WO2010098111A1 - Polyester resin, and optical material, film and image display device, using same - Google Patents

Polyester resin, and optical material, film and image display device, using same Download PDF

Info

Publication number
WO2010098111A1
WO2010098111A1 PCT/JP2010/001287 JP2010001287W WO2010098111A1 WO 2010098111 A1 WO2010098111 A1 WO 2010098111A1 JP 2010001287 W JP2010001287 W JP 2010001287W WO 2010098111 A1 WO2010098111 A1 WO 2010098111A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
film
polyester resin
group
structure represented
Prior art date
Application number
PCT/JP2010/001287
Other languages
French (fr)
Japanese (ja)
Inventor
相木康弘
桜井靖也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2010098111A1 publication Critical patent/WO2010098111A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings

Definitions

  • the present invention relates to a polyester resin that is easily melt-formed and has excellent transparency.
  • the present invention also relates to an optical material or film using the polyester resin, particularly to a film having an appropriate glass transition temperature, easy to melt film formation and having a small linear thermal expansion coefficient, and an image display device using the film.
  • Inorganic glass materials are widely used as transparent materials because they are excellent in transparency and heat resistance and have small optical anisotropy.
  • inorganic glass is difficult to mold and has a large specific gravity and is brittle, the molded glass product is disadvantageous in that it is heavy and easily damaged. Due to such drawbacks, in recent years, development of resin materials that replace inorganic glass materials has been actively conducted.
  • polymethyl methacrylate, polycarbonate, polyethylene terephthalate, and the like are known as resin materials intended to replace such inorganic glass materials. Since these resin materials are lightweight, excellent in mechanical properties, and excellent in processability, they are recently used in various applications such as lenses and films.
  • Patent Document 1 discloses only a solution casting method in which a resin is dissolved in a solvent and a polyester resin is produced by solution casting.
  • an isodicarboxylic acid component such as isophthalic acid as a dicarboxylic acid component in combination with a terephthalic acid component (a combined system of terephthalic acid and isophthalic acid, or a combined system of terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid) Etc.) was not disclosed.
  • Patent Document 2 A resin having a polyarylate structure of biphenol and dicarboxylic acid other than Patent Document 1 is also known, but the low linear thermal expansion coefficient and melt film-forming property have not been particularly studied (for example, Patent Document 2). And 3).
  • the inventors of the present invention have studied the problem of obtaining a resin that satisfies all the above required characteristics.
  • the resin described in Patent Document 1 is not satisfactory from the viewpoint of manufacturing cost. That is, although the resin described in Patent Document 1 has achieved both the heat resistance and the low linear thermal expansion coefficient of the film using the resin to some extent, the polyester resin described in the example of the same document is However, it was not satisfactory from the viewpoint of melt film formation.
  • the present inventors examined a resin containing a biphenol having a specific structure described in Patent Document 2 it was certainly suitable for the interfacial polymerization method because of its good solubility in a solvent.
  • the object of the present invention is to obtain a resin satisfying all the above-mentioned characteristics. That is, the present invention relates to a polyester resin having an appropriate glass transition temperature, a low coefficient of linear thermal expansion, good stretchability and transparency when performing efficient melt film formation, and the use thereof.
  • An object of the present invention is to provide optical parts and films. Moreover, it aims at providing the image display apparatus using this film.
  • R 11 to R 14 each independently represents a hydrogen atom or a substituent, provided that at least one of R 11 to R 14 is a substituent.
  • R 15 to R 18 are hydrogen atoms.
  • a polyester resin having an appropriate glass transition temperature, a low coefficient of linear thermal expansion, good stretchability and transparency when performing efficient melt film formation, and use thereof It is possible to provide an optical component, a film, and an image display device using the film.
  • the polyester resin of the present invention also has sufficient heat resistance when manufacturing a display substrate, particularly when annealing is performed by placing ITO on the resin. Furthermore, the polyester resin of the present invention has excellent transparency during molding, and can be suitably used for optical parts, films and image display devices.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • polyester resin The polyester resin of the present invention (hereinafter also referred to as the resin of the present invention) is represented by the structure represented by the following general formula (1), the structure represented by the following general formula (2), and the following general formula (3). And a structure represented by the following general formula (4).
  • the characteristics of the resin of the present invention will be described in order from the general formula (1).
  • the polyester resin of the present invention contains a structure represented by the following general formula (1).
  • the polyester resin of the present invention contains the structure represented by the general formula (1) simultaneously with the structure represented by the general formula (3) and the structure represented by the general formula (4). It is possible to achieve both melt film-forming properties and a low linear thermal expansion coefficient.
  • R 11 to R 14 each independently represents a hydrogen atom or a substituent. However, at least one of R 11 to R 14 is a substituent. R 15 to R 18 represent a hydrogen atom.
  • the polyester resin of the present invention since at least one of R 11 to R 14 is a substituent, the polyester resin of the present invention can be melted without being heated to a high temperature and is soluble in a solvent such as dichloromethane. It is also preferable from the viewpoint.
  • preferred substituents represented by R 11 to R 14 are alkyl groups (preferably having 1 to 10 carbon atoms, such as methyl group, ethyl group, isopropyl group, tert-butyl group, etc.
  • Halogen atoms for example, chlorine atom, bromine atom, iodine atom and the like
  • aryl groups preferably having 6 to 20 carbon atoms, for example, phenyl group, biphenyl group, naphthyl group and the like
  • alkoxy groups having 1 to 10 carbon atoms.
  • a methoxy group, an ethoxy group, an isopropoxy group, etc. an acyl group (preferably having 2 to 10 carbon atoms, for example, an acetyl group, a propionyl group, a butyryl group, etc.), an acylamino group (having 1 to 10 carbon atoms).
  • a formylamino group, an acetylamino group, etc. a nitro group, a cyano group, and a combination of these .
  • an alkyl group, a halogen atom, an aryl group, an alkoxy group, a cyano group, or a nitro group and particularly preferably at least one of the R 11 to R 14 is a halogen atom, an alkyl group, a cyano group, or an alkoxy group, More particularly preferred is a chlorine atom, a methyl group or a methoxy group.
  • a methyl group and a chlorine atom are preferable from the viewpoint of compatibility between solubility, meltability and heat resistance, and linear thermal expansion coefficient.
  • the positions of the two substituents are preferably two positions R 11 and R 14 or two positions R 12 and R 13 .
  • general formula (1) Specific examples of general formula (1) are shown below, but the structure represented by general formula (1) that can be used in the present invention is not limited to these.
  • the polyester resin of the present invention contains a structure represented by the general formula (2).
  • R 21 to R 24 each independently represents a hydrogen atom or a substituent, and l represents a natural number.
  • Preferred substituents for R 21 to R 24 are the same as the preferred substituents represented by R 11 to R 18 .
  • R 21 to R 24 are particularly preferably hydrogen atoms.
  • the l is preferably 1 to 3, and more preferably 1 to 2.
  • the solubility and the melt production are good, and the film transparency is also good.
  • l it represents a biphenyl structure, and when l is 3, it represents a terphenyl structure.
  • the plurality of R 21 to R 24 each independently represents a hydrogen atom or a substituent.
  • the polyester resin of the present invention contains a structure represented by the general formula (3).
  • the polyester resin of the present invention has a structure represented by the general formula (3) which is a structure that can be bent relatively in addition to the components of the linear structure represented by the general formulas (1) and (2). By having a bending component), the film-forming property and the low linear thermal expansion coefficient are compatible, and the stretchability is also good.
  • R 31 and R 32 each independently represent a substituent, m and n each independently represent an integer of 0 to 4, and X represents a divalent linking group. However, X is not part of the ring structure.
  • R 31 and R 32 in the general formula (3) are an alkyl group (preferably having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group), a halogen atom (for example, A chlorine atom, a bromine atom, an iodine atom, etc.), an aryl group (preferably having 6 to 20 carbon atoms, for example, a phenyl group, a biphenyl group, a naphthyl group, etc.), an alkoxy group (preferably having 1 to 10 carbon atoms, for example, a methoxy group) , Ethoxy group, isopropoxy group and the like), acyl group (preferably having 2
  • alkyl group More preferred are an alkyl group, a halogen atom, an aryl group, an alkoxy group, and a nitro group, and particularly preferred are an alkyl group and a halogen atom.
  • the above 4 is preferable, 0 to 2 is more preferable, and 0 to 1 is particularly preferable.
  • N is preferably 0 to 4, more preferably 0 to 2, and particularly preferably 0 to 1.
  • X represents a divalent linking group.
  • Examples of X include an alkylene group, an alkylidene group, a perfluoroalkylidene group, an oxygen atom, a sulfur atom, a ketone group, a sulfonyl group, and —NR′— (R ′ is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms).
  • -CO-NH- are preferable, and an alkylidene group, an oxygen atom, a sulfur atom, a ketone group, an amino group, and a sulfonyl group are preferable, and isopropylidene and an oxygen atom are particularly preferable.
  • X is not part of the ring structure.
  • X itself is not a linking group containing a ring
  • X is one of benzene rings connected to both sides of X in formula (3) and / or It means that X does not form a fused ring with R 31 and / or R 32 without creating a fused ring with both.
  • X is preferably a substituted or unsubstituted carbon atom, oxygen atom or sulfur atom, more preferably a substituted or unsubstituted carbon atom, and particularly preferably an alkyl group-substituted carbon atom.
  • it is a dimethyl-substituted carbon atom, and more particularly preferred.
  • the bonding position of the two oxygen atom linking groups may be anywhere on the benzene ring.
  • the bonding positions of the two oxygen atom linking groups are preferably the 4th and 4 'positions of the benzene ring.
  • the polyester resin of the present invention contains a structure represented by the general formula (4).
  • R 25 to R 28 each independently represents a hydrogen atom or a substituent.
  • R 25 to R 28 each independently represents a hydrogen atom or a substituent.
  • the preferred substituents represented by R 25 to R 28 are the same as the preferred substituents represented by R 11 to R 18 .
  • the resin of the present invention contains an ester bond in the main chain.
  • the resin of the present invention may contain one or more of an ether bond, a carbonate bond, a sulfone bond, a ketone bond, an imide bond, an amide bond, a urethane bond, and a urea bond.
  • the polyester resin of the present invention preferably contains a structure represented by the following general formula (5) from the viewpoint of finely adjusting in the direction of increasing Tg and improving the melt film forming property.
  • R 41 and R 42 each independently represent a substituent, and p and q each independently represents an integer of 0 to 3.
  • an alkyl group preferably having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group), a halogen atom (for example, chlorine) Atoms, bromine atoms, iodine atoms, etc.), aryl groups (preferably having 6 to 20 carbon atoms, such as phenyl group, biphenyl group, naphthyl group, etc.), alkoxy groups (preferably having 1 to 10 carbon atoms, such as methoxy group, Ethoxy group, isopropoxy group and the like), acyl group (preferably having 2 to 10 carbon atoms, such as acetyl group, propionyl group and butyryl group), acylamino group (preferably having 1 to 10 carbon atoms, such as formylamino group, Acetylamino group), nitro group, cyano group and
  • the position at which the carbonyl group is linked may be any carbon of the naphthalene ring, and two carbonyl groups may be linked to one ring.
  • the carbonyl group is preferably bonded at the 2nd or 3rd position and preferably at the 6th or 7th position, and more preferably at the 2nd or 6th position.
  • P and q each independently represents an integer of 0 to 3
  • p is preferably an integer of 0 to 2
  • q is preferably an integer of 0 to 2.
  • the polyester resin of the present invention preferably satisfies the following formula (A) from the viewpoint of reducing the linear thermal expansion coefficient.
  • A 0.5 ⁇ c ⁇ 70
  • a is the content (unit: mol%) of the structure derived from the aromatic diol represented by the general formula (1) with respect to the structure derived from all aromatic diols contained in the polyester resin.
  • c represents the content (unit: mol%) of the structure derived from the dicarboxylic acid represented by the general formula (2) with respect to all the structures derived from the dicarboxylic acid contained in the polyester resin.
  • the structure derived from the aromatic diol includes, for example, a structure represented by the general formula (1), a structure represented by the general formula (3), and the like.
  • the structure derived from the dicarboxylic acid is, for example, a structure represented by the general formula (2), a structure represented by the general formula (4), and a structure represented by the general formula (5).
  • Etc the left side of the formula (A), that is, the value of a + 0.5 ⁇ c is also referred to as a linear component amount.
  • the coefficients of a and c in the formula (A) of the linear component amount are specifically set to coefficients of 1 and 0.5, respectively, assuming that there is a linear component of 0.5 per phenylene group.
  • the mathematical meaning of the linear component amount formula (A) is related to the linear thermal expansion coefficient of a film obtained by uniaxial stretching.
  • the linear component amount that is, the value on the left side of the formula (A) is more preferably 80 to 120, and particularly preferably 90 to 120.
  • the weight of the structure represented by the general formula (2) is preferably larger than the weight of the structure represented by the general formula (4).
  • the weight ratio of the structure represented by the general formula (2) and the structure represented by the general formula (4) is preferably 55:45 to 85:15, and 55:45 to 75:25. More preferably, it is particularly preferably 60:40 to 75:25. It is preferable that the weight ratio of the structure represented by the general formula (2) and the structure represented by the general formula (4) is 55:45 to 85:15 because the linear thermal expansion coefficient is low.
  • the linear thermal expansion coefficient is preferably small, and the weight ratio is 85:15 or less. If so, the melting temperature does not become excessively high, melting becomes easy, and the film obtained after melting is less likely to become cloudy, which is preferable.
  • the polyester resin of the present invention is represented by the general formula (1).
  • the one where the content rate of the structure represented is high is preferable.
  • the content a (unit: mol%) of the phenol-derived structure represented by the general formula (1) with respect to all the phenol-derived structures contained in the polyester resin is 45 (c is 50)
  • the weight of the structure represented by the general formula (2) is equal to the weight of the structure represented by the general formula (4). Even if it is equal or small, the effect of the present invention can be sufficiently achieved.
  • the a is more preferably 45 to 90 mol%, and particularly preferably 50 to 85 mol%.
  • the molar ratio (substance ratio) of the structure represented by the general formula (1) described later and the structure represented by the general formula (3) is 0.70: 0.30 or more, Even if the content of the structure represented by the general formula (2) is equal to or smaller than the content of the structure represented by the general formula (4), the effects of the present invention can be sufficiently achieved.
  • the polyester resin of the present invention has a content A (unit: mol%) of the structure represented by the general formula (1) and a content B (unit: mol%) of the structure represented by the general formula (3).
  • a content A unit: mol%) of the structure represented by the general formula (1)
  • a content B unit: mol%) of the structure represented by the general formula (3).
  • Preferably satisfies A / B> 1.5 from the viewpoint of reducing the linear thermal expansion coefficient.
  • a / B> 1.5 because the linear thermal expansion coefficient can be remarkably lowered.
  • the lower limit value of A / B is more preferably 1.55 or more, further preferably 1.6 or more, particularly preferably 1.85 or more, and particularly preferably 2.33 or more.
  • the molar ratio (substance ratio) of the structure represented by the general formula (1) and the structure represented by the general formula (3) is 0.60: 0. It is preferably more than 40, more preferably 0.607: 0.393 or more, further preferably 0.615: 0.385 or more, and particularly preferably 0.65: 0.35 or more. Preferably, it is more preferably 0.70: 0.30 or more, and even more preferably 0.75: 0.25 or more.
  • the content of the structure represented by the general formula (1) is preferably 10 to 99 mol%, more preferably 20 to 90 mol%, and particularly preferably 30 to 85 mol%.
  • the content of the structure represented by the general formula (2) is preferably 20 to 99 mol%, more preferably 30 to 95 mol%, and particularly preferably 40 to 95 mol%.
  • the content of the structure represented by the general formula (3) is preferably 1 to 80 mol%, more preferably 10 to 70 mol%, and particularly preferably 15 to 65 mol%.
  • the content of the structure represented by the general formula (4) is preferably 1 to 80 mol%, more preferably 5 to 70 mol%, and particularly preferably 5 to 65 mol%.
  • the content of the structure represented by the general formula (5) is preferably 0 to 90 mol%, more preferably 0 to 70 mol%, and particularly preferably 1 to 50 mol%.
  • the resin of the present invention can be synthesized generally using a biphenol derivative, dicarboxylic acid and / or a derivative thereof as a monomer. Further, it may be synthesized as a copolymer using a bisphenol derivative or the like.
  • a general synthesis method of a biphenol derivative having a substituent mention is made of the method described in Macromolecules, 1996, 29, pages 3727-3735, Journal of Textile Chemistry, Vol. 84, No. 2 (1963), pages 143-145. Can do.
  • the dicarboxylic acid derivative can be synthesized by a method similar to the method of introducing a substituent into dialkylnaphthalene and oxidizing the alkyl group.
  • P-1 to P-18 Specific examples (P-1 to P-18) of the polyester resin of the present invention are shown below, but the polyester resin that can be used in the present invention is not limited thereto.
  • the numbers on the lower right of the parenthesis represent the mol% of each structure in the polyester resin.
  • the weight average molecular weight of the resin of the present invention is preferably 10,000 to 5,000,000, more preferably 15,000 to 1,000,000, and particularly preferably 20,000 to 500,000.
  • the resin of the present invention is a copolymer, and the polymerization form may be random copolymerization, block copolymerization, or other polymerization forms.
  • the glass transition temperature (Tg) of the resin of the present invention is preferably in a range suitable for melt film formation. Specifically, the temperature is preferably 170 ° C. or higher, more preferably 250 ° C. or lower, particularly preferably 180 ° C. to 250 ° C., and particularly preferably 195 ° C. to 250 ° C.
  • the transparency of the film obtained can be improved more because Tg of resin of this invention is said range.
  • Tg is 170 ° C. or higher, the dimensional stability during the process of laminating with ITO using the resin of the present invention as an optical film (process involving heating) is enhanced, and the image display of the present invention is performed. The performance of the device can be increased.
  • the resin of the present invention is useful for, for example, optical materials and films of the present invention described later.
  • an optical film such as a polarizing plate protective film, a retardation film, an antireflection film, an electromagnetic wave shielding film, a pickup lens, a microlens array, a light guide plate, an optical fiber, an optical waveguide and the like can be preferably exemplified.
  • the resin of the present invention can be preferably used as a film.
  • a solution casting method and an extrusion molding method are preferably used, and an extrusion molding method is more preferably used.
  • an extrusion molding method is more preferably used.
  • the manufacturing apparatus for manufacturing the film of the present invention using the extrusion molding method a known manufacturing apparatus in this field can be employed.
  • the manufacturing apparatus that can be used in the present invention is not limited to these.
  • the resin composition containing the resin of this invention is first melt-kneaded with a kneader, taken out in a noodle shape and then cut to prepare a pellet-shaped resin composition.
  • the resin composition may contain a stabilizer such as an anti-coloring agent and other additives that do not contradict the spirit of the present invention.
  • the melt kneading temperature is preferably 250 ° C. to 350 ° C., more preferably 260 ° C. to 350 ° C., and particularly preferably 270 ° C. to 340 ° C.
  • the pellet-shaped resin composition is introduced into a melt extruder, the resin composition is supplied to a die installed at the outlet of the melt extruder, the resin composition is melt-extruded from the die, and cast. It is preferable to produce a film by extruding and peeling off on a roll.
  • a well-known melt extruder can be used,
  • a melt extruder can be used.
  • a biaxial extruder is preferable.
  • dye can be used, A T die, a hanger coat die, etc. can be used, It is preferable to use a hanger coat die.
  • the temperature of the resin composition in the melt extruder is preferably 250 ° C. to 350 ° C., more preferably 260 ° C. to 350 ° C., and particularly preferably 270 ° C. to 340 ° C.
  • the time for melt kneading is not particularly limited.
  • the cast roll is not particularly limited, and a known cast roll can be used.
  • the temperature of the cast roll is not particularly limited.
  • the film of the present invention can be stretched.
  • known methods can be used.
  • the film can be stretched by a roll uniaxial stretching method, a tenter uniaxial stretching method, a simultaneous biaxial stretching method, a sequential biaxial stretching method, an inflation method, or a rolling method described in a publication.
  • a stretching method using a tenter will be described as an example.
  • the film is stretched at room temperature or under heating conditions.
  • the film may be stretched uniaxially or biaxially, but biaxial stretching is preferred.
  • the film can be stretched by a treatment during drying, and is particularly effective when the solvent remains.
  • the film is stretched by adjusting the speed of the film transport roller so that the film winding speed is higher than the film peeling speed.
  • the film can also be stretched by conveying the film while holding it with a tenter and gradually widening the width of the tenter. Further, after the film is dried, it can be stretched using a stretching machine (preferably uniaxial stretching using a long stretching machine).
  • the stretching ratio of the film is preferably 0.5 to 300%, more preferably 1 to 200%, and particularly 1 to 100%. Is preferred.
  • the stretching speed is preferably 5% / min to 1000% / min, more preferably 10% / min to 500% / min.
  • the stretching is preferably performed by a heat roll or / and a radiant heat source (such as an IR heater) or warm air. Moreover, you may provide a thermostat in order to improve the uniformity of temperature.
  • the stretching temperature is preferably (Tg-100 ° C) to (Tg + 25 ° C), more preferably (Tg-80 ° C) to (Tg + 20 ° C), based on the glass transition temperature of the resin of the present invention, and (Tg-70 ° C). ) To (Tg + 15 ° C.) are particularly preferable.
  • the film of the present invention may be heat-treated after stretching.
  • the heat treatment temperature is preferably (Tg-100 ° C.) to (Tg + 25 ° C.), more preferably (Tg ⁇ 80 ° C.) to (Tg + 20 ° C.), and (Tg ⁇ 70 ° C.) to (Tg + 15) based on the glass transition temperature Tg. C) is particularly preferred.
  • thermomechanical analysis shows the maximum point in the film of this invention in the temperature more than a glass transition temperature (Tg).
  • Tg glass transition temperature
  • the thermomechanical analysis means an analysis method described in JIS K7197, which is a JIS standard. Further, that the change in length measured by thermomechanical analysis shows a maximum point means the behavior when the length contracts, expands, and further contracts.
  • the film of the present invention preferably has a light transmittance of 400 nm at a film thickness in terms of 100 ⁇ m of 50% or more.
  • the light transmittance is more preferably from 70 to 100%, further preferably from 75 to 100%, particularly preferably from 80 to 100%.
  • the film of the present invention has a coefficient of linear thermal expansion (CTE) of preferably 40 ppm / K or less, more preferably 30 ppm / K or less, and 20 ppm / K or less in any part of the plane. It is particularly preferred.
  • CTE is 40 ppm / K or less
  • stacked on a film there exists an advantage that the generation
  • the linear thermal expansion coefficient referred to in the present invention is a value in a temperature range from 25 ° C. to (Tg-30) ° C.
  • the linear thermal expansion coefficient of the film of the present invention is preferably the above value, and is preferably the above value in both the temperature rising process and the temperature falling process.
  • the difference between the CTE in the temperature raising process and the CTE in the temperature lowering process is preferably 20 ppm / K or less, more preferably 10 ppm / K or less, and particularly preferably 5 ppm / K or less. Since the difference between the CTE in the temperature raising process and the CTE in the temperature lowering process is 20 ppm / K or less, there is an advantage that the deformation amount before and after the heat treatment for raising and lowering the temperature is reduced.
  • Film layer Other layers may be formed on the film surface of the present invention depending on the application. Further, for the purpose of improving the adhesion to other parts, the film surface may be subjected to treatment such as saponification, corona treatment, flame treatment, glow discharge treatment and the like. Further, an anchor layer may be provided on the film surface.
  • a gas barrier layer can be laminated on at least one surface in order to suppress gas permeability.
  • a metal oxide mainly composed of one or more metals selected from the group consisting of silicon, aluminum, magnesium, zinc, zirconium, titanium, yttrium and tantalum, silicon, aluminum, Mention may be made of films formed of metal nitrides of boron or mixtures thereof.
  • the main component is silicon oxide having a ratio of the number of oxygen atoms to the number of silicon atoms of 1.5 to 2.0 in terms of gas barrier properties, transparency, surface smoothness, flexibility, film stress, cost, etc.
  • a film formed of a metal oxide is good.
  • the gas barrier layer made of these inorganic compounds is formed by vapor deposition such as sputtering, vacuum deposition, ion plating, plasma CVD, Cat-CVD, etc., by depositing a material from the vapor phase to form a film. Can be made. Of these, the sputtering method and the Cat-CVD method, which can provide particularly excellent gas barrier properties, are preferable.
  • the temperature may be raised to 50 to 250 ° C. while the gas barrier layer is provided.
  • the thickness of the gas barrier layer is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the gas barrier layer may be provided on the same side or the opposite side to the transparent conductive layer described later.
  • the gas barrier performance of the film of the present invention is preferably 0 to 5 g / m 2 ⁇ day, more preferably 0 to 3 g / m 2 ⁇ day, measured at 40 ° C. and 90% relative humidity. Preferably, it is 0 to 2 g / m 2 ⁇ day.
  • the oxygen permeability measured at 40 ° C. and relative humidity 90% is preferably 0 to 1 ml / m 2 ⁇ day ⁇ atm (0 to 1 ⁇ 10 5 ml / m 2 ⁇ day ⁇ Pa).
  • -0.7 ml / m 2 ⁇ day ⁇ atm (0 to 0.7 ⁇ 10 5 ml / m 2 ⁇ day ⁇ Pa) is more preferable, and 0 to 0.5 ml / m 2 ⁇ day ⁇ atm (0 More preferably, it is ⁇ 0.5 ⁇ 10 5 ml / m 2 ⁇ day ⁇ Pa). If the gas barrier performance is within the above range, for example, when used in an organic EL display device or a liquid crystal display device, it is preferable that deterioration of the EL element due to water vapor and oxygen can be substantially eliminated.
  • the defect compensation layer For the purpose of improving the gas barrier performance, it is preferable to form a defect compensation layer adjacent to the gas barrier layer.
  • the defect compensation layer include (1) an inorganic oxide layer prepared by using a sol-gel method as described in US Pat. No. 6,171,663 and JP-A-2003-94572, and (2) US Pat.
  • the organic material layer described in the specification can be used.
  • These defect compensation layers can be prepared by vapor deposition under vacuum and then curing with ultraviolet rays or electron beams, or by applying and then curing with heating, electron beams, ultraviolet rays or the like.
  • various conventional coating methods such as spray coating, spin coating, and bar coating can be used.
  • the film of the present invention may be provided with an inorganic barrier layer, an organic barrier layer, an organic-inorganic hybrid barrier layer, etc. for the purpose of imparting chemical resistance.
  • a transparent conductive layer may be laminated on at least one side of the film of the present invention.
  • a known metal film, metal oxide film, or the like can be applied as the transparent conductive layer.
  • a metal oxide film having excellent transparency, conductivity, and mechanical properties is preferably used as the transparent conductive layer.
  • the metal oxide film is, for example, a metal oxide film of indium oxide, cadmium oxide or tin oxide to which tin, tellurium, cadmium, molybdenum, tungsten, fluorine, zinc, germanium or the like is added as an impurity; an oxide to which aluminum is added as an impurity Examples thereof include metal oxide films such as zinc and titanium oxide.
  • an indium oxide thin film mainly composed of tin oxide and containing 2 to 15% by mass of zinc oxide is excellent in transparency and conductivity, and is preferably used.
  • These transparent conductive layers can be formed by any method as long as the target thin film can be formed.
  • a vapor deposition method that forms a film by depositing a material from the vapor phase, such as a sputtering method, a vacuum evaporation method, an ion plating method, a plasma CVD method, and a Cat-CVD method, is suitable.
  • the film can be formed by the methods described in Japanese Patent Laid-Open Nos. 2002-322561 and 2002-361774.
  • the sputtering method is preferable from the viewpoint that particularly excellent conductivity and transparency can be obtained.
  • the preferred degree of vacuum of the sputtering method, vacuum deposition method, ion plating method, or plasma CVD method is 0.133 mPa to 6.65 Pa, preferably 0.665 mPa to 1.33 Pa.
  • a surface treatment such as plasma treatment (reverse sputtering) or corona treatment.
  • the temperature may be raised to 50 to 200 ° C. while the transparent conductive layer is provided.
  • the film thickness of the transparent conductive layer thus obtained is preferably 20 to 500 nm, more preferably 50 to 300 nm.
  • the surface electrical resistance of the transparent conductive layer measured at 25 ° C. and 60% relative humidity is preferably 0.1 to 200 ⁇ / ⁇ , more preferably 0.1 to 100 ⁇ / ⁇ . More preferably, it is 0.5 to 60 ⁇ / ⁇ .
  • the light transmittance of the transparent conductive layer is preferably 80% or more, more preferably 83% or more, and further preferably 85% or more.
  • the film of the present invention described above can be used for an image display device.
  • the type of the image display device is not particularly limited, and conventionally known ones can be exemplified.
  • the flat panel display excellent in display quality can be produced using the film of this invention as a board
  • the flat panel display include a liquid crystal display device, a plasma display, organic electroluminescence (EL), inorganic electroluminescence, a fluorescent display tube, a light emitting diode, and a field emission type.
  • a conventional glass substrate has been used. It can be used as a substrate instead of a display-type glass substrate.
  • the film of the present invention can be applied to uses such as solar cells and touch panels in addition to flat panel displays.
  • the touch panel can be applied to, for example, those described in JP-A-5-127822 and JP-A-2002-48913.
  • a thin film transistor TFT can be produced on the film of the present invention.
  • the TFT can be manufactured by a known method disclosed in Japanese Patent Application Laid-Open No. 11-102867, Japanese Patent Application Laid-Open No. 10-512104, and Japanese Patent Application Laid-Open No. 2001-68681.
  • these substrates may have a color filter for color display.
  • the color filter may be manufactured using any method, but is preferably manufactured using a photolithography technique.
  • the TFT produced in the present invention may be an amorphous silicon TFT or a polycrystalline silicon TFT.
  • An annealing method by laser irradiation is preferably used for polycrystallizing amorphous silicon.
  • Examples of the method for forming silicon of the semiconductor layer of the TFT include a sputtering method, a plasma CVD method, an ICP-CVD method, and a Cat-CVD method, but the sputtering method is preferable.
  • the hydrogen concentration in the silicon thin film can be reduced, and peeling of the silicon layer due to laser irradiation for polycrystallization can be prevented.
  • An intrinsic silicon thin film, an impurity silicon thin film, a silicon nitride thin film, a silicon oxide thin film and the like necessary for TFT production can be formed on the film of the present invention by plasma CVD, but the substrate temperature at that time is preferably 250 ° C. or lower. .
  • the pixel electrode can be made of ITO or IZO by sputtering.
  • the heat treatment temperature for lowering the resistivity is preferably 250 ° C. or lower.
  • the structure of the TFT manufactured in the present invention may be any structure such as a channel etching type, an etching stopper type, a top gate type, and a bottom gate type.
  • the resin composition constituting the film is preferably an amorphous polymer in order to achieve optical uniformity. Furthermore, for the purpose of controlling retardation (Re) and its wavelength dispersion, resins having different signs of intrinsic birefringence can be combined, or resins having a large (or small) wavelength dispersion can be combined.
  • the film of the present invention is preferably laminated by combining different resin compositions from the viewpoint of controlling retardation (Re) and improving gas permeability and mechanical properties.
  • a preferred combination of different resin compositions is not particularly limited, and any of the above-described resin compositions can be used.
  • a reflective liquid crystal display device generally has a configuration of a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarizing film in order from the bottom.
  • the film of the present invention can be used as a transparent electrode and / or an upper substrate.
  • the transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a ⁇ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a ⁇ / 4 plate, and It generally has a configuration of a polarizing film.
  • the film of the present invention can be used as an upper transparent electrode and / or an upper substrate.
  • liquid crystal layer is not particularly limited, but TN (Twisted Nematic), IPS (In-Plane Switching), FLC (Ferroelectric Liquid Crystal), AFLC (Anti-ferroelectric Liquid Crystal), OCB (Optically Compensated Bend)
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • FLC Fluoroelectric Liquid Crystal
  • AFLC Anti-ferroelectric Liquid Crystal
  • OCB Optically Compensated Bend
  • Various display modes such as STN (Super Twisted Nematic), VA (Vertically Aligned), and HAN (Hybrid Aligned Nematic) have been proposed. There has also been proposed a display mode in which the display mode is orientation-divided.
  • the film of the present invention is also effective for use in a display mode liquid crystal display device.
  • the present invention is effective when used for any of a transmissive, reflective, and transflective liquid crystal display device.
  • the film of the present invention can be suitably used for organic EL display applications.
  • the specific layer structure of the organic EL display device includes anode / light emitting layer / transparent cathode, anode / light emitting layer / electron transport layer / transparent cathode, anode / hole transport layer / light emitting layer / electron transport layer / transparent cathode, Anode / hole transport layer / light emitting layer / transparent cathode, anode / light emitting layer / electron transport layer / electron injection layer / transparent cathode, anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection Examples include layer / transparent cathode.
  • a direct current which may include an alternating current component if necessary
  • a direct current usually 2 to 40 V
  • a direct current is applied between the anode and the cathode.
  • a direct current usually 2 to 40 V
  • a direct current is applied between the anode and the cathode.
  • US Pat. Nos. 5,828,429 and 6023308, Japanese Patent No. 2784615, and the like can be used.
  • any method such as a color filter method, a three-color independent light emission method, a color conversion method may be used.
  • the liquid crystal display measures and the driving method of the organic EL display device may be either passive matrix or active matrix.
  • the film of the present invention is an optical film, retardation film, polarizing plate protective film, transparent conductive film, substrate for display device, substrate for flexible display, substrate for flat panel display, substrate for solar cell, substrate for touch panel, for flexible circuit It can be used for a substrate, an optical disk protective film and the like.
  • the weight average molecular weight was 100000.
  • the obtained polymer was dissolved in methylene chloride and cast on a glass plate. Thereafter, the glass transition temperature of the film having a thickness of 100 ⁇ m obtained by drying was measured using TMA8310 (manufactured by Rigaku Denki Co., Ltd., ThermoTPlus series), and found to be 219 ° C.
  • Example 1 (Production, stretching and heat treatment) Exemplified compound P-1 was kneaded for 10 minutes using a small amount kneader set at 350 ° C. (product name: MiniLab, manufactured by Haake), taken out in a noodle form, cut with nippers, and a pellet-shaped resin composition was obtained. It was.
  • the pellet-shaped resin composition prepared above was melt-extruded from a hanger die using a biaxial melt extruder adjusted from 280 ° C. (inlet temperature) to 330 ° C. (outlet temperature), and this was set to 120 ° C.
  • the film was produced by extruding and peeling onto a cast roll.
  • the film was cut into a size of 120 mm ⁇ 120 mm and stretched by a simultaneous biaxial stretching machine.
  • the first stage stretching conditions were a chuck distance of 100 mm (both longitudinal and lateral), a resin temperature of 210 ° C., a stretching speed of 100 mm / min, and a stretching distance of 40 mm (both longitudinal and lateral).
  • the stretched film was set in a 120 mm square inner metal frame and heat-treated in a nitrogen atmosphere at 200 ° C. for 24 hours, to obtain a stretched film of Example 1.
  • the draw ratio was 5% to 10% before the breaking elongation.
  • Example 2 to 12 Comparative Examples 1 to 5
  • Example 1 Except for using Exemplified Compounds P-2, P-7, P-9, P-10, P-12 to P-17 and Comparative Polymers 1 to 5, respectively, and changing the draw ratio as described in Table 1 below
  • a biaxially stretched film was produced in the same manner as in Example 1.
  • the draw ratio was 5% to 10% before the breaking elongation.
  • Example 12 a biaxially stretched film was produced using P-13 in the same manner as in Example 8 while reducing the stretch ratio to 30%.
  • Tg ⁇ Glass transition temperature (Tg)> Using a differential scanning calorimeter (DSC6200, manufactured by Seiko Co., Ltd.), the Tg of each film sample was measured in nitrogen at a temperature rising temperature of 10 ° C./min.
  • a film sample (19 mm ⁇ 5 mm) was prepared and measured using TMA (manufactured by Rigaku Corporation, TMA8310). The measurement speed was 3 ° C./min. Three samples were measured and the average value was used. The measurement was performed in a temperature range of 25 ° C. to 300 ° C., and the linear thermal expansion coefficient was calculated in the range of 25 ° C. to 200 ° C. when the temperature was raised. However, for a sample having a glass transition temperature of 200 ° C. or lower, calculation was performed in a temperature range of 25 ° C. to 150 ° C.
  • the films of Examples 1 to 12 have a Tg in a range suitable for melt film formation, a range in which dimensional stability during a heating process laminated with ITO does not deteriorate, and a linear thermal expansion coefficient.
  • the film of Comparative Example 1 was produced using only phenol not having a structure similar to the general formula (1), and although Tg was in a range suitable for melt film formation, The expansion coefficient was large.
  • the film of Comparative Example 2 was produced using phenol in which R 11 to R 18 in the general formula (1) are out of the scope of the present invention, and has a small amount of linear components and a large linear thermal expansion coefficient.
  • the film of Comparative Example 3 was produced using only the dicarboxylic acid not having the structure represented by the general formula (4).
  • the Tg was too high to be suitable for melt film formation, and the transparency was poor. It was.
  • the film of Comparative Example 4 was produced using only phenol that does not have the structure represented by the general formula (3), and because of poor stretchability, the linear thermal expansion coefficient was large.
  • Comparative Example 5 This film was produced using only a dicarboxylic acid not having the structure represented by the general formula (2) and using only a phenol not having the structure represented by the general formula (3). Yes, Tg was too high to be suitable for melt film formation, and the transparency was poor.
  • Examples 101 to 112, Comparative Examples 101 to 105 1. Forming Examples 1-12 of the gas barrier layer, by DC magnetron sputtering on both surfaces of the film of Comparative Examples 1-5, under a vacuum of target the Si0 2 500 Pa, an Ar atmosphere, and sputtering at an output 5 kW, with a gas barrier layer Films of Examples 101 to 112 and Comparative Examples 101 to 105 were obtained.
  • the film thickness of the obtained gas barrier layer was 60 nm.
  • the water vapor permeability at 40 ° C. and 90% relative humidity was 0.1 g / m 2 ⁇ day or less.
  • Examples 201 to 212, Comparative examples 201 to 205 Formation of Transparent Conductive Layer While heating the films of Examples 101 to 112 and Comparative Examples 101 to 105 provided with gas barrier layers to 100 ° C., ITO (In 2 O 3 95% by mass, SnO 2 5% by mass) was used as a target.
  • a film of Examples 201 to 212 and Comparative Examples 201 to 205 was formed on one side by a DC magnetron sputtering method under a vacuum of 0.665 Pa, an Ar atmosphere, an output of 5 kW, and a transparent conductive layer made of an ITO film having a thickness of 140 nm. Respectively.
  • the water vapor permeability of each of the films of Examples 201 to 212 and Comparative Examples 201 to 205 at 40 ° C. and 90% relative humidity is 0.1 g / m 2 ⁇ day or less, and oxygen permeation at 40 ° C. and 90% relative humidity. All the degrees were 0.1 ml / m 2 ⁇ day ⁇ atm or less. Moreover, the surface electrical resistance of ITO at 25 ° C. and a relative humidity of 60% was 30 ⁇ / ⁇ .
  • the films of Examples 101 to 112 and Examples 201 to 212 of the present invention showed no change in gas barrier properties and surface electrical resistance before and after the heat treatment, but the films of Comparative Examples 101 to 105 and 201 to 205 had both physical properties. It was getting worse. This is because the film of the present invention has a small coefficient of linear thermal expansion, so that the difference in expansion from the inorganic layer is small.
  • Organic EL element samples were prepared using the films of Examples 201 to 212 and Comparative Examples 201 to 205 with a transparent conductive layer of the present invention, respectively.
  • Aluminum lead wires were connected from the transparent electrode layers of the films of Examples 201 to 212 and Comparative Examples 201 to 205 in which the transparent conductive layer was formed as described above to form a laminated structure.
  • the surface of the transparent electrode was spin-coated with an aqueous dispersion of polyethylene dioxythiophene / polystyrene sulfonic acid (BAYER, Baytron P: solid content: 1.3% by mass), and then vacuum-dried at 150 ° C. for 2 hours.
  • a hole-transporting organic thin film layer having a thickness of 100 nm was formed. This was designated as substrate X.
  • a coating solution for a light-emitting organic thin film layer having the following composition was formed on one surface of a temporary support made of 188 ⁇ m thick polyethersulfone (Sumilite FS-1300 manufactured by Sumitomo Bakelite Co., Ltd.) using a spin coater.
  • the luminescent organic thin film layer having a thickness of 13 nm was formed on the temporary support by applying and drying at room temperature. This was designated as transfer material Y.
  • the luminescent organic thin film layer side of the transfer material Y is superimposed on the upper surface of the organic thin film layer of the substrate X, heated and pressurized at 160 ° C., 0.3 MPa, 0.05 m / min using a pair of heat rollers, and the temporary support is attached. By peeling off, a light-emitting organic thin film layer was formed on the upper surface of the substrate X. This was designated as substrate XY.
  • a patterned evaporation mask (a mask having a light emission area of 5 mm ⁇ 5 mm) is placed on one side of a polyimide film (UPILEX-50S, manufactured by Ube Industries) having a thickness of 50 ⁇ m cut into a 25 mm square.
  • Al was evaporated in a reduced pressure atmosphere of 1 mPa to form an electrode having a film thickness of 0.3 ⁇ m.
  • Al 2 O 3 target by DC magnetron sputtering the Al 2 O 3 was deposited in the same pattern as the Al layer and the thickness of 3 nm.
  • An aluminum lead wire was connected from the Al electrode to form a laminated structure.
  • a coating solution for an electron transporting organic thin film layer having the following composition is coated on the obtained laminated structure using a spin coater coating machine, and vacuum-dried at 80 ° C. for 2 hours, whereby an electron having a thickness of 15 nm is obtained.
  • a transportable organic thin film layer was formed. This was designated as substrate Z.
  • the electrodes are stacked so that the electrodes face each other with the light-emitting organic thin film layer interposed therebetween, and heated and pressed at 160 ° C., 0.3 MPa, 0.05 m / min using a pair of heat rollers.
  • the organic EL element sample was obtained by bonding.
  • a direct voltage was applied to the organic EL element from the obtained organic EL element sample using a source measure unit 2400 type (manufactured by Toyo Technica Co., Ltd.). It was confirmed that the samples produced using the films of Examples 201 to 212 of the present invention emitted light. On the other hand, the samples prepared using the films of Comparative Examples 201 to 205 emitted light for a moment but stopped emitting light immediately.
  • the films of Examples 201 to 212 of the present invention have a small coefficient of linear thermal expansion, and the inorganic layer was not cracked by heating in the sample preparation process, but the films of Comparative Examples 201 to 205 have a large coefficient of linear thermal expansion. This is because the inorganic layer was heated and cracked.
  • the resin of the present invention has an appropriate glass transition temperature and a low coefficient of linear thermal expansion when performing efficient melt film formation. Moreover, since the film using this resin shows a small linear thermal expansion coefficient, it can be used as a gas barrier film, a transparent conductive film, or a substrate for an image display device.

