WO2010091590A1 - 实现基站时钟同步的方法及装置 - Google Patents

实现基站时钟同步的方法及装置 Download PDF

Info

Publication number
WO2010091590A1
WO2010091590A1 PCT/CN2009/076033 CN2009076033W WO2010091590A1 WO 2010091590 A1 WO2010091590 A1 WO 2010091590A1 CN 2009076033 W CN2009076033 W CN 2009076033W WO 2010091590 A1 WO2010091590 A1 WO 2010091590A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
clock
frequency
phase
deviation
Prior art date
Application number
PCT/CN2009/076033
Other languages
English (en)
French (fr)
Inventor
许炳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010091590A1 publication Critical patent/WO2010091590A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for implementing clock synchronization of a base station. Background technique
  • Base station clock synchronization includes frequency synchronization and phase synchronization.
  • an embodiment of the present invention provides a method and an apparatus for implementing clock synchronization of a base station, which can be fast, high quality, reliable, and low in cost without relying on a traditional or IP-based clock synchronization network and a specific access method.
  • the base station clock frequency is synchronized.
  • a method for implementing base station clock synchronization includes:
  • a device for realizing clock synchronization of a base station comprising:
  • a reference clock acquisition unit configured to acquire a reference clock
  • a clock difference measuring unit configured to measure a clock offset of a signal between the first base station and the second base station
  • a clock difference acquiring unit configured to: according to a clock offset between the first base station and the second base station, and the Obtaining a clock deviation of a clock of a signal of the second base station relative to the reference clock, and acquiring a clock deviation of a clock of the signal of the first base station from the reference clock;
  • a clock adjustment notification unit configured to notify the first base station to adjust a clock according to a clock deviation of a clock of the signal of the first base station with respect to the reference clock.
  • the method and device for implementing clock synchronization of a base station by acquiring a reference clock, measuring a clock deviation of a signal between a first base station and a second base station, according to a clock offset between the first base station and the second base station, And a clock deviation of the clock of the signal of the second base station relative to the reference clock, acquiring a clock deviation of the clock of the signal of the first base station from the reference clock, and then notifying the first base station to adjust the working clock. Therefore, the technical solution of the embodiment of the present invention does not need to rely on the traditional or
  • the IP clock synchronization network and the specific access mode enable fast, high quality, reliable, and low cost base station clock synchronization.
  • FIG. 1 is a schematic diagram of a method for implementing clock synchronization of a base station according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a method for implementing clock synchronization of a base station according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of frequency difference measurement of a carrier frequency signal according to an embodiment of the present invention.
  • FIG. 4 is a connection diagram of a base station for cross measurement according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method for implementing clock phase synchronization of a base station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a phase difference measurement of a radio frame signal according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of an apparatus for implementing clock synchronization of a base station according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an apparatus for realizing synchronization of a base station clock frequency according to an embodiment of the present invention
  • FIG. 9 is a structural diagram of an apparatus for implementing clock phase synchronization of a base station according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of another apparatus for implementing clock phase synchronization of a base station according to an embodiment of the present invention. detailed description
  • a method for implementing clock synchronization of a base station includes:
  • the synchronization system acquires a reference clock
  • the synchronization system can determine the base station from all base stations that need to be synchronized, and the base The clock of the quasi-base station is used as the reference clock.
  • the determination of the reference base station may be performed by the management personnel using the synchronization system, or may be completed by the synchronization system according to preset conditions.
  • all base stations refer to all base stations that need to perform clock synchronization
  • other base stations mentioned in the following description means " All base stations "other base stations than the "reference base station” determined in step 101.
  • the "synchronization system” includes: a measurement device capable of measuring a signal clock deviation between base stations; a management device capable of communicating with all base stations and all measurement devices with data channels, such as a network management device, and, in order to be able to determine a reference base station The management device also needs to be able to obtain other information of the base station, such as the geographical location information of the base station, and the reference situation of the external satellite timing reference.
  • the reference base station may be determined from the all base stations by the management device of the synchronization system, and the frequency of the carrier frequency signal of the reference base station or the phase of the radio frame signal is used as a reference clock.
  • the synchronization system measures a clock offset of a signal between the first base station and the second base station.
  • the measurement device of the synchronization system measures the clock skew of the signal between the first base station and the second base station.
  • the clock of the signal may be the frequency of the carrier frequency signal, or may be the phase of the radio frame signal.
  • the measuring device of the synchronization system can measure the frequency deviation of the carrier frequency signal between the first base station and the second base station, and the specific method for measuring the frequency deviation can use the frequency measuring method .
  • the measuring device of the synchronization system may measure the phase deviation of the radio frame signal between the first base station and the second base station, and the specific method for measuring the phase deviation may be used for testing Zhou Fa.
  • the synchronization system obtains, according to a clock offset between the first base station and the second base station, and a clock deviation of a clock of the signal of the second base station from a reference clock, acquiring a clock of the signal of the first base station. Clock offset of the reference clock;
  • the management device of the synchronization system is based on the clock bias of the signal between the first base station and the second base station.
  • the difference, and the clock offset of the signal between the second base station and the reference base station obtains a clock offset of the signal between the first base station and the reference base station.
  • the management device of the synchronization system can acquire the frequency deviation of the carrier frequency signal between all the base stations in a group that requires frequency synchronization, and acquire the frequency within the group.
  • the frequency deviation of the frequency of the carrier frequency signal of the other base station relative to the reference base station for example, the frequency deviation of the carrier frequency signal between the first base station and the second base station by the management device of the synchronization system, and the carrier frequency signal of the second base station and the reference base station
  • the frequency deviation is calculated by an iterative operation to calculate the frequency deviation of the frequency of the carrier frequency signal of the first base station from the reference base station.
  • the management device of the synchronization system may obtain the phase deviation of the radio frame signal between all the base stations in a group that needs phase synchronization, and acquire other base stations in the group.
  • the phase deviation of the phase of the radio frame signal from the reference base station for example, the phase deviation of the radio frame signal between the first base station and the second base station by the management device of the synchronization system, and the phase deviation of the radio frame signal of the second base station and the reference clock Obtaining a phase deviation of a phase of the radio frame signal of the first base station from the reference base station by an iterative operation.
  • the synchronization system notifies the first base station to adjust a clock according to a clock deviation of a clock of the signal of the first base station with respect to the reference clock.
  • the management device of the synchronization system may notify the first base station to adjust the working clock according to the clock deviation of the clock of the signal of the first base station with respect to the reference clock, so that the working clock of the first base station is synchronized with the reference clock.
  • the management device of the synchronization system may notify the second base station to adjust the clock according to the clock deviation of the clock of the signal of the second base station relative to the reference clock while notifying the first base station to adjust the clock, so that the first base station and the second base station The operating clock of the base station is synchronized with the reference clock.
  • the management device of the synchronization system may notify the other base stations to adjust the frequency of the respective working clocks through the data channel according to the frequency deviation of the frequency of the carrier frequency signals of other base stations in a group that are required to be frequency synchronized, or
  • the management device of the synchronization system can phase the radio frame signal of other base stations in a group corresponding to the phase synchronization with respect to the phase of the reference base station Deviation, the other base stations are notified through the data channel to adjust the phase of their respective working clocks.
  • other base stations can be notified in other ways.
  • the method for implementing clock synchronization of a base station according to Embodiment 1 of the present invention by acquiring a reference clock, measuring a clock deviation of a signal between a first base station and a second base station, according to a clock offset between the first base station and the second base station, and The clock of the signal of the second base station is offset from the clock of the reference clock, and the clock deviation of the clock of the signal of the first base station relative to the reference clock is obtained, and then the first base station is notified to adjust the working clock. Therefore, the technical solution of the first embodiment of the present invention does not need to rely on the traditional or
  • the IP clock synchronization network and the specific access mode enable fast, high quality, reliable, and low cost base station clock synchronization.
  • the clock of the signal in the first embodiment can be either the frequency of the carrier frequency signal or the phase of the radio frame signal.
  • the following uses the synchronous system as an example to further describe the method for implementing base station clock synchronization in combination with the above different situations.
  • the embodiment of the invention provides a method for realizing synchronization of a clock frequency of a base station.
  • a method for synchronizing a clock frequency of a base station according to an embodiment of the present invention includes:
  • the synchronization system acquires the frequency of the carrier frequency signal of the reference base station as the reference clock frequency.
  • the management device of the synchronization system determines the reference base station from all the base stations, and uses the clock frequency of the reference base station as the reference clock frequency. For example, the management device of the synchronization system selects one of the base stations as the reference base station. In actual operation, the determination of the reference base station may be performed by the management personnel using the synchronization system, or may be completed by the synchronization system according to preset conditions.
  • the synchronization system measures a frequency deviation of a carrier frequency signal between the first base station and the second base station according to a frequency measurement method.
  • the measuring device of the synchronization system can receive the carrier frequency signals of the neighboring base stations, and use the local clock of the measuring device of the synchronization system to measure the frequency of the carrier frequency signals of the surrounding base stations according to the frequency measurement method, according to The measurement result obtains the frequency deviation of the carrier frequency signal between the surrounding base stations.
  • the frequency measurement method is a reliable and stable mature technology. The principle of measuring frequency by the frequency measurement method is shown in FIG. 3, and the specific method is as follows: It is assumed that the measurement equipment of the synchronization system respectively receives the carrier frequency signal Cl of the base station 1 and the base station 2 The carrier frequency signal C2 connects C1 and C2 to the frequency measurement counter 1 and the frequency measurement counter 2, respectively.
  • the C1 and C2 are separately divided by NC times, and the enable time of the two frequency measurement counters is the measurement of the synchronous system.
  • the device's local clock CL performs a NL-divided signal. Then, the frequency measurement counter value NIL of C1 is obtained from the frequency measurement counter 1, and the frequency measurement count value N2L of C2 is obtained from the frequency measurement counter 1.
  • the method for measuring the carrier frequency difference between the surrounding base stations by the measuring device of the synchronization system is specifically described above, that is, the single measuring device of the synchronization system is capable of measuring the carrier between the carrier frequency signals of the peripheral base stations it receives.
  • the frequency difference therefore, multiple measuring devices of the synchronous system can cross-measure the carrier frequency difference of the carrier frequency signals between each other, that is, multiple measurements of the synchronous system
  • the devices are distributed in the group of base stations, and the plurality of measuring devices respectively measure the carrier frequency difference between the carrier frequency signals of the base stations around the measuring device.
  • a certain frequency synchronization involves five base stations.
  • the station 1 to the base station 5, and the carrier frequency of the base station 1 to the base station 5 are respectively F1 to F5
  • the measuring device 1 of the synchronization system receives The carrier signals of the base station 1, the base station 2 and the base station 3, the measuring device 2 of the synchronization system receives the carrier signals of the base station 3, the base station 4 and the base station 5, and the measuring device 1 of the synchronous system and the measuring device 2 of the synchronous system can receive them
  • the frequency difference of the carrier frequency signals of the neighboring base stations is measured.
  • N1X, N2X, and N3X are the measurement devices of the synchronous system, respectively.
  • N3Y, N4Y, and N5Y are respectively measured by the measuring device of the synchronous system. 2
  • the base station 6 and the base station 7 respectively serve as the measuring device 1 of the synchronous system and the measuring device 2 of the synchronous system, respectively.
  • F7 ⁇ F3 NC N7Z ⁇ (NL MC)
  • NC NC N7Z ⁇ (NL MC)
  • the synchronization system acquires, according to a frequency deviation of a carrier frequency signal between the first base station and the second base station, and a frequency deviation of a frequency of a carrier frequency signal of the second base station with respect to the reference clock frequency.
  • the frequency deviation of the frequency of the carrier frequency signal of the first base station relative to the reference clock frequency specifically: the frequency deviation of the carrier frequency signal between the first base station and the second base station by the management device of the synchronization system
  • a frequency deviation of a frequency of the carrier frequency signal of the second base station with respect to the reference clock frequency and acquiring a frequency deviation of a frequency of the carrier frequency signal of the first base station from the reference clock frequency.
