.
- the fragments comprises a heavy chain variable domain (V H ) connected to a light chain variable domain (V L ) in the same polypeptide chain (VH-V L or V L -VH)-
- V H heavy chain variable domain
- V L light chain variable domain
- V H-V L or V L -VH polypeptide chain
- linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
- Diabodies are described more fully in, e.g., EP 404,097; WO 93/11161 ; and Holliger et al., 1993, Proc. Natl. Acad. ScL USA 90, 6444- 6448.
- a “domain antibody fragment” is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain.
- two or more VH regions are covalently joined with a peptide linker to create a bivalent domain antibody fragment.
- the two VH regions of a bivalent domain antibody fragment may target the same or different antigens.
- antibody hAPRIL.Ol A is a mouse antibody wherein the heavy chain has the variable region sequence of SEQ ID NO: 5 and is joined to a IgGl constant region and the light chain has the variable region sequence of SEQ ID NO: 6 and is joined to the K constant region.
- Antibody hAPRIL.03A is a mouse antibody, wherein the heavy chain has the variable region sequence of SEQ ID NO: 7 and is joined to a IgGl constant region and the light chain has the variable region sequence of SEQ ID NO: 8 and isjoined to the K constant region.
- An antibody fragment of the invention may comprise a sufficient portion of the constant region to permit dimerization (or multimerization) of heavy chains that have reduced disulfide linkage capability, for example where at least one of the hinge cysteines normally involved in inter-heavy chain disulfide linkage is altered as described herein.
- an antibody fragment for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half life modulation, ADCC (antibody dependent cellular cytotoxicity) function, and/or complement binding (for example, where the antibody has a glycosylation profile necessary for ADCC function or complement binding).
- chimeric antibody refers to antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity ⁇ See, for example, U.S. Pat. No. 4,816,567 and Morrison et al., 1984, Proc. Natl. Acad. ScI USA 81, 6851-6855).
- humanized antibody refers to forms of antibodies that contain sequences from non-human (e.g., murine) antibodies as well as human antibodies. Such antibodies contain minimal sequence derived from non-human immunoglobulin.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence.
- the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- the humanized forms of rodent antibodies will essentially comprise the same CDR sequences of the parental rodent antibodies, although certain amino acid substitutions may be included to increase affinity, increase stability of the humanized antibody, or for other reasons.
- CDR loop exchanges do not uniformly result in an antibody with the same binding properties as the antibody of origin, changes in framework residues (FR), residues involved in CDR loop support, might also be introduced in humanized antibodies to preserve antigen binding affinity (Kabat et al., 1991, J. Immunol 147, 1709).
- antibody also includes “fully human” antibodies, i.e., antibodies that comprise human immunoglobulin protein sequences only.
- a fully human antibody may contain murine carbohydrate chains if produced in a mouse, in a mouse cell, or in a hybridoma derived from a mouse cell.
- mouse antibody or “rat antibody” refer to an antibody that comprises only mouse or rat immunoglobulin sequences, respectively.
- a fully human antibody may be generated in a human being, in a transgenic animal having human immunoglobulin germline sequences, by phage display or other molecular biological methods.
- recombinant immunoglobulins may also be made in transgenic mice. See Mendez et al., 1997, Nature Genetics 15,146-156. See also Abgenix and Medarex technologies.
- the antibodies of the present invention also include antibodies with modified (or blocked) Fc regions to provide altered effector functions. See, e.g., U.S. Pat. No. 5,624,821; WO2003/086310; WO2005/120571; WO2006/0057702; Presta, 2006, Adv. Drug Delivery Rev. 58:640-656. Such modification can be used to enhance or suppress various reactions of the immune system, with possible beneficial effects in diagnosis and therapy. Alterations of the Fc region include amino acid changes (substitutions, deletions and insertions), glycosylation or deglycosylation, and adding multiple Fc.
- the antibodies of the present invention also include antibodies with intact Fc regions that provide full effector functions, e.g. antibodies of isotype IgGl, which induce complement-dependent cytotoxicity (CDC) or antibody dependent cellular cytotoxicity (ADCC) in the a targeted cell.
- antibodies of isotype IgGl which induce complement-dependent cytotoxicity (CDC) or antibody dependent cellular cytotoxicity (ADCC) in the a targeted cell.
- the antibodies may also be conjugated (e.g., covalently linked) to molecules that improve stability of the antibody during storage or increase the half-life of the antibody in vivo.
- molecules that increase the half-life are albumin (e.g., human serum albumin) and polyethylene glycol (PEG).
- Albumin-linked and PEGylated derivatives of antibodies can be prepared using techniques well known in the art. See, e.g., Chapman, 2002, Adv. DrugDeliv. Rev. 54, 531-545; Anderson and Tomasi, 1988, J. Immunol Methods 109, 37-42; Suzuki et al., 1984, Biochim. Biophys. Acta 788, 248- 255; and Brekke and Sandlie, 2003, Nature Rev. 2, 52-62.
- Antibodies used in the present invention will usually bind with at least a KTJ of about
- hypervariable region refers to the amino acid residues of an antibody which are responsible for antigen-binding.
- the hypervariable region comprises amino acid residues from a "complementarity determining region” or "CDR,” defined by sequence alignment, for example residues 24-34 (Ll), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31 -35 (Hl ), 50-65 (H2) and 95- 102 (H3) in the heavy chain variable domain; see Kabat et al., 1991, Sequences of proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.
- HVL hypervariable loop
- residues 26-32 (Ll) 5 50-52 (L2) and 91-96 (L3) in the light chain variable domain residues 26-32 (Hl) 5 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; see Chothia and Leskl, 1987, J. MoI Biol. 196, 901-917.
- "Framework" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined.
- an "isolated” antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
- the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lo wry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
- Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
- an "isolated" nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which, it is ordinarily associated in the natural source of the antibody nucleic acid.
- An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells.
- an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
- the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
- the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., 1975, Nature 256, 495, or may be made by recombinant DNA methods (see, for example, U.S. Pat. No. 4,816,567).
- the "monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., 1991, Nature 352, 624-628 and Marks et al., 1991, J. MoI. Biol. 222, 581-597, for example.
- the monoclonal antibodies herein specifically include "chimeric" antibodies.
- Immune cell includes cells that are of hematopoietic origin and that play a role in the immune response.
- Immune cells include lymphocytes, such as B cells and T cells; natural killer cells; myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.
- an “immunoconjugate” refers to an anti- APRIL antibody, or a fragment thereof, conjugated to a therapeutic moiety, such as a bacterial toxin, a cytotoxic drug or a radiotoxin.
- a therapeutic moiety such as a bacterial toxin, a cytotoxic drug or a radiotoxin.
- Toxic moieties can be conjugated to antibodies of the invention using methods available in the art.
- sequence “variant” refers to a sequence that differs from the disclosed sequence at one or more amino acid residues but which retains the biological activity of the resulting molecule.
- Constantly modified variants or “conservative amino acid substitution” refers to substitutions of amino acids are known to those of skill in this art and may be made generally without altering the biological activity of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in nonessential regions of a polypeptide do not substantially alter biological activity ⁇ see, e.g. , Watson, et al, Molecular Biology of the Gene, The Benjamin/Cummings Pub. Co., p. 224 (4th Edition 1987)). Such exemplary substitutions are preferably made in accordance with those set forth below as follows:
- the term “about” refers to a value that is within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation per the practice in the art. Alternatively, “about” or “comprising essentially of can mean a range of up to 20%. Furthermore, particularly with respect to biological systems or processes, the terms can mean up to an order of magnitude or up to 5 -fold of a value. When particular values are provided in the application and claims, unless otherwise stated, the meaning of "about” or “comprising essentially of should be assumed to be within an acceptable error range for mat particular value.
- Specifically binds, when referring to a ligand/receptor, antibody/antigen, or other binding pair, indicates a binding reaction which is determinative of the presence of the protein, e.g. , APRIL, in a heterogeneous population of proteins and/or other biologies. Thus, under designated conditions, a specified ligand/antigen binds to a particular receptor/antibody and does not bind in a significant amount to other proteins present in the sample.
- administering and “treatment,” as it applies to an animal, human, experimental subject, cell, tissue, organ, or biological fluid, refers to contact of an exogenous pharmaceutical, therapeutic, diagnostic agent, or composition to the animal, human, subject, cell, tissue, organ, or biological fluid.
- administering can refer, e.g., to therapeutic, pharmacokinetic, diagnostic, research, and experimental methods. Treatment of a cell encompasses contact of a reagent to the cell, as well as contact of a reagent to a fluid, where the fluid is in contact with the cell. "Administration” and “treatment” also means in vitro and ex vivo treatments, e.g., of a cell, by a reagent, diagnostic, binding composition, or by another cell.
- Monoclonal antibodies to human APRIL can be made according to knowledge and skill in the art of injecting test subjects with human APRIL antigen and then isolating hybridomas expressing antibodies having the desired sequence or functional characteristics.
- DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies).
- the hybridoma cells serve as a preferred source of such DNA.
- the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce irnmunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Recombinant production of antibodies will be described in more detail below.
- antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., 1990. Nature, 348, 552-554. Clackson et al., 1991 , Nature, 352, 624-628, and Marks et al., 1991, J. MoI. Biol. 222, 581-597 describe the isolation of murine and human antibodies, respectively, using phage libraries.
- the antibody DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, et al., 1984, Proc. Natl Acad. Sci. USA, 81, 6851), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for non-immunoglobulin material (e.g., protein domains).
- non-immunoglobulin material is substituted for the constant domains of an antibody, or is substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
- a humanized antibody has one or more amino acid residues from a source that is non- human.
