WO2010099201A1 - Methods of preparing renewable butadiene and renewable isoprene - Google Patents

Methods of preparing renewable butadiene and renewable isoprene Download PDF

Info

Publication number
WO2010099201A1
WO2010099201A1 PCT/US2010/025234 US2010025234W WO2010099201A1 WO 2010099201 A1 WO2010099201 A1 WO 2010099201A1 US 2010025234 W US2010025234 W US 2010025234W WO 2010099201 A1 WO2010099201 A1 WO 2010099201A1
Authority
WO
WIPO (PCT)
Prior art keywords
renewable
butadiene
mixture
isobutene
isoprene
Prior art date
Application number
PCT/US2010/025234
Other languages
French (fr)
Inventor
Matthew Peters
Joshua Taylor
David E. Henton
Leo E. Manzer
Original Assignee
Gevo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gevo, Inc. filed Critical Gevo, Inc.
Priority to BRPI1008287A priority Critical patent/BRPI1008287A2/en
Priority to EP10746767.2A priority patent/EP2401307A4/en
Priority to JP2011551312A priority patent/JP2012518658A/en
Priority to CA2753037A priority patent/CA2753037A1/en
Publication of WO2010099201A1 publication Critical patent/WO2010099201A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/19Halogenated dienes
    • C07C21/20Halogenated butadienes
    • C07C21/21Chloroprene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/02Preparation of halogenated hydrocarbons by addition of halogens to unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • C07C211/121,6-Diaminohexanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/46Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom
    • C07D333/48Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • Butadiene and isoprene are important industrial chemicals typically used as monomers for producing a variety of synthetic polymers, including synthetic rubber.
  • Butadiene is conventionally produced as a byproduct of steam cracking processes (used in petroleum refining to produce ethylene and other olefins). Steam cracking typically produces a complex mixture of unsaturated hydrocarbon, including butadiene, and the amount of butadiene produced depends upon the particular petroleum feedstock used, as well as the operating conditions employed.
  • Butadiene is typically removed from the resulting relatively complex mixture of hydrocarbons by extraction into a polar aprotic solvent (such as acetonitrile or dimethylformamide), from which it is then stripped by distillation.
  • Butadiene can also be produced by the catalytic dehydrogenation of n-butane and n-butenes (n-butane is also produced as part of a complex mixture of light hydrocarbons in petroleum refining processes).
  • Isoprene is also produced during petroleum refining, typically as a byproduct of a thermal cracking process, or as a byproduct in the production of ethylene (typically 2-5% of the ethylene yield). Additionally, isoprene can be prepared from isobutene via a combined hydroformylation and dehydration process (e.g., as described in US 3,662,016), or via condensation with formaldehyde (e.g. Prins condensation; see Figure 1). However, the C 5 hydrocarbons produced by cracking operations generally contain large amounts of cyclopentadiene, which has a similar boiling point to isoprene. Accordingly, isoprene is difficult to separate from cyclopentadiene using conventional distillation methods.
  • butadiene and isoprene are major components of commercially useful polymers (e.g., rubbers and elastomers).
  • polymerization catalysts used to prepare such materials are typically intolerant of impurities, and therefore require relatively pure butadiene and isoprene (and other monomers). Because petrochemically derived butadiene and isoprene are obtained from complex hydrocarbon mixtures, it is usually necessary to carry out extensive (and expensive) purification prior to polymerization. Accordingly, processes capable of directly providing relatively pure butadiene or isoprene which require little or no additional purification would be desirable.
  • the present invention is directed to improved methods for preparing butadiene and isoprene, particularly renewable butadiene and isoprene, which are simple, economical, do not require difficult and expensive extraction of starting materials from fermentation broths, or extensive purification of the butadiene or isoprene.
  • Butadiene and isoprene prepared by the methods of the present invention are suitable for preparing renewable polymers, copolymers, and other materials derived therefrom.
  • the present invention is directed to a method of preparing butadiene comprising (a) providing an alcohol mixture comprising one or more butanols; (b) contacting the alcohol mixture with a dehydration catalyst, thereby forming an olefin mixture comprising one or more linear butenes and isobutene; (c) contacting the olefin mixture of step (b) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; and (d) isolating butadiene from the di-olefin mixture of(c).
  • the present invention is directed to a method of preparing isoprene comprising (a) providing an olefin mixture comprising one or more pentenes, with the proviso that at least a portion of the olefin mixture comprises one or more methylbutenes; (b) contacting the olefin mixture of (a) with a dehydrogenation catalyst, thereby forming a mixture comprising isoprene; and (c) isolating isoprene from the mixture of (b).
  • the present invention is directed to a method of preparing monomers, comprising: (a) providing an olefin mixture comprising one or more linear butenes and isobutene; (b) contacting the olefin mixture of step (a) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; (c) isolating isobutene from the mixture of step (b); and (dl) converting the isobutene to methyl t-butyl ether, ethyl t-butyl ether, isooctane, methacrolein, methyl methacrylate, butyl rubber, butylated hydroxytoluene, or butylated hydroxyanisole.
  • the present invention is directed to methods for preparing isobutene or isoprene as described herein, wherein the olefin mixture is prepared by dehydration of a renewable alcohol mixture comprising one or more renewable C 4 or C 5 alcohols.
  • the present invention is directed to renewable isobutene, renewable isoprene, renewable butadiene, renewable methyl methacrylate, renewable 1 ,4-butanediol, renewable THF, renewable N-vinylpyrrolidinone, renewable lauryllactam, renewable chloroprene, renewable adipic acid, renewable hexamethylenediamine, renewable caprolactam, and renewable ethylidene norbornene, as well as renewable polymers and copolymers prepared from these renewable monomers.
  • the present invention is directed to a method of preparing isobutene, comprising (a) providing an olefin mixture comprising one or more linear butenes and isobutene; (b) contacting the olefin mixture of (a) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; and (c) isolating high purity isobutene from the mixture of (b).
  • Figure 1 Schematic of preparing isoprene by the Prins reaction.
  • FIG. 1 Schematic of isobutanol dehydration.
  • Figure 3 Schematic of one embodiment of a dehydration reactor configuration.
  • Figure 4 Equilibrium concentration of various C 4 -olefms as a function of temperature.
  • Figure 5 Schematic of dehydrogenation of n-butane to 1- and 2-butenes.
  • Figure 6 Schematic of dehydrogenation of 1-butene to 1,3 -butadiene.
  • Figure 7 Schematic of skeletal rearrangement of isobutene.
  • butadiene is a coproduct produced during the steam cracking of naphtha and gas-oil fractions, or produced by catalytic dehydrogenation of n-butane or n-butene (which themselves are obtained by steam cracking).
  • the crude 1,3-butadiene-containing fraction includes various C 3 -C 5 hydrocarbons, including propylene, propane, isobutylene, 1-butene, n- butane, trans-2-butene, cis-2-butene, C 4 acetylenes, 1 ,2-butadiene, various C 5 hydrocarbons, etc., depending upon the particulars of the process and conditions.
  • butadiene For use as a monomer in preparing polymers (e.g. synthetic rubber), butadiene must be relatively pure (e.g. at least about 99.0 wt.%) in order to prevent deactivation of conventional polymerization catalysts, or to prevent side reactions due to reactive impurities (such as acetylenes).
  • Various methods for purifying crude butadiene produce from it for chemical sources have been used, for example selective extraction with aqueous sucrose ammonium acetate or extractive distillation with various solvents. The need for such purification methods add additional expense and complexity in preparing polymerization-grade butadiene.
  • isoprene is typically obtain from C 5 streams from thermally cracking naphtha and gas oil. Yields of isoprene are generally small, and isoprene, like butadiene, must be purified from quite complex mixtures of hydrocarbons before it can be used as a monomer.
  • the methods of the present invention provide an improved process for preparing butadiene (or isoprene) by sequential dehydration and dehydrogenation reactions from a relatively pure butanol (or pentanol) feedstock, for example isobutanol (or 3 -methyl- 1- butanol).
  • the dehydration step provides a relatively simple mixture of butene isomers which can be converted directly to butadiene by dehydrogenation.
  • any byproduct of the dehydration which cannot be converted directly to butadiene (or isoprene) can be readily removed, either from the mixture of linear butene isomers (or methylbutene isomers), or from the butadiene (or isoprene) of the product stream of the dehydrogenation step. Yields of butadiene (or isoprene) can be further increased by appropriate conversion of these byproducts (e.g. recycling and/or rearrangement as described herein), or the byproducts can be used for other purposes (e.g., as fuels or fuel additives).
  • the present invention provides a simple process for obtaining relatively pure butadiene from butanols (or isoprene from pentanols).
  • the butanols are derived from biomass (e.g., by fermentation of biomass-derived carbohydrates using suitable microorganisms), the butanols (or pentanols) are obtained as a relatively pure (usually aqueous) feedstock.
  • Biomass derived butanols (or pentanols) have the additional advantage of providing a renewable source of a commercially important monomer, butadiene (or isoprene).
  • olefins prepared by dehydration from biomass derived butanols (or pentanols), as described herein are substantially purer than, e.g., butenes or pentenes obtained from conventional petrochemical processes (e.g., obtained by "cracking").
  • Renewably-based or “renewable” denote that the carbon content of the renewable alcohol (and olefin, di-olefin, etc., or subsequent products prepared from renewable alcohols, olefins, di-olefins, etc. as described herein), is from a “new carbon” source as measured by ASTM test method D 6866-05, "Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry
  • Biobased materials are organic materials in which the carbon comes from recently (on a human time scale) fixated CO 2 present in the atmosphere using sunlight energy (photosynthesis). On land, this CO 2 is captured or fixated by plant life (e.g., agricultural crops or forestry materials). In the oceans, the CO 2 is captured or fixated by photosynthesizing bacteria or phytoplankton. For example, a biobased material has a 14 C/ 12 C isotope ratio greater than 0.
  • a fossil-based material has a 14 C/ 12 C isotope ratio of about 0.
  • the term "renewable” with regard to compounds such as alcohols or hydrocarbons (olefins, di- olefins, polymers, etc.) also refers to compounds prepared from biomass using thermochemical methods (e.g., Fischer-Tropsch catalysts), biocatalysts (e.g., fermentation), or other processes, for example as described herein.
  • a small amount of the carbon atoms of the carbon dioxide in the atmosphere is the radioactive isotope 14 C.
  • This 14 C carbon dioxide is created when atmospheric nitrogen is struck by a cosmic ray generated neutron, causing the nitrogen to lose a proton and form carbon of atomic mass 14 ( 14 C), which is then immediately oxidized to carbon dioxide.
  • a small but measurable fraction of atmospheric carbon is present in the form of 14 CO 2 .
  • Atmospheric carbon dioxide is processed by green plants to make organic molecules during the process known as photosynthesis. Virtually all forms of life on Earth depend on this green plant production of organic molecules to produce the chemical energy that facilitates growth and reproduction. Therefore, the 14 C that forms in the atmosphere eventually becomes part of all life forms and their biological products, enriching biomass and organisms which feed on biomass with 14 C.
  • carbon from fossil fuels does not have the signature 14 Cr 12 C ratio of renewable organic molecules derived from atmospheric carbon dioxide.
  • renewable organic molecules that biodegrade to CO 2 do not contribute to global warming as there is no net increase of carbon emitted
  • Assessment of the renewably based carbon content of a material can be performed through standard test methods, e.g. using radiocarbon and isotope ratio mass spectrometry analysis.
  • ASTM International (formally known as the American Society for Testing and Materials) has established a standard method for assessing the biobased content of materials. The ASTM method is designated ASTM-D6866.
  • butadiene refers to 1 ,3 -butadiene unless otherwise indicated.
  • the methods of the present invention can be used to prepare butadiene, isoprene, isobutene, etc. suitable for use in polymerization reactions or other processes which require relatively high purity.
  • high purity means at least about 95% pure, at least about 96% pure, at least about 97% pure, at least about 98% pure, at least about 99% pure, at least about 99.9% pure, or at least about 99.99% pure, including all ranges and subranges therebetween.
  • renewable alcohols, olefins, di-olefins, polymers, etc. of the present invention have pMC values of at least about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, inclusive of all values and subranges therebetween.
  • any suitable microorganism can be used to prepare renewable butanols and pentanols.
  • Butanols are preferentially produced, for example, by the microorganisms described in U.S. Patent Publication Nos. 2007/0092957, 2008/0138870, 2008/0182308, 2007/0259410, 2007/0292927, 2007/0259411, 2008/0124774, 2008/0261230, 2009/0226991, 2009/0226990, 2009/0171129, 2009/0215137, 2009/0155869,
  • butanols and isobutanols and various pentanols including isopentanol are produced by yeasts during the fermentation of sugars into ethanol.
  • These fusel alcohols are known in the art of industrial fermentations for the production of beer and wine and have been studied extensively for their effect on the taste and stability of these products. Recently, production of fusel alcohols using engineered microorganisms has been reported (U.S. Patent Application No. 2007/0092957, and Nature, 2008, 451, p. 86-89).
  • Higher alcohols other than butanols or pentanols produced during fermentation may be removed from the butanol or pentanol feedstocks prior to carrying out the subsequent unit operations (e.g., dehydration).
  • the separation of these higher alcohols from the butanol(s) (e.g. isobutanol) or pentanol(s) (e.g. isopentanol) can be effected using known methods such as distillation, extraction, etc.
  • these higher alcohols can remain mixed in the butanol(s) or pentanol(s), and removed after subsequent processing.
  • any higher alcohols mixed in with isobutanol can be dehydrated to the corresponding olefins, which can then be separated from the butenes.
  • the determination of whether to remove such higher alcohols prior to dehydration, or to remove the corresponding olefin after dehydration (or the corresponding dehydrogenation byproducts/co-products) will depend on the relative ease of respective separations, and the relative value of the byproducts/co-products.
  • Renewable butanols or pentanols can also be prepared using various other methods such as conversion of biomass by thermochemical methods, for example by gasification of biomass to synthesis gas followed by catalytic conversion of the synthesis gas to alcohols in the presence of a catalyst containing elements such as copper, aluminum, chromium, manganese, iron, cobalt, or other metals and alkali metals such as lithium, sodium, and/or potassium (Energy and Fuels, 2008, 22, p. 814-839).
  • the various alcohols, including butanols and pentanols can be separated from the mixture by distillation and used to prepare renewable butadiene or isoprene, or compounds derived from renewable butadiene or isoprene as described herein.
  • Alcohols other than isobutanol and isopentanol can be recovered and utilized as feedstocks for other processes, burned as fuel or used as a fuel additive, etc.
  • renewable alcohols can be prepared photosynthetically, e.g., using cyanobacteria or algae engineered to produce isobutanol, isopentanol, and/or other alcohols (e.g., Synechococcus elongatus PCC7942 and Synechocystis PCC6803; see Angermayr et al., Energy Biotechnology with Cyanobacteria, Current Opinion in
  • the "feedstock" for producing the resulting renewable alcohols is light and the CO 2 provided to the photosynthetic organism (e.g., cyanobacteria or algae).
  • Renewable and pure butanols and pentanols obtained by biochemical or thermochemical production routes can be converted into their corresponding olefins by reacting the alcohols over a dehydration catalyst.
  • Renewable butanols typically comprise 1-butanol, 2-butanol, or isobutanol, but tert-butanol may also be obtained by thermochemical routes.
  • Renewable pentanols typically comprise 1-pentanol, 2-methyl-l- butanol, and 3 -methyl- 1-butanol, but most pentanol isomers are produced by thermochemical and, less commonly, by fermentation routes.
  • the isobutanol can be removed from the fermentor by various methods, for example in the vapor phase under reduced pressure (e.g. as an azeotrope with water as described in US 2009/0171129).
  • the fermentor itself is operated under reduced pressure without the application of additional heat (other than that used to provide optimal fermentation conditions for the microorganism) or the use of distillation equipment, whereby the isobutanol is removed as an aqueous vapor (or azeotrope).
  • the fermentor is operated under approximately atmospheric pressure (or slightly elevated pressure due to the evolution of gases such as CO 2 during fermentation) and a portion of the feedstock containing the isobutanol is continuously recycled through a flash tank operated under reduced pressure, whereby the isobutanol is removed from the headspace of the flash tank as an aqueous vapor or water azeotrope.
  • a flash tank operated under reduced pressure whereby the isobutanol is removed from the headspace of the flash tank as an aqueous vapor or water azeotrope.
  • the genes involved with the production of intermediates that are converted to 3 -methyl- 1-butanol and 2-methyl-l-butanol are known and can be manipulated to control the amount of 3- methyl- 1-butanol produced in these fermentations (e.g., Connor MR and Liao JC, Applied and Environmental Microbiology 2008, 74, p. 5769). Removal of these genes can decrease 3 -methyl- 1-butanol and/or 2-methyl-l-butanol production to negligible amounts, while overexpression of these genes can be tuned to produce any amount of 3 -methyl- 1- butanol in a typical fermentation.
  • the thermochemical conversion of biomass to mixed alcohols produces both isobutanol and these pentanols. The relative amounts of these alcohols can be tuned using specific catalysts and reaction conditions.
  • Alcohols can be converted to olefins by reaction with a suitable dehydration catalyst under appropriate conditions (see e.g., Figure 2).
  • Typical dehydration catalysts that convert alcohols such as butanols and pentanols into olefins include various acid treated and untreated alumina (e.g., ⁇ -alumina) and silica catalysts and clays including zeolites (e.g., ⁇ -type zeolites, ZSM-5 or Y-type zeolites, fluoride-treated ⁇ -zeolite catalysts, fluoride-treated clay catalysts, etc.), sulfonic acid resins (e.g., sulfonated styrenic resins such as Amberlyst ® 15), strong acids such as phosphoric acid and sulfuric acid, Lewis acids such boron trifluoride and aluminum trichloride, and many different types of metal salts including metal oxides (e.g., zirconium oxide or titanium
  • Dehydration reactions can be carried out in both gas and liquid phases with both heterogeneous and homogeneous catalyst systems in many different reactor configurations (see e.g. Figure 3).
  • the catalysts used are stable to the water that is generated by the reaction.
  • the water is usually removed from the reaction zone with the product.
  • the resulting alkene(s) either exit the reactor in the gas or liquid phase (e.g., depending upon the reactor conditions) and are captured by a downstream purification process or are further converted in the reactor to other compounds (such as butadiene or isoprene) as described herein.
  • the water generated by the dehydration reaction exits the reactor with unreacted alcohol and alkene product(s) and is separated by distillation or phase separation.
  • the dehydration catalysts used are generally tolerant to water and a process for removing the water from substrate and product may be part of any process that contains a dehydration step. For this reason, it is possible to use wet (i.e., up to about 95% or 98% water by weight) alcohol as a substrate for a dehydration reaction and remove this water with the water generated by the dehydration reaction (e.g., using a zeolite catalyst as described U.S. Patent Nos. 4,698,452 and 4,873,392). Additionally, neutral alumina and zeolites will dehydrate alcohols to alkenes but generally at higher temperatures and pressures than the acidic versions of these catalysts.
  • dehydration of isobutanol at 280°C over a ⁇ -alumina catalyst can be optimized to produce up to 97% isobutene despite an expected equilibrium concentration of -57% at that temperature (Figure 3).
  • there is no known method for cleanly dehydrating isobutanol to 99+% isobutene (Saad L and Riad M, Journal of the Serbian Chemical Society 2008, 73, p. 997).
  • dehydration of pentanols produces multiple C 5 -olefin isomers.
  • dehydration of 3 -methyl- 1-butanol produces both 3 -methyl- 1-butene and 2- methyl-2-butene in addition to other olefin isomers (see e.g. US 2007/0135665 Al).
  • Dehydration of 2-methyl- 1-butanol will produce primarily 2 -methyl- 1-butene and 2- methyl-2-butene but some skeletal rearrangement will occur to produce linear 1-pentene and 2-pentene.
  • Dehydrogenation of these pentene mixtures produce isoprene and linear pentadienes that are fairly easy to separate to produce pure isoprene.
  • di-olefins such as butadiene and isoprene are conventionally produced in the cracking reactions that generate C 4 and C 5 olefin streams for petrochemical use. If additional di-olefins are required, they can be produced by dehydrogenation of C 4 and C 5 mono-olefins.
  • butadiene is produced by passing raffinate-2 over a dehydrogenation catalyst.
  • Isoprene is similarly produced by passing isopentane and/or 3 -methyl- 1-butene and 2-methyl-2-butene over a dehydrogenation catalyst.
  • isoprene can be produced by the hydro formylation and dehydration of isobutene.
  • Dehydrogenation catalysts convert saturated carbon-carbon bonds in organic molecules into unsaturated double bonds (see Figure 5).
  • Typical dehydrogenation catalysts are mixtures of metal oxides with varying degrees of selectivity towards specific olefins. For example, iron-zinc oxide mixtures appear to favor 1-butene dehydrogenation while cobalt-iron-bismuth-molybdenum oxide mixtures favor 2-butene dehydrogenation (e.g., Jung JC, et al, Catalysis Letters 2008, 123, p. 239).
  • Other examples of dehydrogenation catalysts include vanadium- and chrome- containing catalysts (e.g., Toledo- Antonio JA, et al., Applied Catalysis A 2002, 234, p.
  • ferrite-type catalysts e.g., Lopez Nieto JM, et al., Journal of Catalysis 2000, 189, p. 147
  • manganese-oxide doped molecular sieves e.g., Krishnan VV and Suib SL, Journal of Catalysis 1999, 184, p. 305
  • copper-molybdenum catalysts e.g., Tiwari PN, et al., Journal of Catalysis 1989, 120, p. 278)
  • bismuth-molybdenum-based catalysts e.g., Batist PA, et al., Journal of Catalysis 1966, 5, p. 55.
  • Dehydrogenation of an olefin to a di-olefin occurs if the olefin molecule can accommodate an additional double bond (see Figure 6).
  • 1-butene can be dehydrogenated to butadiene but isobutene cannot be dehydrogenated unless skeletal rearrangement of the carbon atoms in the molecule occurs.
  • Dehydrogenation catalysts are capable of rearranging olefinic bonds in a molecule to accommodate a second olefin bond if skeletal rearrangement is not required (e.g., by one or more hydrogen shifts), but these catalysts typically do not catalyze skeletal rearrangements (e.g., breaking and reforming C-C bonds) under dehydrogenating conditions.
  • 2-butene can be dehydrogenated to butadiene.
  • 2-methyl-2-butene can be converted to isoprene after rearrangement of the double bond.
  • dehydrogenation reactions Two major types of dehydrogenation reactions are conventionally used to produce olefins from saturated materials (Buyanov RA, Kinetics and Catalysis 2001, 42, p. 64). Endothermic dehydrogenation uses a dehydrogenation catalyst (e.g.
  • chromia-alumina- based, spinel supported platinum-based, phosphate-based, and iron oxide-based catalysts typically function in the absence of oxygen, minimizing the formation of oxidized butene products such as methacrolein and methacrylate.
  • Oxidative dehydrogenation typically uses mixed metal oxide-based dehydrogenation catalyst (typically containing molybdenum, vanadium, or chromium), lower temperatures (300- 500°C), and a fixed- or fluidized-bed reactor configuration that includes the addition of oxygen to the reaction to drive the reaction by reacting with hydrogen to form water. Both types of dehydrogenation reactions are applicable to the invention described herein.
  • mixed metal oxide-based dehydrogenation catalyst typically containing molybdenum, vanadium, or chromium
  • lower temperatures 300- 500°C
  • a fixed- or fluidized-bed reactor configuration that includes the addition of oxygen to the reaction to drive the reaction by reacting with hydrogen to form water. Both types of dehydrogenation reactions are applicable to the invention described herein.
  • dehydration of butanols and pentanols usually produces a mixture of mono-olefins (e.g., linear butenes and isobutylene, or various pentenes).
  • the dehydration of isobutanol generally produces a mixture of linear butenes (1-butene and 2-butenes) and isobutene.
  • linear butenes are readily dehydrogenated to butadiene, whereas under typical dehydrogenation conditions, isobutene is relatively inert. Accordingly, in some embodiments, it may be desirable to remove isobutene from the dehydration product/dehydrogenation feedstock.
  • the mixture of linear butenes and isobutene can be dehydrogenated to produce a dehydrogenation product stream comprising butadiene, unreacted isobutene, and optionally unreacted linear butenes.
  • the linear butenes would be recycled back to the dehydrogenation reactor to further convert the linear butenes to butadiene (thereby increasing the effective yield of butadiene).
  • the unreacted isobutene can be readily separated from butadiene, and recycled to a separate rearrangement step (i.e., producing linear butenes as shown in Figure 7) or diverted to other processes (e.g., oligomerization, oxidation, etc.
  • the mixed butenes can be oligomerized over an acidic ion exchange resin under conditions which selectively convert isobutene to isooctene (e.g. using the methods of Kamath RS et al, Industrial Engineering and Chemistry Research 2006, 45, 1575-1582), but leave the linear butenes essential unreacted, thereby providing an essentially isobutene- free mixture of linear butenes (containing e.g., less than about 1% isobutene).
  • the essentially isobutene- free renewable linear butenes can then be reacted in the presence of a dehydrogenation catalyst to form renewable butadiene.
  • the selectivity of dehydrogenation catalysts towards olefins that can accommodate a second olefinic bond can be used to prepare butadiene or isoprene, or alternatively purify the olefin mixture (e.g. by facilitating separation of the diene from unreactive mono- olefms).
  • the dehydration of isobutanol typically produces isobutene and both 1- and 2-butenes.
  • Treatment of this product mixture with a dehydrogenation catalyst selectively converts the 1- and 2-butenes - but not isobutene - to butadiene.
  • 1- and 2-butanol are dehydrated to produce mixtures of butenes that are primarily comprised of linear butenes with small amounts ( ⁇ 15% w/w) of isobutene.
  • the isobutene can be separated from these mixtures by dehydrogenation using a method similar to that described above, especially if butadiene is the desired product. If isobutanol is the only available feedstock and butadiene is a desired product, the amount of 1- and 2-butenes produced in the dehydration of isobutanol can be increased up to the equilibrium amount accessible at the reaction temperature (see e.g. Figure 3).
  • dehydration catalysts are selected such that at 350 0 C the dehydration of isobutanol produces 50% isobutene and 50% 1- and 2-butenes.
  • the resulting mixture is treated with a dehydrogenation catalyst to produce butadiene from isobutanol at a 50% yield.