  • step 202 it is assumed that the base station 1 is designated as the reference base station, and the management device of the synchronization system According to the measurement result of the measuring device, the frequency deviation of other base stations relative to the base station 1 is calculated, and then it can be obtained by an iterative operation:
  • the frequency deviation between F4 and F1 is obtained by an iterative operation, that is, the frequency deviation between F4 and F3 is obtained by using the frequency deviation of F4 and F3, and the frequency deviation of F4 and F1 is obtained; F5 and F1 are obtained by iterative operation.
  • the frequency deviation that is, the frequency deviation between F5 and F3 and the frequency deviation between F3 and F1, obtains the frequency deviation between F5 and F1.
  • the base station 6 and the base station 7 respectively serve as the measuring device 1 of the synchronous system and the measuring device 2 of the synchronous system
  • the frequency deviation of the base station 6 or the base station 7 with respect to the base station 1 can also be calculated. Then you can get it by iterative operation:
  • F6 (F6 ⁇ F3) (F3 ⁇ F1)
  • Fl ( NC N6Z ⁇ NL ) ( N3X ⁇ NIX )
  • F7 (F7 ⁇ F3) (F3 ⁇ F1)
  • Fl ( NC N7Z ⁇ NL ) ( N3X ⁇ NIX )
  • the synchronization system notifies the first base station to adjust the frequency of the working clock according to the frequency deviation of the frequency of the carrier frequency signal of the first base station with respect to the reference clock frequency, so that the frequency of the working clock of the first base station is The reference clock frequency is synchronized.
  • the management device of the synchronization system notifies the first base station to adjust the frequency of the working clock according to the frequency deviation of the frequency of the carrier frequency signal of the first base station relative to the reference clock frequency, so that the frequency of the working clock of the first base station is The reference clock frequency is synchronized.
  • the management device of the synchronization system may notify the second base station to adjust the working clock through the data channel according to the frequency deviation of the frequency of the carrier frequency signal of the second base station and the reference clock frequency while notifying the first base station to adjust the frequency of the working clock.
  • Frequency, the work of the first base station and the second base station The frequency of the clock is synchronized with the reference clock frequency.
  • the management device of the synchronization system calculates the frequency deviation of other base stations relative to the reference base station through an iterative operation
  • the other base stations can be notified through the data channel to adjust the respective frequencies to the reference base station, generally by changing the control voltage of the crystal oscillator on the base station.
  • the specific adjustment method can refer to the existing mature clock algorithm, and will not be praised in this patent.
  • the management device of the synchronization system notifies the base station 2 to the base station 5 to adjust the frequencies of the respective bases to the base station 1, so that four loosely coupled frequency adjustment loops are formed.
  • a method for realizing base station clock frequency synchronization provided by Embodiment 2 of the present invention, by determining a reference base station from all base stations, measuring a carrier frequency deviation between the first base station and the second base station, and according to the first base station and the second base station The carrier frequency deviation, and the frequency deviation of the carrier frequency of the second base station relative to the reference clock, acquires the frequency deviation of the carrier frequency of the first base station from the reference clock, and then notifies the first base station to adjust the frequency of the working clock. Therefore, the technical solution of the second embodiment of the present invention does not need to rely on a traditional or IP clock synchronization network, and only requires a reliable data channel, which is independent of a specific access mode, and can be applied to both outdoor and indoor coverage applications. Achieve fast, high quality, reliable, low cost base station clock frequency synchronization.
  • the embodiment of the invention provides a method for realizing clock phase synchronization of a base station.
  • a method for implementing phase synchronization of a base station clock according to an embodiment of the present invention includes:
  • the synchronization system acquires a phase of a radio frame signal of the reference base station as a reference clock phase.
  • the management device of the synchronization system determines the reference base station from all the base stations, and uses the clock phase of the reference base station as the reference clock phase.
  • the management device of the synchronization system selects a suitable number of base stations from among all base stations as needed, and these reference base stations are reliably synchronized by other technologies, such as satellite timing device technology.
  • the determination of the reference base station may be performed by the administrator using the synchronization system.
  • the determination of the base station can also be completed by the synchronization system according to preset conditions.
  • the synchronization system measures a radio frame signal between the first base station and the second base station according to the measurement weekly method. Phase deviation.
  • the measuring device of the synchronization system measures the phase deviation of the radio frame between the first base station and the second base station according to the weekly measurement method.
  • the measuring device of the synchronization system can receive the radio frame signals of the surrounding base stations, and use the local clock of the measuring device of the synchronization system to measure the phase deviation of the radio frame signals of the surrounding base stations according to the weekly measurement method.
  • the measurement method is a reliable and stable mature technology.
  • the principle of measuring the phase difference by the measurement method is shown in Fig. 6.
  • the specific method is as follows: It is assumed that the measurement devices of the synchronization system respectively receive the radio frame signal FR1 of the base station 1 and the base station 2
  • the radio frame signal FR2, the FR1 and FR2 are connected to the phase detector to extract the phase difference P21 between FR1 and FR2, and the phase difference P21 is used as the enable of the measurement counter.
  • the local clock CL of the measuring device of the synchronous system is subjected to ML multiplication to obtain a high frequency clock, and the high frequency clock is connected to the measurement counter.
  • the measuring device of the synchronization system may also use C1 divided or multiplied or C2 after frequency division or multiplication after receiving the carrier frequency clock C1 of the base station 1 or the carrier frequency clock C2 of the base station 2.
  • the high frequency clock of the weekly counter may also use C1 divided or multiplied or C2 after frequency division or multiplication after receiving the carrier frequency clock C1 of the base station 1 or the carrier frequency clock C2 of the base station 2.
  • the high frequency clock of the weekly counter may also use C1 divided or multiplied or C2 after frequency division or multiplication after receiving the carrier frequency clock C1 of the base station 1 or the carrier frequency clock C2 of the base station 2.
  • the weekly count value obtained from the weekly counter is NP21L, and 4 is determined that FR2 is positive FR1 is positive, then there are:
  • the average value can be considered for multiple measurements.
  • the frequency accuracy is generally in the E-6 magnitude, so under the premise of ensuring the theoretical measurement accuracy, the frequency accuracy of the FL has little effect on the measurement accuracy.
  • the frequency accuracy of FL is ⁇ 50ppm (average frequency during the measurement period)
  • the theoretical accuracy range of phase difference measurement is: O. Ol x (l ⁇ 50ppm) microseconds. Therefore, in actual use, it is only necessary to use the nominal frequency of FL to perform the phase difference measurement operation.
  • the propagation delay of the wireless signal in space affects the measurement of the phase difference of the radio frame. If the deviation caused by the transmission delay is small, it can be ignored. But if the delay is large, you need to have the above aspects.
  • the measured phase difference is compensated for by the delay.
  • the delay compensation described in the present invention mainly compensates for the delay of the propagation of the line-of-sight of the wireless signal between the base stations.
  • Line-of-sight propagation refers to the way in which electric waves travel in a straight line.
  • Line of sight ( l ines of s ight , LOS ), generally refers to the order of magnitude of 100 meters to kilometers, the most notable feature is that there is no need for relaying and straight line propagation during transmission. Communication such as laser, microwave, and infrared systems.
  • the phase difference measurement between the group of base stations may not consider delay compensation, such as within the base station group.
  • the maximum line of sight between base stations is 300 meters, which may result in a delay of 1 microsecond, and the phase difference required by the system is 10 microseconds, so delay compensation can be ignored.
  • the transmission delay problem can be solved in two ways:
  • the precise geographical coordinates of each installation site are recorded, and the geographical coordinates of each site can be measured by using the GPS device.
  • delay compensation can be performed according to the physical positional relationship of the two base stations.
  • the phase difference between the base station 1 and the base station 1 is P21 + de l tP21.
  • the method for measuring the phase difference of the radio frame between the surrounding base stations by the measuring device of the synchronization system is specifically described above, that is, the single measuring device of the synchronization system is capable of measuring the radio frame signal of the peripheral base station it receives.
  • the phase difference therefore, the plurality of measuring devices of the synchronization system can cross-measure the phase difference of the radio frame signals between the two, that is, the plurality of measuring devices of the synchronization system are distributed in the base station group, and the plurality of measuring devices respectively The phase difference between the radio frame signals of the base stations surrounding the measuring device is measured.
  • a certain phase synchronization involves 5 base stations.
  • station 1 to base station 5 and their radio frame signals are FR1 to FR2
  • the measuring device 1 of the synchronization system receives the base station 1 and the base station 2
  • the radio frame signal of the base station 3 the measuring device 2 of the synchronizing system receives the radio frame signals of the base station 3, the base station 4 and the base station 5, the measuring device 1 of the synchronizing system and the measuring device 2 of the synchronizing system for the peripheral base stations they can receive
  • the phase difference of the radio frame signal is measured.
  • MX and FX are respectively the measurement cycle clock multiplication factor of the measurement system 1 of the synchronization system and the nominal frequency of the measurement cycle clock.
  • NP21X is a count value of the measurement unit 1 of the synchronous system for measuring the phase difference P21 between FR2 and FR1
  • NP31X is the count of the measurement of the phase difference P31 between the FR3 and FR1 by the measuring device 1 of the synchronous system.
  • MY and FY are respectively the measurement cycle clock multiplication factor of the measurement device 2 of the synchronization system and the nominal frequency of the measurement cycle clock.
  • NP43Y is the count value of the measurement device 2 of the synchronous system to measure the phase difference P43 between FR4 and FR3
  • NP53Y is the count of the measurement of the phase difference P53 between FR5 and FR3 by the measuring device 2 of the synchronous system.
  • Dc UP53 ⁇ ) 2 + ( ⁇ 3 - ⁇ ) 2 + ( ⁇ 3 - ⁇ ⁇ ) 2 - 5 - ⁇ ⁇ ) 2 + ( ⁇ 5 - ⁇ ⁇ ) 2 + ( ⁇ 5 - ⁇ ⁇ ) 2 -CE °
  • the synchronization system obtains, according to a phase deviation of a radio frame signal between the first base station and the second base station, and a phase deviation of a phase of a radio frame signal of the second base station with respect to a phase of the reference clock.
  • the management device of the synchronization system acquires the phase deviation of the radio frame signal between the first base station and the second base station, and the phase deviation of the phase of the radio frame signal of the second base station with respect to the reference clock phase, to obtain the first base station.
  • the management device of the synchronization system calculates the phase deviation of the other base stations from the base station 1 based on the measurement result of the measurement device, and then can be obtained by an iterative operation:
  • the phase deviation between the base station 4 and the base station 1 is obtained by using an iterative operation, that is, the phase deviation between the base station 4 and the base station 3 and the phase deviation between the base station 3 and the base station 1 are obtained, and the phase deviation between the base station 4 and the base station 1 is obtained;
  • the phase deviation between the base station 5 and the base station 1 is obtained by an iterative operation, that is, the phase deviation between the base station 5 and the base station 3 and the phase deviation between the base station 3 and the base station 1 are obtained, and the phase deviation between the base station 5 and the base station 1 is obtained.
  • the synchronization system notifies the first base station to adjust the phase of the working clock according to the phase deviation of the phase of the radio frame signal of the first base station with respect to the phase of the reference clock, so that the phase of the working clock of the first base station is
  • the reference clock is phase synchronized.
  • the management device of the synchronization system notifies the first base station to adjust the phase of the radio frame of the first base station according to the phase deviation of the phase of the radio frame signal of the first base station relative to the phase of the reference clock, so that the phase of the working clock of the first base station is Synchronized with the reference clock phase.
  • the management device of the synchronization system may notify the second base station to adjust the wireless direction according to the phase deviation of the phase of the radio frame signal of the second base station relative to the reference clock phase while notifying the first base station to adjust the phase of the radio frame thereof.
  • the phase of the frame is such that the phases of the operating clocks of the first base station and the second base station are both synchronized with the phase of the reference clock.
  • the management device of the synchronization system calculates the phase deviation of the other base stations relative to the reference base station by using an iterative operation
  • the other base stations can be notified through the data channel to adjust the respective phases to the reference base station.
  • the specific adjustment method can refer to the existing mature clock algorithm. Details are not described in this patent.
  • the management device of the synchronization system notifies the base station 2 to the base station 5 to adjust the phase of each phase to the base station 1, so that four closed-loop phase adjustment loops are formed.
