WO2010098027A1 - Thermoplastic polyurethane resin - Google Patents

Thermoplastic polyurethane resin Download PDF

Info

Publication number
WO2010098027A1
WO2010098027A1 PCT/JP2010/000899 JP2010000899W WO2010098027A1 WO 2010098027 A1 WO2010098027 A1 WO 2010098027A1 JP 2010000899 W JP2010000899 W JP 2010000899W WO 2010098027 A1 WO2010098027 A1 WO 2010098027A1
Authority
WO
WIPO (PCT)
Prior art keywords
diisocyanate
polyurethane resin
thermoplastic polyurethane
carbodiimide
parts
Prior art date
Application number
PCT/JP2010/000899
Other languages
French (fr)
Japanese (ja)
Inventor
都藤靖泰
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2011501475A priority Critical patent/JPWO2010098027A1/en
Publication of WO2010098027A1 publication Critical patent/WO2010098027A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/20Compositions for powder coatings

Definitions

  • the present invention relates to a polyester-based urethane resin having a carbodiimide bond, and a thermoplastic polyurethane resin containing the urethane resin.
  • the polyester-based urethane resin is produced by reacting a polyester polyol and a polyisocyanate in the presence of a low-molecular diol, diamine or the like, if necessary.
  • Polyurethanes using polyester polyols are excellent in mechanical properties, oil resistance (solvent) properties, etc., but have a problem that they are inferior in hydrolysis resistance because they have ester bonds that are susceptible to hydrolysis.
  • a coating film obtained by applying a polyester-based urethane resin paint to an article used outdoors has a problem that it is etched by heat, water, light or the like, and a stain is generated on the coating film.
  • An object of the present invention is to provide a thermoplastic urethane resin having excellent hydrolysis resistance and excellent meltability.
  • the present invention is a polyurethane resin (U) obtained by reacting a polyester diol (P) and a diisocyanate (S), and the diisocyanate (S) is 4,4′-modified with an unmodified diisocyanate (S0) and a carbodiimide.
  • the ratio of the peak height of uretonimine bond (near 1715 cm ⁇ 1 ) to the peak height of CH bond (near 2922 cm ⁇ 1 ) is 1.5 or less, which is a thermoplastic polyurethane resin (U) is there.
  • thermoplastic urethane resin of the present invention is excellent in hydrolysis resistance and meltability.
  • the polyester-based urethane resin obtained from the polyester diol component (P) and the carbodiimide-modified diisocyanate has a carbodiimide bond in the molecule, it has the property of being excellent in hydrolysis resistance.
  • the urethane resin was made into particles and melted by heating, it was found that the meltability was poor.
  • carbodiimide-modified 4,4′-dicyclohexylmethane diisocyanate (H) was used, the urethane resin particles It was found that the meltability was good.
  • MDIH 4,4′-dicyclohexylmethane diisocyanate
  • MDIH 4,4′-dicyclohexylmethane diisocyanate
  • carbodiimide group became a uretoimine bridge
  • thermoplastic polyurethane resin of the present invention is obtained from a polyester diol component (P) and a diisocyanate component (S), and the diisocyanate component (S) is one or more unmodified diisocyanates (S0) and carbodiimide-modified 4,4.
  • a thermoplastic polyurethane resin comprising '-dicyclohexylmethane diisocyanate (H).
  • the molar ratio of (S0) to (H) is preferably 40: 1 to 1000: 1. When it is 1000: 1 or less, the hydrolysis resistance is good, and when it is 40: 1 or more, the meltability and mechanical strength of the thermoplastic polyurethane resin are good.
  • the ratio of (H) the peak height of the C-H bonds of the methylene analyzed by infrared spectroscopy (2922cm -1 vicinity) uretonimine bond peak height for (1715 cm around -1) is an 1.5 or less 1.3 or less is more preferable.
  • the ratio of the peak height of the uretonimine bond to the peak height of the CH bond of methylene is 1.5 or less, there are few uretoimine cross-linked products in (H), the hydrolysis resistance and melting of the thermoplastic polyurethane resin Good properties.
  • the carbodiimide-modified 4,4'-dicyclohexylmethane diisocyanate (H) can be produced by adding a carbodiimidization catalyst to 4,4'-dicyclohexylmethane diisocyanate and heating.
  • the reaction temperature is preferably 40 to 190 ° C, more preferably 80 to 180 ° C.
  • a reaction temperature of 40 ° C. or higher is practical because the reaction time is short. Further, when the reaction temperature is 190 ° C. or lower, the selection of the solvent becomes easy.
  • the carbodiimidization reaction can also be carried out in a solvent, and the diisocyanate concentration in the reaction solution is preferably 20 to 100% by weight (hereinafter simply referred to as%). When the diisocyanate concentration is 20% or more, the carbodiimidization reaction is completed in a shorter time, which is practical.
  • Solvents used for the reaction of polycarbodiimide and organic solvents used for the polycarbodiimide solution are preferably halogenated hydrocarbons such as tetrachloroethylene, 1,2-dichloroethane, chloroform, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone.
  • ketone solvents such as, cyclic ether solvents such as tetrahydrofuran and dioxane, and aromatic hydrocarbon solvents such as toluene and xylene. These solvents may be used alone or in combination of two or more.
  • any known phosphorus catalyst is preferably used.
  • the addition amount of the carbodiimidization catalyst is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the weight of the diisocyanate. If the added amount of the carbodiimidization catalyst is less than 0.01% by weight, the reaction does not proceed.
  • the carbodiimide group content of the carbodiimide-modified 4,4′-dicyclohexylmethane diisocyanate (H) is preferably 3.0 to 5.0 mmol / g, more preferably 3.5 to 4.5 mmol / g from the viewpoint of handling. It is.
  • the carbodiimide group content can be measured by the following method.
  • the average number of carbodiimide groups in the carbodiimide-modified 4,4′-dicyclohexylmethane diisocyanate (H) is preferably 3 to 25, more preferably 5 to 20 from the viewpoint of handling.
  • the average number of carbodiimide groups can be calculated by the following formula.
  • unmodified diisocyanate (S0) aromatic diisocyanate, aliphatic diisocyanate, alicyclic diisocyanate and araliphatic diisocyanate which are generally used in the production of urethane resins can be used. Cyclic diisocyanates and araliphatic diisocyanates.
  • Aromatic diisocyanates include 1,3- and / or 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4'- and / or 4 4,4′-diphenylmethane diisocyanate (MDI), polymethylene polyphenylene polyisocyanate (crude MDI), naphthylene-1,5-diisocyanate, triphenylenemethane-4,4 ′, 4 ′′ -triisocyanate and the like.
  • TDI 1,4-phenylene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • CAde MDI polymethylene polyphenylene polyisocyanate
  • naphthylene-1,5-diisocyanate triphenylenemethane-4,4 ′, 4 ′′ -triisocyanate and the like.
  • Examples of the aliphatic diisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexatylene diisocyanate, dodecadiylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethyl caproate, and the like.
  • Examples of the alicyclic diisocyanate include isophorone diisocyanate, dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, and methylcyclohexylene diisocyanate.
  • Examples of the aliphatic aromatic diisocyanate include xylylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate, and the like.
  • the polyester diol (P) is, for example, (1) by condensation polymerization of a low molecular diol and a dicarboxylic acid or an ester-forming derivative thereof [an acid anhydride, a lower alkyl (carbon number 1 to 4) ester, acid halide, etc.]; (2) Ring-opening polymerization of a lactone monomer using a low molecular diol as an initiator; and a mixture of two or more of these.
  • the low molecular diol include aliphatic diols [linear diols (ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol. ) Having a branched chain (propylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,2-, 1,3- or Diols having a cyclic group [for example, those described in JP-B No.
  • Alkylene oxide adduct of bisphenol A, alkylene oxide adduct of bisphenol S, alkylene oxide adduct of bisphenol F, alkylene oxide adduct of dihydroxynaphthalene, bis (2-hydroxyethyl) terephthalate, etc.)] and two or more of these A mixture is mentioned.
  • dicarboxylic acid or ester-forming derivatives thereof include aliphatic dicarboxylic acids having 4 to 15 carbon atoms [succinic acid, adipic acid, sebacic acid, glutaric acid, azelaic acid, maleic acid, fumaric acid, etc.] C8-12 aromatic dicarboxylic acids [terephthalic acid, isophthalic acid, etc.], ester-forming derivatives thereof [acid anhydrides (phthalic anhydride, etc.), lower alkyl esters (dimethyl esters, diethyl esters, etc.), acid halides (Such as acid chloride) and the like, and a mixture of two or more thereof.
  • lactone monomer examples include ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -barrel lactone, and a mixture of two or more thereof.
  • the polyurethane resin (U) obtained from the polyester diol (P) and the diisocyanate (S) can be produced using, for example, the following known urethanation polyaddition techniques (1) and (2).
  • the polyester diol (P) obtained above and, if necessary, a low molecular compound (chain extender) having two or more active hydrogen atoms are uniformly mixed and preheated, and then the activity in the mixture It can be obtained by adding diisocyanate (S) in such an amount that the molar ratio of the number of hydrogen atoms to isocyanate groups is 1: 0.95 to 1: 1.05, and randomly adding them while stirring.
  • polyester diol (P) and the diisocyanate (S) can be reacted in advance and obtained via a prepolymer of a terminal isocyanate group. These reactions are usually carried out without solvent, but can also be carried out in a solvent such as dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, toluene, ethyl acetate.
  • examples of the chain extender include diols such as ethylene glycol, propylene glycol, 1,4-butylene glycol and 1,6-hexanediol, diamines such as propylene diamine, and the like. A mixture of the above is used.
  • monovalent low molecular alcohols such as methanol and ethanol
  • monovalent low molecular amines such as methylamine and ethylamine, and the like can be added as a modifier.
  • the weight average molecular weight of the thermoplastic polyurethane resin (U) is preferably 50,000 to 200,000, and more preferably 75,000 to 150,000.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC). Thermoplastic polyurethane resin was dissolved in DMF, and measurement was performed using the dissolved DMF solution.
  • thermoplastic polyurethane resin particles (E) of the present invention can be obtained by granulating the thermoplastic polyurethane resin (U) or (U) containing the following additive (D) by the following production method. Although it does not specifically limit as this manufacturing method, For example, the following method can be illustrated. (1) A method of obtaining (E) by pulverizing block or pellet (U) by a method such as a freeze pulverization method or an ice pulverization method. (2) A non-aqueous dispersion of (U) is formed in an organic solvent (n-hexane, cyclohexane, n-heptane, etc.) that does not dissolve (U), and (U) is separated and dried from the non-aqueous dispersion.
  • an organic solvent n-hexane, cyclohexane, n-heptane, etc.
  • a method for obtaining the powder of (E) (for example, a method described in JP-A No. 04-255755).
  • the method (3) is preferable in that a powder having a desired particle size can be easily obtained without using a large amount of an organic solvent.
  • thermoplastic polyurethane resin powder composition (F) is produced by producing the thermoplastic polyurethane resin particles (E) containing the additive (D) as described above, and the produced thermoplastic polyurethane resin particles (E ) Can be obtained by adding the additive (D).