- the non-human amino acid residues are often referred to as "import” residues, and are typically taken from an "import” variable domain.
- Humanization can be performed generally following the method of Winter and co-workers (Jones et al., 1986, Nature 321, 522-525; Riechmann et al., 1988, Nature, 332, 323-327; Verhoeyen et al., 1988, Science 239, 1534-1536), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
- humanized antibodies are antibodies wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
- humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in non-human, for example, rodent antibodies.
- the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity.
- the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
- the human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., 1987, J. Immunol. 151, 2296; Chothia et al., 1987, J. MoI Biol. 196, 901).
- Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., 1992, Proc. Natl. Acad. Sd. USA 89, 4285; Prestaet al., 1993, J. Immnol. 151, 2623).
- humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three- dimensional models of the parental and humanized sequences.
- Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
- Computer programs are available which illustrate and display probable three- dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
- FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s) ; is achieved, hi general, the CDR residues are directly and most substantially involved in influencing antigen binding.
- transgenic animals e.g., mice
- transgenic animals e.g., mice
- JH antibody heavy-chain joining region
- Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., 1991, J. MoL Biol 227,381 ; Marks et al., J. MoI Biol. 1991, 222, 581-597; Vaughan et al., 1996, Nature Biotech 14, 309).
- Amino acid sequence variants of humanized anti-APRlL antibodies are prepared by introducing appropriate nucleotide changes into the humanized anti- APRIL antibodies' DNAs, or by peptide synthesis.
- Such variants include, for example, deletions from, and/or insertions into, and/or substitutions of, residues within the amino acid sequences shown for the humanized anti- APRIL antibodies. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
- the amino acid changes also may alter post-translational processes of the humanized anti-APRIL antibodies, such as changing the number or position of glycosylation sites.
- a useful method for identification of certain residues or regions of the humanized anti- APRIL antibodies polypeptides that are preferred locations for mutagenesis is called "alanine scanning mutagenesis," as described by Cunningham and Wells, 1989, Science 244, 1081 -1085.
- a residue or group of target residues are identified (e.g., charged residues such as Arg, Asp, His, Lys, and GIu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with APRIL antigen.
- the amino acid residues demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution.
- the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined.
- Ala scanning or random mutagenesis is conducted at the target codon or region and the expressed humanized anti-APRIL antibodies' variants are screened for the desired activity.
- amino acid sequence variants of the humanized anti-APRIL antibodies will have an amino acid sequence having at least 75% amino acid sequence identity with the original humanized antibody amino acid sequences of either the heavy or the light chain more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, and most preferably at least 95%, 98% or 99%.
- Identity or homology with respect to this sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the humanized residues, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. None of N-terminal, C-terminal, or internal extensions, deletions, or insertions into the antibody sequence shall be construed as affecting sequence identity or homology.
- Antibodies having the characteristics identified herein as being desirable in humanized anti-APRIL antibodies can be screened for inhibitory biologic activity in vitro or suitable binding affinity.
- a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed.
- Antibodies that bind to the same epitope are likely to cross- block in such assays, but not all cross-blocking antibodies will necessarily bind at precisely the same epitope since cross-blocking may result from steric hindrance of antibody binding by antibodies bind at overlapping epitopes, or even nearby non- overlapping epitopes.
- epitope mapping e.g., as described in Charnpe etal, 1995, J. Biol. Chem. 270, 1388-1394, can be performed to determine whether the antibody binds an epitope of Interest.
- “Alanine scanning mutagenesis,” as described by Cunningham and Wells, 1989, Science 244, 1081-1085, or some other form of point mutagenesis of amino acid residues in human APRIL may also be used to determine the functional epitope for anti- APRIL antibodies of the present invention.
- Additional antibodies binding to the same epitope as an antibody of the present invention may be obtained, for example, by screening of antibodies raised against APRIL for binding to the epitope, or by immunization of an animal with a peptide comprising a fragment of human APRIL comprising the epitope sequences (e.g., BCMA or TACI).
- Antibodies that bind to the same functional epitope might be expected to exhibit similar biological activities, such as blocking receptor binding, and such activities can be confirmed by functional assays of the antibodies.
- Antibody affinities may be determined using standard analysis.
- Preferred binding compounds such as e.g. humanized antibodies are those that bind human APRIL with a Kj value of no more than about IxIO "7 ; preferably no more than about 1x10 '8 ; more preferably no more than about IxIO "9 ; and most preferably no more than about IxIO '10 or even lxlO " ⁇ M.
- the humanized antibody can be selected from any class of immunoglobulins, including IgM, IgG, IgD, IgA, and IgE.
- the antibody is an IgG antibody.
- Any isotype of IgG can be used, including IgGi, IgG 2 , IgG 3 , and IgG 4 .
- Variants of the IgG isotypes are also contemplated.
- the humanized antibody may comprise sequences from more than one class or isotype. Optimization of the necessary constant domain sequences to generate the desired biologic activity is readily achieved by screening the antibodies in the biological assays described in the Examples.
- either class of light chain can be used in the compositions and methods herein.
- kappa, lambda, or variants thereof are useful in the present compositions and methods.
- the antibodies and antibody fragments of the invention may also be conjugated with cytotoxic payloads such as cytotoxic agents or radionucleotides such as 99 Tc 5 90 Y, 111 In, 32 P, 14 C, 125 I 5 3 H, 131 I 5 11 C 5 15 0, 13 N 5 18 F 5 35 S 5 51 Cr 5 57 To, 226 Ra 5 60 Co 5 59 Fe 5 57 Se 5 152 Eu 5 67 CU 5 217 Ci 5 211 At 5 212 Pb 5 47 Sc 5 109 Pd 5 234 Th, and 40 K, 157 Gd 5 55 Mn 5 52 Tr and 56 Fe.
- cytotoxic payloads such as cytotoxic agents or radionucleotides such as 99 Tc 5 90 Y, 111 In, 32 P, 14 C, 125 I 5 3 H, 131 I 5 11 C 5 15 0, 13 N 5 18 F 5 35 S 5 51 Cr 5 57 To,
- Such antibody conjugates may be used in immunotherapy to selectively target and kill cells expressing a target (the antigen for that antibody) on their surface.
- cytotoxic agents include ricin, vinca alkaloid, methotrexate, Psuedomonas exotoxin, saporin, diphtheria toxin, cisplatin, doxorubicin, abrin toxin, gelonin and pokeweed antiviral protein.
- the antibodies and antibody fragments of the invention may also be conjugated with fluorescent or chemilluminescent labels, including fluorophores such as rare earth chelates, fluorescein and its derivatives, rhodamine and its derivatives, isothiocyanate, phycoerythrin, phycocyanin, allophycocyanin, o-phtbaladehyde, fluorescamine, 152 Eu, dansyl, umbelliferone, luciferin, luminal label, isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridimium salt label, an oxalate ester label, an aequorin label, 2,3-dihydrophthalazinediones, biotin/avidin, spin labels and stable free radicals.
- fluorophores such as rare earth chelates, fluorescein and its derivatives, rhodamine and its derivatives, isothiocyanate, phyco
- the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration. Carter et al., 1992, Bio/Technology 10, 163-167 describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
- sodium acetate pH 3.5
- EDTA EDTA
- PMSF phenylmethylsulfonylfluoride
- Cell debris can be removed by centfifugation.
- supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
- a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
- the antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.
- affinity chromatography is the preferred purification technique.
- the suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc region that is present in the antibody. Protein A can be used to purify antibodies that are based on human .gamma.1, .gamma.2, or .gamma.4 heavy chains (Lindmark et ah, 1983, J. Immunol. Meth. 62, 1-13).
- Protein G is recommended for all mouse isotypes and for human .gamma.3 (Guss et til., 1986, EMBOJS, 1567-1575).
- the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
- the antibody comprises a CH3 domain
- the Bakerbond ABXTM resin J. T. Baker, Phillipsburg, N.J.
- the glycoprotein may be purified using adsorption onto a lectin substrate (e.g. a lectin affinity column) to remove fucose-containing glycoprotein from the preparation and thereby enrich for fucose-free glycoprotein.
- a lectin substrate e.g. a lectin affinity column
- the invention comprises pharmaceutical formulations of an APRIL binding compound.
- an APRIL binding compound To prepare pharmaceutical or sterile compositions, the antibody or fragment thereof is admixed with a pharmaceutically acceptable carrier or excipient, see, e.g., Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary, Mack
- Formulations of therapeutic and diagnostic agents may be prepared by mixing with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions or suspensions (see, e.g., Hardman, et ah, 2001, Goodman and Gilman 's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, NY; Gennaro, 2000, Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, NY; Avis, et al.
- Toxicity and therapeutic efficacy of the antibody compositions, administered alone or in combination with an immunosuppressive agent can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD 50 and ED 50 .
- the data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- Suitable routes of administration include parenteral administration, such as intramuscular, intravenous, or subcutaneous administration and oral administration.
- Administration of antibody used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral, intraarterial or intravenous injection.
- the binding compound of the invention is administered intravenously. In another embodiment, the binding compound of the invention is administered subcutaneously.
- Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and it is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects.
- Important diagnostic measures include those of symptoms of, e.g., the inflammation or level of inflammatory cytokines produced.
- a preferred dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects.
- a total weekly dose is generally at least 0.05 ⁇ g/kg body weight, more generally at least 0.2 ⁇ g/kg, most generally at least 0.5 ⁇ g/kg, typically at least 1 ⁇ g/kg, more typically at least 10 ⁇ g/kg, most typically at least 100 ⁇ g/kg, preferably at least 0.2 mg/kg, more preferably at least 1.0 mg/kg, most preferably at least 2.0 mg/kg, optimally at least 10 mg/kg, more optimally at least 25 mg/kg, and most optimally at least 50 mg/kg (see, e.g., Yang, et al, 2003, New Engl. J. Med.