  • a method for realizing clock phase synchronization of a base station according to Embodiment 3 of the present invention by determining a reference base station from all base stations, measuring a radio frame phase deviation between the first base station and the second base station, and according to the first base station and the second base station.
  • the phase deviation of the radio frame between the second base station and the phase deviation of the radio frame phase of the second base station with respect to the reference clock acquires the phase deviation of the radio frame phase of the first base station from the reference clock, and then notifies the first base station to adjust the phase of the working clock.
  • the frequency difference between the base stations will increase the phase difference continuously.
  • the clock frequencies of the base station 1 and the base station 2 are F1 and F2, respectively, and the periods are T1 and T2, respectively, and the phase difference between the two is P21, with the base station 1
  • the relative frequency deviation F2 of F2 relative to F1 DF21 ( F2-F1 ) ⁇ F1
  • the current time t N ⁇ ⁇
  • P21 ⁇ t _DF21 ⁇ ( DF21+1 )
  • the clock frequency difference in the communication system is generally very small (E-6 magnitude), so DF21 is much smaller than 1, so that P21 DF21 X t can be considered . Therefore, it can be seen that over time, P21 will continue to increase due to the accumulation of T2 and T1 cycle differences.
  • the frequency synchronization and the phase synchronization can be jointly implemented in combination with the second embodiment and the third embodiment.
  • the frequency synchronization is performed according to the frequency synchronization method described in the second embodiment, so that the frequency synchronization of all the base stations reaches the setting requirement.
  • the phase synchronization method is performed according to the phase synchronization method described in the third embodiment, so that the phase synchronization of all the base stations reaches the setting requirement, and then the frequency synchronization process described in the second embodiment is always performed to ensure that the base station frequency synchronization time satisfies the setting.
  • Requires that real-time or timing monitoring of the phase difference between the base stations can be implemented by performing the steps 302 and 303 described in the third embodiment. If the phase synchronization is found to reach the alarm threshold, the phase synchronization method according to the third embodiment is performed. Perform phase synchronization.
  • the storage medium may be a magnetic disk, an optical disk, a Read-Only Memory (ROM), or a Random Acces s Memory (RAM).
  • the embodiment of the invention further provides a device for realizing clock synchronization of a base station, as shown in FIG.
  • the device for implementing clock synchronization of a base station according to the embodiment of the invention includes:
  • the reference clock acquisition unit 401 is configured to acquire a reference clock.
  • the reference clock acquisition unit 401 can determine the reference base station from among all the base stations in a group that needs to be synchronized, and use the clock of the reference base station as a reference clock.
  • the clock difference measuring unit 402 is configured to measure a clock offset of a signal between the first base station and the second base station.
  • the clock of the signal may be the frequency of the carrier frequency signal or the phase of the wireless frame signal. Therefore, when the clock of the signal is the frequency of the carrier frequency signal, the clock difference measuring unit 402 can measure the frequency deviation of the carrier frequency signal between the first base station and the second base station, and the specific method for measuring the frequency deviation can be used for measurement. Frequency method.
  • the clock difference measuring unit 402 can measure the phase deviation of the radio frame signal between the first base station and the second base station.
  • the specific method of measuring the phase deviation can use the measurement method.
  • a clock difference obtaining unit 403 configured to acquire, according to a clock offset between the first base station and the second base station, and a clock deviation of a clock of the signal of the second base station from a reference clock, acquire the first base station
  • the clock of the signal is offset from the clock of the reference clock.
  • the clock difference obtaining unit 403 may be based on the frequency deviation of the carrier frequency signal between the first base station and the second base station, and the frequency relative reference of the carrier frequency signal of the second base station.
  • the frequency deviation of the clock acquires the frequency deviation of the frequency of the carrier frequency signal of the first base station from the reference base station.
  • the clock difference acquiring unit 403 may be based on the phase deviation of the radio frame signal between the first base station and the second base station, and the radio frame signal of the second base station is relative to the reference.
  • the phase deviation of the clock acquires the phase deviation of the phase of the radio frame signal of the first base station relative to the reference base station.
  • the clock adjustment notification unit 404 is configured to notify the first base station to adjust the clock according to a clock deviation of the clock of the signal of the first base station with respect to the reference clock.
  • the clock adjustment notification unit 404 can notify the first base station to adjust the frequency of its working clock according to the frequency deviation of the carrier frequency signal of the first base station with respect to the frequency deviation of the reference base station, and perform clock synchronization.
  • the clock adjustment notification unit 404 may notify the first phase according to the phase deviation of the phase of the radio frame signal of the first base station relative to the reference base station.
  • a base station adjusts the phase of its own working clock to perform clock synchronization.
  • the clock adjustment notification unit 404 is further configured to notify the second base station to adjust the clock according to a clock deviation of the clock of the signal of the second base station with respect to the reference clock.
  • the base station implementing the base station clock synchronization measures the clock deviation of the signal between the first base station and the second base station by acquiring the reference clock, according to the clock deviation between the first base station and the second base station, and The clock of the signal of the second base station is offset from the clock of the reference clock, and the clock deviation of the clock of the signal of the first base station relative to the reference clock is obtained, and then the first base station is notified to adjust the working clock. Therefore, there is no need to rely on a traditional or IP-based clock synchronization network and a specific access method to achieve fast, high-quality, reliable, and low-cost base station clock synchronization.
  • the clock of the signal in the fourth embodiment can be either the frequency of the carrier frequency signal or the phase of the radio frame signal.
  • the device for realizing the clock synchronization of the base station will be further described in detail below in combination with the above different situations.
  • An embodiment of the present invention provides a device for synchronizing a clock frequency of a base station. As shown in FIG. 8, the device for synchronizing a clock frequency of a base station according to an embodiment of the present invention includes:
  • the reference clock acquisition unit 401 includes a frequency clock sub-unit 405 for acquiring the frequency of the carrier signal of the reference base station as the reference clock frequency.
  • frequency clock sub-unit 405 selects one of all base stations within a group that needs to be synchronized as a reference base station.
  • the determination of the reference base station may be performed by the manager using the frequency clock sub-unit 405, or may be completed by the frequency clock sub-unit 405 according to a preset condition.
  • the clock difference measuring unit 402 includes a frequency measuring sub-unit 406 for measuring the frequency offset of the carrier frequency signal between the first base station and the second base station according to the frequency measuring method.
  • the frequency measurement sub-unit 406 can receive the carrier frequency signals of the neighboring base stations, and use the local clock of the frequency measurement sub-unit 406 to measure the frequency of the carrier frequency signals of the surrounding base stations according to the frequency measurement method, and obtain the surrounding base stations according to the measurement results.
  • the frequency deviation between the carrier frequency signals can be used to measure the carrier frequency signals of the neighboring base stations, and use the local clock of the frequency measurement sub-unit 406 to measure the frequency of the carrier frequency signals of the surrounding base stations according to the frequency measurement method, and obtain the surrounding base stations according to the measurement results. The frequency deviation between the carrier frequency signals.
  • the frequency measurement sub-unit 406 may be a dedicated measurement device, and the frequency measurement sub-unit 406 may also be a measurement device located on the base station. Therefore, the frequency measurement sub-unit 406 can cross-measure the carrier frequency difference of the carrier frequency signal between the base stations, that is, distribute the plurality of measurement devices in the base station group, and the plurality of measurement devices respectively between the base stations around the measurement device The carrier frequency difference of the carrier frequency signal is measured.
  • the frequency measurement sub-unit 406 may be referred to in the step 202 of the second embodiment, and details are not described herein again.
  • the clock difference obtaining unit 403 includes a frequency difference obtaining subunit 407, configured to: according to a frequency deviation of a carrier frequency signal between the first base station and the second base station, and a frequency of a carrier frequency signal of the second base station And a frequency deviation of the reference clock frequency, and acquiring a frequency deviation of a frequency of the carrier frequency signal of the first base station from the reference clock frequency.
  • the frequency difference acquisition subunit 407 is based on the frequency deviation of the carrier frequency signal between the first base station and the second base station measured by the frequency measurement subunit 406, and the frequency of the carrier frequency signal between the second base station and the reference base station.
  • the frequency deviation of the carrier frequency signal between the first base station and the reference base station refer to the step 203 of the second embodiment, and details are not described herein again.
  • the clock adjustment notification unit 404 includes a frequency synchronization sub-unit 408, configured to notify the first base station to adjust the frequency of the working clock according to the frequency deviation of the frequency of the carrier frequency signal of the first base station with respect to the reference clock frequency.
  • the frequency of the operating clock of the first base station is synchronized with the reference clock frequency.
  • the frequency synchronization sub-unit 408 can notify the first base station to adjust its own frequency to the reference base station through the data channel, generally by changing the crystal oscillator on the base station. Control voltage to achieve.
  • the specific adjustment method can refer to the existing mature clock algorithm, and will not be described in this patent.
  • the frequency synchronization subunit 408 is further configured to notify the second base station to adjust a frequency of the working clock according to a frequency deviation of a frequency of the carrier frequency signal of the second base station with respect to the reference clock frequency, so that the The frequency of the operating clock of the second base station is synchronized with the reference clock frequency.
  • the apparatus for implementing base station clock frequency synchronization determines a reference base station from all base stations, and measures a carrier frequency deviation between the first base station and the second base station, and according to the first base a carrier frequency deviation between the station and the second base station, and a frequency deviation of the carrier frequency of the second base station relative to the reference clock, obtaining a frequency deviation of the carrier frequency of the first base station from the reference clock, and then notifying the first base station to adjust the frequency of the working clock .
  • An embodiment of the present invention provides a device for realizing clock phase synchronization of a base station.
  • the device for implementing clock phase synchronization of a base station according to an embodiment of the present invention includes:
  • the reference clock acquisition unit 401 includes a phase clock sub-unit 409 for acquiring the phase of the radio frame signal of the reference base station as the reference clock phase.
  • phase clock sub-unit 409 selects a suitable number of base stations from among all base stations in a group that need to be synchronized as a reference base station, which is reliably synchronized by other techniques, such as satellite timing equipment technology.
  • the determination of the reference base station may be performed by the manager using the phase clock sub-unit 409.
  • the clock difference measurement unit 402 includes a measurement method sub-unit 410 for measuring the phase deviation of the radio frame signal between the first base station and the second base station in accordance with the measurement method.
  • the measurement method sub-unit 410 can receive the radio frame signals of the surrounding base stations, and use the local clock of the measurement method sub-unit 410 to measure the phase deviation of the radio frame signals of the surrounding base stations according to the measurement weekly method.
  • the measurement method sub-unit 410 may be a dedicated measurement device, and the measurement method sub-unit 410 may also be a measurement device located on the base station. Therefore, the measurement method sub-unit 410 cross-measures the phase difference of the radio frame signals between the base stations, that is, the plurality of measurement devices are distributed in the base station group, and the plurality of measurement devices respectively respectively determine the radio frame between the base stations around the measurement device. The phase difference of the signal is measured.
  • the measurement method sub-unit 410 may refer to step 302 in the third embodiment, and details are not described herein again.
  • the clock difference acquisition unit 403 includes a phase difference acquisition subunit 411 for rooting according to a phase deviation of a radio frame signal between the first base station and the second base station, and wireless of the second base station a phase deviation of a phase of the frame signal with respect to the phase of the reference clock, and obtaining a phase deviation of a phase of the radio frame signal of the first base station with respect to a phase of the reference clock.
  • the phase difference acquisition sub-unit 411 is based on the phase deviation of the radio frame signal between the first base station and the second base station measured by the measurement method sub-unit 410, and the phase of the radio frame signal between the second base station and the reference base station.
  • the phase deviation of the radio frame signal between the first base station and the reference base station refer to the step 303 of the second embodiment, and details are not described herein again.
  • the clock adjustment notification unit 404 includes a phase synchronization sub-unit 412, configured to notify the first base station to adjust the phase of the working clock according to the phase deviation of the phase of the radio frame signal of the first base station with respect to the phase of the reference clock.
  • the phase of the operating clock of the first base station is synchronized with the phase of the reference clock.
  • the phase synchronization sub-unit 412 can notify the first base station to adjust its phase to the reference base station through the data channel, and the specific adjustment method can refer to the existing The mature clock algorithm is not mentioned in this patent.