  • the average particle size of the polyurethane resin particles (E) of the present invention is 1 to 400 ⁇ m, preferably 5 to 300 ⁇ m.
  • thermoplastic polyurethane resin (U) or the thermoplastic polyurethane resin particles (E) may be added with an additive (D) as necessary to obtain a thermoplastic polyurethane resin powder composition (F).
  • the additive (D) is preferably contained in an amount of 0 to 50% by weight, more preferably 5 to 30% by weight, based on the weight of the polyurethane resin composition (F).
  • an additive (D) it can be made to contain arbitrarily according to said each use. Examples include pigments, fillers, curing agents, curing catalysts, coating surface preparation agents, surfactants, dispersants, plasticizers, ultraviolet absorbers, antioxidants, mold release agents, flame retardants, and the like.
  • a powder fluidity modifier, an antiblocking agent, and the like can be added to the thermoplastic polyurethane resin particles (E).
  • thermoplastic polyurethane resin particles (E) and the thermoplastic polyurethane resin powder composition (F) of the present invention are useful as powder coating materials, powder adhesives, slush molding materials, and the like.
  • part means “part by weight” and% means wt%.
  • Comparative production example 2 Synthesis of carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate (H-2) having an average number of carbodiimide groups of 6 An average heptamer carbodiimide modification was carried out in the same manner as in Production Example 1 except that no aging was performed after cooling.
  • Dicyclohexylmethane-4,4′-diisocyanate (H-2) was synthesized. The properties were liquid and the isocyanate group content was 5.4%. The average molecular weight calculated from the isocyanate group content was 1556, the average number of carbodiimide groups was 6, and the amount of unmodified diisocyanate of (H-2) was 1.4%.
  • the carbodiimide group content of (H-2) was measured by the following carbodiimide group content measurement method.
  • the carbodiimide group content of (H-2) was 2.1 mmol / g.
  • the uretoimine peak ratio was 1.7.
  • Isocyanate content calculated average molecular weight, average carbodiimide group number, unmodified diisocyanate amount, carbodiimide group content of carbodiimide-modified diisocyanates (H-1 to H-4, I-1 to I-2, J-1 to J-2) Is shown in Table 2.
  • H-1 to H-4 the uretoimine peak ratio is shown in Table 2.
  • H-2) has a lower carbodiimide group content and a higher uretoimine peak ratio than (H-1). From this result, it can be seen that there are many ureitoimine structures.
  • I-1 to I-2, J-1 to J-2) had a carbodiimide group content of 0 mol / g. The cause is estimated as follows.
  • 1-octanol (10.4 parts), hexamethylene diisocyanate (S0-1) (136.24 parts), carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate (H-3) having an average carbodiimide group number of 10 (H-3) ( 19.80 parts), tetrahydrofuran (150 parts), 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol [manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Tinuvin 571 (1.83 parts) was reacted at 85 ° C. for 6 hours to obtain a prepolymer solution.
  • Production Example 10 Production of MEK ketimine product of diamine Hexamethylenediamine and excess MEK (4 times molar amount with respect to diamine) were refluxed at 80 ° C. for 24 hours, and the generated water was removed out of the system. Thereafter, unreacted MEK was removed under reduced pressure to obtain a MEK ketiminate.
  • Example 1 The prepolymer solution (100 parts) obtained in Production Example 9 and the MEK ketimine compound (2.58 parts) obtained in Production Example 3 are introduced into a reaction vessel for producing a polyurethane resin, and diisobutylene and maleic acid are mixed therewith. 340 parts by weight of an aqueous solution in which a dispersing agent containing a copolymer Na salt (Sunspear PS-8 manufactured by Sanyo Chemical Industries Co., Ltd.) (1.3 parts by weight) was dissolved was added, and Ultra Disperser manufactured by Yamato Scientific Co., Ltd. Was mixed for 1 minute at a rotation speed of 9000 rpm.
  • a dispersing agent containing a copolymer Na salt (Sunspear PS-8 manufactured by Sanyo Chemical Industries Co., Ltd.) (1.3 parts by weight) was dissolved was added, and Ultra Disperser manufactured by Yamato Scientific Co., Ltd. was mixed for 1 minute at a rotation speed of 9000 rpm.
  • E-1 thermoplastic polyurethane resin particles
  • Example 2 In Production Example 9, instead of (S0-1) 136.24 parts, (S0-1) was 134.82 parts, (H-3) instead of 19.80 parts, (H-3) was changed to 48.48 parts.
  • a prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 99 parts.
  • the ratio of the number of moles of (S0-1) and (H-3) was 40: 1.
  • the NCO content of this prepolymer was 1.00%.
  • thermoplastic polyurethane resin particles (E-2) were produced. Mw of (E-2) was 150,000 and the volume average particle diameter was 61 ⁇ m.
  • Example 3 In Production Example 9, instead of 136.24 parts of (S0-1), 137.31 parts of (S0-1) and (H-3) of 2.80 instead of 19.80 parts of (H-3).
  • a prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 00 parts.
  • the ratio of the number of moles of (S0-1) and (H-3) was 1000: 1.
  • the NCO content of this prepolymer was 1.00%.
  • thermoplastic polyurethane resin particles (E-3) were produced.
  • Mw of (E-3) was 120,000, and the volume average particle size was 56 ⁇ m.
  • Example 4 In Production Example 9, instead of 136.24 parts of (S0-1), 136.15 parts of (S0-1) and carbodiimide-modified dicyclohexyl having an average number of carbodiimide groups of 5 instead of 19.80 parts of (H-3) A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 10.96 parts of methane-4,4′-diisocyanate (H-1). The ratio of the number of moles of (S0-1) and (H-1) was 100: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-4) were produced. (E-4) had an Mw of 140,000 and a volume average particle size of 56 ⁇ m.
  • Example 5 In Production Example 9, instead of 136.24 parts of (S0-1), 136.58 parts of (S0-1), and 19.80 parts of (H-3), carbodiimide-modified dicyclohexyl having an average carbodiimide group number of 20 A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 37.58 parts of methane-4,4′-diisocyanate (H-4). The ratio of the number of moles of (S0-1) and (H-4) was 100: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-5) were produced. Mw of (E-5) was 130,000, and the volume average particle diameter was 62 ⁇ m.
  • Example 6 In Production Example 9, instead of 136.24 parts of (S0-1), 181.47 parts of isophorone diisocyanate (S0-2), and instead of 19.80 parts of (H-3), (H-3) 19. A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 96 parts. The ratio of the number of moles of (S0-2) and (H-3) was 100: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-6) were produced. Mw of (E-6) was 130,000, and the volume average particle size was 55 ⁇ m.
  • thermoplastic polyurethane resin particles (E-1) to (E-6) of Evaluation Examples 1 to 6 and the thermoplastic polyurethane resin particles (E-7 ′) to (E-11 ′) of Comparative Examples 1 to 5 were used. Then, the mixture was classified by a sonic classifier to remove fine powder having a volume average particle diameter of 20 ⁇ m or less and coarse powder having a particle diameter of 60 ⁇ m or more. Using a commercially available corona charging spray gun on a zinc phosphate treated steel plate standard plate (manufactured by Nippon Test Panel Co., Ltd.) coated with Sumimold FF (manufactured by Sumiko Lubricant) using this as a mold release agent, the film pressure is 40-60 ⁇ m.
  • Electrostatic coating was performed, and baking was performed at 180 ° C. for 20 minutes to obtain respective coating films.
  • the coating films obtained by peeling these coating films from the standard plate were subjected to meltability evaluation and wet heat aging test, and the evaluation results are shown in Table 3.
  • the terminal diisocyanate was treated by adding 0.5 g of a carbodiimide-modified diisocyanate sample to 5 ml of methanol and reacting at 90 ° C. for 180 minutes. Next, after drying methanol, 4 ml of tetrahydrofuran (THF) was added to 10 mg of a carbodiimide-modified diisocyanate sample treated with terminal diisocyanate and dissolved. Gel permeation chromatography (GPC) measurement of the THF solution was performed. From the GPC measurement results, the unmodified diisocyanate content is measured from the area ratio of the molecular weight peak calculated when methanol reacts at both ends of the unmodified diisocyanate.
  • GPC Gel permeation chromatography
  • ⁇ Melability evaluation criteria> The meltability of the center part of the coating film back surface obtained above is evaluated according to the following criteria. 5: Uniform and glossy. 4: There is a partially unmelted powder, but it is glossy. 3: There are irregularities on the entire back surface and there is no gloss. There are no pinholes penetrating the surface. 2: There are irregularities in the form of powder on the entire back surface, and there are no pinholes penetrating the surface. 1: Powder does not melt and does not become a coating film.
  • ⁇ Moist heat aging test> The coated skin obtained above was treated in a constant temperature and humidity machine at a temperature of 80 ° C. and a humidity of 95% RH for 400 hours. After the test, the tear strength of the epidermis was measured and compared with the initial strength. The tear strength retention after the wet heat aging test was calculated by the following formula.
  • Examples 1 to 6 to which carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate was added had higher tear strength retention after the wet heat aging test than Comparative Examples 1, 4 and 5. I understand that. Since the tear strength retention rate is high, the hydrolysis resistance is improved. In Comparative Example 2, it can be seen that the uretoimine cross-linking structure increased, the molecular weight increased, and the meltability deteriorated as the amount of carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate added increased.
  • Comparative Example 3 it can be seen that the molecular weight increases and the meltability deteriorates due to the large number of uretoimine crosslinking structures. Further, it can be seen that Examples 1 to 6 are superior in meltability as compared with Comparative Examples 2 to 5.
  • Comparative Examples 4 and 5 since the carbodiimide-modified hexamethylene diisocyanate (I-1) and the carbodiimide-modified isophorone diisocyanate (J-1) have a uretoimine cross-linked structure, the molecular weight of the obtained polyurethane resin powder composition is increased and the meltability is increased. Worsened.
  • the polyurethane resin powder composition (F) containing the polyurethane resin (E) of the present invention is used for extrusion molding materials such as hoses, tubes, films, sheets, belts, rolls, packing materials, machine parts, automobile parts, etc. It is useful as a coating material for injection molding materials, slush molding materials, paints, coating vehicles, and the like.
  • the polyester urethane resin particles of the present invention are useful as a powder coating material, a powder adhesive, a slush molding material, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

Disclosed is a thermoplastic urethane resin of superior hydrolysis resistance and excellent melt characteristics. The thermoplastic polyurethane resin (U) is a polyurethane resin (U) made by reacting a polyester diol (P) and a diisocyanate (S), and is characterized in that the diisocyanate (S) contains an unmodified diisocyanate (S0) and a carbodiimide-modified 4,4'-dicyclohexylmethane diisocyanate (H), the mole ratio of (S0) to (H) is 40:1 to 1000:1, and the ratio of the peak height of the uretone imine bonds (near 1715 cm-1) to the peak height of the methylene C-H bonds (near 2922 cm-1) in (H), from infrared spectroscopic analysis, is not more than 1.5.