- a small molecule therapeutic e.g., a peptide mimetic, natural product, or organic chemical, is about the same as for an antibody or polypeptide, on a moles/kg basis.
- inhibit or “treat” or “treatment” includes a postponement of development of the symptoms associated with disease and/or a reduction in the severity of such symptoms that will or are expected to develop with said disease.
- the terms further include ameliorating existing symptoms, preventing additional symptoms, and ameliorating or preventing the underlying causes of such symptoms.
- the terms denote that a beneficial result has been conferred on a vertebrate subject with a disease.
- the term "therapeutically effective amount” or “effective amount” refers to an amount of an anti- APRIL antibody or fragment thereof, that when administered alone or in combination with an additional therapeutic agent to a cell, tissue, or subject is effective to prevent or ameliorate the disease or condition to be treated.
- a therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions.
- a therapeutically effective dose refers to that ingredient alone.
- a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
- An effective amount of therapeutic will decrease the symptoms typically by at least 10%; usually by at least 20%; preferably at least about 30%; more preferably at least 40%, and most preferably by at least 50%.
- the pharmaceutical composition of the invention may also contain other agent, including but not limited to a cytotoxic, chemotherapeutic, cytostatic, anti-angiogenic or antimetabolite agent, a tumor targeted agent, an immune stimulating or immune modulating agent or an antibody conjugated to a cytotoxic, cytostatic, or otherwise toxic agent.
- agent including but not limited to a cytotoxic, chemotherapeutic, cytostatic, anti-angiogenic or antimetabolite agent, a tumor targeted agent, an immune stimulating or immune modulating agent or an antibody conjugated to a cytotoxic, cytostatic, or otherwise toxic agent.
- the pharmaceutical composition can also be employed with other therapeutic modalities such as surgery, chemotherapy and radiation.
- the antibodies and antigen binding fragments of the invention which specifically bind to human APRIL, can be used to treat several diseases in which the activity of APRIL is central to pathology. Broadly speaking this includes cancer, auto-immunity, inflammatory diseases and potentially multiple sclerosis, a CNS disease.
- the antibody or antigen binding fragments of the invention which specifically bind APRIL can be used to treat cancer.
- Preferred cancers whose growth and survival may be inhibited by the invention include any cancers known to express APRIL and depend on this for proliferative signals.
- Non-limiting examples of such cancers include several B cell malignancies, such as Chronic Lymphocytic Leukaemia (CLL), Multiple
- the binding compounds of the invention may be used alone or in combination with other anti-cancer agents, such as chemotherapeutic reagents or other biological agents. Additionally the invention includes refractory or recurrent malignancies or treatment of metastases derived from any of these malignancies.
- the binding compounds of the invention may be used to treat several autoimmune diseases, where the expression of APRIL has been sown to play a role in pathology.
- autoimmune diseases include Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE) and Sjogren's syndrome.
- RA Rheumatoid Arthritis
- SLE Systemic Lupus Erythematosus
- Sjogren's syndrome Sjogren's syndrome.
- higher then normal titres of APRIL were found in the serum of multiple sclerosis patients and also increased levels found in their astrocytes.
- APRIL is a contributing factor to disease pathology and therapeutic blockage of APRIL in MS may be beneficial.
- the non-therapeutic uses for these antibodies include flow cytometry, western blotting, enzyme linked immunosorbent assay (ELISA), immunohistochmistry.
- the antibodies of this invention may also be used as an affinity purification reagent via immobilization to a sepharose column.
- the antibody may also be useful in diagnostic assays, e.g., for detecting expression of APRIL in specific cells, tissues, or serum.
- the antibody typically will be labeled (either directly or indirectly) with a detectable moiety.
- Numerous labels are available which can be generally grouped into the following categories: biotin, fluorochromes, radionucleotides, enzymes, iodine, and biosynthetic labels.
- the antibodies of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies. A Manual of Techniques, pp.147-158 (CRC Press, Inc. 1987).
- the antibody may also be used for in vivo diagnostic assays.
- the antibody is labeled with a radionuclide so that the antigen or cells expressing it can be localized using immunoscintiography or positron emission tomography.
- Figure 1 shows APRIL reactivity and BCMA-blocking activity of hAPRIL.Ol A and hAPRIL.03A hybridoma supernatants.
- Figure IA shows hAPRIL.OlA and hAPRIL.03 A binding to FLAG-hAPRIL captured by an anti-FLAG antibody. Aprily-5 antibody was used as a positive control.
- Figure IB demonstrates that hAPRIL.OlA and hAPRIL.03 A hybridoma supernatants, and not Aprily-5 block the binding of FLAG- hAPRIL to BCMA-Fc.
- Figure 2 shows distinct binding and receptor-blocking characteristics of purified hAPRIL.OlA and hAPRIL.03A antibodies.
- Figure 2A confirms binding of purified hAPRIL.OlA and hAPRIL.03A to FLAG-hAPRIL, captured by an anti-FLAG antibody.
- Figure 2B shows that only hAPRIL.03 A binds FLAG-hAPRIL that is captured by BCMA-Fc.
- Figure 2C shows that hAPRIL.OlA fully blocks FLAG- hAPRIL binding to BCMA-Fc, while hAPRIL.03 A partially blocks this interaction.
- Figure 2D demonstrates that hAPRIL.OlA and hAPRIL.03 A both fully block FLAG- hAPRIL with TACI-Fc.
- Figure 3 shows the receptor-blocking ELISAs for hAPRIL.OlA, b_APRIL.03A, and 12 known commercially available monoclonal anti-APRIL antibodies. This illustrates that hAPRIL.01A and hAPRIL.03A are unique in their ability to block APRIL binding to BCMA ( Figure 3A) and TACI ( Figure 3B).
- Figure 4 shows that hAPRIL.Ol A and hAPRIL.03A block APRIL-driven B-cell proliferation and isotype class-switching but do not affect BAFF-mediated processes.
- Figure 4A is an in-vitro B-cell assay which demonstrates that the described monoclonal antibodies block known APRIL functions such as the survival and proliferation of B cells and production of class-switched IgA antibodies. Of significance is the demonstration that both monoclonal antibodies block APRIL activity more effectively than TACI-Fc, which was administered at equimolar concentration.
- Figure 4B shows that the antibodies do not affect BAFF-driven B cells responses, while TACI-Fc blocks these processes.
- Figure 5 shows the results of targeting APRIL with hAPRIL.OlA and bAPRIL.03A (panel A) or TACI-Fc (panel B) in-vivo, in a T-independent B cell response.
- Transgenic mice were challenged with NP-Ficoll, and treated with hAPRIL.OlA, hAPRIL.03A and TACI-Fc twice per week. PBS and mouse IgGl were used as negative controls.
- the immunoglobulin titres (IgA, IgM and IgG) were measured by ELISA.
- hAPRIL.OlA, hAPRIL.03A and to a lesser extent TACI-Fc are able to inhibit APRIL mediated B cell responses in the hAPRIL transgenic mice and reduce immunoglobulin levels to that of the WT.
- Figure 6 shows the effect of targeting APRIL with hAPRIL.Ol A 5 hAPRIL.03A and TACI-Fc on B-cell populations in the spleen (panel A) or peritoneal cavity (panel B).
- Transgenic mice were challenged with NP-Ficoll, and treated with hAPRIL.OlA, hAPRJL.03A, TACI-Fc twice per week. PBS and mouse IgGl were used as negative controls. After 30 days of treatment, spleens and cells from the peritoneal cavity were harvested and analyzed by flow cytometry.
- TACI-Fc Treatment with hAPRIL.OlA or hAPRIL.03 A did not affect the (sub)population of B-cells in the spleen. In contrast, TACI-Fc strongly reduced the total B-cell population and mature and T2 subpopulations. In the peritoneal cavity, TACI-Fc affected the ratio of Bl vs. B2-cells, while hAPRIL.OlA and hAPRIL.03A did not affect these subpopulations.
- Figure 7 shows the variable region sequences of hAPRIL.OlA and hAPRIL.03A.
- Figures 7A and 7B show the amino acid sequences of the heavy and light chain variable sequence of hAPRIL.OlA, respectively.
- Figures 7C and 7D shows the amino acid sequences of the heavy and light chain variable sequence of hAPRIL.03A, respectively.
- Example 1 Immunization and selection of anti- APRIL antibodies Immunization of Mice with APRIL cDNA
- a cDNA encoding the full length open reading frame of APRIL was subcloned into the pCI-neo vector (Promega, Madison, WI). Expression of the obtained vector was checked by transient transfection of pCI-neo-hAPRIL in 293 cells (American Type Culture Collection, Manassas, VA) and immunoblotting with mouse anti-hAPRIL IgGl Aprily-5 (1:5,000) (Alexis, San Diego, CA), followed by goat anti-mouse IgGl-HRP (1 :2,000) (Southern Biotechnology, Birmingham, AL).
- mice were immunized by gene gun immunization using a Helios Gene gun (BioRad, Hercules, CA) and DNA coated gold bullets (BioRad) following manufacturer's instructions. Briefly, 1 ⁇ m gold particles were coated with pCI-neo-hAPRIL cDNA and commercial expression vectors for mouse Flt3L and mouse GM-CSF in a 2:1 :1 ratio (both from Aldevron, Fargo, ND). A total of 1 ⁇ g of plasmid DNA was used to coat 500 ⁇ g of gold bullets.