  • the isobutene can be removed from the mixture of linear butenes prior to dehydrogenation, or alternatively, if the dehydrogenation conditions and catalyst are selected to minimize any undesired side reactions of the isobutene, the isobutene can removed from the product stream after the dehydrogenation reaction step. In other embodiments, a portion or all of the isobutene can be diverted to form other valuable hydrocarbons (e.g., oligomerized to form isooctenes/isoctanes for biofuels, dehydrocyclized to form aromatics for fuels, phthalates, etc.).
  • other valuable hydrocarbons e.g., oligomerized to form isooctenes/isoctanes for biofuels, dehydrocyclized to form aromatics for fuels, phthalates, etc.
  • the isobutene can also be rearranged to linear butenes (1- and 2-butenes), which can then be recycled back to the dehydrogenation reaction step to form additional butadiene, thereby increasing the effective yield of butadiene well above 50%. If all of the isobutene is recycled, the effective yield of butadiene in various processes of the present invention can approach about 100%. However, as some cracking and "coking" may occur during the dehydrogenation, butadiene yields for the process of the present invention can be about 90% or more, about 95% or more, or about 98% or more.
  • the rearrangement of isobutene can be carried out in a separate isomerization step (e.g., in a separate isomerization reactor) after removing the butadiene from the dehydrogenation product, or can be carried out in-situ during the dehydrogenation reaction by appropriate selection of catalyst (or by use of a catalyst mixture) in the dehydrogenation reactor.
  • dehydration catalysts can be selected which also catalyze rearrangement of isobutene to linear isobutenes, or the dehydration catalyst can be mixed with an isomerization catalyst.
  • a few representative acid catalysts suitable for rearranging isobutene include zeolites such as CBV-3020, ZSM-5, ⁇ Zeolite CP 814C, ZSM-5 CBV 8014, ZSM-5 CBV 5524 G, and YCBV 870; fluorinated alumina; acid-treated silica; acid-treated silica-alumina; acid- treated titania; acid-treated zirconia; heteropolyacids supported on zirconia, titania, alumina, silica; and combinations thereof.
  • zeolites such as CBV-3020, ZSM-5, ⁇ Zeolite CP 814C, ZSM-5 CBV 8014, ZSM-5 CBV 5524 G, and YCBV 870
  • fluorinated alumina acid-treated silica
  • acid-treated silica-alumina acid-treated titania
  • acid-treated zirconia acid-treated zirconia
  • the isobutene is substantially removed from the product stream after the dehydration reaction step in order to provide a feed stream for the dehydrogenation reaction step which is substantially free of isobutene (i.e., the butene component of the dehydrogenation feed stream comprises substantially only linear butenes).
  • substantially removed we mean that isobutene has been removed from the indicated feed or product stream such that after removal, the isobutene in the feed or product stream comprises less than about 5%, less than about 4%, less than about 3%, less than about 2%, or less than about 1% of the butenes in the indicated feed or product stream.
  • the linear butenes comprise at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% of the butenes in the dehydrogenation feed stream.
  • renewable butadiene is prepared from renewable isobutanol prepared by fermentation as described herein.
  • the isobutanol thus produced is then dehydrated under conditions, as described herein, which maximize the yield of linear butenes (e.g., heterogeneous acidic catalysts such as ⁇ -alumina at about 35O 0 C).
  • linear butenes e.g., heterogeneous acidic catalysts such as ⁇ -alumina at about 35O 0 C.
  • the resulting mixture of ⁇ 1 : 1 linear butenes/isobutene is then contacted with a dehydrogenation catalyst (e.g., chromium-oxide treated alumina, platinum- and tin- containing zeolites and alumina, cobalt- and molybdenum-containing alumina, etc.
  • a dehydrogenation catalyst e.g., chromium-oxide treated alumina, platinum- and tin- containing zeolites and a
  • the dehydrocyclization catalyst is a commercial catalyst based on chromium oxide on an alumina support.
  • the isobutene can be isomerized to linear butenes as described herein, and recycled back to the dehydrogenation step in order to produce additional butadiene (thereby increasing the effective yield of butadiene), or used as a raw material for other processes or materials as described herein.
  • renewable butadiene thus obtained can then be converted, for example, to a wide variety of renewable polymers and co-polymers by most known methods of polymerization and used in a multitude of commercial applications.
  • renewable butadiene can be polymerized or copolymerized with other monomers (which themselves may be renewable monomers or monomers obtained from conventional, nonrenewable sources).
  • telomers very low molecular weight polymers and copolymers of butadiene, called telomers or liquid polybutadiene, can be prepared by anionic polymerization using initiators such as n-butyl lithium, often with co-initiators such as potassium tert-butoxide or tert-amines as taught in US 4,331 ,823 and US 3,356,754.
  • initiators such as n-butyl lithium
  • co-initiators such as potassium tert-butoxide or tert-amines as taught in US 4,331 ,823 and US 3,356,754.
  • oligomers can be used in pressure sensitive adhesives and thermosetting rubber applications.
  • Butadiene can also be co- and ter- polymerized with vinyl pyridine and other vinyl monomers (e.g. renewable vinyl monomers) in an emulsion process to form polymers useful in floor polishes, textile chemicals and formulated rubber compositions for automobile tires.
  • Butadiene can also be anionically polymerized with styrene (e.g. renewable styrene) and vinyl pyridine to form triblock polymers as taught in US 3,891,721 useful for films and other rubber applications.
  • Butadiene and styrene can be sequentially, anionically polymerized in non-polar solvents such as hexane, to form diblock and triblock polymers, also called SB elastomers, ranging from rigid plastics with high styrene content to thermoplastic elastomers with high butadiene content. These polymers are useful for transparent molded cups, bottles, impact modifiers for brittle plastics, injection molded toys as well as components in adhesives.
  • Solution polybutadiene can be prepared from butadiene, also by anionic polymerization, using initiators such as n-butyl lithium in non-polar solvents without utilizing a comonomer.
  • elastomers are non-crosslinked during the polymerization and can be used as impact modifiers in high impact polystyrene and bulk polymerized ABS resins, as well as in adhesives and caulks.
  • Solution polymerized polybutadiene can also be compounded with other elastomers and additives before vulcanization and used in automobile tires.
  • Emulsion (latex) polymerization can also be used to convert butadiene and optionally, other monomers such a styrene, methyl methacrylate, acrylic acid, methacrylic acid, acrylonitrile, and other vinyl monomers, to polymers having both unique chemical structure and designed physical structure suitable for specific end use applications.
  • Emulsion polymerization utilizes water as the continuous phase for the polymerization, surfactants to stabilize the growing, dispersed polymer particles and a compound to generate free radicals to initiate the polymerization.
  • Styrene-butadiene emulsion rubber used for automobile tires can be made by this process.
  • Vinyl acids such as acrylic acid and methacrylic acid can be copolymerized in the styrene butadiene rubber.
  • Low levels (0.5-3%) of vinyl acids improve the stability of the latex and can be beneficial in formulated rubber products such as tires, especially when containing polar fillers.
  • Higher levels of acid in rubber latexes, often called carboxylated latex, are used beneficially in paper coating.
  • Latex polymerization is also used to produce rubber toughened plastics and impact modifiers.
  • Impact modifiers made by latex polymerization are also called core-shell modifies because of the structure that is formed while polymerizing the monomers that comprise the polymer.
  • MBS resins are made by a sequential emulsion process where butadiene (B) and styrene (S) are first polymerized to form the rubber particle core, typically 0.1-0.5 micrometers in diameter, and then methyl methacrylate (M) is polymerized to form a chemically grafted shell on the outer surface of the SB rubber core, for example as taught in US 6,331,580.
  • B butadiene
  • S styrene
  • M methyl methacrylate
  • This impact modifying material is isolated from the latex and blended with plastics to improve their toughness.
  • ABS is used in injection molding and extrusion processes to produce toys, automobile parts, electronic enclosures and house wares.
  • Nitrile rubber is produced in a similar emulsion polymerization process when butadiene and acrylonitrile are copolymerized together to produce a polar elastomer that is very resistant to solvents. Higher butadiene content in the elastomer provides a softer, more flexible product while higher acrylonitrile content results in more solvent resistance.
  • the rubber is isolated from the latex by coagulation and can be fabricated into gloves, automotive hoses, and gaskets where its high resistance to solvents is an advantage.
  • Renewable butadiene prepared by the process described herein can also be converted to renewable 1 ,4-butanediol (BDO) and/or renewable tetrahydrofuran (THF), for example using the process described in JP 10-237017 and JP 2001002600 (illustrated below in Scheme 1), in which butadiene is reacted with acetic acid and oxygen in the presence of a palladium catalyst (liquid phase at about 70 0 C and 70 bar, using a promoter such as Sb, Bi, Se or Te) to form l,4-diacetoxy-2-butene, which is then hydrogenated (liquid phase, at about 5O 0 C and 50 bar over a conventional hydrogenation catalyst such as Pd/C) to 1,4-diacetoxybutane.
  • Acidic hydrolysis of the 1 ,4-diacetoxybutane e.g., using an acidic ion exchange resin provides BDO and THF in high yield.
  • Renewable BDO and THF can be converted to a variety of renewable products.
  • renewable BDO can be reacted with a suitable diisocyanates to form renewable LycraTM and SpandexTM products, as well as thermoplastic urethane elastomers.
  • Renewable BDO can also be used to form renewable polybutylene terephthalate by reacting renewable BDO with terephthalic acid or terephthalate esters, or can be copolymerized with renewable aliphatic diacids such as adipic acid or succinic acid to form renewable aliphatic polyesters such as polybutylene adipate or polybutylene succinate.
  • the terephthalic acid or terephthalate esters can be renewable, prepared by oxidation of renewable xylene made, e.g., by the method described in US 12/327,723 and US 61/295,886.
  • Renewable BDO can also be used to prepare renewable ⁇ -butyrolactone (GBL), renewable pyrrolidone solvents such as N- methylpyrrolidinone (NMP), renewable N-vinylpyrrolidinone (NVP), etc. as illustrated below in Scheme 2:
  • renewable GBL and NMP can be used as solvents, and renewable NVP can be used in personal care products such as hairspray.
  • Renewable butadiene prepared by the processes described herein can also be used to form renewable dodecandioic acid (DDDA), or renewable lauryllactam by forming the oxime of the intermediate cyclododecanone, then rearranging the oxime to lauryllactam (e.g., using the method of US 6,649,757).
  • the lauryllactam can then be polymerized to form renewable nylon- 12, as shown below in Scheme 3:
  • Renewable butadiene prepared by the processes described herein can also be used to prepare renewable chloroprene, which can be polymerized to provide renewable synthetic rubbers.
  • Renewable chloroprene can be prepared by chlorinating renewable butadiene (e.g., free radical, gas phase chlorination with Cl 2 at 250 0 C and 1-7 bar to give a mixture of cis and trans-X ,4-DCB as well as 3,4-DCB). At butadiene conversions of 10- 25%, the selectivity to this mixture of DCBs can be 85-95%.
  • 3,4-dichloro-l-butene (3,4- DCB) can be dehydrochlorinated to form chloroprene (e.g., using dilute alkaline catalysts at 85°C), as shown below in Scheme 4.
  • the 1,4-DCB by-products can be isomerized to 3,4-DCB using a copper catalyst.
  • the equilibrium of the reaction can be shifted to provide a selectivity of 95-98%.
  • renewable butadiene prepared by the processes described herein can also be used to prepare renewable nylon-6,6 (Scheme 5).
  • renewable nylon-6,6 can be prepared by reacting renewable butadiene with HCN in the presence of a zero valent nickel catalyst to provide adiponitrile.
  • Adiponitrile can be hydrogenated to form hexamethylenediamine (HMD), and hydrolyzed to form adipic acid. The HMD and adipic acid can then be polymerized to form nylon-6,6.
  • HMD hexamethylenediamine
  • adipic acid The HMD and adipic acid can then be polymerized to form nylon-6,6.
  • renewable adiponitrile can be hydrocyanated and cyclized to renewable caprolactam (CL), e.g., using a doped Raney Ni (using the method of US 5,801,286) and cyclized to CL in the presence of water (using the method of US 5,693,793).
  • CL renewable caprolactam
  • the renewable caprolactam can then be polymerized to form renewable nylon-6 using methods known in the art.
  • Renewable butadiene prepared by the processes described herein can also be used to prepare renewable styrene, renewable polystyrene, and renewable styrenic polymers (e.g., renewable SBR rubbers).
  • Renewable styrene can be prepared, for example by dimerizing renewable butadiene to form vinylcyclohexene, which can be dehydrogenated in a stepwise fashion to form ethyl benzene (e.g., using the method of WO 2003/070671), then styrene (e.g., using the method of US 4,229,603).
  • vinylcyclohexene can be dehydrogenated directly to styrene.
  • the renewable styrene can be homopolymerized to form renewable polystyrene, copolymerized with renewable butadiene to form SBR rubber, etc.
  • Renewable butadiene prepared by the processes described herein can also be used to prepare renewable ethylidene norbornene (ENB) for producing completely renewable or partially renewable ethylene-propylene-diene rubber (depending on whether renewable ethylene and/or propylene are used).
  • Renewable ethylene can be prepared by dehydrogenating renewable ethanol (e.g. produced by fermentation or thermochemical methods), and renewable propylene can be prepared, for example by the methods described in US 61/155,029.
  • Renewable ENB can be prepared, for example, by reacting renewable butadiene and dicyclopentadiene in a four-step process.
  • dicyclopentadiene is decoupled to cyclopentadiene and reacted with renewable butadiene via Diels-Alder condensation to vinylnorbornene (VNB). This is followed by distillation to obtain refined VNB, which is catalytically isomerized (US 4,720,601) to ENB.
  • Renewable butadiene prepared by the processes described herein can also be thermally dimerized to form renewable 1,5-cyclooctadiene (COD) using the methods of, e.g., US 4,396,787.
  • Renewable COD can be used in the preparation of renewable ethylene oligomerization catalysts such as Ni(COD) 2 .
  • Butadiene can also be dimerized to produce 1-octene and 1-octanol.
  • the dehydration of 3 -methyl- 1-butanol produces a mixture of methyl butenes and small amounts of other pentenes which upon treatment with a dehydrogenation catalyst forms primarily isoprene from methylpentenes (e.g.
  • pentadienes are separated from each other by distillation.
  • Dehydration catalysts and conditions are optimized to produce varying amounts of specific olefins, and their resulting di-olefins upon treatment with a dehydrogenation catalyst.
  • isobutene that meets all current industrial specifications and can be used to manufacture all chemicals and materials currently produced e.g., from conventional petroleum-based isobutene.
  • renewable or partially renewable polyisobutylene, butyl rubber, methyl methacrylate, isoprene, and other chemicals can be produced by the methods of the present invention.
  • Renewable isobutene can also be oxidized under suitable conditions to provide methacrylic acid and methacrylic acid esters (Scheme 8).
  • Isobutene can be oxidized over suitable metal oxide catalysts (e.g., using the methods described in JP 2005- 253415) at temperatures of about 300-500 0 C to methacrolein (MAL) which is then further oxidized to methacrylic acid (MMA) (WO 2003053570) at temperatures of about 350- 500 0 C.
  • MAL methacrolein
  • MMA methacrylic acid
  • the resultant methacrylic acid can be further esterified to methylmethacrylate.
  • the oxidation of isobutene to MMA may also be accomplished in a single step (e.g. as described in WO2003053570).
  • butadiene is used directly as a monomer and co-monomer for the production of synthetic rubber.
  • oxidized monomers such as 1 ,4-butanediol, adiponitrile, and adipic acid as described herein for the production of polyester and nylon materials
  • adipic acid is produced by the hydrocarboxylation of butadiene in the presence of a suitable catalyst, CO and water; e.g., adiponitrile is produced by the hydrocyanation of butadiene in the presence of a suitable catalyst.
  • the production of renewable isoprene from the dehydrogenation of methylbutenes or the hydro formylation and dehydration of renewable isobutene allows the preparation of renewable or partially renewable versions of all chemicals and materials produced from isoprene, especially synthetic rubber and other polymers.
  • butyl rubber is a high performance polymer comprised of high purity isobutene crosslinked with di-olefins such as butadiene or isoprene (e.g. US 2,984,644; Dhaliwal GK, Rubber Chemistry and Technology 1994, 67, p. 567).
  • di-olefins such as butadiene or isoprene
  • 1-3% of isoprene is blended with isobutene and co-polymerized in the presence of a polymerization catalyst such as aluminum chloride and other metal salts.
  • renewable isoprene is produced by contacting 3-methyl-l- butanol or 2-methyl-l-butanol with a dehydration catalyst and a dehydrogenation catalyst, under conditions similar to those described herein for preparing renewable butadiene.
  • the renewable isoprene thus formed is then blended with renewable isobutene, obtained by the methods described above or by conventional methods such as hydration of isobutylene to t-butanol and subsequent dehydration to isobutene, to form a renewable monomer feedstock for the production of renewable butyl rubber.
  • Petroleum-based isoprene and isobutene can also used with the renewable isoprene and/or isobutene to produce butyl rubber that is partially renewable.
  • a renewable blend of isobutene and isoprene can be produced by contacting a mixture of isobutanol and 3-methyl-l-butanol (or 2-methyl-l-butanol) with a dehydration catalyst to form isobutylene and 3-methyl- butenes (or 2-methyl-butenes) and then contacting this olefin mixture with a dehydrogenation catalyst to form isobutene and isoprene.
  • By-products such as butadiene and other C 5 olefins and di-olefins are removed by extractive distillation to give mixtures containing only isobutene and isoprene.
  • the amount of isoprene in the mixture can be controlled by manipulating the 3 -methyl- 1 -butanol producing pathway in the host microorganism or the appropriate selection of catalyst in the thermochemical conversion of biomass.
  • the 3-methyl-l-butanol (or 2-methyl-l-butanol) concentration is tuned to 1-3% of the isobutanol produced such that the resulting isobutene/isoprene mixture can be directly used to produce butyl rubber.
  • a higher concentration of 3 -methyl- 1 -butanol is produced to form a mixture of isobutene and isoprene that is then diluted with pure isobutene to optimize butyl rubber production.
  • the isoprene produced from 3-methyl-l-butanol (or 2-methyl-l- butanol) containing isobutanol is also separately removed and blended with isobutene to the appropriate concentration.
  • the butadiene produced by the dehydrogenation of 1- and 2-butenes is used as a cross-linking agent in a butyl rubber product.
  • a cellulosic material consisting of 45% cellulose, 25% hemicellulose, 22% lignin and 8% other materials is pretreated to yield a slurry of 8% insoluble cellulose with about 4% insoluble lignin, 1% glucose, 40g/L xylose, 2g/L mannose, 2g/L galactose, 1 g/L arabinose, 5 g/L acetic acid in solution.
  • the slurry is fed into an agitated saccharification and fermentation vessel and charged with cellulase enzyme sufficient to hydrolyze 80% of the cellulose 72 hours.
  • a microorganism known to ferment glucose, xylose, mannose, galactose and arabinose to isobutanol is added to the fermentation, and the vessel is agitated for 72 hours.
  • Isobutanol produced by the fermentation is separated from the fermentation broth by distillation.
  • the first isobutanol-containing distillation cut contains 20% w/w isobutanol and 80% w/w water that condenses to form two phases - a light phase containing 85% isobutanol and 15% water and a heavy phase containing 8% isobutanol and 92% water.
  • the light phase is distilled a second time and two low-water cuts of isobutanol are obtained.
  • One cut is comprised of 99.5% isobutanol and 0.5% water while the second cut is comprised of 98.8% isobutanol, 1% 3-methyl-l-butanol, and 0.2% water.
  • Isobutanol obtained in Example 1 was fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (BASF AL3996).
  • the internal reactor temperature was maintained at 300°C and the reactor pressure was atmospheric.
  • the WHSV of the isobutanol was 6 hr "1 .
  • Primarily isobutene and water were produced in the reactor and separated in a gas-liquid separator at 2O 0 C; the water had 1% of unreacted isobutanol and conversion was 99.8%.
  • GC-MS of the gas phase effluent indicated it was 96% isobutene, 2.5% 2-butene (cis and trans) and 1.5% 1-butene.
  • Isobutanol obtained in Example 1 is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., an X-type zeolite).
  • the internal reactor temperature is maintained at 370 0 C and the reactor pressure is atmospheric.
  • the WHSV of the isobutanol is 3 hr "1 .
  • a mixture of C 4 olefins and water are produced in the reactor and separated in a gas-liquid separator at 20 0 C; the water has ⁇ 1% of unreacted isobutanol and conversion is >99.8%.
  • GC-MS of the gas phase effluent indicates it is 50% isobutene, 40% 2-butene (cis and trans) and 10% 1-butene.
  • a mixture of 50% 2-methyl-l-butanol and 50% 3-methyl-l-butanol (v/v) is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3996).
  • the internal reactor temperature is maintained at 400 0 C and the reactor pressure is atmospheric.
  • the WHSV of the alcohol feed is 2 hr "1 .
  • a mixture of C 5 olefins and water are produced in the reactor and separated in a gas-liquid separator at 50 0 C.
  • a two phase liquid is obtained which is approximately 50% unreacted C 5 alcohols and 50% water indicating a total conversion of 90%.
  • GC-MS of the gas phase effluent indicates it is 40% 2 -methyl -1-butene, 30% 3 -methyl -1-butene, and 30% 2- methyl-2-butene.
  • a mixture of 99% Isobutanol and 1% 3-methyl-l-butanol is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3992).
  • the internal reactor temperature is maintained at 350°C and the reactor pressure is atmospheric.
  • the WHSV of the isobutanol mixture is 5 hr "1 .
  • a mixture of C 4 olefins, C 5 olefins, and water are produced in the reactor and separated in a gas-liquid separator at 50°C; the water has ⁇ 1% of unreacted isobutanol and trace 3- methyl-1-butanol indicating conversion of >99.8%.
  • GC-MS of the gas phase effluent indicates it is 70% isobutene, 20% 2-butene (cis and trans), 9% 1-butene, 0.7% 3-methyl- 1 -butene, and 0.3 % 2-methyl-2-butene.
  • 1 -butanol is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3996).
  • the internal reactor temperature is maintained at 370°C and the reactor pressure is atmospheric.
  • the WHSV of the 1- butanol is 2 hr "1 .
  • a mixture of C 4 olefins and water are produced in the reactor and separated in a gas-liquid separator at 20 0 C.
  • the water has 5% 1 -butanol indicating a total conversion of 99%.
  • GC-MS of the gas phase effluent indicates it is 40% 2- butene (cis and trans), 35% 1-butene, and 25% isobutene.
  • 2-butanol is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3996).
  • the internal reactor temperature is maintained at 350 0 C and the reactor pressure is atmospheric.
  • the WHSV of the 2- butanol is 2 hr "1 .
  • a mixture of C 4 olefins and water are produced in the reactor and separated in a gas-liquid separator at 20 0 C.
  • the water has 2.5% 2-butanol indicating a total conversion of 99.5%.
  • GC-MS of the gas phase effluent indicates it is 50% 2- butene (cis and trans), 30% 1-butene, and 20% isobutene.
  • a mixed butene stream from Example 2, containing 96% isobutene, 2.5% 2- butenes (cis and trans), and 1.5% 1-butene is mixed with air at a relative feed rate of 10:1 butenes:air.
  • the resultant mixture is 1.9% oxygen and 3.6% linear butenes.
  • the mixture is preheated to 400 0 C and fed at a GHSV of 300 hr "1 to a fixed-bed tubular reactor loaded with 2 catalyst beds in sequence; the first contains ZnFe 2 O 4 and the second contains COgFe 3 BiMoO 5I .
  • the effluent from the reactor is dried over a molecular sieve column to remove water.
  • Nitrogen and oxygen are removed by passing the C 4 stream through a gas- liquid separator at -78 0 C (dry ice bath).
  • the C 4 product is analyzed via GC-MS.
  • the composition is found to be 96% isobutene, 3.9% butadiene, and 0.1% linear butenes.
  • butadiene is stripped from the gas stream by extraction with acetonitrile.
  • the resultant stream is 99.9% isobutene and 0.1% linear butenes with trace butadiene ( ⁇ 0.01%).
  • the mixture is preheated to 400 0 C and fed at a GHSV of 300 hr "1 to a fixed-bed tubular reactor loaded with 2 catalyst beds in sequence; the first contains ZnFe 2 O 4 and the second contains COgFe 3 BiMoO 5I .
  • the effluent from the reactor is dried over a molecular sieve column to remove water. Nitrogen and oxygen are removed by passing the C 4 stream through a gas- liquid separator at -78 0 C (dry ice bath).
  • the C 4 product is analyzed via GC-MS.
  • the composition is found to be 50% isobutene, 49.9% butadiene, and 0.1% linear butenes.
  • butadiene is stripped from the gas stream by extraction with acetonitrile.
  • the resultant stream is 99.9% isobutene and 0.1% linear butenes with trace butadiene ( ⁇ 0.01 %).
  • a stream containing 70% isobutene, 20% 2-butene (cis and trans), 9% 1 -butene, 0.7% 3-methyl-l -butene, and 0.3% 2-methyl-2-butene from Example 5 is mixed with air at a relative feed rate of 4:3 olefin:air.
  • the resultant mixture is 9% oxygen and 17.1% linear butenes + C 5 olefins.
  • the mixture is preheated to 400 0 C and fed at a GHSV of 300 hr "1 to a fixed-bed tubular reactor loaded with 2 catalyst beds in sequence; the first contains ZnFe 2 O 4 and the second contains 00 9 Fe 3 BiMoO 51 .
  • the effluent from the reactor is dried to remove water.
  • Nitrogen and oxygen are removed by passing the C 4 stream through a gas-liquid separator at -78°C (dry ice bath).
  • the hydrocarbon product is analyzed via GC-MS.
  • the composition is found to be 70% isobutene, 28.9% butadiene, 0.1% linear butenes, and 1 % isoprene.
  • butadiene and isoprene are stripped from the gas stream by extraction with acetonitrile.
  • the resultant stream is 99.9% isobutene and 0.1% linear butenes with trace butadiene ( ⁇ 0.01%). Isoprene and butadiene are separated by distillation to produce purified butadiene and isoprene.
  • 120 seem of nitrogen and 120 seem of isobutylene was fed through a preheater and to a fixed-bed tubular reactor packed with 15g of a commercial Cr 2 O 3 on alumina dehydrogenation catalyst (BASF Snap catalyst).
  • the internal reactor temperature was maintained at 600 0 C and the reactor pressure was atmospheric.
  • the WHSV of the isobutylene was about 1 hr "1 .
  • renewable wet isobutanol (containing 15% water and ⁇ 4% ethanol) obtained from fermentation was fed through a preheater and to a fixed-bed tubular reactor packed with a commercial ⁇ - alumina dehydration catalyst (BASF Snap catalyst).
  • the internal reactor temperature was maintained at 400 0 C and the reactor pressure was atmospheric.
  • the WHSV of the isobutanol was -0.1 hr "1 .
  • the products were separated in a gas-liquid separator at 20 0 C, where relatively pure water was removed as the liquid product.
  • the gas phase product was dried over a molecular sieve bed.
  • GC-FID of the gas phase effluent from the dehydration reactor was 82% isobutylene, 13% linear butenes (mixture of 1- butene, and cis- and trans-2-butene), 4.5% ethylene, and 0.5% propylene.
  • the flow of the gas-phase stream was ⁇ 120 seem. This stream was combined with 120 seem of nitrogen and was fed through a preheater and to a fixed-bed tubular reactor packed with 15g of a commercial Cr 2 O 3 on alumina dehydrogenation catalyst.
  • the internal reactor temperature was maintained at 600°C and the reactor pressure was atmospheric.
  • the WHSV of the mixed butene stream was about 1 hr "1 .
  • GC-FID of the gas phase effluent indicated it was 78.5% isobutylene with 2.5% isobutane, 7.5% linear butenes, 3.7% ethylene with 0.6% ethane, 2.9% butadiene, and the remaining 4.4% was methane and propylene. This indicates an approximate yield of 22% butadiene based on linear butenes fed to the dehydrogenation reactor.

