WO2010098306A1 - 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法およびスクライブ装置 - Google Patents

溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法およびスクライブ装置 Download PDF

Info

Publication number
WO2010098306A1
WO2010098306A1 PCT/JP2010/052704 JP2010052704W WO2010098306A1 WO 2010098306 A1 WO2010098306 A1 WO 2010098306A1 JP 2010052704 W JP2010052704 W JP 2010052704W WO 2010098306 A1 WO2010098306 A1 WO 2010098306A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cutting edge
thin film
grooving tool
film solar
Prior art date
Application number
PCT/JP2010/052704
Other languages
English (en)
French (fr)
Inventor
正信 曽山
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to CN201080009004.6A priority Critical patent/CN102325621B/zh
Priority to JP2011501594A priority patent/JP5269183B2/ja
Priority to EP10746187.3A priority patent/EP2402100B1/en
Priority to KR1020117017097A priority patent/KR101311292B1/ko
Publication of WO2010098306A1 publication Critical patent/WO2010098306A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D13/00Tools or tool holders specially designed for planing or slotting machines
    • B23D13/005Tools or tool holders adapted to operate in both the forward and return stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D13/00Tools or tool holders specially designed for planing or slotting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D1/00Planing or slotting machines cutting by relative movement of the tool and workpiece in a horizontal straight line only
    • B23D1/02Planing or slotting machines cutting by relative movement of the tool and workpiece in a horizontal straight line only by movement of the work-support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a groove processing tool, a groove processing method, and a scribing apparatus using the groove processing tool when manufacturing an integrated thin film solar cell such as a chalcopyrite compound integrated thin film solar cell.
  • the chalcopyrite compound includes CIGS (Cu (In, Ga) (Se, S) 2 ), CIS (CuInS 2 ) and the like in addition to CIGS (Cu (In, Ga) Se 2 ).
  • FIG. 6 is a schematic diagram showing a manufacturing process of a CIGS thin film solar cell.
  • a Mo electrode layer 2 serving as a plus-side lower electrode is formed on an insulating substrate 1 made of soda lime glass (SLG) or the like by sputtering, and then a light absorption layer is formed.
  • a groove S for lower electrode separation is formed on the previous thin film solar cell substrate by scribing.
  • a light absorption layer 3 made of a compound semiconductor (CIGS) thin film is formed on the Mo electrode layer 2 by vapor deposition, sputtering, or the like, and on that, for heterojunction.
  • a buffer layer 4 made of a ZnS thin film is formed by a CBD method (chemical bath deposition method), and an insulating layer 5 made of a ZnO thin film is formed thereon.
  • an insulating layer 5 made of a ZnO thin film is formed thereon.
  • a transparent electrode layer 6 as an upper electrode made of a ZnO: Al thin film is formed on the insulating layer 5, and each functional layer necessary for power generation using photoelectric conversion is formed.
  • An electrode separation groove M2 reaching the lower Mo electrode layer 2 is formed by scribing, using the solar cell substrate provided.
  • a groove for electrode separation is formed by irradiating laser light emitted by exciting an Nd: YAG crystal with a continuous discharge lamp such as an arc lamp.
  • a continuous discharge lamp such as an arc lamp.
  • the mechanical scribing method is performed by pressing a cutting edge of a groove processing tool such as a metal needle (needle) having a tapered tip against a substrate while applying a predetermined pressure.
  • a groove processing tool such as a metal needle (needle) having a tapered tip against a substrate while applying a predetermined pressure.
  • This is a technique for processing a groove for electrode separation by moving the electrode.
  • this mechanical scribing method is often performed.
  • the shape of the cutting edge of the grooving tool is tapered, but strictly speaking, the portion to be pressed against the thin film solar cell has a contact area.
  • the tip is cut substantially horizontally so that it is flat for widening. That is, as shown in FIG. 7, the tip portion has a truncated cone shape. While pressing the groove processing tool 8 ′ having such a shape against the thin film (various functional layers such as the upper and lower electrodes and the light absorption layer) on which the groove of the thin film solar cell substrate is to be formed, along the scribe planned line in the Y direction Groove processing is performed by relatively moving.
  • the contact area with the thin film is increased, so that the groove processing can be performed relatively stably.
  • the thin film is irregularly peeled off due to frictional resistance caused by a large contact surface, and unnecessary parts may be removed, resulting in a decrease in the characteristics and yield of solar cells. .
  • the degree of peeling of the thin film In particular, in order to maintain the scribe line width constant and to achieve the quality (photoelectric conversion efficiency, etc.) planned in the product design and to improve the quality uniformity (reproducibility), the degree of peeling of the thin film must be constant. Therefore, the degree of peeling can be adjusted to some extent by adjusting the load that presses the blade according to the properties of the thin film, etc., but the pressing force against the thin film surface increases and decreases uniformly, so fine adjustment is very difficult. there were.
  • the cutting edge of the above-described grooving tool has a truncated cone shape having a tapered surface. Therefore, when the cutting edge is worn or spilled, the cutting edge is polished to increase the diameter of the cutting edge, and as a result, the scribed groove width becomes wider than before polishing. For this reason, there is a problem that the same cutting edge cannot be used for a long period of time or cannot be repeatedly used after being polished, which is uneconomical.
  • the present invention provides a chalcopyrite compound-based integrated thin film solar cell substrate (for example, a precursor before forming a transparent electrode) and light formed between electrode separation grooves and upper and lower electrodes in other integrated thin film solar cells.
  • a chalcopyrite compound-based integrated thin film solar cell substrate for example, a precursor before forming a transparent electrode
  • the grooves can be processed with good yield with a constant groove width and quality uniformity as a product such as photoelectric conversion efficiency.
  • the purpose is to provide a processing tool.
  • a groove processing tool for an integrated thin film solar cell which has been made to solve the above-mentioned problems, comprises a rod-shaped body and a cutting edge region formed at the tip of the body, and the cutting edge region is an elongated rectangular bottom surface. And a front surface and a rear surface rising from the short side edge of the bottom surface, and a left side and a right side surface standing at a right angle from the long side edge of the bottom surface and forming a pair of parallel surfaces. The corner formed by the one surface and the bottom surface is the cutting edge.
  • the groove processing method of the integrated thin film solar cell according to the present invention made to solve the above problems, while pressing with the cutting edge of the groove processing tool along the scribe line of the integrated thin film solar cell substrate,
  • the solar cell substrate and the groove processing tool are moved relative to each other on the solar cell (for example, various functional layers including at least a light absorption layer, particularly including at least a light absorption layer of a precursor before forming a transparent electrode layer).
  • An integrated thin-film solar cell grooving method for forming a scribe line in each functional layer wherein the grooving tool comprises a rod-shaped body and a cutting edge region formed at the tip of the body, and the cutting edge region Is an elongated rectangular bottom surface, front and rear surfaces rising from the short side edges of the bottom surface, and a left surface that rises at right angles from the long side edges of the bottom surface and forms a pair of parallel surfaces, A corner formed by one of the front and rear surfaces and the bottom surface forms a blade edge, the long axis direction of the bottom surface forming a rectangle is arranged along the moving direction, and the front surface or the rear surface of the blade edge region is Groove machining is performed by inclining toward the advancing direction within an angle of 50 to 80 degrees, particularly 65 degrees to 75 degrees with the surface to be processed of the solar cell.
  • the groove processing tool of the present invention when processing the groove for the upper and lower electrode contact in various functional layers such as the groove for electrode separation in the integrated thin film solar cell and the light absorption layer formed between the upper and lower electrodes, Processing can be performed with a constant groove width, and the yield is improved.
  • the cutting edge can be repaired by polishing the bottom surface and the front and rear surfaces as necessary.