Abstract

Provided is a polyester resin which has a glass transition temperature suitable for efficient formation of film by a melting process, and which exhibits a low linear thermal expansion coefficient, and excellent stretchability and transparency. Also provided are both an optical element using the polyester resin and a film using the same. The polyester resin has structures represented respectively by general formulae (1), (2), (3) and (4) [wherein R11 to R14 and R21 to R28 are each independently a hydrogen atom or a substituent; at least one of R11 to R14 is a substituent; R15 to R18 are each a hydrogen atom; R31 and R32 are each independently a substituent; m and n are each independently an integer of 0 to 4; X is a divalent connecting group and is not a part of either ring structure; and l is a natural number].

Description

ポリエステル樹脂、並びに、これを用いた光学材料、フィルムおよび画像表示装置Polyester resin, and optical material, film and image display apparatus using the same
 本発明は、溶融製膜し易く、透明性に優れたポリエステル樹脂に関する。また、該ポリエステル樹脂を用いた光学材料やフィルム、特に適度なガラス転移温度を有しており、溶融製膜し易く、線熱膨張係数が小さいフィルム、および該フィルムを用いた画像表示装置に関する。 The present invention relates to a polyester resin that is easily melt-formed and has excellent transparency. The present invention also relates to an optical material or film using the polyester resin, particularly to a film having an appropriate glass transition temperature, easy to melt film formation and having a small linear thermal expansion coefficient, and an image display device using the film.
 無機ガラス材料は、透明性および耐熱性に優れ、かつ光学異方性も小さいことから、透明材料として広く使用されている。しかし、無機ガラスは、成型しにくいことや、比重が大きく、かつ脆いため、成型されたガラス製品は重く、破損しやすい等の欠点を有している。このような欠点から、近年は、無機ガラス材料に代替する樹脂材料の開発が盛んに行われている。 Inorganic glass materials are widely used as transparent materials because they are excellent in transparency and heat resistance and have small optical anisotropy. However, since inorganic glass is difficult to mold and has a large specific gravity and is brittle, the molded glass product is disadvantageous in that it is heavy and easily damaged. Due to such drawbacks, in recent years, development of resin materials that replace inorganic glass materials has been actively conducted.
 こうした無機ガラス材料の代替を目的とした樹脂材料として、例えば、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート等が知られている。これらの樹脂材料は、軽量で力学特性に優れ、かつ加工性にも優れているため、最近では、例えばレンズやフィルムなどの様々な用途に使用されている。 For example, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, and the like are known as resin materials intended to replace such inorganic glass materials. Since these resin materials are lightweight, excellent in mechanical properties, and excellent in processability, they are recently used in various applications such as lenses and films.
 近年、ディスプレイ基板をガラスから樹脂へ代替することが検討されており、特に、ITO(酸化インジウムスズ)をのせることができるような樹脂基板等が求められている。樹脂にすることで、軽量化、耐衝撃性、薄型化できるなどの様々な利点が得られるためである。このような樹脂基板がガラスに代替するためには、ある程度の耐熱性が必要となる。また、樹脂を加熱しながらディスプレイ基板を製造する場合、特に樹脂にITOをのせてからアニールする場合には、フィルム化した際に低い線熱膨張係数を有するようにすることが寸法安定性の観点から求められている。
 一方、樹脂材料をフィルム用途に使用する場合、製造コストの観点から、溶融製膜で製造し易いことが求められる。ここで、樹脂の耐熱性を向上させ過ぎると溶融製膜に高温化が必要となってしまう。また、溶融製膜可能な範囲内であっても加熱に要する製造コストを抑える必要がある。そのため、現実的な温度での溶融製膜が可能な上、加熱に要する製造コストも低い、適度なガラス転移温度(以下、Tgとも言う)を有する樹脂が強く求められている。
 さらに、樹脂材料をフィルム用途に使用する場合には破断伸度などの物理的な強度も高く、延伸性が良好である必要がある。
In recent years, it has been studied to replace the display substrate from glass to resin, and in particular, a resin substrate on which ITO (indium tin oxide) can be placed is required. This is because by using a resin, various advantages such as weight reduction, impact resistance, and reduction in thickness can be obtained. In order to replace such a resin substrate with glass, a certain degree of heat resistance is required. In addition, when manufacturing a display substrate while heating the resin, especially when annealing after placing ITO on the resin, it is necessary to have a low coefficient of linear thermal expansion when formed into a film from the viewpoint of dimensional stability. It is demanded from.
On the other hand, when using a resin material for a film use, it is calculated | required that it is easy to manufacture by melt film forming from a viewpoint of manufacturing cost. Here, if the heat resistance of the resin is improved too much, a high temperature is required for melt film formation. Moreover, it is necessary to suppress the manufacturing cost required for heating even within the range where melt film formation is possible. For this reason, there is a strong demand for a resin having an appropriate glass transition temperature (hereinafter also referred to as Tg) that can be melt-formed at a practical temperature and has a low manufacturing cost for heating.
Further, when the resin material is used for a film, it needs to have high physical strength such as elongation at break and good stretchability.
 耐熱性と低い線熱膨張係数とを両立するために、ビフェノールとジカルボン酸のポリアリレート構造を有する樹脂を用いた低線熱膨張係数のフィルムの検討がされている(特許文献1参照)。しかし、特許文献1には、溶媒に樹脂を溶解させて溶液流延によりポリエステル樹脂を製造する溶液製膜法しか開示されていなかった。また、同文献にはジカルボン酸成分としてイソフタル酸等のイソジカルボン酸成分を、テレフタル酸成分と併用した例(テレフタル酸とイソフタル酸の併用系や、テレフタル酸、イソフタル酸およびナフタレンジカルボン酸の併用系等)は開示されていなかった。 In order to achieve both heat resistance and a low linear thermal expansion coefficient, a low linear thermal expansion coefficient film using a resin having a polyarylate structure of biphenol and dicarboxylic acid has been studied (see Patent Document 1). However, Patent Document 1 discloses only a solution casting method in which a resin is dissolved in a solvent and a polyester resin is produced by solution casting. In addition, in this document, an example of using an isodicarboxylic acid component such as isophthalic acid as a dicarboxylic acid component in combination with a terephthalic acid component (a combined system of terephthalic acid and isophthalic acid, or a combined system of terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid) Etc.) was not disclosed.
 なお、特許文献1以外のビフェノールとジカルボン酸のポリアリレート構造を有する樹脂も知られているが、低線熱膨張係数化や溶融製膜性については特に検討されていなかった(例えば、特許文献2および3参照)。 A resin having a polyarylate structure of biphenol and dicarboxylic acid other than Patent Document 1 is also known, but the low linear thermal expansion coefficient and melt film-forming property have not been particularly studied (for example, Patent Document 2). And 3).
特開2007-254663号公報JP 2007-254663 A 特開平10-017658号公報Japanese Patent Laid-Open No. 10-017658 特開昭58-180525号公報JP 58-180525 A
 本発明者らは、上記すべての要求特性を満足する樹脂を得ることを課題として研究をおこなった。
 しかしながら、特許文献1に記載の樹脂は、製造コストの観点から満足いくものではなかった。すなわち、特許文献1に記載の樹脂は耐熱性と、該樹脂を用いたフィルムの低線熱膨張係数化との両立をある程度達成していたものの、同文献の実施例に記載のポリエステル樹脂はいずれもTgが高く、溶融製膜を行う観点からは満足いくものではなかった。
 また、特許文献2に記載の特定の構造のビフェノールを含有する樹脂について本発明者らが検討したところ、確かに溶媒への溶解性は良好であるため界面重合法には適していたものの、線熱膨張係数が高すぎるためにポリエステル樹脂フィルムをITOなどと積層してアニールするプロセスの際にその寸法安定性が悪化してしまい、得られる画像表示装置の性能劣化につながることがわかった。
 したがって、効率的な溶融製膜を行う際に適度なガラス転移温度を有し、フィルム化した際に低い線熱膨張係数を有する樹脂の開発が望まれていた。
The inventors of the present invention have studied the problem of obtaining a resin that satisfies all the above required characteristics.
However, the resin described in Patent Document 1 is not satisfactory from the viewpoint of manufacturing cost. That is, although the resin described in Patent Document 1 has achieved both the heat resistance and the low linear thermal expansion coefficient of the film using the resin to some extent, the polyester resin described in the example of the same document is However, it was not satisfactory from the viewpoint of melt film formation.
In addition, when the present inventors examined a resin containing a biphenol having a specific structure described in Patent Document 2, it was certainly suitable for the interfacial polymerization method because of its good solubility in a solvent. It has been found that since the thermal expansion coefficient is too high, the dimensional stability is deteriorated during the process of laminating and annealing the polyester resin film with ITO or the like, leading to performance deterioration of the obtained image display device.
Therefore, it has been desired to develop a resin having an appropriate glass transition temperature when performing efficient melt film formation and having a low linear thermal expansion coefficient when formed into a film.
 本発明は上記すべての特性を満足する樹脂を得ることを課題としたものである。すなわち、本発明は、効率的な溶融製膜を行う際に適度なガラス転移温度を有し、低い線熱膨張係数を有し、延伸性と透明性が良好であるポリエステル樹脂、およびそれを用いた光学部品、フィルムを提供することを目的とする。またこのフィルムを用いた画像表示装置を提供することを目的とする。 The object of the present invention is to obtain a resin satisfying all the above-mentioned characteristics. That is, the present invention relates to a polyester resin having an appropriate glass transition temperature, a low coefficient of linear thermal expansion, good stretchability and transparency when performing efficient melt film formation, and the use thereof. An object of the present invention is to provide optical parts and films. Moreover, it aims at providing the image display apparatus using this film.
 本発明者らは、鋭意研究を重ねた結果、以下の構成によって上記課題が達成されることを見出した。 As a result of intensive studies, the present inventors have found that the above-described problem can be achieved by the following configuration.
[1] 下記一般式(1)で表される構造、下記一般式(2)で表される構造、下記一般式(3)で表される構造および下記一般式(4)で表される構造を含有することを特徴とするポリエステル樹脂。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、R11~R14はそれぞれ独立に水素原子または置換基を表す。ただし、R11~R14の少なくとも1つは置換基である。R15~R18は水素原子を表す。)
Figure JPOXMLDOC01-appb-C000002
(一般式(2)中、R21~R24はそれぞれ独立に水素原子または置換基を表し、lは自然数を表す。)
Figure JPOXMLDOC01-appb-C000003
(一般式(3)中、R31およびR32はそれぞれ独立に置換基を表し、mおよびnはそれぞれ独立に0~4の整数を表し、Xは2価の連結基を表す。ただし、Xは環構造の一部ではない。)
Figure JPOXMLDOC01-appb-C000004
(一般式(4)中、R25~R28はそれぞれ独立に水素原子または置換基を表す。)
[2] 前記一般式(1)において、前記R11~R14の少なくとも1つがハロゲン原子、アルキル基、シアノ基またはアルコキシ基であることを特徴とする[1]に記載のポリエステル樹脂。
[3] 前記一般式(1)において、前記R11~R14の少なくとも1つが塩素原子、メチル基またはメトキシ基であることを特徴とする[1]に記載のポリエステル樹脂。
[4] 下記式(A)を満たすことを特徴とする[1]~[3]のいずれか一項に記載のポリエステル樹脂。
 a+0.5×c ≧ 70  ・・・(A)
(式(A)中、aはポリエステル樹脂中に含まれる全ての芳香族ジオール由来の構造に対する前記一般式(1)で表される芳香族ジオール由来の構造の含有率(単位:モル%)を表し、cはポリエステル樹脂中に含まれる全てのジカルボン酸由来の構造に対する前記一般式(2)で表されるジカルボン酸由来の構造の含有率(単位:モル%)を表す。)
[5]下記一般式(5)で表される構造を含有することを特徴とする[1]~[4]のいずれか一項に記載のポリエステル樹脂。
Figure JPOXMLDOC01-appb-C000005
(一般式(5)中、R41およびR42はそれぞれ独立に置換基を表し、pおよびqはそれぞれ独立に0~3の整数を表す。)
[6] ポリエステル樹脂を厚み100μmの膜としたときの400nmの波長の光線透過率が50%以上であることを特徴とする[1]~[5]のいずれか1項に記載のポリエステル樹脂。
[7] ガラス転移温度(Tg)が170℃以上であることを特徴とする[1]~[6]のいずれか1項に記載のポリエステル樹脂。
[8] ガラス転移温度(Tg)が250℃以下であることを特徴とする[1]~[7]のいずれか1項に記載のポリエステル樹脂。
[9] 前記一般式(2)で表される構造の重量が前記一般式(4)で表される構造の重量よりも大きいことを特徴とする[1]~[8]のいずれか1項に記載のポリエステル樹脂。
[10] [1]~[9]のいずれか1項に記載のポリエステル樹脂を含むことを特徴とする光学材料。
[11] [1]~[9]のいずれか1項に記載のポリエステル樹脂を含むことを特徴とするフィルム。
[12] 線熱膨張係数が40ppm/K以下であることを特徴とする[11]に記載のフィルム。
[13] ガスバリア層を設けたことを特徴とする[11]または[12]に記載のフィルム。
[14] 透明導電層を設けたことを特徴とする[11]~[13]のいずれか1項に記載のフィルム。
[15] [11]~[14]のいずれか1項に記載のフィルムを少なくとも1枚用いたことを特徴とする画像表示装置。
[1] A structure represented by the following general formula (1), a structure represented by the following general formula (2), a structure represented by the following general formula (3), and a structure represented by the following general formula (4) Polyester resin characterized by containing.
Figure JPOXMLDOC01-appb-C000001
(In the general formula (1), R 11 to R 14 each independently represents a hydrogen atom or a substituent, provided that at least one of R 11 to R 14 is a substituent. R 15 to R 18 are hydrogen atoms. Represents.)
Figure JPOXMLDOC01-appb-C000002
(In the general formula (2), R 21 to R 24 each independently represents a hydrogen atom or a substituent, and l represents a natural number.)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (3), R 31 and R 32 each independently represent a substituent, m and n each independently represent an integer of 0 to 4, and X represents a divalent linking group, provided that X Is not part of the ring structure.)
Figure JPOXMLDOC01-appb-C000004
(In the general formula (4), R 25 to R 28 each independently represents a hydrogen atom or a substituent.)
[2] The polyester resin according to [1], wherein in the general formula (1), at least one of R 11 to R 14 is a halogen atom, an alkyl group, a cyano group, or an alkoxy group.
[3] The polyester resin according to [1], wherein in the general formula (1), at least one of R 11 to R 14 is a chlorine atom, a methyl group, or a methoxy group.
[4] The polyester resin according to any one of [1] to [3], which satisfies the following formula (A):
a + 0.5 × c ≧ 70 (A)
(In formula (A), a is the content (unit: mol%) of the structure derived from the aromatic diol represented by the general formula (1) with respect to the structure derived from all aromatic diols contained in the polyester resin. And c represents the content (unit: mol%) of the structure derived from the dicarboxylic acid represented by the general formula (2) with respect to all the structures derived from the dicarboxylic acid contained in the polyester resin.
[5] The polyester resin according to any one of [1] to [4], which contains a structure represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000005
(In the general formula (5), R 41 and R 42 each independently represent a substituent, and p and q each independently represents an integer of 0 to 3.)
[6] The polyester resin according to any one of [1] to [5], wherein the light transmittance at a wavelength of 400 nm is 50% or more when the polyester resin is a film having a thickness of 100 μm.
[7] The polyester resin according to any one of [1] to [6], wherein the glass transition temperature (Tg) is 170 ° C. or higher.
[8] The polyester resin according to any one of [1] to [7], wherein the glass transition temperature (Tg) is 250 ° C. or lower.
[9] Any one of [1] to [8], wherein the weight of the structure represented by the general formula (2) is greater than the weight of the structure represented by the general formula (4). The polyester resin as described in.
[10] An optical material comprising the polyester resin according to any one of [1] to [9].
[11] A film comprising the polyester resin according to any one of [1] to [9].
[12] The film according to [11], wherein the linear thermal expansion coefficient is 40 ppm / K or less.
[13] The film according to [11] or [12], wherein a gas barrier layer is provided.
[14] The film according to any one of [11] to [13], wherein a transparent conductive layer is provided.
[15] An image display device comprising at least one film according to any one of [11] to [14].
 本発明によれば、効率的な溶融製膜を行う際に適度なガラス転移温度を有し、低い線熱膨張係数を有し、延伸性と透明性が良好であるポリエステル樹脂、およびそれを用いた光学部品、フィルム、並びに、該フィルムを用いた画像表示装置を提供することができる。また、本発明のポリエステル樹脂はディスプレイ基板を製造する場合、特に樹脂にITOをのせてアニールする場合において十分な耐熱性も有する。さらに、本発明のポリエステル樹脂は成形時の透明性も優れており、光学部品、フィルムおよび画像表示装置に好適に用いることができる。 According to the present invention, a polyester resin having an appropriate glass transition temperature, a low coefficient of linear thermal expansion, good stretchability and transparency when performing efficient melt film formation, and use thereof It is possible to provide an optical component, a film, and an image display device using the film. The polyester resin of the present invention also has sufficient heat resistance when manufacturing a display substrate, particularly when annealing is performed by placing ITO on the resin. Furthermore, the polyester resin of the present invention has excellent transparency during molding, and can be suitably used for optical parts, films and image display devices.
 以下において、本発明のポリエステル樹脂、フィルムおよび画像表示装置について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the polyester resin, film and image display device of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[ポリエステル樹脂]
 本発明のポリエステル樹脂(以下、本発明の樹脂とも言う)は、下記一般式(1)で表される構造、下記一般式(2)で表される構造、下記一般式(3)で表される構造および下記一般式(4)で表される構造を含有することを特徴とする。以下、一般式(1)から順に本発明の樹脂の特徴を説明する。
[Polyester resin]
The polyester resin of the present invention (hereinafter also referred to as the resin of the present invention) is represented by the structure represented by the following general formula (1), the structure represented by the following general formula (2), and the following general formula (3). And a structure represented by the following general formula (4). Hereinafter, the characteristics of the resin of the present invention will be described in order from the general formula (1).
(一般式(1)で表される構造)
 本発明のポリエステル樹脂は、下記一般式(1)で表される構造を含有する。本発明のポリエステル樹脂は、前記一般式(1)で表される構造を、前記一般式(3)で表される構造および前記一般式(4)で表される構造と同時に含有することで、溶融製膜性と低線熱膨張係数とを両立することができる。
Figure JPOXMLDOC01-appb-C000006
(Structure represented by general formula (1))
The polyester resin of the present invention contains a structure represented by the following general formula (1). The polyester resin of the present invention contains the structure represented by the general formula (1) simultaneously with the structure represented by the general formula (3) and the structure represented by the general formula (4). It is possible to achieve both melt film-forming properties and a low linear thermal expansion coefficient.
Figure JPOXMLDOC01-appb-C000006
 前記一般式(1)中、R11~R14はそれぞれ独立に水素原子または置換基を表す。ただし、R11~R14の少なくとも1つは置換基である。R15~R18は水素原子を表す。
 本発明のポリエステル樹脂は前記R11~R14の少なくとも1つは置換基であるため、本発明のポリエステル樹脂は高温に加熱しなくても溶融することができ、ジクロロメタン等の溶媒への可溶性の観点からも好ましい。
 前記一般式(1)中、R11~R14で表される好ましい置換基としては、アルキル基(炭素数1~10が好ましく、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基など)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子など)、アリール基(炭素数6~20が好ましく、例えば、フェニル基、ビフェニル基、ナフチル基など)、アルコキシ基(炭素数1~10が好ましく、例えば、メトキシ基、エトキシ基、イソプロポキシ基など)、アシル基(炭素数2~10が好ましく、例えば、アセチル基、プロピオニル基、ブチリル基など)、アシルアミノ基(炭素数1~10が好ましく、例えば、ホルミルアミノ基、アセチルアミノ基など)、ニトロ基、シアノ基およびこれらを組み合わせた基などが挙げられる。より好ましくはアルキル基、ハロゲン原子、アリール基、アルコキシ基、シアノ基、ニトロ基であり、特に好ましくは前記R11~R14の少なくとも1つがハロゲン原子、アルキル基、シアノ基またはアルコキシ基であり、より特に好ましくは塩素原子、メチル基またはメトキシ基である。溶解性、溶融性と耐熱性、線熱膨張係数の両立の点から、メチル基および塩素原子が好ましい。
 前記一般式(1)中、R11~R14のうち、2つが置換基であり、残りの2つが水素原子であることが好ましい。また、その場合、2つの置換基の位置は、R11とR14の2ヶ所、または、R12とR13の2ヶ所であることが好ましい。
In the general formula (1), R 11 to R 14 each independently represents a hydrogen atom or a substituent. However, at least one of R 11 to R 14 is a substituent. R 15 to R 18 represent a hydrogen atom.
In the polyester resin of the present invention, since at least one of R 11 to R 14 is a substituent, the polyester resin of the present invention can be melted without being heated to a high temperature and is soluble in a solvent such as dichloromethane. It is also preferable from the viewpoint.
In the general formula (1), preferred substituents represented by R 11 to R 14 are alkyl groups (preferably having 1 to 10 carbon atoms, such as methyl group, ethyl group, isopropyl group, tert-butyl group, etc. ), Halogen atoms (for example, chlorine atom, bromine atom, iodine atom and the like), aryl groups (preferably having 6 to 20 carbon atoms, for example, phenyl group, biphenyl group, naphthyl group and the like), alkoxy groups (having 1 to 10 carbon atoms). For example, a methoxy group, an ethoxy group, an isopropoxy group, etc.), an acyl group (preferably having 2 to 10 carbon atoms, for example, an acetyl group, a propionyl group, a butyryl group, etc.), an acylamino group (having 1 to 10 carbon atoms). Preferably, for example, a formylamino group, an acetylamino group, etc.), a nitro group, a cyano group, and a combination of these . More preferably an alkyl group, a halogen atom, an aryl group, an alkoxy group, a cyano group, or a nitro group, and particularly preferably at least one of the R 11 to R 14 is a halogen atom, an alkyl group, a cyano group, or an alkoxy group, More particularly preferred is a chlorine atom, a methyl group or a methoxy group. A methyl group and a chlorine atom are preferable from the viewpoint of compatibility between solubility, meltability and heat resistance, and linear thermal expansion coefficient.