  • phase synchronization sub-unit 412 is further configured to notify the second base station to adjust a phase of the working clock according to a phase deviation of a phase of the radio frame signal of the second base station with respect to the phase of the reference clock,
  • the phase of the operating clock of the second base station is synchronized with the phase of the reference clock.
  • the apparatus for implementing clock phase synchronization of a base station determines a reference base station from all base stations, and measures a radio frame phase deviation between the first base station and the second base station, and according to the first base station and the second base station The radio frame phase deviation, and the phase deviation of the radio frame phase of the second base station relative to the reference clock, acquire the phase deviation of the radio frame phase of the first base station from the reference clock, and then notify the first base station to adjust the phase of the working clock.
  • the clock difference acquisition unit further includes a geographic location acquisition subunit and a delay compensation subunit.
  • the geographic location obtaining sub-unit 41 3 is configured to acquire physical locations of the first base station and the second base station.
  • Place The delay compensation sub-unit 414 is configured to perform delay compensation on a phase offset of a radio frame signal between the first base station and the second base station according to physical locations of the first base station and the second base station.
  • the delay compensation sub-unit 414 performs delay compensation for the phase offset of the radio frame signal between the first base station and the second base station according to the physical location relationship between the first base station and the second base station.
  • the third embodiment refer to the third embodiment.
  • Section 302 will not repeat them here. Therefore, when the transmission delay caused by the maximum line-of-sight between all the base stations exceeds the allowable range, delay compensation of the phase difference between the base stations obtained by the measurement further reduces the transmission delay of the wireless signal in space.
  • the influence of the phase difference measurement of the radio frame makes the measurement and adjustment of the phase synchronization more precise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

实现基站时钟同步的方法及装置 本申请要求于 2009 年 2 月 12 日提交中国专利局、 申请号为 200910008910. 3 , 发明名称为 "实现基站时钟同步的方法及装置" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种实现基站时钟同步的方法及装置。 背景技术
在移动通信系统中, 基站时钟的同步很重要。 基站时钟的同步性能不好 往往会带来一系列的问题, 例如语音质量差、 掉话率高、 切换成功率低、 无 法接入等。 基站时钟同步包括频率同步和相位同步。
在移动网络快速全 IP化的趋势下, 由于传统 IP网络无法很好地支持时 钟传送, 基站时钟不能像传统方案那样从物理层获取, 时钟同步成为一个难 题, 频率同步和相位同步都需要借助其它解决方案来实现。
在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 传统时钟同步技术虽然成熟稳定, 但是已经不适应目前移动网络快速全
IP化的趋势。 卫星授时设备技术代价高昂, 在全网的基站安装成本过高。 同 步以太网技术虽符合移动网络全 IP化的趋势, 但是要求 IP承载网络所有节 点都支持同步以太网特性。 基于包网络的时钟同步协议技术在复杂多变的现 网环境中, 由于数据流的包延时抖动, 因此很难保证相位同步的精度。
发明内容
一方面, 本发明的实施例提供一种实现基站时钟同步的方法及装置, 能 够不需要依赖传统的或者 IP方式的时钟同步网络和具体的接入方式, 实现快 速、 高质可靠、 成本较低的基站时钟频率同步。
为达到上述目的, 本发明的实施例釆用如下技术方案: 一种实现基站时钟同步的方法, 包括:
获取基准时钟;
测量第一基站与第二基站之间信号的时钟偏差;
根据所述第一基站与所述第二基站之间的时钟偏差, 以及所述第二基站 的信号的时钟相对所述基准时钟的时钟偏差, 获取所述第一基站的信号的时 钟相对所述基准时钟的时钟偏差;
根据所述第一基站的信号的时钟相对所述基准时钟的时钟偏差, 通知所 述第一基站调整时钟。
一种实现基站时钟同步的装置, 包括:
基准时钟获取单元, 用于获取基准时钟;
时钟差测量单元, 用于测量第一基站与第二基站之间信号的时钟偏差; 时钟差获取单元, 用于根据所述第一基站与所述第二基站之间的时钟偏 差, 以及所述第二基站的信号的时钟相对所述基准时钟的时钟偏差, 获取所 述第一基站的信号的时钟相对所述基准时钟的时钟偏差;
时钟调整通知单元, 用于根据所述第一基站的信号的时钟相对所述基准 时钟的时钟偏差, 通知所述第一基站调整时钟。
本发明实施例提供的实现基站时钟同步的方法及装置, 通过获取基准时 钟, 测量第一基站与第二基站之间的信号的时钟偏差, 根据第一基站与第二 基站之间的时钟偏差, 以及第二基站的信号的时钟相对基准时钟的时钟偏差, 获取第一基站的信号的时钟相对基准时钟的时钟偏差, 然后通知第一基站调 整工作时钟。 因此, 利用本发明实施例的技术方案, 不需要依赖传统的或者
IP方式的时钟同步网络和具体的接入方式, 能够实现快速、 高质可靠、 成本 较低的基站时钟同步。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例实现基站时钟同步的方法示意图;
图 2为本发明实施例实现基站时钟频率同步的方法示意图;
图 3为本发明实施例载频信号的频率差测量原理图;
图 4为本发明实施例交叉测量的基站连接图;
图 5为本发明实施例实现基站时钟相位同步的方法示意图;
图 6为本发明实施例无线帧信号的相位差测量原理图;
图 7为本发明实施例实现基站时钟同步的装置结构图;
图 8为本发明实施例实现基站时钟频率同步的装置结构图;
图 9为本发明实施例实现基站时钟相位同步的装置结构图;
图 10为本发明实施例另一种实现基站时钟相位同步的装置结构图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
下面结合附图对本发明实施例实现基站时钟同步的方法、 装置及系统进 行详细描述。
实施例一
为了实现不需要依赖传统的或者 IP方式的时钟同步网络和具体的接入方 式, 而能够实现快速、 高质可靠、 成本较低的基站时钟频率同步, 本发明实 施例提供了一种实现基站时钟同步的方法。 如图 1 所示, 本发明实施例实现 基站时钟同步的方法, 包括:
101、 同步系统获取基准时钟;
例如, 同步系统可以从所有需要同步的基站中确定基准基站, 将所述基 准基站的时钟作为基准时钟。
实际操作中, 基准基站的确定, 可以是由管理人员利用同步系统完成的, 也可以由同步系统根据预设的条件完成。
在此, 对在本发明实施例中用到的几个概念做一下描述, 其中 "所有基 站" 是指需要进行时钟同步的所有基站, 而以下描述中提到的 "其他基站" 则是指 "所有基站" 除了在步骤 101中确定的 "基准基站" 之外的其他基站。
"同步系统" 包括: 能够测量基站之间信号时钟偏差的测量设备; 能够和所 有基站、 所有测量设备都有数据通道联系并有计算能力的管理设备, 例如网 管设备, 并且, 为了能够确定基准基站, 管理设备还需要能够获取基站的其 他信息, 比如基站的地理位置信息, 外接卫星授时基准的基准情况等。
在步骤 101 中, 可以由同步系统的管理设备实现从所述所有基站中确定 基准基站, 将所述基准基站的载频信号的频率或者无线帧信号的相位作为基 准时钟。
102、 同步系统测量第一基站和第二基站之间信号的时钟偏差;
例如, 利用同步系统的测量设备测量第一基站和第二基站之间信号的时 钟偏差。 在本发明实施例中, 所述信号的时钟可以是载频信号的频率, 也可 以是无线帧信号的相位。
当所述信号的时钟为载频信号的频率时, 同步系统的测量设备可以测量 第一基站和第二基站之间的载频信号的频率偏差, 测量频率偏差的具体方法 可以釆用测频法。 或者, 当所述信号的时钟为无线帧信号的相位时, 同步系 统的测量设备可以测量第一基站和第二基站之间的无线帧信号的相位偏差, 测量相位偏差的具体方法可以釆用测周法。
103、 同步系统根据所述第一基站与所述第二基站之间的时钟偏差, 以及 所述第二基站的信号的时钟相对基准时钟的时钟偏差, 获取所述第一基站的 信号的时钟相对所述基准时钟的时钟偏差;
例如, 同步系统的管理设备根据第一基站与第二基站之间信号的时钟偏 差, 以及第二基站与基准基站之间信号的时钟偏差, 获取第一基站与基准基 站之间信号的时钟偏差。
在此步骤中, 当所述信号的时钟为载频信号的频率时, 同步系统的管理 设备可以根据需要频率同步的一个群内的所有基站之间的载频信号的频率偏 差, 获取该群内其他基站的载频信号的频率相对基准基站的频率偏差, 例如 同步系统的管理设备根据第一基站与第二基站之间的载频信号的频率偏差, 以及第二基站与基准基站的载频信号的频率偏差, 通过迭代运算计算出第一 基站的载频信号的频率相对所述基准基站的频率偏差。
或者, 当所述信号的时钟为无线帧信号的相位时, 同步系统的管理设备 可以根据需要相位同步的一个群内的所有基站之间的无线帧信号的相位偏 差, 获取该群内其他基站的无线帧信号的相位相对基准基站的相位偏差, 例 如同步系统的管理设备根据第一基站与第二基站之间的无线帧信号的相位偏 差, 以及第二基站与基准时钟的无线帧信号的相位偏差, 通过迭代运算获取 第一基站的无线帧信号的相位相对基准基站的相位偏差。
104、 同步系统根据所述第一基站的信号的时钟相对所述基准时钟的时钟 偏差, 通知所述第一基站调整时钟。