  • the bottom surface is polished, since the left and right side surfaces of the blade edge portion are parallel surfaces, there is no change in the left and right width dimensions of the blade.
  • the groove width to be scribed can be kept the same as that before polishing.
  • two cutting edges of the grooving tool are formed at the front and rear corners, if one is worn or damaged, the other cutting edge can be used as a new one by changing the mounting direction of the tool.
  • a groove processing tool having a shape in which corner portions of the bottom surface and the front surface or the rear surface are formed as blade edges is used for patterning.
  • the cutting edge of the corner portion can come into contact with the substrate by line contact close to point contact, and the thin film can be smoothly peeled off.
  • the angle between the front surface or rear surface of the cutting edge portion of the grooving tool and the upper surface of the substrate is 50 to 80 degrees, particularly 65 degrees to 75 degrees. Eliminates scribe line breaks due to bouncing (when the tilt angle is lower than the above set value) and irregular thin film peeling (when the tilt angle is higher than the above set value) due to high pressure load A straight and clean scribe line can be formed.
  • the angle of the cutting edge formed by the bottom surface and the front and back surfaces is a right angle.
  • the bottom surface and the front and rear surfaces can be set at a right angle, which facilitates the polishing operation.
  • the grooving tool is preferably made of cemented carbide or diamond. As a result, the tool has a long life and little deformation, so that it can be accurately scribed over a long period of time.
  • the enlarged view of the bottom face of the groove processing tool of FIG. The figure which shows the state of the blade-tip part at the time of a scribe.
  • FIG. 1 is a perspective view showing an embodiment of an integrated thin film solar cell scribing apparatus SC using a groove processing tool according to the present invention.
  • the scribing device SC includes a table 18 that can move in the horizontal direction (Y direction) and that can rotate 90 degrees and an angle ⁇ in a horizontal plane.
  • the table 18 substantially serves as a means for holding the solar cell substrate W. Form.
  • the bridge 19 composed of the support pillars 20 and 20 on both sides provided across the table 18 and the guide bar 21 extending in the X direction is provided so as to straddle the table 18.
  • the holder support 23 is attached to be movable along a guide 22 formed on the guide bar 21, and moves in the X direction by the rotation of the motor 24.
  • a scribe head 7 is provided on the holder support 23, and a groove processing tool 8 for scribing the thin film surface of the solar cell substrate W placed on the table 18 is held below the scribe head 7.
  • a holder 9 is provided. The holder 9 can adjust the angle of attachment to the scribe head 7, and the angle between the groove processing tool 8 and the solar cell substrate W can be adjusted by adjusting the angle of attachment.
  • the cameras 10 and 11 are provided on the pedestals 12 and 13 that can move in the X and Y directions, respectively.
  • the pedestals 12 and 13 move along a guide 15 extending in the X direction on the support base 14.
  • the cameras 10 and 11 can be moved up and down by manual operation, and the focus of imaging can be adjusted. Images taken by the cameras 10 and 11 are displayed on the monitors 16 and 17.
  • An alignment mark for specifying a position is provided on the surface of the solar cell substrate W placed on the table 18, and the position of the solar cell substrate W is obtained by imaging the alignment mark with the cameras 10 and 11. Adjust. Specifically, the alignment marks on the surface of the solar cell substrate W supported by the table 18 are imaged by the cameras 10 and 11, and the position of the alignment mark is specified. Based on the position of the specified alignment mark, a deviation in direction when the surface of the solar cell substrate W is placed is detected, and the deviation is corrected by rotating the table 18 by a predetermined angle.
  • the scribe head 7 is lowered to move in the X direction with the cutting edge of the groove processing tool 8 pressed against the surface of the solar cell substrate W.
  • the surface of W is scribed along the X direction.
  • the table 18 is rotated 90 degrees and the same operation as described above is performed.
  • FIG. 2 and 3 show a grooving tool 8 used in the present invention.
  • FIG. 2 is a perspective view seen from below
  • FIG. 3 is an enlarged view of the bottom surface of the grooving tool 8.
  • the grooving tool 8 is composed of a cylindrical body 81 that is substantially a mounting portion to the scribe head 7 and a cutting edge region 82 that is integrally formed at the front end portion by electric discharge machining or the like. Made of hard material such as diamond.
  • the cutting edge region 82 includes a rectangular bottom surface 83, a front surface 84 and a rear surface 85 rising at right angles from the short side edge of the bottom surface 83, and a left surface rising at right angles from the long side edge of the bottom surface 83 and parallel to each other. , Right side surfaces 88 and 89. Corner portions formed by the bottom surface 83 and the front and back surfaces 84 and 85 are cutting edges 86 and 87, respectively.
  • the left and right width L1 of the bottom surface 83 is preferably 50 to 60 ⁇ m, but can be set to 25 to 80 ⁇ m according to the required groove width of the scribe.
  • the effective height of the cutting edge region 82 that is, the height L2 of the left and right side surfaces 88 and 89 and the front and rear surfaces 84 and 85 of the cutting edge region is preferably about 0.5 mm.
  • the diameter of the cylindrical body 81 is preferably about 2 to 3 mm. Note that the body 81 of the grooving tool 8 is not limited to a columnar shape, but may be formed in a quadrangular cross section or a polygonal shape.
  • the front surface of the cutting edge portion 82 with respect to the solar cell substrate W with the major axis direction of the bottom surface 83 of the cutting edge region 82 along the moving direction of the tool. 84 or the rear surface 85 is attached to the scribe head 7 in a state where it is inclined by a predetermined angle.
  • the inclination angle is preferably in the range of 50 to 80 degrees, particularly 65 to 75 degrees.
  • FIG. 4 is a schematic diagram showing results obtained by experiments on the relationship between the mounting angle of the groove processing tool 8 and the processing state of the solar cell substrate W when grooving the solar cell substrate W using the groove processing tool 8. It is.
  • FIG. 4 (a) shows the result when the grooving tool 8 is attached and scribed at a preferred inclination angle of 50 to 80 degrees, particularly 65 to 75 degrees.
  • the groove M formed in the solar cell substrate W could be formed neatly along the scribe line without peeling off excess portions.
  • FIG. 4B shows a result when the grooving tool 8 is attached and scribed at an inclination angle of less than 50 degrees. The cutting edge of the groove processing tool 8 was observed to break in the groove M to be processed by bouncing on the removed film scrap.
  • FIG.4 (c) shows the result at the time of attaching and scribing the groove processing tool 8 with the inclination angle exceeding 80 degree
  • the present invention by inclining the front surface 84 or the rear surface 85 of the grooving tool 8 toward the traveling direction side with respect to the solar cell substrate W, a corner formed by the front surface or the rear surface and the bottom surface, that is, the blade edge 86. Or the blade edge
  • the angle of the cutting edge region of the grooving tool 8 with respect to the front surface 84 or the rear surface 85 and the top surface of the substrate W is removed by inclining toward the traveling direction within a range of 50 to 80 degrees, particularly 65 to 75 degrees. It is possible to form a straight and clean scribe line by eliminating the breakage of the scribe line caused by bouncing on the film scrap and the occurrence of irregular thin film peeling caused by a high pressing load. .
  • the cutting edges 86 and 87 of the grooving tool 8 are formed at two front and rear corners, if one of them is worn or damaged, the other cutting edge can be replaced with a new one by changing the mounting direction of the grooving tool 8. Can be used as In addition, when any of the cutting edges is worn, the cutting edge can be repaired by polishing the bottom face 83 and the front and rear faces 84 and 85 as necessary.
  • FIG. 5 shows image data comparing a scribe line formed by a conventional processing tool and a scribe line formed by the groove processing tool of the present invention.
  • the scribe process was performed by moving the scribe head 7 to a X direction, since it is sufficient if the scribe head 7 and the solar cell substrate W can move relatively, the solar cell substrate W is sufficient.
  • the scribe head 7 may be moved in the X direction and the Y direction in a fixed state, or only the solar cell substrate W may be moved in the X direction and the Y direction without moving the scribe head 7.
  • the typical Example of this invention was described, this invention is not necessarily limited only to the structure of said Example, A deformation