- mice 7-8 weeks old female BALB/C mice were immunized in the ears with a gene gun, receiving 4 or 5 cycles of a shot in both ears. Approximately, a 1 :3,200 anti- hAPRIL titer was detected by ELISA in mouse serum after three DNA immunizations In the ELISA, all incubation steps were followed by a wash step with PBST (PBS with 0.1% Tween 20) 3 times. Maxisorp 96-well immunoplates (Nunc, Rochester, NY) were coated with rabbit anti-FLAG polyclonal antibody (50 ng/well in PBS) (Sigma, St. Louis, MO) overnight at 4 0 C and blocked with 10% Goat serum/PBST for 1 hour at RT.
- PBST PBS with 0.1% Tween 20
- mice that demonstrated reactivity against hAPRIL were immunized for a final, fourth time and sacrificed four days later.
- Erythrocyte-depleted spleen cell populations were prepared as described previously (Steenbakkers et ah, 1992, J. Immunol Meth. 152: 69-7?; Steenbakkers et al., 1994, MoI. Biol. Rep. 19: 125-134) and frozen at -140 0 C.
- Unbound splenocytes were separated from the beads using the Dynal MPC (Magnetic Particle Concentrator) (Invitrogen).
- Dynal MPC Magnetic Particle Concentrator
- splenocytes were incubated with 2.3 x 10 7 beads coated with anti-FLAG M2 bound to FLAG-hAPRIL for 30 minutes on ice. Beads and unbound splenocytes were separated as described above with a total of 12 washes.
- Antigen-specific B-cells were cultured as described by Steenbakkers et al., 1994, MoI. Biol. Rep. 19: 125-134. Briefly, selected B-cells were mixed with 7.5% (v/v) T-cell supernatant and 50,000 irradiated (2,500 RAD) EL-4 B5 nursing cells in a final volume of 200 ⁇ l DMEM F12/P/S/10%BCS in a 96-well flat-bottom tissue culture plates. On day eight, supernatants were screened for hAPRIL reactivity by ELISA as described above. 21 APRIL-reactive supernatants were identified and tested for their ability to inhibit the interaction of APRIL with BCMA-Fc.
- Bound FLAG-hAPRIL was detected by incubation with 1 ⁇ g/ml anti-FLAG BioM2-biotin antibody (Sigma) and 1 :2,000 Streptavidin-HRP (Southern Biotechnology) for 1 hour each at RT. After the final PBST wash, APRIL-bound BCMA-Fc was visualized with 100 ⁇ l OptiEIA TMB substrate (BD Biosciences). Reactions were stopped with 100 ⁇ l 0.5 M H 2 SO 4 , and absorbances were read at 460 and 620 run. Subsequently, 8 B-cell clones were ⁇ immortalized by mini-electrofusion following published procedures (Steenbakkers et al., 1992, J. Immunol. Meth. 152, 69-77;
- B-cells were mixed with 10 6 NS-I myeloma cells, and serum was removed by washing with DMEM Fl 2 media. Cells were treated with pronase solution for three minutes and washed with fusion medium. Electrofusions were performed in a 50 ⁇ l fusion chamber by an alternating electric field of 30s, 2 MHz, 400 V/cm followed by a square, high field pulse of 10 ⁇ s, 3 kV/cm and again by an alternating electric field of 30s, 2 MHz, 400 V/cm.
- Stable hybridomas were cultured in serum-free media using CELLine bioreactors (Integra-Biosciences, Chur, Switzerland) according to manufacturer's instructions. Following 7-10 days in culture, supernatants were harvested and filtered through a 0.22 ⁇ M nitrocellulose membrane. Supernatants were diluted 1 : 1 in high salt binding buffer (I M Glycine/2M NaCl, pH 9.0), and antibodies were purified with Protein G HiTrap 5 ml columns (GE Healthcare, Piscataway, NJ).
- high salt binding buffer I M Glycine/2M NaCl, pH 9.0
- Protein-based ELISA experiments using purified hAPRIL.Ol A and hAPRIL.03A antibodies were performed to determine apparent binding affinities (reported as EC50 values). Binding was compared to mouse anti-hAPRIL IgGl Aprily-5 (Alexis). Maxisorp 96-well immunoplates (Nunc) were coated with either rabbit anti-FLAG polyclonal antibody (Sigma) or BCMA-Fc (R&D Systems) at 50 ng/well in PBS overnight at 4 0 C and blocked with 10% Goat serum/PBST for 1 hour at RT.
- biosensors were then activated using a 0.1 M NHS / 0.4M EDC mixture for 5 minutes.
- hAPRIL.OlA and hAPRIL.03A antibodies were coupled by immersing the biosensors in a solution of 5 ⁇ g/mL of the antibody for 18 minutes.
- the biosensor surface was quenched using a solution of IM ethanolamine pH 8.5 for 7 minutes.
- Biosensors were equilibrated in PBS for 5 minutes. Association of recombinant APRIL was observed by placing the biosensors in wells containing either 1 or 2 ⁇ g/ml APRIL and monitoring interferometry for 20 minutes. Dissociation was measured after transfer of the biosensors into PBS and monitoring of the interferometry signal for 20 minutes.
- hAPRIL.Ol A fully blocks FLAG-hAPRIL binding to BCMA-Fc and TACI-Fc
- hAPRIL.03A fully blocks FLAG-hAPRIL binding to TACI-Fc, while only partially blocking the hAPRIL-BCMA-Fc interaction.
- Aprily- 5 does not block FLAG-hAPRIL binding to either BCMA-Fc or TACI-Fc.
- the concentration of half-maximum inhibition (IC 50 ) was determined for hAPRIL.OlA as 1.2 and 0.4 nM for BCMA-Fc and TACI-Fc, respectively.
- the IC 50 for hAPRIL.03 A to TACI-Fc was determined as 1.3 nM.
- the plate was then washed with PBS/0.2%Tween and then incubated with for 1 hour at 37 °C with 100 ⁇ l PBS/5% BSA per well. The plate was then washed four times with PBS/0.2%Tween.
- APRIL monoclonal antibodies were pre-mixed with APRIL supernatant and incubated for 30 minutes on ice.
- Conditioned medium containing soluble APRIL was diluted 1 in 4 and mixed with an equal volume of PBS containing the antibodies titrated in doubling dilutions starting with 5 ⁇ g/ml. 100 ⁇ l of the pre-incubated mix was transferred to the ELISA plate and incubated for 2 hours at 37 "C.
- the plate was then washed four times with PBS/0.2%Tween.
- Anti-Flag-HRP antibody was then diluted in PBS at a concentration of 1:1000 and then 100 ⁇ l of this added to each well and incubated for 1 hour at 37 °C.
- the plate was then washed four times with PBS/0.2%Tween and then 100 ⁇ l of ABTS added to each well (the ABTS was diluted to the ratio 10 ml of reagent plus 5 ⁇ l of H 2 O 2 made immediately before addition).
- the colour was allowed to develop and then the OD at 405 nm read on an ELISA plate reader.
- Human IgGl was used as a control protein to coat the plate as this is the same isotype as the Fc-fusion proteins and controlled for APRIL sticking to the plate non-specifically.
- none of the commercially available antibodies was able to block the binding of FLAG-APRIL to either TACI-Fc or BCMA-Fc, whereas hAPRIL.01 A and hAPRIL.03A do inhibit (partially) the binding to TACI-Fc and BCMA-Fc.
- Binding of hAPRIL.01 A and hAPRIL.03A to mouse APRIL was also examined by BIAcore, but no binding of either antibody was observed. The antibodies appear only to bind human APRIL.
- Mouse splenocytes and purified B cells were grown in RPMI- 1640 (Gibco) supplemented with 8% FCS, 2 mM Glutamine and Beta-mercaptoethanol at 50 ⁇ M, and supplemented with penicillin and streptomycin at a concentration of lO ⁇ g/ml.
- Splenic mouse B cells were isolated from wild-type mice using magnetic activated cell separation (MACS) columns with CD45R/B220 MACS beads (Miltenyi Biotec, Utrecht, The Netherlands). The cells were cultured in 96-well round-bottomed microliter plates at a density of 2 x 10 5 /well in a final volume of 200 ⁇ l.
- MCS magnetic activated cell separation
- conditioned medium containing the various forms of soluble APRIL were normalised for expression levels prior to use.
- cells were treated with anti-IgM (Jackson hnmunoResearch) and soluble APRIL in conditioned medium or as purified protein at a final concentration of 1 ⁇ g/ml.
- Cross-linking anti-Flag monoclonal antibody was added to the well at a final concentration of 1 ⁇ g/ml.
- the cells were incubated at 37 0 C and after 48 hours pulsed with 0.3 ⁇ Ci (0.011 MBq) of tritiated thymidine ([6- 3 H] Thymidine, GE Healthcare, The Netherlands) for 18 hours, before harvesting.
- mouse B cells were cultured and treated with APRIL, as above. Following incubation for 6 days, supernatant was collected and assayed for IgA content by ELISA. Briefly, ELISA plates were coated with 2 ⁇ g/ml anti-mouse-Ig (Southern Biotech), blocked with PBS/1% BSA and incubated with the collected supernatant. Bound IgA was then detected with HRP labelled anti-mouse-Ig A (Southern Biotech, Uithoorn, the
- hAPRIL.OlA and to a lesser extent hAPRIL.03A are able to inhibit APRIL induced class-switch recombination as was determined by the reduced IgA secretion from mouse splenic B- cells.
- TACI-Fc as a control inhibited the IgA secretion, while mouse IgGl and human Ig did not affect the APRIL-induced IgA secretion from splenic B-cells.
- hAPRIL.OlA and hAPRIL.03A were demonstrated to inhibit APRIL-induced mouse splenic B-cell proliferation.