Abstract

Isobutene, isoprene, and butadiene are obtained from mixtures of C4 and/or C5 olefins by dehydrogenation. The C4 and/or C5 olefins can be obtained by dehydration of C4 and C5 alcohols, for example, renewable C4 and C5 alcohols prepared from biomass by thermochemical or fermentation processes. Isoprene or butadiene can be polymerized to form polymers such as polyisoprene, polybutadiene, synthetic rubbers such as butyl rubber, etc. in addition, butadiene can be converted to monomers such as methyl methacrylate, adipic acid, adiponitrile, 1,4-butadiene, etc. which can then be polymerized to form nylons, polyesters, polymethylmethacrylate etc.

Description

METHODS OF PREPARING RENEWABLE BUTADIENE AND RENEWABLE
ISOPRENE
CROSS REFERENCE TO RELATED APPLICATIONS
The present application claims priority to U.S. Provisional Application No. 61/155,029 filed February 24, 2009, which is incorporated herein by reference in its entirety for all purposes.
BACKGROUND OF THE INVENTION
Butadiene and isoprene are important industrial chemicals typically used as monomers for producing a variety of synthetic polymers, including synthetic rubber. Butadiene is conventionally produced as a byproduct of steam cracking processes (used in petroleum refining to produce ethylene and other olefins). Steam cracking typically produces a complex mixture of unsaturated hydrocarbon, including butadiene, and the amount of butadiene produced depends upon the particular petroleum feedstock used, as well as the operating conditions employed. Butadiene is typically removed from the resulting relatively complex mixture of hydrocarbons by extraction into a polar aprotic solvent (such as acetonitrile or dimethylformamide), from which it is then stripped by distillation. Butadiene can also be produced by the catalytic dehydrogenation of n-butane and n-butenes (n-butane is also produced as part of a complex mixture of light hydrocarbons in petroleum refining processes).
Isoprene is also produced during petroleum refining, typically as a byproduct of a thermal cracking process, or as a byproduct in the production of ethylene (typically 2-5% of the ethylene yield). Additionally, isoprene can be prepared from isobutene via a combined hydroformylation and dehydration process (e.g., as described in US 3,662,016), or via condensation with formaldehyde (e.g. Prins condensation; see Figure 1). However, the C5 hydrocarbons produced by cracking operations generally contain large amounts of cyclopentadiene, which has a similar boiling point to isoprene. Accordingly, isoprene is difficult to separate from cyclopentadiene using conventional distillation methods. Alternative techniques are often used, such as first thermally dimerizing the cyclopentadiene component before distilling, or extractively distilling the isoprene with polar solvents. Butadiene and isoprene are major components of commercially useful polymers (e.g., rubbers and elastomers). However, polymerization catalysts used to prepare such materials are typically intolerant of impurities, and therefore require relatively pure butadiene and isoprene (and other monomers). Because petrochemically derived butadiene and isoprene are obtained from complex hydrocarbon mixtures, it is usually necessary to carry out extensive (and expensive) purification prior to polymerization. Accordingly, processes capable of directly providing relatively pure butadiene or isoprene which require little or no additional purification would be desirable.
Furthermore, there is increasing concern that the use of petroleum-derived hydrocarbons as basic raw materials (e.g., butadiene or isoprene) contributes to environmental degradation (e.g., global warming, air and water pollution, etc.) and fosters overdependence on unreliable petroleum supplies from politically unstable parts of the world. Accordingly, it would be desirable to obtain renewable (i.e., biologically derived) sources of industrially important monomers such as butadiene and isoprene.
The present invention is directed to improved methods for preparing butadiene and isoprene, particularly renewable butadiene and isoprene, which are simple, economical, do not require difficult and expensive extraction of starting materials from fermentation broths, or extensive purification of the butadiene or isoprene. Butadiene and isoprene prepared by the methods of the present invention are suitable for preparing renewable polymers, copolymers, and other materials derived therefrom.
SUMMARY OF THE INVENTION
In one embodiment, the present invention is directed to a method of preparing butadiene comprising (a) providing an alcohol mixture comprising one or more butanols; (b) contacting the alcohol mixture with a dehydration catalyst, thereby forming an olefin mixture comprising one or more linear butenes and isobutene; (c) contacting the olefin mixture of step (b) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; and (d) isolating butadiene from the di-olefin mixture of(c). In another embodiment, the present invention is directed to a method of preparing isoprene comprising (a) providing an olefin mixture comprising one or more pentenes, with the proviso that at least a portion of the olefin mixture comprises one or more methylbutenes; (b) contacting the olefin mixture of (a) with a dehydrogenation catalyst, thereby forming a mixture comprising isoprene; and (c) isolating isoprene from the mixture of (b).
In still another embodiment, the present invention is directed to a method of preparing monomers, comprising: (a) providing an olefin mixture comprising one or more linear butenes and isobutene; (b) contacting the olefin mixture of step (a) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; (c) isolating isobutene from the mixture of step (b); and (dl) converting the isobutene to methyl t-butyl ether, ethyl t-butyl ether, isooctane, methacrolein, methyl methacrylate, butyl rubber, butylated hydroxytoluene, or butylated hydroxyanisole.
In still other embodiments, the present invention is directed to methods for preparing isobutene or isoprene as described herein, wherein the olefin mixture is prepared by dehydration of a renewable alcohol mixture comprising one or more renewable C4 or C5 alcohols.
In still further embodiments, the present invention is directed to renewable isobutene, renewable isoprene, renewable butadiene, renewable methyl methacrylate, renewable 1 ,4-butanediol, renewable THF, renewable N-vinylpyrrolidinone, renewable lauryllactam, renewable chloroprene, renewable adipic acid, renewable hexamethylenediamine, renewable caprolactam, and renewable ethylidene norbornene, as well as renewable polymers and copolymers prepared from these renewable monomers.
In yet another embodiment, the present invention is directed to a method of preparing isobutene, comprising (a) providing an olefin mixture comprising one or more linear butenes and isobutene; (b) contacting the olefin mixture of (a) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; and (c) isolating high purity isobutene from the mixture of (b). BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 : Schematic of preparing isoprene by the Prins reaction.
Figure 2: Schematic of isobutanol dehydration.
Figure 3: Schematic of one embodiment of a dehydration reactor configuration.
Figure 4: Equilibrium concentration of various C4-olefms as a function of temperature.
Figure 5: Schematic of dehydrogenation of n-butane to 1- and 2-butenes.
Figure 6: Schematic of dehydrogenation of 1-butene to 1,3 -butadiene.
Figure 7: Schematic of skeletal rearrangement of isobutene.
DETAILED DESCRIPTION OF THE INVENTION
All documents cited herein are incorporated by reference in their entirety for all purposes to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.
In conventional petrochemical processes for preparing butadiene, butadiene is a coproduct produced during the steam cracking of naphtha and gas-oil fractions, or produced by catalytic dehydrogenation of n-butane or n-butene (which themselves are obtained by steam cracking). The crude 1,3-butadiene-containing fraction includes various C3-C5 hydrocarbons, including propylene, propane, isobutylene, 1-butene, n- butane, trans-2-butene, cis-2-butene, C4 acetylenes, 1 ,2-butadiene, various C5 hydrocarbons, etc., depending upon the particulars of the process and conditions. For use as a monomer in preparing polymers (e.g. synthetic rubber), butadiene must be relatively pure (e.g. at least about 99.0 wt.%) in order to prevent deactivation of conventional polymerization catalysts, or to prevent side reactions due to reactive impurities (such as acetylenes). Various methods for purifying crude butadiene produce from it for chemical sources have been used, for example selective extraction with aqueous sucrose ammonium acetate or extractive distillation with various solvents. The need for such purification methods add additional expense and complexity in preparing polymerization-grade butadiene.
Similarly, isoprene is typically obtain from C5 streams from thermally cracking naphtha and gas oil. Yields of isoprene are generally small, and isoprene, like butadiene, must be purified from quite complex mixtures of hydrocarbons before it can be used as a monomer.
Various methods for preparing renewable 1,3 -butadiene from butane diols have been proposed: fermentation of sugars to 2,3-butanediol, which is then dehydrated to 1,3- butadiene (e.g. US 2,529,061 and Syu MJ et al Applied Microbiology and Biotechnology 2001, 55, 10-18); fermentation of sugars to 1 ,4-butanediol, and subsequent dehydration to 1,3-butadiene (e.g. press release by Genomatica, Inc.); and fermentation of sugars to succinate, hydrogenation of the succinate to 1,4-butanediol, then dehydration of the 1 ,4- butanediol to 1,3-butadiene (e.g. Delhomme C et al Green Chemistry 2009, 11, 13-26). However, commercial-scale production of butadiene by these routes is generally considered too difficult and costly because of the known difficulty (and consequent expense) of removing diols and diacids from a fermentation broth.
The methods of the present invention provide an improved process for preparing butadiene (or isoprene) by sequential dehydration and dehydrogenation reactions from a relatively pure butanol (or pentanol) feedstock, for example isobutanol (or 3 -methyl- 1- butanol). As described herein, the dehydration step provides a relatively simple mixture of butene isomers which can be converted directly to butadiene by dehydrogenation. Any byproduct of the dehydration which cannot be converted directly to butadiene (or isoprene) can be readily removed, either from the mixture of linear butene isomers (or methylbutene isomers), or from the butadiene (or isoprene) of the product stream of the dehydrogenation step. Yields of butadiene (or isoprene) can be further increased by appropriate conversion of these byproducts (e.g. recycling and/or rearrangement as described herein), or the byproducts can be used for other purposes (e.g., as fuels or fuel additives). Thus, the present invention provides a simple process for obtaining relatively pure butadiene from butanols (or isoprene from pentanols). Furthermore, if the butanols (or pentanols) are derived from biomass (e.g., by fermentation of biomass-derived carbohydrates using suitable microorganisms), the butanols (or pentanols) are obtained as a relatively pure (usually aqueous) feedstock. Biomass derived butanols (or pentanols) have the additional advantage of providing a renewable source of a commercially important monomer, butadiene (or isoprene). In addition, it was unexpectedly found that olefins prepared by dehydration from biomass derived butanols (or pentanols), as described herein, are substantially purer than, e.g., butenes or pentenes obtained from conventional petrochemical processes (e.g., obtained by "cracking").
"Renewably-based" or "renewable" denote that the carbon content of the renewable alcohol (and olefin, di-olefin, etc., or subsequent products prepared from renewable alcohols, olefins, di-olefins, etc. as described herein), is from a "new carbon" source as measured by ASTM test method D 6866-05, "Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry
Analysis", incorporated herein by reference in its entirety. This test method measures the 14C/12C isotope ratio in a sample and compares it to the 14C/I2C isotope ratio in a standard 100% biobased material to give percent biobased content of the sample. "Biobased materials" are organic materials in which the carbon comes from recently (on a human time scale) fixated CO2 present in the atmosphere using sunlight energy (photosynthesis). On land, this CO2 is captured or fixated by plant life (e.g., agricultural crops or forestry materials). In the oceans, the CO2 is captured or fixated by photosynthesizing bacteria or phytoplankton. For example, a biobased material has a 14C/12C isotope ratio greater than 0. Contrarily, a fossil-based material, has a 14C/12C isotope ratio of about 0. The term "renewable" with regard to compounds such as alcohols or hydrocarbons (olefins, di- olefins, polymers, etc.) also refers to compounds prepared from biomass using thermochemical methods (e.g., Fischer-Tropsch catalysts), biocatalysts (e.g., fermentation), or other processes, for example as described herein.
A small amount of the carbon atoms of the carbon dioxide in the atmosphere is the radioactive isotope 14C. This 14C carbon dioxide is created when atmospheric nitrogen is struck by a cosmic ray generated neutron, causing the nitrogen to lose a proton and form carbon of atomic mass 14 (14C), which is then immediately oxidized to carbon dioxide. A small but measurable fraction of atmospheric carbon is present in the form of 14CO2. Atmospheric carbon dioxide is processed by green plants to make organic molecules during the process known as photosynthesis. Virtually all forms of life on Earth depend on this green plant production of organic molecules to produce the chemical energy that facilitates growth and reproduction. Therefore, the 14C that forms in the atmosphere eventually becomes part of all life forms and their biological products, enriching biomass and organisms which feed on biomass with 14C. In contrast, carbon from fossil fuels does not have the signature 14Cr12C ratio of renewable organic molecules derived from atmospheric carbon dioxide. Furthermore, renewable organic molecules that biodegrade to CO2 do not contribute to global warming as there is no net increase of carbon emitted to the atmosphere.
Assessment of the renewably based carbon content of a material can be performed through standard test methods, e.g. using radiocarbon and isotope ratio mass spectrometry analysis. ASTM International (formally known as the American Society for Testing and Materials) has established a standard method for assessing the biobased content of materials. The ASTM method is designated ASTM-D6866.
The application of ASTM-D6866 to derive "biobased content" is built on the same concepts as radiocarbon dating, but without use of the age equations. The analysis is performed by deriving a ratio of the amount of radiocarbon (' C) in an unknown sample compared to that of a modern reference standard. This ratio is reported as a percentage with the units "pMC" (percent modern carbon). If the material being analyzed is a mixture of present day radiocarbon and fossil carbon (containing very low levels of radiocarbon), then the pMC value obtained correlates directly to the amount of biomass material present in the sample.
Throughout the present specification, reference to alcohols, olefins, di-olefins, etc., and higher molecular weight materials (e.g., isooctene/isooctane, polymers, copolymers, etc.) made from such compounds is synonymous with "renewable" alcohols, "renewable" olefins, "renewable" di-olefins, etc., and "renewable" materials (e.g., "renewable" isooctene/isooctane, "renewable" polymers, "renewable" copolymers, etc.) unless otherwise indicated.
Throughout the present specification, the term "butadiene" refers to 1 ,3 -butadiene unless otherwise indicated.
As described herein, the methods of the present invention can be used to prepare butadiene, isoprene, isobutene, etc. suitable for use in polymerization reactions or other processes which require relatively high purity. The term "high purity" means at least about 95% pure, at least about 96% pure, at least about 97% pure, at least about 98% pure, at least about 99% pure, at least about 99.9% pure, or at least about 99.99% pure, including all ranges and subranges therebetween.
The renewable alcohols, olefins, di-olefins, polymers, etc. of the present invention have pMC values of at least about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, inclusive of all values and subranges therebetween.
Any suitable microorganism can be used to prepare renewable butanols and pentanols. Butanols are preferentially produced, for example, by the microorganisms described in U.S. Patent Publication Nos. 2007/0092957, 2008/0138870, 2008/0182308, 2007/0259410, 2007/0292927, 2007/0259411, 2008/0124774, 2008/0261230, 2009/0226991, 2009/0226990, 2009/0171129, 2009/0215137, 2009/0155869,
2009/0155869, 2008/02745425, etc. Additionally, butanols and isobutanols and various pentanols including isopentanol are produced by yeasts during the fermentation of sugars into ethanol. These fusel alcohols are known in the art of industrial fermentations for the production of beer and wine and have been studied extensively for their effect on the taste and stability of these products. Recently, production of fusel alcohols using engineered microorganisms has been reported (U.S. Patent Application No. 2007/0092957, and Nature, 2008, 451, p. 86-89).
Higher alcohols other than butanols or pentanols produced during fermentation (or other processes as described herein for preparing renewable butanols or pentanols) may be removed from the butanol or pentanol feedstocks prior to carrying out the subsequent unit operations (e.g., dehydration). The separation of these higher alcohols from the butanol(s) (e.g. isobutanol) or pentanol(s) (e.g. isopentanol) can be effected using known methods such as distillation, extraction, etc. Alternatively, these higher alcohols can remain mixed in the butanol(s) or pentanol(s), and removed after subsequent processing. For example, any higher alcohols mixed in with isobutanol can be dehydrated to the corresponding olefins, which can then be separated from the butenes. The determination of whether to remove such higher alcohols prior to dehydration, or to remove the corresponding olefin after dehydration (or the corresponding dehydrogenation byproducts/co-products) will depend on the relative ease of respective separations, and the relative value of the byproducts/co-products. Renewable butanols or pentanols can also be prepared using various other methods such as conversion of biomass by thermochemical methods, for example by gasification of biomass to synthesis gas followed by catalytic conversion of the synthesis gas to alcohols in the presence of a catalyst containing elements such as copper, aluminum, chromium, manganese, iron, cobalt, or other metals and alkali metals such as lithium, sodium, and/or potassium (Energy and Fuels, 2008, 22, p. 814-839). The various alcohols, including butanols and pentanols can be separated from the mixture by distillation and used to prepare renewable butadiene or isoprene, or compounds derived from renewable butadiene or isoprene as described herein. Alcohols other than isobutanol and isopentanol can be recovered and utilized as feedstocks for other processes, burned as fuel or used as a fuel additive, etc.
Alternatively, renewable alcohols can be prepared photosynthetically, e.g., using cyanobacteria or algae engineered to produce isobutanol, isopentanol, and/or other alcohols (e.g., Synechococcus elongatus PCC7942 and Synechocystis PCC6803; see Angermayr et al., Energy Biotechnology with Cyanobacteria, Current Opinion in
Biotechnology 2009, 20, 257-263, Atsumi and Liao, Nature Biotechnology, 2009, 27, 1177-1182); and Dexter et al., Energy Environ. Sci., 2009, 2, 857-864, and references cited in each of these references). When produced photosynthetically, the "feedstock" for producing the resulting renewable alcohols is light and the CO2 provided to the photosynthetic organism (e.g., cyanobacteria or algae).
Renewable and pure butanols and pentanols obtained by biochemical or thermochemical production routes can be converted into their corresponding olefins by reacting the alcohols over a dehydration catalyst. Renewable butanols typically comprise 1-butanol, 2-butanol, or isobutanol, but tert-butanol may also be obtained by thermochemical routes. Renewable pentanols typically comprise 1-pentanol, 2-methyl-l- butanol, and 3 -methyl- 1-butanol, but most pentanol isomers are produced by thermochemical and, less commonly, by fermentation routes.
When the renewable butanols (e.g., isobutanol) or pentanols (e.g., 3-methyl-l- butanol) are prepared by fermentation, the isobutanol can be removed from the fermentor by various methods, for example in the vapor phase under reduced pressure (e.g. as an azeotrope with water as described in US 2009/0171129). In some such embodiments, the fermentor itself is operated under reduced pressure without the application of additional heat (other than that used to provide optimal fermentation conditions for the microorganism) or the use of distillation equipment, whereby the isobutanol is removed as an aqueous vapor (or azeotrope). In other such embodiments, the fermentor is operated under approximately atmospheric pressure (or slightly elevated pressure due to the evolution of gases such as CO2 during fermentation) and a portion of the feedstock containing the isobutanol is continuously recycled through a flash tank operated under reduced pressure, whereby the isobutanol is removed from the headspace of the flash tank as an aqueous vapor or water azeotrope. These latter embodiments have the advantage of providing for separation of the isobutanol without the use of energy intensive or equipment intensive unit operations, as well as continuously removing a metabolic byproduct of the fermentation and thereby improving the productivity of the fermentation process. The resulting wet isobutanol can be dried and then dehydrated, or dehydrated wet (as described herein), then subsequently dried.