  • the angle of the cutting edge formed by the bottom surface and the front and back surfaces is preferably a substantially right angle as described in the above embodiment, but it may be formed to be somewhat obtuse.
  • Embodiment 2 Next, an embodiment in which the grooving tool of Embodiment 1 is modified will be described.
  • the angle formed by the front surface 84 of the grooving tool 8 and the surface to be processed (referred to as a scribe angle) is within an appropriate angle range.
  • the groove processing tool 8 when the groove processing tool 8 is new, the thin film adjacent to the groove is peeled off even if the groove is set at an appropriate scribe angle, and a portion having a wide groove is generated. There was a case. Furthermore, there was a tendency that the Mo film was relatively easily damaged. Even when it is not a new article, the same problem may occur in rare cases.
  • the groove processing tool 8 can be further improved to suppress the peeling of the thin film adjacent to the groove, so that a groove having a certain width can be stably formed, and the film below the thin film to be grooved is formed. Created a groove machining tool with a structure that is not easily scratched.
  • the grooving tool includes a rod-shaped body and a rectangular parallelepiped cutting edge region formed at the tip of the body, and the cutting edge region includes a pair of short sides and a pair of long sides. 5 planes consisting of a rectangular bottom surface, a front surface and a rear surface orthogonal to the bottom surface on the two short sides of the bottom surface, and a right surface and a left surface orthogonal to the bottom surface on the two long sides of the bottom surface, respectively.
  • a vertical cutting edge is formed at the corner between the front surface and the right side surface, and a corner portion between the front surface and the left side surface, and a horizontal cutting edge is formed at the corner portion between the front surface and the bottom surface.
  • the grooving tool of the present invention is performed by inclining the grooving tool toward the advancing direction side so that the cutting edges of the corners of the front surface and the bottom surface come into contact with the work surface and are scribed in a pressure contact state. I do.
  • the corner portion between the bottom surface and the right side surface and the corner portion between the bottom surface and the left side surface are chamfered, so this portion is not sharp.
  • these corner portions do not come into contact with the thin film and are peeled off, and a clean straight groove can be formed.
  • the occasional peeling of the thin film see FIG. 4C can be completely suppressed.
  • an inclined surface may be formed at the corner between the bottom surface and the front surface.
  • the angle formed between the inclined surface and the bottom surface is in the range of 10 degrees to 40 degrees.
  • the angle between the front surface and the work surface (referred to as the scribe angle) Is between 50 degrees (the angle between the inclined surface and the bottom surface is 40 degrees) to 80 degrees (the angle between the inclined surface and the bottom surface is 10 degrees), and clean scribing as described in Fig. 4 (a) Can be set to a range that can.
  • vertical edges are formed at the corners of the rear surface and the right side and the corners of the rear surface and the left side, and at the corners of the rear surface and the bottom surface.
  • a horizontal cutting edge may be formed.
  • an inclined surface may be formed at the corner between the bottom surface and the rear surface.
  • the scribing apparatus SC using the second grooving tool can use the same apparatus as the scribing apparatus described in FIG. 1 in the first embodiment, the description thereof is omitted by attaching the same reference numerals.
  • FIG. 8 is a perspective view seen from below
  • FIG. 9 is a perspective view with an enlarged bottom surface
  • FIG. 10 is a bottom view. It is an enlarged view. Note that the same reference numerals are given to the same portions as those of the grooving tool 8 described in FIG.
  • This grooving tool 8a is composed of a cylindrical body 81 serving as an attachment portion to the scribe head 7, and a rectangular parallelepiped cutting edge region 82 formed integrally at the tip thereof by electric discharge machining or the like. Or it is made of a hard material such as diamond.
  • the blade edge region 82 includes an elongated rectangular bottom surface 83 surrounded by a pair of short sides and a pair of long sides, and a bottom surface on the short side of the bottom surface 83 (before the inclined surfaces 90 and 96 described later are formed).
  • the front surface 84 and the rear surface 85 are formed so as to be orthogonal to each other, and the left side surface 88 and the right side surface 89 are formed so as to be orthogonal to the bottom surface side on the long side of the bottom surface 83 and are parallel to each other.
  • the corners of the bottom surface 83 and the front surface 84 of the cutting edge region 82 are chamfered, and an inclined surface 90 is formed.
  • the grooving tool 8a is moved in a direction parallel to the left side surface 88 and the right side surface 89 with the inclined surface 90 in contact with the surface to be processed of the solar cell substrate. Thereby, the to-be-processed surface of a solar cell substrate is scribed.
  • the main reason for providing the inclined surface 90 is to enable scribing in the state of a grooving tool after it has been worn since it is new, but in addition to this, if the cutting edge is too sharp, it will be localized.
  • the inclined surface 90 is schematically shown larger in the drawing, but the inclined surface 90 may be smaller than this as long as the inclined surface 90 abuts on the surface to be processed and can be scribed.
  • the length (chamfering width) from the bottom surface side to the front surface side of the inclined surface 90 is set to about 3 ⁇ m to 20 ⁇ m.
  • the surface to be processed of the solar cell substrate may be scribed by moving to. In that case, there is a risk of damaging the Mo film when it is used for the first time in a new state, but if the scribing is performed several times, the corners of the bottom surface 83 and the front surface 84 are worn away, and the possibility of damaging the Mo film is eliminated.
  • the groove processing tool 8 a is configured to chamfer the corner portion 91 between the bottom surface 83 and the left side surface 88 and the corner portion 92 between the bottom surface 83 and the right side surface 89.
  • This chamfering is preferably C-face machining, but R-face machining may also be used.
  • the width of the chamfer (the length from the bottom side to the left side and from the bottom side to the right side) is about 3 ⁇ m to 8 ⁇ m.
  • corner portion 93 between the front surface 84 and the left side surface 88 and the corner portion 94 between the front surface 84 and the right side surface 89 are sharply finished without chamfering so as to be a cutting edge in the vertical direction (vertical direction). is there.
  • the angle between the inclined surface 90 and the bottom surface 83 is 10 degrees to 40 degrees, preferably 15 degrees to 25 degrees. That is, when the inclined surface 90 is in contact with the work surface, the scribe angle ⁇ formed by the front surface 84 and the inclined surface 90 is in the range of 50 to 80 degrees, preferably in the range of 65 to 75 degrees. It is. This scribe angle falls within a range where the appropriate scribe processing described with reference to FIG.
  • FIG. 11 is a diagram showing the state of the cutting edge portion at the time of scribing, in which FIG. 11 (a) shows a state when it is new, and FIG. 11 (b) shows a state after being used for a while.
  • the new inclined surface 90 is worn as the number of scribing increases, and is eventually used in the inclined surface 90a whose length increases in the front-rear direction. Even if the inclined surface 90 changes to the inclined surface 90a, Since the surface contact length is only slightly changed, the influence on the processed surface does not change greatly. Further, since the inclined surface 90a does not expand in the left and right side directions and wears in parallel with the inclined surface 90, stable scribe processing can be performed with the same line width and the same scribe angle ⁇ after the wear. .
  • corner portions 93 and 94 are not chamfered and are sharp edges, and the corner portions 91 and 92 are chamfered, excellent processing quality can be obtained.
  • FIG. 12 is a perspective view of a grooving tool 8b according to another embodiment
  • FIG. 13 is an enlarged perspective view of the bottom surface thereof.
  • the same portions as those of the groove machining tool 8a shown in FIGS. 8 to 10 are denoted by the same reference numerals, and description thereof is omitted.
  • not only the front surface 84 but also the corners 97 and 98 on the rear surface 85 side are sharpened without chamfering and are used as vertical cutting edges.
  • an inclined surface 96 is formed, and a corner 99 between the inclined surface 96 and the rear surface 85 is used as a horizontal cutting edge.
  • the present invention can be applied, for example, to a groove processing tool used in manufacturing an integrated thin film solar cell using a chalcopyrite compound semiconductor film.