In the general formula (1), it is preferable that two of R 11 to R 14 are substituents, and the remaining two are hydrogen atoms. In this case, the positions of the two substituents are preferably two positions R 11 and R 14 or two positions R 12 and R 13 .
 以下に一般式(1)の具体例を示すが、本発明で用いることができる一般式(1)で表される構造はこれらに限定されるものではない。 Specific examples of general formula (1) are shown below, but the structure represented by general formula (1) that can be used in the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(一般式(2)で表される構造)
 本発明のポリエステル樹脂は、一般式(2)で表される構造を含有する。
Figure JPOXMLDOC01-appb-C000009
(Structure represented by general formula (2))
The polyester resin of the present invention contains a structure represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000009
 一般式(2)中、R21~R24はそれぞれ独立に水素原子または置換基を表し、lは自然数を表す。前記R21~R24として好ましい置換基は、上記R11~R18で表される好ましい置換基と同様である。また、R21~R24は水素原子であることが特に好ましい。 In the general formula (2), R 21 to R 24 each independently represents a hydrogen atom or a substituent, and l represents a natural number. Preferred substituents for R 21 to R 24 are the same as the preferred substituents represented by R 11 to R 18 . R 21 to R 24 are particularly preferably hydrogen atoms.
 前記lは1~3であることが好ましく、1~2であることがより好ましい。前記lが3以下であれば溶解性および溶融製が良好となり、フィルム透明性も良好となる。なお、前記lが2である場合はビフェニル構造を表し、前記lが3である場合はターフェニル構造を表す。また、前記lが2以上である場合、複数のR21~R24はそれぞれ独立に水素原子または置換基を表す。 The l is preferably 1 to 3, and more preferably 1 to 2. When the l is 3 or less, the solubility and the melt production are good, and the film transparency is also good. When l is 2, it represents a biphenyl structure, and when l is 3, it represents a terphenyl structure. When l is 2 or more, the plurality of R 21 to R 24 each independently represents a hydrogen atom or a substituent.
(一般式(3)で表される構造)
 本発明のポリエステル樹脂は、一般式(3)で表される構造を含有する。本発明のポリエステル樹脂は、前記一般式(1)および(2)で表される直線構造の成分に加え、さらに比較的屈曲が可能な構造である前記一般式(3)で表される構造(屈曲成分)を有することにより、溶融製膜性と低線熱膨張係数を両立しつつ、延伸性も良好である。
Figure JPOXMLDOC01-appb-C000010
(Structure represented by the general formula (3))
The polyester resin of the present invention contains a structure represented by the general formula (3). The polyester resin of the present invention has a structure represented by the general formula (3) which is a structure that can be bent relatively in addition to the components of the linear structure represented by the general formulas (1) and (2). By having a bending component), the film-forming property and the low linear thermal expansion coefficient are compatible, and the stretchability is also good.
Figure JPOXMLDOC01-appb-C000010
 前記一般式(3)中、R31およびR32はそれぞれ独立に置換基を表し、mおよびnはそれぞれ独立に0~4の整数を表し、Xは2価の連結基を表す。ただし、Xは環構造の一部ではない。
 一般式(3)中の好ましいR31およびR32としては、アルキル基(炭素数1~10が好ましく、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基など)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子など)、アリール基(炭素数6~20が好ましく、例えば、フェニル基、ビフェニル基、ナフチル基など)、アルコキシ基(炭素数1~10が好ましく、例えば、メトキシ基、エトキシ基、イソプロポキシ基など)、アシル基(炭素数2~10が好ましく、例えば、アセチル基、プロピオニル基、ブチリル基など)、アシルアミノ基(炭素数1~10が好ましく、例えば、ホルミルアミノ基、アセチルアミノ基など)、ニトロ基、シアノ基などが挙げられる。より好ましくはアルキル基、ハロゲン原子、アリール基、アルコキシ基、ニトロ基であり、特に好ましくは、アルキル基、ハロゲン原子である。前記4であることが好ましく、0~2であることがより好ましく、0~1であることが特に好ましい。前記nは、0~4であることが好ましく、0~2であることがより好ましく、0~1であることが特に好ましい。
In the general formula (3), R 31 and R 32 each independently represent a substituent, m and n each independently represent an integer of 0 to 4, and X represents a divalent linking group. However, X is not part of the ring structure.
Preferable R 31 and R 32 in the general formula (3) are an alkyl group (preferably having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group), a halogen atom (for example, A chlorine atom, a bromine atom, an iodine atom, etc.), an aryl group (preferably having 6 to 20 carbon atoms, for example, a phenyl group, a biphenyl group, a naphthyl group, etc.), an alkoxy group (preferably having 1 to 10 carbon atoms, for example, a methoxy group) , Ethoxy group, isopropoxy group and the like), acyl group (preferably having 2 to 10 carbon atoms, for example, acetyl group, propionyl group, butyryl group and the like), acylamino group (preferably having 1 to 10 carbon atoms, for example, formylamino group) And acetylamino group), nitro group, cyano group and the like. More preferred are an alkyl group, a halogen atom, an aryl group, an alkoxy group, and a nitro group, and particularly preferred are an alkyl group and a halogen atom. The above 4 is preferable, 0 to 2 is more preferable, and 0 to 1 is particularly preferable. N is preferably 0 to 4, more preferably 0 to 2, and particularly preferably 0 to 1.
 また、一般式(3)中、Xは2価の連結基を表す。前記Xの例としては、アルキレン基、アルキリデン基、パーフルオロアルキリデン基、酸素原子、硫黄原子、ケトン基、スルホニル基、-NR’-(R’は水素原子または炭素数1~6のアルキル基)、-CO-NH-が挙げられ、好ましくはアルキリデン基、酸素原子、硫黄原子、ケトン基、アミノ基、スルホニル基であり、特に好ましくは、イソプロピリデン、酸素原子である。ただし、Xは環構造の一部ではない。ここで、環構造の一部でないとは、X自体が環を含む連結基であることがなく、前記Xが一般式(3)におけるXの両側に連結しているベンゼン環の一方および/または両方と融合環を作ることがなく、前記Xが前記R31および/またはR32と融合環を作ることがないことを意味する。
 前記Xは、置換基または無置換の炭素原子、酸素原子、硫黄原子であることが好ましく、置換基または無置換の炭素原子であることがより好ましく、アルキル基置換の炭素原子であることが特に好ましく、ジメチル置換の炭素原子であることがより特に好ましい。
In general formula (3), X represents a divalent linking group. Examples of X include an alkylene group, an alkylidene group, a perfluoroalkylidene group, an oxygen atom, a sulfur atom, a ketone group, a sulfonyl group, and —NR′— (R ′ is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms). -CO-NH- are preferable, and an alkylidene group, an oxygen atom, a sulfur atom, a ketone group, an amino group, and a sulfonyl group are preferable, and isopropylidene and an oxygen atom are particularly preferable. However, X is not part of the ring structure. Here, not being a part of the ring structure means that X itself is not a linking group containing a ring, and X is one of benzene rings connected to both sides of X in formula (3) and / or It means that X does not form a fused ring with R 31 and / or R 32 without creating a fused ring with both.
X is preferably a substituted or unsubstituted carbon atom, oxygen atom or sulfur atom, more preferably a substituted or unsubstituted carbon atom, and particularly preferably an alkyl group-substituted carbon atom. Preferably, it is a dimethyl-substituted carbon atom, and more particularly preferred.
 一般式(3)中、2つの酸素原子連結基の結合位置はベンゼン環のどこでもよい。その中でも、2つの酸素原子連結基の結合位置はベンゼン環の4位と4’位であることが好ましい。 In general formula (3), the bonding position of the two oxygen atom linking groups may be anywhere on the benzene ring. Among them, the bonding positions of the two oxygen atom linking groups are preferably the 4th and 4 'positions of the benzene ring.
 以下に一般式(3)で表される構造の具体例(3-1)~(3-22)を示すが、本発明で用いることができる一般式(3)で表される構造はこれらに限定されるものではない。 Specific examples (3-1) to (3-22) of the structure represented by the general formula (3) are shown below, but the structure represented by the general formula (3) that can be used in the present invention includes these. It is not limited.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(一般式(4)で表される構造)
 本発明のポリエステル樹脂は、一般式(4)で表される構造を含有する。
Figure JPOXMLDOC01-appb-C000013
(一般式(4)中、R25~R28はそれぞれ独立に水素原子または置換基を表す。)
(Structure represented by formula (4))
The polyester resin of the present invention contains a structure represented by the general formula (4).
Figure JPOXMLDOC01-appb-C000013
(In the general formula (4), R 25 to R 28 each independently represents a hydrogen atom or a substituent.)
 前記一般式(4)中、R25~R28はそれぞれ独立に水素原子または置換基を表す。
 前記R25~R28で表される好ましい置換基は、上記R11~R18で表される好ましい置換基と同様である。
In the general formula (4), R 25 to R 28 each independently represents a hydrogen atom or a substituent.
The preferred substituents represented by R 25 to R 28 are the same as the preferred substituents represented by R 11 to R 18 .
(その他の構造)
 本発明の樹脂中には、主鎖にエステル結合が含有される。また、本発明の樹脂中には、エステル結合以外に、エーテル結合、カーボネート結合、スルホン結合、ケトン結合、イミド結合、アミド結合、ウレタン結合、ウレア結合を単種もしくは複数種含有していてもよい。
(Other structures)
The resin of the present invention contains an ester bond in the main chain. In addition to the ester bond, the resin of the present invention may contain one or more of an ether bond, a carbonate bond, a sulfone bond, a ketone bond, an imide bond, an amide bond, a urethane bond, and a urea bond. .
 本発明のポリエステル樹脂は、下記一般式(5)で表される構造を含有することが、Tgを高める方向に微調整し、より溶融製膜性を良好にする観点から好ましい。
Figure JPOXMLDOC01-appb-C000014
(一般式(5)中、R41およびR42はそれぞれ独立に置換基を表し、pおよびqはそれぞれ独立に0~3の整数を表す。)
The polyester resin of the present invention preferably contains a structure represented by the following general formula (5) from the viewpoint of finely adjusting in the direction of increasing Tg and improving the melt film forming property.
Figure JPOXMLDOC01-appb-C000014
(In the general formula (5), R 41 and R 42 each independently represent a substituent, and p and q each independently represents an integer of 0 to 3.)
 また、一般式(5)中の好ましい置換基としては、アルキル基(炭素数1~10が好ましく、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基など)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子など)、アリール基(炭素数6~20が好ましく、例えば、フェニル基、ビフェニル基、ナフチル基など)、アルコキシ基(炭素数1~10が好ましく、例えば、メトキシ基、エトキシ基、イソプロポキシ基など)、アシル基(炭素数2~10が好ましく、例えば、アセチル基、プロピオニル基、ブチリル基など)、アシルアミノ基(炭素数1~10が好ましく、例えば、ホルミルアミノ基、アセチルアミノ基など)、ニトロ基、シアノ基などが挙げられる。より好ましくはアルキル基、ハロゲン原子、アリール基、アルコキシ基、ニトロ基であり、特に好ましくは、アルキル基、ハロゲン原子である。 In addition, as a preferable substituent in the general formula (5), an alkyl group (preferably having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group), a halogen atom (for example, chlorine) Atoms, bromine atoms, iodine atoms, etc.), aryl groups (preferably having 6 to 20 carbon atoms, such as phenyl group, biphenyl group, naphthyl group, etc.), alkoxy groups (preferably having 1 to 10 carbon atoms, such as methoxy group, Ethoxy group, isopropoxy group and the like), acyl group (preferably having 2 to 10 carbon atoms, such as acetyl group, propionyl group and butyryl group), acylamino group (preferably having 1 to 10 carbon atoms, such as formylamino group, Acetylamino group), nitro group, cyano group and the like. More preferred are an alkyl group, a halogen atom, an aryl group, an alkoxy group, and a nitro group, and particularly preferred are an alkyl group and a halogen atom.
 一般式(5)において、カルボニル基が連結する位置は、ナフタレン環のどの炭素でもよく、一つの環に二つのカルボニル基が連結していてもよい。カルボニル基の連結位置として好ましくは、2位または3位に一つと、6位または7位とに一つ結合することが好ましく、2位と6位とに一つずつ結合することがさらに好ましい。
 また、pおよびqはそれぞれ独立に0~3の整数を表し、pとしては0~2の整数が好ましく、qとしては0~2の整数が好ましい。
In the general formula (5), the position at which the carbonyl group is linked may be any carbon of the naphthalene ring, and two carbonyl groups may be linked to one ring. The carbonyl group is preferably bonded at the 2nd or 3rd position and preferably at the 6th or 7th position, and more preferably at the 2nd or 6th position.
P and q each independently represents an integer of 0 to 3, p is preferably an integer of 0 to 2, and q is preferably an integer of 0 to 2.
 以下に一般式(5)で表される構造の具体例を示すが、本発明で用いることができる一般式(5)で表される構造はこれらに限定されるものではない。 Specific examples of the structure represented by the general formula (5) are shown below, but the structure represented by the general formula (5) that can be used in the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(樹脂中の各構造の割合)
 本発明のポリエステル樹脂は、下記式(A)を満たすことが、線熱膨張係数を下げる観点から好ましい。
 a+0.5×c ≧ 70  ・・・(A)
(式(A)中、aはポリエステル樹脂中に含まれる全ての芳香族ジオール由来の構造に対する前記一般式(1)で表される芳香族ジオール由来の構造の含有率(単位:モル%)を表し、cはポリエステル樹脂中に含まれる全てのジカルボン酸由来の構造に対する前記一般式(2)で表されるジカルボン酸由来の構造の含有率(単位:モル%)を表す。)
 本明細書中、前記芳香族ジオール由来の構造とは、例えば前記一般式(1)で表される構造、前記一般式(3)で表される構造などを含む。
 本明細書中、前記ジカルボン酸由来の構造とは、例えば前記一般式(2)で表される構造、前記一般式(4)で表される構造および前記一般式(5)で表される構造などを含む。
 以下、前記式(A)の左辺、すなわちa+0.5×cの値を直線成分量とも言う。
 ここで、前記直線成分量の式(A)におけるaとcの係数は、具体的にはフェニレン基1つにつき0.5の直線成分があると仮定してそれぞれ1と0.5という係数を決定した。前記直線成分量の式(A)の数式的な意味は、一軸延伸して得られたフィルムの線熱膨張係数と関係がある。
 前記直線成分量、すなわち前記式(A)の左辺の値は、80~120であることがより好ましく、90~120であることが特に好ましい。
(Ratio of each structure in the resin)
The polyester resin of the present invention preferably satisfies the following formula (A) from the viewpoint of reducing the linear thermal expansion coefficient.
a + 0.5 × c ≧ 70 (A)
(In formula (A), a is the content (unit: mol%) of the structure derived from the aromatic diol represented by the general formula (1) with respect to the structure derived from all aromatic diols contained in the polyester resin. And c represents the content (unit: mol%) of the structure derived from the dicarboxylic acid represented by the general formula (2) with respect to all the structures derived from the dicarboxylic acid contained in the polyester resin.
In the present specification, the structure derived from the aromatic diol includes, for example, a structure represented by the general formula (1), a structure represented by the general formula (3), and the like.
In the present specification, the structure derived from the dicarboxylic acid is, for example, a structure represented by the general formula (2), a structure represented by the general formula (4), and a structure represented by the general formula (5). Etc.
Hereinafter, the left side of the formula (A), that is, the value of a + 0.5 × c is also referred to as a linear component amount.
Here, the coefficients of a and c in the formula (A) of the linear component amount are specifically set to coefficients of 1 and 0.5, respectively, assuming that there is a linear component of 0.5 per phenylene group. Were determined. The mathematical meaning of the linear component amount formula (A) is related to the linear thermal expansion coefficient of a film obtained by uniaxial stretching.
The linear component amount, that is, the value on the left side of the formula (A) is more preferably 80 to 120, and particularly preferably 90 to 120.
 本発明のポリエステル樹脂は、前記一般式(2)で表される構造の重量が前記一般式(4)で表される構造の重量よりも大きいことが好ましい。
 前記一般式(2)で表される構造と前記一般式(4)で表される構造の重量比は、55:45~85:15であることが好ましく、55:45~75:25であることがより好ましく、60:40~75:25であることが特に好ましい。前記一般式(2)で表される構造と前記一般式(4)で表される構造の重量比が55:45~85:15であると、線熱膨張係数が低くなるため、好ましい。
 特に、前記一般式(2)で表される構造と前記一般式(4)で表される構造の重量比が55:45以上であれば線熱膨張係数が小さくなり好ましく、85:15以下であれば溶融温度が高くなり過ぎず、溶融が容易となり、溶融後に得られるフィルムは白濁しにくくなるため好ましい。
In the polyester resin of the present invention, the weight of the structure represented by the general formula (2) is preferably larger than the weight of the structure represented by the general formula (4).
The weight ratio of the structure represented by the general formula (2) and the structure represented by the general formula (4) is preferably 55:45 to 85:15, and 55:45 to 75:25. More preferably, it is particularly preferably 60:40 to 75:25. It is preferable that the weight ratio of the structure represented by the general formula (2) and the structure represented by the general formula (4) is 55:45 to 85:15 because the linear thermal expansion coefficient is low.
In particular, if the weight ratio of the structure represented by the general formula (2) and the structure represented by the general formula (4) is 55:45 or more, the linear thermal expansion coefficient is preferably small, and the weight ratio is 85:15 or less. If so, the melting temperature does not become excessively high, melting becomes easy, and the film obtained after melting is less likely to become cloudy, which is preferable.
 一方、本発明のポリエステル樹脂は、前記一般式(2)で表される構造の重量が前記一般式(4)で表される構造の重量と等しいまたは小さい場合は、前記一般式(1)で表される構造の含有率が高い方が好ましい。
 特に、前述のポリエステル樹脂中に含まれる全てのフェノール由来の構造に対する前記一般式(1)で表されるフェノール由来の構造の含有率a(単位:モル%)が45(cが50のとき、a+0.5cのaは45で70以上となるので)モル%以上である場合は、前記一般式(2)で表される構造の重量が前記一般式(4)で表される構造の重量と等しい、または小さくても、本発明の効果を十分に奏することができる。さらに、前記aは、45~90モル%であることがより好ましく、50~85モル%であることが特に好ましい。
 また、後述する前記一般式(1)で表される構造と前記一般式(3)で表される構造のモル比(物質量比)が0.70:0.30以上である場合は、前記一般式(2)で表される構造の含有率が前記一般式(4)で表される構造の含有率と等しいまたは小さくても、本発明の効果を十分に奏することができる。
On the other hand, when the weight of the structure represented by the general formula (2) is equal to or smaller than the weight of the structure represented by the general formula (4), the polyester resin of the present invention is represented by the general formula (1). The one where the content rate of the structure represented is high is preferable.
In particular, when the content a (unit: mol%) of the phenol-derived structure represented by the general formula (1) with respect to all the phenol-derived structures contained in the polyester resin is 45 (c is 50), When a + 0.5c is 45 or more and 70% or more), the weight of the structure represented by the general formula (2) is equal to the weight of the structure represented by the general formula (4). Even if it is equal or small, the effect of the present invention can be sufficiently achieved. Further, the a is more preferably 45 to 90 mol%, and particularly preferably 50 to 85 mol%.
When the molar ratio (substance ratio) of the structure represented by the general formula (1) described later and the structure represented by the general formula (3) is 0.70: 0.30 or more, Even if the content of the structure represented by the general formula (2) is equal to or smaller than the content of the structure represented by the general formula (4), the effects of the present invention can be sufficiently achieved.
 本発明のポリエステル樹脂は、前記一般式(1)で表される構造の含有率A(単位:モル%)と、前記一般式(3)で表される構造の含有率B(単位:モル%)が、A/B>1.5を満たすことが、線熱膨張係数を低くする観点から好ましい。
 特に前記Xがジメチル置換の炭素原子である場合には、A/B>1.5とすることで顕著に線熱膨張係数を低くすることができる傾向にあり、好ましい。
 A/Bの下限値は1.55以上であることがより好ましく、1.6以上であることがさらに好ましく、1.85以上であることが特に好ましく、2.33以上であることがより特に好ましく、2.5以上であることがさらにより特に好ましい。
 なお、これらの値を比で表すと、前記一般式(1)で表される構造と前記一般式(3)で表される構造のモル比(物質量比)は、0.60:0.40を超えることが好ましく、0.607:0.393以上であることがより好ましく、0.615:0.385以上であることがさらに好ましく、0.65:0.35以上であることが特に好ましく、0.70:0.30以上であることがより特に好ましく、0.75:0.25以上であることがさらにより特に好ましい。
The polyester resin of the present invention has a content A (unit: mol%) of the structure represented by the general formula (1) and a content B (unit: mol%) of the structure represented by the general formula (3). ) Preferably satisfies A / B> 1.5 from the viewpoint of reducing the linear thermal expansion coefficient.
In particular, when X is a dimethyl-substituted carbon atom, it is preferable that A / B> 1.5 because the linear thermal expansion coefficient can be remarkably lowered.
The lower limit value of A / B is more preferably 1.55 or more, further preferably 1.6 or more, particularly preferably 1.85 or more, and particularly preferably 2.33 or more. Preferably, it is even more particularly preferable that it is 2.5 or more.
When these values are expressed as ratios, the molar ratio (substance ratio) of the structure represented by the general formula (1) and the structure represented by the general formula (3) is 0.60: 0. It is preferably more than 40, more preferably 0.607: 0.393 or more, further preferably 0.615: 0.385 or more, and particularly preferably 0.65: 0.35 or more. Preferably, it is more preferably 0.70: 0.30 or more, and even more preferably 0.75: 0.25 or more.
 本発明の樹脂中、一般式(1)で表される構造の含有率は、10~99モル%が好ましく、20~90モル%がより好ましく、30~85モル%が特に好ましい。
 本発明の樹脂中、一般式(2)で表される構造の含有量は、20~99モル%が好ましく、30~95モル%がより好ましく、40~95モル%が特に好ましい。
 本発明の樹脂中、一般式(3)で表される構造の含有量は、1~80モル%が好ましく、10~70モル%がより好ましく、15~65モル%が特に好ましい。
 本発明の樹脂中、一般式(4)で表される構造の含有量は、1~80モル%が好ましく、5~70モル%がより好ましく、5~65モル%が特に好ましい。
 本発明の樹脂中、一般式(5)で表される構造の含有量は、0~90モル%が好ましく、0~70モル%がより好ましく、1~50モル%が特に好ましい。