Description

熱可塑性ポリウレタン樹脂Thermoplastic polyurethane resin
 本発明は、カルボジイミド結合を有するポリエステル系ウレタン樹脂、及び該ウレタン樹脂を含有する熱可塑性ポリウレタン樹脂に関する。 The present invention relates to a polyester-based urethane resin having a carbodiimide bond, and a thermoplastic polyurethane resin containing the urethane resin.
 ポリエステル系ウレタン樹脂は、ポリエステルポリオールとポリイソシアネートとを、必要に応じて低分子のジオール、ジアミンなどの存在下に反応して製造される。ポリエステルポリオールを使用したポリウレタンは、力学的物性、耐油(溶剤)性等に優れるが、加水分解を受けやすいエステル結合を有するため耐加水分解性に劣るという問題点がある。 
特に、屋外で使用する物品にポリエステル系ウレタン樹脂塗料を塗装した塗膜は、熱、水、光等によりエッチングされたり、塗膜にシミが発生するという問題がある。
これらの問題点に対して、ポリウレタン樹脂分子鎖内にカルボジイミド結合を積極的に導入することにより、カルボジイミド結合が分子外に脱落することがなく、長期にわたり安定した耐加水分解安定性を発揮するポリウレタン樹脂(特許文献1参照)等が提案されている。
The polyester-based urethane resin is produced by reacting a polyester polyol and a polyisocyanate in the presence of a low-molecular diol, diamine or the like, if necessary. Polyurethanes using polyester polyols are excellent in mechanical properties, oil resistance (solvent) properties, etc., but have a problem that they are inferior in hydrolysis resistance because they have ester bonds that are susceptible to hydrolysis.
In particular, a coating film obtained by applying a polyester-based urethane resin paint to an article used outdoors has a problem that it is etched by heat, water, light or the like, and a stain is generated on the coating film.
In response to these problems, a polyurethane that exhibits stable hydrolysis resistance over a long period of time, by actively introducing a carbodiimide bond into the polyurethane resin molecular chain, so that the carbodiimide bond does not fall out of the molecule. Resin (refer patent document 1) etc. are proposed.
特開平9-272726JP-A-9-272726
しかしながら、特許文献1のポリウレタン樹脂を粉末化して溶融する際に、溶融性が悪く良好な塗膜が得られないという問題点があった。
本発明の課題は耐加水分解性に優れるとともに、溶融性にも優れた熱可塑性ウレタン樹脂を提供することである。
However, when the polyurethane resin of Patent Document 1 is powdered and melted, there is a problem that a good coating film cannot be obtained due to poor meltability.
An object of the present invention is to provide a thermoplastic urethane resin having excellent hydrolysis resistance and excellent meltability.
本発明者は鋭意研究した結果、本発明を完成させるに至った。
すなわち、本発明はポリエステルジオール(P)とジイソシアネート(S)を反応してなるポリウレタン樹脂(U)であって、ジイソシアネート(S)が未変性ジイソシアネート(S0)とカルボジイミド変性された4,4’-ジシクロヘキシルメタンジイソシアネート(H)を含有し、(H)のモル数に対する(S0)のモル数の比が40:1~1000:1であって、かつ(H)を赤外分光法で分析したメチレンのC-H結合のピーク高さ(2922cm-1付近)に対するウレトンイミン結合のピーク高さ(1715cm-1付近)の比が1.5以下であることを特徴とする熱可塑性ポリウレタン樹脂(U)である。
As a result of intensive studies, the present inventors have completed the present invention.
That is, the present invention is a polyurethane resin (U) obtained by reacting a polyester diol (P) and a diisocyanate (S), and the diisocyanate (S) is 4,4′-modified with an unmodified diisocyanate (S0) and a carbodiimide. Methylene containing dicyclohexylmethane diisocyanate (H), the ratio of the number of moles of (S0) to the number of moles of (H) being 40: 1 to 1000: 1, and (H) being analyzed by infrared spectroscopy The ratio of the peak height of uretonimine bond (near 1715 cm −1 ) to the peak height of CH bond (near 2922 cm −1 ) is 1.5 or less, which is a thermoplastic polyurethane resin (U) is there.
本発明の熱可塑性ウレタン樹脂は、耐加水分解性に優れるとともに、溶融性にも優れる。 The thermoplastic urethane resin of the present invention is excellent in hydrolysis resistance and meltability.
ポリエステルジオール成分(P)とカルボジイミド変性ジイソシアネートから得られるポリエステル系ウレタン樹脂は分子内にカルボジイミド結合を有するため、耐加水分解性に優れるという特質を有する。しかしながら、該ウレタン樹脂を粒子化し、加熱溶融させた時に溶融性が悪いことが判明し、種々検討した結果、カルボジイミド変性4,4’-ジシクロヘキシルメタンジイソシアネート(H)を使用すれば、ウレタン樹脂粒子の溶融性が良好であることを見出した。
この理由として推定されるのは、4,4’-ジシクロヘキシルメタンジイソシアネート(以下MDIHと記載。)は、カルボジイミド変性反応を行う際、反応率が高くカルボジイミドと未変性ジイソシアネートが反応してなるウレトイミン架橋体の量が少ない。一方、MDIH以外のジイソシアネートでは反応率が低く、ウレトイミン架橋体の量が多いためと考えられる。また、MDIHのように立体障害の大きいカルボジイミド変性ジイソシアネート以外では、カルボジイミド基がウレトイミン架橋体となるため、ほとんどカルボジイミドが消失してしまうことが分かった。
Since the polyester-based urethane resin obtained from the polyester diol component (P) and the carbodiimide-modified diisocyanate has a carbodiimide bond in the molecule, it has the property of being excellent in hydrolysis resistance. However, when the urethane resin was made into particles and melted by heating, it was found that the meltability was poor. As a result of various studies, if carbodiimide-modified 4,4′-dicyclohexylmethane diisocyanate (H) was used, the urethane resin particles It was found that the meltability was good.
The presumed reason for this is that 4,4′-dicyclohexylmethane diisocyanate (hereinafter referred to as MDIH) has a high reaction rate when a carbodiimide modification reaction is performed, and is a cross-linked uretoimine obtained by reacting carbodiimide and unmodified diisocyanate. The amount of is small. On the other hand, it is considered that diisocyanates other than MDIH have a low reaction rate and a large amount of crosslinked uretoimine. Moreover, since carbodiimide group became a uretoimine bridge | crosslinking body other than carbodiimide modified diisocyanate with large steric hindrance like MDIH, it turned out that carbodiimide will lose | disappear almost.
本発明の熱可塑性ポリウレタン樹脂は、ポリエステルジオール成分(P)とジイソシアネート成分(S)とから得られ、ジイソシアネート成分(S)が、1種以上の未変性ジイソシアネート(S0)と、カルボジイミド変性4,4’-ジシクロヘキシルメタンジイソシアネート(H)からなる熱可塑性ポリウレタン樹脂である。 The thermoplastic polyurethane resin of the present invention is obtained from a polyester diol component (P) and a diisocyanate component (S), and the diisocyanate component (S) is one or more unmodified diisocyanates (S0) and carbodiimide-modified 4,4. A thermoplastic polyurethane resin comprising '-dicyclohexylmethane diisocyanate (H).
(S0)と(H)のモル数の比は、40:1~1000:1であることが好ましい。1000:1以下であると耐加水分解性が良好であり、40:1以上であると熱可塑性ポリウレタン樹脂の溶融性および機械的強度が良好である。 The molar ratio of (S0) to (H) is preferably 40: 1 to 1000: 1. When it is 1000: 1 or less, the hydrolysis resistance is good, and when it is 40: 1 or more, the meltability and mechanical strength of the thermoplastic polyurethane resin are good.
(H)を赤外分光法で分析したメチレンのC-H結合のピーク高さ(2922cm-1付近)に対するウレトンイミン結合のピーク高さ(1715cm-1付近)の比は、1.5以下であり、1.3以下がより好ましい。メチレンのC-H結合のピーク高さに対するウレトンイミン結合のピーク高さの比が1.5以下であると、(H)中のウレトイミン架橋体が少なく、熱可塑性ポリウレタン樹脂の耐加水分解性および溶融性が良好である。 The ratio of (H) the peak height of the C-H bonds of the methylene analyzed by infrared spectroscopy (2922cm -1 vicinity) uretonimine bond peak height for (1715 cm around -1) is an 1.5 or less 1.3 or less is more preferable. When the ratio of the peak height of the uretonimine bond to the peak height of the CH bond of methylene is 1.5 or less, there are few uretoimine cross-linked products in (H), the hydrolysis resistance and melting of the thermoplastic polyurethane resin Good properties.
カルボジイミド変性4,4’-ジシクロヘキシルメタンジイソシアネート(H)は、各々、4,4’-ジシクロヘキシルメタンジイソシアネートに、カルボジイミド化触媒を添加し、加熱することにより製造することができる。 The carbodiimide-modified 4,4'-dicyclohexylmethane diisocyanate (H) can be produced by adding a carbodiimidization catalyst to 4,4'-dicyclohexylmethane diisocyanate and heating.
反応温度は40~190℃が好ましく、80~180℃がより好ましい。反応温度は40℃以上であると反応時間が短時間で済むため実用的である。また、反応温度が190℃以下の場合は、溶媒の選択が容易となる。 The reaction temperature is preferably 40 to 190 ° C, more preferably 80 to 180 ° C. A reaction temperature of 40 ° C. or higher is practical because the reaction time is short. Further, when the reaction temperature is 190 ° C. or lower, the selection of the solvent becomes easy.
カルボジイミド化反応は、溶剤中で行うことも可能であり、反応溶液中におけるジイソシアネート濃度は20~100重量%(以下、単に%という)が好ましい。ジイソシアネート濃度が20%以上の場合、カルボジイミド化反応のがより短時間で終了するため、実用的である。ポリカルボジイミドの反応に用いられる溶媒、及びポリカルボジイミド溶液に用いられる有機溶媒は、好ましいものとしては、テトラクロロエチレン、1,2-ジクロロエタン、クロロホルムなどのハロゲン化炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどの環状エーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒などが挙げられる。これら溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。 The carbodiimidization reaction can also be carried out in a solvent, and the diisocyanate concentration in the reaction solution is preferably 20 to 100% by weight (hereinafter simply referred to as%). When the diisocyanate concentration is 20% or more, the carbodiimidization reaction is completed in a shorter time, which is practical. Solvents used for the reaction of polycarbodiimide and organic solvents used for the polycarbodiimide solution are preferably halogenated hydrocarbons such as tetrachloroethylene, 1,2-dichloroethane, chloroform, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone. And ketone solvents such as, cyclic ether solvents such as tetrahydrofuran and dioxane, and aromatic hydrocarbon solvents such as toluene and xylene. These solvents may be used alone or in combination of two or more.
また、カルボジイミド化に用いる触媒としては、公知のリン系触媒がいずれも好適に用いられ、例えば1-フェニル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、3-メチル-1-フェニル-2-ホスホレン-1-オキシド、あるいはこれらの3-ホスホレン異性体などのホスホレンオキシドが挙げられる。 As the catalyst used for carbodiimidization, any known phosphorus catalyst is preferably used. For example, 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1- Examples include phospholene oxides such as ethyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2-phospholene-1-oxide, and 3-phospholene isomers thereof.
カルボジイミド化触媒の添加量は、ジイソシアネートの重量に対して0.01~5重量%が好ましく、より好ましくは0.05~2重量%である。カルボジイミド化触媒の添加量が0.01重量%未満であると反応が進まず、5重量%より多いと反応が早くなり重合度の制御が困難となる。 The addition amount of the carbodiimidization catalyst is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the weight of the diisocyanate. If the added amount of the carbodiimidization catalyst is less than 0.01% by weight, the reaction does not proceed.