Abstract

 集積型薄膜太陽電池を歩留まりよく製造することのできる太陽電池の製造方法、溝加工ツールを提供するために、溝加工ツール8の刃先部分81の底面83の形状が、移動方向に沿って細長く延びる長方形であり、底面83と移動方向に沿った軸線上に位置する刃先部分の前面84並びに後面85とが直角に交わってその角部が刃先86,87として形成され、刃先部分の左右側面が平行に形成されている形状の溝加工ツール8を使用し、パターニングする際の刃先部分の前面84若しくは後面85と基板Wの上面に対する角度が50度~80度の範囲内で進行方向側に傾斜させて行う。

Description

溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法およびスクライブ装置
 本発明は、カルコパイライト化合物系集積型薄膜太陽電池等の集積型薄膜太陽電池を製造する際の溝加工ツール、溝加工方法、および、溝加工ツールを用いたスクライブ装置に関する。
ここでカルコパイライト化合物とは、CIGS(Cu(In,Ga)Se)の他に、CIGSS(Cu(In,Ga)(Se,S))、CIS(CuInS)等が含まれる。
 カルコパイライト化合物半導体を光吸収層として用いる薄膜太陽電池においては、基板上に複数のユニットセルを直列接続した集積型構造が一般的である。
 従来のカルコパイライト化合物系集積型薄膜太陽電池の製造方法について説明する。図6は、CIGS薄膜太陽電池の製造工程を示す模式図である。まず、図6(a)に示すように、ソーダライムガラス(SLG)等からなる絶縁基板1上に、プラス側の下部電極となるMo電極層2をスパッタリング法によって形成した後、光吸収層形成前の薄膜太陽電池基板に対してスクライブ加工により下部電極分離用の溝Sを形成する。
 その後、図6(b)に示すように、Mo電極層2上に、化合物半導体(CIGS)薄膜からなる光吸収層3を蒸着法、スパッタリング法等によって形成し、その上に、ヘテロ接合のためのZnS薄膜等からなるバッファ層4をCBD法(ケミカルバスデポジション法)により形成し、その上に、ZnO薄膜からなる絶縁層5を形成する。そして、透明電極層形成前の薄膜太陽電池基板に対して、下部電極分離用の溝Sから横方向に所定距離はなれた位置に、スクライブ加工によりMo電極層2にまで到達する電極間コンタクト用の溝M1を形成する。
 続いて、図6(c)に示すように、絶縁層5の上からZnO:Al薄膜からなる上部電極としての透明電極層6を形成し、光電変換を利用した発電に必要な各機能層を備えた太陽電池基板とし、スクライブ加工により下部のMo電極層2にまで到達する電極分離用の溝M2を形成する。
 上述した集積型薄膜太陽電池を製造する工程において、電極分離用の溝M1およびM2をスクライブにより溝加工する技術として、レーザスクライブ法とメカニカルスクライブ法が用いられてきた。
 レーザスクライブ法は、例えば特許文献1で開示されているように、アークランプ等の連続放電ランプによってNd:YAG結晶を励起して発信したレーザ光を照射することにより電極分離用の溝を形成する。この方法は、光吸収層形成後の薄膜太陽電池基板に対して溝を形成する場合、スクライブ時にレーザ光の熱によって光吸収層3の光電変換特性が劣化するおそれがあった。
 メカニカルスクライブ法は、例えば特許文献2および3で開示されているように、先端が先細り状となった金属針(ニードル)等の溝加工ツールの刃先を、所定の圧力をかけて基板に押しつけながら移動させることによって、電極分離用の溝を加工する技術である。現在ではこのメカニカルスクライブ法が多く行われている。
特開平11-312815号公報 特開2002-094089号公報 特開2004-115356号公報
 特許文献2および3に開示されているようなメカニカルスクライブ法では、溝加工ツールの刃先の形状を先細りの針状にしてあるが、厳密には、薄膜太陽電池に圧接される部分は接触面積を広くするために平らとなるように先端が略水平にカットされている。すなわち、図7に示すように、先端部分が円錐台形状にしてある。このような形状の溝加工ツール8’を、薄膜太陽電池基板の溝を形成すべき薄膜(上下両電極や光吸収層等の各種機能層)に押しつけながら、スクライブ予定ラインに沿ってY方向へ相対的に移動させることで、溝加工を行うようにしている。
 先端部分が円錐台形状の溝加工ツールを用いることにより、薄膜との接触面積が大きくなるので比較的安定して溝加工を行うことができる。その一方で、大きな接触面による摩擦抵抗等によって薄膜が不規則に大きく剥がれてしまい、不必要な部分まで除去してしまうことがあり、太陽電池の特性および歩留まりが低下するといった問題点があった。
 特に、スクライブラインの線幅を一定に維持して製品としての設計上予定された品質(光電変換効率等)の実現および品質の均一性(再現性)をよくするためには、薄膜の剥離度合いを一定にする必要がある。そのため、薄膜の性状等に合わせて刃先を押しつける負荷を加減することで剥離度合いをある程度調整することができるが、薄膜表面に対する押圧力が一律に増減するため、微調整することは非常に困難であった。
 また、上述した溝加工ツールの刃先は、先細りのテーパ面を有する円錐台形状である。したがって、刃先が摩耗したり、また、刃こぼれしたりした場合に刃先を研磨すると、刃先の径が大きくなり、その結果、スクライブされる溝幅が研磨前よりも広くなってしまうことになる。そのため、同じ刃先を、長期間使用し続けることや、研磨して繰り返し使用することができず、不経済であるといった問題点もあった。
 そこで、本発明は、カルコパイライト化合物系集積型薄膜太陽電池基板(例えば、透明電極形成前の前駆体)やその他の集積型薄膜太陽電池における電極分離用の溝や上下電極間に形成された光吸収層等の各種機能層に上下電極コンタクト用の溝を加工する際に、一定の溝幅で歩留まりよく、また、光電変換効率等の製品としての品質の均一性をよく加工することのできる溝加工ツールを提供することを目的とする。
 上記課題を解決するためになされた本発明の集積型薄膜太陽電池用の溝加工ツールは、棒状のボディと、ボディの先端に形成された刃先領域とからなり、刃先領域は細長く延びる長方形の底面と、底面の短手方向の端辺から立ち上がる前面並びに後面と、底面の長手方向の端辺から直角に立ち上がって互いに平行な一対の面をなす左、右側面とからなり、少なくとも前後面のいずれか片面と底面とによって形成される角部が刃先となるようにしてある。
 また、上記課題を解決するためになされた本発明にかかる集積型薄膜太陽電池の溝加工方法は、集積型薄膜太陽電池基板のスクライブ予定ラインに沿って、溝加工ツールの刃先で押圧しながら、前記太陽電池基板と前記溝加工ツールを相対的に移動させて前記太陽電池上(例えば、少なくとも光吸収層を含む各種の機能層、特に透明電極層形成前の前駆体の少なくとも光吸収層を含む各機能層)にスクライブラインを形成する集積型薄膜太陽電池の溝加工方法であって、前記溝加工ツールが、棒状のボディと、ボディの先端部に形成された刃先領域とからなり、刃先領域は細長く延びる長方形の底面と、底面の短手方向の端辺から立ち上がる前面並びに後面と、底面の長手方向の端辺から直角に立ち上がって互いに平行な一対の面をなす左、右側面とからなり、前後面のいずれか片面と底面とによって形成される角部が刃先をなし、長方形をなす底面の長軸方向が前記移動方向に沿って配置され、刃先領域の前面若しくは後面が太陽電池の被加工面との間になす角度が50~80度、特には65度~75度の範囲内で進行方向側に傾斜させて溝加工を行うようにしている。
 本発明の溝加工ツールによれば、集積型薄膜太陽電池における電極分離用の溝や上下電極間に形成された光吸収層等の各種機能層に上下電極コンタクト用の溝を加工する際に、一定の溝幅で加工することができ、歩留まりが向上する。刃先が摩耗した場合には、底面並びに必要に応じて前後面を研磨することによって刃先を補修することができる。特に、底面を研磨しても刃先部分の左右側面を平行面にしてあるので、刃の左右幅の寸法に変化が生じることがない。これにより、研磨後であってもスクライブされる溝幅を研磨前と同じに維持することができる。
 さらに加えて、溝加工ツールの刃先を、前後の角部に2カ所形成した場合には、一方が摩耗または破損すればツールの取り付け方向を変えることにより他方の刃先を新品として使用できる。
 本発明の集積型薄膜太陽電池製造方法にあっては、パターニングを行う際に、底面と、前面または後面との角部が刃先として形成されている形状の溝加工ツールを使用するので、溝加工ツールの前面または後面を基板に対して進行方向側に傾斜させることにより、角部の刃先が点接触に近い線接触で基板に接触して薄膜の剥離をスムーズに行うことができる。特に、溝加工ツールの刃先部分の前面若しくは後面と基板上面に対する角度が50~80度、特には65度~75度の範囲内で進行方向側に傾斜させることにより、除去した膜屑に乗り上げてバウンドすることによるスクライブラインの断絶(傾斜角度が上記設定値より低い場合)や、押圧荷重が高くなることによる不規則な薄膜の剥離の発生(傾斜角度が上記設定値より高い場合)を無くして、直線状できれいなスクライブラインを形成することができる。
 溝加工ツールは、底面と前後面とによって形成される刃先の角度が直角であるようにするのが好ましい。刃先が摩耗し研磨を行う際に、ボディの軸方向に対し直角に研磨すれば底面と前後面とが直角にすることができるので、研磨作業が容易になる。
 溝加工ツールが、超硬合金、または、ダイヤモンドで形成されているのが好ましい。
 これにより、ツールの寿命が長く、変形も少ないことから、長期間にわたって精度よくスクライブ加工することができる。