The production of renewable isobutanol by fermentation of carbohydrates co- produces small (<5% w/w) amounts of 3 -methyl- 1-butanol and 2-methyl-l-butanol and much lower levels of other fusel alcohols. One mechanism by which these by-products form is the use of intermediates in hydrophobic amino acid biosynthesis by the isobutanol- producing metabolic pathway that is engineered into the host microorganism. The genes involved with the production of intermediates that are converted to 3 -methyl- 1-butanol and 2-methyl-l-butanol are known and can be manipulated to control the amount of 3- methyl- 1-butanol produced in these fermentations (e.g., Connor MR and Liao JC, Applied and Environmental Microbiology 2008, 74, p. 5769). Removal of these genes can decrease 3 -methyl- 1-butanol and/or 2-methyl-l-butanol production to negligible amounts, while overexpression of these genes can be tuned to produce any amount of 3 -methyl- 1- butanol in a typical fermentation. Alternatively, the thermochemical conversion of biomass to mixed alcohols produces both isobutanol and these pentanols. The relative amounts of these alcohols can be tuned using specific catalysts and reaction conditions.
Alcohols can be converted to olefins by reaction with a suitable dehydration catalyst under appropriate conditions (see e.g., Figure 2). Typical dehydration catalysts that convert alcohols such as butanols and pentanols into olefins include various acid treated and untreated alumina (e.g., γ-alumina) and silica catalysts and clays including zeolites (e.g., β-type zeolites, ZSM-5 or Y-type zeolites, fluoride-treated β-zeolite catalysts, fluoride-treated clay catalysts, etc.), sulfonic acid resins (e.g., sulfonated styrenic resins such as Amberlyst® 15), strong acids such as phosphoric acid and sulfuric acid, Lewis acids such boron trifluoride and aluminum trichloride, and many different types of metal salts including metal oxides (e.g., zirconium oxide or titanium dioxide) and metal chlorides (e.g., Latshaw BE, Dehydration of Isobutanol to Isobutylene in a Slurry Reactor, Department of Energy Topical Report, February 1994).
Dehydration reactions can be carried out in both gas and liquid phases with both heterogeneous and homogeneous catalyst systems in many different reactor configurations (see e.g. Figure 3). Typically, the catalysts used are stable to the water that is generated by the reaction. The water is usually removed from the reaction zone with the product. The resulting alkene(s) either exit the reactor in the gas or liquid phase (e.g., depending upon the reactor conditions) and are captured by a downstream purification process or are further converted in the reactor to other compounds (such as butadiene or isoprene) as described herein. The water generated by the dehydration reaction exits the reactor with unreacted alcohol and alkene product(s) and is separated by distillation or phase separation. Because water is generated in large quantities in the dehydration step, the dehydration catalysts used are generally tolerant to water and a process for removing the water from substrate and product may be part of any process that contains a dehydration step. For this reason, it is possible to use wet (i.e., up to about 95% or 98% water by weight) alcohol as a substrate for a dehydration reaction and remove this water with the water generated by the dehydration reaction (e.g., using a zeolite catalyst as described U.S. Patent Nos. 4,698,452 and 4,873,392). Additionally, neutral alumina and zeolites will dehydrate alcohols to alkenes but generally at higher temperatures and pressures than the acidic versions of these catalysts.
When 1-butanol, 2-butanol, or isobutanol are dehydrated, a mixture of four C4 olefins - 1 -butene, cis-2-butene, trans-2-butene, and isobutene - is formed. The exact concentration of each olefin is determined by the starting material, by thermodynamics (Figure 4), and by the reaction conditions and catalysts used. It is possible to understand how these factors affect the distribution of olefins in the final product and use this knowledge to obtain mixtures enriched in a particular olefin. However, production of a single olefin by the dehydration of one of these alcohols is generally difficult. For example, dehydration of isobutanol at 280°C over a γ-alumina catalyst can be optimized to produce up to 97% isobutene despite an expected equilibrium concentration of -57% at that temperature (Figure 3). However, there is no known method for cleanly dehydrating isobutanol to 99+% isobutene (Saad L and Riad M, Journal of the Serbian Chemical Society 2008, 73, p. 997).
Similarly, dehydration of pentanols produces multiple C5-olefin isomers. For example, dehydration of 3 -methyl- 1-butanol produces both 3 -methyl- 1-butene and 2- methyl-2-butene in addition to other olefin isomers (see e.g. US 2007/0135665 Al). Dehydration of 2-methyl- 1-butanol will produce primarily 2 -methyl- 1-butene and 2- methyl-2-butene but some skeletal rearrangement will occur to produce linear 1-pentene and 2-pentene. Dehydrogenation of these pentene mixtures produce isoprene and linear pentadienes that are fairly easy to separate to produce pure isoprene.
As discussed above, di-olefins such as butadiene and isoprene are conventionally produced in the cracking reactions that generate C4 and C5 olefin streams for petrochemical use. If additional di-olefins are required, they can be produced by dehydrogenation of C4 and C5 mono-olefins. For example, butadiene is produced by passing raffinate-2 over a dehydrogenation catalyst. Isoprene is similarly produced by passing isopentane and/or 3 -methyl- 1-butene and 2-methyl-2-butene over a dehydrogenation catalyst. Alternatively, isoprene can be produced by the hydro formylation and dehydration of isobutene.
Dehydrogenation catalysts convert saturated carbon-carbon bonds in organic molecules into unsaturated double bonds (see Figure 5). Typical dehydrogenation catalysts are mixtures of metal oxides with varying degrees of selectivity towards specific olefins. For example, iron-zinc oxide mixtures appear to favor 1-butene dehydrogenation while cobalt-iron-bismuth-molybdenum oxide mixtures favor 2-butene dehydrogenation (e.g., Jung JC, et al, Catalysis Letters 2008, 123, p. 239). Other examples of dehydrogenation catalysts include vanadium- and chrome- containing catalysts (e.g., Toledo- Antonio JA, et al., Applied Catalysis A 2002, 234, p. 137), ferrite-type catalysts (e.g., Lopez Nieto JM, et al., Journal of Catalysis 2000, 189, p. 147), manganese-oxide doped molecular sieves (e.g., Krishnan VV and Suib SL, Journal of Catalysis 1999, 184, p. 305), copper-molybdenum catalysts (e.g., Tiwari PN, et al., Journal of Catalysis 1989, 120, p. 278), and bismuth-molybdenum-based catalysts (e.g., Batist PA, et al., Journal of Catalysis 1966, 5, p. 55). Dehydrogenation of an olefin to a di-olefin occurs if the olefin molecule can accommodate an additional double bond (see Figure 6). For example, 1-butene can be dehydrogenated to butadiene but isobutene cannot be dehydrogenated unless skeletal rearrangement of the carbon atoms in the molecule occurs. Dehydrogenation catalysts are capable of rearranging olefinic bonds in a molecule to accommodate a second olefin bond if skeletal rearrangement is not required (e.g., by one or more hydrogen shifts), but these catalysts typically do not catalyze skeletal rearrangements (e.g., breaking and reforming C-C bonds) under dehydrogenating conditions. For example, 2-butene can be dehydrogenated to butadiene. Similarly, 2-methyl-2-butene can be converted to isoprene after rearrangement of the double bond.
Two major types of dehydrogenation reactions are conventionally used to produce olefins from saturated materials (Buyanov RA, Kinetics and Catalysis 2001, 42, p. 64). Endothermic dehydrogenation uses a dehydrogenation catalyst (e.g. chromia-alumina- based, spinel supported platinum-based, phosphate-based, and iron oxide-based catalysts), high heat (typically 480-700°C), and a reactor configuration (typically fixed-bed and fluidized-bed reactors) that favors the formation of hydrogen gas to drive the reaction forward, and by diluting the feedstock with gases such as helium, nitrogen, hydrogen, or steam to lower the partial pressure of any hydrogen that is formed in the reaction or placing the reaction under reduced pressure (0.1 to 0.7 atm). Endothermic dehydrogenation catalysts typically function in the absence of oxygen, minimizing the formation of oxidized butene products such as methacrolein and methacrylate. Oxidative dehydrogenation typically uses mixed metal oxide-based dehydrogenation catalyst (typically containing molybdenum, vanadium, or chromium), lower temperatures (300- 500°C), and a fixed- or fluidized-bed reactor configuration that includes the addition of oxygen to the reaction to drive the reaction by reacting with hydrogen to form water. Both types of dehydrogenation reactions are applicable to the invention described herein.
As discussed above, dehydration of butanols and pentanols usually produces a mixture of mono-olefins (e.g., linear butenes and isobutylene, or various pentenes). Thus, for example, the dehydration of isobutanol generally produces a mixture of linear butenes (1-butene and 2-butenes) and isobutene. As discussed herein, linear butenes are readily dehydrogenated to butadiene, whereas under typical dehydrogenation conditions, isobutene is relatively inert. Accordingly, in some embodiments, it may be desirable to remove isobutene from the dehydration product/dehydrogenation feedstock. Alternatively, the mixture of linear butenes and isobutene can be dehydrogenated to produce a dehydrogenation product stream comprising butadiene, unreacted isobutene, and optionally unreacted linear butenes. In most embodiments, the linear butenes would be recycled back to the dehydrogenation reactor to further convert the linear butenes to butadiene (thereby increasing the effective yield of butadiene). The unreacted isobutene can be readily separated from butadiene, and recycled to a separate rearrangement step (i.e., producing linear butenes as shown in Figure 7) or diverted to other processes (e.g., oligomerization, oxidation, etc. to produce biofuels, acrylates, aromatics, etc.) as described herein. If the unreacted isobutene is rearranged to linear butenes, the linear butenes can be recycled back to the dehydrogenation step to produce additional butadiene.
In still other embodiments, the mixed butenes can be oligomerized over an acidic ion exchange resin under conditions which selectively convert isobutene to isooctene (e.g. using the methods of Kamath RS et al, Industrial Engineering and Chemistry Research 2006, 45, 1575-1582), but leave the linear butenes essential unreacted, thereby providing an essentially isobutene- free mixture of linear butenes (containing e.g., less than about 1% isobutene). The essentially isobutene- free renewable linear butenes can then be reacted in the presence of a dehydrogenation catalyst to form renewable butadiene.
The selectivity of dehydrogenation catalysts towards olefins that can accommodate a second olefinic bond can be used to prepare butadiene or isoprene, or alternatively purify the olefin mixture (e.g. by facilitating separation of the diene from unreactive mono- olefms). For example, as described herein, the dehydration of isobutanol typically produces isobutene and both 1- and 2-butenes. Treatment of this product mixture with a dehydrogenation catalyst selectively converts the 1- and 2-butenes - but not isobutene - to butadiene. It is possible that some skeletal rearrangement of the isobutene occurs during the dehydrogenation reaction, but this rearranged material dehydrogenates to form butadiene. After complete dehydrogenation (which may require recycling unreacted butenes back to the dehydrogenation feedstock), the butadiene and unreacted isobutene are readily separated by extractive distillation of the butadiene, to produce high purity (about 80-100%, e.g., > about 80%, > about 85%, > about 90%, > about 95%, > about 98%, > about 99%, or > about 99.8%) isobutene and butadiene suitable e.g. for use as a monomer feedstock for polymerization. In another embodiment, 1- and 2-butanol are dehydrated to produce mixtures of butenes that are primarily comprised of linear butenes with small amounts (<15% w/w) of isobutene. The isobutene can be separated from these mixtures by dehydrogenation using a method similar to that described above, especially if butadiene is the desired product. If isobutanol is the only available feedstock and butadiene is a desired product, the amount of 1- and 2-butenes produced in the dehydration of isobutanol can be increased up to the equilibrium amount accessible at the reaction temperature (see e.g. Figure 3). For example, in some embodiments, dehydration catalysts are selected such that at 3500C the dehydration of isobutanol produces 50% isobutene and 50% 1- and 2-butenes. The resulting mixture is treated with a dehydrogenation catalyst to produce butadiene from isobutanol at a 50% yield.
In various embodiments the isobutene can be removed from the mixture of linear butenes prior to dehydrogenation, or alternatively, if the dehydrogenation conditions and catalyst are selected to minimize any undesired side reactions of the isobutene, the isobutene can removed from the product stream after the dehydrogenation reaction step. In other embodiments, a portion or all of the isobutene can be diverted to form other valuable hydrocarbons (e.g., oligomerized to form isooctenes/isoctanes for biofuels, dehydrocyclized to form aromatics for fuels, phthalates, etc.). The isobutene can also be rearranged to linear butenes (1- and 2-butenes), which can then be recycled back to the dehydrogenation reaction step to form additional butadiene, thereby increasing the effective yield of butadiene well above 50%. If all of the isobutene is recycled, the effective yield of butadiene in various processes of the present invention can approach about 100%. However, as some cracking and "coking" may occur during the dehydrogenation, butadiene yields for the process of the present invention can be about 90% or more, about 95% or more, or about 98% or more. The rearrangement of isobutene can be carried out in a separate isomerization step (e.g., in a separate isomerization reactor) after removing the butadiene from the dehydrogenation product, or can be carried out in-situ during the dehydrogenation reaction by appropriate selection of catalyst (or by use of a catalyst mixture) in the dehydrogenation reactor. For example, dehydration catalysts can be selected which also catalyze rearrangement of isobutene to linear isobutenes, or the dehydration catalyst can be mixed with an isomerization catalyst. A few representative acid catalysts suitable for rearranging isobutene include zeolites such as CBV-3020, ZSM-5, β Zeolite CP 814C, ZSM-5 CBV 8014, ZSM-5 CBV 5524 G, and YCBV 870; fluorinated alumina; acid-treated silica; acid-treated silica-alumina; acid- treated titania; acid-treated zirconia; heteropolyacids supported on zirconia, titania, alumina, silica; and combinations thereof.
In particular embodiments, the isobutene is substantially removed from the product stream after the dehydration reaction step in order to provide a feed stream for the dehydrogenation reaction step which is substantially free of isobutene (i.e., the butene component of the dehydrogenation feed stream comprises substantially only linear butenes). By "substantially removed" we mean that isobutene has been removed from the indicated feed or product stream such that after removal, the isobutene in the feed or product stream comprises less than about 5%, less than about 4%, less than about 3%, less than about 2%, or less than about 1% of the butenes in the indicated feed or product stream. By "substantially only" in reference to the composition of the dehydrogenation feed stream, we mean that the linear butenes comprise at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% of the butenes in the dehydrogenation feed stream.
In a particular embodiment, renewable butadiene is prepared from renewable isobutanol prepared by fermentation as described herein. The isobutanol thus produced is then dehydrated under conditions, as described herein, which maximize the yield of linear butenes (e.g., heterogeneous acidic catalysts such as γ-alumina at about 35O0C). The resulting mixture of ~1 : 1 linear butenes/isobutene is then contacted with a dehydrogenation catalyst (e.g., chromium-oxide treated alumina, platinum- and tin- containing zeolites and alumina, cobalt- and molybdenum-containing alumina, etc. at about 450-6000C) to form a mixture of butadiene and unreacted isobutene. In a specific embodiment, the dehydrocyclization catalyst is a commercial catalyst based on chromium oxide on an alumina support. The isobutene can be isomerized to linear butenes as described herein, and recycled back to the dehydrogenation step in order to produce additional butadiene (thereby increasing the effective yield of butadiene), or used as a raw material for other processes or materials as described herein.
The renewable butadiene thus obtained can then be converted, for example, to a wide variety of renewable polymers and co-polymers by most known methods of polymerization and used in a multitude of commercial applications. As described herein, renewable butadiene can be polymerized or copolymerized with other monomers (which themselves may be renewable monomers or monomers obtained from conventional, nonrenewable sources). For example, very low molecular weight polymers and copolymers of butadiene, called telomers or liquid polybutadiene, can be prepared by anionic polymerization using initiators such as n-butyl lithium, often with co-initiators such as potassium tert-butoxide or tert-amines as taught in US 4,331 ,823 and US 3,356,754.
These low molecular weight oligomers (MW 500-3000) can be used in pressure sensitive adhesives and thermosetting rubber applications. Butadiene can also be co- and ter- polymerized with vinyl pyridine and other vinyl monomers (e.g. renewable vinyl monomers) in an emulsion process to form polymers useful in floor polishes, textile chemicals and formulated rubber compositions for automobile tires. Butadiene can also be anionically polymerized with styrene (e.g. renewable styrene) and vinyl pyridine to form triblock polymers as taught in US 3,891,721 useful for films and other rubber applications. Butadiene and styrene can be sequentially, anionically polymerized in non-polar solvents such as hexane, to form diblock and triblock polymers, also called SB elastomers, ranging from rigid plastics with high styrene content to thermoplastic elastomers with high butadiene content. These polymers are useful for transparent molded cups, bottles, impact modifiers for brittle plastics, injection molded toys as well as components in adhesives. Solution polybutadiene can be prepared from butadiene, also by anionic polymerization, using initiators such as n-butyl lithium in non-polar solvents without utilizing a comonomer. These elastomers are non-crosslinked during the polymerization and can be used as impact modifiers in high impact polystyrene and bulk polymerized ABS resins, as well as in adhesives and caulks. Solution polymerized polybutadiene can also be compounded with other elastomers and additives before vulcanization and used in automobile tires. Emulsion (latex) polymerization can also be used to convert butadiene and optionally, other monomers such a styrene, methyl methacrylate, acrylic acid, methacrylic acid, acrylonitrile, and other vinyl monomers, to polymers having both unique chemical structure and designed physical structure suitable for specific end use applications. Emulsion polymerization utilizes water as the continuous phase for the polymerization, surfactants to stabilize the growing, dispersed polymer particles and a compound to generate free radicals to initiate the polymerization. Styrene-butadiene emulsion rubber used for automobile tires can be made by this process. Vinyl acids such as acrylic acid and methacrylic acid can be copolymerized in the styrene butadiene rubber. Low levels (0.5-3%) of vinyl acids improve the stability of the latex and can be beneficial in formulated rubber products such as tires, especially when containing polar fillers. Higher levels of acid in rubber latexes, often called carboxylated latex, are used beneficially in paper coating. Latex polymerization is also used to produce rubber toughened plastics and impact modifiers. Impact modifiers made by latex polymerization are also called core-shell modifies because of the structure that is formed while polymerizing the monomers that comprise the polymer. MBS resins are made by a sequential emulsion process where butadiene (B) and styrene (S) are first polymerized to form the rubber particle core, typically 0.1-0.5 micrometers in diameter, and then methyl methacrylate (M) is polymerized to form a chemically grafted shell on the outer surface of the SB rubber core, for example as taught in US 6,331,580. This impact modifying material is isolated from the latex and blended with plastics to improve their toughness. If acrylonitrile(A) is used in place of the methyl methacrylate, with slight variations in the process, such as disclosed in US 3,509,237 and US 4,385,157, emulsion ABS is the product. ABS is used in injection molding and extrusion processes to produce toys, automobile parts, electronic enclosures and house wares. Nitrile rubber is produced in a similar emulsion polymerization process when butadiene and acrylonitrile are copolymerized together to produce a polar elastomer that is very resistant to solvents. Higher butadiene content in the elastomer provides a softer, more flexible product while higher acrylonitrile content results in more solvent resistance. The rubber is isolated from the latex by coagulation and can be fabricated into gloves, automotive hoses, and gaskets where its high resistance to solvents is an advantage.