- the effect of hAPRIL.OlA and hAPRIL.03A on BAFF-induced IgA secretion and proliferation was studied. As shown in Figure 4B, neither hAPRIL.OlA nor hAPRIL.03 A inhibited BAFF induced IgA secretion and proliferation, while TACI-Fc as a control inhibited both processes.
- mice were 8-10 week old APRIL transgenic (TG) mice and wildtype (WT) littermates, both on a C57BL/6 background.
- the APRIL transgenic mice express human APRIL under the Lck-distal promoter, which directs transgene expression to mature thymocytes and peripheral T lymphocytes (Stein et al., 2002, J CHn Invest 109, 1587-98).
- the mice were bred in the animal facility of the Academic Medical Center and the experiment was approved by the institutional ethical committee.
- mice were divided into several groups and treated as follows: five APRIL WT mice were treated with PBS (200 ⁇ l) and 5 groups of five APRIL transgenic mice were treated with the following molecules: hAPRIL.Ol A or hAPRIL.03A or TACI-Fc or subisotype-matched control antibody msIgGlJc (200 ⁇ g/mouse in 200 ⁇ l PBS) or PBS.
- Treatment of the mice was started 3 days before the NP-Ficoll immunization (day 0; 100 ⁇ l i.p. with 250 ⁇ g of the immunogen) - injections were continued twice a week for 28 days. Blood was collected via tail vein at day -1, 3, 7, 14 and 28.
- Anti-(4-hydroxy-nitrophenacetyl) (NP)-specific antibodies (IgM, IgG and IgA) were assayed in 6 independent ELISA using diluted sera (1 : 100 for IgA; 1 :500 for IgG and 1 :2,000 for IgM) as previously described (Hardenberg et al., Immunol Cell Biol, 86(6), 530-4, (2008)). Briefly 96-well ELISA plates (Greiner) were coated with NP-BSA at 5 ⁇ g/ml (Biosearch Technologies) in sodium carbonate buffer (pH 9.6) overnight at 4 0 C.
- mice were treated as described above. On day 30, mice were sacrificed and the spleen and peritoneal exudate cavity (PEC) analysed for B cell expression by flow cytometry.
- PEC spleen and peritoneal exudate cavity
- splenocytes and lymphocytes from the PEC were separated from red blood cells by one wash with erythrocyte lysis buffer and then counted. Cells were washed and resuspended in PBS/1% BSA and seeded in 96-well round-bottomed plates at a density of 5 x 10 5 per well. Next, cells were stained with the following antibodies at the recommended concentrations: B220-FITC (BD bioscience) and CD3-APC (ebioscience); IgD-FITC (BD bioscience) and IgM-PE (BD bioscience); IgD-FITC (BD bioscience), CD3-APC (ebioscience) and CD43-PE (BD bioscience).
- Antibodies were incubated for 40 minutes, washed three times with PBS/ 1% BSA and then analysed by flow cytometry using the FACSCalibur (Becton Dickenson).
- B220 + B- cells, mature B-cells (IgD + IgM" 1 *) and T2 B-cells (IgD + IgM + ) in spleen were quantified (see Figure 6A).
- Bl ⁇ 043"IgD 1 *) and B2 (CD43TgD + ) subpopulations were quantified in PEC (see Figure 6B).
- the synthetic linear and CLIPS peptides were synthesized and screened using credit- card format mini PEPSCAN cards (455-well plate with 3 ul wells) as described by Slootstra et al. (Slootstra et al., 1996, MoI. Diversity 1, 87-96) and Timmerman et al. (Timmerman et al., 2007, J, MoI Recognit 20, 283-299).
- the binding of antibodies (hAPRIL.OlA and hAPRIL.03 A) to each peptide was tested in a PEPSCAN-based enzyme-linked immuno assay (ELISA).
- sample for example 1 ug/ml antibody diluted in a PBS solution containing 5% horse serum (vol/vol) and 5% ovalbumin (weight/vol)
- Tween 80 4 0 C 5 overnight.
- the peptides were incubated with an anti-antibody peroxidase (dilution 1/1000, for example rabbit anti-mouse peroxidase, Southern Biotech) (1 hour, 25°C), and subsequently, after washing the peroxidase substrate 2,2'-azino-di-3- ethylbenzthiazoline sulfonate (ABTS) and 2, ul/rnl 3% H2O2 were added. After 1 hour the color development was measured. The color development of the ELISA was quantified with a CCD-camera and an image processing system.
- the setup consists of a CCD-camera and a 55 mm lens (Sony CCD Video Camara XC-77RR, Nikon micro- nikkor 55 mm #2.8 lens), a camera adaptor (Sony Camara adaptor DC-77RR) and Image Processing Software.
- SREGQGRQETV (SEQ ID NO:26), FHLHQGDILSV (SEQ ID NO:27) and loops on "bottom” side of protein: INATSKDDSDVTE (SEQ ID NO:28), VLFQDVTFTMG (SEQ ID NO:29), IRSMP SHPDRAYNS C (SEQ ID NO:30), IIPRARAKL (SEQ ID NO:31), NLSPHGTFLGF (SEQ ID NO:32).
- the interconnecting regions are mostly sheets. Note that the "top” and “bottom” side are chosen arbitrarily.
- T2 CLIPS couples to the side-chain of two cysteines to form a single loop topology
- T3 CLIPS couples to the side-chain of three cysteines to form double loop topology
- T2T2 CLIPS first T2 couples to two cysteines (labeled C)
- second T2 couples to two cysteines
- T2T3 CLIPS T2 couples to two cysteines and T3 couples to three cysteines.
- 191-1 (set-1) All overlapping 35-mer sequences covering the complete 147 AA target sequence were synthesized.
- 191-8 Short linear sequences (of varying length) only covering the loop regions of the complete 147 AA target sequence were synthesized.
- 191-16 set-6b
- Different peptides were selected from the five "bottom” loops. These were recombined in a 9x9 matrix onto the T3 CLIPS to form double looped topologies with "bottom” loops of two different lengths.
- 191-24 (set- 14) Six different 9-mer sequences covering the "top” loops were recombined with each in a 6x6x6 triple looped matrix on T2T3 CLIPS combination.
- 191-25 (set- 15) The same set of overlapping peptides as set-1. All overlapping 35-mer sequences covering the complete 147AA target sequence were synthesized. In this set the different loops, when present in the sequence, as defined above were constrained into triple loop topology through T3T2 CLIPS.
- 191-26 (set- 16) Six different 9-mer sequences covering the "bottom” loops were recombined with each in a 6x6x6 triple looped matrix on T2T3 CLIPS combination.
- hAPRIL.Ol A it was determined that it binds to IRSMPSHPDRA (SEQ ID NO:33), with the core region being SMPSHP (SEQ ED NO:34).
- the TLFR (SEQ ID NO:35) and/or QDVTFTMGQ (SEQ ID NO:36) (core region is VTFTM (SEQ ID NO:37)) motifs were shown to support the binding of hAPRIL.Ol A.
- hAPRIL.03 A was shown to bind VSREGQGRQ (SEQ ID NO:38) motif, with core region being EGQ.