本発明にかかる集積型薄膜太陽電池のスクライブ装置の一実施形態を示す斜視図。 本発明にかかる溝加工ツールの斜視図。 上記溝加工ツールの底面拡大図。 本発明にかかる溝加工ツールの取り付け傾斜角度と、それに対応する太陽電池基板のスクライブラインの加工状態を示す模式図。 従来の加工ツールと本発明にかかる溝加工ツールとによる加工状態の比較例を示す図。 一般的なCIGS系の薄膜太陽電池の製造工程を示す模式図。 従来の溝加工ツールの一例を示す斜視図。 本発明にかかる溝加工ツールの他の一実施形態を示す斜視図。 図8の溝加工ツールの底面を拡大した斜視図。 図8の溝加工ツールの底面の拡大図。 スクライブ時の刃先部分の状態を示す図。 本発明の他の一実施形態の溝加工ツールを示す斜視図。 図12の溝加工ツールの底面を拡大した斜視図。
(実施形態1)
 以下において、本発明の詳細を、その実施の形態を示す図面に基づいて詳細に説明する。
 図1は本発明にかかる溝加工ツールを用いた集積型薄膜太陽電池用スクライブ装置SCの実施形態を示す斜視図である。スクライブ装置SCは、水平方向(Y方向)に移動可能で、かつ、水平面内で90度および角度θ回転可能なテーブル18を備えており、テーブル18は実質的に太陽電池基板Wの保持手段を形成する。
 テーブル18を挟んで設けてある両側の支持柱20,20と、X方向に延びるガイドバー21とで構成されるブリッジ19は、テーブル18上を跨ぐように設けてある。ホルダ支持体23は、ガイドバー21に形成したガイド22に沿って移動可能に取り付けられ、モータ24の回転によりX方向に移動する。
 ホルダ支持体23には、スクライブヘッド7が設けられており、スクライブヘッド7の下部には、テーブル18上に載置される太陽電池基板Wの薄膜表面をスクライブ加工する溝加工ツール8を保持するホルダ9が設けられている。ホルダ9はスクライブヘッド7への取り付け角度を調整することができるようにしてあり、この取り付け角度を調整することで、溝加工ツール8と太陽電池基板Wとの角度を調整できるようにしてある。
 また、X方向およびY方向に移動することが可能な台座12,13にカメラ10,11がそれぞれ設けられている。台座12,13は支持台14上でX方向に延設されたガイド15に沿って移動する。カメラ10,11は、手動操作で上下動することができ、撮像の焦点を調整することができる。カメラ10,11で撮影された画像はモニタ16,17に表示される。
 テーブル18上に載置された太陽電池基板Wの表面には、位置を特定するためのアライメントマークが設けられており、カメラ10,11によりアライメントマークを撮像することにより、太陽電池基板Wの位置を調整する。具体的には、テーブル18に支持された太陽電池基板W表面のアライメントマークを、カメラ10,11により撮像してアライメントマークの位置を特定する。特定されたアライメントマークの位置に基づいて、太陽電池基板W表面の載置時の方向ズレを検出し、テーブル18を所定角度回転させることでズレを修正する。
 そして、テーブル18をY方向に所定ピッチで移動するごとに、スクライブヘッド7を下降させて溝加工ツール8の刃先を太陽電池基板Wの表面に押しつけた状態でX方向に移動させ、太陽電池基板Wの表面をX方向に沿ってスクライブ加工する。太陽電池基板Wの表面をY方向に沿ってスクライブ加工する場合は、テーブル18を90度回転させて、上記と同様の動作を行う。
 図2並びに図3は、本発明において用いる溝加工ツール8を示す。図2は下方から見た斜視図であり、図3は溝加工ツール8の底面を拡大した図である。この溝加工ツール8は実質的にスクライブヘッド7への取付部となる円柱状のボディ81と、その先端部に放電加工等により一体的に形成された刃先領域82とからなり、超硬合金またはダイヤモンド等の硬質材料で造られている。刃先領域82は、長方形の底面83と、底面83の短手方向の端辺から直角に立ち上がった前面84並びに後面85と、底面83の長手方向の端辺から直角に立ち上がって互いに並行をなす左、右側面88,89とからなる。底面83と前後面84,85とによって形成される角部がそれぞれ刃先86,87となる。
 底面83の左右幅L1は50~60μmが好ましいが、要求されるスクライブの溝幅に合わせて25~80μmとすることができる。また、刃先領域82の有効高さ、すなわち刃先領域の左右側面88,89並びに前後面84,85の高さL2は0.5mm程度が好ましい。さらに、円柱状のボディ81の直径は2~3mm程度がよい。なお、溝加工ツール8のボディ81は円柱状に限らず、断面四角形や多角形で形成することも可能である。
 上述した溝加工ツール8を用いて加工を行う場合は、刃先領域82の底面83の長軸方向をツールの移動方向に沿った状態で、かつ、太陽電池基板Wに対して刃先部分82の前面84または後面85を所定角度だけ傾斜させた状態でスクライブヘッド7に取り付ける。この場合の傾斜角度は50~80度、特には65度~75度の範囲が好ましい。
 図4は溝加工ツール8を用いて太陽電池基板Wに溝加工を行うときの溝加工ツール8の取り付け角度と太陽電池基板Wの加工状態との関係について、実験によって得た結果を示す模式図である。
 図4(a)は、溝加工ツール8を50~80度、特には65度~75度の好ましい傾斜角度で取り付けてスクライブさせた場合の結果を示す。太陽電池基板Wに形成される溝Mは余分な部分が剥離されることなく、スクライブラインに沿って直線状にきれいに形成することができた。
 図4(b)は、溝加工ツール8を50度未満の傾斜角度で取り付けてスクライブさせた場合の結果を示す。溝加工ツール8の刃先は、除去した膜屑に乗り上げてバウンドすることにより加工される溝Mに断絶の発生が見られた。
 図4(c)は、溝加工ツール8を、80度を超える傾斜角度で取り付けてスクライブさせた場合の結果を示す。溝加工ツール8の押圧荷重が高くなることによって加工された溝Mに不規則な薄膜の剥離が発生した。
 本発明によれば、溝加工ツール8の前面84または後面85を太陽電池基板Wに対して進行方向側に傾斜させることにより、前面または後面と、底面とによって形成される角部、すなわち刃先86または刃先87が点接触に近い線接触で太陽電池基板Wに接触して薄膜の剥離をスムーズに行うことができる。特に、溝加工ツール8の刃先領域の前面84若しくは後面85と基板Wの上面に対する角度が、50~80度、特には65度~75度の範囲内で進行方向側に傾斜させることにより、除去した膜屑に乗り上げてバウンドすることによるスクライブラインの断絶や、押圧荷重が高くなることによる不規則な薄膜の剥離の発生を無くして、直線状できれいなスクライブラインを形成することが可能となった。
 また、溝加工ツール8の刃先86,87は、前後の角部に2カ所形成されているので、一方が摩耗または破損すれば、溝加工ツール8の取り付け方向を変えることにより他方の刃先を新品として使用できる。しかも、いずれの刃先も摩耗した場合には、底面83並びに必要に応じて前後面84,85を研磨することによって刃先を補修することができる。
 図5は従来からの加工ツールにより形成されたスクライブラインと、本発明の溝加工ツールにより形成されたスクライブラインとを比較した画像データである。本発明の溝加工ツールを用いて65~75度の範囲の傾斜角でスクライブした場合には、従来例に比べて、明らかに一定の幅できれいなスクライブラインを形成することができた。
 なお、上記実施例では、スクライブヘッド7をX方向に移動させることでスクライブ加工を実行したが、スクライブヘッド7と、太陽電池基板Wとが相対的に移動できれば足りることから、太陽電池基板Wが固定された状態でスクライブヘッド7をX方向およびY方向に移動させてもよいし、スクライブヘッド7を移動させることなく、太陽電池基板WのみをX方向およびY方向に移動させてもよい。
 以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施例の構造のみに特定されるものではなく、変形実施されてもよい。例えば、底面と前後面とによって形成される刃先の角度は上記実施例で述べたように略直角が好ましいが、多少鈍角に形成しても差し支えがない。
(実施形態2)
 次に、実施形態1の溝加工ツールを変形した実施形態について説明する。図2,図3で説明した溝加工ツール8では、図4で説明したように、溝加工ツール8の前面84と被加工面とのなす角度(スクライブ角度という)が適切な角度範囲内になるように傾斜させてスクライブすることにより、連続した一定幅の溝が形成できる。
 しかしながら、例えば、溝加工ツール8が新品の場合には、適切なスクライブ角度に設定して使用する場合であっても、溝に隣接する薄膜が剥離してしまい、溝の幅が広い部分が生じる場合があった。さらに、Mo膜に比較的傷がつきやすい傾向もあった。新品でない場合においても、まれに同様の不具合が生じることがあった。
 そこで、溝加工ツール8をさらに改良し、溝に隣接する薄膜の剥離を抑制して、一定の幅の溝を安定して形成することができ、しかも溝加工される薄膜の下の層の膜に傷がつきにくい構造の溝加工ツールを作成するようにした。
 すなわち、本発明の第二の実施形態にかかる溝加工ツールは、棒状のボディと、ボディの先端に形成された直方体状の刃先領域からなり、刃先領域は、一対の短辺と一対の長辺とで囲まれる長方形の底面、底面の2つの短辺側でそれぞれ底面に対し直交する前面および後面、底面の2つの長辺側でそれぞれ底面に対し直交する右側面および左側面からなる5つの平面で形成され、前面と右側面との角部、および、前面と左側面との角部に縦方向の刃先が形成され、前面と底面との角部に横方向の刃先が形成され、底面と右側面との角部、および、底面と左側面との角部は面取りが行われるようにしている。
 そして本発明の溝加工ツールによれば、溝加工ツールを進行方向側に傾斜させることで前面と底面との角部の刃先を被加工面に当接し、圧接状態でスクライブするようにして溝加工を行う。