Renewable butadiene prepared by the process described herein can also be converted to renewable 1 ,4-butanediol (BDO) and/or renewable tetrahydrofuran (THF), for example using the process described in JP 10-237017 and JP 2001002600 (illustrated below in Scheme 1), in which butadiene is reacted with acetic acid and oxygen in the presence of a palladium catalyst (liquid phase at about 700C and 70 bar, using a promoter such as Sb, Bi, Se or Te) to form l,4-diacetoxy-2-butene, which is then hydrogenated (liquid phase, at about 5O0C and 50 bar over a conventional hydrogenation catalyst such as Pd/C) to 1,4-diacetoxybutane. Acidic hydrolysis of the 1 ,4-diacetoxybutane (e.g., using an acidic ion exchange resin) provides BDO and THF in high yield. Scheme 1 :
Figure imgf000021_0001
Renewable BDO and THF can be converted to a variety of renewable products. For example renewable BDO can be reacted with a suitable diisocyanates to form renewable Lycra™ and Spandex™ products, as well as thermoplastic urethane elastomers. Renewable BDO can also be used to form renewable polybutylene terephthalate by reacting renewable BDO with terephthalic acid or terephthalate esters, or can be copolymerized with renewable aliphatic diacids such as adipic acid or succinic acid to form renewable aliphatic polyesters such as polybutylene adipate or polybutylene succinate. In some embodiments the terephthalic acid or terephthalate esters can be renewable, prepared by oxidation of renewable xylene made, e.g., by the method described in US 12/327,723 and US 61/295,886. Renewable BDO can also be used to prepare renewable γ-butyrolactone (GBL), renewable pyrrolidone solvents such as N- methylpyrrolidinone (NMP), renewable N-vinylpyrrolidinone (NVP), etc. as illustrated below in Scheme 2:
Scheme 2:
Figure imgf000022_0001
Renewable GBL and NMP can be used as solvents, and renewable NVP can be used in personal care products such as hairspray.
Renewable butadiene prepared by the processes described herein can also be used to form renewable dodecandioic acid (DDDA), or renewable lauryllactam by forming the oxime of the intermediate cyclododecanone, then rearranging the oxime to lauryllactam (e.g., using the method of US 6,649,757). The lauryllactam can then be polymerized to form renewable nylon- 12, as shown below in Scheme 3:
Scheme 3:
Figure imgf000023_0001
Renewable butadiene prepared by the processes described herein can also be used to prepare renewable chloroprene, which can be polymerized to provide renewable synthetic rubbers. Renewable chloroprene can be prepared by chlorinating renewable butadiene (e.g., free radical, gas phase chlorination with Cl2 at 2500C and 1-7 bar to give a mixture of cis and trans-X ,4-DCB as well as 3,4-DCB). At butadiene conversions of 10- 25%, the selectivity to this mixture of DCBs can be 85-95%. 3,4-dichloro-l-butene (3,4- DCB) can be dehydrochlorinated to form chloroprene (e.g., using dilute alkaline catalysts at 85°C), as shown below in Scheme 4. The 1,4-DCB by-products can be isomerized to 3,4-DCB using a copper catalyst. In addition, by distilling off the 3,4-DCB during the reaction (b.p. 123°C vs. 155°C for the 1 ,4-isomers), the equilibrium of the reaction can be shifted to provide a selectivity of 95-98%. Scheme 4:
Figure imgf000024_0001
Renewable butadiene prepared by the processes described herein can also be used to prepare renewable nylon-6,6 (Scheme 5). For example, renewable nylon-6,6 can be prepared by reacting renewable butadiene with HCN in the presence of a zero valent nickel catalyst to provide adiponitrile. Adiponitrile can be hydrogenated to form hexamethylenediamine (HMD), and hydrolyzed to form adipic acid. The HMD and adipic acid can then be polymerized to form nylon-6,6.
Scheme 5:
Figure imgf000025_0001
Alternatively, as shown in Scheme 6, renewable adiponitrile can be hydrocyanated and cyclized to renewable caprolactam (CL), e.g., using a doped Raney Ni (using the method of US 5,801,286) and cyclized to CL in the presence of water (using the method of US 5,693,793). The renewable caprolactam can then be polymerized to form renewable nylon-6 using methods known in the art.
Scheme 6:
Figure imgf000025_0002
Renewable butadiene prepared by the processes described herein can also be used to prepare renewable sulfolene and sulfolane using the method illustrated in Scheme 7: Scheme 7:
Figure imgf000026_0001
Renewable butadiene prepared by the processes described herein can also be used to prepare renewable styrene, renewable polystyrene, and renewable styrenic polymers (e.g., renewable SBR rubbers). Renewable styrene can be prepared, for example by dimerizing renewable butadiene to form vinylcyclohexene, which can be dehydrogenated in a stepwise fashion to form ethyl benzene (e.g., using the method of WO 2003/070671), then styrene (e.g., using the method of US 4,229,603). Alternatively, vinylcyclohexene can be dehydrogenated directly to styrene. The renewable styrene can be homopolymerized to form renewable polystyrene, copolymerized with renewable butadiene to form SBR rubber, etc.
Renewable butadiene prepared by the processes described herein can also be used to prepare renewable ethylidene norbornene (ENB) for producing completely renewable or partially renewable ethylene-propylene-diene rubber (depending on whether renewable ethylene and/or propylene are used). Renewable ethylene can be prepared by dehydrogenating renewable ethanol (e.g. produced by fermentation or thermochemical methods), and renewable propylene can be prepared, for example by the methods described in US 61/155,029. Renewable ENB can be prepared, for example, by reacting renewable butadiene and dicyclopentadiene in a four-step process. In the first step, dicyclopentadiene is decoupled to cyclopentadiene and reacted with renewable butadiene via Diels-Alder condensation to vinylnorbornene (VNB). This is followed by distillation to obtain refined VNB, which is catalytically isomerized (US 4,720,601) to ENB.
Renewable butadiene prepared by the processes described herein can also be thermally dimerized to form renewable 1,5-cyclooctadiene (COD) using the methods of, e.g., US 4,396,787. Renewable COD can be used in the preparation of renewable ethylene oligomerization catalysts such as Ni(COD)2. Butadiene can also be dimerized to produce 1-octene and 1-octanol. In other embodiments, the dehydration of 3 -methyl- 1-butanol produces a mixture of methyl butenes and small amounts of other pentenes which upon treatment with a dehydrogenation catalyst forms primarily isoprene from methylpentenes (e.g. 2-methyl-l- butene, 2-methyl-2-butene, 3 -methyl- 1-butene), for example 3 -methyl- 1-butene, and other pentadienes, such as 1,3-pentadiene, from other pentenes. The pentadienes are separated from each other by distillation. Dehydration catalysts and conditions are optimized to produce varying amounts of specific olefins, and their resulting di-olefins upon treatment with a dehydrogenation catalyst.
The purification of isobutene as described above produces renewable isobutene that meets all current industrial specifications and can be used to manufacture all chemicals and materials currently produced e.g., from conventional petroleum-based isobutene. For example, renewable or partially renewable polyisobutylene, butyl rubber, methyl methacrylate, isoprene, and other chemicals can be produced by the methods of the present invention. Renewable isobutene can also be oxidized under suitable conditions to provide methacrylic acid and methacrylic acid esters (Scheme 8). Isobutene can be oxidized over suitable metal oxide catalysts (e.g., using the methods described in JP 2005- 253415) at temperatures of about 300-5000C to methacrolein (MAL) which is then further oxidized to methacrylic acid (MMA) (WO 2003053570) at temperatures of about 350- 5000C. The resultant methacrylic acid can be further esterified to methylmethacrylate. The oxidation of isobutene to MMA may also be accomplished in a single step (e.g. as described in WO2003053570).
Scheme 8:
Figure imgf000027_0001
An alternative process for the preparation of MMA is by the oxidative esterification of MAL to MMA (e.g., as described in US 4,518,796) using catalysts such as Pd/Pb/Mg-Al2O3 (e.g., as described in JP 2006306731) and Pd5Bi2Fe/CaCO3 (Scheme 9. Scheme 9:
Figure imgf000028_0001
Additionally, all materials currently produced from butadiene such as synthetic rubbers and nylon can be manufactured from the renewable butadiene produced by the dehydrogenation of renewable butenes according to the present invention. For example, butadiene is used directly as a monomer and co-monomer for the production of synthetic rubber. It is also converted into "oxidized" monomers such as 1 ,4-butanediol, adiponitrile, and adipic acid as described herein for the production of polyester and nylon materials (e.g., adipic acid is produced by the hydrocarboxylation of butadiene in the presence of a suitable catalyst, CO and water; e.g., adiponitrile is produced by the hydrocyanation of butadiene in the presence of a suitable catalyst). The production of renewable isoprene from the dehydrogenation of methylbutenes or the hydro formylation and dehydration of renewable isobutene allows the preparation of renewable or partially renewable versions of all chemicals and materials produced from isoprene, especially synthetic rubber and other polymers.
One of the major industrial uses of isobutene is in the production of butyl rubber primarily for use in automobile tires. Butyl rubber is a high performance polymer comprised of high purity isobutene crosslinked with di-olefins such as butadiene or isoprene (e.g. US 2,984,644; Dhaliwal GK, Rubber Chemistry and Technology 1994, 67, p. 567). Typically, 1-3% of isoprene is blended with isobutene and co-polymerized in the presence of a polymerization catalyst such as aluminum chloride and other metal salts.
In some embodiments, renewable isoprene is produced by contacting 3-methyl-l- butanol or 2-methyl-l-butanol with a dehydration catalyst and a dehydrogenation catalyst, under conditions similar to those described herein for preparing renewable butadiene. The renewable isoprene thus formed is then blended with renewable isobutene, obtained by the methods described above or by conventional methods such as hydration of isobutylene to t-butanol and subsequent dehydration to isobutene, to form a renewable monomer feedstock for the production of renewable butyl rubber. Petroleum-based isoprene and isobutene can also used with the renewable isoprene and/or isobutene to produce butyl rubber that is partially renewable. In addition to blending purified isoprene with purified isobutene to produce butyl rubber, a renewable blend of isobutene and isoprene can be produced by contacting a mixture of isobutanol and 3-methyl-l-butanol (or 2-methyl-l-butanol) with a dehydration catalyst to form isobutylene and 3-methyl- butenes (or 2-methyl-butenes) and then contacting this olefin mixture with a dehydrogenation catalyst to form isobutene and isoprene. By-products such as butadiene and other C5 olefins and di-olefins are removed by extractive distillation to give mixtures containing only isobutene and isoprene. The amount of isoprene in the mixture can be controlled by manipulating the 3 -methyl- 1 -butanol producing pathway in the host microorganism or the appropriate selection of catalyst in the thermochemical conversion of biomass. In some embodiments, the 3-methyl-l-butanol (or 2-methyl-l-butanol) concentration is tuned to 1-3% of the isobutanol produced such that the resulting isobutene/isoprene mixture can be directly used to produce butyl rubber. Alternatively, in other embodiments a higher concentration of 3 -methyl- 1 -butanol is produced to form a mixture of isobutene and isoprene that is then diluted with pure isobutene to optimize butyl rubber production. The isoprene produced from 3-methyl-l-butanol (or 2-methyl-l- butanol) containing isobutanol is also separately removed and blended with isobutene to the appropriate concentration. Alternatively, the butadiene produced by the dehydrogenation of 1- and 2-butenes is used as a cross-linking agent in a butyl rubber product.
EXAMPLE 1
A cellulosic material consisting of 45% cellulose, 25% hemicellulose, 22% lignin and 8% other materials is pretreated to yield a slurry of 8% insoluble cellulose with about 4% insoluble lignin, 1% glucose, 40g/L xylose, 2g/L mannose, 2g/L galactose, 1 g/L arabinose, 5 g/L acetic acid in solution. The slurry is fed into an agitated saccharification and fermentation vessel and charged with cellulase enzyme sufficient to hydrolyze 80% of the cellulose 72 hours. A microorganism known to ferment glucose, xylose, mannose, galactose and arabinose to isobutanol is added to the fermentation, and the vessel is agitated for 72 hours. Isobutanol produced by the fermentation is separated from the fermentation broth by distillation. The first isobutanol-containing distillation cut contains 20% w/w isobutanol and 80% w/w water that condenses to form two phases - a light phase containing 85% isobutanol and 15% water and a heavy phase containing 8% isobutanol and 92% water. The light phase is distilled a second time and two low-water cuts of isobutanol are obtained. One cut is comprised of 99.5% isobutanol and 0.5% water while the second cut is comprised of 98.8% isobutanol, 1% 3-methyl-l-butanol, and 0.2% water. EXAMPLE 2
Isobutanol obtained in Example 1 was fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (BASF AL3996). The internal reactor temperature was maintained at 300°C and the reactor pressure was atmospheric. The WHSV of the isobutanol was 6 hr"1. Primarily isobutene and water were produced in the reactor and separated in a gas-liquid separator at 2O0C; the water had 1% of unreacted isobutanol and conversion was 99.8%. GC-MS of the gas phase effluent indicated it was 96% isobutene, 2.5% 2-butene (cis and trans) and 1.5% 1-butene.
EXAMPLE 3
Isobutanol obtained in Example 1 is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., an X-type zeolite). The internal reactor temperature is maintained at 3700C and the reactor pressure is atmospheric. The WHSV of the isobutanol is 3 hr"1. A mixture of C4 olefins and water are produced in the reactor and separated in a gas-liquid separator at 200C; the water has <1% of unreacted isobutanol and conversion is >99.8%. GC-MS of the gas phase effluent indicates it is 50% isobutene, 40% 2-butene (cis and trans) and 10% 1-butene.
EXAMPLE 4
A mixture of 50% 2-methyl-l-butanol and 50% 3-methyl-l-butanol (v/v) is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3996). The internal reactor temperature is maintained at 4000C and the reactor pressure is atmospheric. The WHSV of the alcohol feed is 2 hr"1. A mixture of C5 olefins and water are produced in the reactor and separated in a gas-liquid separator at 500C. A two phase liquid is obtained which is approximately 50% unreacted C5 alcohols and 50% water indicating a total conversion of 90%. GC-MS of the gas phase effluent indicates it is 40% 2 -methyl -1-butene, 30% 3 -methyl -1-butene, and 30% 2- methyl-2-butene. EXAMPLE 5
A mixture of 99% Isobutanol and 1% 3-methyl-l-butanol is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3992). The internal reactor temperature is maintained at 350°C and the reactor pressure is atmospheric. The WHSV of the isobutanol mixture is 5 hr"1. A mixture of C4 olefins, C5 olefins, and water are produced in the reactor and separated in a gas-liquid separator at 50°C; the water has <1% of unreacted isobutanol and trace 3- methyl-1-butanol indicating conversion of >99.8%. GC-MS of the gas phase effluent indicates it is 70% isobutene, 20% 2-butene (cis and trans), 9% 1-butene, 0.7% 3-methyl- 1 -butene, and 0.3 % 2-methyl-2-butene.
EXAMPLE 6
1 -butanol is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3996). The internal reactor temperature is maintained at 370°C and the reactor pressure is atmospheric. The WHSV of the 1- butanol is 2 hr"1. A mixture of C4 olefins and water are produced in the reactor and separated in a gas-liquid separator at 200C. The water has 5% 1 -butanol indicating a total conversion of 99%. GC-MS of the gas phase effluent indicates it is 40% 2- butene (cis and trans), 35% 1-butene, and 25% isobutene.
EXAMPLE 7
2-butanol is fed through a preheater and to a fixed-bed tubular reactor packed with a commercial dehydration catalyst (e.g., BASF AL3996). The internal reactor temperature is maintained at 3500C and the reactor pressure is atmospheric. The WHSV of the 2- butanol is 2 hr"1. A mixture of C4 olefins and water are produced in the reactor and separated in a gas-liquid separator at 200C. The water has 2.5% 2-butanol indicating a total conversion of 99.5%. GC-MS of the gas phase effluent indicates it is 50% 2- butene (cis and trans), 30% 1-butene, and 20% isobutene.
EXAMPLE 8
A mixed butene stream from Example 2, containing 96% isobutene, 2.5% 2- butenes (cis and trans), and 1.5% 1-butene is mixed with air at a relative feed rate of 10:1 butenes:air. The resultant mixture is 1.9% oxygen and 3.6% linear butenes. The mixture is preheated to 4000C and fed at a GHSV of 300 hr"1 to a fixed-bed tubular reactor loaded with 2 catalyst beds in sequence; the first contains ZnFe2O4 and the second contains COgFe3BiMoO5I. The effluent from the reactor is dried over a molecular sieve column to remove water. Nitrogen and oxygen are removed by passing the C4 stream through a gas- liquid separator at -780C (dry ice bath). The C4 product is analyzed via GC-MS. The composition is found to be 96% isobutene, 3.9% butadiene, and 0.1% linear butenes. butadiene is stripped from the gas stream by extraction with acetonitrile. The resultant stream is 99.9% isobutene and 0.1% linear butenes with trace butadiene (<0.01%).
EXAMPLE 9
A mixed butene stream from Example 3, containing 50% isobutene, 40% 2-butenes
(cis and trans), and 10% 1 -butene is mixed with air at a relative feed rate of 4:5 butenes:air. The resultant mixture is 11.7% oxygen and 22.2% linear butenes. The mixture is preheated to 4000C and fed at a GHSV of 300 hr"1 to a fixed-bed tubular reactor loaded with 2 catalyst beds in sequence; the first contains ZnFe2O4 and the second contains COgFe3BiMoO5I. The effluent from the reactor is dried over a molecular sieve column to remove water. Nitrogen and oxygen are removed by passing the C4 stream through a gas- liquid separator at -780C (dry ice bath). The C4 product is analyzed via GC-MS. The composition is found to be 50% isobutene, 49.9% butadiene, and 0.1% linear butenes. butadiene is stripped from the gas stream by extraction with acetonitrile. The resultant stream is 99.9% isobutene and 0.1% linear butenes with trace butadiene (<0.01 %).
EXAMPLE 10
A stream containing 70% isobutene, 20% 2-butene (cis and trans), 9% 1 -butene, 0.7% 3-methyl-l -butene, and 0.3% 2-methyl-2-butene from Example 5 is mixed with air at a relative feed rate of 4:3 olefin:air. The resultant mixture is 9% oxygen and 17.1% linear butenes + C5 olefins. The mixture is preheated to 4000C and fed at a GHSV of 300 hr"1 to a fixed-bed tubular reactor loaded with 2 catalyst beds in sequence; the first contains ZnFe2O4 and the second contains 009Fe3BiMoO51. The effluent from the reactor is dried to remove water. Nitrogen and oxygen are removed by passing the C4 stream through a gas-liquid separator at -78°C (dry ice bath). The hydrocarbon product is analyzed via GC-MS. The composition is found to be 70% isobutene, 28.9% butadiene, 0.1% linear butenes, and 1 % isoprene. butadiene and isoprene are stripped from the gas stream by extraction with acetonitrile. The resultant stream is 99.9% isobutene and 0.1% linear butenes with trace butadiene (<0.01%). Isoprene and butadiene are separated by distillation to produce purified butadiene and isoprene.
EXAMPLE 11
120 seem of nitrogen and 120 seem of 2-butene (mixture of cis and trans) was fed through a preheater and to a fixed-bed tubular reactor packed with 15 g of a commercial Cr2O3 on alumina dehydrogenation catalyst (BASF Snap catalyst). The internal reactor temperature was maintained at 600°C and the reactor pressure was atmospheric. The WHSV of the 2-butene was about 1 hr"1. GC-FID of the gas phase effluent indicated it was 74% linear butenes (mixture of 1-, cis-2-, and trans-2-), 16% butadiene, 2.5% n-butane, and 7.5% Ci-C3 hydrocarbons. The resulting conversion of 2-butene was 26% (ignoring rearrangement to 1-butene) with a selectivity to butadiene of 61.5% based on % carbon.
EXAMPLE 12
120 seem of nitrogen and 120 seem of isobutylene was fed through a preheater and to a fixed-bed tubular reactor packed with 15g of a commercial Cr2O3 on alumina dehydrogenation catalyst (BASF Snap catalyst). The internal reactor temperature was maintained at 6000C and the reactor pressure was atmospheric. The WHSV of the isobutylene was about 1 hr"1. GC-FID of the gas phase effluent indicated it was 78.8% isobutylene, 13.6% isobutane, and 7.6% Ci-C3 hydrocarbons. No butadiene was produced from the isobutylene.
EXAMPLE 13
Renewable wet isobutanol (containing 15% water and ~4% ethanol) obtained from fermentation was fed through a preheater and to a fixed-bed tubular reactor packed with a commercial γ- alumina dehydration catalyst (BASF Snap catalyst). The internal reactor temperature was maintained at 4000C and the reactor pressure was atmospheric. The WHSV of the isobutanol was -0.1 hr"1. The products were separated in a gas-liquid separator at 200C, where relatively pure water was removed as the liquid product. The gas phase product was dried over a molecular sieve bed. GC-FID of the gas phase effluent from the dehydration reactor was 82% isobutylene, 13% linear butenes (mixture of 1- butene, and cis- and trans-2-butene), 4.5% ethylene, and 0.5% propylene. The flow of the gas-phase stream was ~120 seem. This stream was combined with 120 seem of nitrogen and was fed through a preheater and to a fixed-bed tubular reactor packed with 15g of a commercial Cr2O3 on alumina dehydrogenation catalyst. The internal reactor temperature was maintained at 600°C and the reactor pressure was atmospheric. The WHSV of the mixed butene stream was about 1 hr"1. GC-FID of the gas phase effluent indicated it was 78.5% isobutylene with 2.5% isobutane, 7.5% linear butenes, 3.7% ethylene with 0.6% ethane, 2.9% butadiene, and the remaining 4.4% was methane and propylene. This indicates an approximate yield of 22% butadiene based on linear butenes fed to the dehydrogenation reactor.