- the TFTMGQ (SEQ ID NO:39) motif was shown to support binding of hAPRIL.03A.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Transplantation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES10706979.1T ES2573404T3 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferation inducing ligand (APRIL) |
CA2754127A CA2754127C (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (april) |
DK10706979.1T DK2403528T3 (en) | 2009-03-02 | 2010-02-23 | ANTIBODIES AGAINST A proliferation-inducing ligand (April) |
EP22186935.7A EP4147719A1 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (april) |
JP2011552389A JP5867706B2 (en) | 2009-03-02 | 2010-02-23 | Antibody to proliferation-inducing ligand (APRIL) |
SI201031186A SI2403528T1 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (april) |
EP10706979.1A EP2403528B1 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (april) |
AU2010220421A AU2010220421B9 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (APRIL) |
EP16075009.7A EP3103476B1 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (april) |
US13/216,751 US8895705B2 (en) | 2009-03-02 | 2011-08-24 | Antibodies against a proliferating inducing ligand (APRIL) and methods of use thereof |
US13/792,406 US20130302353A1 (en) | 2009-03-02 | 2013-03-11 | Antibodies against a proliferating inducing ligand (april) |
US13/792,339 US9000128B2 (en) | 2009-03-02 | 2013-03-11 | Antibodies against a proliferating inducing ligand (APRIL) and methods of use thereof |
HRP20160702TT HRP20160702T1 (en) | 2009-03-02 | 2016-05-20 | Antibodies against a proliferating inducing ligand (april) |
CY20161100688T CY1117942T1 (en) | 2009-03-02 | 2016-07-15 | APRIL |
SM201600239T SMT201600239B (en) | 2009-03-02 | 2016-07-20 | ANTIBODIES AGAINST A CHALLENGE THAT INDICATES PROLIFERATION (APRIL) |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09154079 | 2009-03-02 | ||
EP09154079.9 | 2009-03-02 | ||
EP09157722.1 | 2009-04-09 | ||
EP09157722 | 2009-04-09 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16075009.7A Previously-Filed-Application EP3103476B1 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (april) |
US13/216,751 Continuation-In-Part US8895705B2 (en) | 2009-03-02 | 2011-08-24 | Antibodies against a proliferating inducing ligand (APRIL) and methods of use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010100056A2 true WO2010100056A2 (en) | 2010-09-10 |
WO2010100056A3 WO2010100056A3 (en) | 2010-11-18 |
Family
ID=42289631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/052254 WO2010100056A2 (en) | 2009-03-02 | 2010-02-23 | Antibodies against a proliferating inducing ligand (april) |
Country Status (16)
Country | Link |
---|---|
US (4) | US8895705B2 (en) |
EP (3) | EP2403528B1 (en) |
JP (3) | JP5867706B2 (en) |
AR (1) | AR075604A1 (en) |
AU (1) | AU2010220421B9 (en) |
CA (2) | CA2919467C (en) |
CY (1) | CY1117942T1 (en) |
DK (2) | DK2403528T3 (en) |
ES (2) | ES2573404T3 (en) |
HR (1) | HRP20160702T1 (en) |
HU (1) | HUE027826T2 (en) |
PL (1) | PL2403528T3 (en) |
PT (1) | PT2403528E (en) |
SI (1) | SI2403528T1 (en) |
SM (1) | SMT201600239B (en) |
WO (1) | WO2010100056A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2011406C2 (en) * | 2013-09-06 | 2015-03-10 | Bionovion Holding B V | Method for obtaining april-binding peptides, process for producing the peptides, april-binding peptides obtainable with said method/process and use of the april-binding peptides. |
EP2878670A4 (en) * | 2012-06-08 | 2016-03-02 | Univ Kinki | Antibody against transporter and use thereof |
WO2016110587A1 (en) | 2015-01-09 | 2016-07-14 | Aduro Biotech Holdings, Europe B.V. | Altered april binding antibodies |
WO2016113368A1 (en) | 2015-01-15 | 2016-07-21 | Universite Grenoble Alpes | Anti april (a proliferation-inducing ligand) antibodies and their uses for the prognosis and/or diagnosis of cancer |
WO2017091683A1 (en) * | 2015-11-25 | 2017-06-01 | Visterra, Inc. | Antibody molecules to april and uses thereof |
WO2020144535A1 (en) | 2019-01-08 | 2020-07-16 | Aduro Biotech Holdings, Europe B.V. | Methods and compositions for treatment of multiple myeloma |
EP3103476B1 (en) | 2009-03-02 | 2022-07-27 | Aduro Biotech Holdings, Europe B.V. | Antibodies against a proliferating inducing ligand (april) |
RU2793755C2 (en) * | 2015-11-25 | 2023-04-05 | Вистерра, Инк. | Antibody molecules against april and applications thereof |
WO2023212518A1 (en) | 2022-04-25 | 2023-11-02 | Visterra, Inc. | Antibody molecules to april and uses thereof |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3105251A4 (en) * | 2014-02-10 | 2017-11-15 | Merck Sharp & Dohme Corp. | Antibodies that bind to human tau and assay for quantifying human tau using the antibodies |
WO2015127136A2 (en) * | 2014-02-19 | 2015-08-27 | Jody Berry | Ebola monoclonal antibodies |
SG11201607143UA (en) | 2014-03-11 | 2016-09-29 | Univ Leland Stanford Junior | Anti sirp-alpha antibodies and bi-specific macrophage enhancing antibodies |
US20170247462A1 (en) | 2014-07-03 | 2017-08-31 | Oklahoma Medical Research Foundation | Treatment of multiple sclerosis and neuromyelitis optica |
WO2016145102A1 (en) | 2015-03-10 | 2016-09-15 | Aduro Biotech, Inc. | Compositions and methods for activating "stimulator of interferon gene" -dependent signalling |
SG11201804957VA (en) | 2015-12-16 | 2018-07-30 | Gritstone Oncology Inc | Neoantigen identification, manufacture, and use |
US11098077B2 (en) | 2016-07-05 | 2021-08-24 | Chinook Therapeutics, Inc. | Locked nucleic acid cyclic dinucleotide compounds and uses thereof |
JP7128829B2 (en) | 2017-02-17 | 2022-08-31 | マップ バイオファーマシューティカル、インコーポレイテッド | Monoclonal antibodies and cocktails for the treatment of Ebola infection |
UY37695A (en) | 2017-04-28 | 2018-11-30 | Novartis Ag | BIS 2’-5’-RR- (3’F-A) (3’F-A) CYCLE DINUCLEOTIDE COMPOUND AND USES OF THE SAME |
CN111263767B (en) | 2017-08-30 | 2023-07-18 | 北京轩义医药科技有限公司 | Cyclic dinucleotides as stimulators of interferon gene modulators |
JP7227237B2 (en) | 2017-10-10 | 2023-02-21 | グリットストーン バイオ インコーポレイテッド | Identification of neoantigens using hotspots |
CN111630602A (en) | 2017-11-22 | 2020-09-04 | 磨石肿瘤生物技术公司 | Reducing presentation of conjugated epitopes by neoantigens |
KR20230017223A (en) * | 2020-05-29 | 2023-02-03 | 치누크 세라퓨틱스, 인크. | Methods of treating IgA nephropathy with APRIL binding antibodies |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
EP0404097A2 (en) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof |
WO1993011161A1 (en) | 1991-11-25 | 1993-06-10 | Enzon, Inc. | Multivalent antigen-binding proteins |
US5260203A (en) | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
WO1996014328A1 (en) | 1994-11-07 | 1996-05-17 | Human Genome Sciences, Inc. | Tumor necrosis factor-gamma |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
WO1999000518A1 (en) | 1997-06-26 | 1999-01-07 | Abbott Laboratories | Member of the tnf family useful for treatment and diagnosis of disease |
WO1999012965A2 (en) | 1997-09-12 | 1999-03-18 | Biogen, Inc. | April- a novel protein with growth effects |
WO2001060397A1 (en) | 2000-02-16 | 2001-08-23 | Genentech, Inc. | Uses of agonists and antagonists to modulate activity of tnf-related molecules |
WO2001096528A2 (en) | 2000-06-15 | 2001-12-20 | Human Genome Sciences, Inc. | Human tumor necrosis factor delta and epsilon |
WO2002094192A2 (en) | 2001-05-24 | 2002-11-28 | Human Genome Sciences, Inc. | Antibodies against tumor necrosis factor delta (april) |
WO2003086310A2 (en) | 2002-04-12 | 2003-10-23 | Ramot At Tel Aviv University Ltd. | Prevention of brain inflammation as a result of induced autoimmune response |
WO2005120571A2 (en) | 2004-06-07 | 2005-12-22 | Ramot At Tel Aviv University Ltd. | Method of passive immunization against disease or disorder characterized by amyloid aggregation with diminished risk of neuroinflammation |
WO2006005770A2 (en) | 2004-07-15 | 2006-01-19 | Technische Universität Wien | Method for the detection of fusarium graminearum |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946A (en) | 1847-01-26 | Improvement in carriage-wheels | ||
US778A (en) | 1838-06-12 | Thomas wright | ||
AU2001261557B2 (en) * | 2000-05-12 | 2005-06-30 | Amgen Inc. | Methods and compositions of matter concerning april/g70, bcma, blys/agp-3, and taci |
US20050070689A1 (en) * | 2001-08-03 | 2005-03-31 | Genentech, Inc. | Taci and br3 polypeptides and uses thereof |
US7410483B2 (en) | 2003-05-23 | 2008-08-12 | Novare Surgical Systems, Inc. | Hand-actuated device for remote manipulation of a grasping tool |
AU2004315198A1 (en) * | 2004-01-29 | 2005-08-18 | Genentech, Inc. | Variants of the extracellular domain of BCMA and uses thereof |