例如, 可以由同步系统的管理设备根据第一基站的信号的时钟相对所述 基准时钟的时钟偏差, 通知第一基站调整工作时钟, 使第一基站的工作时钟 和基准时钟同步。
另外, 同步系统的管理设备还可以在通知第一基站调整时钟的同时, 根 据第二基站的信号的时钟相对所述基准时钟的时钟偏差, 通知第二基站调整 时钟, 使第一基站和第二基站的工作时钟均与基准时钟同步。
在此步骤中, 同步系统的管理设备可以根据需要频率同步的一个群内其 他基站的载频信号的频率相对基准基站的频率偏差, 通过数据通道通知这些 其他基站调整各自的工作时钟的频率, 或者, 同步系统的管理设备可以根据 需要相位同步的一个群内其他基站的无线帧信号的相位相对基准基站的相位 偏差, 通过数据通道通知其他基站调整各自的工作时钟的相位。 当然, 还可 釆用其他的方式通知其他基站。
本发明实施例一提供的实现基站时钟同步的方法, 通过获取基准时钟, 测量第一基站与第二基站之间的信号的时钟偏差, 根据第一基站与第二基站 之间的时钟偏差, 以及第二基站的信号的时钟相对基准时钟的时钟偏差, 获 取第一基站的信号的时钟相对基准时钟的时钟偏差, 然后通知第一基站调整 工作时钟。 因此, 利用本发明实施例一的技术方案, 不需要依赖传统的或者
IP方式的时钟同步网络和具体的接入方式, 能够实现快速、 高质可靠、 成本 较低的基站时钟同步。
实施例一中的信号的时钟既可以是载频信号的频率, 还可以是无线帧信 号的相位。 下面以所述同步系统为例, 结合以上不同情况对实现基站时钟同 步的方法做进一步详细描述。
实施例二
本发明实施例提供了一种实现基站时钟频率同步的方法, 如图 1 所示, 本发明实施例实现基站时钟频率同步的方法, 包括:
201、 同步系统获取基准基站的载频信号的频率作为基准时钟频率 具体可以为: 同步系统的管理设备从所有基站中确定基准基站, 将所述 基准基站的时钟频率作为基准时钟频率。 例如, 同步系统的管理设备从所有 基站中选择一个基站, 作为基准基站。 实际操作中, 基准基站的确定, 可以 是由管理人员利用同步系统完成的, 也可以由同步系统根据预设的条件完成。
202、 同步系统按照测频法测量第一基站与第二基站之间的载频信号的频 率偏差;
具体可以为: 所述同步系统的测量设备可以接收到周边各基站的载频信 号, 利用所述同步系统的测量设备的本地时钟, 按照测频法测量周边各基站 的载频信号的频率, 根据测量结果得到周边各基站之间的载频信号的频率偏 差。 所述测频法是一种可靠稳定的成熟技术, 测频法测量频率的原理如图 3 所示, 具体做法为: 假设同步系统的测量设备分别接收基站 1的载频信号 Cl、 基站 2的载频信号 C2 , 将 C1和 C2分别接入测频计数器 1和测频计数器 2。 为了避免 C1和 C2的载波频率较高而不便计数, 在接入测频计数器之前, 对 C1和 C2分别进行 NC次分频, 并且这两个测频计数器的使能时间是将同步系 统的测量设备的本地时钟 CL进行 NL次分频后的信号。 于是, 从测频计数器 1 中得到 C1的测频计数值 NIL , 从测频计数器 1中得到 C2的测频计数值 N2L。
假设 C1的频率和周期分别是 F1和 Tl , C2的频率和周期分别是 F2和 T2 , CL的频率和周期分别是 FL和 TL , 而在使能时间长度内, C1和 C2完成一次测 频计数后得到的数据分别是 NIL和 N2L , 那么就有:
TL NL=T1 NC N1L=T2 NC N2L ,
因此, 可以推算得到: F2 ÷ F1=N2L ÷ N1L。 从该式也可以看出, F1 与 F2 的比值和同步系统的测量设备的本地时钟的频率 FL无关。
并且, 如果该同步系统的测量设备不是一个测量专用设备, 而是由一个 基站来实现的, 设该基站的载频频率是 FLC , 是由该基站本地时钟 FL经过 MC 次倍频而来, 即 FLC=FL x MC , 那么该基站和基站 1 之间的频率偏差为: F1 ÷ FLC = NC NIL ÷ (NL MC) , 该基站和基站 1之间的频率差为: F2 ÷ FLC=NC N2L ÷ (NL MC) 。
在实际使用中, F1和 F2可以看成是 TL x NL这段时间内的平均频率。 并 且, 如果 TL x NL越大, F1和 F2频率越高, 那么频率测量的精度就越高。 例 如, 假定 TL NL=100秒, F1和 F2的标称频率是 1GHz , NC是 10 , 那么测频 精度理论上可以达到 1E-10。
以上具体描述了所述同步系统的测量设备测量周边各基站之间的载波频 率差的方法, 也就是所述同步系统的单个测量设备能够测量它接收到的周边 基站的载频信号之间的载波频率差, 因此, 同步系统的多个测量设备可以对 相互之间的载频信号的载波频率差进行交叉测量, 即将同步系统的多个测量 设备分布在基站群中, 所述多个测量设备分别对该测量设备周边的基站的载 频信号之间的载波频率差进行测量。
例如, 某次频率同步涉及 5个基站, 如图 4所示, 分别^ ^站 1〜基站 5, 设基站 1〜基站 5的载频频率分别是 Fl ~F5, 同步系统的测量设备 1收到基 站 1、 基站 2和基站 3的载波信号, 同步系统的测量设备 2收到基站 3、 基站 4和基站 5的载波信号,同步系统的测量设备 1和同步系统的测量设备 2对它 们能够接收到的周边基站的载频信号的频率差进行测量。
N1X、 N2X、 N3X分别是同步系统的测量设备 1对基站 1、 基站 2、 基站 3 测量得到的测频计数值, 那么有 F2 ÷F1=N2X÷N1X, F3 ÷ F1=N3X ÷ N1X。 N3Y、 N4Y、 N5Y分别是同步系统的测量设备 2对基站 3、 基站 4、基站 5测量得到的 测频计数值, 那么有 F4 ÷F3=N4Y÷ N3Y, F5 ÷ F3=N5Y ÷ N3Y。
另外, 如果同步系统的测量设备 1和同步系统的测量设备 2是由基站实 现的, 假设基站 6和基站 7分别充任同步系统的测量设备 1和同步系统的测 量设备 2, 则可以由基站 3对基站 6和基站 7进行测量, 得到测量计数值 N6Z 和 N7Z,设基站 3的载波频率 F3是由本地时钟 F3L经过 MC次倍频得到的, 那 么就有 F6 ÷ F3 = NC N6Z ÷ (NL MC) , F7 ÷ F3=NC N7Z ÷ (NL MC) , 其中 NC是基站 6和基站 7的载波信号的分频次数, NL是基站 3的基站时钟 F3L的 分频次数。
203、 同步系统根据所述第一基站与所述第二基站之间的载频信号的频率 偏差, 以及所述第二基站的载频信号的频率相对所述基准时钟频率的频率偏 差, 获取所述第一基站的载频信号的频率相对所述基准时钟频率的频率偏差; 具体可以为: 同步系统的管理设备根据所述第一基站与所述第二基站之 间的载频信号的频率偏差, 以及所述第二基站的载频信号的频率相对所述基 准时钟频率的频率偏差, 获取所述第一基站的载频信号的频率相对所述基准 时钟频率的频率偏差。
在步骤 202的例子中, 假定基站 1定为基准基站, 同步系统的管理设备 根据测量设备测量的结果, 计算其他基站相对基站 1 的频率偏差, 那么可以 通过迭代运算得到:
F2= (Ν2Χ÷Ν1Χ) Fl
F3= (N3X÷N1X) Fl
F4= (F4 ÷ F3 ) (F3 ÷ Fl ) Fl= (N4Y÷N3Y) (N3X÷N1X) Fl F5= (F5 ÷ F3 ) (F3 ÷ Fl ) Fl= (N5Y÷N3Y) (N3X÷N1X) Fl 在本发明实施例中, 通过迭代运算获取 F4与 F1的频率偏差, 即利用 F4 与 F3的频率偏差及 F3与 F1的频率偏差, 得到 F4与 F1的频率偏差; 通过迭 代运算获取 F5与 F1的频率偏差, 即利用 F5与 F3的频率偏差及 F3与 F1的 频率偏差, 得到 F5与 F1的频率偏差。
另外, 当基站 6和基站 7分别充任同步系统的测量设备 1和同步系统的 测量设备 2时, 还可以计算基站 6或基站 7相对基站 1的频率偏差。 那么可 以通过迭代运算得到:
F6= (F6 ÷F3) (F3÷F1 ) Fl= ( NC N6Z ÷ NL ) ( N3X ÷ NIX )
Fl
F7= (F7 ÷F3) (F3÷F1 ) Fl= ( NC N7Z ÷ NL ) ( N3X ÷ NIX )
Fl。
204、 同步系统根据所述第一基站的载频信号的频率相对所述基准时钟频 率的频率偏差, 通知所述第一基站调整工作时钟的频率, 使所述第一基站的 工作时钟的频率和所述基准时钟频率同步。
具体可以为: 同步系统的管理设备根据第一基站的载频信号的频率相对 基准时钟频率的频率偏差, 通过数据通道通知第一基站调整工作时钟的频率, 使第一基站的工作时钟的频率和基准时钟频率同步。
并且, 同步系统的管理设备还可以在通知第一基站调整工作时钟的频率 的同时, 根据第二基站的载频信号的频率相对基准时钟频率的频率偏差, 通 过数据通道通知第二基站调整工作时钟的频率, 使第一基站和第二基站的工 作时钟的频率均与基准时钟频率同步。
同步系统的管理设备通过迭代运算计算出其他基站相对基准基站的频率 偏差后, 就可以通过数据通道通知其他基站调整各自的频率向基准基站靠拢, 一般是通过改变基站上晶振的控制电压来实现的。 具体调整方法可以参考现 有的成熟的时钟算法, 在本专利中不再进行赞述。
因此, 同步系统的管理设备通知基站 2〜基站 5调整各自的频率向基站 1 的频率靠拢, 这样就构成了 4个松耦合频率调节环路。
本发明实施例二提供的实现基站时钟频率同步的方法, 通过从所有基站 中确定基准基站, 测量第一基站与第二基站之间的载波频率偏差, 并根据第 一基站与第二基站之间的载波频率偏差, 以及第二基站的载波频率相对基准 时钟的频率偏差, 获取第一基站的载波频率相对基准时钟的频率偏差, 然后 通知第一基站调整工作时钟的频率。 因此, 利用本发明实施例二的技术方案, 不需要依赖传统的或者 IP方式的时钟同步网络, 只需要可靠的数据通道, 与 具体的接入方式无关, 并且室外和室内覆盖场合都可以应用, 实现快速、 高 质可靠、 成本较低的基站时钟频率同步。
实施例三
本发明实施例提供了一种实现基站时钟相位同步的方法。 如图 5 所示, 本发明实施例实现基站时钟相位同步的方法, 包括:
301、 同步系统获取基准基站的无线帧信号的相位作为基准时钟相位。 具体可以为: 同步系统的管理设备从所有基站中确定基准基站, 将所述 基准基站的时钟相位作为基准时钟相位。 例如, 同步系统的管理设备按照需 要从所有基站中选择合适数量的基站, 作为基准基站, 这些基准基站用其他 技术进行可靠同步, 比如卫星授时设备技术。 实际操作中, 基准基站的确定, 可以是由管理人员利用同步系统完成的。 另外, 还可以由同步系统根据预设 的条件完成基准基站的确定。
302、 同步系统按照测周法测量第一基站和第二基站之间的无线帧信号的 相位偏差。
具体可以为: 同步系统的测量设备按照测周法测量第一基站和第二基站 之间的无线帧相位偏差。 所述同步系统的测量设备可以接收到周边各基站的 无线帧信号, 利用所述同步系统的测量设备的本地时钟, 按照测周法测量周 边各基站的无线帧信号的相位偏差。
所述测周法是一种可靠稳定的成熟技术,测周法测量相位差的原理如图 6 所示, 具体做法为: 假设同步系统的测量设备分别接收基站 1 的无线帧信号 FR1、 基站 2的无线帧信号 FR2, 将 FR1和 FR2接入鉴相器提取 FR1和 FR2之 间的相位差 P21, 并将该相位差 P21作为测周计数器的使能。 为了提高测周精 度, 对同步系统的测量设备的本地时钟 CL进行 ML次倍频得到一个高频时钟, 并将该高频时钟接入测周计数器。 另外, 同步系统的测量设备也可以在接收 基站 1的载频时钟 C1或基站 2的载频时钟 C2后, 将通过分频或倍频后的 C1 或者通过分频或倍频后的 C2用作测周计数器的高频时钟。
假设 CL的频率和周期分别是 FL和 TL, 从测周计数器中得到的测周计数 值为 NP21L, 4叚定 FR2超前 FR1为正, 那么就有:
P21=NP21L (TL÷ML) = NP21L÷ (ML FL),
考虑到相位差也有可能有抖动变化, 实际使用中可以考虑多次测量取平 均值。
从上述等式可以看出, MLxFL越大, 相位差的理论测量精度就越高。 例 如, 假定 FL=10MHz, ML=10, 则测量理论精度就是 0.01微秒。 而在通讯系统 中, 频率精度一般都在 E-6量级, 因此在确保理论测量精度的前提下, FL的 频率精度对测量精度的影响不大。 比如此时 FL 的频率精度是 ±50ppm (测周 期间平均频率), 那么相位差测量理论精度范围为: O. Ol x ( l ±50ppm)微秒。 因此,实际使用时只需要使用 FL的标称频率进行相位差的测量运算就可以了。
无线信号在空间的传输时延会影响无线帧相位差的测量, 如果传输延时 所导致的偏差很小, 则可以忽略不计。 但如果延时很大, 则需要对上述方面 测量得到的相位差进行延时补偿。 本发明描述的延时补偿主要补偿基站之间 无线信号视距传播的延时。视距传播是指电波沿直线传播的方式。视距( l ines of s ight , LOS ), 一般指百米至千米数量级左右, 最显著的特点是传输过程 中不需中继, 直线传播。 如激光, 微波, 和红外系统通信。