In the resin of the present invention, the content of the structure represented by the general formula (1) is preferably 10 to 99 mol%, more preferably 20 to 90 mol%, and particularly preferably 30 to 85 mol%.
In the resin of the present invention, the content of the structure represented by the general formula (2) is preferably 20 to 99 mol%, more preferably 30 to 95 mol%, and particularly preferably 40 to 95 mol%.
In the resin of the present invention, the content of the structure represented by the general formula (3) is preferably 1 to 80 mol%, more preferably 10 to 70 mol%, and particularly preferably 15 to 65 mol%.
In the resin of the present invention, the content of the structure represented by the general formula (4) is preferably 1 to 80 mol%, more preferably 5 to 70 mol%, and particularly preferably 5 to 65 mol%.
In the resin of the present invention, the content of the structure represented by the general formula (5) is preferably 0 to 90 mol%, more preferably 0 to 70 mol%, and particularly preferably 1 to 50 mol%.
(樹脂の製造方法)
 本発明の樹脂は、一般にモノマーとしてビフェノール誘導体、ジカルボン酸および/またはその誘導体を用いて合成することができる。また、好ましくは、ビスフェノール誘導体などを用いて共重合体として合成してもよい。
 置換基を有するビフェノール誘導体の一般的合成法として、Macromolecules誌、1996, 29, 3727-3735頁、繊維化学雑誌、第84巻、第2号(1963)143-145頁に記載の方法を挙げることができる。
 ジカルボン酸誘導体は、ジアルキルナフタレンに置換基を導入し、アルキル基を酸化する方法に類似の方法で合成することができる。ジアルキルナフタレンに置換基を導入する一般的方法としては、Journal of Organic Chemistry誌、2003年、68(22)、8373-8378頁;Hetreroatom Chemistry誌, 2001年、12(4)、287-292頁;Journal of the Chemical Society, Perkin Transactions 1 : Organic and Bio-Organic Chemistry、1981年、(3)746-750頁;Journal of the Chemical Society [Section] D:Chemical Communications,(24)、1487頁、1969年に記載の方法を挙げることができる。
 ナフタレンに置換したアルキル基を酸化する一般的方法としては、Journal of organic Chemistry, 50(22), 4211-4218頁、1985年に記載の方法を挙げることができる。
 上記モノマーを用いたポリアリレートの一般的合成法として、新高分子実験学3 高分子の合成・反応(2)、共立出版(87項~95項)に記載の方法を挙げることができる。
 また、合成時に各モノマー成分を添加する順番については特に制限はなく、全てのモノマー成分を同時に添加しても、ビフェノールとビスフェノールのみを先に重合させた後でジカルボン酸誘導体を重合させてもよい。
(Production method of resin)
The resin of the present invention can be synthesized generally using a biphenol derivative, dicarboxylic acid and / or a derivative thereof as a monomer. Further, it may be synthesized as a copolymer using a bisphenol derivative or the like.
As a general synthesis method of a biphenol derivative having a substituent, mention is made of the method described in Macromolecules, 1996, 29, pages 3727-3735, Journal of Textile Chemistry, Vol. 84, No. 2 (1963), pages 143-145. Can do.
The dicarboxylic acid derivative can be synthesized by a method similar to the method of introducing a substituent into dialkylnaphthalene and oxidizing the alkyl group. General methods for introducing substituents into dialkylnaphthalenes include Journal of Organic Chemistry, 2003, 68 (22), 8373-8378; Hetreroatom Chemistry, 2001, 12 (4), pages 287-292; Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 1981, (3) 746-750; Journal of the Chemical Society [Section] D: Chemical Communications, (24), 1487, 1969 Can be mentioned.
Examples of a general method for oxidizing an alkyl group substituted with naphthalene include the method described in Journal of organic Chemistry, 50 (22), pages 4211-4218, 1985.
As a general method for synthesizing polyarylate using the above-mentioned monomers, there can be mentioned the methods described in New Polymer Experimental Science 3, Polymer Synthesis / Reaction (2), Kyoritsu Shuppan (Items 87 to 95).
Moreover, there is no restriction | limiting in particular about the order which adds each monomer component at the time of a synthesis | combination, Even if it adds all the monomer components simultaneously, only diphenolic acid derivative may be polymerized after polymerizing only biphenol and bisphenol first. .
(樹脂の具体例)
 以下に本発明のポリエステル樹脂の具体例(P-1~P-18)を示すが、本発明で用いることができるポリエステル樹脂はこれらに限定されるものではない。なお、P-1~P-18中、カッコ右下の数字はポリエステル樹脂中の各構造のモル%を表す。
(Specific examples of resin)
Specific examples (P-1 to P-18) of the polyester resin of the present invention are shown below, but the polyester resin that can be used in the present invention is not limited thereto. In P-1 to P-18, the numbers on the lower right of the parenthesis represent the mol% of each structure in the polyester resin.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(樹脂の特性)
 本発明の樹脂の重量平均分子量は10,000~5,000,000が好ましく、15,000~1,000,000がより好ましく、20,000~500,000が特に好ましい。
(Resin characteristics)
The weight average molecular weight of the resin of the present invention is preferably 10,000 to 5,000,000, more preferably 15,000 to 1,000,000, and particularly preferably 20,000 to 500,000.
 また、本発明の樹脂は共重合体であるが、その重合形式はランダム共重合であっても、ブロック共重合であっても、その他の重合形式であってもよい。 The resin of the present invention is a copolymer, and the polymerization form may be random copolymerization, block copolymerization, or other polymerization forms.
 本発明の樹脂のガラス転移温度(Tg)は、溶融製膜に適した範囲であることが好ましい。具体的には、170℃以上であることが好ましく、250℃以下であることがより好ましく、180℃~250℃であることが特に好ましく、195℃~250℃であることがより特に好ましい。本発明の樹脂のTgが上記の範囲であることで、得られるフィルムの透明性をより高めることができる。また、Tgが170℃以上であることで、本発明の樹脂を光学フィルムとして用いてITOとの積層を行うプロセス(加熱を伴うプロセス)を行う際の寸法安定性を高め、本発明の画像表示装置の性能を高めることができる。 The glass transition temperature (Tg) of the resin of the present invention is preferably in a range suitable for melt film formation. Specifically, the temperature is preferably 170 ° C. or higher, more preferably 250 ° C. or lower, particularly preferably 180 ° C. to 250 ° C., and particularly preferably 195 ° C. to 250 ° C. The transparency of the film obtained can be improved more because Tg of resin of this invention is said range. Further, when Tg is 170 ° C. or higher, the dimensional stability during the process of laminating with ITO using the resin of the present invention as an optical film (process involving heating) is enhanced, and the image display of the present invention is performed. The performance of the device can be increased.
 本発明の樹脂は、例えば、光学材料や、後述の本発明のフィルム等に有用である。光学材料としては、例えば偏光板保護フィルム、位相差フィルム、反射防止フィルム、電磁波シールドフィルムなどの光学フィルム、ピックアップレンズ、マイクロレンズアレイ、導光板、光ファイバー、光導波路等を好ましく例示することができる。 The resin of the present invention is useful for, for example, optical materials and films of the present invention described later. As the optical material, for example, an optical film such as a polarizing plate protective film, a retardation film, an antireflection film, an electromagnetic wave shielding film, a pickup lens, a microlens array, a light guide plate, an optical fiber, an optical waveguide and the like can be preferably exemplified.
[フィルム]
(フィルムの製造方法)
 本発明の樹脂はフィルムとして好ましく用いることができる。本発明のフィルムを製造する方法としては、溶液流延法、押出成形法(溶融成型法)を用いることが好ましく、押出成形法を用いることがより好ましい。
 溶液流延法における流延および乾燥方法については、米国特許第2336310号明細書、米国特許第2367603号明細書、米国特許第2492078号明細書、米国特許第2492977号明細書、米国特許第2492978号明細書、米国特許第2607704号明細書、米国特許第2739069号明細書、米国特許第2739070号明細書、英国特許第640731号明細書、英国特許第736892号明細書、特公昭45-4554号公報、特公昭49-5614号公報、特開昭60-176834号公報、特開昭60-203430号公報、特開昭62-115035号公報に記載がある。
[the film]
(Film production method)
The resin of the present invention can be preferably used as a film. As a method for producing the film of the present invention, a solution casting method and an extrusion molding method (melt molding method) are preferably used, and an extrusion molding method is more preferably used.
Regarding the casting and drying methods in the solution casting method, U.S. Pat. No. 2,336,310, U.S. Pat. No. 2,367,603, U.S. Pat. No. 2,429,078, U.S. Pat. No. 2,429,297, U.S. Pat. Specification, U.S. Pat. No. 2,607,704, U.S. Pat. No. 2,739,069, U.S. Pat. No. 2,739,070, British Patent 6,407,731, British Patent 7,368,92, Japanese Patent Publication No. 45-4554 JP-B-49-5614, JP-A-60-176834, JP-A-60-203430, JP-A-62-115035.
 押出成形法については、この分野における公知の方法を採用することができ、特に制限はない。 As the extrusion molding method, a known method in this field can be adopted, and there is no particular limitation.
 前記押出成形法を用いて本発明のフィルムを製造する製造装置については、この分野における公知の製造装置を採用することができる。但し、本発明で用いることができる製造装置はこれらに限定されるものではない。 As the manufacturing apparatus for manufacturing the film of the present invention using the extrusion molding method, a known manufacturing apparatus in this field can be employed. However, the manufacturing apparatus that can be used in the present invention is not limited to these.
 前記押出成形法では、特に制限はないが、製膜前に本発明の樹脂等を含む樹脂組成物を一度ペレット状に成形することが好ましい。パレット状に成型する場合は、まず、前記樹脂組成物を混練機によって溶融混練し、ヌードル状で取り出したあとカットし、ペレット状の樹脂組成物を調製することが好ましい。
 前記樹脂組成物には、上述の本発明の樹脂の他、着色防止剤などの安定化剤、その他の本発明の趣旨に反しない添加剤が含まれていてもよい。
 前記溶融混練の温度は、250℃~350℃であることが好ましく、260℃~350℃であることがより好ましく、270℃~340℃であることが特に好ましい。
Although there is no restriction | limiting in particular in the said extrusion method, It is preferable to shape | mold the resin composition containing the resin of this invention once into a pellet form before film forming. In the case of molding into a pallet shape, it is preferable that the resin composition is first melt-kneaded with a kneader, taken out in a noodle shape and then cut to prepare a pellet-shaped resin composition.
In addition to the resin of the present invention described above, the resin composition may contain a stabilizer such as an anti-coloring agent and other additives that do not contradict the spirit of the present invention.
The melt kneading temperature is preferably 250 ° C. to 350 ° C., more preferably 260 ° C. to 350 ° C., and particularly preferably 270 ° C. to 340 ° C.
 次に、前記ペレット状の樹脂組成物を溶融押し出し機に導入し、溶融押し出し機の出口に設置してあるダイに樹脂組成物を供給し、ダイから樹脂組成物を溶融押し出しし、これをキャストロール上に押し出し剥ぎ取ることでフィルムを作製することが好ましい。
 前記溶融押し出し機としては、特に制限はなく公知の溶融押し出し機を使用でき、例えば、溶融押し出し機を使用することができる。その中でも、二軸押し出し機であることが好ましい。前記ダイの形状は、特に制限はなく公知のダイを用いることができ、Tダイ、ハンガーコートダイなどを用いることができ、ハンガーコートダイを用いることが好ましい。
 また、前記溶融押し出し機内における樹脂組成物の温度は、250℃~350℃であることが好ましく、260℃~350℃であることがより好ましく、270℃~340℃であることが特に好ましい。
 また、溶融混練の時間は特に制限はない。
Next, the pellet-shaped resin composition is introduced into a melt extruder, the resin composition is supplied to a die installed at the outlet of the melt extruder, the resin composition is melt-extruded from the die, and cast. It is preferable to produce a film by extruding and peeling off on a roll.
There is no restriction | limiting in particular as said melt extruder, A well-known melt extruder can be used, For example, a melt extruder can be used. Among these, a biaxial extruder is preferable. There is no restriction | limiting in particular in the shape of the said die, A well-known die | dye can be used, A T die, a hanger coat die, etc. can be used, It is preferable to use a hanger coat die.
The temperature of the resin composition in the melt extruder is preferably 250 ° C. to 350 ° C., more preferably 260 ° C. to 350 ° C., and particularly preferably 270 ° C. to 340 ° C.
The time for melt kneading is not particularly limited.
 前記キャストロールとしては、特に制限はなく公知のキャストロールを使用できる。また、キャストロールの温度は特に制限はない。 The cast roll is not particularly limited, and a known cast roll can be used. The temperature of the cast roll is not particularly limited.
 本発明のフィルムは延伸することもできる。延伸法としては、公知の方法が使用でき、例えば、特開昭62-115035号、特開平4-152125号、特開平4-284211号、特開平4-298310号、特開平11-48271号各公報などに記載されている、ロール一軸延伸法、テンター一軸延伸法、同時二軸延伸法、逐次二軸延伸法、インフレーション法、圧延法により延伸することができる。以下に、テンターを用いる延伸法を例に説明する。 The film of the present invention can be stretched. As the stretching method, known methods can be used. For example, JP-A-62-115035, JP-A-4-152125, JP-A-4-284211, JP-A-4-298310, JP-A-11-48271. The film can be stretched by a roll uniaxial stretching method, a tenter uniaxial stretching method, a simultaneous biaxial stretching method, a sequential biaxial stretching method, an inflation method, or a rolling method described in a publication. Hereinafter, a stretching method using a tenter will be described as an example.
 フィルムの延伸は、常温または加熱条件下で実施される。フィルムの延伸は、一軸延伸でもよく二軸延伸でもよいが、二軸延伸が好ましい。フィルムは、乾燥中の処理で延伸することができ、特に溶媒が残存する場合は有効である。例えば、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くするとフィルムは延伸される。フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に広げることによってもフィルムを延伸することができる。また、フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)も可能である。フィルムの延伸倍率(元の長さに対する延伸による増加分の比率)は、0.5~300%であることが好ましく、さらには1~200%の延伸が好ましく、特には1~100%の延伸が好ましい。 The film is stretched at room temperature or under heating conditions. The film may be stretched uniaxially or biaxially, but biaxial stretching is preferred. The film can be stretched by a treatment during drying, and is particularly effective when the solvent remains. For example, the film is stretched by adjusting the speed of the film transport roller so that the film winding speed is higher than the film peeling speed. The film can also be stretched by conveying the film while holding it with a tenter and gradually widening the width of the tenter. Further, after the film is dried, it can be stretched using a stretching machine (preferably uniaxial stretching using a long stretching machine). The stretching ratio of the film (ratio of increase due to stretching relative to the original length) is preferably 0.5 to 300%, more preferably 1 to 200%, and particularly 1 to 100%. Is preferred.
 延伸速度は5%/分~1000%/分であることが好ましく、さらに10%/分~500%/分であることが好ましい。延伸はヒートロールあるいは/および放射熱源(IRヒーター等)、温風により行うことが好ましい。また、温度の均一性を高めるために恒温槽を設けてもよい。 The stretching speed is preferably 5% / min to 1000% / min, more preferably 10% / min to 500% / min. The stretching is preferably performed by a heat roll or / and a radiant heat source (such as an IR heater) or warm air. Moreover, you may provide a thermostat in order to improve the uniformity of temperature.
 延伸温度は本発明の樹脂のガラス転移温度を基準にして、(Tg-100℃)~(Tg+25℃)が好ましく、(Tg-80℃)~(Tg+20℃)がさらに好ましく、(Tg-70℃)~(Tg+15℃)が特に好ましい。 The stretching temperature is preferably (Tg-100 ° C) to (Tg + 25 ° C), more preferably (Tg-80 ° C) to (Tg + 20 ° C), based on the glass transition temperature of the resin of the present invention, and (Tg-70 ° C). ) To (Tg + 15 ° C.) are particularly preferable.
 本発明のフィルムは、延伸後に熱処理をしてもよい。熱処理温度はガラス転移温度Tgを基準にして、(Tg-100℃)~(Tg+25℃)が好ましく、(Tg-80℃)~(Tg+20℃)がさらに好ましく、(Tg-70℃)~(Tg+15℃)が特に好ましい。熱処理をすることで、延伸による収縮応力を緩和し、加熱時の収縮を低減することができる。 The film of the present invention may be heat-treated after stretching. The heat treatment temperature is preferably (Tg-100 ° C.) to (Tg + 25 ° C.), more preferably (Tg−80 ° C.) to (Tg + 20 ° C.), and (Tg−70 ° C.) to (Tg + 15) based on the glass transition temperature Tg. C) is particularly preferred. By performing heat treatment, shrinkage stress due to stretching can be relieved and shrinkage during heating can be reduced.
(フィルム物性)
 また、本発明のフィルムは、熱機械分析で測定した長さの変化が、ガラス転移温度(Tg)以上の温度において極大点を示すことが好ましい。ここで、熱機械分析とは、JIS規格であるJIS K7197に記載されている分析方法を意味する。また、熱機械分析で測定した長さの変化が極大点を示すとは、長さが収縮した後、膨張し、さらに収縮した場合の挙動を意味する。
(Film physical properties)
Moreover, it is preferable that the change of the length measured by the thermomechanical analysis shows the maximum point in the film of this invention in the temperature more than a glass transition temperature (Tg). Here, the thermomechanical analysis means an analysis method described in JIS K7197, which is a JIS standard. Further, that the change in length measured by thermomechanical analysis shows a maximum point means the behavior when the length contracts, expands, and further contracts.
 本発明のフィルムは100μm膜換算の膜厚における400nmの光線透過率は50%以上であることが好ましい。前記光線透過率が前記範囲にあると、フィルムと密着させたものが透けて見えるという利点がある。前記光線透過率は、70~100%であることがより好ましく、75%~100%であることがさらに好ましく、80~100%であることが特に好ましい。 The film of the present invention preferably has a light transmittance of 400 nm at a film thickness in terms of 100 μm of 50% or more. When the light transmittance is in the above range, there is an advantage that what is in close contact with the film can be seen through. The light transmittance is more preferably from 70 to 100%, further preferably from 75 to 100%, particularly preferably from 80 to 100%.
 また、本発明のフィルムは、面内のどの部分においても線熱膨張係数(CTE)が、40ppm/K以下であることが好ましく、30ppm/K以下であることがさらに好ましく、20ppm/K以下であることが特に好ましい。CTEが40ppm/K以下である場合、フィルム上に無機薄膜を積層した場合、加熱時に膨張率の差によるクラックの発生、フィルムのそりを抑制できるという利点がある。 In addition, the film of the present invention has a coefficient of linear thermal expansion (CTE) of preferably 40 ppm / K or less, more preferably 30 ppm / K or less, and 20 ppm / K or less in any part of the plane. It is particularly preferred. When CTE is 40 ppm / K or less, when an inorganic thin film is laminated | stacked on a film, there exists an advantage that the generation | occurrence | production of the crack by the difference in an expansion coefficient at the time of a heating, and the curvature of a film can be suppressed.
 本発明でいう線熱膨張係数とは、25℃~(Tg-30)℃までの温度範囲の値である。 The linear thermal expansion coefficient referred to in the present invention is a value in a temperature range from 25 ° C. to (Tg-30) ° C.
 本発明のフィルムの線熱膨張係数は、前記の値であることが好ましく、昇温過程、降温過程両方で前記の値であることが好ましい。また、昇温過程のCTEと降温過程のCTEの差が20ppm/K以下であることが好ましく、10ppm/K以下であることがさらに好ましく、5ppm/K以下であるこが特に好ましい。昇温過程のCTEと降温過程のCTEの差が20ppm/K以下であることで、昇降温の熱処理前後での変形量が小さくなる利点がある。 The linear thermal expansion coefficient of the film of the present invention is preferably the above value, and is preferably the above value in both the temperature rising process and the temperature falling process. Further, the difference between the CTE in the temperature raising process and the CTE in the temperature lowering process is preferably 20 ppm / K or less, more preferably 10 ppm / K or less, and particularly preferably 5 ppm / K or less. Since the difference between the CTE in the temperature raising process and the CTE in the temperature lowering process is 20 ppm / K or less, there is an advantage that the deformation amount before and after the heat treatment for raising and lowering the temperature is reduced.
(機能層)
 本発明のフィルム表面には、用途に応じて他の層を形成してもよい。また他の部品との密着性を高める目的で、フィルム表面上にケン化、コロナ処理、火炎処理、グロー放電処理等の処理を行ってもよい。さらに、フィルム表面にアンカー層を設けてもよい。
(Functional layer)
Other layers may be formed on the film surface of the present invention depending on the application. Further, for the purpose of improving the adhesion to other parts, the film surface may be subjected to treatment such as saponification, corona treatment, flame treatment, glow discharge treatment and the like. Further, an anchor layer may be provided on the film surface.
-ガスバリア層-
 本発明のフィルムは、ガス透過性を抑制するために、少なくとも片面にガスバリア層を積層することもできる。好ましいガスバリア層としては、例えば、珪素、アルミニウム、マグネシウム、亜鉛、ジルコニウム、チタン、イットリウムおよびタンタルからなる群から選ばれる1種または2種以上の金属を主成分とする金属酸化物、珪素、アルミニウム、ホウ素の金属窒化物またはこれらの混合物で形成された膜を挙げることができる。この中でも、ガスバリア性、透明性、表面平滑性、屈曲性、膜応力、コスト等の点から珪素原子数に対する酸素原子数の割合が1.5~2.0の珪素酸化物を主成分とする金属酸化物で形成された膜が良好である。これら無機化合物からなるガスバリア層は、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法、Cat-CVD法等の気相中より材料を堆積させて膜形成する気相堆積法により作製できる。中でも、特に優れたガスバリア性が得られるスパッタリング法およびCat-CVD法が好ましい。またガスバリア層を設けている間に50~250℃に昇温してもよい。
-Gas barrier layer-
In the film of the present invention, a gas barrier layer can be laminated on at least one surface in order to suppress gas permeability. As a preferable gas barrier layer, for example, a metal oxide mainly composed of one or more metals selected from the group consisting of silicon, aluminum, magnesium, zinc, zirconium, titanium, yttrium and tantalum, silicon, aluminum, Mention may be made of films formed of metal nitrides of boron or mixtures thereof. Among these, the main component is silicon oxide having a ratio of the number of oxygen atoms to the number of silicon atoms of 1.5 to 2.0 in terms of gas barrier properties, transparency, surface smoothness, flexibility, film stress, cost, etc. A film formed of a metal oxide is good. The gas barrier layer made of these inorganic compounds is formed by vapor deposition such as sputtering, vacuum deposition, ion plating, plasma CVD, Cat-CVD, etc., by depositing a material from the vapor phase to form a film. Can be made. Of these, the sputtering method and the Cat-CVD method, which can provide particularly excellent gas barrier properties, are preferable. The temperature may be raised to 50 to 250 ° C. while the gas barrier layer is provided.