カルボジイミド変性された4,4’-ジシクロヘキシルメタンジイソシアネート(H)のカルボジイミド基含有量は、ハンドリングの観点から好ましくは3.0~5.0mmol/g、さらに好ましくは3.5~4.5mmol/gである。
カルボジイミド基含有量は下記の方法で測定することができる。
The carbodiimide group content of the carbodiimide-modified 4,4′-dicyclohexylmethane diisocyanate (H) is preferably 3.0 to 5.0 mmol / g, more preferably 3.5 to 4.5 mmol / g from the viewpoint of handling. It is.
The carbodiimide group content can be measured by the following method.
カルボジイミド変性された4,4’-ジシクロヘキシルメタンジイソシアネート(H)の平均カルボジイミド基数はハンドリングの観点から好ましくは3~25、さらに好ましくは5~20である。
平均カルボジイミド基数は以下の式で算出することができる。
The average number of carbodiimide groups in the carbodiimide-modified 4,4′-dicyclohexylmethane diisocyanate (H) is preferably 3 to 25, more preferably 5 to 20 from the viewpoint of handling.
The average number of carbodiimide groups can be calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
未変性ジイソシアネート(S0)としては、一般にウレタン樹脂の製造に用いられている芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート及び芳香脂肪族ジイソシアネートを使用可能であるが、好ましくは脂肪族ジイソシアネート、脂環族ジイソシアネート及び芳香脂肪族ジイソシアネートである。
 芳香族ジイソシアネートとしては、1,3-及び/又は1,4-フェニレンジイソシアネート、2,4-及び/又は2,6-トリレンジイソシアネート(TDI)、粗製TDI、2,4’-及び/又は4,4’-ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニレンポリイソシアネート(粗製MDI)、ナフチレン-1,5-ジイソシアネート、トリフェニレンメタン-4,4’,4’’-トリイソシアネート等が挙げられる。
 脂肪族ジイソシアネートとしては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサチレンジイソシアネート、ドデカチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート等が挙げられる。
 脂環族ジイソシアネートとしては、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート等が挙げられる。
 脂肪芳香族ジイソシアネートとしては、キシリレンジイソシアネート、α、α、α’、α’-テトラメチルキシリレンジイソシアネート等が挙げられる。
As the unmodified diisocyanate (S0), aromatic diisocyanate, aliphatic diisocyanate, alicyclic diisocyanate and araliphatic diisocyanate which are generally used in the production of urethane resins can be used. Cyclic diisocyanates and araliphatic diisocyanates.
Aromatic diisocyanates include 1,3- and / or 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4'- and / or 4 4,4′-diphenylmethane diisocyanate (MDI), polymethylene polyphenylene polyisocyanate (crude MDI), naphthylene-1,5-diisocyanate, triphenylenemethane-4,4 ′, 4 ″ -triisocyanate and the like.
Examples of the aliphatic diisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexatylene diisocyanate, dodecadiylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethyl caproate, and the like.
Examples of the alicyclic diisocyanate include isophorone diisocyanate, dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, and methylcyclohexylene diisocyanate.
Examples of the aliphatic aromatic diisocyanate include xylylene diisocyanate, α, α, α ′, α′-tetramethylxylylene diisocyanate, and the like.
ポリエステルジオール(P)は、例えば(1)低分子ジオールとジカルボン酸もしくはそのエステル形成性誘導体[酸無水物、低級アルキル(炭素数1~4)エステル、酸ハライド等]との縮合重合によるもの;(2)低分子ジオールを開始剤としてラクトンモノマーを開環重合したもの;およびこれらの2種以上の混合物が挙げられる。 The polyester diol (P) is, for example, (1) by condensation polymerization of a low molecular diol and a dicarboxylic acid or an ester-forming derivative thereof [an acid anhydride, a lower alkyl (carbon number 1 to 4) ester, acid halide, etc.]; (2) Ring-opening polymerization of a lactone monomer using a low molecular diol as an initiator; and a mixture of two or more of these.
上記低分子ジオールの具体例としては脂肪族ジオール類[直鎖ジオール(エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールなど)、分岐鎖を有するジオール(プロピレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオール、1,2-、1,3-もしくは2,3-ブタンジオールなど)など];環状基を有するジオール類[たとえば特公昭45-1474号公報記載のもの;脂肪族環状基含有ジオール(1,4-ビス(ヒドロキシメチル)シクロヘキサン、水添ビスフェノールAなど)、芳香族環状基含有ジオール(m-、およびp-キシリレングリコール、ビスフェノールAのアルキレンオキサイド付加物、ビスフェノールSのアルキレンオキシド付加物、ビスフェノールFのアルキレンオキシド付加物、ジヒドロキシナフタレンのアルキレンオキシド付加物、ビス(2-ヒドロキシエチル)テレフタレートなど)]およびこれらの2種以上の混合物が挙げられる。これらのうち好ましいものは脂肪族ジオールおよび環状基を有するジオールである。 Specific examples of the low molecular diol include aliphatic diols [linear diols (ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol. ) Having a branched chain (propylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,2-, 1,3- or Diols having a cyclic group [for example, those described in JP-B No. 45-1474; diols containing an aliphatic cyclic group (1,4-bis (hydroxymethyl) cyclohexane, hydrogenated, etc.) Bisphenol A, etc.), aromatic cyclic group-containing diol (m- and p-xylylene glycol) Alkylene oxide adduct of bisphenol A, alkylene oxide adduct of bisphenol S, alkylene oxide adduct of bisphenol F, alkylene oxide adduct of dihydroxynaphthalene, bis (2-hydroxyethyl) terephthalate, etc.)] and two or more of these A mixture is mentioned. Among these, preferred are aliphatic diols and diols having a cyclic group.
上記のジカルボン酸もしくはそのエステル形成性誘導体の具体例としては、炭素数4~15の脂肪族ジカルボン酸[コハク酸、アジピン酸、セバシン酸、グルタル酸、アゼライン酸、マレイン酸、フマル酸など]、炭素数8~12の芳香族ジカルボン酸[テレフタル酸、イソフタル酸など]、これらのエステル形成性誘導体[酸無水物(無水フタル酸など)、低級アルキルエステル(ジメチルエステル、ジエチルエステルなど)、酸ハライド(酸クロライド等)など]およびこれらの2種以上の混合物が挙げられる。 Specific examples of the dicarboxylic acid or ester-forming derivatives thereof include aliphatic dicarboxylic acids having 4 to 15 carbon atoms [succinic acid, adipic acid, sebacic acid, glutaric acid, azelaic acid, maleic acid, fumaric acid, etc.] C8-12 aromatic dicarboxylic acids [terephthalic acid, isophthalic acid, etc.], ester-forming derivatives thereof [acid anhydrides (phthalic anhydride, etc.), lower alkyl esters (dimethyl esters, diethyl esters, etc.), acid halides (Such as acid chloride) and the like, and a mixture of two or more thereof.
上記のラクトンモノマーとしてはγ-ブチロラクトン、ε-カプロラクトン、γ-バレルラクトンおよびこれらの2種以上の混合物が挙げられる。 Examples of the lactone monomer include γ-butyrolactone, ε-caprolactone, γ-barrel lactone, and a mixture of two or more thereof.
上記ポリエステルジオール(P)とジイソシアネート(S)とから得られるポリウレタン樹脂(U)は、例えば以下の(1)、(2)の公知のウレタン化重付加技術を用いて製造することができる。
(1)上記で得られたポリエステルジオール(P)と、必要により2個以上の活性水素原子を有する低分子化合物(鎖伸長剤)とを均一に混合して予熱した後、これら混合物中の活性水素原子数とイソシアネート基のモル比が1:0.95~1:1.05になる量のジイソシアネート(S)を加え、かきまぜながらランダムに重付加することにより得ることができる。
(2)ポリエステルジオール(P)とジイソシアネート(S)とをあらかじめ反応させ、末端イソシアネート基のプレポリマーを経由して得ることもできる。これらの反応は、通常無溶媒で行われるが、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、トルエン、酢酸エチルなどの溶媒中で行うこともできる。
 上記(1)、(2)において、鎖伸長剤としては、エチレングリコール、プロピレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオールなどのジオール、プロピレンジアミンなどのジアミンなどが単独もしくは2種以上混合して用いられる。さらに、必要により、メタノール、エタノールなどの一価の低分子アルコール、メチルアミン、エチルアミンなどの一価の低分子アミンなどを変性剤として添加することもできる。
The polyurethane resin (U) obtained from the polyester diol (P) and the diisocyanate (S) can be produced using, for example, the following known urethanation polyaddition techniques (1) and (2).
(1) The polyester diol (P) obtained above and, if necessary, a low molecular compound (chain extender) having two or more active hydrogen atoms are uniformly mixed and preheated, and then the activity in the mixture It can be obtained by adding diisocyanate (S) in such an amount that the molar ratio of the number of hydrogen atoms to isocyanate groups is 1: 0.95 to 1: 1.05, and randomly adding them while stirring.
(2) The polyester diol (P) and the diisocyanate (S) can be reacted in advance and obtained via a prepolymer of a terminal isocyanate group. These reactions are usually carried out without solvent, but can also be carried out in a solvent such as dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, toluene, ethyl acetate.
In the above (1) and (2), examples of the chain extender include diols such as ethylene glycol, propylene glycol, 1,4-butylene glycol and 1,6-hexanediol, diamines such as propylene diamine, and the like. A mixture of the above is used. Furthermore, if necessary, monovalent low molecular alcohols such as methanol and ethanol, monovalent low molecular amines such as methylamine and ethylamine, and the like can be added as a modifier.
熱可塑性ポリウレタン樹脂(U)の重量平均分子量は、好ましくは50,000~200,000であり、さらに好ましくは75,000~150,000である。
重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定できる。熱可塑性ポリウレタン樹脂をDMF中で溶解させ、溶解させたDMF溶液を用いて測定を行った。
The weight average molecular weight of the thermoplastic polyurethane resin (U) is preferably 50,000 to 200,000, and more preferably 75,000 to 150,000.
The weight average molecular weight can be measured by gel permeation chromatography (GPC). Thermoplastic polyurethane resin was dissolved in DMF, and measurement was performed using the dissolved DMF solution.
本発明の熱可塑性ポリウレタン樹脂粒子(E)は、熱可塑性ポリウレタン樹脂(U)又は下記の添加剤(D)を含有する(U)を以下の製造方法で粒子化して得ることができる。
該製造方法としては特に限定されないが、たとえば以下の方法が例示できる。
(1)ブロック状またはペレット状の(U)を冷凍粉砕法、氷結粉砕法等の方法で粉砕し、(E)を得る方法。
(2)(U)を溶解しない有機溶剤(n-ヘキサン、シクロヘキサン、n-ヘプタンなど)中で(U)の非水分散体を形成させ、該非水分散体から(U)を分離乾燥し、(E)の粉体を得る方法(例えば特開平04-255755号公報明細書に記載の方法)。
(3)分散剤を含有した水中で(U)の水分散体を形成させ、該水分散体から(U)を分離乾燥し、(E)の粉体を得る方法(例えば特開平07-133423号および特開平08-120041号各公報明細書に記載の方法)。
 これらのうちでは、多量の有機溶剤を使用せずしかも所望の粒度の粉体が容易に得られる点で(3)の方法が好ましい。
熱可塑性ポリウレタン樹脂粉末組成物(F)は、上記のように添加剤(D)を含有する熱可塑性ポリウレタン樹脂粒子(E)を製造することにより、また、製造された熱可塑性ポリウレタン樹脂粒子(E)に添加剤(D)を含有させて製造することにより得ることが出来る。
The thermoplastic polyurethane resin particles (E) of the present invention can be obtained by granulating the thermoplastic polyurethane resin (U) or (U) containing the following additive (D) by the following production method.
Although it does not specifically limit as this manufacturing method, For example, the following method can be illustrated.