Claims

We Claim:
1. A method of preparing butadiene comprising:
(a) providing an alcohol mixture comprising one or more butanols;
(b) contacting said alcohol mixture with a dehydration catalyst, thereby forming an olefin mixture comprising one or more linear butenes and isobutene;
(c) contacting the olefin mixture of (b) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; and
(d) isolating butadiene from the di-olefin mixture of (c).
2. The method of claim 1, wherein the alcohol mixture comprises one or more renewable butanols.
3. The method of claim 2, wherein the alcohol mixture comprises isobutanol.
4. The method of claim 1 , wherein the one or more renewable butanols are prepared by fermentation.
5. The method of claim 4, wherein the fermentation comprises fermenting with a genetically modified microorganism.
6. The method of claim 2, wherein the one or more renewable butanols are prepared by hydrogenation of one or more butyric acids produced by anaerobic digestion of biomass.
7. The method of claim 1, wherein the olefin mixture of (b) comprises at least about 10% linear butenes.
8. The method of claim 1, wherein prior to step (c), isobutene is substantially removed from the olefin mixture.
9. The method of claim 1, wherein said dehydrogenation is carried out in the presence of an inert carrier gas, or carried out at a pressure of about 0.1 atm to about 0.7 atm.
10. The method of claim 1, wherein said dehydrogenation is carried out in the presence of oxygen.
11. The method of claim 1 , wherein said isolating comprises extractive distillation.
12. A method of preparing isoprene comprising:
(a) providing an olefin mixture comprising one or more pentenes, with the proviso that at least a portion of the olefin mixture comprises one or more methylbutenes;
(b) contacting the olefin mixture of (a) with a dehydrogenation catalyst, thereby forming a mixture comprising isoprene; and
(c) isolating isoprene from the mixture of step (b).
13. The method of claim 12, wherein said providing an olefin mixture of step (a) comprises:
(al) providing an alcohol mixture comprising one or more pentanols; and (a2) contacting said alcohol mixture with a dehydration catalyst, thereby forming the olefin mixture.
14. The method of claim 13 , wherein the olefin mixture of (a2) comprises at least about 50% methylbutenes.
15. The method of claim 13, wherein the mixture of step (b) comprises at least about 50% isoprene.
16. The method of claim 13, wherein the alcohol mixture comprises renewable alcohols.
17. The method of claim 16, wherein the renewable alcohols are prepared by fermentation.
18. The method of claim 17, wherein the fermentation comprises fermenting with a genetically modified microorganism.
19. The method of claim 13, wherein alcohol mixture comprises 3 -methyl- 1-butanol or 2-methyl-l-butanol .
20. The method of claim 13 , wherein the alcohol mixture comprises 3 -methyl- 1 - butanol.
21. The method of claim 13 , wherein the alcohol mixture comprises 2-methyl- 1 - butanol.
22. The method of claim 12, wherein said isolating comprises extractive distillation.
23. The method of claim 12, wherein said dehydrogenation is carried out in the presence of an inert carrier gas, or carried out at a pressure of about 0.1 atm to about 0.7 atm.
24. The method of claim 11, wherein said dehydrogenation is carried out in the presence of oxygen.
25. A method of preparing isobutene comprising:
(a) providing an olefin mixture comprising one or more linear butenes and isobutene;
(b) contacting the olefin mixture of (a) with a dehydrogenation catalyst, thereby forming a di-olefin mixture comprising butadiene and isobutene; and
(c) isolating isobutene from the mixture of (b).
26. The method of claim 25, wherein said providing an olefin mixture of step (a) comprises:
(al) providing an alcohol mixture comprising one or more butanols; and (a2) contacting said alcohol mixture with a dehydration catalyst, thereby forming the olefin mixture.
27. A method of preparing a monomer, comprising:
(a) providing an olefin mixture comprising one or more linear butenes and isobutene; (b) contacting the olefin mixture of (a) with a dehydrogenation catalyst, thereby forming a di -olefin mixture comprising butadiene and isobutene;
(c) isolating butadiene from the mixture of step (b); and
(dl) converting the butadiene to a monomer selected from the group consisting of 1,4-butanediol, THF, N-vinylpyrrolidinone, lauryllactam, chloroprene, adipic acid, hexamethylenediamine, caprolactam, and ethylidene norbornene.
28. Renewable butadiene prepared by the method of claim 1.
29. Renewable isoprene prepared by the method of claim 12.
30. Renewable isobutene prepared by the method of claim 25.
31. A renewable monomer prepared by the method of claim 27, wherein the monomer is selected from the group consisting of methyl methacrylate, 1,4-butanediol, THF, N-vinylpyrrolidinone, lauryllactam, chloroprene, adipic acid, hexamethylenediamine, caprolactam, and ethylidene norbornene.
32. A renewable polymer prepared by polymerizing or copolymerizing the renewable butadiene of claim 28.
33. A renewable polymer prepared by the polymerization or copolymerization of the renewable isoprene of claim 29.
34. A renewable polymer prepare by polymerizing or copolymerizing the renewable isobutene of claim 30.
35. A renewable polymer prepared by the polymerization or copolymerization of one or more of the renewable monomers of claim 31.
36. The renewable polymer of claim 32, selected from the group consisting of, liquid polybutadienes, SB elastomers, MBS resins, ABS resins, and nitrile rubbers.
37. The renewable polymer of claim 33, selected from the group consisting of polyisoprene, styrene-isoprene block copolymers, and isoprene-containing butyl rubber.
38. The renewable polymer of claim 34, selected from the group consisting of polyisobutylenes and butyl rubbers.
39. The renewable polymer of claim 35, wherein the polymer is selected from the group consisting of polyesters, nylons, nylon-12, nylon-6,6, polyisocyanates, polychloroprenes, polystyrenes, SBR rubbers, ethylene-propylene-diene rubbers, and polymethylmethacrylates.
PCT/US2010/025234 2009-02-24 2010-02-24 Methods of preparing renewable butadiene and renewable isoprene WO2010099201A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI1008287A BRPI1008287A2 (en) 2009-02-24 2010-02-24 renewable butadiene and isoprene preparation methods
EP10746767.2A EP2401307A4 (en) 2009-02-24 2010-02-24 Methods of preparing renewable butadiene and renewable isoprene
JP2011551312A JP2012518658A (en) 2009-02-24 2010-02-24 Process for producing renewable butadiene and renewable isoprene
CA2753037A CA2753037A1 (en) 2009-02-24 2010-02-24 Methods of preparing renewable butadiene and renewable isoprene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15502909P 2009-02-24 2009-02-24
US61/155,029 2009-02-24