HUE027826T2 (en) | 2009-03-02 | 2016-11-28 | Aduro Biotech Holdings Europe B V | Antibodies against a proliferating inducing ligand (april) |
-
2010
- 2010-02-23 HU HUE10706979A patent/HUE027826T2/en unknown
- 2010-02-23 PL PL10706979T patent/PL2403528T3/en unknown
- 2010-02-23 DK DK10706979.1T patent/DK2403528T3/en active
- 2010-02-23 CA CA2919467A patent/CA2919467C/en active Active
- 2010-02-23 EP EP10706979.1A patent/EP2403528B1/en active Active
- 2010-02-23 JP JP2011552389A patent/JP5867706B2/en active Active
- 2010-02-23 SI SI201031186A patent/SI2403528T1/en unknown
- 2010-02-23 ES ES10706979.1T patent/ES2573404T3/en active Active
- 2010-02-23 PT PT107069791T patent/PT2403528E/en unknown
- 2010-02-23 EP EP22186935.7A patent/EP4147719A1/en active Pending
- 2010-02-23 WO PCT/EP2010/052254 patent/WO2010100056A2/en active Application Filing
- 2010-02-23 EP EP16075009.7A patent/EP3103476B1/en active Active
- 2010-02-23 CA CA2754127A patent/CA2754127C/en active Active
- 2010-02-23 DK DK16075009.7T patent/DK3103476T3/en active
- 2010-02-23 AU AU2010220421A patent/AU2010220421B9/en active Active
- 2010-02-23 ES ES16075009T patent/ES2928709T3/en active Active
- 2010-02-25 AR ARP100100546A patent/AR075604A1/en not_active Application Discontinuation
-
2011
- 2011-08-24 US US13/216,751 patent/US8895705B2/en active Active
-
2013
- 2013-03-11 US US13/792,380 patent/US20130295103A1/en not_active Abandoned
- 2013-03-11 US US13/792,339 patent/US9000128B2/en active Active
- 2013-03-11 US US13/792,406 patent/US20130302353A1/en not_active Abandoned
-
2015
- 2015-06-10 JP JP2015117303A patent/JP2015172073A/en not_active Withdrawn
- 2015-06-10 JP JP2015117304A patent/JP2015164956A/en active Pending
-
2016
- 2016-05-20 HR HRP20160702TT patent/HRP20160702T1/en unknown
- 2016-07-15 CY CY20161100688T patent/CY1117942T1/en unknown
- 2016-07-20 SM SM201600239T patent/SMT201600239B/en unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
US5260203A (en) | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
EP0404097A2 (en) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof |
WO1993011161A1 (en) | 1991-11-25 | 1993-06-10 | Enzon, Inc. | Multivalent antigen-binding proteins |
WO1996014328A1 (en) | 1994-11-07 | 1996-05-17 | Human Genome Sciences, Inc. | Tumor necrosis factor-gamma |
WO1999000518A1 (en) | 1997-06-26 | 1999-01-07 | Abbott Laboratories | Member of the tnf family useful for treatment and diagnosis of disease |
WO1999012965A2 (en) | 1997-09-12 | 1999-03-18 | Biogen, Inc. | April- a novel protein with growth effects |
WO2001060397A1 (en) | 2000-02-16 | 2001-08-23 | Genentech, Inc. | Uses of agonists and antagonists to modulate activity of tnf-related molecules |
WO2001096528A2 (en) | 2000-06-15 | 2001-12-20 | Human Genome Sciences, Inc. | Human tumor necrosis factor delta and epsilon |
WO2002094192A2 (en) | 2001-05-24 | 2002-11-28 | Human Genome Sciences, Inc. | Antibodies against tumor necrosis factor delta (april) |
WO2003086310A2 (en) | 2002-04-12 | 2003-10-23 | Ramot At Tel Aviv University Ltd. | Prevention of brain inflammation as a result of induced autoimmune response |
WO2005120571A2 (en) | 2004-06-07 | 2005-12-22 | Ramot At Tel Aviv University Ltd. | Method of passive immunization against disease or disorder characterized by amyloid aggregation with diminished risk of neuroinflammation |
WO2006005770A2 (en) | 2004-07-15 | 2006-01-19 | Technische Universität Wien | Method for the detection of fusarium graminearum |
Non-Patent Citations (109)
Title |
---|
"Antibodies, A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY |
"Pharmaceutical Dosage Forms: Parenteral Medications", 1993, MARCEL DEKKER |
"Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary", 1984, MACK PUBLISHING COMPANY |
ABE ET AL., LEUKEMIA, vol. 20, 2006, pages 1313 - 5 |
ANDERSON; TOMASI, J IMMUNOL. METHODS, vol. 109, 1988, pages 37 - 42 |
BACH: "Monoclonal Antibodies and Peptide Therapy in Autoimmune Diseases", 1993, MARCEL DEKKER |
BAERT ET AL., NEW ENGL. J. MED., vol. 348, 2003, pages 601 - 608 |
BENIAMINOVITZ ET AL., NEW ENGL. J. MED., vol. 342, 2000, pages 613 - 619 |
BREKKE; SANDLIE, NATURE REV., vol. 2, 2003, pages 52 - 62 |
BRUGGERMANN ET AL., YEAR IN IMMUNOLOGY, vol. 7, 1993, pages 33 |
CARNAHAN ET AL., CLIN. CANCER RES., vol. 9, 2003, pages 3982S - 3990S |
CARTER ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 163 - 167 |
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285 |
CASTIGLI ET AL., PROC NATL ACAD SCI USA, vol. 101, 2004, pages 3903 - 8 |
CHABNER AND LONGO: "Cancer Chemotherapy and Biotherapy", 2001, LIPPINCOTT, WILLIAMS & WILKINS |
CHAMPE ET AL., J BIOL. CHEM., vol. 270, 1995, pages 1388 - 1394 |
CHAPMAN, ADV. DRUG DELIV. REV., vol. 54, 2002, pages 531 - 545 |
CHOTHIA ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901 |
CHOTHIA; LESKL, J MOL. BIOL., vol. 196, 1987, pages 901 - 917 |
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
CUNNINGHAM; WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
CUNNINGHAM; WELLS: "alanine scanning mutagenesis", SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
DAVID ET AL., BIOCHEMISTRY, vol. 13, 1974, pages 1014 |
DESHAYES ET AL., ONCOGENE, vol. 23, 2004, pages 3005 - 12 |
DUCHOSAL ET AL., NATURE, vol. 355, 1992, pages 258 |
GATTO ET AL., CURR OPIN INVESTIG DRUGS., vol. 9, no. 11, 2008, pages 1216 - 27 |
GENNARO: "Remington: The Science and Practice of Pharmacy", 2000, LIPPINCOTT, WILLIAMS, AND WILKINS |
GHOSH ET AL., NEW ENGL. J. MED., vol. 348, 2003, pages 24 - 32 |
GROSS ET AL., IMMUNITY, vol. 15, 2001, pages 289 - 302 |
GROSS ET AL., NATURE, vol. 404, 2000, pages 995 - 9 |
GUSS ET AL., EMBO J5, 1986, pages 1567 - 1575 |
HAHNE ET AL., JEXP MED, vol. 188, 1998, pages 1185 - 90 |
HARDENBERG ET AL., IMMUNOL CELL BIOL, vol. 86, no. 6, 2008, pages 530 - 4 |
HARDMAN ET AL.: "Goodman and Gilman's The Pharmacological Basis of Therapeutics", 2001, MCGRAW-HILL |
HARDMAN, ET AL.: "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.,", 2001, MCGRAW-HILL |
HENDRIKS ET AL., CELL DEATH DIFFER, vol. 12, 2005, pages 637 - 48 |
HEROLD ET AL., NEW ENGL. J. MED., vol. 346, 2002, pages 1692 - 1698 |
HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
HOLLIGER; HUDSON, NAT. BIOTECHNOL., vol. 23, 2005, pages 1126 - 1136 |
HOOGENBOOM ET AL., J MOL. BIOL., vol. 227, 1991, pages 381 |
HUNTER ET AL., NATURE, vol. 144, 1962, pages 945 |
JAKOBOVITS ET AL., NATURE, vol. 362, 1993, pages 255 - 258 |
JAKOBOVITS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 2551 |
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525 |
JONSSON ET AL., SCAND J RHEUMATOL SUPP, vol. 161, 1986, pages 166 - 9 |
KABAT ET AL., J. 1MMUNOL., vol. 147, 1991, pages 1709 |
KIMBERLEY ET AL., J CELL PHYSIOL., vol. 218, no. 1, 2009, pages 1 - 8 |
KIMBERLEY ET AL., J CELL PHYSIOL., vol. 218, no. L, 2009, pages 1 - 8 |
KIMBERLEY ET AL., J CELL PLAYSIOL., vol. 218, no. 1, 2009, pages 1 - 8 |
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495 |
KOYAMA ET AL., ANN RHEUM DIS, vol. 64, 2005, pages 1065 - 7 |
KRESINA: "Monoclonal Antibodies, Cytokines and Arthritis", 1991, MARCEL DEKKER |
LIEBERMAN, ET AL.: "Pharmaceutical Dosage Forms: Disperse Systems", 1990, MARCEL DEKKER |
LIEBERMAN, ET AL.: "Pharmaceutical Dosage Forms: Tablets", 1990, MARCEL DEKKER |
LINDMARK ET AL., J. IMMUNOL. METH., vol. 62, 1983, pages 1 - 13 |
LIPSKY ET AL., NEW ENGL. J. MED., vol. 343, 2000, pages 1594 - 1602 |
LITINSKIY ET AL., NAT IMMUNOL, vol. 3, 2002, pages 822 - 9 |
LIU ET AL., J. NEUROL. NEUROSURG. PSYCH., vol. 67, 1999, pages 451 - 456 |
LO, BENNY, K.C.: "Antibody Engineering: Methods and Protocols", vol. 248, 2004, HUMANA PRESS |
LOPEZ-FRAGAET, EMBO REP, vol. 2, 2001, pages 945 - 51 |
MARKS ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 779 - 783 |
MARKS ET AL., J MOL. BIOL., vol. 222, 1991, pages 581 - 597 |
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597 |
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 554 |
MENDEZ ET AL., NATURE GENETICS, vol. 15, 1997, pages 146 - 156 |
MILGROM ET AL., NEW ENGL. J. MED., vol. 341, 1999, pages 1966 - 1973 |
MORRISON ET AL., PROC. NATL ACAD. SCI. USA, vol. 81, 1984, pages 6851 |
MORRISON ET AL., PROC. NATL. ACAD SCI. USA, vol. 81, 1984, pages 6851 - 6855 |
NYGREN, J., HISTOCHEM. AND CYTOCHEM., vol. 30, 1982, pages 407 |
PAIN ET AL., J. IMMUNOL. METH., vol. 40, 1981, pages 219 |
PLANELLES ET AL., CANCER CELL, vol. 6, 2004, pages 399 - 408 |
PLANELLES ET AL., HAEMATOLOGICA, vol. 92, 2007, pages 1284 - 5 |
PLUCKTHUN: "THE PHARMACOLOGY OF MONOCLONAL ANTIBODIES", vol. 113, 1994, SPRINGER-VERLAG, pages: 269 - 315 |