(1) A method of obtaining (E) by pulverizing block or pellet (U) by a method such as a freeze pulverization method or an ice pulverization method.
(2) A non-aqueous dispersion of (U) is formed in an organic solvent (n-hexane, cyclohexane, n-heptane, etc.) that does not dissolve (U), and (U) is separated and dried from the non-aqueous dispersion. A method for obtaining the powder of (E) (for example, a method described in JP-A No. 04-255755).
(3) A method in which an aqueous dispersion of (U) is formed in water containing a dispersant, and (U) is separated and dried from the aqueous dispersion to obtain a powder of (E) (for example, JP-A-07-133423). And the method described in JP-A-08-120041.
Among these, the method (3) is preferable in that a powder having a desired particle size can be easily obtained without using a large amount of an organic solvent.
The thermoplastic polyurethane resin powder composition (F) is produced by producing the thermoplastic polyurethane resin particles (E) containing the additive (D) as described above, and the produced thermoplastic polyurethane resin particles (E ) Can be obtained by adding the additive (D).
本発明のポリウレタン樹脂粒子(E)の平均粒径は1~400μm、好ましくは5~300μmである。 The average particle size of the polyurethane resin particles (E) of the present invention is 1 to 400 μm, preferably 5 to 300 μm.
熱可塑性ポリウレタン樹脂(U)又は熱可塑性ポリウレタン樹脂粒子(E)は、必要により添加剤(D)を添加して熱可塑性ポリウレタン樹脂粉末組成物(F)としてもよい。 The thermoplastic polyurethane resin (U) or the thermoplastic polyurethane resin particles (E) may be added with an additive (D) as necessary to obtain a thermoplastic polyurethane resin powder composition (F).
添加剤(D)は、ポリウレタン樹脂組成物(F)の重量に対して、0~50重量%含有されることが好ましく、5~30重量%含有されることがより好ましい。
添加剤(D)としては、上記各用途に応じて任意に含有させることができる。
例えば、顔料、充填剤、硬化剤、硬化触媒、塗面調製剤、界面活性剤、分散剤、可塑剤、紫外線吸収剤、酸化防止剤、離型剤、難燃剤等が挙げられる。
熱可塑性ポリウレタン樹脂粒子(E)には、粉体の流動性改質剤、ブロッキング防止剤等を添加することもできる。 
The additive (D) is preferably contained in an amount of 0 to 50% by weight, more preferably 5 to 30% by weight, based on the weight of the polyurethane resin composition (F).
As an additive (D), it can be made to contain arbitrarily according to said each use.
Examples include pigments, fillers, curing agents, curing catalysts, coating surface preparation agents, surfactants, dispersants, plasticizers, ultraviolet absorbers, antioxidants, mold release agents, flame retardants, and the like.
A powder fluidity modifier, an antiblocking agent, and the like can be added to the thermoplastic polyurethane resin particles (E).
また、本発明の熱可塑性ポリウレタン樹脂粒子(E)、熱可塑性ポリウレタン樹脂粉末組成物(F)は、粉体塗料、粉体接着剤、スラッシュ成形用材料などとして有用である。 The thermoplastic polyurethane resin particles (E) and the thermoplastic polyurethane resin powder composition (F) of the present invention are useful as powder coating materials, powder adhesives, slush molding materials, and the like.
以下、実施例および比較例により本発明を説明するが、本発明はこれに限定されるものではない。以下、特に記載のないかぎり、「部」は「重量部」、%は重量%を意味する。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this. Hereinafter, unless otherwise specified, “part” means “part by weight” and% means wt%.
製造例1
平均カルボジイミド基数5のカルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネート(H-1)の合成
3リットルのセパラブルフラスコに冷却管、温度計、攪拌装置をセットし、ジシクロヘキシルメタン-4,4’-ジイソシアネート(300部)、3-メチル-1-フェニル-2-ホスホレンオキシド(3部)を仕込み、窒素気流下、185℃で5時間反応を行い、冷却後80℃で5時間熟成し、平均6量体カルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネート(H-1)を合成した。性状は液体で、イソシアネート基含量は6.2%であった。イソシアネート基含量から算出した平均分子量は1352、平均カルボジイミド基数は5であった(H-1)の未変性のジイソシアネート量は2.0%であった。また、下記のカルボジイミド基含有量測定法により、(H-1)のカルボジイミド基含有量を測定した。(H-1)のカルボジイミド基含有量は、3.2mmol/gであった。また、(H-1)を赤外分光法で分析したメチレンのC-H結合のピーク高さ(2922cm-1付近)に対するウレトンイミン結合のピーク高さ(1715cm-1付近)の比(以下ウレトイミンピーク比と記載)は、1.2であることを確認した。
Production Example 1
Synthesis of carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate (H-1) having an average number of carbodiimide groups of 5 A cooling tube, a thermometer and a stirrer were set in a 3 liter separable flask, and dicyclohexylmethane-4,4′- Diisocyanate (300 parts) and 3-methyl-1-phenyl-2-phospholene oxide (3 parts) were added, reacted under nitrogen flow at 185 ° C. for 5 hours, cooled and aged at 80 ° C. for 5 hours, average A hexameric carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate (H-1) was synthesized. The properties were liquid and the isocyanate group content was 6.2%. The average molecular weight calculated from the isocyanate group content was 1352, the average number of carbodiimide groups was 5, and the amount of unmodified diisocyanate of (H-1) was 2.0%. Further, the carbodiimide group content of (H-1) was measured by the following carbodiimide group content measurement method. The carbodiimide group content of (H-1) was 3.2 mmol / g. Furthermore, (H-1) the ratio of C-H bonds of the peak heights of the methylene analyzed by infrared spectroscopy (2922Cm -1 vicinity) uretonimine bond peak height for (1715 cm around -1) (hereinafter Uretoi The min peak ratio) was 1.2.
比較製造例2
平均カルボジイミド基数6のカルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネート(H-2)の合成
冷却後の熟成を行わない以外は製造例1と同様の操作を行うことにより、平均7量体カルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネート(H-2)を合成した。性状は液体で、イソシアネート基含量は5.4%であった。イソシアネート基含量から算出した平均分子量は1556、平均カルボジイミド基数は6であった(H-2)の未変性のジイソシアネート量は1.4%であった。また、下記のカルボジイミド基含有量測定法により、(H-2)のカルボジイミド基含有量を測定した。(H-2)のカルボジイミド基含有量は、2.1mmol/gであった。また、ウレトイミンピーク比は、1.7であることを確認した。
Comparative production example 2
Synthesis of carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate (H-2) having an average number of carbodiimide groups of 6 An average heptamer carbodiimide modification was carried out in the same manner as in Production Example 1 except that no aging was performed after cooling. Dicyclohexylmethane-4,4′-diisocyanate (H-2) was synthesized. The properties were liquid and the isocyanate group content was 5.4%. The average molecular weight calculated from the isocyanate group content was 1556, the average number of carbodiimide groups was 6, and the amount of unmodified diisocyanate of (H-2) was 1.4%. Further, the carbodiimide group content of (H-2) was measured by the following carbodiimide group content measurement method. The carbodiimide group content of (H-2) was 2.1 mmol / g. Moreover, it confirmed that the uretoimine peak ratio was 1.7.
製造例3~4、比較製造例5~8
カルボジイミド変性ジイソシアネート(H-3~H-4、I-1~I-2、J-1~J-2)の合成
表1に示すイソシアネート、反応温度および反応時間で、それ以外は製造例1と同様の操作を行うことにより、カルボジイミド変性ジイソシアネート(H-3~H-4、I-1~I-2、J-1~J-2)を合成した。
なお、表1中、HDIはヘキサメチレンジイソシアネート、IPDIはイソホロンジイソシアネートを示す。
Production Examples 3-4, Comparative Production Examples 5-8
Synthesis of carbodiimide-modified diisocyanates (H-3 to H-4, I-1 to I-2, J-1 to J-2) The isocyanates, reaction temperatures and reaction times shown in Table 1; Carbodiimide-modified diisocyanates (H-3 to H-4, I-1 to I-2, J-1 to J-2) were synthesized by performing the same operation.
In Table 1, HDI represents hexamethylene diisocyanate, and IPDI represents isophorone diisocyanate.
カルボジイミド変性ジイソシアネート(H-1~H-4、I-1~I-2、J-1~J-2)のイソシアネート含量、算出平均分子量、平均カルボジイミド基数、未変性のジイソシアネート量、カルボジイミド基含有量を表2に示す。H-1~H-4に関しては、ウレトイミンピーク比を表2に示す。
(H-2)は(H-1)と比較し、カルボジイミド基含有量も少なく、ウレトイミンピーク比が高い。この結果から、ウレトイミン構造が多く存在していることがわかる。
(I-1~I-2、J-1~J-2)は、カルボジイミド基含有量は0mol/gであった。原因は、以下のように推定される。(I-1~I-2、J-1~J-2)は、カルボジイミド基が消失し、ウレトイミン構造に変化したからである。カルボジイミド変性ヘキサメチレンジイソシアネートとカルボジイミド変性イソホロンジイソシアネートは、平均カルボジイミド基数が3以上で粘度が高まり固体となり、ハンドリング性が悪くなるため、重合を進めることができない。そのため、未変性のジイソシアネートが多量に残り、カルボジイミド基と未変性のジイソシアネートが反応し3官能以上のウレトイミン構造に変化したものと推定される。
Isocyanate content, calculated average molecular weight, average carbodiimide group number, unmodified diisocyanate amount, carbodiimide group content of carbodiimide-modified diisocyanates (H-1 to H-4, I-1 to I-2, J-1 to J-2) Is shown in Table 2. For H-1 to H-4, the uretoimine peak ratio is shown in Table 2.
(H-2) has a lower carbodiimide group content and a higher uretoimine peak ratio than (H-1). From this result, it can be seen that there are many ureitoimine structures.
(I-1 to I-2, J-1 to J-2) had a carbodiimide group content of 0 mol / g. The cause is estimated as follows. (I-1 to I-2, J-1 to J-2) is because the carbodiimide group disappeared and changed to a uretoimine structure. Since carbodiimide-modified hexamethylene diisocyanate and carbodiimide-modified isophorone diisocyanate have an average number of carbodiimide groups of 3 or more, the viscosity becomes solid and the handling property is deteriorated, and thus the polymerization cannot proceed. Therefore, it is presumed that a large amount of unmodified diisocyanate remained, and the carbodiimide group and the unmodified diisocyanate reacted to change to a trifunctional or higher uretoimine structure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
製造例9
プレポリマー溶液の製造
 温度計、撹拌機及び窒素吹込み管を備えた反応容器に、数平均分子量(以下Mnと記す。)が1000のポリブチレンアジペートジオール(366.7部)、Mnが900のポリヘキサメチレンイソフタレートジオール(244.5部)、ペンタエリスリトール テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート][チバスペシャリティーケミカルズ(株)社製; イルガノックス1010](1.22部)、体積平均粒径9.2μmのカオリン(89.2部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、60℃まで冷却した。続いて、1-オクタノール(10.4部)、ヘキサメチレンジイソシアネート(S0-1)(136.24部)、平均カルボジイミド基数10のカルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネート(H-3)(19.80部)、テトラヒドロフラン(150部)、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール[チバスペシャリティーケミカルズ(株)社製; チヌビン571]( 1.83部)、85℃で6時間反応させプレポリマー溶液を得た。(S0-1)と(H-3)のモル数の比が100:1であった。また、このプレポリマーのNCO含量は、1.00%であった。