Publications (1)

Publication Number Publication Date
WO2010099201A1 true WO2010099201A1 (en) 2010-09-02

Family

ID=42631539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/025234 WO2010099201A1 (en) 2009-02-24 2010-02-24 Methods of preparing renewable butadiene and renewable isoprene

Country Status (6)

Country Link
US (1) US20100216958A1 (en)
EP (1) EP2401307A4 (en)
JP (1) JP2012518658A (en)
BR (1) BRPI1008287A2 (en)
CA (1) CA2753037A1 (en)
WO (1) WO2010099201A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081723A1 (en) 2010-12-17 2012-06-21 三菱化学株式会社 Synthetic pathway constructing equipment, synthetic pathway constructing method, synthetic pathway constructing program, and processes for manufacturing 3-hydroxypropionic acid, crotonyl alcohol and butadiene
FR2969147A1 (en) * 2010-12-21 2012-06-22 Total Raffinage Marketing PRODUCTION OF FUEL ADDITIVES BY DEHYDRATION AND SIMULTANEOUS SKELETAL ISOMERISATION OF ISOBUTANOL ON ACID CATALYSTS FOLLOWED BY ETHERIFICATION
EP2578559A1 (en) 2011-10-07 2013-04-10 Metabolic Explorer Process for producing isobutene from isobutylamine
WO2012174439A3 (en) * 2011-06-17 2013-05-23 Invista Technologies S.A R.L. Methods of producing1, 3 - butadiene
JP2013241549A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013241550A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013249378A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Butadiene polymer, method for producing butadiene polymer, rubber composition and tire
JP2013249379A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Method for producing conjugated diene-based polymer
JP2014001279A (en) * 2012-06-15 2014-01-09 Bridgestone Corp Copolymer of conjugated diene compound and non-conjugated olefin, method of producing the copolymer, rubber composition, and tire
JP2014001278A (en) * 2012-06-15 2014-01-09 Bridgestone Corp Copolymer of conjugated diene compound and non-conjugated olefin, method of producing the copolymer, rubber composition, and tire
JP2014500334A (en) * 2010-10-01 2014-01-09 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymers of isobutene from renewable sources.
WO2014017508A1 (en) * 2012-07-25 2014-01-30 住友ゴム工業株式会社 Rubber composition for tire, tire member, method for producing biomass-derived rubber, and pneumatic tire
WO2014038647A1 (en) * 2012-09-07 2014-03-13 住友ゴム工業株式会社 Rubber composition for tires, tire member, and pneumatic tire
JP2014506581A (en) * 2011-02-17 2014-03-17 ザ プロクター アンド ギャンブル カンパニー Bio-based linear alkyl phenyl sulfonate
DE102012219476A1 (en) 2012-10-24 2014-04-24 Hilti Aktiengesellschaft Vinyl ester urethane resin-based resin composition and use thereof
JP2014105323A (en) * 2012-11-29 2014-06-09 Sumitomo Rubber Ind Ltd Rubber composition for sidewall, and pneumatic tire
WO2014121357A1 (en) * 2013-02-07 2014-08-14 Braskem S.A. Method of separating and purifying a conjugated diolefin produced by fermentation under anaerobic conditions
US8846985B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8859826B2 (en) 2012-04-27 2014-10-14 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8865940B2 (en) 2011-12-30 2014-10-21 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8884035B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of tetrahydrofuran-2, 5-dimethanol from isosorbide
US8884036B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of hydroxymethylfurfural from levoglucosenone
US8889922B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8889912B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8981130B2 (en) 2011-12-30 2015-03-17 E I Du Pont De Nemours And Company Process for the production of hexanediols
US9018423B2 (en) 2012-04-27 2015-04-28 E I Du Pont De Nemours And Company Production of alpha, omega-diols
WO2015081406A1 (en) * 2013-12-02 2015-06-11 Braskem S.A. Fermentation hydrocarbon gas products separation via membrane
JP2016505645A (en) * 2012-11-09 2016-02-25 株式会社ブリヂストン Usage of biological styrene
US9422578B2 (en) 2011-06-17 2016-08-23 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
US9777295B2 (en) 2012-11-28 2017-10-03 Invista North America S.A.R.L. Methods for biosynthesis of isobutene
US9862973B2 (en) 2013-08-05 2018-01-09 Invista North America S.A.R.L. Methods for biosynthesis of isoprene
US9938543B2 (en) 2014-06-16 2018-04-10 Invista North America S.A.R.L. Methods, reagents and cells for biosynthesizing glutarate methyl ester
US10294496B2 (en) 2013-07-19 2019-05-21 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
EP3489205A1 (en) 2017-11-28 2019-05-29 HILTI Aktiengesellschaft Isosorbide derivatives as reactive additives in reactive resins and chemical dowels
WO2019136283A1 (en) * 2018-01-04 2019-07-11 Gevo, Inc. Upgrading fusel oil mixtures over heterogeneous catalysts to higher value renewable chemicals
WO2019201569A1 (en) 2018-04-18 2019-10-24 Unilever Plc Process for the production of dialkyl terephthalate
US10533193B2 (en) 2013-08-05 2020-01-14 Invista North America S.A.R.L. Methods for biosynthesis of isobutene
US11162115B2 (en) 2017-06-30 2021-11-02 Inv Nylon Chemicals Americas, Llc Methods, synthetic hosts and reagents for the biosynthesis of hydrocarbons
US11286490B2 (en) 2016-07-12 2022-03-29 Braskem S.A. Formation of alkenes through enzymatic dehydration of alkanols
US11505809B2 (en) 2017-09-28 2022-11-22 Inv Nylon Chemicals Americas Llc Organisms and biosynthetic processes for hydrocarbon synthesis
US11634733B2 (en) 2017-06-30 2023-04-25 Inv Nylon Chemicals Americas, Llc Methods, materials, synthetic hosts and reagents for the biosynthesis of hydrocarbons and derivatives thereof

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100095004A (en) 2007-12-03 2010-08-27 게보 인코포레이티드 Renewble compositions
FR2943347B1 (en) * 2009-03-18 2011-04-29 Arkema France ADDITIVES SHOCKS
JP5643838B2 (en) * 2009-12-18 2014-12-17 ダニスコ・ユーエス・インク Purification of isoprene from renewable resources.
BR112012016883A2 (en) 2010-01-08 2018-06-05 Gevo Inc integrated methods of preparing renewable chemical produsot
EP2566830B1 (en) 2010-05-07 2017-03-22 GEVO, Inc. Renewable jet fuel blendstock from isobutanol
US9115040B2 (en) 2010-09-24 2015-08-25 Total Research & Technology Feluy Production of isoprene from iso-butanol
WO2012061372A1 (en) * 2010-11-01 2012-05-10 Gevo, Inc. Renewable xylenes produced from biological c4 and c5 molecules
US20120152794A1 (en) 2010-12-17 2012-06-21 Paul Thomas Weisman Sustainable Wipes Products And Methods Of Forming Same
US20120263924A1 (en) 2011-04-12 2012-10-18 Paul Thomas Weisman Multi-Layer Films And Methods Of Forming Same
TW201247596A (en) 2011-04-19 2012-12-01 Gevo Inc Variations on prins-like chemistry to produce 2,5-dimethylhexadiene from isobutanol
US20120272468A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Oral Care Device Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Device
FR2976293B1 (en) * 2011-06-10 2015-01-02 Arkema France PROCESS FOR THE SYNTHESIS OF BI-FUNCTIONAL HYDROCARBON COMPOUNDS FROM BIOMASS
DE102011081649A1 (en) 2011-08-26 2013-02-28 Evonik Röhm Gmbh Longer chain methacrylates from renewable raw materials
WO2013053824A1 (en) 2011-10-11 2013-04-18 Metabolic Explorer New biosynthesis pathway for prenol in a recombinant microorganism
EP2583957A1 (en) 2011-10-18 2013-04-24 LANXESS Deutschland GmbH Linear butene from isobutanol
US20130253239A1 (en) * 2012-03-23 2013-09-26 Uop Llc Heavy Alkylbenzene Production Through Oligomerization
WO2014046118A1 (en) * 2012-09-18 2014-03-27 国立大学法人北海道大学 Catalyst for producing isobutylene, and method for producing isobutylene using same
WO2014055649A1 (en) * 2012-10-02 2014-04-10 Braskem S/A Ap 09 Modified microorganisms and methods of using same for producing butadiene and succinate
JP2014074121A (en) * 2012-10-04 2014-04-24 Sumitomo Rubber Ind Ltd Rubber composition for tread and pneumatic tire
JP6385031B2 (en) * 2012-10-09 2018-09-05 住友ゴム工業株式会社 Rubber composition for tread for studless tire and studless tire
WO2015005941A1 (en) * 2013-07-11 2015-01-15 Washington State University Process for making biobased isoprene
WO2015012876A1 (en) * 2013-07-22 2015-01-29 Washington State University Improved use of byproduct acetic acid from oxidative methods of making acrylic acid and/or methacrylic acid
US9505671B2 (en) * 2012-10-31 2016-11-29 Washington State University Renewable para-xylene from acetic acid
WO2014099927A1 (en) * 2012-12-17 2014-06-26 Braskem S/A Ap 09 Modified microorganisms and methods of using same for producing isoprene, 2-methyl-1-butanol, 2-methyl-1,3-butanediol, and/or 2-methylbut-2-en-1-ol
US10899968B2 (en) * 2013-01-23 2021-01-26 Sekisui Chemical Co., Ltd. Method for producing recycled material, and tire and method for producing tire
BR112015026960B1 (en) 2013-04-27 2021-07-27 The Regents Of The University Of California METHODS FOR THE PRODUCTION OF REACTIVE INTERMEDIATES FROM BIOMASS AND FOR THE COMBINED SOLUBILIZATION AND CATALYTIC CONVERSION OF BIOMASS
US20140378726A1 (en) * 2013-06-20 2014-12-25 Uop Llc Catalytic conversion processes using ionic liquids
US20140376835A1 (en) 2013-06-24 2014-12-25 The Procter & Gamble Company Foamed Film Packaging
US20140377512A1 (en) 2013-06-24 2014-12-25 The Procter & Gamble Company Printed Foamed Film Packaging
JPWO2014208757A1 (en) * 2013-06-27 2017-02-23 株式会社ブリヂストン Anti-aging agent, rubber composition, and tire
JP6332925B2 (en) * 2013-08-26 2018-05-30 住友ゴム工業株式会社 Cap tread rubber composition for passenger car tire, cap tread rubber for passenger car tire, and pneumatic tire for passenger car
KR20150069350A (en) * 2013-12-13 2015-06-23 지에스칼텍스 주식회사 A method for preparation of high yield 1,3-butadiene
JP6532192B2 (en) * 2014-04-24 2019-06-19 住友ゴム工業株式会社 Rubber composition for tire, tire member, and pneumatic tire
TWI751100B (en) * 2014-05-05 2022-01-01 盧森堡商英威達技術有限公司 Bio-derived polyurethane fiber
CA2964762A1 (en) 2014-10-14 2016-04-21 Gevo, Inc. Methods for conversion of ethanol to functionalized lower hydrocarbons and downstream hydrocarbons
WO2016066873A1 (en) 2014-10-30 2016-05-06 Abengoa Research, S.L. Mixed oxides comprising magnesium and boron, and use thereof as catalysts for producing butadiene precursors
WO2016066869A1 (en) 2014-10-30 2016-05-06 Abengoa Research, S.L. Microporous catalyst with selective encapsulation of metal oxides, used to produce butadiene precursors
KR101679515B1 (en) * 2015-02-12 2016-11-24 주식회사 엘지화학 Method of preparing catalyst system for oligomerization and catalyst sysyem for oligomerization prepared thereby
ES2946903T3 (en) 2015-07-02 2023-07-28 Wrigley W M Jun Co Gum bases from renewable sources
FR3040703B1 (en) * 2015-09-03 2017-10-06 Ifp Energies Now INTEGRATED PROCESS FOR PRODUCING BUTADIENE FROM BUTANOL
US11498062B2 (en) 2016-09-30 2022-11-15 Regents Of The University Of Minnesota Phosphorus-containing solid catalysts and reactions catalyzed thereby, including synthesis of p-xylene
FR3056982A1 (en) * 2016-09-30 2018-04-06 IFP Energies Nouvelles METHOD FOR PRODUCING BIOSOURCE ISOPRENE USING BUTANOLS DEHYDRATION STEP, METATHESIS STEP AND DEHYDROGENATION STEP
EP3526183A4 (en) 2016-10-14 2020-06-17 GEVO, Inc. Conversion of mixtures of c2-c8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
US20210147590A1 (en) * 2017-07-13 2021-05-20 Arlanxeo Deutschland Gmbh Process for the production of isobutene polymers with improved temperature control
RU2654863C1 (en) * 2017-09-26 2018-05-23 Публичное Акционерное Общество "Нижнекамскнефтехим" Method of producing isoprene
WO2019175394A1 (en) * 2018-03-16 2019-09-19 Total Raffinage Chimie Polymer composition and use for making adhesive and article containing it
KR20200133217A (en) * 2018-03-16 2020-11-26 토탈 마케팅 서비스 Preparation of olefins by alcohol dehydration, and their use for the production of polymers, fuels or fuel additives
FI128839B (en) * 2018-04-10 2021-01-15 Neste Oyj A method for producing a mixture of hydrocarbons
WO2020158751A1 (en) 2019-01-28 2020-08-06 積水化学工業株式会社 Method for producing conjugated diene polymer
CN114477683B (en) * 2022-01-25 2023-08-18 安徽工程大学 Pigment sludge treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2391646A (en) * 1942-02-02 1945-12-25 Phillips Petroleum Co Process for dehydrogenating olefins
US2945900A (en) * 1957-08-01 1960-07-19 Polymer Corp Catalytic dehydrogenation of hydrocarbons
US2982795A (en) * 1957-11-21 1961-05-02 Phillips Petroleum Co Dehydrogenation of isopentane to isoprene
US5753474A (en) * 1995-12-26 1998-05-19 Environmental Energy, Inc. Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria
US20030055179A1 (en) * 2000-01-21 2003-03-20 Seiji Ota Olefin block copolymers processes for producing the same and uses thereof
US20070135665A1 (en) * 2004-02-14 2007-06-14 Klaus-Diether Wiese Method for the production of olefins comprising 8 to 12 carbon atoms
US20080132732A1 (en) * 2006-12-01 2008-06-05 Leo Ernest Manzer Process for making butenes from aqueous 2-butanol
US20080227940A1 (en) * 1999-09-29 2008-09-18 Sri International Olefin Copolymers Containing Hydrolytically Cleavable Linkages and Use Thereof In Degradable Products
US20080248540A1 (en) * 2007-04-03 2008-10-09 The Ohio State University Methods of producing butanol