 第二の実施形態にかかる溝加工ツールによれば、底面と右側面との角部、および、底面と左側面との角部は、面取りが行われているのでこの部分が鋭利ではなくなっており、スクライブを行ったときにこれらの角部が薄膜に接して剥離することがなくなり、きれいな直線の溝を形成することができるようになる。
 具体的には、これらの角部が薄膜に接することによって、ときたま発生する不規則な薄膜の剥離(図4(c)参照)を完全に抑えることができる。
 上記第二実施形態の溝加工ツールにおいて、底面と前面との角部に傾斜面が形成されるようにしてもよい。新品のときから溝加工ツールに傾斜面を形成しておくことにより、初めて使用するときから傾斜面を被加工面に圧接した状態でスクライブが行われる。傾斜面が形成されている溝加工ツールは、傾斜面が形成されていない溝加工ツール(図2参照)をしばらく使用し続けて、底面と前面との角部が摩耗した状態と類似した形状になっている。したがって、新品のときから、あたかも摩耗した後の溝加工ツールの状態でスクライブすることができる。具体的には、刃先が鋭利すぎると被加工面に対し局所的に圧力がかかってしまい、Mo膜を損傷させる原因となるおそれがあるが、傾斜面により圧力が局所に集中することを避けることができる。
 また、第二実施形態の溝加工ツールにおいて、傾斜面と底面とのなす角が10度~40度の範囲であるようにするのが好ましい。傾斜面と底面とのなす角を当該範囲内にすることで、溝加工ツールの傾斜面を被加工面に当接させたときに、前面と被加工面とのなす角度(スクライブ角度と呼ぶ)が50度(傾斜面と底面とのなす角が40度)~80度(傾斜面と底面とのなす角が10度)の間になり、図4(a)で説明したようにきれいなスクライブ加工ができる範囲に設定することができる。
 また、第二実施形態の溝加工ツールにおいて、後面と右側面との角部、および、後面と左側面との角部に縦方向の刃先が形成されるとともに、後面と底面との角部に横方向の刃先が形成されるようにしてもよい。
 前面と後面とを入れ替えることにより、片側面が破損し、または、十分に摩耗した場合でも他方に切り替えて使用を続けることができる。
 ここで、底面と後面との角部に傾斜面が形成されるようにしてもよい。底面と後面との角部にも傾斜面を形成することにより、前後入れ替えた場合にも、あたかも摩耗した後の溝加工ツールの状態でスクライブすることができるようになり、その結果、加工品質の経時変化を抑えることができる。
 以下において、第二の溝加工ツールにかかる本発明の詳細を、図面に基づいて詳細に説明する。
 第二の溝加工ツールを使用するスクライブ装置SCは、第一の実施形態における図1で説明したスクライブ装置と同じ装置を用いることができるので、同符号を付すことにより説明を省略する。
 次に、スクライブ装置に取り付ける本発明の溝加工ツールについて説明する。図8、図9、図10は、一実施形態である溝加工ツール8aを示す図であり、図8は下方から見た斜視図、図9は底面を拡大した斜視図、図10は底面の拡大図である。なお、図2で説明した溝加工ツール8と同じ部分についても、同符号を付すこととする。
 この溝加工ツール8aは、スクライブヘッド7への取付部となる円柱状のボディ81と、その先端部に放電加工等により一体的に形成された直方体状の刃先領域82とからなり、超硬合金またはダイヤモンド等の硬質材料で造られている。
 刃先領域82は、一対の短辺と一対の長辺とで囲まれる細長い長方形の底面83と、(後述する傾斜面90,96が形成される前の状態で)底面83の短辺側で底面に対し直交するように形成される前面84、後面85と、底面83の長辺側で底面側に対し直交するように形成され、互いに平行をなす左側面88、右側面89とを有する。
 刃先領域82の底面83と前面84との角部は面取りが行われ、傾斜面90が形成してある。太陽電池基板を溝加工する際には、この傾斜面90を太陽電池基板の被加工面に当接させた状態で、溝加工ツール8aを左側面88および右側面89に平行な方向に移動させることにより、太陽電池基板の被加工面をスクライブする。傾斜面90を設ける主な理由は、新品のときから、あたかも摩耗した後の溝加工ツールの状態でスクライブすることができるようにするためであるが、これ以外に、刃先が鋭利すぎると局所的に圧力がかかってしまい、Mo膜を損傷させる原因となるおそれがあるので、圧力が局所に集中することを避けるためでもある。なお、説明の便宜上、図においては傾斜面90を模式的に大きく示しているが、傾斜面90が被加工面に当接してスクライブできればよいので、傾斜面90はこれよりも小さくてもよい。具体的には傾斜面90の底面側から前面側までの長さ(面取りの幅)は、3μm~20μm程度にしてある。
 なお、傾斜面90を設けず、刃先領域82の底面83と前面84との角部を被加工面に当接させた状態で、溝加工ツール8aを左側面88および右側面89に平行な方向に移動させることにより、太陽電池基板の被加工面をスクライブしてもよい。その場合は、新品状態で初めて使用するときにMo膜を損傷させるおそれがあるが、スクライブを数回行うと底面83と前面84との角部が摩耗し、Mo膜を損傷させるおそれが解消される。このため、新品の溝加工ツールに交換した際に、Moの金属板や不良品などの製品にならない太陽電池基板を用いてスクライブを数回行い、底面83と前面84との角部を意図的に摩耗させてから、製品を生産するための加工に使用することとしてもよい。
 また、溝加工ツール8aは、底面83と左側面88との角部91、および、底面83と右側面89との角部92の面取りを行うようにしてある。この面取りはC面加工が好ましいが、R面加工でもよい。面取りの幅(底面側から左側面側、および、底面側から右側面側までの長さ)は、それぞれ3μm~8μm程度である。
 一方、前面84と左側面88との角部93、前面84と右側面89との角部94は、面取りを行わずに鋭利に仕上げて、縦方向(垂直方向)の刃先となるようにしてある。
 そして、傾斜面90は、底面83となす角が10度~40度、好ましくは15度~25度にしてある。すなわち、傾斜面90が被加工面に当接した状態にすると、前面84と傾斜面90とがなすスクライブ角度αが50度~80度の範囲、好ましくは65度~75度の範囲になるようにしてある。このスクライブ角度は、図4(a)で説明した適切なスクライブ加工ができる範囲内に入ることになる。
 次に、本発明の溝加工ツール8aによる刃先の経時変化について説明する。図11はスクライブ時の刃先部分の状態を示す図であり、図11(a)は新品のときの状態、図11(b)はしばらく使用した後の状態である。
 新品のときの傾斜面90は、スクライブ回数が増加するにつれて摩耗し、やがて前後方向に長さが増した傾斜面90aで使用することになるが、傾斜面90が傾斜面90aに変化しても、面接触している長さが少し変化しただけなので、被加工面に対する影響は大きく変化することはない。また、傾斜面90aは左右側面方向には広がらず、また、傾斜面90に平行に摩耗していくので、摩耗後も同じ線幅で、しかもスクライブ角度αが同じ状態で安定したスクライブ加工が行える。
 底面83と左側面88との角部91、および、底面83と右側面89との角部92は、積極的に面取りがなされているので、溝加工ツール8aを傾斜させてスクライブする場合に、底面83は被加工面から離れることになるので、これまでは加工品質にほとんど影響しないと考えられていた。そのため、面取りを行わず鋭利な状態にしていた。しかしながら、角部91,92について面取りすることにより、加工品質が向上することになった。特に、時折発生していた膜の剥離がほとんど発生しなくなった。このように、角部93,94を鋭利にし、これ以外の角部91,92を面取りすることにより、使用後に不規則に発生する膜の剥離がほとんど発生しなくなった。
 なお、角部93,94についてもC面取り加工を行ってみたが、これらの角部の面取りをすることにより、かえって加工品質が劣化し、膜剥離が発生した。これらの結果を表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 すなわち、角部93,94は面取りせず鋭利な刃先とし、角部91,92は面取りを行ったときに、優れた加工品質が得られることとなった。
 図12は、他の実施形態である溝加工ツール8bの斜視図、図13はその底面を拡大した斜視図である。なお、図8~図10で示した溝加工ツール8aと同じ部分については同符号を付すことにより、説明を省略する。
 本実施形態では、前面84だけでなく、後面85側の角部97,98も面取りを行わず鋭利に仕上げて縦方向の刃先としてある。さらに傾斜面96を形成して、傾斜面96と後面85との角部99を横方向の刃先としてある。
 これにより、前面84側を進行方向にしてスクライブ加工するだけでなく、前後入れ替えて後面85側を進行方向にしてスクライブ加工することで、溝加工ツールとしての寿命を倍増することができる。
 以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施例の構造のみに特定されるものではく、本発明の目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正、変更することが可能である。
 本発明は、例えば、カルコパイライト化合物系半導体膜を用いた集積型薄膜太陽電池の製造の際に用いる溝加工ツールに適用することができる。
W 太陽電池基板
7 スクライブヘッド
8,8a,8b 溝加工ツール
81 ボディ
82 刃先領域
83 底面
84 前面
85 後面
86 刃先
87 刃先
88 左側面
89 右側面
90,96 傾斜面
91,92 角部(面取り)
93,94,95 角部(刃先)
97,98,99 角部(刃先)