Production Example 9
Production of Prepolymer Solution In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate diol (366.7 parts) having a number average molecular weight (hereinafter referred to as Mn) of 1000 and Mn of 900 Polyhexamethylene isophthalate diol (244.5 parts), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [manufactured by Ciba Specialty Chemicals, Inc .; Irganox 1010] (1.22 parts) and kaolin (89.2 parts) having a volume average particle size of 9.2 μm were charged, and after nitrogen substitution, the mixture was heated to 110 ° C. with stirring and melted, and then cooled to 60 ° C. Subsequently, 1-octanol (10.4 parts), hexamethylene diisocyanate (S0-1) (136.24 parts), carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate (H-3) having an average carbodiimide group number of 10 (H-3) ( 19.80 parts), tetrahydrofuran (150 parts), 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol [manufactured by Ciba Specialty Chemicals Co., Ltd. Tinuvin 571] (1.83 parts) was reacted at 85 ° C. for 6 hours to obtain a prepolymer solution. The ratio of the number of moles of (S0-1) and (H-3) was 100: 1. The NCO content of this prepolymer was 1.00%.
製造例10
ジアミンのMEKケチミン化物の製造
 ヘキサメチレンジアミンと過剰のMEK(ジアミンに対して4倍モル量)を80℃で24時間還流させながら生成水を系外に除去した。その後減圧にて未反応のMEKを除去してMEKケチミン化物を得た。
Production Example 10
Production of MEK ketimine product of diamine Hexamethylenediamine and excess MEK (4 times molar amount with respect to diamine) were refluxed at 80 ° C. for 24 hours, and the generated water was removed out of the system. Thereafter, unreacted MEK was removed under reduced pressure to obtain a MEK ketiminate.
実施例1
ポリウレタン樹脂の製造
反応容器に、製造例9で得たプレポリマー溶液(100部)と製造例3で得たMEKケチミン化合物(2.58部)を投入し、そこにジイソブチレンとマレイン酸との共重合体のNa塩を含む分散剤(三洋化成工業(株)製サンスパールPS-8)(1.3重量部)を溶解した水溶液340重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂(U-1)含有熱可塑性ポリウレタン樹脂粒子(E-1)を製造した。体積平均粒径(レーザー回折散乱法)を日機装(株)製マイクロトラック粒度分布測定装置HRAで測定すると(E-1)の体積平均粒径は57μmであった。ゲルパーミエーションクロマトグラフィー(GPC)で重量平均分子量を測定した。熱可塑性ポリウレタン樹脂(U-1)のMwは13万であった。結果を表3に記載した。以下の実施例・比較例においても同様である。
Example 1
The prepolymer solution (100 parts) obtained in Production Example 9 and the MEK ketimine compound (2.58 parts) obtained in Production Example 3 are introduced into a reaction vessel for producing a polyurethane resin, and diisobutylene and maleic acid are mixed therewith. 340 parts by weight of an aqueous solution in which a dispersing agent containing a copolymer Na salt (Sunspear PS-8 manufactured by Sanyo Chemical Industries Co., Ltd.) (1.3 parts by weight) was dissolved was added, and Ultra Disperser manufactured by Yamato Scientific Co., Ltd. Was mixed for 1 minute at a rotation speed of 9000 rpm. This mixture was transferred to a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, purged with nitrogen, and then reacted at 50 ° C. for 10 hours with stirring. After completion of the reaction, filtration and drying were performed to produce thermoplastic polyurethane resin (U-1) -containing thermoplastic polyurethane resin particles (E-1). When the volume average particle size (laser diffraction scattering method) was measured with a microtrack particle size distribution analyzer HRA manufactured by Nikkiso Co., Ltd., the volume average particle size of (E-1) was 57 μm. The weight average molecular weight was measured by gel permeation chromatography (GPC). The Mw of the thermoplastic polyurethane resin (U-1) was 130,000. The results are shown in Table 3. The same applies to the following examples and comparative examples.
実施例2
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を134.82部、(H-3)19.80部の代わりに、(H-3)を48.99部に変えた以外は製造例9と同様にして、プレポリマーを合成した。(S0-1)と(H-3)のモル数の比が40:1であった。また、このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-2)を製造した。(E-2)のMwは15万、体積平均粒径は61μmであった。
Example 2
In Production Example 9, instead of (S0-1) 136.24 parts, (S0-1) was 134.82 parts, (H-3) instead of 19.80 parts, (H-3) was changed to 48.48 parts. A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 99 parts. The ratio of the number of moles of (S0-1) and (H-3) was 40: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-2) were produced. Mw of (E-2) was 150,000 and the volume average particle diameter was 61 μm.
実施例3
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を137.31部、(H-3)19.80部の代わりに、(H-3)を2.00部に変えた以外は製造例9と同様にして、プレポリマーを合成した。(S0-1)と(H-3)のモル数の比が1000:1であった。また、このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-3)を製造した。(E-3)のMwは12万、体積平均粒径は56μmであった。
Example 3
In Production Example 9, instead of 136.24 parts of (S0-1), 137.31 parts of (S0-1) and (H-3) of 2.80 instead of 19.80 parts of (H-3). A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 00 parts. The ratio of the number of moles of (S0-1) and (H-3) was 1000: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-3) were produced. Mw of (E-3) was 120,000, and the volume average particle size was 56 μm.
実施例4
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を136.15部、(H-3)19.80部の代わりに、平均カルボジイミド基数5のカルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネート(H-1)10.96部に変えた以外は製造例9と同様にして、プレポリマーを合成した。(S0-1)と(H-1)のモル数の比が100:1であった。また、このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-4)を製造した。(E-4)のMwは14万、体積平均粒径は56μmであった。
Example 4
In Production Example 9, instead of 136.24 parts of (S0-1), 136.15 parts of (S0-1) and carbodiimide-modified dicyclohexyl having an average number of carbodiimide groups of 5 instead of 19.80 parts of (H-3) A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 10.96 parts of methane-4,4′-diisocyanate (H-1). The ratio of the number of moles of (S0-1) and (H-1) was 100: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-4) were produced. (E-4) had an Mw of 140,000 and a volume average particle size of 56 μm.
実施例5
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を136.58部、(H-3)19.80部の代わりに、平均カルボジイミド基数20のカルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネート(H-4)37.58部に変えた以外は製造例9と同様にして、プレポリマーを合成した。(S0-1)と(H-4)のモル数の比が100:1であった。また、このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-5)を製造した。(E-5)のMwは13万、体積平均粒径は62μmであった。
Example 5
In Production Example 9, instead of 136.24 parts of (S0-1), 136.58 parts of (S0-1), and 19.80 parts of (H-3), carbodiimide-modified dicyclohexyl having an average carbodiimide group number of 20 A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 37.58 parts of methane-4,4′-diisocyanate (H-4). The ratio of the number of moles of (S0-1) and (H-4) was 100: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-5) were produced. Mw of (E-5) was 130,000, and the volume average particle diameter was 62 μm.
実施例6
製造例9において、(S0-1)136.24部の代わりに、イソホロンジイソシアネート(S0-2)181.47部、(H-3)19.80部の代わりに、(H-3)19.96部に変えた以外は製造例9と同様にして、プレポリマーを合成した。(S0-2)と(H-3)のモル数の比が100:1であった。また、このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-6)を製造した。(E-6)のMwは13万、体積平均粒径は55μmであった。
Example 6
In Production Example 9, instead of 136.24 parts of (S0-1), 181.47 parts of isophorone diisocyanate (S0-2), and instead of 19.80 parts of (H-3), (H-3) 19. A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 96 parts. The ratio of the number of moles of (S0-2) and (H-3) was 100: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-6) were produced. Mw of (E-6) was 130,000, and the volume average particle size was 55 μm.
比較例1
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を137.21部、(H-3)19.80部の代わりに、(H-3)を0部に変えた以外は製造例9と同様にして、プレポリマーを合成した。このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-7’)を製造した。(E-7’)のMwは10万、体積平均粒径は55μmであった。
Comparative Example 1
In Production Example 9, instead of (S0-1) 136.24 parts, (S0-1) 137.21 parts, (H-3) instead of 19.80 parts, (H-3) 0 parts A prepolymer was synthesized in the same manner as in Production Example 9 except that The prepolymer had an NCO content of 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-7 ′) were produced. (E-7 ′) had an Mw of 100,000 and a volume average particle size of 55 μm.
比較例2
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を134.52部、(H-3)19.80部の代わりに、(H-3)を55.86部に変えた以外は製造例9と同様にして、プレポリマーを合成した。(S0-1)と(H-3)のモル数の比が35:1であった。また、このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-8’)を製造した。(E-8’)のMwは22万、体積平均粒径は63μmであった。
Comparative Example 2
In Production Example 9, instead of (S0-1) 136.24 parts, (S0-1) was 134.52 parts, (H-3) instead of 19.80 parts, (H-3) was 55.55 parts. A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 86 parts. The ratio of the number of moles of (S0-1) to (H-3) was 35: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-8 ′) were produced. Mw of (E-8 ′) was 220,000, and the volume average particle diameter was 63 μm.
比較例3
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を134.64部、(H-3)19.80部の代わりに、(H-2)を12.47部に変えた以外は製造例9と同様にして、プレポリマーを合成した。(S0-1)と(H-2)のモル数の比が100:1であった。また、このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-9’)を製造した。(E-9’)のMwは25万、体積平均粒径は63μmであった。
Comparative Example 3
In Production Example 9, instead of 136.24 parts of (S0-1), 134.64 parts of (S0-1) and (H-2) of 12.80 parts instead of 19.80 parts of (H-3). A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 47 parts. The ratio of the number of moles of (S0-1) and (H-2) was 100: 1. The NCO content of this prepolymer was 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-9 ′) were produced. (E-9 ′) had an Mw of 250,000 and a volume average particle size of 63 μm.