以某个基站群为例, 该群基站之间最大视距导致的传输延时在允许的范 围之内, 那么该群基站之间的相位差测量可以不考虑延时补偿, 比如该基站 群内基站之间的最大视距是 300米, 可能会导致 1微秒的延时, 而系统要求 的相位差是 10微秒, 那么可以不考虑进行延时补偿。
因此, 当所有基站之间的最大视距导致的传输延时超过允许范围时, 可 以用两种方式解决该传输延时的问题:
第一种方式:
在安装基站或测量专用设备的时候, 记录各个安装站点的精确地理坐标, 各站点的地理坐标可以利用 GPS ( Globa l Pos i t ioning Sys tem, 全球定位系 统)设备实施测量。 根据记录的各站点的地理坐标, 对所有基站进行分群, 确保各群内最大视距导致的传输延时在允许范围内。 从每个群中选择一个基 准基站, 各群的基准基站用其他技术进行可靠同步, 如卫星授时设备技术。 测量每个群内的基站之间的相位差, 运算及调整相对该群的基准基站的相位 差, 因而, 每个群内进行相位同步时, 不需要对测量得到的相位差进行延时 补偿。
另外, 由于各群的基准基站之间是同步的, 而各群群内的基站又是同步 的, 那么所述所有基站也就实现了同步。
第二种方式:
在安装基站或同步系统的测量设备的时候, 记录各个安装站点的精确地 理坐标, 各站点的地理坐标可以利用 GPS设备实施测量。 在得到某两个基站 的无线帧的相位差后, 可以根据这两个基站的物理位置关系, 进行延时补偿。
以上面提到的无线帧相位差测量为例,假定基站 1、基站 2和同步系统的 测量设备的地理安装位置的地理经纬度及高度分别为(Xi, ν ιλ) , ( Χ2, Υ2, Ζ2)和(XL, YL, ZL) , 电磁波传播速度为 CE , 并且 FR2超前 FR1为正, 那么基站 1和基站 2之间的视距相位差延时补偿为: dc UP21 = — Xl)2 + (YlYl)2 + (ZlZl)2— V(X2— Xl )2 + (Y2— Yl )2 + ― Zl )2
― CE
因此, 基站 1和基站 1之间的相位差为 P21 + de l tP21。
上文具体描述了所述同步系统的测量设备测量周边各基站之间的无线帧 相位差的方法, 也就是所述同步系统的单个测量设备能够测量它接收到的周 边基站的无线帧信号之间的相位差, 因此, 同步系统的多个测量设备可以对 相互之间的无线帧信号的相位差进行交叉测量, 即将同步系统的多个测量设 备分布在基站群中, 所述多个测量设备分别对该测量设备周边基站的无线帧 信号之间的相位差进行测量。
例如, 某次相位同步涉及 5个基站, 如图 4所示, 分别^ ^站 1〜基站 5 , 设它们的无线帧信号是 FR1 ~ FR2 , 同步系统的测量设备 1收到基站 1、基站 2 和基站 3的无线帧信号, 同步系统的测量设备 2收到基站 3、 基站 4和基站 5 的无线帧信号, 同步系统的测量设备 1和同步系统的测量设备 2对它们能够 接收到的周边基站的无线帧信号的相位差进行测量。
MX、 FX分别是同步系统的测量设备 1的测周时钟倍频系数、 测周时钟标 称频率。 NP21X是同步系统的测量设备 1对 FR2、 FR1之间的相位差 P21进行 测周计数的计数值, NP31X是同步系统的测量设备 1对 FR3、 FR1之间的相位 差 P31进行测周计数的计数值, 那么有 P21= NP21X + ( MX FX ), P31= NP31X ÷ ( MX FX )0 假定 FR2超前 FR1为正, FR3超前 FR1为正, CE是电磁波传播 速度, Y{, 1{ ( i=l , 2 , 3 , X )分别^ ^站 1〜基站 3、 同步系统的测量设 备 1的地理三维坐标, 那么延时补偿分别为:
Figure imgf000015_0001
Figure imgf000016_0001
MY、 FY分别是同步系统的测量设备 2的测周时钟倍频系数、 测周时钟标 称频率。 NP43Y是同步系统的测量设备 2对 FR4、 FR3之间的相位差 P43进行 测周计数的计数值, NP53Y是同步系统的测量设备 2对 FR5、 FR3之间的相位 差 P53进行测周计数的计数值, 那么有 P43= NP43Y+ ( MY FY ), P53= NP53Y ÷ (MY FY), 4叚定 FR4超前 FR3为正, FR5超前 FR3为正, CE是电磁波传播 速度, Y{, 1{ ( i=3, 4, 5, Υ)分别^ ^站 3〜基站 5、 同步系统的测量设 备 2的地理三维坐标, 那么延时补偿有: dc P13 = Χγ)2 + 3— ΥΥ)2 + 3— ΖΥ)2— (X4— ΧΥ)2 + (Υ4 ~γγ)2+ (ζ4 - Ζγ)2
― CE
dc UP53 = Χγ)2 + (Υ3 - Υγ)2 + (Ζ3 - Ζγ)2 - 5γ)2 + (Υ5γ)2+ (Ζ5 - Ζγ)2 一 CE °
303、 同步系统根据所述第一基站与所述第二基站之间的无线帧信号的相 位偏差, 以及所述第二基站的无线帧信号的相位相对所述基准时钟相位的相 位偏差, 获取所述第一基站的无线帧信号的相位相对所述基准时钟相位的相 位偏差。
具体可以为: 同步系统的管理设备根据第一基站和第二基站之间的无线 帧信号的相位偏差, 以及第二基站的无线帧信号的相位相对基准时钟相位的 相位偏差, 获取第一基站的无线帧相位相对基准时钟相位的相位偏差;
在步骤 302的例子中, 假定基站 1定为基准基站, 同步系统的管理设备 根据测量设备测量的结果, 计算其他基站相对基站 1 的相位偏差, 那么可以 通过迭代运算得到:
RP21=P21+deltP21
RP31=P31+deltP31
RP41=P43+deltP43-RP31 RP51=P53+de l tP53-RP31
在本发明实施例中, 通过迭代运算获取基站 4与基站 1 的相位偏差, 即 利用基站 4与基站 3的相位偏差及基站 3与基站 1的相位偏差, 得到基站 4 与基站 1的相位偏差; 通过迭代运算获取基站 5与基站 1的相位偏差, 即利 用基站 5与基站 3的相位偏差及基站 3与基站 1的相位偏差, 得到基站 5与 基站 1的相位偏差。
304、 同步系统根据所述第一基站的无线帧信号的相位相对所述基准时钟 相位的相位偏差, 通知所述第一基站调整工作时钟的相位, 使所述第一基站 的工作时钟的相位和所述基准时钟相位同步。
具体可以为: 同步系统的管理设备根据第一基站的无线帧信号的相位相 对基准时钟相位的相位偏差, 通过数据通道通知第一基站调整自身的无线帧 相位, 使第一基站的工作时钟的相位和基准时钟相位同步。
并且, 同步系统的管理设备还可以在通知第一基站调整其无线帧相位的 同时, 根据第二基站的无线帧信号的相位相对基准时钟相位的相位偏差, 通 过数据通道通知第二基站调整其无线帧相位, 使第一基站和第二基站的工作 时钟的相位均与基准时钟相位同步。
同步系统的管理设备通过迭代运算计算出其他基站相对基准基站的相位 偏差后, 就可以通过数据通道通知其他基站调整各自的相位向基准基站靠拢, 具体调整方法可以参考现有的成熟的时钟算法, 在本专利中不再进行赘述。
因此, 同步系统的管理设备通知基站 2〜基站 5调整各自的相位向基站 1 的相位靠拢, 这样就构成了 4个闭环的相位调节环路。
本发明实施例三提供的实现基站时钟相位同步的方法,通过从所有基站中 确定基准基站, 测量第一基站与第二基站之间的无线帧相位偏差, 并根据第 一基站与第二基站之间的无线帧相位偏差, 以及第二基站的无线帧相位相对 基准时钟的相位偏差, 获取第一基站的无线帧相位相对基准时钟的相位偏差, 然后通知第一基站调整工作时钟的相位。 因此, 在本发明实施例三中, 不需 要依赖传统的或者 IP方式的时钟同步网络, 只需要可靠的数据通道, 与具体 的接入方式无关, 并且室外和室内覆盖场合都可以应用, 实现快速、 高质可 靠、 成本较低的基站时钟相位同步。
另外, 基站之间的频率差会使相位差不断递增, 比如基站 1和基站 2的 时钟频率分别是 F1和 F2 , 周期分别是 T1和 T2 , 两者之间的相位差是 P21 , 以基站 1为基准, 设 F2相对 F1的相对频率偏差 DF21= ( F2-F1 ) ÷ F1 , 那么 经过 N个 T1周期后, 两者之间的相位差 P21= ( T2-T1 ) χ Ν, 而当前时刻 t=N χ ΤΙ , 于是 P21 ÷ t=_DF21 ÷ ( DF21+1 ), 并且通讯系统中的时钟频率差异一般 非常小 (E-6量级), 因此 DF21远小于 1 , 从而可以认为 P21 DF21 X t。 因 此可以看出,随着时间的推移,P21会由于 T2和 T1周期差的累计而不断递增。
基于上述原因, 为了基站的时钟频率能够在一定程度上维持相位同步, 一般先实施频率同步, 然后再实施相位同步。 因此, 还可以结合实施例二和 实施例三, 联合实施频率同步和相位同步, 例如, 按照实施例二所描述的频 率同步方法进行频率同步, 使所述所有基站的频率同步达到设定要求, 再按 照实施例三所描述的相位同步方法进行相位同步, 使所述所有基站的相位同 步达到设定要求, 然后始终执行实施例二所描述的频率同步过程, 以保证基 站频率同步时刻满足设定要求, 再实时或定时监控各基站之间的相位差, 可 以通过执行实施例三所描述的步骤 302和 303来实现, 如果发现相位同步达 到告警门限, 则按照实施例三所描述的相位同步方法进行相位同步。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体 ( Random Acces s Memory, RAM )等。
实施例四
本发明实施例还提供了一种实现基站时钟同步的装置, 如图 7 所示, 本 发明实施例实现基站时钟同步的装置, 包括:
基准时钟获取单元 401 , 用于获取基准时钟。 例如, 基准时钟获取单元 401可以从需要同步的一个群内的所有基站中确定基准基站,将所述基准基站 的时钟作为基准时钟。
时钟差测量单元 402 , 用于测量第一基站与第二基站之间信号的时钟偏 差。 在本发明实施例中, 所述信号的时钟可以是载频信号的频率, 也可以是 无线帧信号的相位。 因此, 当所述信号的时钟为载频信号的频率时, 时钟差 测量单元 402 可以测量第一基站与第二基站之间的载频信号的频率偏差, 测 量频率偏差的具体方法可以釆用测频法。 或者, 当所述信号的时钟为无线帧 信号的相位时, 时钟差测量单元 402 可以测量第一基站与第二基站之间的无 线帧信号的相位偏差。 并且, 测量相位偏差的具体方法可以釆用测周法。
时钟差获取单元 403 ,用于根据所述第一基站与所述第二基站之间的时钟 偏差, 以及所述第二基站的信号的时钟相对基准时钟的时钟偏差, 获取所述 第一基站的信号的时钟相对所述基准时钟的时钟偏差。 当所述信号的时钟为 载频信号的频率时, 时钟差获取单元 403 可以根据第一基站和第二基站之间 的载频信号的频率偏差, 以及第二基站的载频信号的频率相对基准时钟的频 率偏差, 获取第一基站的载频信号的频率相对基准基站的频率偏差。 或者, 当所述信号的时钟为无线帧信号的相位时, 时钟差获取单元 403 可以根据第 一基站和第二基站之间的无线帧信号的相位偏差, 以及第二基站的无线帧信 号相对基准时钟的相位偏差, 获取第一基站的无线帧信号的相位相对基准基 站的相位偏差。
时钟调整通知单元 404 ,用于根据所述第一基站的信号的时钟相对所述基 准时钟的时钟偏差, 通知所述第一基站调整时钟。 其中, 时钟调整通知单元 404可以根据第一基站的载频信号的频率相对基准基站的频率偏差,通知第一 基站调整自身的工作时钟的频率, 进行时钟同步。 或者, 时钟调整通知单元 404可以根据第一基站的无线帧信号的相位相对基准基站的相位偏差,通知第 一基站调整自身的工作时钟的相位, 进行时钟同步。 另外, 时钟调整通知单 元 404 ,还可以用于根据所述第二基站的信号的时钟相对所述基准时钟的时钟 偏差, 通知所述第二基站调整时钟。
本发明实施例四提供的实现基站时钟同步的基站, 通过获取基准时钟, 测量第一基站与第二基站之间的信号的时钟偏差, 根据第一基站与第二基站 之间的时钟偏差, 以及第二基站的信号的时钟相对基准时钟的时钟偏差, 获 取第一基站的信号的时钟相对基准时钟的时钟偏差, 然后通知第一基站调整 工作时钟。 因此, 不需要依赖传统的或者 IP方式的时钟同步网络和具体的接 入方式, 实现快速、 高质可靠、 成本较低的基站时钟同步。
实施例四中的信号的时钟既可以是载频信号的频率, 还可以是无线帧信 号的相位。 下面结合以上不同情况对实现基站时钟同步的装置做进一步详细 描述。
实施例五
本发明实施例提供了一种实现基站时钟频率同步的装置, 如图 8 所示, 本发明实施例实现基站时钟频率同步的装置, 包括:
基准时钟获取单元 401包括频率时钟子单元 405 ,用于获取基准基站的载 频信号的频率作为基准时钟频率。 例如, 频率时钟子单元 405 从需要同步的 一个群内的所有基站中选择一个基站, 作为基准基站。 实际操作中, 基准基 站的确定, 可以是由管理人员利用频率时钟子单元 405 完成的, 也可以由频 率时钟子单元 405根据预设的条件完成。