 前記ガスバリア層の厚みは、10~300nmであることが好ましく、30~200nmであることがさらに好ましい。 The thickness of the gas barrier layer is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
 前記ガスバリア層は、後述する透明導電層と同じ側、反対側いずれに設けてもよい。 The gas barrier layer may be provided on the same side or the opposite side to the transparent conductive layer described later.
 本発明のフィルムのガスバリア性能は、40℃、相対湿度90%で測定した水蒸気透過度が0~5g/m2・dayであることが好ましく、0~3g/m2・dayであることがより好ましく、0~2g/m2・dayであることがさらに好ましい。また、40℃、相対湿度90%で測定した酸素透過度は、0~1ml/m2・day・atm(0~1×105ml/m2・day・Pa)であることが好ましく、0~0.7ml/m2・day・atm(0~0.7×105ml/m2・day・Pa)であることがより好ましく、0~0.5ml/m2・day・atm(0~0.5×105ml/m2・day・Pa)であることがさらに好ましい。ガスバリア性能が前記範囲内であれば、例えば有機EL表示装置や液晶表示装置に用いた場合、水蒸気および酸素によるEL素子の劣化を実質的になくすことができるため好ましい。 The gas barrier performance of the film of the present invention is preferably 0 to 5 g / m 2 · day, more preferably 0 to 3 g / m 2 · day, measured at 40 ° C. and 90% relative humidity. Preferably, it is 0 to 2 g / m 2 · day. The oxygen permeability measured at 40 ° C. and relative humidity 90% is preferably 0 to 1 ml / m 2 · day · atm (0 to 1 × 10 5 ml / m 2 · day · Pa). -0.7 ml / m 2 · day · atm (0 to 0.7 × 10 5 ml / m 2 · day · Pa) is more preferable, and 0 to 0.5 ml / m 2 · day · atm (0 More preferably, it is ˜0.5 × 10 5 ml / m 2 · day · Pa). If the gas barrier performance is within the above range, for example, when used in an organic EL display device or a liquid crystal display device, it is preferable that deterioration of the EL element due to water vapor and oxygen can be substantially eliminated.
 ガスバリア性能を向上させる目的で、ガスバリア層と隣接して欠陥補償層を形成することが好ましい。欠陥補償層としては、例えば、(1)米国特許第6171663号明細書、特開2003-94572号公報記載のようにゾルゲル法を用いて作製した無機酸化物層、(2)米国特許第6413645号明細書に記載の有機物層を用いることができる。これらの欠陥補償層は、真空下で蒸着後、紫外線または電子線で硬化させる方法、または塗布した後、加熱、電子線、紫外線等で硬化させることにより作製することができる。欠陥補償層を塗布方式で作製する場合には、従来の種々の塗布方法、例えば、スプレーコート、スピンコート、バーコート等の方法を用いることができる。 For the purpose of improving the gas barrier performance, it is preferable to form a defect compensation layer adjacent to the gas barrier layer. Examples of the defect compensation layer include (1) an inorganic oxide layer prepared by using a sol-gel method as described in US Pat. No. 6,171,663 and JP-A-2003-94572, and (2) US Pat. The organic material layer described in the specification can be used. These defect compensation layers can be prepared by vapor deposition under vacuum and then curing with ultraviolet rays or electron beams, or by applying and then curing with heating, electron beams, ultraviolet rays or the like. When the defect compensation layer is produced by a coating method, various conventional coating methods such as spray coating, spin coating, and bar coating can be used.
 本発明のフィルムには、耐薬品性付与を目的として無機バリア層、有機バリア層、有機-無機ハイブリッドバリア層などを設けてもよい。 The film of the present invention may be provided with an inorganic barrier layer, an organic barrier layer, an organic-inorganic hybrid barrier layer, etc. for the purpose of imparting chemical resistance.
-透明導電層-
 本発明のフィルムの少なくとも片面側には、透明導電層を積層してもよい。透明導電層としては、公知の金属膜、金属酸化物膜等を適用できる。中でも、透明性、導電性、機械的特性に優れた金属酸化物膜を透明導電層とすることが好ましい。金属酸化物膜は、例えば、不純物としてスズ、テルル、カドミウム、モリブテン、タングステン、フッ素、亜鉛、ゲルマニウム等を添加した酸化インジウム、酸化カドミウムまたは酸化スズの金属酸化物膜;不純物としてアルミニウムを添加した酸化亜鉛、酸化チタン等の金属酸化物膜が挙げられる。中でも酸化スズから主としてなり、酸化亜鉛を2~15質量%含有した酸化インジウムの薄膜が、透明性、導電性が優れており、好ましく用いられる。
-Transparent conductive layer-
A transparent conductive layer may be laminated on at least one side of the film of the present invention. A known metal film, metal oxide film, or the like can be applied as the transparent conductive layer. Among these, a metal oxide film having excellent transparency, conductivity, and mechanical properties is preferably used as the transparent conductive layer. The metal oxide film is, for example, a metal oxide film of indium oxide, cadmium oxide or tin oxide to which tin, tellurium, cadmium, molybdenum, tungsten, fluorine, zinc, germanium or the like is added as an impurity; an oxide to which aluminum is added as an impurity Examples thereof include metal oxide films such as zinc and titanium oxide. Among them, an indium oxide thin film mainly composed of tin oxide and containing 2 to 15% by mass of zinc oxide is excellent in transparency and conductivity, and is preferably used.
 これら透明導電層の成膜方法は、目的の薄膜を形成できる方法であれば、いかなる方法でもよい。例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法、Cat-CVD法等の気相中より材料を堆積させて膜形成する気相堆積法などが適しており、特許第3400324号公報、特開2002-322561号公報、特開2002-361774号公報記載の方法で成膜することができる。中でも、特に優れた導電性・透明性が得られるという観点から、スパッタリング法が好ましい。 These transparent conductive layers can be formed by any method as long as the target thin film can be formed. For example, a vapor deposition method that forms a film by depositing a material from the vapor phase, such as a sputtering method, a vacuum evaporation method, an ion plating method, a plasma CVD method, and a Cat-CVD method, is suitable. The film can be formed by the methods described in Japanese Patent Laid-Open Nos. 2002-322561 and 2002-361774. Among these, the sputtering method is preferable from the viewpoint that particularly excellent conductivity and transparency can be obtained.
 スパッタリング法、真空蒸着法、イオンプレーティング法、またはプラズマCVD法の好ましい真空度は0.133mPa~6.65Pa、好ましくは0.665mPa~1.33Paである。透明導電層を形成する前に、プラズマ処理(逆スパッタ)、またはコロナ処理のように基材フィルムに表面処理を加えることが好ましい。また透明導電層を設けている間に50~200℃に昇温してもよい。 The preferred degree of vacuum of the sputtering method, vacuum deposition method, ion plating method, or plasma CVD method is 0.133 mPa to 6.65 Pa, preferably 0.665 mPa to 1.33 Pa. Before forming the transparent conductive layer, it is preferable to subject the base film to a surface treatment such as plasma treatment (reverse sputtering) or corona treatment. The temperature may be raised to 50 to 200 ° C. while the transparent conductive layer is provided.
 このようにして得られた透明導電層の膜厚は、20~500nmであることが好ましく、50~300nmであることがさらに好ましい。 The film thickness of the transparent conductive layer thus obtained is preferably 20 to 500 nm, more preferably 50 to 300 nm.
 透明導電層の25℃、相対湿度60%で測定した表面電気抵抗は、0.1~200Ω/□であることが好ましく、0.1~100Ω/□であることがより好ましく。0.5~60Ω/□であることがさらに好ましい。また、透明導電層の光透過性は、80%以上であることが好ましく、83%以上であることがより好ましく、85%以上であることがさらに好ましい。 The surface electrical resistance of the transparent conductive layer measured at 25 ° C. and 60% relative humidity is preferably 0.1 to 200 Ω / □, more preferably 0.1 to 100 Ω / □. More preferably, it is 0.5 to 60Ω / □. Moreover, the light transmittance of the transparent conductive layer is preferably 80% or more, more preferably 83% or more, and further preferably 85% or more.
[画像表示装置]
 以上説明した本発明のフィルムは、画像表示装置に用いることができる。ここで、画像表示装置の種類は特に限定されず、従来知られているものを挙げることができる。また、本発明のフィルムを基板として用いて表示品質に優れたフラットパネルディスプレイを作製することができる。前記フラットパネルディスプレイとしては液晶表示装置、プラズマディスプレイ、有機エレクトロルミネッセンス(EL)、無機エレクトロルミネッセンス、蛍光表示管、発光ダイオード、電界放出型などが挙げられ、これら以外にも従来ガラス基板が用いられてきたディスプレイ方式のガラス基板に代わる基板として用いることができる。さらに、本発明のフィルムは、フラットパネルディスプレイ以外にも太陽電池、タッチパネルなどの用途にも応用が可能である。タッチパネルは、例えば、特開平5-127822号公報、特開2002-48913号公報等に記載のものに応用することができる。
[Image display device]
The film of the present invention described above can be used for an image display device. Here, the type of the image display device is not particularly limited, and conventionally known ones can be exemplified. Moreover, the flat panel display excellent in display quality can be produced using the film of this invention as a board | substrate. Examples of the flat panel display include a liquid crystal display device, a plasma display, organic electroluminescence (EL), inorganic electroluminescence, a fluorescent display tube, a light emitting diode, and a field emission type. Besides these, a conventional glass substrate has been used. It can be used as a substrate instead of a display-type glass substrate. Furthermore, the film of the present invention can be applied to uses such as solar cells and touch panels in addition to flat panel displays. The touch panel can be applied to, for example, those described in JP-A-5-127822 and JP-A-2002-48913.
 また、本発明のフィルムに薄膜トランジスタTFTを作製することができる。TFTは、特開平11-102867号公報、特表平10-512104号公報、特開2001-68681号公報に開示されている公知の方法で作製することができる。さらに、これらの基板はカラー表示のためのカラーフィルターを有していてもよい。カラーフィルターは、いかなる方法を用いて作製してもよいが、フォトリソグラフィー手法を用いて作製することが好ましい。 Further, a thin film transistor TFT can be produced on the film of the present invention. The TFT can be manufactured by a known method disclosed in Japanese Patent Application Laid-Open No. 11-102867, Japanese Patent Application Laid-Open No. 10-512104, and Japanese Patent Application Laid-Open No. 2001-68681. Further, these substrates may have a color filter for color display. The color filter may be manufactured using any method, but is preferably manufactured using a photolithography technique.
 本発明で作製するTFTはアモルファスシリコンTFTでもよく、多結晶シリコンTFTでもよい。アモルファスシリコンの多結晶化にはレーザー照射によるアニール法が好ましく用いられる。 The TFT produced in the present invention may be an amorphous silicon TFT or a polycrystalline silicon TFT. An annealing method by laser irradiation is preferably used for polycrystallizing amorphous silicon.
 TFTの半導体層のシリコンを製膜する方法として、スパッタリング法、プラズマCVD法、ICP-CVD法、Cat-CVD法などが挙げられるが、スパッタリング法が好ましい。スパッタリング法で作製することでシリコン薄膜中の水素濃度を低減することができ、多結晶化のためのレーザー照射によるシリコン層の剥がれを防ぐことができる。 Examples of the method for forming silicon of the semiconductor layer of the TFT include a sputtering method, a plasma CVD method, an ICP-CVD method, and a Cat-CVD method, but the sputtering method is preferable. By manufacturing by a sputtering method, the hydrogen concentration in the silicon thin film can be reduced, and peeling of the silicon layer due to laser irradiation for polycrystallization can be prevented.
 本発明のフィルム上にTFT作製に必要な真性シリコン薄膜、不純物シリコン薄膜、窒化ケイ素薄膜、酸化ケイ素薄膜などはプラズマCVDで製膜できるが、その際の基板温度は250℃以下であることが好ましい。 An intrinsic silicon thin film, an impurity silicon thin film, a silicon nitride thin film, a silicon oxide thin film and the like necessary for TFT production can be formed on the film of the present invention by plasma CVD, but the substrate temperature at that time is preferably 250 ° C. or lower. .
 画素電極にはITO、IZOをスパッタ法にて作製することができる。抵抗率を下げるための熱処理温度は250℃以下であることが好ましい。 The pixel electrode can be made of ITO or IZO by sputtering. The heat treatment temperature for lowering the resistivity is preferably 250 ° C. or lower.
 本発明で作製するTFTの構造はチャネルエッチング型、エッチングストッパ型、トップゲート型、ボトムゲート型などいずれの構造であってもよい。 The structure of the TFT manufactured in the present invention may be any structure such as a channel etching type, an etching stopper type, a top gate type, and a bottom gate type.
 本発明のフィルムを基板として液晶表示装置用途などで使用する場合、光学的均一性を達成するために、フィルムを構成する樹脂組成物は非晶性ポリマーであることが好ましい。さらに、レタデーション(Re)、およびその波長分散を制御する目的で、固有複屈折の符号が異なる樹脂を組み合わせたり、波長分散の大きい(あるいは小さい)樹脂を組み合わせたりすることができる。 In the case of using the film of the present invention as a substrate for a liquid crystal display device or the like, the resin composition constituting the film is preferably an amorphous polymer in order to achieve optical uniformity. Furthermore, for the purpose of controlling retardation (Re) and its wavelength dispersion, resins having different signs of intrinsic birefringence can be combined, or resins having a large (or small) wavelength dispersion can be combined.
 本発明のフィルムは、レターデーション(Re)を制御し、ガス透過性や力学特性を改善する観点からは、異種樹脂組成物を組み合わせて積層等することが好ましい。異種樹脂組成物の好ましい組み合わせは特に制限はなく、前記したいずれの樹脂組成物も使用可能である。 The film of the present invention is preferably laminated by combining different resin compositions from the viewpoint of controlling retardation (Re) and improving gas permeability and mechanical properties. A preferred combination of different resin compositions is not particularly limited, and any of the above-described resin compositions can be used.
 反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、および偏光膜の構成を一般に有している。このうち本発明のフィルムは、透明電極および/または上基板として用いることができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に形成することが好ましい。 A reflective liquid crystal display device generally has a configuration of a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a λ / 4 plate, and a polarizing film in order from the bottom. . Among these, the film of the present invention can be used as a transparent electrode and / or an upper substrate. In the case of color display, it is preferable to further form a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
 透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板、および偏光膜の構成を一般に有している。このうち本発明のフィルムは上透明電極および/または上基板として用いることができる。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。 The transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a λ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a λ / 4 plate, and It generally has a configuration of a polarizing film. Among these, the film of the present invention can be used as an upper transparent electrode and / or an upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the lower transparent electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
 液晶層(液晶セル)の種類は特に限定されないが、TN(Twisted Nematic)、IPS(In-Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti-ferroelectric Liquid Crystal)、OCB(Optically Compensated Bend)、STN(Super Twisted Nematic)、VA(Vertically Aligned)、およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、前記表示モードを配向分割した表示モードも提案されている。本発明のフィルムは、表示モードの液晶表示装置に用いることも有効である。また、透過型、反射型、半透過型のいずれの液晶表示装置に用いても有効である。 The type of liquid crystal layer (liquid crystal cell) is not particularly limited, but TN (Twisted Nematic), IPS (In-Plane Switching), FLC (Ferroelectric Liquid Crystal), AFLC (Anti-ferroelectric Liquid Crystal), OCB (Optically Compensated Bend) Various display modes such as STN (Super Twisted Nematic), VA (Vertically Aligned), and HAN (Hybrid Aligned Nematic) have been proposed. There has also been proposed a display mode in which the display mode is orientation-divided. The film of the present invention is also effective for use in a display mode liquid crystal display device. In addition, the present invention is effective when used for any of a transmissive, reflective, and transflective liquid crystal display device.
 液晶セルおよび液晶表示装置については、特開平2-176625号公報、特公平7-69536号公報、MVA(SID97,Digest of tech. Papers(予稿集)28(1997)845)、SID99, Digest of tech. Papers(予稿集)30(1999)206)、特開平11-258605号公報、SURVAIVAL(月刊ディスプレイ、第6巻、第3号(1999)14)、PVA(Asia Display 98,Proc.of the-18th-Inter. Display res. Conf.(予稿集)(1998)383)、Para-A(LCD/PDP International 99)、DDVA(SID98, Digest of tech. Papers(予稿集)29(1998)838)、EOC(SID98, Digest of tech. Papers(予稿集)29(1998)319)、PSHA(SID98, Digest of tech. Papers(予稿集)29(1998)1081)、RFFMH(Asia Display 98, Proc. of the-18th-Inter. Displayres. Conf. (予稿集)(1998)375)、HMD(SID98, Digest of tech. Papers (予稿集)29(1998)702)、特開平10-123478号公報、国際公開第98/48320号パンフレット、特許第3022477号公報、および国際公開第00/65384号パンフレット等に記載されている。 As for the liquid crystal cell and the liquid crystal display device, JP-A-2-176625, JP-B-7-69536, MVA (SID97, Digest (of tech. Papers (Preliminary Proceedings) 28 (1997) 845), SID99, Digest of tech. . Papers (Proceedings) 30 (1999) 206), JP-A-11-258605, SURVAIVAL (Monthly Display, Vol. 6, No. 3 (1999) 14), PVA (AsiaADisplay 98, Proc.of the-18th -Inter. Display res. 予 Conf. (Preliminary Book) (1998) 383), Para-A (LCD / PDP International 99), DDVA (SID 98, g Digest of tech. Papers (Preliminary Book) 29 (1998) 838), EOC (SID98, Digest of tech. Papers (Proceedings) 29 (1998) 319), PSHA (SID98, iDigest of tech. Papers (Proceedings) 29 (1998) 10 1), RFFMH (Asia Display 98, Proc. Of the-18th-Inter. Displays. Conf. (Preliminary Collection) (1998) 375), HMD (SID98, Diest of tech. Paper 29 (98) 29) ), JP-A-10-123478, WO98 / 48320, pamphlet 30302477, WO00 / 65384, and the like.
 本発明のフィルムは、有機EL表示用途に好適に使用できる。有機EL表示装置の具体的な層構成としては、陽極/発光層/透明陰極、陽極/発光層/電子輸送層/透明陰極、陽極/正孔輸送層/発光層/電子輸送層/透明陰極、陽極/正孔輸送層/発光層/透明陰極、陽極/発光層/電子輸送層/電子注入層/透明陰極、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/透明陰極等が挙げられる。 The film of the present invention can be suitably used for organic EL display applications. The specific layer structure of the organic EL display device includes anode / light emitting layer / transparent cathode, anode / light emitting layer / electron transport layer / transparent cathode, anode / hole transport layer / light emitting layer / electron transport layer / transparent cathode, Anode / hole transport layer / light emitting layer / transparent cathode, anode / light emitting layer / electron transport layer / electron injection layer / transparent cathode, anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection Examples include layer / transparent cathode.
 本発明のフィルムが使用できる有機EL表示装置は、前記陽極と前記陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2~40V)、または直流電流を印加することにより、発光を得ることができる。これら発光素子の駆動については、例えば、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号等の各公報、米国特許5828429号、同6023308号の各明細書、日本特許第2784615号公報等に記載の方法を利用することができる。 In the organic EL display device in which the film of the present invention can be used, a direct current (which may include an alternating current component if necessary) voltage (usually 2 to 40 V) or a direct current is applied between the anode and the cathode. Thus, light emission can be obtained. Regarding the driving of these light emitting elements, for example, JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234658, and JP-A-8-2441047. US Pat. Nos. 5,828,429 and 6023308, Japanese Patent No. 2784615, and the like can be used.
 有機EL表示装置のフルカラー表示方式としては、カラーフィルター方式、3色独立発光方式、色変換方式などいずれの方式を用いてもよい。 As a full color display method of the organic EL display device, any method such as a color filter method, a three-color independent light emission method, a color conversion method may be used.
 液晶表示措置、有機EL表示装置の駆動方式としてはパッシブマトリックス、アクティブマトリックスのいずれでもよい。 The liquid crystal display measures and the driving method of the organic EL display device may be either passive matrix or active matrix.
 本発明のフィルムは、光学フィルム、位相差フィルム、偏光板保護フィルム、透明導電フィルム、表示装置用基板、フレキシブルディスプレイ用基板、フラットパネルディスプレイ用基板、太陽電池用基板、タッチパネル用基板、フレキシブル回路用基板、光ディスク保護フィルムなどに用いることができる。 The film of the present invention is an optical film, retardation film, polarizing plate protective film, transparent conductive film, substrate for display device, substrate for flexible display, substrate for flat panel display, substrate for solar cell, substrate for touch panel, for flexible circuit It can be used for a substrate, an optical disk protective film and the like.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
(ポリマーの合成)
-例示化合物P-1の合成-
 攪拌装置を備えた300mlの三つ口フラスコに、2,2’-ジメチル-4,4’-ビスヒドロキシビフェニル15.3g、ビスフェノールA 7.0g、ハイドロサルファイトナトリウム360mg、テトラ-n-ブチルアンモニウムクロライド1600mg、塩化メチレン390ml、および蒸留水450mlを添加し、窒素気流下攪拌し溶解した。該溶液中に、テレフタル酸クロライド10.36g、イソフタル酸クロライド10.36gを塩化メチレン180mlに溶解した溶液を添加した。
(Polymer synthesis)
-Synthesis of Exemplified Compound P-1-
In a 300 ml three-necked flask equipped with a stirrer, 15.3 g of 2,2′-dimethyl-4,4′-bishydroxybiphenyl, 7.0 g of bisphenol A, 360 mg of hydrosulfite sodium, tetra-n-butylammonium 1600 mg of chloride, 390 ml of methylene chloride and 450 ml of distilled water were added and dissolved by stirring under a nitrogen stream. A solution prepared by dissolving 10.36 g of terephthalic acid chloride and 10.36 g of isophthalic acid chloride in 180 ml of methylene chloride was added to the solution.