比較例4
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を135.96部、(H-3)19.80部の代わりに、平均カルボジイミド基数2のカルボジイミド変性ヘキサメチレンジイソシアネート(I-1)3.37部に変えた以外は製造例9と同様にして、プレポリマーを合成した。このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-10’)を製造した。(E-10’)のMnは35万、体積平均粒径は63μmであった。
Comparative Example 4
In Production Example 9, instead of (S0-1) 136.24 parts, (S0-1) was replaced with 135.96 parts, and (H-3) was replaced with 19.80 parts. A prepolymer was synthesized in the same manner as in Production Example 9 except that the amount was changed to 3.37 parts of methylene diisocyanate (I-1). The prepolymer had an NCO content of 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-10 ′) were produced. Mn of (E-10 ′) was 350,000, and the volume average particle diameter was 63 μm.
比較例5
製造例9において、(S0-1)136.24部の代わりに、(S0-1)を135.96部、(H-2)19.80部の代わりに、平均カルボジイミド基数2のカルボジイミド変性イソホロンジイソシアネート(J-1)4.68部に変えた以外は製造例7と同様にして、プレポリマーを合成した。このプレポリマーのNCO含量は、1.00%であった。さらに実施例1と同様にして、熱可塑性ポリウレタン樹脂粒子(E-11’)を製造した。(E-11’)のMwは30万、体積平均粒径は62μmであった。
Comparative Example 5
In Production Example 9, instead of (S0-1) 136.24 parts, (S0-1) instead of 135.96 parts and (H-2) 19.80 parts, carbodiimide-modified isophorone having an average carbodiimide group number of 2 A prepolymer was synthesized in the same manner as in Production Example 7 except that the amount was changed to 4.68 parts of diisocyanate (J-1). The prepolymer had an NCO content of 1.00%. Further, in the same manner as in Example 1, thermoplastic polyurethane resin particles (E-11 ′) were produced. (E-11 ′) had an Mw of 300,000 and a volume average particle size of 62 μm.
評価
実施例1~6の熱可塑性ポリウレタン樹脂粒子(E-1)~(E-6)、及び比較例1~5の熱可塑性ポリウレタン樹脂粒子(E-7‘)~(E-11‘)を、音波式分級機により分級し、体積平均粒径20μm以下の微粉と、60μm以上の粗粉を除去した。
これを離型剤としてスミモールドFF(住鉱潤滑剤製)を塗布したリン酸亜鉛処理鋼板標準板(日本テストパネル社製)に市販のコロナ帯電方式スプレーガンを用いて膜圧が40~60μmになるように静電塗装し、180℃で20分間焼き付け、それぞれの塗膜を得た。これらの塗膜を標準板から剥離し得られた塗膜について、溶融性評価、湿熱老化試験を行い、その評価結果を表3に示した。
The thermoplastic polyurethane resin particles (E-1) to (E-6) of Evaluation Examples 1 to 6 and the thermoplastic polyurethane resin particles (E-7 ′) to (E-11 ′) of Comparative Examples 1 to 5 were used. Then, the mixture was classified by a sonic classifier to remove fine powder having a volume average particle diameter of 20 μm or less and coarse powder having a particle diameter of 60 μm or more.
Using a commercially available corona charging spray gun on a zinc phosphate treated steel plate standard plate (manufactured by Nippon Test Panel Co., Ltd.) coated with Sumimold FF (manufactured by Sumiko Lubricant) using this as a mold release agent, the film pressure is 40-60 μm. Electrostatic coating was performed, and baking was performed at 180 ° C. for 20 minutes to obtain respective coating films. The coating films obtained by peeling these coating films from the standard plate were subjected to meltability evaluation and wet heat aging test, and the evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<カルボジイミド基含有量測定法> 
カルボジイミド変性ジイソシアネート0.1gを重量比でトルエン:イソプロピルアルコール=1:2混合溶液50gに溶解させ、その後プロピオン酸1gを入れ、60℃撹拌下で2時間反応させた。2時間後、0.1mol/Lの水酸化カリウム溶液で滴定を行う。   この時、同時にカルボジイミド変性ジイソシアネート0.1gを入れない空試験の滴定も行う。滴定結果と以下の計算式からカルボジイミド基含有量を求める。
<Method for measuring carbodiimide group content>
Carbodiimide-modified diisocyanate (0.1 g) was dissolved in a weight ratio of 50 g of a mixed solution of toluene: isopropyl alcohol = 1: 2, and then 1 g of propionic acid was added and reacted for 2 hours with stirring at 60 ° C. After 2 hours, titration is performed with a 0.1 mol / L potassium hydroxide solution. At the same time, a blank test titration in which 0.1 g of carbodiimide-modified diisocyanate is not added is also performed. The carbodiimide group content is determined from the titration result and the following calculation formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
<ウレトイミンピーク比の測定方法>
機器:FTIR-8400(SHIMAZU社製)
試料の調整:ダイヤモンドセンサーに1~5個程度の試料を置き、サンプル押さえ棒
でセンサーに押付け、測定を行う。
赤外測定条件:波数範囲650-4000cm-1、積算回数128回
メチレンのC-H結合のピーク高さ(2922cm-1付近)に対するウレトンイミン結合のピーク高さ(1715cm-1付近)の比を算出する。
<Measurement method of ureitoimine peak ratio>
Equipment: FTIR-8400 (manufactured by SHIMAZU)
Sample adjustment: Place about 1 to 5 samples on the diamond sensor, press against the sensor with a sample holding rod, and measure.
Infrared Measurement conditions: calculating the ratio of the wave number range 650-4000cm -1, C-H bonds of the peak height of 128 cumulative methylene (2922Cm -1 vicinity) uretonimine bond peak height for (1715 cm around -1) To do.
<未変性ジイソシアネート含有量の測定>
カルボジイミド変性ジイソシアネート試料0.5gをメタノール5mlに加え、90℃で180分反応させて末端ジイソシアネートを処理した。次にメタノールを乾燥させた後、末端ジイソシアネート処理したカルボジイミド変性ジイソシアネート試料10mgにテトラハイドロフラン(THF)4mlを加えて溶解させた。THF溶液のゲルパーミエーションクロマトグラフィー(GPC)測定を行った。GPC測定の結果から、未変性のジイソシアネートの両末端にメタノールが反応した場合に算出される分子量のピークの面積比から未変性ジイソシアネート含有量を測定する。
<Measurement of unmodified diisocyanate content>
The terminal diisocyanate was treated by adding 0.5 g of a carbodiimide-modified diisocyanate sample to 5 ml of methanol and reacting at 90 ° C. for 180 minutes. Next, after drying methanol, 4 ml of tetrahydrofuran (THF) was added to 10 mg of a carbodiimide-modified diisocyanate sample treated with terminal diisocyanate and dissolved. Gel permeation chromatography (GPC) measurement of the THF solution was performed. From the GPC measurement results, the unmodified diisocyanate content is measured from the area ratio of the molecular weight peak calculated when methanol reacts at both ends of the unmodified diisocyanate.
<溶融性評価基準>
上記で得られた塗膜裏面中央部を、以下の判定基準で溶融性を評価する。
5:均一で光沢がある。
4:一部未溶融のパウダーが有るが、光沢がある。
3:裏面全面に凹凸があり、光沢はない。表面に貫通するピンホールはない。
2:裏面全面にパウダーの形状の凹凸があり、かつ表面に貫通するピンホールはない。
1:パウダーが溶融せず、塗膜にならない。
<Melability evaluation criteria>
The meltability of the center part of the coating film back surface obtained above is evaluated according to the following criteria.
5: Uniform and glossy.
4: There is a partially unmelted powder, but it is glossy.
3: There are irregularities on the entire back surface and there is no gloss. There are no pinholes penetrating the surface.
2: There are irregularities in the form of powder on the entire back surface, and there are no pinholes penetrating the surface.
1: Powder does not melt and does not become a coating film.
<湿熱老化試験>
上記で得られた塗膜表皮を、恒温恒湿機中に、温度80℃湿度95%RHで400時間処理した。試験後、表皮の引裂強度を測定して、初期強度と比較した。
湿熱老化試験後の引裂強度保持率を以下の式で算出した。
<Moist heat aging test>
The coated skin obtained above was treated in a constant temperature and humidity machine at a temperature of 80 ° C. and a humidity of 95% RH for 400 hours. After the test, the tear strength of the epidermis was measured and compared with the initial strength.
The tear strength retention after the wet heat aging test was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
・引裂強度
表皮サンプルからJIS K 6301(1995年)の引裂試験片ダンベルB号形を3枚打ち抜く。板厚は曲がっている場所の近傍5カ所の最小値をとる。これをオートグラフに取り付け、200mm/minの速さで引っ張り、試験片が破断にいたる最大強度を算出する。
・ Tear strength Dumbell type No. B of JIS K 6301 (1995) is punched from the skin sample. The plate thickness takes the minimum value at five locations in the vicinity of the bent location. This is attached to an autograph, pulled at a speed of 200 mm / min, and the maximum strength at which the test piece breaks is calculated.
表3より、カルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネートを添加した実施例1~6は、比較例1、4、5と比べて、湿熱老化試験後の引裂強度保持率が高くなっていることがわかる。引裂強度保持率が高くなっていることから、耐加水分解安定性が向上している。また、比較例2は、カルボジイミド変性ジシクロヘキシルメタン-4,4’-ジイソシアネートの添加量が多いことでウレトイミン架橋構造が増え、分子量が大きくなり、溶融性が悪化したことがわかる。比較例3は、ウレトイミン架橋構造が多いことで、分子量が大きくなり、溶融性が悪化したことがわかる。
また、実施例1~6は、比較例2~5と比べて、溶融性に優れていることがわかる。比較例4、5は、カルボジイミド変性ヘキサメチレンジイソシアネート(I-1)とカルボジイミド変性イソホロンジイソシアネート(J-1)がウレトイミン架橋構造をとるため、 得られたポリウレタン樹脂粉末組成物の分子量が大きくなり溶融性が悪化した。
From Table 3, Examples 1 to 6 to which carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate was added had higher tear strength retention after the wet heat aging test than Comparative Examples 1, 4 and 5. I understand that. Since the tear strength retention rate is high, the hydrolysis resistance is improved. In Comparative Example 2, it can be seen that the uretoimine cross-linking structure increased, the molecular weight increased, and the meltability deteriorated as the amount of carbodiimide-modified dicyclohexylmethane-4,4′-diisocyanate added increased. In Comparative Example 3, it can be seen that the molecular weight increases and the meltability deteriorates due to the large number of uretoimine crosslinking structures.
Further, it can be seen that Examples 1 to 6 are superior in meltability as compared with Comparative Examples 2 to 5. In Comparative Examples 4 and 5, since the carbodiimide-modified hexamethylene diisocyanate (I-1) and the carbodiimide-modified isophorone diisocyanate (J-1) have a uretoimine cross-linked structure, the molecular weight of the obtained polyurethane resin powder composition is increased and the meltability is increased. Worsened.
本発明のポリウレタン樹脂(E)を含有するポリウレタン樹脂粉末組成物(F)は、ホース、チューブ、フィルム、シート、ベルト、ロール類などの押出成形用材料、パッキング材、機械部品、自動車部品などの射出成形用材料、スラッシュ成形用材料、塗料、コーティング用ビヒクルなどのコーティング材料などとして有用である。また、本発明のポリエステル系ウレタン樹脂粒子は、粉体塗料、粉体接着剤、スラッシュ成形用材料などとして有用である。
 