Claims (12)

  1.  棒状のボディと、ボディの先端に形成された刃先領域とからなり、
     刃先領域は細長く延びる長方形の底面と、底面の短手方向の端辺から立ち上がる前面並びに後面と、底面の長手方向の端辺から直角に立ち上がって互いに平行な一対の面をなす左、右側面とからなり、
     少なくとも前後面のいずれか片面と底面とによって形成される角部が刃先となる集積型薄膜太陽電池用の溝加工ツール。
  2.  底面と前後面とによって形成される刃先の角度が直角である請求項1に記載の溝加工用ツール。
  3.  前記溝加工ツールが、超硬合金またはダイヤモンドで形成されている請求項1に記載の未溝加工ツール。
  4.  集積型薄膜太陽電池基板のスクライブ予定ラインに沿って、溝加工ツールの刃先で押圧しながら、前記太陽電池基板と溝加工ツールを相対的に移動させて前記太陽電池の上にスクライブラインを形成する集積型薄膜太陽電池の溝加工方法であって、
     前記溝加工ツールが、棒状のボディと、ボディの先端部に形成された刃先領域とからなり、刃先領域は細長く延びる長方形の底面と、底面の短手方向の端辺から立ち上がる前面並びに後面と、底面の長手方向の端辺から直角に立ち上がって互いに平行な一対の面をなす左、右側面とからなり、前後面のいずれか片面と底面とによって形成される角部が刃先をなし、
     長方形をなす底面の長軸方向が前記移動方向に沿って配置され、刃先領域の前面若しくは後面が太陽電池の被加工面との間になす角度が50度~80度の範囲内で進行方向側に傾斜させて溝加工を行うことを特徴とする集積型薄膜太陽電池の溝加工方法。
  5.  集積型薄膜太陽電池基板の少なくとも光吸収層を含む層に溝加工を行う請求項4記載の集積型薄膜太陽電池の溝加工方法。
  6.  集積型薄膜太陽電池基板が透明電極層を形成される前の集積型薄膜太陽電池基板である請求項5記載の集積型薄膜太陽電池の溝加工方法。
  7.  棒状のボディと、ボディの先端に形成された直方体状の刃先領域からなり、
     前記刃先領域は、一対の短辺と一対の長辺とで囲まれる長方形の底面、底面の2つの短辺側でそれぞれ底面に対し直交する前面および後面、底面の2つの長辺側でそれぞれ底面に対し直交する右側面および左側面からなる5つの平面で形成され、
     前面と右側面との角部、および、前面と左側面との角部に縦方向の刃先が形成され、
     前面と底面との角部に横方向の刃先が形成され、
     底面と右側面との角部、および、底面と左側面との角部は面取りが行われることを特徴とする溝加工ツール。
  8.  底面と前面との角部に傾斜面が形成される請求項7に記載の溝加工ツール。
  9.  傾斜面と底面とのなす角が10度~40度の範囲である請求項8に記載の溝加工ツール。
  10.  さらに、後面と右側面との角部、および、後面と左側面との角部に縦方向の刃先が形成されるとともに、後面と底面との角部に横方向の刃先が形成される請求項7に記載の溝加工ツール。
  11.  底面と後面との角部に傾斜面が形成される請求項10に記載の溝加工ツール。
  12.  請求項7~請求項11のいずれかに記載の溝加工ツールと、太陽電池基板が載置されるテーブルと、前記溝加工ツールの底面を、前記太陽電池基板に対し傾斜させた状態でスクライブさせるスクライブヘッドとを備えたことを特徴とするスクライブ装置。
PCT/JP2010/052704 2009-02-24 2010-02-23 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法およびスクライブ装置 WO2010098306A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080009004.6A CN102325621B (zh) 2009-02-24 2010-02-23 沟槽加工工具及使用该沟槽加工工具的薄膜太阳电池的沟槽加工方法及划线装置
JP2011501594A JP5269183B2 (ja) 2009-02-24 2010-02-23 溝加工ツールおよびこれを用いた薄膜太陽電池のスクライブ装置
EP10746187.3A EP2402100B1 (en) 2009-02-24 2010-02-23 Slotting tool, and thin film solar cell slotting method and scribing device using same
KR1020117017097A KR101311292B1 (ko) 2009-02-24 2010-02-23 집적형 박막 태양 전지용의 홈 가공 툴과 홈 가공 방법 및, 스크라이브 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009040230 2009-02-24
JP2009-040230 2009-02-24
JP2009-278148 2009-12-08
JP2009278148 2009-12-08

Publications (1)

Publication Number Publication Date
WO2010098306A1 true WO2010098306A1 (ja) 2010-09-02

Family

ID=42665513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052704 WO2010098306A1 (ja) 2009-02-24 2010-02-23 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法およびスクライブ装置

Country Status (6)

Country Link
EP (1) EP2402100B1 (ja)
JP (4) JP5269183B2 (ja)
KR (1) KR101311292B1 (ja)
CN (1) CN102325621B (ja)
TW (2) TWI501415B (ja)
WO (1) WO2010098306A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343173A1 (en) * 2010-01-08 2011-07-13 Mitsuboshi Diamond Industrial Co., Ltd. Groove machining tool for use with a thin-film solar cell
JP2012089559A (ja) * 2010-10-15 2012-05-10 Nichia Chem Ind Ltd 窒化物系化合物半導体素子の製造方法
JP2012119610A (ja) * 2010-12-03 2012-06-21 Mitsuboshi Diamond Industrial Co Ltd 薄膜太陽電池用溝加工ツール
CN103030265A (zh) * 2011-10-04 2013-04-10 三星钻石工业股份有限公司 玻璃基板刻划方法
WO2013103045A1 (ja) * 2012-01-06 2013-07-11 富士フイルム株式会社 スクライブ方法
CN103213203A (zh) * 2012-01-18 2013-07-24 三星钻石工业股份有限公司 沟槽加工工具及沟槽加工方法
CN103706821A (zh) * 2013-12-27 2014-04-09 无锡雨田精密工具有限公司 一种焊接式车用沟槽刀
JP2014065291A (ja) * 2013-03-28 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd 金属膜積層セラミックス基板溝加工用ツール
JP2014107485A (ja) * 2012-11-29 2014-06-09 Mitsuboshi Diamond Industrial Co Ltd パターン付き基板の分割方法
EP2469587A3 (en) * 2010-12-21 2017-05-03 Mitsuboshi Diamond Industrial Co., Ltd. Groove processing tool and groove processing device for thin-film solar cell