时钟差测量单元 402包括测频子单元 406 ,用于按照测频法测量第一基站 和第二基站之间的载频信号的频率偏差。 测频子单元 406 可以接收到周边各 基站的载频信号, 利用所述测频子单元 406 的本地时钟, 按照测频法测量周 边各基站的载频信号的频率, 根据测量结果得到周边各基站之间的载频信号 的频率偏差。
所述测频法的原理可参见实施例二的步骤 202 部分, 在此不再赘述。 在 实际操作中所述测频子单元 406可以为专用的测量设备,所述测频子单元 406 还可以为位于基站上的测量设备。 因此, 测频子单元 406 可以交叉测量基站 之间的载频信号的载波频率差, 即将多个测量设备分布在基站群中, 所述多 个测量设备分别对该测量设备周边的基站之间的载频信号的载波频率差进行 测量。 所述测频子单元 406 交叉测量基站之间的载频信号的载波频率差的具 体实例可参见实施例二的步骤 202部分, 在此不再赘述。
时钟差获取单元 403包括频率差获取子单元 407 ,用于根据所述第一基站 与所述第二基站之间的载频信号的频率偏差, 以及所述第二基站的载频信号 的频率相对所述基准时钟频率的频率偏差, 获取所述第一基站的载频信号的 频率相对所述基准时钟频率的频率偏差。 所述频率差获取子单元 407根据所 述测频子单元 406 测量的第一基站和第二基站之间的载频信号的频率偏差, 以及第二基站和基准基站之间的载频信号的频率偏差, 获取第一基站与基准 基站之间的载频信号的频率偏差的具体实例可参见实施例二的步骤 203部分, 在此不再赘述。
时钟调整通知单元 404包括频率同步子单元 408 ,用于根据所述第一基站 的载频信号的频率相对所述基准时钟频率的频率偏差, 通知所述第一基站调 整工作时钟的频率, 使所述第一基站的工作时钟的频率和所述基准时钟频率 同步。 频率差获取子单元 407 计算出第一基站相对基准基站的频率偏差后, 频率同步子单元 408 就可以通过数据通道通知第一基站调整自身的频率向基 准基站靠拢, 一般是通过改变基站上晶振的控制电压来实现的。 具体调整方 法可以参考现有的成熟的时钟算法, 在本专利中不再进行赘述。 另外, 所述 频率同步子单元 408 ,还用于根据所述第二基站的载频信号的频率相对所述基 准时钟频率的频率偏差, 通知所述第二基站调整工作时钟的频率, 使所述第 二基站的工作时钟的频率和所述基准时钟频率同步。
本发明实施例五提供的实现基站时钟频率同步的装置, 从所有基站中确 定基准基站, 测量第一基站与第二基站之间的载波频率偏差, 并根据第一基 站与第二基站之间的载波频率偏差, 以及第二基站的载波频率相对基准时钟 的频率偏差, 获取第一基站的载波频率相对基准时钟的频率偏差, 然后通知 第一基站调整工作时钟的频率。 因此, 不需要依赖传统的或者 IP方式的时钟 同步网络, 只需要可靠的数据通道, 与具体的接入方式无关, 实现快速、 高 质可靠、 成本较低的基站时钟频率同步。
实施例六
本发明实施例提供了一种实现基站时钟相位同步的装置, 如图 9 所示, 本发明实施例实现基站时钟相位同步的装置, 包括:
基准时钟获取单元 401包括相位时钟子单元 409 ,用于获取基准基站的无 线帧信号的相位作为基准时钟相位。 例如, 相位时钟子单元 409按照需要从 需要同步的一个群内的所有基站中选择合适数量的基站, 作为基准基站, 这 些基准基站用其他技术进行可靠同步, 比如卫星授时设备技术。 实际操作中, 基准基站的确定, 可以是由管理人员利用相位时钟子单元 409完成的。
时钟差测量单元 402包括测周法子单元 410,用于按照测周法测量第一基 站和第二基站之间的无线帧信号的相位偏差。 所述测周法子单元 410可以接 收到周边各基站的无线帧信号, 利用所述测周法子单元 410 的本地时钟, 按 照测周法测量周边各基站的无线帧信号的相位偏差。
所述测周法的原理可参见实施例三的步骤 302 部分。 在实际操作中所述 测周法子单元 410可以为专用的测量设备, 所述测周法子单元 410还可以为 位于基站上的测量设备。 因此, 测周法子单元 410 交叉测量基站之间的无线 帧信号的相位差, 即将多个测量设备分布在基站群中, 所述多个测量设备分 别对该测量设备周边的基站之间的无线帧信号的相位差进行测量。 所述测周 法子单元 410 交叉测量基站之间的无线帧信号的相位差的具体实例可参见实 施例三的步骤 302部分, 在此不再赘述。
时钟差获取单元 403包括相位差获取子单元 411 ,用于根根据所述第一基 站与所述第二基站之间的无线帧信号的相位偏差, 以及所述第二基站的无线 帧信号的相位相对所述基准时钟相位的相位偏差, 获取所述第一基站的无线 帧信号的相位相对所述基准时钟相位的相位偏差。所述相位差获取子单元 411 根据所述测周法子单元 410 测量的第一基站和第二基站之间的无线帧信号的 相位偏差, 以及第二基站和基准基站之间的无线帧信号的相位偏差, 获取第 一基站和基准基站之间的无线帧信号的相位偏差的具体实例可参见实施例二 的步骤 303部分, 在此不再赘述。
时钟调整通知单元 404包括相位同步子单元 412 ,用于根据所述第一基站 的无线帧信号的相位相对所述基准时钟相位的相位偏差, 通知所述第一基站 调整工作时钟的相位, 使所述第一基站的工作时钟的相位和所述基准时钟相 位同步。 相位差获取子单元 411计算出第一基站相对基准基站的相位偏差后, 相位同步子单元 412 就可以通过数据通道通知第一基站调整自身的相位向基 准基站靠拢, 具体调整方法可以参考现有的成熟的时钟算法, 在本专利中不 再进行赞述。 另外, 所述相位同步子单元 412 , 还用于根据所述第二基站的无 线帧信号的相位相对所述基准时钟相位的相位偏差, 通知所述第二基站调整 工作时钟的相位, 使所述第二基站的工作时钟的相位和所述基准时钟相位同 步。
本发明实施例六提供的实现基站时钟相位同步的装置, 从所有基站中确 定基准基站, 测量第一基站与第二基站之间的无线帧相位偏差, 并根据第一 基站与第二基站之间的无线帧相位偏差, 以及第二基站的无线帧相位相对基 准时钟的相位偏差, 获取第一基站的无线帧相位相对基准时钟的相位偏差, 然后通知第一基站调整工作时钟的相位。 因此, 不需要依赖传统的或者 IP方 式的时钟同步网络, 只需要可靠的数据通道, 与具体的接入方式无关, 实现 快速、 高质可靠、 成本较低的基站时钟相位同步。
另外, 为了解决基站之间的视距导致的传输延时问题, 所述时钟差获取 单元还包括地理位置获取子单元和延时补偿子单元。 如图 10所示, 所述地理 位置获取子单元 41 3 , 用于获取所述第一基站和所述第二基站的物理位置。 所 述延时补偿子单元 414 , 用于根据所述第一基站和所述第二基站的物理位置, 对所述第一基站和第二基站之间的无线帧信号的相位偏差进行延时补偿。 所 述延时补偿子单元 414 根据第一基站和第二基站的物理位置关系, 对第一基 站和第二基站之间的无线帧信号的相位偏差进行延时补偿的具体实例参见实 施例三的 302 部分, 在此不再赘述。 因此, 当所有基站之间的最大视距导致 的传输延时超过允许范围时, 通过对测量得到的各基站之间的相位差进行延 时补偿, 进一步减小了无线信号在空间的传输时延对无线帧相位差测量的影 响, 使相位同步的测量及调整更为精确。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种实现基站时钟同步的方法, 其特征在于, 包括:
获取基准时钟;
测量第一基站与第二基站之间信号的时钟偏差;
根据所述第一基站与所述第二基站之间的时钟偏差, 以及所述第二基站的 信号的时钟相对所述基准时钟的时钟偏差, 获取所述第一基站的信号的时钟相 对所述基准时钟的时钟偏差;
根据所述第一基站的信号的时钟相对所述基准时钟的时钟偏差, 通知所述 第一基站调整时钟。
2、根据权利要求 1所述的实现基站时钟同步的方法, 其特征在于,还包括: 根据所述第二基站的信号的时钟相对所述基准时钟的时钟偏差, 通知所述 第二基站调整时钟。
3、 根据权利要求 1或 2所述的实现基站时钟同步的方法, 其特征在于, 所 述获取基准时钟包括:
获取基准基站的载频信号的频率作为基准时钟频率。
4、 根据权利要求 3所述的实现基站时钟同步的方法, 其特征在于, 所述测 量第一基站与第二基站之间信号的时钟偏差包括:
按照测频法测量所述第一基站与所述第二基站之间的载频信号的频率偏 差。
5、 根据权利要求 4所述的实现基站时钟同步的方法, 其特征在于, 所述根 据所述第一基站与所述第二基站之间的时钟偏差, 以及所述第二基站的信号的 时钟相对基准时钟的时钟偏差, 获取所述第一基站的信号的时钟相对所述基准 时钟的时钟偏差包括:
根据所述第一基站与所述第二基站之间的载频信号的频率偏差, 以及所述 第二基站的载频信号的频率相对所述基准时钟频率的频率偏差, 获取所述第一 基站的载频信号的频率相对所述基准时钟频率的频率偏差。
6、 根据权利要求 5所述的实现基站时钟同步的方法, 其特征在于, 所述根 据所述第一基站的信号的时钟相对所述基准时钟的时钟偏差, 通知所述第一基 站调整时钟包括:
根据所述第一基站的载频信号的频率相对所述基准时钟频率的频率偏差, 通知所述第一基站调整工作时钟的频率, 使所述第一基站的工作时钟的频率和 所述基准时钟频率同步。
7、 根据权利要求 1或 2所述的实现基站时钟同步的方法, 其特征在于, 所 述获取基准时钟包括:
获取基准基站的无线帧信号的相位作为基准时钟相位。
8、 根据权利要求 7所述的实现基站时钟同步的方法, 其特征在于, 所述测 量第一基站与第二基站之间信号的时钟偏差包括:
按照测周法测量所述第一基站与所述第二基站之间的无线帧信号的相位偏 差。
9、 根据权利要求 8所述的实现基站时钟同步的方法, 其特征在于, 所述根 据所述第一基站与所述第二基站之间的时钟偏差, 以及所述第二基站的信号的 时钟相对基准时钟的时钟偏差, 获取所述第一基站的信号的时钟相对所述基准 时钟的时钟偏差包括:
根据所述第一基站与所述第二基站之间的无线帧信号的相位偏差, 以及所 述第二基站的无线帧信号的相位相对所述基准时钟相位的相位偏差, 获取所述 第一基站的无线帧信号的相位相对所述基准时钟相位的相位偏差。
10、 根据权利要求 9 所述的实现基站时钟同步的方法, 其特征在于, 所述 根据所述第一基站的信号的时钟相对所述基准时钟的时钟偏差, 通知所述第一 基站调整时钟包括:
根据所述第一基站的无线帧信号的相位相对所述基准时钟相位的相位偏 差, 通知所述第一基站调整工作时钟的相位, 使所述第一基站的工作时钟的相 位和所述基准时钟相位同步。
11、根据权利要求 7-10任一所述的实现基站时钟同步的方法,其特征在于, 所述按照测周法测量第一基站和第二基站之间的无线帧信号的相位偏差的步骤 之后包括:
获取所述第一基站和所述第二基站的物理位置;
根据所述第一基站和所述第二基站的物理位置, 对所述第一基站和所述第 二基站之间的无线帧信号的相位偏差进行延时补偿。
12、 一种实现基站时钟同步的装置, 其特征在于, 包括:
基准时钟获取单元, 用于获取基准时钟;
时钟差测量单元, 用于测量第一基站与第二基站之间信号的时钟偏差; 时钟差获取单元, 用于根据所述第一基站与所述第二基站之间的时钟偏差, 以及所述第二基站的信号的时钟相对基准时钟的时钟偏差, 获取所述第一基站 的信号的时钟相对所述基准时钟的时钟偏差;
时钟调整通知单元, 用于根据所述第一基站的信号的时钟相对所述基准时 钟的时钟偏差, 通知所述第一基站调整时钟。
1 3、 根据权利要求 12所述的实现基站时钟同步的装置, 其特征在于, 所述 时钟调整通知单元, 还用于根据所述第二基站的信号的时钟相对所述基准时钟 的时钟偏差, 通知所述第二基站调整时钟。
14、 根据权利要求 12或 1 3所述的实现基站时钟同步的装置, 其特征在于, 所述基准时钟获取单元包括频率时钟子单元, 用于获取基准基站的载频信号的 频率作为基准时钟频率。
15、 根据权利要求 14所述的实现基站时钟同步的装置, 其特征在于, 所述 时钟差测量单元包括测频子单元, 用于按照测频法测量所述第一基站与所述第 二基站之间的载频信号的频率偏差。
16、 根据权利要求 15所述的实现基站时钟同步的装置, 其特征在于, 所述 时钟差获取单元包括:
频率差获取子单元, 用于根据所述第一基站与所述第二基站之间的载频信 号的频率偏差, 以及所述第二基站的载频信号的频率相对所述基准时钟频率的 频率偏差, 获取所述第一基站的载频信号的频率相对所述基准时钟频率的频率 偏差。
17、 根据权利要求 16所述的实现基站时钟同步的装置, 其特征在于, 所述 时钟调整通知单元包括频率同步子单元, 用于根据所述第一基站的载频信号的 频率相对所述基准时钟频率的频率偏差, 通知所述第一基站调整工作时钟的频 率, 使所述第一基站的工作时钟的频率和所述基准时钟频率同步。
18、 根据权利要求 12或 1 3所述的实现基站时钟同步的装置, 其特征在于, 所述基准时钟获取单元包括相位时钟子单元, 用于获取基准基站的无线帧信号 的相位作为基准时钟相位;
19、 根据权利要求 18所述的实现基站时钟同步的装置, 其特征在于, 所述 时钟差测量单元包括测周法子单元, 用于按照测周法测量所述第一基站与所述 第二基站之间的无线帧信号的相位偏差;