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US991453A (en) * 1911-03-17 1911-05-02 Res Syndicate Ltd Process of manufacturing isoprene.
US2391188A (en) * 1943-01-11 1945-12-18 Phillips Petroleum Co Butadiene production
US2554054A (en) * 1949-01-04 1951-05-22 Phillips Petroleum Co Process for producing butadiene
FR1023438A (en) * 1950-07-31 1953-03-18 Process for the production of butadiene
US2984644A (en) * 1957-08-26 1961-05-16 Phillips Petroleum Co Butyl rubber/heterocyclic nitrogen base rubber blend
US3301906A (en) * 1963-06-27 1967-01-31 Petro Tex Chem Corp Oxidation of isobutylene to methacrolein
NL6610623A (en) * 1965-07-28 1967-01-30
US3509237A (en) * 1966-03-21 1970-04-28 Monsanto Co Abs graft polyblends containing two graft polymers having different particle sizes
US3445521A (en) * 1966-11-17 1969-05-20 Standard Oil Co Promoted antimony-iron oxidation catalyst
GB1167421A (en) * 1967-09-08 1969-10-15 British Hydrocarbon Chem Ltd Production of Isobutene
US3644550A (en) * 1969-04-21 1972-02-22 Gulf Research Development Co Single stage cyclodimerization of paraffins to aromatic compounds
JPS493962B1 (en) * 1969-08-02 1974-01-29
JPS5328419B1 (en) * 1971-04-26 1978-08-15
US3851008A (en) * 1972-12-11 1974-11-26 Dow Chemical Co Oxydehydrogenation of mixed c4 stream
US3886224A (en) * 1973-01-18 1975-05-27 Atlantic Richfield Co Conversion of non-cyclic C{HD 3{B {14 C{HD 5 {B alkanes to aromatic hydrocarbons
US3959400A (en) * 1973-10-01 1976-05-25 Mobil Oil Corporation Olefin dimerization
US3891721A (en) * 1973-11-15 1975-06-24 Goodyear Tire & Rubber Block polymers of styrene-butadiene-2-vinylpyridine
US4190608A (en) * 1974-07-22 1980-02-26 Standard Oil Company Process for the oxidation of olefins using catalysts containing various promoter elements
US3960978A (en) * 1974-09-05 1976-06-01 Mobil Oil Corporation Converting low molecular weight olefins over zeolites
US4025575A (en) * 1975-04-08 1977-05-24 Mobil Oil Corporation Process for manufacturing olefins
US4096340A (en) * 1975-06-03 1978-06-20 Teijin Hercules Chemical Co., Ltd. Process for the preparation of dimethyl terephthalate
JPS5384933A (en) * 1976-12-30 1978-07-26 Mitsubishi Chem Ind Ltd Preparation of terephthalic acid
CA1108114A (en) * 1977-04-14 1981-09-01 Gregor H. Riesser Dehydrogenation catalyst
FR2401122A1 (en) * 1977-08-26 1979-03-23 Inst Francais Du Petrole PROCESS FOR CONVERTING C4 OLEFINIC VAPOCRAQUAGE CUPS INTO ISOOCTANE AND BUTANE
FR2421157A1 (en) * 1978-03-31 1979-10-26 Inst Francais Du Petrole PROCESS FOR THE CONVERSION OF C4 OLEFINIC CRACKING CUPS INTO ALKYLATE AND GASOLINE
US4266958A (en) * 1978-07-17 1981-05-12 Dut Pty Limited Simultaneous cooling and removal of water from hydrocarbon gas mixtures
DE2905763A1 (en) * 1979-02-15 1980-08-28 Bayer Ag CATALYST, THE PRODUCTION AND USE THEREOF IN THE PRODUCTION OF TELOMERIC POLYBUTADIENE HOMO- OR COPOLYMERISATEN
DE2908426A1 (en) * 1979-03-05 1980-09-25 Basf Ag METHOD FOR PRODUCING ISOBUTEN FROM ISOBUTEN CONTAINING C TIEF 4-HYDROCARBON MIXTURES
DE2911395C2 (en) * 1979-03-23 1985-03-14 Basf Ag, 6700 Ludwigshafen Process for the preparation of a conjugated diolefin from a C 4 or C 5 hydrocarbon mixture
DE3018071C2 (en) * 1979-05-17 1985-06-05 Asahi Kasei Kogyo K.K., Osaka Process for the preparation of carboxylic acid esters
US4385157A (en) * 1981-11-27 1983-05-24 Monsanto Company Emulsion polymerization process for ABS polyblends
JPS59167525A (en) * 1983-03-14 1984-09-21 Japan Synthetic Rubber Co Ltd Production of 1,3-butadiene
US4456781A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion system for oligomerizing olefinic feedstock to produce heavier hydrocarbons
US4456779A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
US4720600A (en) * 1983-06-29 1988-01-19 Mobil Oil Corporation Production of middle distillate range hydrocarbons by light olefin upgrading
DE3407925C1 (en) * 1984-03-03 1985-09-05 Dynamit Nobel Ag, 5210 Troisdorf Process for the preparation of dimethyl terephthalate from p-xylene and methanol
US4499316A (en) * 1984-04-04 1985-02-12 Union Carbide Corporation Conversion of effluent hydrocarbons streams using aluminophosphate catalysts
US4504693A (en) * 1984-06-01 1985-03-12 Mobil Oil Corporation Catalytic conversion of olefins to heavier hydrocarbons
DE3509272A1 (en) * 1985-03-15 1986-09-18 Basf Ag, 6700 Ludwigshafen CATALYST SYSTEM FOR THE CATIONIC POLYMERIZATION OF ISOBUTYLENE
US4740652A (en) * 1985-05-23 1988-04-26 Uop Inc. Process for the oligomerization of olefins
EP0219637B1 (en) * 1985-10-21 1990-10-31 Sumitomo Chemical Company, Limited Process for preparing 5-ethylidene-2-norbornene
DE3704720A1 (en) * 1987-02-14 1988-08-25 Huels Troisdorf METHOD AND DEVICE FOR PRODUCING BENZOLIC CARBONIC ACIDS OR. BENZOLDICARBONIC ACID ESTERS
US4806701A (en) * 1987-08-05 1989-02-21 Amoco Corporation Process for upgrading light paraffins
US4808763A (en) * 1987-08-05 1989-02-28 Amoco Corporation Process for upgrading light paraffins
US5026938A (en) * 1987-08-05 1991-06-25 Amoco Corporation Process for upgrading light apparatus
US5087789A (en) * 1990-08-23 1992-02-11 Phillips Petroleum Company Olefin oligomerization
US5107050A (en) * 1990-12-28 1992-04-21 Arco Chemical Technology, L.P. Olefin skeletal isomerization
WO1994008924A1 (en) * 1992-10-16 1994-04-28 Mitsubishi Kasei Corporation Process for dimerizing butene, butene dimer composition, and process for producing alcohol therefrom
US5519101A (en) * 1993-05-27 1996-05-21 Amoco Corporation Process for preparation of unsaturated oligomers or polymers by acyclic olefin metathesis
US5386071A (en) * 1993-11-19 1995-01-31 Uop Process for producing aromatics from a C5 /C6 feedstream
US5625109A (en) * 1994-11-21 1997-04-29 Gupta; Vijai P. Liquid phase dehydration of tertiary butyl alcohol
US6428767B1 (en) * 1995-05-12 2002-08-06 E. I. Du Pont De Nemours And Company Method for identifying the source of carbon in 1,3-propanediol
US5895830A (en) * 1995-12-15 1999-04-20 Uop Llc Process for oligomer production and saturation
CA2289968C (en) * 1997-05-14 2004-01-06 The Board Of Trustees Of The University Of Illinois A method of producing butanol using a mutant strain of clostridium beijerinckii
US5856604A (en) * 1997-09-23 1999-01-05 Uop Llc Process for integrated oligomer production and saturation
US5877372A (en) * 1997-11-21 1999-03-02 Arco Chemical Technology, L.P. Isobutylene oligomerization using isooctane diluent
US6884916B1 (en) * 1999-10-28 2005-04-26 Exxon Mobil Chemical Patents Inc. Conversion of unsaturated chemicals to oligomers
US6376731B1 (en) * 2000-01-14 2002-04-23 Arco Chemical Technology, L.P. Selective olefin oligomerization
ES2166316B1 (en) * 2000-02-24 2003-02-16 Ct Investig Energeticas Ciemat PROCEDURE FOR THE PRODUCTION OF ETHANOL FROM LIGNOCELLULOSIC BIOMASS USING A NEW THERMOTOLERING YEAST.
US6239321B1 (en) * 2000-02-28 2001-05-29 Bp Amoco Corporation Upgrading light oligomers
US7067708B2 (en) * 2000-03-16 2006-06-27 E. I. Du Pont De Nemours And Company Process for the preparation of p-xylene
US6875899B2 (en) * 2001-02-01 2005-04-05 Exxonmobil Chemical Patents Inc. Production of higher olefins
DE10113381A1 (en) * 2001-02-13 2002-08-14 Oxeno Olefinchemie Gmbh Process for the preparation of high purity diisobutene
CA2438984C (en) * 2001-02-28 2009-10-20 Iogen Energy Corporation Method of processing lignocellulosic feedstock for enhanced xylose and ethanol production
US6689927B1 (en) * 2001-05-07 2004-02-10 Uop Lcc Process for oligomer production and saturation
US6653518B2 (en) * 2001-06-15 2003-11-25 Exxonmobil Chemical Patents Inc Reforming process for manufacture of para-xylene
WO2003020666A1 (en) * 2001-09-05 2003-03-13 Fortum Oyj Method and system for improving the efficiency of a dimerization reactor
WO2003082778A1 (en) * 2002-03-29 2003-10-09 Exxonmobil Chemical Patents Inc. Process for olefin oligomerization
US7183450B2 (en) * 2002-07-22 2007-02-27 Exxonmobil Chemical Patents Inc. Olefin oligomerization
EP1388528B1 (en) * 2002-08-06 2015-04-08 Evonik Degussa GmbH Process for the oligomerisation of isobutene contained in hydrocarbon streams containing n-butene
US7553997B2 (en) * 2002-08-22 2009-06-30 Catalytic Distillation Technologies Hydrogenation of olefinic feedstocks
WO2004090078A1 (en) * 2003-04-11 2004-10-21 Sasol Technology (Pty) Ltd Low sulphur diesel fuel and aviation turbine fuel
EP1668099B1 (en) * 2003-09-15 2008-11-05 The Lubrizol Corporation Low temperature operable fatty acid ester fuel composition and method thereof
US7012167B2 (en) * 2003-10-08 2006-03-14 Lyondell Chemical Technology, L.P. Diisobutylene process
SE526429C2 (en) * 2003-10-24 2005-09-13 Swedish Biofuels Ab Intensifying fermentation of carbohydrate substrate for, e.g. producing one to five carbon alcohols, involves using amino acid leucine, isoleucine, and/or valine as source of nitrogen
US7329788B2 (en) * 2003-12-22 2008-02-12 Neste Oil Oyj Process for producing gasoline components
WO2007050671A2 (en) * 2005-10-26 2007-05-03 E. I. Du Pont De Nemours And Company Fermentive production of four carbon alcohols
CN101522904A (en) * 2006-01-27 2009-09-02 麻萨诸塞州大学 Systems and methods for producing biofuels and related materials
US7541173B2 (en) * 2006-06-15 2009-06-02 E.I. Du Pont De Nemours And Company Solvent tolerant microorganisms and methods of isolation
US20090099401A1 (en) * 2006-06-16 2009-04-16 D Amore Michael B Process for making isooctenes from aqueous isobutanol
US20080045754A1 (en) * 2006-06-16 2008-02-21 D Amore Michael B Process for making butenes from dry 1-butanol
US20080132741A1 (en) * 2006-06-16 2008-06-05 D Amore Michael B Process for making butenes from dry isobutanol
US20080009656A1 (en) * 2006-06-16 2008-01-10 D Amore Michael B Process for making isooctenes from dry isobutanol
US20080015397A1 (en) * 2006-06-16 2008-01-17 D Amore Michael B Process for making isooctenes from aqueous 1-butanol
US20080015395A1 (en) * 2006-06-16 2008-01-17 D Amore Michael B Process for making butenes from aqueous 1-butanol
US20090030239A1 (en) * 2006-06-16 2009-01-29 D Amore Michael B Process for making butenes from aqueous isobutanol
US7498473B2 (en) * 2006-07-27 2009-03-03 Uop Llc Process for dehydrocyclodimerization
US7666637B2 (en) * 2006-09-05 2010-02-23 Xuan Nghinh Nguyen Integrated process for separation of lignocellulosic components to fermentable sugars for production of ethanol and chemicals
US20090061492A1 (en) * 2006-11-15 2009-03-05 The Board Of Trustees For Michigan State University System Method for producing biodiesel
US20090155869A1 (en) * 2006-12-01 2009-06-18 Gevo, Inc. Engineered microorganisms for producing n-butanol and related methods
US20080131948A1 (en) * 2006-12-01 2008-06-05 Leo Ernest Manzer Process for making isooctenes from dry 2-butanol
US20080132730A1 (en) * 2006-12-01 2008-06-05 Leo Ernest Manzer Process for making butenes from dry 2-butanol
US8017364B2 (en) * 2006-12-12 2011-09-13 Butamax(Tm) Advanced Biofuels Llc Solvent tolerant microorganisms
WO2008124852A2 (en) * 2007-04-10 2008-10-16 Sasol Technology (Pty) Ltd Fischer-tropsch jet fuel process
EP2635691B1 (en) * 2007-06-12 2016-08-24 CPS Biofuels, Inc. Production of gasoline from fermentable feedstocks
US8193402B2 (en) * 2007-12-03 2012-06-05 Gevo, Inc. Renewable compositions
JP2013506717A (en) * 2009-10-06 2013-02-28 ジーヴォ,インコーポレイテッド Integrated process for the selective conversion of renewable isobutanol to P-xylene

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2391646A (en) * 1942-02-02 1945-12-25 Phillips Petroleum Co Process for dehydrogenating olefins
US2945900A (en) * 1957-08-01 1960-07-19 Polymer Corp Catalytic dehydrogenation of hydrocarbons
US2982795A (en) * 1957-11-21 1961-05-02 Phillips Petroleum Co Dehydrogenation of isopentane to isoprene
US5753474A (en) * 1995-12-26 1998-05-19 Environmental Energy, Inc. Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria
US20080227940A1 (en) * 1999-09-29 2008-09-18 Sri International Olefin Copolymers Containing Hydrolytically Cleavable Linkages and Use Thereof In Degradable Products
US20030055179A1 (en) * 2000-01-21 2003-03-20 Seiji Ota Olefin block copolymers processes for producing the same and uses thereof
US20070135665A1 (en) * 2004-02-14 2007-06-14 Klaus-Diether Wiese Method for the production of olefins comprising 8 to 12 carbon atoms
US20080132732A1 (en) * 2006-12-01 2008-06-05 Leo Ernest Manzer Process for making butenes from aqueous 2-butanol
US20080248540A1 (en) * 2007-04-03 2008-10-09 The Ohio State University Methods of producing butanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2401307A4 *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500334A (en) * 2010-10-01 2014-01-09 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymers of isobutene from renewable sources.
WO2012081723A1 (en) 2010-12-17 2012-06-21 三菱化学株式会社 Synthetic pathway constructing equipment, synthetic pathway constructing method, synthetic pathway constructing program, and processes for manufacturing 3-hydroxypropionic acid, crotonyl alcohol and butadiene
FR2969147A1 (en) * 2010-12-21 2012-06-22 Total Raffinage Marketing PRODUCTION OF FUEL ADDITIVES BY DEHYDRATION AND SIMULTANEOUS SKELETAL ISOMERISATION OF ISOBUTANOL ON ACID CATALYSTS FOLLOWED BY ETHERIFICATION
WO2012084950A1 (en) * 2010-12-21 2012-06-28 Total Raffinage Marketing Production of fuel additives via simultaneous dehydration and skeletal isomerisation of isobutanol on acid catalysts followed by etherification
JP2014506581A (en) * 2011-02-17 2014-03-17 ザ プロクター アンド ギャンブル カンパニー Bio-based linear alkyl phenyl sulfonate
US9422578B2 (en) 2011-06-17 2016-08-23 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
WO2012174439A3 (en) * 2011-06-17 2013-05-23 Invista Technologies S.A R.L. Methods of producing1, 3 - butadiene
CN103842513A (en) * 2011-06-17 2014-06-04 英威达技术有限责任公司 Methods for biosynthesizing 1,3 butadiene
US9422580B2 (en) 2011-06-17 2016-08-23 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
CN103842513B (en) * 2011-06-17 2017-05-17 英威达技术有限责任公司 Methods for biosynthesizing 1,3 butadiene
CN107254492A (en) * 2011-06-17 2017-10-17 英威达技术有限责任公司 The method for producing 1,3 butadiene
US9663801B2 (en) 2011-06-17 2017-05-30 Invista North America S.A.R.L. Methods of producing four carbon molecules
EP2578559A1 (en) 2011-10-07 2013-04-10 Metabolic Explorer Process for producing isobutene from isobutylamine
US8889912B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8884035B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of tetrahydrofuran-2, 5-dimethanol from isosorbide
US8884036B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of hydroxymethylfurfural from levoglucosenone
US8865940B2 (en) 2011-12-30 2014-10-21 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8889922B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8962894B2 (en) 2011-12-30 2015-02-24 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8981130B2 (en) 2011-12-30 2015-03-17 E I Du Pont De Nemours And Company Process for the production of hexanediols
US9670118B2 (en) 2012-04-27 2017-06-06 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9018423B2 (en) 2012-04-27 2015-04-28 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8846985B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8846984B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of α,ω-diols
US8859826B2 (en) 2012-04-27 2014-10-14 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9181157B2 (en) 2012-04-27 2015-11-10 E I Du Pont De Nemours And Company Production of alpha, omega-diols
JP2013241549A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013241550A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013249379A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Method for producing conjugated diene-based polymer
JP2013249378A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Butadiene polymer, method for producing butadiene polymer, rubber composition and tire
JP2014001279A (en) * 2012-06-15 2014-01-09 Bridgestone Corp Copolymer of conjugated diene compound and non-conjugated olefin, method of producing the copolymer, rubber composition, and tire
JP2014001278A (en) * 2012-06-15 2014-01-09 Bridgestone Corp Copolymer of conjugated diene compound and non-conjugated olefin, method of producing the copolymer, rubber composition, and tire
US9657121B2 (en) 2012-07-25 2017-05-23 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, tire member, method for producing biomass-derived rubber, and pneumatic tire
WO2014017508A1 (en) * 2012-07-25 2014-01-30 住友ゴム工業株式会社 Rubber composition for tire, tire member, method for producing biomass-derived rubber, and pneumatic tire
JP2014024915A (en) * 2012-07-25 2014-02-06 Sumitomo Rubber Ind Ltd Rubber composition for tire, tire member and pneumatic tire
EP2868697B1 (en) 2012-07-25 2019-03-27 Sumitomo Rubber Industries, Ltd. Method of producing rubber composition for tyres
WO2014038647A1 (en) * 2012-09-07 2014-03-13 住友ゴム工業株式会社 Rubber composition for tires, tire member, and pneumatic tire
EP2883909B1 (en) 2012-09-07 2017-11-08 Sumitomo Rubber Industries, Ltd. Rubber composition for tires, tire member, and pneumatic tire
JP2014051617A (en) * 2012-09-07 2014-03-20 Sumitomo Rubber Ind Ltd Rubber composition for tire, tire member and pneumatic tire
US9879109B2 (en) 2012-09-07 2018-01-30 Sumitomo Rubber Industries, Ltd. Rubber composition for tires, tire member, and pneumatic tire
DE102012219476A1 (en) 2012-10-24 2014-04-24 Hilti Aktiengesellschaft Vinyl ester urethane resin-based resin composition and use thereof
WO2014064072A1 (en) 2012-10-24 2014-05-01 Hilti Aktiengesellschaft Resin mixture based on vinyl ester urethane resin and use thereof
JP2016505645A (en) * 2012-11-09 2016-02-25 株式会社ブリヂストン Usage of biological styrene
US9777295B2 (en) 2012-11-28 2017-10-03 Invista North America S.A.R.L. Methods for biosynthesis of isobutene
JP2014105323A (en) * 2012-11-29 2014-06-09 Sumitomo Rubber Ind Ltd Rubber composition for sidewall, and pneumatic tire
WO2014121357A1 (en) * 2013-02-07 2014-08-14 Braskem S.A. Method of separating and purifying a conjugated diolefin produced by fermentation under anaerobic conditions
US9914071B2 (en) 2013-02-07 2018-03-13 Braskem S.A. Systems and methods for separating and purifying butadiene
US10294496B2 (en) 2013-07-19 2019-05-21 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
US10538789B2 (en) 2013-08-05 2020-01-21 Invista North America S.A.R.L. Methods for biosynthesis of isoprene
US10533193B2 (en) 2013-08-05 2020-01-14 Invista North America S.A.R.L. Methods for biosynthesis of isobutene
US9862973B2 (en) 2013-08-05 2018-01-09 Invista North America S.A.R.L. Methods for biosynthesis of isoprene
WO2015081406A1 (en) * 2013-12-02 2015-06-11 Braskem S.A. Fermentation hydrocarbon gas products separation via membrane
US9938543B2 (en) 2014-06-16 2018-04-10 Invista North America S.A.R.L. Methods, reagents and cells for biosynthesizing glutarate methyl ester
US11286490B2 (en) 2016-07-12 2022-03-29 Braskem S.A. Formation of alkenes through enzymatic dehydration of alkanols
US11162115B2 (en) 2017-06-30 2021-11-02 Inv Nylon Chemicals Americas, Llc Methods, synthetic hosts and reagents for the biosynthesis of hydrocarbons
US11634733B2 (en) 2017-06-30 2023-04-25 Inv Nylon Chemicals Americas, Llc Methods, materials, synthetic hosts and reagents for the biosynthesis of hydrocarbons and derivatives thereof
US11505809B2 (en) 2017-09-28 2022-11-22 Inv Nylon Chemicals Americas Llc Organisms and biosynthetic processes for hydrocarbon synthesis
WO2019105754A1 (en) 2017-11-28 2019-06-06 Hilti Aktiengesellschaft Isosorbide derivatives as reactive additives in reactive resins and chemical dowels
EP3489205A1 (en) 2017-11-28 2019-05-29 HILTI Aktiengesellschaft Isosorbide derivatives as reactive additives in reactive resins and chemical dowels
WO2019136283A1 (en) * 2018-01-04 2019-07-11 Gevo, Inc. Upgrading fusel oil mixtures over heterogeneous catalysts to higher value renewable chemicals
US10633320B2 (en) 2018-01-04 2020-04-28 Gevo, Inc. Upgrading fusel oil mixtures over heterogeneous catalysts to higher value renewable chemicals
WO2019201569A1 (en) 2018-04-18 2019-10-24 Unilever Plc Process for the production of dialkyl terephthalate
US11591283B2 (en) 2018-04-18 2023-02-28 Conopco, Inc. Process for the production of dialkyl terephthalate

Also Published As

Publication number Publication date
EP2401307A4 (en) 2015-08-05
CA2753037A1 (en) 2010-09-02
JP2012518658A (en) 2012-08-16
US20100216958A1 (en) 2010-08-26
EP2401307A1 (en) 2012-01-04
BRPI1008287A2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
US20100216958A1 (en) Methods of Preparing Renewable Butadiene and Renewable Isoprene
US8450543B2 (en) Integrated methods of preparing renewable chemicals
US20110087000A1 (en) Integrated Process to Selectively Convert Renewable Isobutanol to P-Xylene
CA2477789C (en) Process for producing propylene and hexene from c4 olefin streams
US6207115B1 (en) Process and plant for the conversion of olefinic C4 cuts to polyisobutene and to propylene
US6686510B2 (en) Production of high-purity isobutene and propylene from hydrocarbon fractions with four carbon atoms
US20120171741A1 (en) Renewable Xylenes Produced from Bological C4 and C5 Molecules
JPH11322637A (en) Production of olefin
KR20200133217A (en) Preparation of olefins by alcohol dehydration, and their use for the production of polymers, fuels or fuel additives
SG188807A1 (en) Process and system for the production of isoprene
US9212106B2 (en) Renewable olefins from a mixture of acetic acid and propionic acid
US9452963B2 (en) Method for producing 1,3-butadiene and/or 3-buten-2-ol
CN112166136A (en) Polymer compositions and use for making adhesives and articles comprising the same
EP3067340B1 (en) Propene production method
Miller Process for preparation of terephthalic acid
Schematic Dehydration
TW201319254A (en) Renewable xylenes produced from biological C4 and C5 molecules
US20180222831A1 (en) Method for the production of at least one derivate of a carboxylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2753037

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011551312

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010746767

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010746767

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008287

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1008287

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110824