POOLE AND PETERSON: "Pharmacotherapeutics for Advanced Practice: A Practical Approach", 2001, LIPPINCOTT, WILLIAMS & WILKINS |
PORTIELJI ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 52, 2003, pages 133 - 144 |
PRESTA ET AL., J IMMNOL., vol. 151, 1993, pages 2623 |
PRESTA ET AL., THROMB. HAEMOST., vol. 85, 2001, pages 379 - 389 |
PRESTA, ADV. DRUG DELIVERY REV., vol. 58, 2006, pages 640 - 656 |
PRESTA, J. ALLERGY CLIN. IMMUNOL., vol. 116, 2005, pages 731 - 734,35 |
RENNERT ET AL., JEXP MED, vol. 192, 2000, pages 1677 - 84 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327 |
ROSCHKE ET AL., J IMMUNOL., vol. 169, no. 8, 2002, pages 4314 - 21 |
ROSCHKE ET AL., J IMMUNOLL, vol. 69, 2002, pages 4314 - 21 |
ROTH ET AL., CELL DEATH DIFFER, vol. 8, 2001, pages 403 - 10 |
SCHWALLER ET AL., BLOOD, vol. 109, 2007, pages 331 - 8 |
SEYLER ET AL., JCLIN INVEST, vol. 115, 2005, pages 3083 - 92 |
SIMS ET AL., J IMMUNOL., vol. 151, 1987, pages 2296 |
SLAMON ET AL., NEW ENGL. J. MED., vol. 344, 2001, pages 783 - 792 |
SLOOTSTRA ET AL., MOL. DIVERSITY, vol. 1, 1996, pages 87 - 96 |
STEENBAKKERS ET AL., J. IMMUNOL. METH., vol. 152, 1992, pages 69 - 77 |
STEENBAKKERS ET AL., MOL. BIOL. REP., vol. 19, 1994, pages 125 - 134 |
STEENBAKKERS ET AL., MOL. BIOL. REP., vol. 19, 1994, pages 125 - 34 |
STEIN ET AL., J CLIN INVEST, vol. 109, 2002, pages 1587 - 98 |
STOHL ET AL., ENDOCR METAB IMMUNE DISORD DRUG TARGETS, vol. 6, 2006, pages 351 - 8 |
SUZUKI ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 788, 1984, pages 248 - 255 |
TAN ET AL., ARTHRITIS RHEUM, vol. 48, 2003, pages 982 - 92 |
TIMMERMAN ET AL., J. MOL. RECOGNIT., vol. 20, 2007, pages 283 - 299 |
VARFOLOMEEV ET AL., MOL CELL BIOL, vol. 24, 2004, pages 997 - 1006 |
VAUGHAN ET AL., NATURE BIOTECH, vol. 14, 1996, pages 309 |
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536 |
WALLWEBER ET AL., MOL BIOL, vol. 343, 2004, pages 283 - 90 |
WANG ET AL., NAT IMMUNOL, vol. 2, 2001, pages 632 - 7 |
WATERHOUSE ET AL., NUC. ACIDS. RES., vol. 21, 1993, pages 2265 - 2266 |
WATSON ET AL.: "Molecular Biology of the Gene", 1987, THE BENJAMIN/CUMMINGS PUB. CO., pages: 224 |
WAWRZYNCZAK: "Antibody Therapy", 1996, BIOS SCIENTIFIC PUB. LTD |
WEINER; KOTKOSKIE: "Excipient Toxicity and Safety", 2000, MARCEL DEKKER, INC. |
YANG ET AL., CRIT. REV. ONCOL. HEMATOL., vol. 38, 2001, pages 17 - 23 |
YANG ET AL., NEW ENGL. J MED., vol. 349, 2003, pages 427 - 434 |
ZOLA: "Monoclonal Antibodies. A Manual of Techniques", 1987, CRC PRESS, INC., pages: 147 - 158 |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3103476B1 (en) | 2009-03-02 | 2022-07-27 | Aduro Biotech Holdings, Europe B.V. | Antibodies against a proliferating inducing ligand (april) |
EP2878670A4 (en) * | 2012-06-08 | 2016-03-02 | Univ Kinki | Antibody against transporter and use thereof |
US9725519B2 (en) | 2012-06-08 | 2017-08-08 | Kinki University | Antibody against transporter and use thereof |
US10107821B2 (en) | 2013-09-06 | 2018-10-23 | Aduro Biotech Holdings, Europe B.V. | Proliferation-inducing ligand (APRIL)-binding peptides |
WO2015034364A1 (en) | 2013-09-06 | 2015-03-12 | Bionovion Holding B.V. | Method for obtaining april-binding peptides, process for producing the peptides, april-binding peptides obtainable with said method/process and use of the april-binding peptides |
US11959924B2 (en) | 2013-09-06 | 2024-04-16 | Aduro Biotech Holdings, Europe B.V. | Methods for performing ex vivo diagnostic tests for the presence of a proliferation-inducing ligand (APRIL) in a sample |
US11047864B2 (en) | 2013-09-06 | 2021-06-29 | Aduro Biotech Holdings, Europe B.V. | Methods for performing ex vivo diagnostic tests for the presence of a proliferation-inducing ligand (APRIL) in a human sample |
NL2011406C2 (en) * | 2013-09-06 | 2015-03-10 | Bionovion Holding B V | Method for obtaining april-binding peptides, process for producing the peptides, april-binding peptides obtainable with said method/process and use of the april-binding peptides. |
US10961316B2 (en) | 2015-01-09 | 2021-03-30 | Aduro Biotech Holdings, Europe B.V. | Humanized antibodies which bind to human APRIL (“a proliferation-inducing ligand”) |
CN107207602B (en) * | 2015-01-09 | 2021-05-25 | 艾杜罗生物科技欧洲控股有限责任公司 | Improved APRIL-binding antibodies |
WO2016110587A1 (en) | 2015-01-09 | 2016-07-14 | Aduro Biotech Holdings, Europe B.V. | Altered april binding antibodies |
US9969808B2 (en) | 2015-01-09 | 2018-05-15 | Aduro Biotech Holdings, Europe B.V. | Altered APRIL binding antibodies |
KR20170099992A (en) * | 2015-01-09 | 2017-09-01 | 아두로 바이오테크 홀딩스, 유럽 비.브이. | Modified APRIL binding antibody |
KR102612373B1 (en) * | 2015-01-09 | 2023-12-13 | 아두로 바이오테크 홀딩스, 유럽 비.브이. | Altered APRIL binding antibodies |
EP4029879A1 (en) | 2015-01-09 | 2022-07-20 | Aduro Biotech Holdings, Europe B.V. | Altered april binding antibodies |
CN107207602A (en) * | 2015-01-09 | 2017-09-26 | 艾杜罗生物科技欧洲控股有限责任公司 | The APRIL binding antibodies of improvement |
AU2016205977B2 (en) * | 2015-01-09 | 2021-11-04 | Aduro Biotech Holdings, Europe B.V. | Altered APRIL binding antibodies |
NL2014108A (en) * | 2015-01-09 | 2016-09-23 | Aduro Biotech Holdings Europe B V | Altered april binding antibodies. |
US10526412B2 (en) | 2015-01-15 | 2020-01-07 | Universite Grenoble Alpes | Anti APRIL (a proliferation-inducing ligand) antibodies and their uses for the prognosis and/or diagnosis of cancer |
WO2016113368A1 (en) | 2015-01-15 | 2016-07-21 | Universite Grenoble Alpes | Anti april (a proliferation-inducing ligand) antibodies and their uses for the prognosis and/or diagnosis of cancer |
US20170369582A1 (en) * | 2015-01-15 | 2017-12-28 | Universite Grenoble Alpes | Anti april (a proliferation-inducing ligand) antibodies and their uses for the prognosis and/or diagnosis of cancer |
AU2016361488B2 (en) * | 2015-11-25 | 2022-12-22 | Visterra, Inc. | Antibody molecules to APRIL and uses thereof |
RU2793755C2 (en) * | 2015-11-25 | 2023-04-05 | Вистерра, Инк. | Antibody molecules against april and applications thereof |
US11136385B2 (en) | 2015-11-25 | 2021-10-05 | Visterra, Inc. | Methods of treating IgA nephropathy by administering an anti-APRIL (a proliferation-inducing ligand) antibody molecule |
US12091451B2 (en) | 2015-11-25 | 2024-09-17 | Visterra, Inc. | Method of using antibody molecules to detect a proliferation-inducing ligand (APRIL) |
US10385123B2 (en) | 2015-11-25 | 2019-08-20 | Visterra, Inc. | Antibody molecules to a proliferation-inducing ligand (APRIL) |
WO2017091683A1 (en) * | 2015-11-25 | 2017-06-01 | Visterra, Inc. | Antibody molecules to april and uses thereof |
US10968270B2 (en) | 2015-11-25 | 2021-04-06 | Visterra, Inc. | Antibody molecules to a proliferation-inducing ligand (APRIL) |
US10954296B2 (en) | 2015-11-25 | 2021-03-23 | Visterra, Inc. | Method of using anti-APRIL (a proliferation-inducing ligand) antibodies to reduce IGA |
IL259585B1 (en) * | 2015-11-25 | 2024-07-01 | Visterra Inc | Antibody molecules to april and uses thereof |
CN109089419A (en) * | 2015-11-25 | 2018-12-25 | 威特拉公司 | The antibody molecule of APRIL and its application |
CN109089419B (en) * | 2015-11-25 | 2024-03-01 | 威特拉公司 | Antibody molecules to APRIL and uses thereof |
EP4285923A3 (en) * | 2015-11-25 | 2024-03-06 | Visterra, Inc. | Antibody molecules to april and uses thereof |
US10981982B2 (en) | 2015-11-25 | 2021-04-20 | Visterra, Inc. | Nucleic acid molecules encoding antibodies to a proliferation-inducing ligand (APRIL) |
WO2020144535A1 (en) | 2019-01-08 | 2020-07-16 | Aduro Biotech Holdings, Europe B.V. | Methods and compositions for treatment of multiple myeloma |
WO2023212518A1 (en) | 2022-04-25 | 2023-11-02 | Visterra, Inc. | Antibody molecules to april and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9000128B2 (en) | Antibodies against a proliferating inducing ligand (APRIL) and methods of use thereof | |
US10961316B2 (en) | Humanized antibodies which bind to human APRIL (“a proliferation-inducing ligand”) | |
US9527916B2 (en) | Agonistic antibody to CD27 | |
AU2015201974B2 (en) | Antibodies against a proliferating inducing ligand (APRIL) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10706979 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010220421 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2754127 Country of ref document: CA Ref document number: 2011552389 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010220421 Country of ref document: AU Date of ref document: 20100223 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010706979 Country of ref document: EP |