20、 根据权利要求 19所述的实现基站时钟同步的装置, 其特征在于, 所述 时钟差获取单元包括相位差获取子单元, 用于根据所述第一基站与所述第二基 站之间的无线帧信号的相位偏差, 以及所述第二基站的无线帧信号的相位相对 所述基准时钟相位的相位偏差, 获取所述第一基站的无线帧信号的相位相对所 述基准时钟相位的相位偏差。
21、 根据权利要求 20所述的实现基站时钟同步的装置, 其特征在于, 所述 时钟调整通知单元包括相位同步子单元, 用于根据所述第一基站的无线帧信号 的相位相对所述基准时钟相位的相位偏差, 通知所述第一基站调整工作时钟的 相位, 使所述第一基站的工作时钟的相位和所述基准时钟相位同步。
22、 根据权利要求 18-21 所述的实现基站时钟同步的装置, 其特征在于, 所述时钟差获取单元还包括:
地理位置获取子单元, 用于获取所述第一基站和所述第二基站的物理位置; 延时补偿子单元, 用于根据所述第一基站和所述第二基站的物理位置, 对 所述第一基站和所述第二基站之间的无线帧信号的相位偏差进行延时补偿。
PCT/CN2009/076033 2009-02-12 2009-12-25 实现基站时钟同步的方法及装置 WO2010091590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910008910A CN101478341B (zh) 2009-02-12 2009-02-12 实现基站时钟同步的方法及装置
CN200910008910.3 2009-02-12

Publications (1)

Publication Number Publication Date
WO2010091590A1 true WO2010091590A1 (zh) 2010-08-19

Family

ID=40838978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076033 WO2010091590A1 (zh) 2009-02-12 2009-12-25 实现基站时钟同步的方法及装置

Country Status (2)

Country Link
CN (1) CN101478341B (zh)
WO (1) WO2010091590A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618592A (zh) * 2013-11-22 2014-03-05 华为技术有限公司 一种pwm同步方法及装置
EP3461189A4 (en) * 2016-06-17 2019-05-15 Huawei Technologies Co., Ltd. METHOD, BASE STATION AND FREQUENCY SYNCHRONIZATION SYSTEM
CN112835053A (zh) * 2020-12-31 2021-05-25 北京一径科技有限公司 激光雷达同步的方法和装置、电子设备和存储介质
CN113840370A (zh) * 2021-08-31 2021-12-24 全球能源互联网欧洲研究院 一种无线通信交互的时钟同步方法、装置及电子设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478341B (zh) * 2009-02-12 2012-10-17 华为技术有限公司 实现基站时钟同步的方法及装置
CN102118779B (zh) * 2009-12-30 2014-12-10 中兴通讯股份有限公司 一种基于无线方式实现时钟同步的方法
CN102158950A (zh) * 2011-04-26 2011-08-17 上海华为技术有限公司 时钟同步方法、系统、装置及基站
CN103176412B (zh) * 2011-12-21 2016-09-07 北京普源精电科技有限公司 一种具有通道耦合功能的信号发生器及方法
CN103476104B (zh) * 2012-06-08 2016-08-10 华为技术有限公司 频率同步方法及装置
CN103138828B (zh) * 2013-02-07 2015-09-23 航天恒星科技有限公司 网络节点时钟同步方法和时钟同步网络
CN104378818A (zh) * 2013-08-13 2015-02-25 中兴通讯股份有限公司 一种时钟同步方法及装置、基站子系统
EP3182769A4 (en) 2014-10-23 2017-10-04 Huawei Technologies Co., Ltd. Method and device for controlling phase synchronisation, and system
US10772055B2 (en) 2015-04-08 2020-09-08 Alcatel Lucent Base station synchronization
CN109949559A (zh) * 2019-01-21 2019-06-28 河南工程学院 基于无线传感网络的微功率抄表系统及设备
CN110505685B (zh) * 2019-08-29 2021-01-15 成都精位科技有限公司 基于卫星定位系统的基站校准方法及装置
CN114339984A (zh) * 2021-12-31 2022-04-12 中国联合网络通信集团有限公司 承载网时间精度校准方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186398A (zh) * 1996-11-28 1998-07-01 冲电气工业株式会社 用校正的帧同步信号的相位差完成切换的移动通信系统
CN1332542A (zh) * 2000-07-06 2002-01-23 日本电气株式会社 移动通信系统和方法以及在该系统中的移动台和基站
CN1373945A (zh) * 1999-09-08 2002-10-09 诺基亚公司 基站的频率同步
CN101478341A (zh) * 2009-02-12 2009-07-08 华为技术有限公司 实现基站时钟同步的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214671C (zh) * 2002-06-10 2005-08-10 华为技术有限公司 移动通信系统中基站间实现同步的方法
DE10336312B4 (de) * 2003-08-07 2007-08-30 Siemens Ag Verfahren zur Synchronisation eines in Funkzellen aufgeteilten Funkkommunikationssystems, sowie eine Basis- und Mobilstation in einem derartigen System
CN100428653C (zh) * 2004-11-16 2008-10-22 戴闽鲁 基站间时间同步关系及tdd共信道干扰基站的判定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186398A (zh) * 1996-11-28 1998-07-01 冲电气工业株式会社 用校正的帧同步信号的相位差完成切换的移动通信系统
CN1373945A (zh) * 1999-09-08 2002-10-09 诺基亚公司 基站的频率同步
CN1332542A (zh) * 2000-07-06 2002-01-23 日本电气株式会社 移动通信系统和方法以及在该系统中的移动台和基站
CN101478341A (zh) * 2009-02-12 2009-07-08 华为技术有限公司 实现基站时钟同步的方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618592A (zh) * 2013-11-22 2014-03-05 华为技术有限公司 一种pwm同步方法及装置
EP3461189A4 (en) * 2016-06-17 2019-05-15 Huawei Technologies Co., Ltd. METHOD, BASE STATION AND FREQUENCY SYNCHRONIZATION SYSTEM
CN112835053A (zh) * 2020-12-31 2021-05-25 北京一径科技有限公司 激光雷达同步的方法和装置、电子设备和存储介质
CN113840370A (zh) * 2021-08-31 2021-12-24 全球能源互联网欧洲研究院 一种无线通信交互的时钟同步方法、装置及电子设备
CN113840370B (zh) * 2021-08-31 2023-10-13 全球能源互联网欧洲研究院 一种无线通信交互的时钟同步方法、装置及电子设备

Also Published As

Publication number Publication date
CN101478341B (zh) 2012-10-17
CN101478341A (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2010091590A1 (zh) 实现基站时钟同步的方法及装置
US12004105B2 (en) Time synchronization method and apparatus
EP2692183B1 (en) Methods and arrangements for estimating timing offset differences in a cellular network
US9232493B2 (en) Frequency offset compensation for WiFi ranging
US11038608B2 (en) Frequency synchronization method and slave clock
WO2022011650A1 (zh) 同步系统中的测距方法、装置、设备及可读存储介质
CN110324889A (zh) 时钟同步方法、通信装置及通信设备
US9955447B2 (en) Clock synchronization method, mobile network system, network controller and network switch
WO2019228221A1 (zh) 时钟同步方法、装置、终端设备、芯片及可读存储介质
US11134460B2 (en) Synchronizing a cloud radio access network to a network time protocol reference clock
KR20210138084A (ko) 클록 오프셋의 결정 방법 및 클록 오프셋의 처리 방법, 장치 및 시스템
WO2022023556A1 (en) Reference time delivery during mobility operations in a time-sensitive network (tsn)
CN106612541B (zh) 通信系统、基站、用户设备及其基站的时间同步方法
JP6134024B1 (ja) 通信システム及びスモールセル基地局
CN103428845A (zh) 一种空口同步中时延的补偿方法和装置
CN103874153A (zh) 一种控制方法和基站
WO2015017977A1 (zh) 一种umts到lte的网络切换方法、设备及系统
WO2010102565A1 (zh) 时间同步的方法、装置和系统
US10063997B2 (en) Method and device for positioning user equipment
TW200926660A (en) Synchronisation method
EP3094141B1 (en) Method for radio network synchronization of a mobile communication network with a local clock functionality providing a local timing reference for each base station entity, mobile communication network, base station entity, program and computer program product
US20240023051A1 (en) Frequency reference adjustment compensation for positioning
JP2018088644A (ja) 無線接続された複数端末間の時刻同期方法及び時刻同期システム
Rentel et al. Network synchronization in wireless ad hoc networks
JP2016005204A (ja) 通信装置、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839913

Country of ref document: EP

Kind code of ref document: A1