 さらに2mol/Lの水酸化ナトリウム水溶液107mlおよび水9mlの混合液を15~20℃で1時間掛けて滴下した。滴下終了後3時間攪拌した後、反応液を3リットルの三つ口フラスコに移し、酢酸1.8mlおよび酢酸エチル1800mlをゆっくり添加した。得られたポリマー粉体を濾取したのち、酢酸エチル1L、水1L、メタノール1Lで順次洗浄し乾燥することにより上述の例示化合物P-1を32g得た。 Further, a mixture of 107 ml of 2 mol / L sodium hydroxide aqueous solution and 9 ml of water was added dropwise at 15 to 20 ° C. over 1 hour. After stirring for 3 hours after completion of the dropwise addition, the reaction solution was transferred to a 3-liter three-necked flask, and 1.8 ml of acetic acid and 1800 ml of ethyl acetate were slowly added. The obtained polymer powder was collected by filtration, washed successively with 1 L of ethyl acetate, 1 L of water, and 1 L of methanol and dried to obtain 32 g of the above exemplified compound P-1.
 GPC(THF溶媒;ポリスチレン換算(東ソー(株)製、HLC-8120GPC)による測定の結果、重量平均分子量は100000であった。また得られたポリマーを塩化メチレンに溶解し、ガラス板上に流延後、乾燥して得られた厚さ100μmのフィルムについてTMA8310(理学電気株式会社製、Thermo Plusシリーズ)を用いてガラス転移温度を測定したところ219℃であった。 As a result of measurement by GPC (THF solvent: polystyrene conversion (manufactured by Tosoh Corporation, HLC-8120GPC)), the weight average molecular weight was 100000. The obtained polymer was dissolved in methylene chloride and cast on a glass plate. Thereafter, the glass transition temperature of the film having a thickness of 100 μm obtained by drying was measured using TMA8310 (manufactured by Rigaku Denki Co., Ltd., ThermoTPlus series), and found to be 219 ° C.
-例示化合物P-2、P-7、P-9、P-10、P-12~P-17、比較用ポリマー1および3~5の合成-
 用いた成分の重量を変更した以外は例示化合物P-1の合成と同様にして、上述の例示化合物と、後述の構造の比較用ポリマーを得た。得られた各ポリエステル樹脂のガラス転移温度は下記表1に記載の値であった。
-Synthesis of Exemplified Compounds P-2, P-7, P-9, P-10, P-12 to P-17, Comparative Polymers 1 and 3 to 5-
Except for changing the weights of the components used, the above-described exemplary compound and a comparative polymer having the structure described below were obtained in the same manner as in the synthesis of exemplary compound P-1. The glass transition temperature of each obtained polyester resin was the value described in Table 1 below.
-比較ポリマー2の合成-
 比較ポリマー2として、下記の構造を持つ特開平10-17658号公報の実施例5に記載のポリマーを合成した。
-Synthesis of Comparative Polymer 2-
As a comparative polymer 2, a polymer described in Example 5 of JP-A-10-17658 having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[フィルムの作製]
[実施例1]
(フィルムの作製、延伸および熱処理)
 350℃に設定した少量混練機(Haake社製、商品名MiniLab)を用いて例示化合物P-1を10分間混練し、ヌードル状で取り出したあとニッパでカットし、ペレット状の樹脂組成物を得た。
 上記で作製したペレット状の樹脂組成物を280℃(入口温度)から330℃(出口温度)に調整した2軸溶融押し出し機を用いて、ハンガーダイから溶融押し出しし、これを120℃に設定したキャストロール上に押し出し剥ぎ取ることでフィルムを作製した。
 フィルムを120mm×120mmの大きさに切りだして、同時2軸延伸機により、延伸した。第1段目の延伸条件はチャック間距離100mm(縦、横ともに)、樹脂温度210℃、延伸速度100mm/分、延伸距離40mm(縦、横共に)とした。延伸後、2軸延伸機に保持したまま、210℃に加熱し、応力がほぼ一定になるまで熱処理した。その後、フィルム温度を100℃以下に冷却し、2軸延伸機から取り出した。延伸したフィルムを内側120mm角の金枠にセットし、200℃の窒素雰囲気下にて、24時間熱処理を行い、実施例1の延伸フィルムを得た。なお、延伸倍率は破断伸度の5%~10%手前まで行った。
[Production of film]
[Example 1]
(Production, stretching and heat treatment)
Exemplified compound P-1 was kneaded for 10 minutes using a small amount kneader set at 350 ° C. (product name: MiniLab, manufactured by Haake), taken out in a noodle form, cut with nippers, and a pellet-shaped resin composition was obtained. It was.
The pellet-shaped resin composition prepared above was melt-extruded from a hanger die using a biaxial melt extruder adjusted from 280 ° C. (inlet temperature) to 330 ° C. (outlet temperature), and this was set to 120 ° C. The film was produced by extruding and peeling onto a cast roll.
The film was cut into a size of 120 mm × 120 mm and stretched by a simultaneous biaxial stretching machine. The first stage stretching conditions were a chuck distance of 100 mm (both longitudinal and lateral), a resin temperature of 210 ° C., a stretching speed of 100 mm / min, and a stretching distance of 40 mm (both longitudinal and lateral). After stretching, while being held in a biaxial stretching machine, it was heated to 210 ° C. and heat-treated until the stress became substantially constant. Thereafter, the film temperature was cooled to 100 ° C. or lower and taken out from the biaxial stretching machine. The stretched film was set in a 120 mm square inner metal frame and heat-treated in a nitrogen atmosphere at 200 ° C. for 24 hours, to obtain a stretched film of Example 1. The draw ratio was 5% to 10% before the breaking elongation.
[実施例2~12、比較例1~5]
 例示化合物P-2、P-7、P-9、P-10、P-12~P-17および比較ポリマー1~5をそれぞれ用い、延伸倍率を下記表1に記載したように変更した以外は実施例1と同様の操作にて二軸延伸フィルムを作製した。なお、実施例1~11および比較例1~5では延伸倍率は破断伸度の5%~10%手前まで行った。実施例12では、実施例8と同様にP-13を用いて、延伸倍率を30%に低下させて二軸延伸フィルムを作製した。
[Examples 2 to 12, Comparative Examples 1 to 5]
Except for using Exemplified Compounds P-2, P-7, P-9, P-10, P-12 to P-17 and Comparative Polymers 1 to 5, respectively, and changing the draw ratio as described in Table 1 below A biaxially stretched film was produced in the same manner as in Example 1. In Examples 1 to 11 and Comparative Examples 1 to 5, the draw ratio was 5% to 10% before the breaking elongation. In Example 12, a biaxially stretched film was produced using P-13 in the same manner as in Example 8 while reducing the stretch ratio to 30%.
<ガラス転移温度(Tg)>
 示差走査熱量計(DSC6200、セイコー(株)製)を用いて、窒素中、昇温温度10℃/分の条件で各フィルム試料のTgを測定した。
<Glass transition temperature (Tg)>
Using a differential scanning calorimeter (DSC6200, manufactured by Seiko Co., Ltd.), the Tg of each film sample was measured in nitrogen at a temperature rising temperature of 10 ° C./min.
<線熱膨張係数>
 フィルムサンプル(19mm×5mm)を作製し、TMA(理学電機(株)製、TMA8310)を用いて測定した。測定速度は、3℃/分とした。測定は3サンプルを行い、その平均値を用いた。測定は25℃から300℃の温度範囲で行い、線熱膨張係数は昇温時の25℃~200℃の範囲で計算した。但し、ガラス転移温度が200℃以下のサンプルについては、25℃~150℃の温度範囲で算出した。
<Linear thermal expansion coefficient>
A film sample (19 mm × 5 mm) was prepared and measured using TMA (manufactured by Rigaku Corporation, TMA8310). The measurement speed was 3 ° C./min. Three samples were measured and the average value was used. The measurement was performed in a temperature range of 25 ° C. to 300 ° C., and the linear thermal expansion coefficient was calculated in the range of 25 ° C. to 200 ° C. when the temperature was raised. However, for a sample having a glass transition temperature of 200 ° C. or lower, calculation was performed in a temperature range of 25 ° C. to 150 ° C.
<透明性の評価>
 上記で得られたフィルムを目視観察し、以下の判定を行い透明性の評価とした。
○:良好な透明性を有する。
△:部分的に白濁が見られる。
×:白濁が顕著で不均質である。
<Evaluation of transparency>
The film obtained above was visually observed, and the following determination was made to evaluate transparency.
○: Good transparency.
Δ: Partially cloudy is observed.
X: White turbidity is remarkable and heterogeneous.
<重量平均分子量>
 東ソー(株)製の「HLC-8120GPC」を用いて、テトラヒドロフランを溶媒とするポリスチレン換算GPC測定によりポリスチレンの分子量標準品と比較して重量平均分子量を求めた。
<Weight average molecular weight>
Using “HLC-8120GPC” manufactured by Tosoh Corporation, the weight average molecular weight was determined by polystyrene conversion GPC measurement using tetrahydrofuran as a solvent in comparison with a molecular weight standard product of polystyrene.
 得られた結果を、下記表1にそれぞれ記載した。 The obtained results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~12のフィルムはTgが溶融製膜に適した範囲であり、ITOと積層する加熱プロセスの際の寸法安定性が悪化しない範囲であり、線熱膨張係数も小さい値を示すことがわかった。一方、比較例1のフィルムは、一般式(1)に類似の構造を有していないフェノールのみを用いて製造したものであり、Tgが溶融製膜に適した範囲であったものの、線熱膨張係数は大きかった。比較例2のフィルムは、一般式(1)においてR11~R18が本発明の範囲から外れるフェノールを用いて製造したものであり、直線成分量が少なく、線熱膨張係数が大きい。比較例3のフィルムは、一般式(4)で表される構造を有していないジカルボン酸のみを用いて製造したものであり、Tgが高すぎて溶融製膜に適さず、透明性も悪かった。比較例4のフィルムは、一般式(3)で表される構造を有していないフェノールのみを用いて製造したものであり、延伸性が悪いため、線熱膨張係数が大きかった、比較例5のフィルムは、一般式(2)で表される構造を有していないジカルボン酸のみを用い、さらに一般式(3)で表される構造を有していないフェノールのみを用いて製造したものであり、Tgが高すぎて溶融製膜に適さず、透明性が悪かった。 As shown in Table 1, the films of Examples 1 to 12 have a Tg in a range suitable for melt film formation, a range in which dimensional stability during a heating process laminated with ITO does not deteriorate, and a linear thermal expansion coefficient. Was also found to be small. On the other hand, the film of Comparative Example 1 was produced using only phenol not having a structure similar to the general formula (1), and although Tg was in a range suitable for melt film formation, The expansion coefficient was large. The film of Comparative Example 2 was produced using phenol in which R 11 to R 18 in the general formula (1) are out of the scope of the present invention, and has a small amount of linear components and a large linear thermal expansion coefficient. The film of Comparative Example 3 was produced using only the dicarboxylic acid not having the structure represented by the general formula (4). The Tg was too high to be suitable for melt film formation, and the transparency was poor. It was. The film of Comparative Example 4 was produced using only phenol that does not have the structure represented by the general formula (3), and because of poor stretchability, the linear thermal expansion coefficient was large. Comparative Example 5 This film was produced using only a dicarboxylic acid not having the structure represented by the general formula (2) and using only a phenol not having the structure represented by the general formula (3). Yes, Tg was too high to be suitable for melt film formation, and the transparency was poor.
[実施例101~112、比較例101~105]
1.ガスバリア層の形成
 実施例1~12、比較例1~5のフィルムの両面にDCマグネトロンスパッタリング法により、Si02をターゲットとし500Paの真空下で、Ar雰囲気下、出力5kWでスパッタリングし、ガスバリア層付きの実施例101~112、比較例101~105のフィルムをそれぞれ得た。得られたガスバリア層の膜厚は60nmであった。40℃、相対湿度90%における水蒸気透過度は0.1g/m2・day以下であった。
[Examples 101 to 112, Comparative Examples 101 to 105]
1. Forming Examples 1-12 of the gas barrier layer, by DC magnetron sputtering on both surfaces of the film of Comparative Examples 1-5, under a vacuum of target the Si0 2 500 Pa, an Ar atmosphere, and sputtering at an output 5 kW, with a gas barrier layer Films of Examples 101 to 112 and Comparative Examples 101 to 105 were obtained. The film thickness of the obtained gas barrier layer was 60 nm. The water vapor permeability at 40 ° C. and 90% relative humidity was 0.1 g / m 2 · day or less.
[実施例201~212、比較例201~205]
2.透明導電層の形成
 ガスバリア層を設置した実施例101~112、比較例101~105のフィルムを100℃に加熱しながら、ITO(In2395質量%、Sn025質量%)をターゲットとしDCマグネトロンスパッタリング法により、0.665Paの真空下で、Ar雰囲気下、出力5kWで140nmの厚みのITO膜からなる透明導電層を片面に設け、実施例201~212、比較例201~205のフィルムをそれぞれ得た。実施例201~212および比較例201~205のフィルムの40℃、相対湿度90%における水蒸気透過度はいずれも0.1g/m2・day以下であり、40℃、相対湿度90%における酸素透過度はいずれも0.1ml/m2・day・atm以下であった。また25℃、相対湿度60%におけるITOの表面電気抵抗はいずれも30Ω/□であった。
[Examples 201 to 212, Comparative examples 201 to 205]
2. Formation of Transparent Conductive Layer While heating the films of Examples 101 to 112 and Comparative Examples 101 to 105 provided with gas barrier layers to 100 ° C., ITO (In 2 O 3 95% by mass, SnO 2 5% by mass) was used as a target. A film of Examples 201 to 212 and Comparative Examples 201 to 205 was formed on one side by a DC magnetron sputtering method under a vacuum of 0.665 Pa, an Ar atmosphere, an output of 5 kW, and a transparent conductive layer made of an ITO film having a thickness of 140 nm. Respectively. The water vapor permeability of each of the films of Examples 201 to 212 and Comparative Examples 201 to 205 at 40 ° C. and 90% relative humidity is 0.1 g / m 2 · day or less, and oxygen permeation at 40 ° C. and 90% relative humidity. All the degrees were 0.1 ml / m 2 · day · atm or less. Moreover, the surface electrical resistance of ITO at 25 ° C. and a relative humidity of 60% was 30Ω / □.
<加熱試験によるガスバリア性および表面電気抵抗変化の評価>
前記で作製した実施例101~112、比較例101~105のフィルムのガスバリアフィルムと透明導電層付の実施例201~212、比較例201~205のフィルムの加熱処理前後でのガスバリア性と表面電気抵抗の変化を測定した。
 加熱処理条件は、窒素下、室温から160℃に昇温後、2時間160℃で保持したのち、室温に冷却した。
<Evaluation of gas barrier property and surface electrical resistance change by heating test>
Gas barrier properties and surface electricity before and after heat treatment of the gas barrier films of Examples 101 to 112 and Comparative Examples 101 to 105 produced above and those of Examples 201 to 212 with a transparent conductive layer and films of Comparative Examples 201 to 205 The change in resistance was measured.
The heat treatment condition was that the temperature was raised from room temperature to 160 ° C. under nitrogen, held at 160 ° C. for 2 hours, and then cooled to room temperature.
 本発明実施例101~112および実施例201~212のフィルムは加熱処理前後でガスバリア性、表面電気抵抗ともに変化が見られなかったが、比較例101~105、201~205のフィルムは両物性ともに悪化していた。これは、本発明のフィルムは線熱膨張係数が小さいことから、無機層との膨張差が小さくなったためである。 The films of Examples 101 to 112 and Examples 201 to 212 of the present invention showed no change in gas barrier properties and surface electrical resistance before and after the heat treatment, but the films of Comparative Examples 101 to 105 and 201 to 205 had both physical properties. It was getting worse. This is because the film of the present invention has a small coefficient of linear thermal expansion, so that the difference in expansion from the inorganic layer is small.
[実施例301~312、比較例301~305]
<有機EL素子の作製および評価>
 本発明の透明導電層付の実施例201~212と比較例201~205のフィルムをそれぞれ用いて、有機EL素子試料を作製した。
 前記で透明導電層を形成した実施例201~212、比較例201~205のフィルムの透明電極層より、アルミニウムのリード線を結線し、積層構造体を形成した。透明電極の表面に、ポリエチレンジオキシチオフェン・ポリスチレンスルホン酸の水性分散液(BAYER社製、Baytron P:固形分1.3質量%)をスピンコートした後、150℃で2時間真空乾燥し、厚さ100nmのホール輸送性有機薄膜層を形成した。これを基板Xとした。
 一方、厚さ188μmのポリエーテルスルホン(住友ベークライト(株)製スミライトFS-1300)からなる仮支持体の片面上に、下記組成を有する発光性有機薄膜層用塗布液を、スピンコーターを用いて塗布し、室温で乾燥することにより、厚さ13nmの発光性有機薄膜層を仮支持体上に形成した。これを転写材料Yとした。
[Examples 301 to 312 and Comparative Examples 301 to 305]
<Production and Evaluation of Organic EL Device>
Organic EL element samples were prepared using the films of Examples 201 to 212 and Comparative Examples 201 to 205 with a transparent conductive layer of the present invention, respectively.
Aluminum lead wires were connected from the transparent electrode layers of the films of Examples 201 to 212 and Comparative Examples 201 to 205 in which the transparent conductive layer was formed as described above to form a laminated structure. The surface of the transparent electrode was spin-coated with an aqueous dispersion of polyethylene dioxythiophene / polystyrene sulfonic acid (BAYER, Baytron P: solid content: 1.3% by mass), and then vacuum-dried at 150 ° C. for 2 hours. A hole-transporting organic thin film layer having a thickness of 100 nm was formed. This was designated as substrate X.
On the other hand, a coating solution for a light-emitting organic thin film layer having the following composition was formed on one surface of a temporary support made of 188 μm thick polyethersulfone (Sumilite FS-1300 manufactured by Sumitomo Bakelite Co., Ltd.) using a spin coater. The luminescent organic thin film layer having a thickness of 13 nm was formed on the temporary support by applying and drying at room temperature. This was designated as transfer material Y.
(組成)
・ポリビニルカルバゾール(Mw=63000、アルドリッチ社製):40質量部
・トリス(2-フェニルピリジン)イリジウム錯体(オルトメタル化錯体):1質量部
・ジクロロエタン:3200質量部
(composition)
Polyvinylcarbazole (Mw = 63000, manufactured by Aldrich): 40 parts by mass Tris (2-phenylpyridine) iridium complex (orthometalated complex): 1 part by mass Dichloroethane: 3200 parts by mass
 基板Xの有機薄膜層の上面に転写材料Yの発光性有機薄膜層側を重ね、一対の熱ローラーを用い160℃、0.3MPa、0.05m/minで加熱・加圧し、仮支持体を引き剥がすことにより、基板Xの上面に発光性有機薄膜層を形成した。これを基板XYとした。 The luminescent organic thin film layer side of the transfer material Y is superimposed on the upper surface of the organic thin film layer of the substrate X, heated and pressurized at 160 ° C., 0.3 MPa, 0.05 m / min using a pair of heat rollers, and the temporary support is attached. By peeling off, a light-emitting organic thin film layer was formed on the upper surface of the substrate X. This was designated as substrate XY.
 また、25mm角に裁断した厚さ50μmのポリイミドフィルム(UPILEX-50S、宇部興産製)片面上に、パターニングした蒸着用のマスク(発光面積が5mm×5mmとなるマスク)を設置し、約0.1mPaの減圧雰囲気中でAlを蒸着し、膜厚0.3μmの電極を形成した。Al23ターゲットを用いて、DCマグネトロンスパッタリングにより、Al23をAl層と同パターンで蒸着し、膜厚3nmとした。Al電極よりアルミニウムのリード線を結線し、積層構造体を形成した。得られた積層構造体の上に下記組成を有する電子輸送性有機薄膜層用塗布液を、スピンコーター塗布機を用いて塗布し、80℃で2時間真空乾燥することにより、厚さ15nmの電子輸送性有機薄膜層を形成した。これを基板Zとした。 Further, a patterned evaporation mask (a mask having a light emission area of 5 mm × 5 mm) is placed on one side of a polyimide film (UPILEX-50S, manufactured by Ube Industries) having a thickness of 50 μm cut into a 25 mm square. Al was evaporated in a reduced pressure atmosphere of 1 mPa to form an electrode having a film thickness of 0.3 μm. Using an Al 2 O 3 target by DC magnetron sputtering, the Al 2 O 3 was deposited in the same pattern as the Al layer and the thickness of 3 nm. An aluminum lead wire was connected from the Al electrode to form a laminated structure. A coating solution for an electron transporting organic thin film layer having the following composition is coated on the obtained laminated structure using a spin coater coating machine, and vacuum-dried at 80 ° C. for 2 hours, whereby an electron having a thickness of 15 nm is obtained. A transportable organic thin film layer was formed. This was designated as substrate Z.
(組成)
・ポリビニルブチラール2000L(Mw=2000、電気化学工業社製):10質量部
・1-ブタノール:3500質量部
・下記構造を有する電子輸送性化合物:20質量部
(composition)
Polyvinyl butyral 2000L (Mw = 2000, manufactured by Denki Kagaku Kogyo): 10 parts by mass 1-butanol: 3500 parts by mass Electron transporting compound having the following structure: 20 parts by mass
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 基板XYと基板Zとを用い、電極同士が発光性有機薄膜層を挟んで対面するように重ね合せ、一対の熱ローラーを用い160℃、0.3MPa、0.05m/分で加熱・加圧し、貼り合せ、有機EL素子試料を得た。 Using the substrate XY and the substrate Z, the electrodes are stacked so that the electrodes face each other with the light-emitting organic thin film layer interposed therebetween, and heated and pressed at 160 ° C., 0.3 MPa, 0.05 m / min using a pair of heat rollers. The organic EL element sample was obtained by bonding.
 得られた有機EL素子試料をソースメジャーユニット2400型(東洋テクニカ(株)製)を用いて、直流電圧を有機EL素子に印加した。本発明の実施例201~212のフィルムを用いて作製した試料は、発光することを確認した。一方、比較例201~205のフィルムを用いて作製した試料は一瞬発光したもののすぐに発光しなくなった。
 本発明の実施例201~212のフィルムの線熱膨張係数は小さく、試料作製過程での加熱により、無機層にクラックが入らなかったが、比較例201~205のフィルムは線熱膨張係数が大きいため加熱による無機層にクラックが入ったためである。
A direct voltage was applied to the organic EL element from the obtained organic EL element sample using a source measure unit 2400 type (manufactured by Toyo Technica Co., Ltd.). It was confirmed that the samples produced using the films of Examples 201 to 212 of the present invention emitted light. On the other hand, the samples prepared using the films of Comparative Examples 201 to 205 emitted light for a moment but stopped emitting light immediately.
The films of Examples 201 to 212 of the present invention have a small coefficient of linear thermal expansion, and the inorganic layer was not cracked by heating in the sample preparation process, but the films of Comparative Examples 201 to 205 have a large coefficient of linear thermal expansion. This is because the inorganic layer was heated and cracked.
 本発明の樹脂は効率的な溶融製膜を行う際に適度なガラス転移温度を有し、低い線熱膨張係数を有する。またこの樹脂を用いたフィルムは小さい線熱膨張係数を示すことから、ガスバリアフィルム、透明導電フィルム、画像表示装置用基板として用いることができる。 The resin of the present invention has an appropriate glass transition temperature and a low coefficient of linear thermal expansion when performing efficient melt film formation. Moreover, since the film using this resin shows a small linear thermal expansion coefficient, it can be used as a gas barrier film, a transparent conductive film, or a substrate for an image display device.

Claims (15)

  1.  下記一般式(1)で表される構造、下記一般式(2)で表される構造、下記一般式(3)で表される構造および下記一般式(4)で表される構造を含有することを特徴とするポリエステル樹脂。
    Figure JPOXMLDOC01-appb-C000023
    (一般式(1)中、R11~R14はそれぞれ独立に水素原子または置換基を表す。ただし、R11~R14の少なくとも1つは置換基である。R15~R18は水素原子を表す。)
    Figure JPOXMLDOC01-appb-C000024
    (一般式(2)中、R21~R24はそれぞれ独立に水素原子または置換基を表し、lは自然数を表す。)
    Figure JPOXMLDOC01-appb-C000025
    (一般式(3)中、R31およびR32はそれぞれ独立に置換基を表し、mおよびnはそれぞれ独立に0~4の整数を表し、Xは2価の連結基を表す。ただし、Xは環構造の一部ではない。)
    Figure JPOXMLDOC01-appb-C000026
    (一般式(4)中、R25~R28はそれぞれ独立に水素原子または置換基を表す。)
    A structure represented by the following general formula (1), a structure represented by the following general formula (2), a structure represented by the following general formula (3), and a structure represented by the following general formula (4) A polyester resin characterized by that.
    Figure JPOXMLDOC01-appb-C000023
    (In the general formula (1), R 11 to R 14 each independently represents a hydrogen atom or a substituent, provided that at least one of R 11 to R 14 is a substituent. R 15 to R 18 are hydrogen atoms. Represents.)
    Figure JPOXMLDOC01-appb-C000024
    (In the general formula (2), R 21 to R 24 each independently represents a hydrogen atom or a substituent, and l represents a natural number.)
    Figure JPOXMLDOC01-appb-C000025
    (In the general formula (3), R 31 and R 32 each independently represent a substituent, m and n each independently represent an integer of 0 to 4, and X represents a divalent linking group, provided that X Is not part of the ring structure.)
    Figure JPOXMLDOC01-appb-C000026
    (In the general formula (4), R 25 to R 28 each independently represents a hydrogen atom or a substituent.)
  2.  前記一般式(1)において、前記R11~R14の少なくとも1つがハロゲン原子、アルキル基、シアノ基またはアルコキシ基であることを特徴とする請求項1に記載のポリエステル樹脂。 2. The polyester resin according to claim 1, wherein in the general formula (1), at least one of the R 11 to R 14 is a halogen atom, an alkyl group, a cyano group, or an alkoxy group.
  3.  前記一般式(1)において、前記R11~R14の少なくとも1つが塩素原子、メチル基またはメトキシ基であることを特徴とする請求項1に記載のポリエステル樹脂。 2. The polyester resin according to claim 1, wherein in the general formula (1), at least one of the R 11 to R 14 is a chlorine atom, a methyl group or a methoxy group.
  4.  下記式(A)を満たすことを特徴とする請求項1~3のいずれか一項に記載のポリエステル樹脂。
     a+0.5×c ≧ 70  ・・・(A)
    (式(A)中、aはポリエステル樹脂中に含まれる全ての芳香族ジオール由来の構造に対する前記一般式(1)で表される芳香族ジオール由来の構造の含有率(単位:モル%)を表し、cはポリエステル樹脂中に含まれる全てのジカルボン酸由来の構造に対する前記一般式(2)で表されるジカルボン酸由来の構造の含有率(単位:モル%)を表す。)
    The polyester resin according to any one of claims 1 to 3, which satisfies the following formula (A).
    a + 0.5 × c ≧ 70 (A)
    (In formula (A), a is the content (unit: mol%) of the structure derived from the aromatic diol represented by the general formula (1) with respect to the structure derived from all aromatic diols contained in the polyester resin. And c represents the content (unit: mol%) of the structure derived from the dicarboxylic acid represented by the general formula (2) with respect to all the structures derived from the dicarboxylic acid contained in the polyester resin.
  5.  下記一般式(5)で表される構造を含有することを特徴とする請求項1~4のいずれか一項に記載のポリエステル樹脂。
    Figure JPOXMLDOC01-appb-C000027
    (一般式(5)中、R41およびR42はそれぞれ独立に置換基を表し、pおよびqはそれぞれ独立に0~3の整数を表す。)
    The polyester resin according to any one of claims 1 to 4, comprising a structure represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000027
    (In the general formula (5), R 41 and R 42 each independently represent a substituent, and p and q each independently represents an integer of 0 to 3.)
  6.  ポリエステル樹脂を厚み100μmの膜としたときの400nmの波長の光線透過率が50%以上であることを特徴とする請求項1~5のいずれか1項に記載のポリエステル樹脂。 The polyester resin according to any one of claims 1 to 5, wherein the light transmittance at a wavelength of 400 nm when the polyester resin is a film having a thickness of 100 µm is 50% or more.
  7.  ガラス転移温度(Tg)が170℃以上であることを特徴とする請求項1~6のいずれか1項に記載のポリエステル樹脂。 The polyester resin according to any one of claims 1 to 6, wherein the glass transition temperature (Tg) is 170 ° C or higher.
  8.  ガラス転移温度(Tg)が250℃以下であることを特徴とする請求項1~7のいずれか1項に記載のポリエステル樹脂。 The polyester resin according to any one of claims 1 to 7, which has a glass transition temperature (Tg) of 250 ° C or lower.
  9.  前記一般式(2)で表される構造の重量が前記一般式(4)で表される構造の重量よりも大きいことを特徴とする請求項1~8のいずれか1項に記載のポリエステル樹脂。 9. The polyester resin according to claim 1, wherein the weight of the structure represented by the general formula (2) is larger than the weight of the structure represented by the general formula (4). .
  10.  請求項1~9のいずれか1項に記載のポリエステル樹脂を含むことを特徴とする光学材料。 An optical material comprising the polyester resin according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載のポリエステル樹脂を含むことを特徴とするフィルム。 A film comprising the polyester resin according to any one of claims 1 to 9.
  12.  線熱膨張係数が40ppm/K以下であることを特徴とする請求項11に記載のフィルム。 The film according to claim 11, wherein the linear thermal expansion coefficient is 40 ppm / K or less.
  13.  ガスバリア層を設けたことを特徴とする請求項11または12に記載のフィルム。 The film according to claim 11 or 12, further comprising a gas barrier layer.
  14.  透明導電層を設けたことを特徴とする請求項11~13のいずれか1項に記載のフィルム。 The film according to any one of claims 11 to 13, further comprising a transparent conductive layer.
  15.  請求項11~14のいずれか1項に記載のフィルムを少なくとも1枚用いたことを特徴とする画像表示装置。 An image display device using at least one film according to any one of claims 11 to 14.
PCT/JP2010/001287 2009-02-25 2010-02-25 Polyester resin, and optical material, film and image display device, using same WO2010098111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009042207 2009-02-25
JP2009-042207 2009-02-25

Publications (1)

Publication Number Publication Date
WO2010098111A1 true WO2010098111A1 (en) 2010-09-02

Family

ID=42665324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001287 WO2010098111A1 (en) 2009-02-25 2010-02-25 Polyester resin, and optical material, film and image display device, using same

Country Status (1)

Country Link
WO (1) WO2010098111A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077259A (en) * 2010-10-06 2012-04-19 Fujifilm Corp Polyester, method for producing the same, and resin composition, film, electronic material, optical material and gas barrier film using the same
US10109421B2 (en) 2012-01-25 2018-10-23 Kemet Electronics Corporation Polymerization method for preparing conductive polymer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543670A (en) * 1991-08-09 1993-02-23 Unitika Ltd Polyarylate and its production
JPH0649189A (en) * 1992-07-31 1994-02-22 Polyplastics Co Aromatic polyester and polyester resin composition
JPH1017658A (en) * 1996-07-04 1998-01-20 Unitika Ltd Polyarylate
JP2003192806A (en) * 2001-12-25 2003-07-09 Mitsubishi Gas Chem Co Inc Polyester sheet
JP2006328147A (en) * 2005-05-24 2006-12-07 Unitika Ltd Polyarylate and method for producing the same
JP2007254663A (en) * 2006-03-24 2007-10-04 Fujifilm Corp Resin, optical material, film, and image display using the same
JP2007262123A (en) * 2006-03-27 2007-10-11 Fujifilm Corp Polyarylate resin molding and method for producing the same
JP2007290369A (en) * 2006-03-29 2007-11-08 Fujifilm Corp Gas barrier laminated film, its manufacturing method and image display element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543670A (en) * 1991-08-09 1993-02-23 Unitika Ltd Polyarylate and its production
JPH0649189A (en) * 1992-07-31 1994-02-22 Polyplastics Co Aromatic polyester and polyester resin composition
JPH1017658A (en) * 1996-07-04 1998-01-20 Unitika Ltd Polyarylate
JP2003192806A (en) * 2001-12-25 2003-07-09 Mitsubishi Gas Chem Co Inc Polyester sheet
JP2006328147A (en) * 2005-05-24 2006-12-07 Unitika Ltd Polyarylate and method for producing the same
JP2007254663A (en) * 2006-03-24 2007-10-04 Fujifilm Corp Resin, optical material, film, and image display using the same
JP2007262123A (en) * 2006-03-27 2007-10-11 Fujifilm Corp Polyarylate resin molding and method for producing the same
JP2007290369A (en) * 2006-03-29 2007-11-08 Fujifilm Corp Gas barrier laminated film, its manufacturing method and image display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077259A (en) * 2010-10-06 2012-04-19 Fujifilm Corp Polyester, method for producing the same, and resin composition, film, electronic material, optical material and gas barrier film using the same
US10109421B2 (en) 2012-01-25 2018-10-23 Kemet Electronics Corporation Polymerization method for preparing conductive polymer
US10242799B2 (en) 2012-01-25 2019-03-26 Kemet Electronics Corporation Polymerization method for preparing conductive polymer

Similar Documents

Publication Publication Date Title
US20080124534A1 (en) Polyamide, Film, and Image Display Device
JP2007063417A (en) Film and method for producing film, and film with gas-barrier layer, film with transparent electroconductive layer and image display device
JP5086526B2 (en) POLYMER, METHOD FOR PRODUCING THE POLYMER, OPTICAL FILM, AND IMAGE DISPLAY DEVICE
JP2006291163A (en) Film, production method therefor and image display device
JP2007002023A (en) Film and image display
JP2011202129A (en) Polyester resin, and optical material, film and image display device using the same
JP2006232960A (en) Optical film and image display device
JP2006249116A (en) Polyimide and optical film using the same
JP2006089585A (en) Polymer, resin composition, optical component, optical film, optical film with gas barrier layer, optical film with transparent conductive layer, optical film with tft and image display device
JP2007204574A (en) Polyarylate, optical film, and image display device
JP2005306983A (en) Optical film and image display device
JP2006111866A (en) Polyamide and film formed from the polyamide
JP2007254663A (en) Resin, optical material, film, and image display using the same
JP2007161930A (en) Optical film and image display
JP2007084650A (en) Highly heat-resisting polymer precursor film, optical film and method for producing the same, and image display device using the optical film
JP2006077185A (en) Polyamide and film comprising the polyamide
WO2010098111A1 (en) Polyester resin, and optical material, film and image display device, using same
JP5723566B2 (en) Polyester and method for producing the same, and resin composition, film, electronic material, optical material and gas barrier film using the same
JP4231440B2 (en) Resin composition, and film, optical component, and image display element using the resin composition
JP2012196809A (en) Forming method of polyester resin film
JP4177778B2 (en) Polyurethane and optical film comprising said polyurethane
JP2011195594A (en) Polyester resin, and optical material, film, and image display device using the same
JP2006083209A (en) Optical film and image display device
JP2006265383A (en) Resin composition, film and image display using it
JP2007145950A (en) Film, its manufacturing method and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745994

Country of ref document: EP

Kind code of ref document: A1