 
The polyurethane resin powder composition (F) containing the polyurethane resin (E) of the present invention is used for extrusion molding materials such as hoses, tubes, films, sheets, belts, rolls, packing materials, machine parts, automobile parts, etc. It is useful as a coating material for injection molding materials, slush molding materials, paints, coating vehicles, and the like. The polyester urethane resin particles of the present invention are useful as a powder coating material, a powder adhesive, a slush molding material, and the like.

Claims (9)

  1. ポリエステルジオール(P)とジイソシアネート(S)を反応してなるポリウレタン樹脂(U)であって、ジイソシアネート(S)が未変性ジイソシアネート(S0)とカルボジイミド変性された4,4’-ジシクロヘキシルメタンジイソシアネート(H)を含有し、(S0)と(H)のモル数の比が40:1~1000:1であって、かつ(H)を赤外分光法で分析したメチレンのC-H結合のピーク高さ(2922cm-1付近)に対するウレトンイミン結合のピーク高さ(1715cm-1付近)の比が1.5以下であることを特徴とする熱可塑性ポリウレタン樹脂(U)。 A polyurethane resin (U) obtained by reacting a polyester diol (P) and a diisocyanate (S), wherein the diisocyanate (S) is modified with an unmodified diisocyanate (S0) and a carbodiimide, and is converted to 4,4′-dicyclohexylmethane diisocyanate (H). ), The molar ratio of (S0) to (H) is 40: 1 to 1000: 1, and (H) was analyzed by infrared spectroscopy. A thermoplastic polyurethane resin (U) having a ratio of the peak height (near 1715 cm −1 ) of the uretonimine bond to the thickness (near 2922 cm −1 ) of 1.5 or less.
  2. 未変性ジイソシアネート(S0)が、脂肪族ジイソシアネート、脂環族ジイソシアネート又は脂肪芳香族ジイソシアネートである請求項1に記載の熱可塑性ポリウレタン樹脂(U)。 The thermoplastic polyurethane resin (U) according to claim 1, wherein the unmodified diisocyanate (S0) is an aliphatic diisocyanate, an alicyclic diisocyanate, or an aliphatic aromatic diisocyanate.
  3. カルボジイミド変性された4,4’-ジシクロヘキシルメタンジイソシアネート(H)のカルボジイミド基含有量が3.0~5.0mmol/gである請求項1又は2に記載の熱可塑性ポリウレタン樹脂(U)。 The thermoplastic polyurethane resin (U) according to claim 1 or 2, wherein the carbodiimide-modified 4,4'-dicyclohexylmethane diisocyanate (H) has a carbodiimide group content of 3.0 to 5.0 mmol / g.
  4. カルボジイミド変性された4,4’-ジシクロヘキシルメタンジイソシアネート(H)の平均カルボジイミド基数が3~25である請求項1~3のいずれか1項に記載の熱可塑性ポリウレタン樹脂(U)。 The thermoplastic polyurethane resin (U) according to any one of claims 1 to 3, wherein the carbodiimide-modified 4,4'-dicyclohexylmethane diisocyanate (H) has an average number of carbodiimide groups of 3 to 25.
  5. 熱可塑性ポリウレタン樹脂(U)のゲルパーミエーションクロマトグラフィーによる重量平均分子量が、5~20万である請求項1~4のいずれか1項に記載の熱可塑性ポリウレタン樹脂(U)。 The thermoplastic polyurethane resin (U) according to any one of claims 1 to 4, wherein the weight average molecular weight of the thermoplastic polyurethane resin (U) by gel permeation chromatography is 50,000 to 200,000.
  6. 請求項1~5のいずれか1項に記載の熱可塑性ポリウレタン樹脂(U)を含有する熱可塑性ポリウレタン樹脂粒子(E)。 Thermoplastic polyurethane resin particles (E) containing the thermoplastic polyurethane resin (U) according to any one of claims 1 to 5.
  7. 請求項6に記載の熱可塑性ポリウレタン樹脂粒子(E)を含有する熱可塑性ポリウレタン樹脂粉末組成物(F)。 A thermoplastic polyurethane resin powder composition (F) containing the thermoplastic polyurethane resin particles (E) according to claim 6.
  8. 請求項7に記載の熱可塑性ポリウレタン樹脂粉末組成物(F)を含有する粉体塗料用樹脂組成物。 The resin composition for powder coatings containing the thermoplastic polyurethane resin powder composition (F) of Claim 7.
  9. 請求項7に記載の熱可塑性ポリウレタン樹脂粉末組成物(F)を成形してなる樹脂成形品。
     
    The resin molded product formed by shape | molding the thermoplastic polyurethane resin powder composition (F) of Claim 7.
PCT/JP2010/000899 2009-02-24 2010-02-15 Thermoplastic polyurethane resin WO2010098027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501475A JPWO2010098027A1 (en) 2009-02-24 2010-02-15 Thermoplastic polyurethane resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-040652 2009-02-24
JP2009040652 2009-02-24

Publications (1)

Publication Number Publication Date
WO2010098027A1 true WO2010098027A1 (en) 2010-09-02

Family

ID=42665244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000899 WO2010098027A1 (en) 2009-02-24 2010-02-15 Thermoplastic polyurethane resin

Country Status (2)

Country Link
JP (1) JPWO2010098027A1 (en)
WO (1) WO2010098027A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119443A1 (en) * 2016-01-05 2017-07-13 三井化学株式会社 Polycarbodiimide composition, method for producing polycarbodiimide composition, aqueous dispersion composition, solution composition, resin composition, and resin cured product
CN107418413A (en) * 2017-09-11 2017-12-01 陕西科技大学 A kind of heat molten type thermoplastic polyurethane anticorrosion peelable material, preparation method and applications
CN110300769A (en) * 2017-02-16 2019-10-01 三井化学株式会社 Manufacturing method, water-dispersed composition, liquid composite, resin combination and the resin cured matter of poly- carbodiimide composition, poly- carbodiimide composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301965A (en) * 1995-04-28 1996-11-19 Nippon Polyurethane Ind Co Ltd Two-component casting urethane elastomer composition and production of elastomer
JPH1095830A (en) * 1996-09-24 1998-04-14 Toyo Ink Mfg Co Ltd Self-crosslinking aqueous polyurethane resin, its production and water-base printing ink made by using it as binder
JPH1135850A (en) * 1997-05-19 1999-02-09 Nisshinbo Ind Inc Curing agent for powder coating material, powder coating composition containing the same and powder coating
JP2001011151A (en) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd Thermosetting aqueous coating material composition, membrane formation by using the same and plurally layered coated membrane formation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301965A (en) * 1995-04-28 1996-11-19 Nippon Polyurethane Ind Co Ltd Two-component casting urethane elastomer composition and production of elastomer
JPH1095830A (en) * 1996-09-24 1998-04-14 Toyo Ink Mfg Co Ltd Self-crosslinking aqueous polyurethane resin, its production and water-base printing ink made by using it as binder
JPH1135850A (en) * 1997-05-19 1999-02-09 Nisshinbo Ind Inc Curing agent for powder coating material, powder coating composition containing the same and powder coating
JP2001011151A (en) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd Thermosetting aqueous coating material composition, membrane formation by using the same and plurally layered coated membrane formation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119443A1 (en) * 2016-01-05 2017-07-13 三井化学株式会社 Polycarbodiimide composition, method for producing polycarbodiimide composition, aqueous dispersion composition, solution composition, resin composition, and resin cured product
CN107614557A (en) * 2016-01-05 2018-01-19 三井化学株式会社 Manufacture method, water-dispersed composition, liquid composite, resin combination and the resin cured matter of poly- carbodiimide composition, poly- carbodiimide composition
US10011677B2 (en) 2016-01-05 2018-07-03 Mitsui Chemicals, Inc. Polycarbodiimide composition, method for producing polycarbodiimide composition, aqueous dispersion composition, solution composition, resin composition, and cured resin
CN110300769A (en) * 2017-02-16 2019-10-01 三井化学株式会社 Manufacturing method, water-dispersed composition, liquid composite, resin combination and the resin cured matter of poly- carbodiimide composition, poly- carbodiimide composition
CN107418413A (en) * 2017-09-11 2017-12-01 陕西科技大学 A kind of heat molten type thermoplastic polyurethane anticorrosion peelable material, preparation method and applications

Also Published As

Publication number Publication date
JPWO2010098027A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
KR101161893B1 (en) Aqueous pur dispersion with improved adhesive characteristics
EP2222804B1 (en) Thermal curable polyester powder coating composition
JPS6340207B2 (en)
KR20110029173A (en) Aqueous polyurethane resin dispersion, manufacturing method for same, and paint composition containing same
AU2007219374A1 (en) Aqueous coating compositions based on polyurethane dispersions
JP5344852B2 (en) Curable coating composition containing polycarbonate diol
CN101821310B (en) Aqueous polyurethane resin, coating film, and artificial and synthetic leather
JP5071958B2 (en) Aqueous polyurethane composition
WO2010098027A1 (en) Thermoplastic polyurethane resin
JP4783276B2 (en) Polyester urethane resin.
JPH04255755A (en) Thermoplastic urethane resin powder composition
JPH11293191A (en) Polyurethane-based emulsion for aqueous printing ink, and aqueous printing ink using the same
Mizanur Rahman et al. Effect of polyisocyanate hardener on adhesive force of waterborne polyurethane adhesives
JP2011162643A (en) Aqueous polyurethane composition
CN113710717A (en) Latent reactive adhesive formulations
JP4733010B2 (en) Polycarbodiimide and polyester-based urethane resin composition
Vora et al. Novel tailor-made diols for polyurethane coatings using a combination of controlled radical polymerization, ring opening polymerization, and click chemistry
JPH11323252A (en) Polyurethane-based emulsion for water-based coating material and water-based coating using the same
WO2021157726A1 (en) Polyurethane resin with satisfactory adhesiveness to base and composition including same for use in adhesive, ink binder, or coating material
JP2008545052A (en) New hydrophilizing agent / HSP substitute
JP7468780B2 (en) Polyurethane chain extender, polyurethane resin forming composition, polyurethane resin, polyurethane resin composition, molded body and article
JP3627232B2 (en) Method for producing NOx-resistant polyurethane-based powder resin
TWI851873B (en) Polyurethane resin having good adhesion to substrate and adhesive, ink binder or coating composition using the same
JP2010070670A (en) Powdery thermoplastic polyurethane resin composition, sheet-formed polyurethane resin formed article produced by using the same and method for producing the article
JP7011437B2 (en) Paint composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745914

Country of ref document: EP

Kind code of ref document: A1