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458108B (zh) * 2011-12-07 2014-10-21 Ind Tech Res Inst 渠道刻劃裝置以及渠道刻劃方法
JP5981795B2 (ja) * 2012-07-24 2016-08-31 三星ダイヤモンド工業株式会社 基板の溝加工方法及び溝加工装置
TWI589420B (zh) * 2012-09-26 2017-07-01 Mitsuboshi Diamond Ind Co Ltd Metal multilayer ceramic substrate breaking method and trench processing tools
JP6061612B2 (ja) * 2012-10-25 2017-01-18 三星ダイヤモンド工業株式会社 基板の溝加工ツール及び基板用溝加工装置
JP2014188599A (ja) * 2013-03-26 2014-10-06 Mitsuboshi Diamond Industrial Co Ltd 溝加工ツール、及びこれを用いた溝加工装置
TWI513671B (zh) * 2013-12-06 2015-12-21 Ind Tech Res Inst 刀具及應用其之玻璃切割裝置
JP6406006B2 (ja) * 2014-03-28 2018-10-17 三星ダイヤモンド工業株式会社 溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置
CN103978257B (zh) * 2014-05-21 2017-02-15 昆山科森科技股份有限公司 微创手术刀的制造方法
JP2018034381A (ja) * 2016-08-30 2018-03-08 三星ダイヤモンド工業株式会社 ダイヤモンドツール
CN107097073A (zh) * 2017-06-13 2017-08-29 吕子元 自动送料转向的数控开槽机
CN110052676B (zh) * 2018-01-19 2021-02-12 苏州汉扬精密电子有限公司 电极结构
CN116936422B (zh) * 2023-09-15 2023-11-17 江苏永达电力金具有限公司 光伏电池片自动化切割分离设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024712U (ja) * 1988-06-20 1990-01-12
JPH10118806A (ja) * 1996-10-18 1998-05-12 Kuroda:Kk セラミックストン軸付一体形の超音波専用切削工具
JPH10328922A (ja) * 1997-06-02 1998-12-15 Canon Inc 細溝加工方法及び装置及び細溝加工用切刃及び切刃保持装置
JPH11312815A (ja) 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd 薄膜太陽電池の製造方法
JP2002094089A (ja) 2000-09-11 2002-03-29 Honda Motor Co Ltd 化合物薄膜太陽電池の製造方法
JP2004115356A (ja) 2002-09-26 2004-04-15 Honda Motor Co Ltd メカニカルスクライブ装置
JP2005014116A (ja) * 2003-06-24 2005-01-20 Okamoto Machine Tool Works Ltd 導光板金型の溝切削装置用複数バイトセットホルダ−

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US945532A (en) * 1909-03-13 1910-01-04 Rudolph Hedstrom Reversible tool-holder.
JPS6316439U (ja) * 1986-07-18 1988-02-03 Sanyo Electric Co
JP2516702B2 (ja) * 1990-09-21 1996-07-24 オーエスジー株式会社 溝加工用バイト
US5307718A (en) * 1992-10-29 1994-05-03 The United States Of America As Represented By The United States Department Of Energy Apparatus and process for removing a predetermined portion of reflective material from mirror
JP2000315809A (ja) * 1999-03-04 2000-11-14 Matsushita Electric Ind Co Ltd 集積型薄膜太陽電池の製造方法およびパターニング装置
JP2002033498A (ja) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd 集積型薄膜太陽電池の製造方法およびパターニング装置
JP4885111B2 (ja) * 2001-11-08 2012-02-29 シャープ株式会社 液晶パネル及び液晶パネル製造装置
JP2004119953A (ja) * 2002-09-26 2004-04-15 Honda Motor Co Ltd 薄膜太陽電池およびその製造方法
JP2004345017A (ja) * 2003-05-22 2004-12-09 Canon Inc 溝加工方法および溝加工装置
JP2008149423A (ja) * 2006-12-19 2008-07-03 Sharp Corp 刃物及び剥離装置
US9132567B2 (en) * 2007-03-23 2015-09-15 Dayton Progress Corporation Tools with a thermo-mechanically modified working region and methods of forming such tools
CN102047392A (zh) * 2008-05-26 2011-05-04 三星钻石工业股份有限公司 薄膜太阳电池的划线装置
CN100559614C (zh) * 2008-08-28 2009-11-11 苏州富能技术有限公司 薄膜太阳电池模块及其加工方法
JP5436007B2 (ja) * 2009-04-06 2014-03-05 株式会社シライテック 太陽電池パネルの製膜スクライブ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024712U (ja) * 1988-06-20 1990-01-12
JPH10118806A (ja) * 1996-10-18 1998-05-12 Kuroda:Kk セラミックストン軸付一体形の超音波専用切削工具
JPH10328922A (ja) * 1997-06-02 1998-12-15 Canon Inc 細溝加工方法及び装置及び細溝加工用切刃及び切刃保持装置
JPH11312815A (ja) 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd 薄膜太陽電池の製造方法
JP2002094089A (ja) 2000-09-11 2002-03-29 Honda Motor Co Ltd 化合物薄膜太陽電池の製造方法
JP2004115356A (ja) 2002-09-26 2004-04-15 Honda Motor Co Ltd メカニカルスクライブ装置
JP2005014116A (ja) * 2003-06-24 2005-01-20 Okamoto Machine Tool Works Ltd 導光板金型の溝切削装置用複数バイトセットホルダ−

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2402100A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343173A1 (en) * 2010-01-08 2011-07-13 Mitsuboshi Diamond Industrial Co., Ltd. Groove machining tool for use with a thin-film solar cell
JP2012089559A (ja) * 2010-10-15 2012-05-10 Nichia Chem Ind Ltd 窒化物系化合物半導体素子の製造方法
JP2012119610A (ja) * 2010-12-03 2012-06-21 Mitsuboshi Diamond Industrial Co Ltd 薄膜太陽電池用溝加工ツール
EP2469587A3 (en) * 2010-12-21 2017-05-03 Mitsuboshi Diamond Industrial Co., Ltd. Groove processing tool and groove processing device for thin-film solar cell
CN103030265A (zh) * 2011-10-04 2013-04-10 三星钻石工业股份有限公司 玻璃基板刻划方法
WO2013103045A1 (ja) * 2012-01-06 2013-07-11 富士フイルム株式会社 スクライブ方法
JP2013146811A (ja) * 2012-01-18 2013-08-01 Mitsuboshi Diamond Industrial Co Ltd 溝加工ツールおよび溝加工方法
CN103213203A (zh) * 2012-01-18 2013-07-24 三星钻石工业股份有限公司 沟槽加工工具及沟槽加工方法
JP2014107485A (ja) * 2012-11-29 2014-06-09 Mitsuboshi Diamond Industrial Co Ltd パターン付き基板の分割方法
CN103846560A (zh) * 2012-11-29 2014-06-11 三星钻石工业股份有限公司 具有图案的基板的分割方法
CN109940294A (zh) * 2012-11-29 2019-06-28 三星钻石工业股份有限公司 具有图案的基板的分割方法
JP2014065291A (ja) * 2013-03-28 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd 金属膜積層セラミックス基板溝加工用ツール
CN103706821A (zh) * 2013-12-27 2014-04-09 无锡雨田精密工具有限公司 一种焊接式车用沟槽刀

Also Published As

Publication number Publication date
JP5469722B2 (ja) 2014-04-16
JP5269183B2 (ja) 2013-08-21
EP2402100A4 (en) 2015-05-06
JP2013056414A (ja) 2013-03-28
TW201407807A (zh) 2014-02-16
KR101311292B1 (ko) 2013-09-25
TWI501415B (zh) 2015-09-21
EP2402100B1 (en) 2017-05-31
CN102325621B (zh) 2015-11-25
KR20110097984A (ko) 2011-08-31
JP2013042153A (ja) 2013-02-28
TWI424580B (zh) 2014-01-21
TW201104904A (en) 2011-02-01
JP5351998B2 (ja) 2013-11-27
JP5469723B2 (ja) 2014-04-16
JP2013049131A (ja) 2013-03-14
EP2402100A1 (en) 2012-01-04
CN102325621A (zh) 2012-01-18
JPWO2010098306A1 (ja) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5351998B2 (ja) 集積型薄膜太陽電池の溝加工方法
KR101172316B1 (ko) 집적형 박막 태양 전지의 제조 장치
TWI417260B (zh) Set
WO2010098307A1 (ja) 集積型薄膜太陽電池の製造方法
WO2010103947A1 (ja) 薄膜太陽電池用の溝加工ツール
JP5357580B2 (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法
JP5804999B2 (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP5369011B2 (ja) 溝加工ツール及びこれを用いた薄膜太陽電池の溝加工方法
JP2020107799A (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2020107797A (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2020107800A (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2020107796A (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2020107795A (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2020107798A (ja) 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP6267566B2 (ja) 溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置
JP2015192112A (ja) 溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置
JP2015126204A (ja) 溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009004.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501594

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117017097

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010746187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010746187

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE