WO2010087077A1 - Method for producing optical component, apparatus for producing optical component, and method for producing wafer lens - Google Patents

Method for producing optical component, apparatus for producing optical component, and method for producing wafer lens Download PDF

Info

Publication number
WO2010087077A1
WO2010087077A1 PCT/JP2009/070746 JP2009070746W WO2010087077A1 WO 2010087077 A1 WO2010087077 A1 WO 2010087077A1 JP 2009070746 W JP2009070746 W JP 2009070746W WO 2010087077 A1 WO2010087077 A1 WO 2010087077A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
curable resin
glass substrate
molding
energy
Prior art date
Application number
PCT/JP2009/070746
Other languages
French (fr)
Japanese (ja)
Inventor
斎藤 正
佐藤 彰
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010512427A priority Critical patent/JP4586940B2/en
Publication of WO2010087077A1 publication Critical patent/WO2010087077A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/54Compensating volume change, e.g. retraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00307Producing lens wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C2043/366Moulds for making articles of definite length, i.e. discrete articles plates pressurized by an actuator, e.g. ram drive, screw, vulcanizing presses
    • B29C2043/3663Moulds for making articles of definite length, i.e. discrete articles plates pressurized by an actuator, e.g. ram drive, screw, vulcanizing presses confined in a chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5808Measuring, controlling or regulating pressure or compressing force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5833Measuring, controlling or regulating movement of moulds or mould parts, e.g. opening or closing, actuating
    • B29C2043/5841Measuring, controlling or regulating movement of moulds or mould parts, e.g. opening or closing, actuating for accommodating variation in mould spacing or cavity volume during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to an optical component manufacturing method, an optical component manufacturing apparatus, and a wafer lens manufacturing method.
  • a glass substrate is sucked and fixed by a vacuum chuck device.
  • a resin is dropped or discharged onto the glass substrate (dispensing process). Thereafter, the glass substrate is raised toward the mold placed above, and the resin is pressed against the mold (imprint process).
  • the mold is a light transmissive mold having a lens molding surface, and is held and fixed by a stamp holder.
  • the resin filled in the cavity is irradiated with light from above the mold to photocur the resin (exposure process). Thereafter, the resin is released from the mold while the glass substrate is lowered (release process). As a result, a wafer lens having a plurality of optical element portions formed on a glass substrate can be manufactured.
  • Such a molding process is also used when a molding die for molding an optical element is molded by a similar molding process.
  • the wafer lens is a fine optical element, and there is a tendency that high optical characteristics are required corresponding to high resolution, such as when optical elements are formed on both surfaces of a substrate, or when a plurality of wafer lenses are stacked.
  • the present invention has been made in view of the above circumstances.
  • the first object of the present invention is to provide an optical component manufacturing method and an optical component manufacturing apparatus, such as a molding die for molding a mold.
  • the present invention also provides a highly accurate molding method that suppresses variation in shape and optical axis misalignment between optical elements formed on a glass substrate, even when simultaneously imprinting a plurality of fine optical elements on a glass substrate.
  • the second object is to provide a manufacturing method using the above.
  • the method for producing an optical component of the present invention includes: An optical component manufacturing method in which an optical member made of energetic curable resin is provided on one surface of a substrate, A dispensing step of dropping or discharging the energetic curable resin between a molding die having a plurality of negative-shaped molding surfaces corresponding to the optical surface shape of the optical member, and one surface of the substrate; After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the substrate; After the imprinting step, a first curing step of applying energy to the energetic curable resin to advance curing; A second curing step in which energy is given to the energy-curable curable resin to further cure the mold without releasing the mold from the substrate; It is characterized by providing.
  • the method of manufacturing the optical component of the present invention includes
  • the first curing step is an exposure step of irradiating light as energy
  • the second curing step is preferably a heating step for heating.
  • the method of manufacturing the optical component of the present invention includes It is preferable to perform the dispensing step, the imprinting step, and the first curing step under reduced pressure.
  • the method of manufacturing the optical component of the present invention includes
  • the optical component is preferably a wafer lens in which a plurality of optical elements are arranged in a wafer shape.
  • the method of manufacturing the optical component of the present invention includes An optical component manufacturing method in which an optical member made of energy-curable resin is provided on both sides of a substrate, The energy-curable curable resin is dropped or discharged between a first mold having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member formed on one surface of the substrate and the one surface of the substrate.
  • a first dispensing step A first imprinting step of pressing the energy-curable curable resin against the first mold or the substrate after the first dispensing step; After the first imprint step, a first curing step of applying energy to the energetic curable resin to advance curing; In a state where the first mold is not released from the substrate, the first mold and the substrate are inverted, The energy-curable curable resin is dropped or discharged between a second mold having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member formed on the other surface of the substrate and the other surface of the substrate.
  • a second dispensing step A second imprinting step of pressing the energy-curable curable resin against the second mold or the substrate after the second dispensing step; After the second imprint step, a second curing step of applying energy to the energetic curable resin to promote curing;
  • the energy-curable curable resin cured in the first curing step between the first mold and the substrate without releasing the first mold and the second mold from the substrate and the first mold A third curing step for further curing by applying energy to at least one of the energy-curable resins cured in the second curing step between the mold and the substrate; It is characterized by providing.
  • the method of manufacturing the optical component of the present invention includes The first curing step and the second curing step are exposure steps for irradiating light,
  • the third curing step is preferably a heating step for heating.
  • the method of manufacturing the optical component of the present invention includes The first dispensing step, the first imprinting step, the first curing step, the second dispensing step, the second imprinting step, and the second curing step are preferably performed under reduced pressure.
  • the method of manufacturing the optical component of the present invention includes
  • the optical component is preferably a wafer lens in which a plurality of optical elements are arranged on a wafer.
  • the optical component manufacturing apparatus of the present invention is An optical component manufacturing apparatus for manufacturing an optical component in which an optical member made of an energy curable resin is provided on at least one surface of a substrate, A base on which the substrate is disposed; A holder that holds and holds a molding die having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member, with respect to the substrate, The mold is detachable from the holder, The mold is attached to the holder, the energy curable resin is filled between one surface of the substrate and the mold, and energy is applied to the energy curable resin to proceed with curing. The mold is removed from the holder in a state where the mold is not released from the substrate.
  • the optical component manufacturing apparatus of the present invention is
  • the optical component is preferably a wafer lens in which a plurality of optical elements are arranged on a wafer.
  • the method for molding a wafer lens of the present invention By placing an energy-curable resin between one surface of the glass substrate supported by the support member and the plurality of optical transfer surfaces of the molding die and press-molding, a negative shape of the optical transfer surface is formed on the glass substrate surface.
  • a wafer lens molding method in which a plurality of optical elements made of energy curable resin having a corresponding shape are formed, An adjustment step of adjusting the parallelism between the surface of the support member that contacts the glass substrate and the mold; Placing the glass substrate on the surface of the support member; A dispensing step of dropping or discharging an energy curable resin between a plurality of optical transfer surfaces of the mold adjusted in the adjustment step and one surface of the glass substrate supported by the support member; After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate; A curing step of applying energy to the energetic curable resin to advance the curing after the imprinting step.
  • a first surface that abuts each surface and a second surface parallel to the first surface are provided between the surface of the support member and one surface of the mold holding member that holds the mold. It is preferable to carry out by arranging the spacer which has and to contact
  • a spacer having a first surface that abuts each surface and a second surface parallel to the first surface is disposed between the surface of the support member and one surface of the mold, It is preferable to perform this by bringing the surface of the support member into contact with the first surface of the spacer, the second surface of the spacer, and one surface of the mold.
  • the method for molding a wafer lens of the present invention By placing and molding the energetic curable resin between one surface of the glass substrate supported by the electrostatic chuck device and a plurality of optical transfer surfaces of the mold held by the mold holding member, the glass A wafer lens molding method in which a plurality of optical elements made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface is formed on one surface of a substrate, A spacer having a first surface in contact with each surface and a second surface parallel to the first surface between the surface of the electrostatic chuck device on which the glass substrate is disposed and one surface of the mold holding member.
  • a spacer abutting step for abutting the surface of the electrostatic chuck device with the first surface of the spacer, the second surface of the spacer, and one surface of the mold holding member member; After the spacer contact step, a step of taking out the spacer from between the electrostatic chuck device and the mold holding member; Placing a glass substrate on the surface of the electrostatic chuck device; Fixing the mold on one surface of the mold holding member; A dispensing step of dropping or discharging an energetic curable resin between a plurality of optical transfer surfaces of the mold and one surface of the glass substrate; After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate; A curing step of applying energy to the energetic curable resin to advance the curing after the imprinting step.
  • the method for molding a wafer lens of the present invention In a state where one surface of the glass substrate is supported by a first mold having a plurality of optical transfer surfaces formed on the molding surface, it is formed on the other surface of the glass substrate and the molding surface of the second mold.
  • An optical element made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface on the glass substrate by arranging and molding the energy curable resin between the plurality of optical transfer surfaces.
  • a spacer contact step in which the molding surface of the first molding die and the first surface of the spacer, the second surface of the spacer and the molding surface of the second molding die are respectively contacted, After the spacer contact step, a step of taking out the spacer from between the first and second molding dies, Placing a glass substrate on the first mold; A dispensing step of dropping or discharging an energy curable resin between the plurality of optical transfer surfaces of the second mold and one surface of the glass substrate disposed on the first mold; After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate; A curing step of applying energy to the energetic curable resin to advance the curing after the imprinting step.
  • the method for molding a wafer lens of the present invention Before the spacer contact step, after the dispensing of dropping or discharging the energy curable resin between the plurality of optical transfer surfaces of the first mold and one surface of the glass substrate, the energy curable resin It is preferable to further include an imprinting step of pressing the mold against the mold or the glass substrate.
  • the method for molding a wafer lens of the present invention In a state where one surface of the glass substrate is supported by a first mold having a plurality of optical transfer surfaces formed on the molding surface, it is formed on the other surface of the glass substrate and the molding surface of the second mold.
  • An optical element made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface on the glass substrate by arranging and molding the energy curable resin between the plurality of optical transfer surfaces.
  • a method of molding a plurality of formed wafer lenses Between the surface of the support member in contact with the first mold and the one surface of the mold holding member, a first surface that contacts each of the surfaces and a second surface parallel to the first surface are provided.
  • a spacer contact step in which a spacer is disposed, and the surface of the support member and the first surface of the spacer, and the second surface of the spacer and one surface of the support member are contacted; After the spacer contact step, a step of taking out the spacer from between the support member and the mold holding member, Disposing a first mold having a plurality of optical transfer surfaces formed on a molding surface on the support member; Holding the second mold on the mold holding member; A dispensing step of dropping or discharging an energy curable resin between the plurality of optical transfer surfaces of the second mold and one surface of the glass substrate disposed on the first mold; After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate; A curing step of applying energy to the energetic curable resin to advance curing after the imprinting step.
  • the energy curable resin is dropped and imprinted, and further irradiated with light, and then heated and cured without releasing the mold from the substrate. Even if it is a case where it does not harden
  • the wafer lens 1 has a circular glass substrate 3 and a plurality of convex lens portions 5.
  • the glass substrate 3 is an example of a substrate.
  • a plurality of convex lens portions 4 and 5 are arranged in an array on the front and back surfaces of the glass substrate 3 (see FIG. 14).
  • the convex lens portions 4 and 5 may have a fine structure such as a diffraction groove or a step on the surface of the optical surface.
  • the present embodiment it is a photo-curing resin, preferably a UV-curing resin, but is not limited thereto. That is, any resin that cures by applying energy (heat, light, etc.) may be used.
  • a photocurable resin an acrylic resin, an allyl ester resin, etc. can be used, for example, These resin can be reaction-hardened by radical polymerization.
  • an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization.
  • the thermosetting resin can be cured by addition polymerization such as silicon in addition to the above radical polymerization and cationic polymerization.
  • the convex lens portions 4 and 5 are formed of resins 4A and 5A (see FIG. 14).
  • Resins 4A and 5A are photocurable resins.
  • the photocurable resin for example, an acrylic resin or an allyl ester resin can be used, and these resins can be reaction-cured by radical polymerization.
  • an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization.
  • the wafer lens manufacturing apparatus 30 has a base 32.
  • An opening 32a is formed in the upper part of the base 32, and a plate-like lid 321 is provided in the opening 32a so as to close the opening 32a.
  • the lid portion 321 is light transmissive and is preferably formed of, for example, quartz glass.
  • the inside of the base 32 closed by the lid portion 321 is decompressed by a decompression mechanism 322 or the like. Specifically, the pressure is preferably reduced to 10 ⁇ 2 MPa or less.
  • a protrusion 34 protruding inward is formed on the upper portion of the base 32.
  • Three guides 36 are erected at a predetermined interval between the bottom of the base 32 and the protrusion 34 (note that only two guides are shown in FIG. 2).
  • the guide 36 is attached to the base 32 and the protruding portion 34 by flange portions. As a result, the base 32 and the projecting portion 34 can be attached with orthogonality.
  • a stage 40 is provided between the guides 36.
  • a slide guide 42 is formed on the stage 40, and a guide 36 passes through the slide guide 42.
  • an elevating actuator 120 for elevating the stage 40 is provided on the base 32 and below the stage 40.
  • a shaft 122 is connected to the lift actuator 120.
  • a support portion 48 that protrudes inward is also formed below the stage 40 above the base 32.
  • a height gauge 124 that measures the distance between the upper surface of the support portion 48 and the lower surface of the stage 40 is provided on the support portion 48.
  • stage 40 On the stage 40, three geared motors 50 are provided at predetermined intervals (only two geared motors are shown in FIG. 2). A shaft 52 is connected to the geared motor 50. An XY stage 62 and a ⁇ stage 64 are sequentially provided above the geared motor 50.
  • a load cell 44 is provided between the geared motor 50 and the lower surface of the XY stage 62.
  • the tip of the shaft 52 is in contact with the load cell 44 by the weight of the XY stage 62.
  • the shaft 52 extends and contracts in the vertical direction by the operation of the geared motor 50, and accordingly, the XY stage 62 can move in the vertical direction.
  • three height gauges 126 for measuring the distance between the upper surface of the stage 40 and the lower surface of the XY stage 62 are provided on the stage 40 at predetermined intervals (only two height gauges are shown in FIG. 2). ).
  • the XY stage 62 is movable on the XY plane (two-dimensional plane) above the load cell 44 and the height gauge 126.
  • the ⁇ stage 64 can be rotated with its central portion as a rotation axis.
  • An electrostatic chuck device (base) 70 is installed on the XY stage 62 and the ⁇ stage 64.
  • the electrostatic chuck device 70 applies a voltage to a metal electrode provided therein to generate positive and negative charges on the upper surface of the electrostatic chuck device 70 and the glass substrate 3 on the electrostatic chuck device 70.
  • the glass substrate 3 is supported and fixed.
  • the stamp holder 80 is fixed to the upper part of the base 32.
  • a light transmissive sub master 20 (first molding die) is fixed to the stamp holder 80.
  • the outer peripheral edge of the sub-master 20 is fitted, and a claw 82, a ring, or the like that holds the outer peripheral edge detachably is attached.
  • the sub master 20 is fixed to the stamp holder 80 by mechanically holding the outer peripheral edge of the sub master 20 with a claw or a ring.
  • the attachment / detachment mechanism between the stamp holder 80 and the sub master 20 is not limited to the above-described configuration as long as the sub master 20 can be detachably held with respect to the stamp holder 80.
  • a light source 90 is provided above the sub master 20. Light can be emitted toward the sub-master 20 by turning on the light source 90.
  • the sub master 20 is mainly composed of a molding part 22 and a base material 26.
  • a plurality of cavities 24 (concave portions), which are optical transfer surfaces, are formed in an array in the molding portion 22.
  • the surface (molding surface) shape of the cavity 24 is a negative shape corresponding to the convex lens portion 5 in the wafer lens 1, and is recessed in a substantially hemispherical shape in FIG.
  • the molding part 22 is formed of a resin 22A.
  • a resin having good releasability, particularly a transparent resin is preferable. It is excellent in that it can be released without applying a release agent.
  • any of a photocurable resin, a thermosetting resin, and a thermoplastic resin may be used.
  • the strength of the sub master 20 is increased by sticking the base material 26 to the molding part 22, and can be molded many times. It is a backing material.
  • the base material 26 may be made of a material different from that of the molding part 22 or may be integrally made of the same material as that of the molding part 22.
  • any material having smoothness such as quartz, silicone wafer, metal, glass, resin, ceramics and the like may be used. Constructing the base material 26 integrally with the same material as the molding part 22 means that the sub-master 20 is substantially constituted only by the molding part 22.
  • the “submaster 20” is a first mold for molding the “convex lens portion 5”, and the “submaster 20B” shown in FIG. 12 is a second mold for molding the “convex lens portion 4”. It is a mold and distinguishes these.
  • the “submaster 20B” basically has the same configuration and material as the “submaster 20”, and the surface shape of the cavity 24 is only a negative shape corresponding to the convex lens portion 4. Description is omitted.
  • the sub master 20 of FIG. 3 is mainly used, but in addition to this, the master 10 of FIG. 4 is also used. That is, the master 10 is a mother die used when the sub master 20 is manufactured, and the sub master 20 is a molding die used when the wafer lens 1 (convex lens portion 5) is molded.
  • the sub-master 20 is used a plurality of times to mass-produce the wafer lens 1, and is different from the master 10 in the purpose of use, the frequency of use, and the like.
  • the master 10 has a plurality of convex portions 14 formed in an array with respect to a rectangular parallelepiped base portion 12.
  • the convex portion 14 is a portion corresponding to the convex lens portion 5 of the wafer lens 1 and protrudes in a substantially hemispherical shape.
  • the outer shape of the master 10 may be a quadrangle or a circle as shown in FIG.
  • the surface (molding surface) shape of the convex portion 14 is a positive shape corresponding to the optical surface shape of the convex lens portion 5 that is molded and transferred onto the glass substrate 3.
  • metal or metal glass can be used as the material of the master 10.
  • the classification includes ferrous materials and other alloys.
  • the iron system include hot dies, cold dies, plastic dies, high-speed tool steel, general structural rolled steel, carbon steel for mechanical structure, chromium / molybdenum steel, and stainless steel.
  • plastic molds include pre-hardened steel, quenched and tempered steel, and aging treated steel.
  • pre-hardened steel include SC, SCM, and SUS. More specifically, the SC system is PXZ.
  • SCM systems include HPM2, HPM7, PX5, and IMPAX.
  • Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL.
  • Examples of the iron-based alloy include JP-A-2005-113161 and JP-A-2005-206913.
  • As the non-ferrous alloys copper alloys, aluminum alloys and zinc alloys are well known. Examples include the alloys disclosed in JP-A-10-219373 and JP-A-2000-176970.
  • PdCuSi, PdCuSiNi, etc. are suitable as metallic glass materials because they have high machinability in diamond cutting and less tool wear.
  • Amorphous alloys such as electroless and electrolytic nickel phosphorous plating are also suitable because they have good machinability in diamond cutting.
  • These highly machinable materials may constitute the entire master 10 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
  • the lift actuator 120, height gauge 124, load cell 44, height gauge 126, geared motor 50, XY stage 62, ⁇ stage 64, electrostatic chuck device 70 (electrostatic mechanism), stamp holder 80, and light source 90 are controlled. It is connected to the device 100.
  • the control device 100 controls the operation of these members. Particularly in the present embodiment, the control device 100 controls the operation (lifting amount) of the lifting actuator 120 based on the output value of the height gauge 124, or the operation (rotation amount) of the geared motor 50 based on the output values of the height gauge 126 and the load cell 44. Or to control.
  • the XY stage 62, the ⁇ stage 64, and the electrostatic chuck device 70 are parallelized with respect to the stamp holder 80 using the reference spacer 130.
  • the reference spacer 130 has a plate shape whose upper and lower surfaces are parallel to each other. In parallel running, the reference spacer 130 is disposed on the electrostatic chuck device 70, the lifting actuator 120 is operated by the control device 100 to extend the shaft 122 upward, and the stage 40 is moved upward. The upper surface 130 a of the outer peripheral edge of 130 is brought into contact with the stamp holder 80. In this case, the control device 100 controls the operation of the lifting actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position.
  • the XY stage 62 and the ⁇ stage 64 are controlled, and the geared motor 50 is also controlled based on the output values of the load cell 44 and the height gauge 126, so that the contact surface 80a (reference spacer 130) of the stamp holder 80 with the reference spacer 130 is controlled.
  • the parallelism between the upper surface of the electrostatic chuck device 70 and the upper surface of the electrostatic chuck device 70, the equal load on the electrostatic chuck device 70, the distance between the upper surface of the stage 40 and the XY stage 62, and the like are also kept constant. After performing parallel alignment in this way, the control device 100 operates the lifting actuator 120 to contract the shaft 122 downward and take out the reference spacer 130.
  • the glass substrate used as a wafer lens is several mm. It is very thin as follows, and there are concerns about chipping and cracking due to contact with spacers, etc., and there is also a problem that the substrate itself is easily warped, and in addition to handling, the flatness of the substrate itself is not high. .
  • the refractive index of the resin of the optical element to be molded and the refractive index of the glass substrate are not significantly different, when considering as a hybrid optical system of the substrate and the optical element, the optical surface of the optical element of the substrate in this The tilt with respect to the optical axis is not a big problem.
  • the reference spacer 130 is used in advance so that the contact surface 80a of the stamp holder 80 and the upper surface of the electrostatic chuck device 70 are paralleled, so that it is higher than the parallel projection based on the glass substrate.
  • An accurate wafer lens 1 can be manufactured.
  • the process of adjusting the parallelism between the contact surface of the stamp holder and the upper surface of the electrostatic chuck device is described.
  • the parallelism may be adjusted by adjusting the parallelism between the upper surface of the electrostatic chuck device as a support member for supporting the molding die and the contact surface of the stamp holder.
  • the parallelism between the molding surface of the sub master 20 and the upper surface of the electrostatic chuck device can be substantially maintained by abutting and holding the sub master 20 on the abutting surface of the stamp holder 80.
  • the contact surface accuracy at the contact surface is ensured.
  • the sub-master 20 is fixed to the stamp holder 80 by the above attachment / detachment mechanism, and the glass substrate 3 is installed to the electrostatic chuck device 70, and the glass substrate 3 is sucked and fixed by electrostatic suction. . Thereafter, a predetermined amount of resin 5A is dropped on the glass substrate 3 by a dispenser (not shown) or the like (first dispensing step).
  • the position of the glass substrate 3 is controlled to move the glass substrate 3 to a predetermined position with respect to the sub master 20, and the glass substrate 3 is moved to the predetermined position. (1st imprint process).
  • the lift actuator 120 is operated to extend the shaft 122 upward, and the stage 40 is moved upward.
  • the control device 100 controls the operation of the lifting actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position.
  • the height position of the stage 40 to be moved is set in advance in the control apparatus 100, and the electrostatic chuck apparatus 70 reaches the reference position S (see FIG. 7).
  • the operation of the elevating actuator 120 is stopped (position control process).
  • the resin 5A gradually spreads upon receiving the pressure of the glass substrate 3, and is filled in the cavity 24 of the submaster 20 as shown in FIG. Thereafter, with the stage 40 held at a position corresponding to the reference position S, the light source 90 is turned on, and the resin 5A is irradiated with light for a predetermined time via the light-transmitting sub-master 20, thereby curing the resin 5A to some extent.
  • Advance. First curing step: exposure step).
  • the glass substrate 3 is not damaged even if the resin 5A is cured and contracted. There is a possibility that the resin 5A does not follow the shrinkage and distortion is generated inside the resin 5A, or the surface shape of the cavity 24 is not sufficiently transferred to the resin 5A.
  • the pressure of the glass substrate 3 against the sub master 20 is controlled to a predetermined pressure by controlling the pressure of the glass substrate 3. Hold.
  • the geared motor 50 is operated to extend the shaft 52 upward, and the XY stage 62, the ⁇ stage 64, and the electrostatic chuck device 70 are moved upward.
  • the control device 100 controls the operation of the geared motor 50 based on the output value of the load cell 44, and moves the stage 40 upward while maintaining the pressing force of the stage 40 against the sub master 20 at a predetermined pressure.
  • the pressing force against the sub master 20 of the XY stage 62, the ⁇ stage 64, and the electrostatic chuck apparatus 70 is preset in the control apparatus 100, and the control apparatus 100 is based on the output value received from the load cell 44.
  • the operation of the geared motor 50 is controlled, and the pressing force with respect to the XY stage 62, the ⁇ stage 64, and the sub master 20 of the electrostatic chuck device 70 is held at a predetermined pressure (pressure control step).
  • the control device 100 also controls the XY stage 62 and the ⁇ stage 64 based on the output values of the load cell 44 and the height gauge 126, the parallelism between the glass substrate 3 and the sub master 20, the uniform load on the resin 5A, and the stage 40.
  • the distance between the upper surface of the XY stage 62 and the XY stage 62 is also kept constant.
  • the light source 90 is turned off and the light irradiation to the resin 5A is stopped.
  • the sub master 20 is removed from the stamp holder 80 by releasing the fixing by the attaching / detaching mechanism without releasing the sub master 20 from the glass substrate 3. Then, the shaft 122 of the lift actuator 120 is contracted downward, and the stage 40 is moved downward.
  • the new submaster 20B is fixed to the stamp holder 80 by the attaching / detaching mechanism, and the wafer lens 1 with the submaster 20 attached is turned upside down so that the electrostatic chuck device 70 is mounted. Install in. Then, the glass substrate 3 is sucked and fixed by electrostatic suction.
  • the reference spacer 131 has upper and lower surfaces parallel to each other, and a hole 131a is formed so that the glass substrate 3 is disposed inside. In paralleling, the glass substrate 3 is placed on the upper surface of the sub-master 20 so that the glass substrate 3 is disposed in the hole 131a.
  • the raising / lowering actuator 120 is operated by the control apparatus 100, the shaft 122 is extended upwards, and the stage 40 is moved upwards. In this case, the control device 100 controls the operation of the lifting actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position.
  • the XY stage 62 and the ⁇ stage 64 are controlled, and the geared motor 50 is also controlled based on the output values of the load cell 44 and the height gauge 126, so that the upper surface which is the molding surface of the submaster 20 and the molding surface of the submaster 20B are controlled.
  • the parallelism with a certain lower surface, the uniform load on the glass substrate 3, the distance between the upper surface of the stage 40 and the XY stage 62, etc. are also kept constant. After performing parallel alignment in this way, the control device 100 operates the lifting actuator 120 to contract the shaft 122 downward and take out the reference spacer 131.
  • the wafer lens 1 can be manufactured with higher accuracy because the molding surfaces of the molding die to be actually molded are parallel to each other.
  • the stamp holder and the electrostatic chuck shown in FIG. 6 are paralleled, and the submasters 20 and 20B are further paralleled as shown in FIG. 10 as an example.
  • the present invention is not necessarily limited to this.
  • the paralleling step is a labor-intensive work, but when focusing on optical performance such as decentering and tilting of corresponding upper and lower optical elements such as double-sided molding, the configuration shown in FIG. It is preferable to adopt the configuration shown in FIG. 6 in order to minimize the work involved in taking out and perform the molding work efficiently.
  • a predetermined amount of resin 4A is dropped onto the glass substrate 3 by a dispenser (not shown) or the like (second dispensing step).
  • the position of the glass substrate 3 is controlled, the glass substrate 3 is moved to a predetermined position with respect to the sub master 20B, and the glass substrate 3 is held at the predetermined position (second imprint process). ).
  • the lift actuator 120 is operated to extend the shaft 122 upward and move the stage 40 upward.
  • the control device 100 controls the operation of the elevating actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position (position control process).
  • the resin 4A gradually receives the pressure of the glass substrate 3 and spreads to fill the cavity 24B of the sub master 20B. Thereafter, the light source 90 is turned on while the stage 40 is held at a position corresponding to the reference position, and as shown in FIG. 12, the resin 4A is irradiated with light for a predetermined time via the light-transmitting sub master 20B. 4A curing is advanced to some extent. (Second curing step: exposure step).
  • the resin 4A when the resin 4A is cured (during or after the resin 4A is cured), the resin 4A also undergoes curing shrinkage as in the case of the resin 5A described above. Therefore, when the light source 90 is turned on for a certain period of time and a certain amount of light is irradiated onto the resin 4A, the pressure of the glass substrate 3 is controlled to a predetermined pressure by controlling the pressure of the glass substrate 3.
  • the geared motor 50 is operated to extend the shaft 52 upward, and the XY stage 62, ⁇ stage 64, and electrostatic chuck device 70 are moved upward.
  • the control device 100 controls the operation of the geared motor 50 based on the output value of the load cell 44, and moves the stage 40 upward while maintaining the pressing force of the stage 40 against the sub master 20 at a predetermined pressure (pressure control process). ).
  • the control device 100 also controls the XY stage 62 and the ⁇ stage 64 based on the output values of the load cell 44 and the height gauge 126, the parallelism between the glass substrate 3 and the sub master 20B, the uniform load on the resin 4A, and the stage 40.
  • the distance between the upper surface of the XY stage 62 and the XY stage 62 is also kept constant.
  • the light source 90 is turned off and the light irradiation to the resin 5A is stopped.
  • the light irradiation on the resin 4A may be stopped before the pressure control step in FIG.
  • the sub-master 20B is removed from the stamp holder 80 by releasing the fixing by the above-described attaching / detaching mechanism without releasing the sub-master 20B from the glass substrate 3. Then, the shaft 122 of the lift actuator 120 is contracted downward, and the stage 40 is moved downward.
  • the wafer lens 1 is taken out from the wafer lens manufacturing apparatus 30 with the sub masters 20 and 20B attached. Then, the resin 4A, 5A is completely cured by post-curing in an oven or the like and cured by heating (third curing step: heating step).
  • the wafer lens 1 having the convex lens portions 4 and 5 formed on the front and back surfaces of the glass substrate 3 is formed.
  • the resin is completely cured by the third curing step, but the present invention is not necessarily limited to this. That is, you may perform the hardening process which advances hardening further after releasing from the submasters 20 and 20B.
  • the curing step can be separated into a plurality of steps, so that it is possible to reduce a sudden change in optical characteristics of the resin.
  • the resins 4A and 5A are dropped (first and second dispensing steps), imprinted (first and second imprinting steps), and irradiated with light (first and second curing).
  • the sub-master 20, 20B is heat-cured in a state where it is not released from the glass substrate 3 (in this embodiment, the third curing process is applicable, but in another embodiment, the second curing process is applicable in some cases. Therefore, even if the resins 4A and 5A are not reliably cured when irradiated with light, they can be taken out from the wafer lens manufacturing apparatus 30 and reliably heat-cured separately in an oven or the like. Therefore, it is possible to shorten the light irradiation time performed in the wafer lens manufacturing apparatus 30 and to shorten the work in the wafer lens manufacturing apparatus 30. As a result, manufacturing efficiency can be improved.
  • first and second dispensing processes, the first and second imprint processes, and the first and second curing processes are performed under reduced pressure, entrainment of bubbles in the resins 4A and 5A, and the resins in the sub masters 20 and 20B Generation of unfilled portions of 4A and 5A can be prevented. Furthermore, in the first and second curing steps, oxygen inhibition to the resin can be prevented, and the resin can be reliably cured. As a result, a highly accurate wafer lens 1 can be obtained.
  • the electrostatic chuck device 70 is raised to the reference position S based on the output value of the height gauge 124 and held at the reference position S, and the position of the glass substrate 3 is controlled.
  • the pressing force of the stage 40 on the sub master 20 is held at a predetermined pressure based on the output value of the load cell 44, and the glass substrate 3 is pressure controlled (load control). That is, the control of the glass substrate 3 is switched from the position control to the pressure control before and after the light irradiation to the resin 5A.
  • the resin 5A can be forcibly pressed against the cavity 24 of the submaster 20 at a constant pressure following the volume change of the resin 5A. it can.
  • it is possible to suppress the occurrence of distortion inside the resin 5A or the insufficient transfer of the surface shape of the cavity 24 to the resin 5A, and the transfer from the cavity 24 of the submaster 20 to the resin 5A. It is possible to suppress the deterioration of the property.
  • the wafer lens manufacturing apparatus 30 since the sub masters 20 and 20B are detachably held with respect to the stamp holder 80, the sub masters 20 and 20B can be easily detached from the stamp holder 80. Therefore, the wafer lens 1 can be taken out from the wafer lens manufacturing apparatus 30 without releasing the sub-masters 20 and 20B, and can be reliably heat-cured separately in an oven or the like. It leads to shortening.
  • this invention is not limited to the said embodiment, In the range which does not change the summary, it can change suitably.
  • the inside of the wafer lens manufacturing apparatus 30 is depressurized and the exposure process is performed under reduced pressure.
  • it may be performed in the atmosphere.
  • the convex lens portions 4 and 5 are provided on the front and back surfaces of the glass substrate 3, the convex lens portion may be provided only on one surface.
  • the first dispensing step, the first imprinting step, and the first curing step are performed as shown in FIGS. 6 to 8, and the submaster 20 is removed from the stamp holder 80 as shown in FIG.
  • the wafer lens 1 is taken out from the wafer lens manufacturing apparatus 30 without releasing the mold 20.
  • the resin may be completely cured by heating and irradiation as in the third curing step.
  • the curing process after attaching / detaching the submaster from the stamp holder 80 is not necessarily a different kind of curing process from the curing process before attaching / detaching, and may be the same kind of curing process with the same or different irradiation conditions.
  • the installation position of the glass substrate 3 and the installation position of the sub master 20 may be reversed.
  • the sub master 20 is sucked and fixed to the electrostatic chuck device 70, while the glass substrate 3 is held by the stamp holder 80.
  • the resin 5A is dropped on the sub master 20, and the resin 5A is filled in the cavity 24 by moving the sub master 20 side upward against the glass substrate 3 and pressing it.
  • the resin 4A is dropped onto the other surface (the surface opposite to the resin 5A) of the glass substrate 3 with light irradiation without releasing the sub master 20.
  • the resin 4A is filled into the cavity 24B by moving the glass substrate 3 side upward against the sub-master 20B newly attached to the stamp holder 80 and pressing it.
  • the wafer lens 1 is taken out from the apparatus 30 with light irradiation without releasing the sub masters 20 and 20B, and the resins 4A and 5A are heated and cured by an oven or the like.
  • the position control and pressure control of the glass substrate 3 may be executed simultaneously. That is, when the glass substrate 3 is moved to a predetermined position, the pressure of the glass substrate 3 is controlled to keep the pressing force of the glass substrate 3 against the sub master 20 below a predetermined pressure.
  • the output value of the load cell 44 is always referred to, and the operation of the geared motor 50 is controlled to control the sub-stage of the stage 40.
  • the pressing force on the master 20 is kept below a predetermined pressure. In this case, it is possible to prevent the resin 5A from being loaded more than necessary, and the deformation of the sub master 20 can be reliably prevented.
  • the operation of the geared motor 50 may be controlled in real time based on the output value of the load cell 44. That is, with a certain pressing force preset for the control device 100 as a threshold value, when the control device 100 receives the output value of the load cell 44 and the output value exceeds the threshold value, the geared motor 50 is operated. When the output value of the load cell 44 becomes less than the threshold value, the operation of the geared motor 50 is resumed.

Abstract

Disclosed is a method for producing a wafer lens (1) in which one surface of a glass substrate (3) is provided with a convex lens part (5) that is formed from a photocurable resin (5A).  The method for producing a wafer lens (1) comprises: a first dispensing step wherein the photocurable resin (5A) is dropped between the one surface of the glass substrate (3) and a submaster (20) which has a plurality of formation surfaces that have a negative shape corresponding to the optical surface shape of the convex lens part (5); a first imprinting step wherein the photocurable resin (5A) is imprinted on the submaster (20) or the glass substrate (3) by being pressed thereto; a first curing step wherein the photocurable resin (5A) is irradiated with light; and a second curing step wherein the photocurable resin (5A) is heated and cured without separating the submaster (20) from the glass substrate (3) after the first curing step.

Description

光学部品の製造方法、光学部品製造装置及びウエハレンズの製造方法Optical component manufacturing method, optical component manufacturing apparatus, and wafer lens manufacturing method
 本発明は、光学部品の製造方法、光学部品製造装置及びウエハレンズの製造方法に関する。 The present invention relates to an optical component manufacturing method, an optical component manufacturing apparatus, and a wafer lens manufacturing method.
 従来、光学レンズの製造分野においては、ガラス基板に対し硬化性樹脂からなるレンズ部を設けることで、耐熱性の高い光学レンズを得る技術が検討されている(例えば、特許文献1参照)。この技術を適用した光学レンズの製造方法の一例として、ガラス基板の表面に硬化性樹脂からなる光学部材を複数設けたいわゆる「ウエハレンズ」を形成し、その後にレンズ部ごとにガラス基板をカットする方法も提案されている。 Conventionally, in the field of manufacturing optical lenses, a technique for obtaining an optical lens having high heat resistance by providing a lens portion made of a curable resin on a glass substrate has been studied (for example, see Patent Document 1). As an example of a manufacturing method of an optical lens to which this technology is applied, a so-called “wafer lens” in which a plurality of optical members made of a curable resin is provided on the surface of a glass substrate is formed, and then the glass substrate is cut for each lens portion. A method has also been proposed.
 エネルギーを与えることで樹脂が硬化するエネルギー性硬化樹脂として、例えば光硬化性樹脂を用いた場合のウエハレンズの製造方法を簡単に説明すると、真空チャック装置によりガラス基板を吸引・固定しておき、このガラス基板上に樹脂を滴下または吐出する(ディスペンス工程)。その後、ガラス基板を、上方に配置された成形型に向けて上昇させ、樹脂を成形型に押圧する(インプリント工程)。成形型はレンズ成形面を有した光透過性の型であり、スタンプホルダにより保持・固定されている。 As an energy-curable resin that cures the resin by applying energy, for example, a method for manufacturing a wafer lens in the case of using a photo-curable resin will be briefly described. A glass substrate is sucked and fixed by a vacuum chuck device. A resin is dropped or discharged onto the glass substrate (dispensing process). Thereafter, the glass substrate is raised toward the mold placed above, and the resin is pressed against the mold (imprint process). The mold is a light transmissive mold having a lens molding surface, and is held and fixed by a stamp holder.
 その後、ガラス基板の高さ位置をそのまま保持しながら、キャビティに充填された樹脂に対し成形型の上方から光照射し、樹脂を光硬化させる(露光工程)。その後、ガラス基板を降下させながら樹脂を成形型から離型する(離型工程)。その結果、ガラス基板上に複数の光学素子部が形成されたウエハレンズを製造することができる。 Then, while maintaining the height position of the glass substrate as it is, the resin filled in the cavity is irradiated with light from above the mold to photocur the resin (exposure process). Thereafter, the resin is released from the mold while the glass substrate is lowered (release process). As a result, a wafer lens having a plurality of optical element portions formed on a glass substrate can be manufactured.
 なお、このような成形プロセスは、光学素子を成形する成形型を同様な成形プロセスで成形する際にも用いられる。 Such a molding process is also used when a molding die for molding an optical element is molded by a similar molding process.
特許第3926380号公報Japanese Patent No. 3926380
 ところで、樹脂はエネルギー付与、例えば光照射により確実に硬化させる必要があるが、樹脂を確実に硬化させるためには光照射時間が長くかかる。そのため、単一の製造装置内における作業時間が長くなり、製造効率が悪いという問題があった。 Incidentally, it is necessary to cure the resin reliably by applying energy, for example, by light irradiation, but it takes a long time for light irradiation in order to cure the resin reliably. For this reason, there is a problem that the working time in a single manufacturing apparatus becomes long and the manufacturing efficiency is poor.
 またウエハレンズは微細な光学素子であり、基板の両面に光学素子を形成する場合や、複数のウエハレンズを積層する場合など、高解像力に対応して、高い光学特性を求められる傾向にある。 Also, the wafer lens is a fine optical element, and there is a tendency that high optical characteristics are required corresponding to high resolution, such as when optical elements are formed on both surfaces of a substrate, or when a plurality of wafer lenses are stacked.
 従って、ガラス基板上に複数の微細な光学素子を樹脂で同時にインプリント成形する場合でも、個々の光学素子の成形による形状バラツキや、基板の両面に形成される光学素子同士の光軸ずれや光軸傾きといった光学特性に悪影響を及ぼさないよう、精度の高い成形が求められる。 Therefore, even when a plurality of fine optical elements are simultaneously imprint-molded with a resin on a glass substrate, the shape variation due to the molding of the individual optical elements, the optical axis shift between the optical elements formed on both surfaces of the substrate, and the light High-precision molding is required so as not to adversely affect optical characteristics such as axis tilt.
 本発明は、上記事情に鑑みてなされたもので、樹脂への光照射時間を短縮でき、しかも樹脂の硬化を確実に行うことができ、製造効率の向上を図ることができるウエハレンズやウエハレンズを成形する成形型等の光学部品の製造方法及び光学部品製造装置を提供することを第一の目的としている。 The present invention has been made in view of the above circumstances. A wafer lens and a wafer lens that can shorten the light irradiation time to the resin, can surely cure the resin, and can improve the manufacturing efficiency. The first object of the present invention is to provide an optical component manufacturing method and an optical component manufacturing apparatus, such as a molding die for molding a mold.
 また本発明は、ガラス基板上に複数の微細な光学素子を同時にインプリント成形する場合でも、形状ばらつきやガラス基板に形成される光学素子同士の光軸ずれ等を抑制した、精度の高い成形方法を用いた製造方法を提供する事を第二の目的としている。 The present invention also provides a highly accurate molding method that suppresses variation in shape and optical axis misalignment between optical elements formed on a glass substrate, even when simultaneously imprinting a plurality of fine optical elements on a glass substrate. The second object is to provide a manufacturing method using the above.
 本発明の光学部品の製造方法は、
 基板の一方の面に、エネルギー性硬化樹脂製の光学部材を設けた光学部品の製造方法であって、
 前記光学部材の光学面形状に対応したネガ形状の成形面を複数有する成形型と、前記基板の一方の面との間に前記エネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
 前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記基板に対して押圧するインプリント工程と、
 前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める第1硬化工程と、
 前記成形型を前記基板から離型しない状態で、前記エネルギー性硬化樹脂にエネルギーを与えて更に硬化を進める第2硬化工程と、
 を備えることを特徴とするものである。
The method for producing an optical component of the present invention includes:
An optical component manufacturing method in which an optical member made of energetic curable resin is provided on one surface of a substrate,
A dispensing step of dropping or discharging the energetic curable resin between a molding die having a plurality of negative-shaped molding surfaces corresponding to the optical surface shape of the optical member, and one surface of the substrate;
After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the substrate;
After the imprinting step, a first curing step of applying energy to the energetic curable resin to advance curing;
A second curing step in which energy is given to the energy-curable curable resin to further cure the mold without releasing the mold from the substrate;
It is characterized by providing.
 また、本発明の光学部品の製造方法は、
 前記第1硬化工程はエネルギーとして光を照射する露光工程であり、
 前記第2硬化工程は加熱する加熱工程であることが好ましい。
In addition, the method of manufacturing the optical component of the present invention includes
The first curing step is an exposure step of irradiating light as energy,
The second curing step is preferably a heating step for heating.
 また、本発明の光学部品の製造方法は、
 減圧下で、前記ディスペンス工程、前記インプリント工程及び前記第1硬化工程を行うことが好ましい。
In addition, the method of manufacturing the optical component of the present invention includes
It is preferable to perform the dispensing step, the imprinting step, and the first curing step under reduced pressure.
 また、本発明の光学部品の製造方法は、
 前記光学部品は複数の光学素子がウエハ状に配列されたウエハレンズであることが好ましい。
In addition, the method of manufacturing the optical component of the present invention includes
The optical component is preferably a wafer lens in which a plurality of optical elements are arranged in a wafer shape.
 また、本発明の光学部品の製造方法は、
 基板の両面にエネルギー性硬化樹脂製の光学部材を設けた光学部品の製造方法であって、
 前記基板の一方の面に形成する前記光学部材の形状に対応したネガ形状の成形面を複数有する第1成形型と、前記基板の一方の面との間に前記エネルギー性硬化樹脂を滴下又は吐出する第1ディスペンス工程と、
 前記第1ディスペンス工程後、前記エネルギー性硬化樹脂を前記第1成形型又は前記基板に対して押圧する第1インプリント工程と、
 前記第1インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める第1硬化工程と、
 前記第1成形型を前記基板から離型しない状態で、前記第1成形型及び前記基板を反転し、
 前記基板の他方の面に形成する前記光学部材の形状に対応したネガ形状の成形面を複数有する第2成形型と、前記基板の他方の面との間に前記エネルギー性硬化樹脂を滴下又は吐出する第2ディスペンス工程と、
 前記第2ディスペンス工程後、前記エネルギー性硬化樹脂を前記第2成形型又は前記基板に対して押圧する第2インプリント工程と、
 前記第2インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める第2硬化工程と、
 前記第1成形型及び前記第2成形型を前記基板から離型しない状態で、前記第1成形型と前記基板との間の前記第1硬化工程で硬化が進んだエネルギー性硬化樹脂及び前記第2成形型と前記基板との間の前記第2硬化工程で硬化が進んだエネルギー性硬化樹脂のいずれか少なくとも一方に対して、更にエネルギーを与えて硬化を進める第3硬化工程と、
 を備えることを特徴とするものである。
In addition, the method of manufacturing the optical component of the present invention includes
An optical component manufacturing method in which an optical member made of energy-curable resin is provided on both sides of a substrate,
The energy-curable curable resin is dropped or discharged between a first mold having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member formed on one surface of the substrate and the one surface of the substrate. A first dispensing step,
A first imprinting step of pressing the energy-curable curable resin against the first mold or the substrate after the first dispensing step;
After the first imprint step, a first curing step of applying energy to the energetic curable resin to advance curing;
In a state where the first mold is not released from the substrate, the first mold and the substrate are inverted,
The energy-curable curable resin is dropped or discharged between a second mold having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member formed on the other surface of the substrate and the other surface of the substrate. A second dispensing step,
A second imprinting step of pressing the energy-curable curable resin against the second mold or the substrate after the second dispensing step;
After the second imprint step, a second curing step of applying energy to the energetic curable resin to promote curing;
The energy-curable curable resin cured in the first curing step between the first mold and the substrate without releasing the first mold and the second mold from the substrate and the first mold A third curing step for further curing by applying energy to at least one of the energy-curable resins cured in the second curing step between the mold and the substrate;
It is characterized by providing.
 また、本発明の光学部品の製造方法は、
 前記第1硬化工程及び前記第2硬化工程は光を照射する露光工程であり、
 前記第3硬化工程は加熱する加熱工程であることが好ましい。
In addition, the method of manufacturing the optical component of the present invention includes
The first curing step and the second curing step are exposure steps for irradiating light,
The third curing step is preferably a heating step for heating.
 また、本発明の光学部品の製造方法は、
 減圧下で、前記第1ディスペンス工程、前記第1インプリント工程、前記第1硬化工程、前記第2ディスペンス工程、前記第2インプリント工程及び前記第2硬化工程を行うことが好ましい。
In addition, the method of manufacturing the optical component of the present invention includes
The first dispensing step, the first imprinting step, the first curing step, the second dispensing step, the second imprinting step, and the second curing step are preferably performed under reduced pressure.
 また、本発明の光学部品の製造方法は、
 前記光学部品は複数の光学素子がウエハ上に配列されたウエハレンズであることが好ましい。
In addition, the method of manufacturing the optical component of the present invention includes
The optical component is preferably a wafer lens in which a plurality of optical elements are arranged on a wafer.
 また、本発明の光学部品製造装置は、
 基板の少なくとも一方の面にエネルギー性硬化樹脂製の光学部材を設けた光学部品を製造する光学部品製造装置であって、
 前記基板が配置される基台と、
 前記光学部材の形状に対応したネガ形状の成形面を複数有する成形型を、前記基板に対して対向配置して保持するホルダと、を備え、
 前記成形型は前記ホルダに対して着脱自在であり、
 前記成形型を前記ホルダに取り付け、前記基板の一方の面と前記成形型との間に前記エネルギー性硬化樹脂を充填し、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進めた後、前記成形型を前記基板から離型しない状態で、前記ホルダから前記成形型を取り外すことを特徴とするものである。
The optical component manufacturing apparatus of the present invention is
An optical component manufacturing apparatus for manufacturing an optical component in which an optical member made of an energy curable resin is provided on at least one surface of a substrate,
A base on which the substrate is disposed;
A holder that holds and holds a molding die having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member, with respect to the substrate,
The mold is detachable from the holder,
The mold is attached to the holder, the energy curable resin is filled between one surface of the substrate and the mold, and energy is applied to the energy curable resin to proceed with curing. The mold is removed from the holder in a state where the mold is not released from the substrate.
 また、本発明の光学部品製造装置は、
 前記光学部品は複数の光学素子がウエハ上に配列されたウエハレンズであることが好ましい。
The optical component manufacturing apparatus of the present invention is
The optical component is preferably a wafer lens in which a plurality of optical elements are arranged on a wafer.
 また、本発明のウエハレンズの成形方法は、
 支持部材で支持されたガラス基板の一面と成形型の複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板表面に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
 前記ガラス基板と当接する前記支持部材の表面と成形型との平行度を調整する調整工程と、
 前記支持部材の表面に前記ガラス基板を配置する工程と、
 前記調整工程で調整された成形型の複数の光学転写面と、前記支持部材に支持されたガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
 前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
 前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするものである。
In addition, the method for molding a wafer lens of the present invention,
By placing an energy-curable resin between one surface of the glass substrate supported by the support member and the plurality of optical transfer surfaces of the molding die and press-molding, a negative shape of the optical transfer surface is formed on the glass substrate surface. A wafer lens molding method in which a plurality of optical elements made of energy curable resin having a corresponding shape are formed,
An adjustment step of adjusting the parallelism between the surface of the support member that contacts the glass substrate and the mold;
Placing the glass substrate on the surface of the support member;
A dispensing step of dropping or discharging an energy curable resin between a plurality of optical transfer surfaces of the mold adjusted in the adjustment step and one surface of the glass substrate supported by the support member;
After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
A curing step of applying energy to the energetic curable resin to advance the curing after the imprinting step.
 また、本発明のウエハレンズの成形方法は、
 前記調整工程は、前記支持部材の表面と前記成形型を保持する成形型保持部材の一面との間に、各面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記支持部材の表面と前記スペーサの第1面、前記スペーサの第2面と前記成形型保持部材部材の一面とをそれぞれ当接させる事により行う事が好ましい。
In addition, the method for molding a wafer lens of the present invention,
In the adjusting step, a first surface that abuts each surface and a second surface parallel to the first surface are provided between the surface of the support member and one surface of the mold holding member that holds the mold. It is preferable to carry out by arranging the spacer which has and to contact | abut the surface of the said support member, the 1st surface of the said spacer, the 2nd surface of the said spacer, and one surface of the said mold holding member member, respectively.
 また、本発明のウエハレンズの成形方法は、
 前記調整工程は、前記支持部材の表面と前記成形型の一面との間に、各面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記支持部材の表面と前記スペーサの第1面、前記スペーサの第2面と前記成形型の一面とを当接させる事により行う事が好ましい。
In addition, the method for molding a wafer lens of the present invention,
In the adjusting step, a spacer having a first surface that abuts each surface and a second surface parallel to the first surface is disposed between the surface of the support member and one surface of the mold, It is preferable to perform this by bringing the surface of the support member into contact with the first surface of the spacer, the second surface of the spacer, and one surface of the mold.
 また、本発明のウエハレンズの成形方法は、
 静電チャック装置に支持されたガラス基板の一面と、成形型保持部材により保持された成形型の複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板の一面に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
 前記ガラス基板が配置される静電チャック装置の表面と前記成形型保持部材の一面との間に、各表面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記静電チャック装置の表面と前記スペーサの第1面、前記スペーサの第2面と前記成形型保持部材部材の一面とをそれぞれ当接させるスペーサ当接工程と、
 前記スペーサ当接工程後、スペーサを前記静電チャック装置と前記成形型保持部材の間から取り出す取出工程と、
 前記静電チャック装置の表面にガラス基板を配置する工程と、
 前記成形型保持部材の一面に前記成形型を固定する工程と、
 前記成形型の複数の光学転写面と、前記ガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
 前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
 前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするものである。
In addition, the method for molding a wafer lens of the present invention,
By placing and molding the energetic curable resin between one surface of the glass substrate supported by the electrostatic chuck device and a plurality of optical transfer surfaces of the mold held by the mold holding member, the glass A wafer lens molding method in which a plurality of optical elements made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface is formed on one surface of a substrate,
A spacer having a first surface in contact with each surface and a second surface parallel to the first surface between the surface of the electrostatic chuck device on which the glass substrate is disposed and one surface of the mold holding member. A spacer abutting step for abutting the surface of the electrostatic chuck device with the first surface of the spacer, the second surface of the spacer, and one surface of the mold holding member member;
After the spacer contact step, a step of taking out the spacer from between the electrostatic chuck device and the mold holding member;
Placing a glass substrate on the surface of the electrostatic chuck device;
Fixing the mold on one surface of the mold holding member;
A dispensing step of dropping or discharging an energetic curable resin between a plurality of optical transfer surfaces of the mold and one surface of the glass substrate;
After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
A curing step of applying energy to the energetic curable resin to advance the curing after the imprinting step.
 また、本発明のウエハレンズの成形方法は、
 ガラス基板の一方の面を、成形面に複数の光学転写面が形成された第一の成形型で支持した状態で、当該ガラス基板の他方の面と第二の成形型の成形面に形成された複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板上に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
 前記第一の成形型の成形面と前記第二の成形型の成形面との間に、各成形面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記第一の成形型の成形面と前記スペーサの第1面、前記スペーサの第2面と前記第二の成形型の成形面とをそれぞれ当接させるスペーサ当接工程と、
 前記スペーサ当接工程後、スペーサを前記第一及び第二の成形型間から取り出す取出工程と、
 前記第一の成形型上にガラス基板を配置する工程と、
 前記第二の成形型の複数の光学転写面と、前記第一の成形型上に配置されたガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
 前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
 前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするものである。
In addition, the method for molding a wafer lens of the present invention,
In a state where one surface of the glass substrate is supported by a first mold having a plurality of optical transfer surfaces formed on the molding surface, it is formed on the other surface of the glass substrate and the molding surface of the second mold. An optical element made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface on the glass substrate by arranging and molding the energy curable resin between the plurality of optical transfer surfaces. A method of molding a plurality of formed wafer lenses,
A spacer having a first surface abutting on each molding surface and a second surface parallel to the first surface between the molding surface of the first molding die and the molding surface of the second molding die. A spacer contact step in which the molding surface of the first molding die and the first surface of the spacer, the second surface of the spacer and the molding surface of the second molding die are respectively contacted,
After the spacer contact step, a step of taking out the spacer from between the first and second molding dies,
Placing a glass substrate on the first mold;
A dispensing step of dropping or discharging an energy curable resin between the plurality of optical transfer surfaces of the second mold and one surface of the glass substrate disposed on the first mold;
After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
A curing step of applying energy to the energetic curable resin to advance the curing after the imprinting step.
 また、本発明のウエハレンズの成形方法は、
 前記スペーサ当接工程の前に、前記第一の成形型の複数の光学転写面と、前記ガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンスした後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリントする工程を更に有する事が好ましい。
In addition, the method for molding a wafer lens of the present invention,
Before the spacer contact step, after the dispensing of dropping or discharging the energy curable resin between the plurality of optical transfer surfaces of the first mold and one surface of the glass substrate, the energy curable resin It is preferable to further include an imprinting step of pressing the mold against the mold or the glass substrate.
 また、本発明のウエハレンズの成形方法は、
 ガラス基板の一方の面を、成形面に複数の光学転写面が形成された第一の成形型で支持した状態で、当該ガラス基板の他方の面と第二の成形型の成形面に形成された複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板上に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
 前記第一の成形型の当接する支持部材の表面と、成形型保持部材の一面との間に、前記各面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記支持部材の表面と前記スペーサの第1面、前記スペーサの第2面と前記支持部材の一面とをそれぞれ当接させるスペーサ当接工程と、
 前記スペーサ当接工程後、スペーサを前記支持部材と前記成形型保持部材の間から取り出す取出工程と、
 前記支持部材上に、成形面に複数の光学転写面が形成された第一の成形型を配置する工程と、
 前記成形型保持部材に第二の成形型を保持させる工程と、
 前記第二の成形型の複数の光学転写面と、前記第一の成形型上に配置されたガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
 前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
 前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするものである。
In addition, the method for molding a wafer lens of the present invention,
In a state where one surface of the glass substrate is supported by a first mold having a plurality of optical transfer surfaces formed on the molding surface, it is formed on the other surface of the glass substrate and the molding surface of the second mold. An optical element made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface on the glass substrate by arranging and molding the energy curable resin between the plurality of optical transfer surfaces. A method of molding a plurality of formed wafer lenses,
Between the surface of the support member in contact with the first mold and the one surface of the mold holding member, a first surface that contacts each of the surfaces and a second surface parallel to the first surface are provided. A spacer contact step in which a spacer is disposed, and the surface of the support member and the first surface of the spacer, and the second surface of the spacer and one surface of the support member are contacted;
After the spacer contact step, a step of taking out the spacer from between the support member and the mold holding member,
Disposing a first mold having a plurality of optical transfer surfaces formed on a molding surface on the support member;
Holding the second mold on the mold holding member;
A dispensing step of dropping or discharging an energy curable resin between the plurality of optical transfer surfaces of the second mold and one surface of the glass substrate disposed on the first mold;
After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
A curing step of applying energy to the energetic curable resin to advance curing after the imprinting step.
 本発明によれば、エネルギー性硬化性樹脂を滴下してインプリントし、さらに光照射した後に、成形型を基板から離型しない状態で加熱硬化するので、光照射した際にエネルギー性硬化性樹脂が確実に硬化しない場合であっても、別途、加熱工程時にオーブン等で確実に硬化させることができる。よって、光照射時間の短縮化を図ることができ、装置内における作業を短縮することができ、その結果、製造効率の向上を図ることができる。また本発明によれば、ガラス基板の平行度に依存せず、精度の高い光学素子をガラス基板上に成形する製造方法を提供する事ができる。 According to the present invention, the energy curable resin is dropped and imprinted, and further irradiated with light, and then heated and cured without releasing the mold from the substrate. Even if it is a case where it does not harden | cure reliably, it can be hardened | cured reliably with an oven etc. separately at the time of a heating process. Therefore, the light irradiation time can be shortened, the work in the apparatus can be shortened, and as a result, the manufacturing efficiency can be improved. Moreover, according to this invention, the manufacturing method which shape | molds a highly accurate optical element on a glass substrate irrespective of the parallelism of a glass substrate can be provided.
ウエハレンズの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a wafer lens. ウエハレンズ製造装置の概略構成を示す図面である。It is drawing which shows schematic structure of a wafer lens manufacturing apparatus. サブマスターの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a submaster. サブマスターのマスターの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the master of a submaster. ウエハレンズ製造装置の制御構成を概略的に説明するためのブロック図である。It is a block diagram for demonstrating schematically the control structure of a wafer lens manufacturing apparatus. ウエハレンズの製造工程の一部であって、基準スペーサを使用して平行出しを行う工程を示す図面である。It is a part of manufacturing process of a wafer lens, and shows a process of performing parallel alignment using a reference spacer. ウエハレンズの製造工程の一部であって、ガラス基板の一方の面に樹脂を滴下する工程を示す図面である。It is drawing which is a part of manufacturing process of a wafer lens, and shows the process of dripping resin on one side of a glass substrate. ウエハレンズの製造工程の一部であって、ガラス基板をサブマスターに押圧し光照射する工程を示す図面である。It is drawing which is a part of manufacturing process of a wafer lens, and shows the process of pressing a glass substrate against a submaster and irradiating light. ウエハレンズの製造工程の一部であって、スタンプホルダからサブマスターを取り外す工程を示す図面である。It is drawing which is a part of manufacturing process of a wafer lens, and shows the process of removing a submaster from a stamp holder. ウエハレンズの製造工程の一部であって、基準スペーサを使用して平行出しを行う工程を示す図面である。It is a part of manufacturing process of a wafer lens, and shows a process of performing parallel alignment using a reference spacer. ウエハレンズの製造工程の一部であって、ガラス基板の他方の面に樹脂を滴下する工程を示す図面である。It is drawing which is a part of manufacturing process of a wafer lens, and shows the process of dripping resin to the other surface of a glass substrate. ウエハレンズの製造工程の一部であって、ガラス基板をサブマスターに押圧し光照射する工程を示す図面である。It is drawing which is a part of manufacturing process of a wafer lens, and shows the process of pressing a glass substrate against a submaster and irradiating light. ウエハレンズの製造工程の一部であって、スタンプホルダからサブマスターを取り外す工程を示す図面である。It is drawing which is a part of manufacturing process of a wafer lens, and shows the process of removing a submaster from a stamp holder. ウエハレンズの製造工程の一部であって、ガラス基板から両面のサブマスターを離型する工程を示す図面である。It is drawing which is a part of manufacturing process of a wafer lens, and shows the process of releasing a sub master of both surfaces from a glass substrate.
 次に、図面を参照しながら本発明の好ましい実施形態について説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.
 図1に示す通り、ウエハレンズ1は円形状のガラス基板3と、複数の凸レンズ部5とを、有している。ガラス基板3は基板の一例である。ガラス基板3の表裏面には複数の凸レンズ部4,5がアレイ状に配置されている(図14参照)。凸レンズ部4,5には、光学面の表面に回折溝や段差等の微細構造が形成されていてもよい。 As shown in FIG. 1, the wafer lens 1 has a circular glass substrate 3 and a plurality of convex lens portions 5. The glass substrate 3 is an example of a substrate. A plurality of convex lens portions 4 and 5 are arranged in an array on the front and back surfaces of the glass substrate 3 (see FIG. 14). The convex lens portions 4 and 5 may have a fine structure such as a diffraction groove or a step on the surface of the optical surface.
 本実施の形態においては光硬化性樹脂、好ましくはUV硬化性樹脂となっているが、これに限定されない。すなわちエネルギー(熱、光等)を与えることにより硬化する樹脂であればよい。なお、当該光硬化性樹脂としては、例えばアクリル樹脂やアリルエステル樹脂などを用いることができ、これら樹脂はラジカル重合により反応硬化させることができる。その他の光硬化性樹脂としては、例えばエポキシ系の樹脂などを用いることができ、当該樹脂はカチオン重合により反応硬化させることができる。一方、熱硬化性樹脂は上記ラジカル重合やカチオン重合の他、シリコン等のように付加重合により硬化させることもできる。 In the present embodiment, it is a photo-curing resin, preferably a UV-curing resin, but is not limited thereto. That is, any resin that cures by applying energy (heat, light, etc.) may be used. In addition, as the said photocurable resin, an acrylic resin, an allyl ester resin, etc. can be used, for example, These resin can be reaction-hardened by radical polymerization. As another photocurable resin, for example, an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization. On the other hand, the thermosetting resin can be cured by addition polymerization such as silicon in addition to the above radical polymerization and cationic polymerization.
 凸レンズ部4,5は樹脂4A,5Aで形成されている(図14参照)。樹脂4A,5Aは光硬化性樹脂である。当該光硬化性樹脂としては、例えばアクリル樹脂やアリルエステル樹脂などを用いることができ、これら樹脂はラジカル重合により反応硬化させることができる。その他の光硬化性樹脂としては、例えばエポキシ系の樹脂などを用いることができ、当該樹脂はカチオン重合により反応硬化させることができる。 The convex lens portions 4 and 5 are formed of resins 4A and 5A (see FIG. 14). Resins 4A and 5A are photocurable resins. As the photocurable resin, for example, an acrylic resin or an allyl ester resin can be used, and these resins can be reaction-cured by radical polymerization. As another photocurable resin, for example, an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization.
 次に、ウエハレンズ1を製造する際に使用するウエハレンズ製造装置30について説明する。 Next, the wafer lens manufacturing apparatus 30 used when manufacturing the wafer lens 1 will be described.
 図2に示す通り、ウエハレンズ製造装置30はベース32を有している。ベース32の上部には開口部32aが形成されており、開口部32aには、開口部32aを塞ぐように板状の蓋部321が設けられている。蓋部321は、光透過性を有し、例えば石英ガラス等により形成されていることが好ましい。 As shown in FIG. 2, the wafer lens manufacturing apparatus 30 has a base 32. An opening 32a is formed in the upper part of the base 32, and a plate-like lid 321 is provided in the opening 32a so as to close the opening 32a. The lid portion 321 is light transmissive and is preferably formed of, for example, quartz glass.
 蓋部321によって塞がれたベース32内は減圧機構322等によって減圧されている。具体的には、10-2MPa以下に減圧されることが好ましい。 The inside of the base 32 closed by the lid portion 321 is decompressed by a decompression mechanism 322 or the like. Specifically, the pressure is preferably reduced to 10 −2 MPa or less.
 また、ベース32の上部には内側に突出する突出部34が形成されている。ベース32の底部と突出部34との間には3本のガイド36が所定間隔に立設されている(なお、図2では2本のガイドのみ図示)。ガイド36はベース32、突出部34とそれぞれフランジ部で取り付けられている。これによりベース32、突出部34に対して直交性を出して取り付けが可能となる。またガイド36間にはステージ40が設けられている。ステージ40にはスライドガイド42が形成されており、ガイド36がスライドガイド42を貫通している。 Further, a protrusion 34 protruding inward is formed on the upper portion of the base 32. Three guides 36 are erected at a predetermined interval between the bottom of the base 32 and the protrusion 34 (note that only two guides are shown in FIG. 2). The guide 36 is attached to the base 32 and the protruding portion 34 by flange portions. As a result, the base 32 and the projecting portion 34 can be attached with orthogonality. A stage 40 is provided between the guides 36. A slide guide 42 is formed on the stage 40, and a guide 36 passes through the slide guide 42.
 また、ベース32上であってステージ40の下方には、ステージ40の昇降動作を行う昇降アクチュエータ120が設けられている。昇降アクチュエータ120にはシャフト122が連結されている。 Also, on the base 32 and below the stage 40, an elevating actuator 120 for elevating the stage 40 is provided. A shaft 122 is connected to the lift actuator 120.
 ベース32の上部でステージ40の下方にも内側に突出する支持部48が形成されている。支持部48上には、支持部48の上面とステージ40の下面との間の距離を計測するハイトゲージ124が設けられている。 A support portion 48 that protrudes inward is also formed below the stage 40 above the base 32. A height gauge 124 that measures the distance between the upper surface of the support portion 48 and the lower surface of the stage 40 is provided on the support portion 48.
 ステージ40上にはギヤードモータ50が所定間隔に3つ設けられている(なお、図2では2つのギヤードモータのみ図示)。ギヤードモータ50にはシャフト52が連結されている。ギヤードモータ50の上方にはXYステージ62、θステージ64が順に設けられている。 On the stage 40, three geared motors 50 are provided at predetermined intervals (only two geared motors are shown in FIG. 2). A shaft 52 is connected to the geared motor 50. An XY stage 62 and a θ stage 64 are sequentially provided above the geared motor 50.
 ギヤードモータ50とXYステージ62の下面との間にはロードセル44がそれぞれ設けられている。XYステージ62の自重でシャフト52の先端がロードセル44と当接している。ウエハレンズ製造装置30では、ギヤードモータ50の作動によりシャフト52が上下方向に伸縮するようになっており、これに伴いXYステージ62が上下方向に移動可能となっている。 A load cell 44 is provided between the geared motor 50 and the lower surface of the XY stage 62. The tip of the shaft 52 is in contact with the load cell 44 by the weight of the XY stage 62. In the wafer lens manufacturing apparatus 30, the shaft 52 extends and contracts in the vertical direction by the operation of the geared motor 50, and accordingly, the XY stage 62 can move in the vertical direction.
 また、ステージ40上には、ステージ40の上面とXYステージ62の下面との間の距離を計測するハイトゲージ126が所定間隔に3つ設けられている(なお、図2では2つのハイドゲージのみ図示)。 Further, three height gauges 126 for measuring the distance between the upper surface of the stage 40 and the lower surface of the XY stage 62 are provided on the stage 40 at predetermined intervals (only two height gauges are shown in FIG. 2). ).
 XYステージ62はロードセル44、ハイトゲージ126の上のXY平面(2次元平面)において移動可能となっている。θステージ64はその中心部を回転軸として回動可能となっている。 The XY stage 62 is movable on the XY plane (two-dimensional plane) above the load cell 44 and the height gauge 126. The θ stage 64 can be rotated with its central portion as a rotation axis.
 XYステージ62、θステージ64上には静電チャック装置(基台)70が設置されている。静電チャック装置70は、内部に設けられた金属電極に電圧を印加して、静電チャック装置70の上面と、静電チャック装置70上のガラス基板3に正・負の電荷を発生させて、ガラス基板3を支持固定するようになっている。 An electrostatic chuck device (base) 70 is installed on the XY stage 62 and the θ stage 64. The electrostatic chuck device 70 applies a voltage to a metal electrode provided therein to generate positive and negative charges on the upper surface of the electrostatic chuck device 70 and the glass substrate 3 on the electrostatic chuck device 70. The glass substrate 3 is supported and fixed.
 ベース32の上部にはスタンプホルダ80が固定されている。スタンプホルダ80には光透過性のサブマスター20(第1成形型)が固定されている。スタンプホルダ80の端部にはサブマスター20の外周縁が嵌め込まれて、その外周縁を着脱自在に保持するツメ82やリング等が取り付けられている。そして、サブマスター20の外周縁をツメやリング等で機械的に保持することによってサブマスター20がスタンプホルダ80に固定される。なお、スタンプホルダ80とサブマスター20との着脱機構は、サブマスター20をスタンプホルダ80に対して着脱自在に保持できる機構であれば上述の構成に限定されるものではない。 The stamp holder 80 is fixed to the upper part of the base 32. A light transmissive sub master 20 (first molding die) is fixed to the stamp holder 80. At the end of the stamp holder 80, the outer peripheral edge of the sub-master 20 is fitted, and a claw 82, a ring, or the like that holds the outer peripheral edge detachably is attached. The sub master 20 is fixed to the stamp holder 80 by mechanically holding the outer peripheral edge of the sub master 20 with a claw or a ring. The attachment / detachment mechanism between the stamp holder 80 and the sub master 20 is not limited to the above-described configuration as long as the sub master 20 can be detachably held with respect to the stamp holder 80.
 サブマスター20の上方には光源90が設けられている。光源90の点灯によりサブマスター20に向けて光を照射可能となっている。 A light source 90 is provided above the sub master 20. Light can be emitted toward the sub-master 20 by turning on the light source 90.
 図3に示す通り、サブマスター20は、主には成形部22と基材26とで構成されている。成形部22には複数の光学転写面であるキャビティ24(凹部)がアレイ状に形成されている。キャビティ24の表面(成形面)形状はウエハレンズ1における凸レンズ部5に対応するネガ形状となっており、図3では略半球形状に凹んでいる。 As shown in FIG. 3, the sub master 20 is mainly composed of a molding part 22 and a base material 26. A plurality of cavities 24 (concave portions), which are optical transfer surfaces, are formed in an array in the molding portion 22. The surface (molding surface) shape of the cavity 24 is a negative shape corresponding to the convex lens portion 5 in the wafer lens 1, and is recessed in a substantially hemispherical shape in FIG.
 成形部22は、樹脂22Aによって形成されている。樹脂22Aとしては、離型性の良好な樹脂、特に透明樹脂が好ましい。離型剤を塗布しなくても離型できる点で優れる。樹脂22Aとしては、光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂のいずれでも構わない。 The molding part 22 is formed of a resin 22A. As the resin 22A, a resin having good releasability, particularly a transparent resin is preferable. It is excellent in that it can be released without applying a release agent. As the resin 22A, any of a photocurable resin, a thermosetting resin, and a thermoplastic resin may be used.
 基材26は、サブマスター20の成形部22のみでは強度に劣る場合でも、成形部22に基材26を貼り付けることでサブマスター20の強度が上がり、何回も成形することができるという、裏打ち材のことである。 Even if the base material 26 is inferior in strength only by the molding part 22 of the sub master 20, the strength of the sub master 20 is increased by sticking the base material 26 to the molding part 22, and can be molded many times. It is a backing material.
 基材26は、成形部22と異なる材料で構成されてもよいし、成形部22と同一の材料で一体的に構成されてもよい。基材26を成形部22と異なる材料で構成する場合には、例えば石英、シリコーンウェハ、金属、ガラス、樹脂、セラミックス等、平滑性を有するものなら何れでもよい。基材26を成形部22と同一材料で一体的に構成するとは、実質的には成形部22だけでサブマスター20を構成することである。 The base material 26 may be made of a material different from that of the molding part 22 or may be integrally made of the same material as that of the molding part 22. When the base material 26 is made of a material different from that of the molding part 22, any material having smoothness such as quartz, silicone wafer, metal, glass, resin, ceramics and the like may be used. Constructing the base material 26 integrally with the same material as the molding part 22 means that the sub-master 20 is substantially constituted only by the molding part 22.
 ここで、「サブマスター20」は、「凸レンズ部5」を成形するための第1成形型であり、図12に示す「サブマスター20B」は、「凸レンズ部4」を成形するための第2成形型であり、これらを区別している。「サブマスター20B」は基本的に「サブマスター20」と同様の構成及び材料であり、キャビティ24の表面形状が凸レンズ部4に対応するネガ形状となっているだけであるので、サブマスター20Bの説明は省略する。 Here, the “submaster 20” is a first mold for molding the “convex lens portion 5”, and the “submaster 20B” shown in FIG. 12 is a second mold for molding the “convex lens portion 4”. It is a mold and distinguishes these. The “submaster 20B” basically has the same configuration and material as the “submaster 20”, and the surface shape of the cavity 24 is only a negative shape corresponding to the convex lens portion 4. Description is omitted.
 なお、ウエハレンズ1の製造(凸レンズ部5の成形)にあたっては、図3のサブマスター20が主に使用されるが、これに加えて図4のマスター10も使用される。すなわち、マスター10はサブマスター20を製造する際に用いる母型であり、サブマスター20はウエハレンズ1(凸レンズ部5)を成形する際に用いる成形型である。サブマスター20はウエハレンズ1を量産するのに複数回にわたり使用され、その使用目的,使用頻度などにおいてマスター10とは異なるものである。 In addition, in manufacturing the wafer lens 1 (forming the convex lens portion 5), the sub master 20 of FIG. 3 is mainly used, but in addition to this, the master 10 of FIG. 4 is also used. That is, the master 10 is a mother die used when the sub master 20 is manufactured, and the sub master 20 is a molding die used when the wafer lens 1 (convex lens portion 5) is molded. The sub-master 20 is used a plurality of times to mass-produce the wafer lens 1, and is different from the master 10 in the purpose of use, the frequency of use, and the like.
 図4に示す通り、マスター10は直方体状のベース部12に対し複数の凸部14がアレイ状に形成されている。凸部14はウエハレンズ1の凸レンズ部5に対応する部位であり、略半球形状に突出している。なお、マスター10の外形は、図4に示すように四角形であっても良いし円形であっても良い。 As shown in FIG. 4, the master 10 has a plurality of convex portions 14 formed in an array with respect to a rectangular parallelepiped base portion 12. The convex portion 14 is a portion corresponding to the convex lens portion 5 of the wafer lens 1 and protrudes in a substantially hemispherical shape. The outer shape of the master 10 may be a quadrangle or a circle as shown in FIG.
 凸部14の表面(成形面)形状は、ガラス基板3上に成形転写する凸レンズ部5の光学面形状に対応するポジ形状となっている。 The surface (molding surface) shape of the convex portion 14 is a positive shape corresponding to the optical surface shape of the convex lens portion 5 that is molded and transferred onto the glass substrate 3.
 マスター10の材料としては、切削や研削などの機械加工によって光学面形状を創製する場合には、金属または金属ガラスを用いることができる。分類としては鉄系の材料とその他合金が挙げられる。鉄系としては、熱間金型、冷間金型、プラスチック金型、高速度工具鋼、一般構造用圧延鋼材、機械構造用炭素鋼、クロム・モリブデン鋼、ステンレス鋼が挙げられる。その内、プラスチック金型としては、プリハードン鋼、焼入れ焼戻し鋼、時効処理鋼がある。プリハードン鋼としては、SC系、SCM系、SUS系が挙げられる。さらに具体的には、SC系はPXZがある。SCM系はHPM2、HPM7、PX5、IMPAXが挙げられる。SUS系は、HPM38、HPM77、S-STAR、G-STAR、STAVAX、RAMAX-S、PSLが挙げられる。また、鉄系の合金としては特開2005-113161号公報や特開2005-206913号公報が挙げられる。非鉄系の合金は主に、銅合金、アルミ合金、亜鉛合金がよく知られている。例としては、特開平10-219373号公報、特開2000-176970号公報に示されている合金が挙げられる。金属ガラスの材料としては、PdCuSiやPdCuSiNiなどがダイヤモンド切削における被削性が高く、工具の磨耗が少ないので適している。また、無電解や電解のニッケル燐メッキなどのアモルファス合金もダイヤモンド切削における被削性が良いので適している。これらの高被削性材料は、マスター10全体を構成しても良いし、メッキやスパッタなどの方法によって特に光学転写面の表面だけを覆っても良い。 As the material of the master 10, when an optical surface shape is created by machining such as cutting or grinding, metal or metal glass can be used. The classification includes ferrous materials and other alloys. Examples of the iron system include hot dies, cold dies, plastic dies, high-speed tool steel, general structural rolled steel, carbon steel for mechanical structure, chromium / molybdenum steel, and stainless steel. Among them, plastic molds include pre-hardened steel, quenched and tempered steel, and aging treated steel. Examples of pre-hardened steel include SC, SCM, and SUS. More specifically, the SC system is PXZ. SCM systems include HPM2, HPM7, PX5, and IMPAX. Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL. Examples of the iron-based alloy include JP-A-2005-113161 and JP-A-2005-206913. As the non-ferrous alloys, copper alloys, aluminum alloys and zinc alloys are well known. Examples include the alloys disclosed in JP-A-10-219373 and JP-A-2000-176970. PdCuSi, PdCuSiNi, etc. are suitable as metallic glass materials because they have high machinability in diamond cutting and less tool wear. Amorphous alloys such as electroless and electrolytic nickel phosphorous plating are also suitable because they have good machinability in diamond cutting. These highly machinable materials may constitute the entire master 10 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
 図5に示す通り、昇降アクチュエータ120、ハイトゲージ124、ロードセル44、ハイトゲージ126、ギヤードモータ50、XYステージ62、θステージ64、静電チャック装置70(静電機構)、スタンプホルダ80、光源90は制御装置100に接続されている。制御装置100はこれら部材の動作を制御するようになっている。特に本実施形態では、制御装置100はハイトゲージ124の出力値に基づき昇降アクチュエータ120の動作(昇降量)を制御したり、ハイトゲージ126、ロードセル44の出力値に基づきギヤードモータ50の動作(回転量)を制御したりするようになっている。 As shown in FIG. 5, the lift actuator 120, height gauge 124, load cell 44, height gauge 126, geared motor 50, XY stage 62, θ stage 64, electrostatic chuck device 70 (electrostatic mechanism), stamp holder 80, and light source 90 are controlled. It is connected to the device 100. The control device 100 controls the operation of these members. Particularly in the present embodiment, the control device 100 controls the operation (lifting amount) of the lifting actuator 120 based on the output value of the height gauge 124, or the operation (rotation amount) of the geared motor 50 based on the output values of the height gauge 126 and the load cell 44. Or to control.
 続いて、ウエハレンズ製造装置30を用いたウエハレンズ1の製造方法について説明する。 Subsequently, a method for manufacturing the wafer lens 1 using the wafer lens manufacturing apparatus 30 will be described.
 図6に示す通り、はじめに、基準スペーサ130を使用してスタンプホルダ80に対してXYステージ62、θステージ64、静電チャック装置70の平行出しを行う。 As shown in FIG. 6, first, the XY stage 62, the θ stage 64, and the electrostatic chuck device 70 are parallelized with respect to the stamp holder 80 using the reference spacer 130.
 基準スペーサ130は、上下面が互いに平行な板状をなしている。平行出しは、静電チャック装置70の上に基準スペーサ130を配置して、制御装置100により昇降アクチュエータ120を作動させてシャフト122を上方に伸ばし、ステージ40を上方に移動させていき、基準スペーサ130の外周縁の上面130aをスタンプホルダ80に当接させる。この場合、制御装置100がハイトゲージ124の出力値に基づき昇降アクチュエータ120の作動を制御し、ステージ40を所定の高さ位置まで移動させる。さらに、XYステージ62、θステージ64を制御して、また、ロードセル44及びハイトゲージ126の出力値に基づきギヤードモータ50も制御し、スタンプホルダ80の基準スペーサ130との当接面80a(基準スペーサ130の上面)と、静電チャック装置70の上面との平行度や静電チャック装置70への均等荷重、ステージ40の上面とXYステージ62との間の距離なども一定に保持する。このようにして平行出しを行った後、制御装置100により昇降アクチュエータ120を作動させてシャフト122を下方に縮ませて基準スペーサ130を取り出す。 The reference spacer 130 has a plate shape whose upper and lower surfaces are parallel to each other. In parallel running, the reference spacer 130 is disposed on the electrostatic chuck device 70, the lifting actuator 120 is operated by the control device 100 to extend the shaft 122 upward, and the stage 40 is moved upward. The upper surface 130 a of the outer peripheral edge of 130 is brought into contact with the stamp holder 80. In this case, the control device 100 controls the operation of the lifting actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position. Further, the XY stage 62 and the θ stage 64 are controlled, and the geared motor 50 is also controlled based on the output values of the load cell 44 and the height gauge 126, so that the contact surface 80a (reference spacer 130) of the stamp holder 80 with the reference spacer 130 is controlled. The parallelism between the upper surface of the electrostatic chuck device 70 and the upper surface of the electrostatic chuck device 70, the equal load on the electrostatic chuck device 70, the distance between the upper surface of the stage 40 and the XY stage 62, and the like are also kept constant. After performing parallel alignment in this way, the control device 100 operates the lifting actuator 120 to contract the shaft 122 downward and take out the reference spacer 130.
 通常は、成形により光学素子用のエネルギー硬化樹脂が直接ディスペンスされる基板との間に同様なスペーサ等を配置して平行出しを行う事が考えられるが、ウエハレンズとして用いられるガラス基板は数mm以下と非常に薄いものであり、スペーサ等の当接により欠け、割れといった問題も懸念される、また基板自体が反りやすいという問題もあり、取り扱いの観点に加えて基板自体の平面度も高くない。 Normally, it is possible to arrange parallel spacers by placing a similar spacer between the substrate on which the energy curable resin for the optical element is directly dispensed by molding, but the glass substrate used as a wafer lens is several mm. It is very thin as follows, and there are concerns about chipping and cracking due to contact with spacers, etc., and there is also a problem that the substrate itself is easily warped, and in addition to handling, the flatness of the substrate itself is not high. .
 一方で、成形される光学素子の樹脂の屈折率とガラス基板の屈折率とは大きな差がないため、基板と光学素子のハイブリット光学系として考える際、この中での基板の光学素子の光学面の光軸に対する傾きはそれほど大きな問題とならない。 On the other hand, since the refractive index of the resin of the optical element to be molded and the refractive index of the glass substrate are not significantly different, when considering as a hybrid optical system of the substrate and the optical element, the optical surface of the optical element of the substrate in this The tilt with respect to the optical axis is not a big problem.
 従って、ガラス基板を基準に平行出しを行うよりも、ガラス基板や両面成形を行う場合の一方の面に光学素子を成形するための成形型を支持する静電チャック装置の表面を用いて平行出しを行う方が、成形型全体が傾いて成形の際、硬化樹脂に対して傾いて押圧成形される、といった問題が回避できる。 Therefore, it is possible to use the surface of the electrostatic chuck device that supports the molding die for molding the optical element on one surface when performing the glass substrate or double-sided molding, rather than performing parallel projection based on the glass substrate. In the case of performing the above, it is possible to avoid the problem that the entire mold is tilted and the molding is tilted with respect to the cured resin.
 つまり、このように予め基準スペーサ130で、スタンプホルダ80の当接面80aと静電チャック装置70の上面との平行出しを行うことによって、ガラス基板を基準にした平行出しと比べて、より高精度なウエハレンズ1を製造することができる。 That is, in this way, the reference spacer 130 is used in advance so that the contact surface 80a of the stamp holder 80 and the upper surface of the electrostatic chuck device 70 are paralleled, so that it is higher than the parallel projection based on the glass substrate. An accurate wafer lens 1 can be manufactured.
 また本実施例では、ガラス基板3やサブマスター20を設置する前に予め平行だしを行う事ができるため、これらの部材を設置するたびに、随時平行出しを行う必要がなくなり、工程数の簡略化を図ることができる。 Further, in this embodiment, since it is possible to perform paralleling before installing the glass substrate 3 and the submaster 20, it is not necessary to perform paralleling whenever necessary to install these members, and the number of processes is simplified. Can be achieved.
 更に本実施例ではスタンプホルダの当接面と静電チャック装置の上面との間の平行度を調整する工程で説明しているが、ガラス基板の両側の面に光学素子を成形する場合、静電チャック装置の上面ではなく、ガラス基板の裏側の面から離型していない成形型が配置される場合があるため、その場合、当該成形型の成形面とスタンプホルダの当接面との間で平行度を調整する場合や、当該成形型を支持する支持部材としての静電チャック装置の上面とスタンプホルダの当接面との間で平行度を調整するものであっても良い。 Further, in this embodiment, the process of adjusting the parallelism between the contact surface of the stamp holder and the upper surface of the electrostatic chuck device is described. However, when optical elements are formed on both surfaces of the glass substrate, static Since there is a case where a mold that is not released from the back surface of the glass substrate is placed instead of the upper surface of the electric chuck device, in that case, the molding surface between the mold and the contact surface of the stamp holder The parallelism may be adjusted by adjusting the parallelism between the upper surface of the electrostatic chuck device as a support member for supporting the molding die and the contact surface of the stamp holder.
 なお、本実施例ではスタンプホルダ80の当接面でサブマスター20を当接、保持する事により、サブマスター20の成形面と静電チャック装置の上面との平行度は実質維持ができる程度に当接面での当接面精度は確保されている。 In this embodiment, the parallelism between the molding surface of the sub master 20 and the upper surface of the electrostatic chuck device can be substantially maintained by abutting and holding the sub master 20 on the abutting surface of the stamp holder 80. The contact surface accuracy at the contact surface is ensured.
 図7に示す通り、スタンプホルダ80に対し上記着脱機構によってサブマスター20を固定するとともに、静電チャック装置70に対しガラス基板3を設置し、静電吸引してガラス基板3を吸引・固定する。その後、図示しないディスペンサ等によりガラス基板3上に所定量の樹脂5Aを滴下する(第1ディスペンス工程)。 As shown in FIG. 7, the sub-master 20 is fixed to the stamp holder 80 by the above attachment / detachment mechanism, and the glass substrate 3 is installed to the electrostatic chuck device 70, and the glass substrate 3 is sucked and fixed by electrostatic suction. . Thereafter, a predetermined amount of resin 5A is dropped on the glass substrate 3 by a dispenser (not shown) or the like (first dispensing step).
 ガラス基板3上に樹脂5Aを滴下した状態において、図8に示す通り、ガラス基板3を位置制御して、サブマスター20に対しガラス基板3を所定位置まで移動させ、ガラス基板3をその所定位置で保持する(第1インプリント工程)。 In a state where the resin 5A is dropped on the glass substrate 3, as shown in FIG. 8, the position of the glass substrate 3 is controlled to move the glass substrate 3 to a predetermined position with respect to the sub master 20, and the glass substrate 3 is moved to the predetermined position. (1st imprint process).
 詳しくは、昇降アクチュエータ120を作動させてシャフト122を上方に伸ばし、ステージ40を上方に移動させる。この場合、制御装置100がハイトゲージ124の出力値に基づき昇降アクチュエータ120の作動を制御し、ステージ40を所定の高さ位置まで移動させる。 Specifically, the lift actuator 120 is operated to extend the shaft 122 upward, and the stage 40 is moved upward. In this case, the control device 100 controls the operation of the lifting actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position.
 ウエハレンズ製造装置30では、移動させようとするステージ40の高さ位置が制御装置100に予め設定されており、制御装置100は静電チャック装置70が基準位置S(図7参照)に到達する位置まで昇降アクチュエータ120を作動させ、静電チャック装置70が基準位置Sに到達したら昇降アクチュエータ120の作動を停止させる(位置制御工程)。 In the wafer lens manufacturing apparatus 30, the height position of the stage 40 to be moved is set in advance in the control apparatus 100, and the electrostatic chuck apparatus 70 reaches the reference position S (see FIG. 7). When the electrostatic chuck device 70 reaches the reference position S, the operation of the elevating actuator 120 is stopped (position control process).
 その結果、樹脂5Aがガラス基板3の押圧を受けて徐々に広がり、図8に示す通り、サブマスター20のキャビティ24に充填される。その後、ステージ40を基準位置Sに対応する位置で保持したまま、光源90を点灯させ、光透過性のサブマスター20を介して樹脂5Aに対し所定時間、光照射し、樹脂5Aの硬化をある程度進ませる。(第1硬化工程:露光工程)。 As a result, the resin 5A gradually spreads upon receiving the pressure of the glass substrate 3, and is filled in the cavity 24 of the submaster 20 as shown in FIG. Thereafter, with the stage 40 held at a position corresponding to the reference position S, the light source 90 is turned on, and the resin 5A is irradiated with light for a predetermined time via the light-transmitting sub-master 20, thereby curing the resin 5A to some extent. Advance. (First curing step: exposure step).
 ここで、樹脂5Aが硬化する際に(樹脂5Aの硬化時又はその後に)、ステージ40が所定の高さ位置で保持されたままであると、樹脂5Aにおいて硬化収縮が生じてもガラス基板3がその収縮に追従せず、樹脂5Aの内部に歪が生じたり、樹脂5Aに対するキャビティ24の面形状の転写が不十分になったりする可能性がある。 Here, when the resin 5A is cured (during or after the resin 5A is cured), if the stage 40 is held at a predetermined height position, the glass substrate 3 is not damaged even if the resin 5A is cured and contracted. There is a possibility that the resin 5A does not follow the shrinkage and distortion is generated inside the resin 5A, or the surface shape of the cavity 24 is not sufficiently transferred to the resin 5A.
 そこで、本実施形態では、光源90を一定時間点灯させ、樹脂5Aに対し一定量の光を照射したら、ガラス基板3を圧力制御して、サブマスター20に対するガラス基板3の押圧力を所定圧力に保持する。 Therefore, in this embodiment, when the light source 90 is turned on for a certain period of time and a certain amount of light is irradiated to the resin 5A, the pressure of the glass substrate 3 against the sub master 20 is controlled to a predetermined pressure by controlling the pressure of the glass substrate 3. Hold.
 詳しくは、ギヤードモータ50を作動させてシャフト52を上方に伸ばし、XYステージ62、θステージ64、静電チャック装置70を上方に移動させる。この場合、制御装置100がロードセル44の出力値に基づきギヤードモータ50の作動を制御し、サブマスター20に対するステージ40の押圧力を所定圧力に保持しながらステージ40を上方に移動させる。 Specifically, the geared motor 50 is operated to extend the shaft 52 upward, and the XY stage 62, the θ stage 64, and the electrostatic chuck device 70 are moved upward. In this case, the control device 100 controls the operation of the geared motor 50 based on the output value of the load cell 44, and moves the stage 40 upward while maintaining the pressing force of the stage 40 against the sub master 20 at a predetermined pressure.
 ウエハレンズ製造装置30では、XYステージ62、θステージ64、静電チャック装置70のサブマスター20に対する押圧力が制御装置100に予め設定されており、制御装置100はロードセル44から受ける出力値に基づきギヤードモータ50の作動を制御し、XYステージ62、θステージ64、静電チャック装置70のサブマスター20に対する押圧力を所定圧力に保持する(圧力制御工程)。 In the wafer lens manufacturing apparatus 30, the pressing force against the sub master 20 of the XY stage 62, the θ stage 64, and the electrostatic chuck apparatus 70 is preset in the control apparatus 100, and the control apparatus 100 is based on the output value received from the load cell 44. The operation of the geared motor 50 is controlled, and the pressing force with respect to the XY stage 62, the θ stage 64, and the sub master 20 of the electrostatic chuck device 70 is held at a predetermined pressure (pressure control step).
 また、制御装置100はロードセル44、ハイトゲージ126の出力値に基づき、XYステージ62、θステージ64も制御して、ガラス基板3とサブマスター20との平行度や樹脂5Aへの均等荷重、ステージ40の上面とXYステージ62との間の距離なども一定に保持する。 The control device 100 also controls the XY stage 62 and the θ stage 64 based on the output values of the load cell 44 and the height gauge 126, the parallelism between the glass substrate 3 and the sub master 20, the uniform load on the resin 5A, and the stage 40. The distance between the upper surface of the XY stage 62 and the XY stage 62 is also kept constant.
 その後、光源90を消灯させて樹脂5Aに対する光照射を停止する。なお、樹脂5Aに対する光照射は上記圧力制御工程の前に停止してもよい。 Thereafter, the light source 90 is turned off and the light irradiation to the resin 5A is stopped. In addition, you may stop the light irradiation with respect to 5A of resin before the said pressure control process.
 図9に示す通り、サブマスター20をガラス基板3から離型しない状態で、上記着脱機構による固定を解除することによって、サブマスター20をスタンプホルダ80から取り外す。そして、昇降アクチュエータ120のシャフト122を下方に縮め、ステージ40を下方に移動させる。 As shown in FIG. 9, the sub master 20 is removed from the stamp holder 80 by releasing the fixing by the attaching / detaching mechanism without releasing the sub master 20 from the glass substrate 3. Then, the shaft 122 of the lift actuator 120 is contracted downward, and the stage 40 is moved downward.
 図10に示す通り、スタンプホルダ80に対して、上記着脱機構によって新たなサブマスター20Bを固定するとともに、サブマスター20が取り付けられた状態のウエハレンズ1を上下反転させて静電チャック装置70上に設置する。そして、静電吸引してガラス基板3を吸引・固定する。 As shown in FIG. 10, the new submaster 20B is fixed to the stamp holder 80 by the attaching / detaching mechanism, and the wafer lens 1 with the submaster 20 attached is turned upside down so that the electrostatic chuck device 70 is mounted. Install in. Then, the glass substrate 3 is sucked and fixed by electrostatic suction.
 その後、基準スペーサ131を使用してサブマスター20Bに対してサブマスター20の平行出しを行う。基準スペーサ131は、上下面が互いに平行とされ、内部にガラス基板3が配置されるように穴131aが形成されている。平行出しは、ガラス基板3が穴131a内に配置されるように、サブマスター20の上面に載置する。そして、制御装置100により昇降アクチュエータ120を作動させてシャフト122を上方に伸ばし、ステージ40を上方に移動させる。この場合、制御装置100がハイトゲージ124の出力値に基づき昇降アクチュエータ120の作動を制御し、ステージ40を所定の高さ位置まで移動させる。さらに、XYステージ62、θステージ64を制御して、また、ロードセル44及びハイトゲージ126の出力値に基づきギヤードモータ50も制御し、サブマスター20の成形面である上面とサブマスター20Bの成形面である下面との平行度やガラス基板3への均等荷重、ステージ40の上面とXYステージ62との間の距離なども一定に保持する。このようにして平行出しを行った後、制御装置100により昇降アクチュエータ120を作動させてシャフト122を下方に縮ませて基準スペーサ131を取り出す。 Thereafter, the sub-master 20 is paralleled to the sub-master 20B using the reference spacer 131. The reference spacer 131 has upper and lower surfaces parallel to each other, and a hole 131a is formed so that the glass substrate 3 is disposed inside. In paralleling, the glass substrate 3 is placed on the upper surface of the sub-master 20 so that the glass substrate 3 is disposed in the hole 131a. And the raising / lowering actuator 120 is operated by the control apparatus 100, the shaft 122 is extended upwards, and the stage 40 is moved upwards. In this case, the control device 100 controls the operation of the lifting actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position. Further, the XY stage 62 and the θ stage 64 are controlled, and the geared motor 50 is also controlled based on the output values of the load cell 44 and the height gauge 126, so that the upper surface which is the molding surface of the submaster 20 and the molding surface of the submaster 20B are controlled. The parallelism with a certain lower surface, the uniform load on the glass substrate 3, the distance between the upper surface of the stage 40 and the XY stage 62, etc. are also kept constant. After performing parallel alignment in this way, the control device 100 operates the lifting actuator 120 to contract the shaft 122 downward and take out the reference spacer 131.
 このように予め基準スペーサ131で、サブマスター20の上面とサブマスタ-20Bの下面との間で平行出しを行うことによって、図6のようなスタンプホルダと静電チャックとの間の平行出しに比べて、実際に成形する成形型の成形面同士での平行出しのため、より高精度なウエハレンズ1を製造することができる。 In this way, by performing parallel projection between the upper surface of the sub-master 20 and the lower surface of the sub-master 20B with the reference spacer 131 in advance, compared with the parallel projection between the stamp holder and the electrostatic chuck as shown in FIG. As a result, the wafer lens 1 can be manufactured with higher accuracy because the molding surfaces of the molding die to be actually molded are parallel to each other.
 なお上記説明では、図6で示したスタンプホルダと静電チャックの平行出しを行った上で図10のようなサブマスター20,20B同士の平行出しを更に行う構成を例に説明しているが、本発明は必ずしもこれには限定されない。 In the above description, the stamp holder and the electrostatic chuck shown in FIG. 6 are paralleled, and the submasters 20 and 20B are further paralleled as shown in FIG. 10 as an example. However, the present invention is not necessarily limited to this.
 即ち、図6及び係る説明記載で示したスタンプホルダ基準の平行出しの構成のみ、図10及び係る説明記載で示した成形型同士基準の平行だしの構成のみを、行うものであっても良い。 That is, only the stamp holder reference parallel configuration shown in FIG. 6 and the description thereof, or only the configuration of the molds parallel reference shown in FIG. 10 and the description description may be performed.
 特に平行出し工程は手間の係る作業ではあるが、両面成形等の、より上下の対応する光学素子同士の偏芯、チルトといった光学性能を重視する場合には図10のみの構成を、逆に平行出しの手間の係る作業は最小限にとどめて効率よく成形作業を行う場合には図6のみの構成を採用する事が好ましい。 In particular, the paralleling step is a labor-intensive work, but when focusing on optical performance such as decentering and tilting of corresponding upper and lower optical elements such as double-sided molding, the configuration shown in FIG. It is preferable to adopt the configuration shown in FIG. 6 in order to minimize the work involved in taking out and perform the molding work efficiently.
 その後、図11に示す通り、図示しないディスペンサ等によりガラス基板3上に所定量の樹脂4Aを滴下する(第2ディスペンス工程)。 Thereafter, as shown in FIG. 11, a predetermined amount of resin 4A is dropped onto the glass substrate 3 by a dispenser (not shown) or the like (second dispensing step).
 この状態において、図12に示す通り、ガラス基板3を位置制御して、サブマスター20Bに対しガラス基板3を所定位置まで移動させ、ガラス基板3をその所定位置で保持する(第2インプリント工程)。 In this state, as shown in FIG. 12, the position of the glass substrate 3 is controlled, the glass substrate 3 is moved to a predetermined position with respect to the sub master 20B, and the glass substrate 3 is held at the predetermined position (second imprint process). ).
 詳しくは、上述の図8の位置制御工程と同様に、昇降アクチュエータ120を作動させてシャフト122を上方に伸ばし、ステージ40を上方に移動させる。この場合も、制御装置100がハイトゲージ124の出力値に基づき昇降アクチュエータ120の作動を制御し、ステージ40を所定の高さ位置まで移動させる(位置制御工程)。 More specifically, as in the above-described position control step of FIG. 8, the lift actuator 120 is operated to extend the shaft 122 upward and move the stage 40 upward. Also in this case, the control device 100 controls the operation of the elevating actuator 120 based on the output value of the height gauge 124, and moves the stage 40 to a predetermined height position (position control process).
 その結果、樹脂4Aがガラス基板3の押圧を受けて徐々に広がり、サブマスター20Bのキャビティ24Bに充填される。その後、ステージ40を基準位置に対応する位置で保持したまま、光源90を点灯させ、図12に示す通り、光透過性のサブマスター20Bを介して樹脂4Aに対し所定時間、光照射し、樹脂4Aの硬化をある程度進ませる。(第2硬化工程:露光工程)。 As a result, the resin 4A gradually receives the pressure of the glass substrate 3 and spreads to fill the cavity 24B of the sub master 20B. Thereafter, the light source 90 is turned on while the stage 40 is held at a position corresponding to the reference position, and as shown in FIG. 12, the resin 4A is irradiated with light for a predetermined time via the light-transmitting sub master 20B. 4A curing is advanced to some extent. (Second curing step: exposure step).
 ここで、樹脂4Aが硬化する際に(樹脂4Aの硬化時又はその後に)、上述の樹脂5Aの場合と同様に、樹脂4Aにおいても硬化収縮が生じる。そのため、光源90を一定時間点灯させ、樹脂4Aに対し一定量の光を照射したら、ガラス基板3を圧力制御して、サブマスター20Bに対するガラス基板3の押圧力を所定圧力に保持する。 Here, when the resin 4A is cured (during or after the resin 4A is cured), the resin 4A also undergoes curing shrinkage as in the case of the resin 5A described above. Therefore, when the light source 90 is turned on for a certain period of time and a certain amount of light is irradiated onto the resin 4A, the pressure of the glass substrate 3 is controlled to a predetermined pressure by controlling the pressure of the glass substrate 3.
 詳しくは、上述の図8の圧力制御工程と同様に、ギヤードモータ50を作動させてシャフト52を上方に伸ばし、XYステージ62、θステージ64、静電チャック装置70を上方に移動させる。この場合、制御装置100がロードセル44の出力値に基づきギヤードモータ50の作動を制御し、サブマスター20に対するステージ40の押圧力を所定圧力に保持しながらステージ40を上方に移動させる(圧力制御工程)。 Specifically, as in the pressure control step of FIG. 8 described above, the geared motor 50 is operated to extend the shaft 52 upward, and the XY stage 62, θ stage 64, and electrostatic chuck device 70 are moved upward. In this case, the control device 100 controls the operation of the geared motor 50 based on the output value of the load cell 44, and moves the stage 40 upward while maintaining the pressing force of the stage 40 against the sub master 20 at a predetermined pressure (pressure control process). ).
 また、制御装置100はロードセル44、ハイトゲージ126の出力値に基づき、XYステージ62,θステージ64も制御して、ガラス基板3とサブマスター20Bとの平行度や樹脂4Aへの均等荷重、ステージ40の上面とXYステージ62との間の距離なども一定に保持する。 The control device 100 also controls the XY stage 62 and the θ stage 64 based on the output values of the load cell 44 and the height gauge 126, the parallelism between the glass substrate 3 and the sub master 20B, the uniform load on the resin 4A, and the stage 40. The distance between the upper surface of the XY stage 62 and the XY stage 62 is also kept constant.
 その後、光源90を消灯させて樹脂5Aに対する光照射を停止する。樹脂4Aに対する光照射は図8の圧力制御工程の前に停止してもよい。 Thereafter, the light source 90 is turned off and the light irradiation to the resin 5A is stopped. The light irradiation on the resin 4A may be stopped before the pressure control step in FIG.
 図13に示す通り、サブマスター20Bをガラス基板3から離型しない状態で、上記着脱機構による固定を解除することによって、サブマスター20Bをスタンプホルダ80から取り外す。そして、昇降アクチュエータ120のシャフト122を下方に縮め、ステージ40を下方に移動させる。 As shown in FIG. 13, the sub-master 20B is removed from the stamp holder 80 by releasing the fixing by the above-described attaching / detaching mechanism without releasing the sub-master 20B from the glass substrate 3. Then, the shaft 122 of the lift actuator 120 is contracted downward, and the stage 40 is moved downward.
 その後、図14に示す通り、サブマスター20,20Bが取り付けられた状態でウエハレンズ1をウエハレンズ製造装置30から取り出す。そして、オーブン等でポストキュアして加熱硬化することによって樹脂4A,5Aの硬化を完全に硬化させる(第3硬化工程:加熱工程)。 Thereafter, as shown in FIG. 14, the wafer lens 1 is taken out from the wafer lens manufacturing apparatus 30 with the sub masters 20 and 20B attached. Then, the resin 4A, 5A is completely cured by post-curing in an oven or the like and cured by heating (third curing step: heating step).
 最後にサブマスター20,20Bを離型する(離型工程)。 Finally, the sub masters 20 and 20B are released (release process).
 このようにしてガラス基板3の表裏面に凸レンズ部4,5が形成されたウエハレンズ1が形成される。 Thus, the wafer lens 1 having the convex lens portions 4 and 5 formed on the front and back surfaces of the glass substrate 3 is formed.
 なお、本実施形態では第3硬化工程をもって樹脂を完全に硬化させているが、必ずしもこれに限定されない。つまりサブマスター20,20Bから離型された後に更に硬化を進ませる硬化工程を行っても良い。これにより硬化工程を複数工程に分離できるため、樹脂の急激な光学特性の変化を軽減する事が可能となる。 In this embodiment, the resin is completely cured by the third curing step, but the present invention is not necessarily limited to this. That is, you may perform the hardening process which advances hardening further after releasing from the submasters 20 and 20B. As a result, the curing step can be separated into a plurality of steps, so that it is possible to reduce a sudden change in optical characteristics of the resin.
 以上の本実施形態によれば、樹脂4A,5Aを滴下して(第1、第2ディスペンス工程)、インプリントし(第1、第2インプリント工程)、光照射(第1、第2硬化工程)した後にサブマスター20,20Bをガラス基板3から離型しない状態で加熱硬化する(本実施形態では第3硬化工程が該当するが、別の実施形態で場合によっては第2硬化工程が該当する)ので、光照射した際に樹脂4A,5Aが確実に硬化しない場合であっても、ウエハレンズ製造装置30内から取り出して、別途、オーブン等で確実に加熱硬化させることができる。よって、ウエハレンズ製造装置30内で行う光照射時間の短縮化を図ることができ、ウエハレンズ製造装置30内における作業を短縮することができる。その結果、製造効率を向上させることができる。 According to the above embodiment, the resins 4A and 5A are dropped (first and second dispensing steps), imprinted (first and second imprinting steps), and irradiated with light (first and second curing). After the process, the sub-master 20, 20B is heat-cured in a state where it is not released from the glass substrate 3 (in this embodiment, the third curing process is applicable, but in another embodiment, the second curing process is applicable in some cases. Therefore, even if the resins 4A and 5A are not reliably cured when irradiated with light, they can be taken out from the wafer lens manufacturing apparatus 30 and reliably heat-cured separately in an oven or the like. Therefore, it is possible to shorten the light irradiation time performed in the wafer lens manufacturing apparatus 30 and to shorten the work in the wafer lens manufacturing apparatus 30. As a result, manufacturing efficiency can be improved.
 第1、第2ディスペンス工程、第1、第2インプリント工程及び第1、第2硬化工程を減圧下で行うので、樹脂4A,5A内への気泡の巻き込みや、サブマスター20,20Bにおける樹脂4A,5Aの未充填箇所の発生を防止することができる。さらに、第1、第2硬化工程では、樹脂への酸素阻害を防止でき、樹脂を確実に硬化することができ、その結果、高精度なウエハレンズ1を得ることができる。 Since the first and second dispensing processes, the first and second imprint processes, and the first and second curing processes are performed under reduced pressure, entrainment of bubbles in the resins 4A and 5A, and the resins in the sub masters 20 and 20B Generation of unfilled portions of 4A and 5A can be prevented. Furthermore, in the first and second curing steps, oxygen inhibition to the resin can be prevented, and the resin can be reliably cured. As a result, a highly accurate wafer lens 1 can be obtained.
 また、樹脂5Aに対する光照射前の段階では、ハイトゲージ124の出力値に基づき静電チャック装置70を基準位置Sまで上昇させ基準位置Sで保持し、ガラス基板3を位置制御している。他方、樹脂5Aに対する光照射後の段階では、ロードセル44の出力値に基づきステージ40のサブマスター20に対する押圧力を所定圧力に保持させ、ガラス基板3を圧力制御(荷重制御)している。すなわち、樹脂5Aに対する光照射の前後で、ガラス基板3の制御を位置制御から圧力制御に切り替えている。 Further, in the stage before light irradiation with respect to the resin 5A, the electrostatic chuck device 70 is raised to the reference position S based on the output value of the height gauge 124 and held at the reference position S, and the position of the glass substrate 3 is controlled. On the other hand, in the stage after the light irradiation to the resin 5A, the pressing force of the stage 40 on the sub master 20 is held at a predetermined pressure based on the output value of the load cell 44, and the glass substrate 3 is pressure controlled (load control). That is, the control of the glass substrate 3 is switched from the position control to the pressure control before and after the light irradiation to the resin 5A.
 そのため、樹脂5Aに対する光照射により樹脂5Aが硬化収縮を起こしたとしても、樹脂5Aの容積変化に追従して樹脂5Aを、サブマスター20のキャビティ24に対し一定圧力で強制的に押圧することができる。その結果、樹脂5Aの内部で歪が生じたり、樹脂5Aに対するキャビティ24の面形状の転写が不十分になったりするのを抑制することができ、サブマスター20のキャビティ24から樹脂5Aへの転写性が低下するのを抑制することができる。 Therefore, even if the resin 5A undergoes curing shrinkage due to light irradiation to the resin 5A, the resin 5A can be forcibly pressed against the cavity 24 of the submaster 20 at a constant pressure following the volume change of the resin 5A. it can. As a result, it is possible to suppress the occurrence of distortion inside the resin 5A or the insufficient transfer of the surface shape of the cavity 24 to the resin 5A, and the transfer from the cavity 24 of the submaster 20 to the resin 5A. It is possible to suppress the deterioration of the property.
 さらに、ウエハレンズ製造装置30では、サブマスター20,20Bがスタンプホルダ80に対して着脱自在に保持されているので、スタンプホルダ80からサブマスター20,20Bを容易に取り外すことができる。よって、サブマスター20,20Bを離型しない状態でウエハレンズ1をウエハレンズ製造装置30内から取り出して、別途、オーブン等で確実に加熱硬化させることができ、ウエハレンズ製造装置30内における作業の短縮化に繋がる。 Furthermore, in the wafer lens manufacturing apparatus 30, since the sub masters 20 and 20B are detachably held with respect to the stamp holder 80, the sub masters 20 and 20B can be easily detached from the stamp holder 80. Therefore, the wafer lens 1 can be taken out from the wafer lens manufacturing apparatus 30 without releasing the sub-masters 20 and 20B, and can be reliably heat-cured separately in an oven or the like. It leads to shortening.
 なお、本発明は上記実施形態に限定されるものではなく、その要旨を変更しない範囲で適宜変更可能である。 In addition, this invention is not limited to the said embodiment, In the range which does not change the summary, it can change suitably.
 例えば、上記実施形態では、サブマスター20,20Bから樹脂性の凸レンズ部4,5を形成する例を示したが、上記実施形態は、マスター10からレンズ成形用の樹脂型(サブマスター20)等を形成する場合にも適用可能である。 For example, in the above-described embodiment, an example in which the resinous convex lens portions 4 and 5 are formed from the sub-masters 20 and 20B has been described. It is also applicable when forming
 また、上記実施形態では、ウエハレンズ製造装置30内を減圧し、減圧下で露光工程までを行うとしたが、大気中で行っても構わない。 In the above embodiment, the inside of the wafer lens manufacturing apparatus 30 is depressurized and the exposure process is performed under reduced pressure. However, it may be performed in the atmosphere.
 また、ガラス基板3の表裏面に凸レンズ部4,5を設けるとしたが、一方の面のみに凸レンズ部を設けても構わない。この場合、図6~図8のように第1ディスペンス工程、第1インプリント工程及び第1硬化工程までを行い、図9に示す通り、サブマスター20をスタンプホルダ80から取り外した後、サブマスター20を離型しない状態で、ウエハレンズ1をウエハレンズ製造装置30内から取り出す。そして、上記第3硬化工程と同様に加熱照射して樹脂を完全に硬化させれば良い。 Further, although the convex lens portions 4 and 5 are provided on the front and back surfaces of the glass substrate 3, the convex lens portion may be provided only on one surface. In this case, the first dispensing step, the first imprinting step, and the first curing step are performed as shown in FIGS. 6 to 8, and the submaster 20 is removed from the stamp holder 80 as shown in FIG. The wafer lens 1 is taken out from the wafer lens manufacturing apparatus 30 without releasing the mold 20. Then, the resin may be completely cured by heating and irradiation as in the third curing step.
 なお、スタンプホルダ80からサブマスター着脱後の硬化工程は、必ずしも着脱前の硬化工程と異なる種類の硬化工程である必要はなく、照射条件が同じもしくは異なる同種の硬化工程であっても良い。 It should be noted that the curing process after attaching / detaching the submaster from the stamp holder 80 is not necessarily a different kind of curing process from the curing process before attaching / detaching, and may be the same kind of curing process with the same or different irradiation conditions.
 また、ガラス基板3の設置位置とサブマスター20の設置位置とを反転させて製造しても良い。詳しくは、図示しないが、静電チャック装置70に対してサブマスター20を吸引・固定し、一方、スタンプホルダ80によってガラス基板3を保持する。そして、サブマスター20上に樹脂5Aを滴下し、ガラス基板3に対してサブマスター20側を上方に移動させて押圧することにより樹脂5Aをキャビティ24内に充填させる。次いで、光照射し、サブマスター20を離型しない状態で、ガラス基板3の他方の面(樹脂5Aと反対側の面)に樹脂4Aを滴下する。その後、スタンプホルダ80に新たに取り付けたサブマスター20Bに対して、ガラス基板3側を上方に移動させて押圧することにより樹脂4Aをキャビティ24B内に充填させる。その後、光照射し、サブマスター20,20Bを離型しない状態でウエハレンズ1を装置30内から取り出し、オーブン等により樹脂4A,5Aを加熱硬化する。 Also, the installation position of the glass substrate 3 and the installation position of the sub master 20 may be reversed. Although not shown in detail, the sub master 20 is sucked and fixed to the electrostatic chuck device 70, while the glass substrate 3 is held by the stamp holder 80. Then, the resin 5A is dropped on the sub master 20, and the resin 5A is filled in the cavity 24 by moving the sub master 20 side upward against the glass substrate 3 and pressing it. Next, the resin 4A is dropped onto the other surface (the surface opposite to the resin 5A) of the glass substrate 3 with light irradiation without releasing the sub master 20. Thereafter, the resin 4A is filled into the cavity 24B by moving the glass substrate 3 side upward against the sub-master 20B newly attached to the stamp holder 80 and pressing it. Thereafter, the wafer lens 1 is taken out from the apparatus 30 with light irradiation without releasing the sub masters 20 and 20B, and the resins 4A and 5A are heated and cured by an oven or the like.
 また、位置制御工程では、ガラス基板3の位置制御と圧力制御とを同時に実行してもよい。すなわち、ガラス基板3を所定位置まで移動させる際に、ガラス基板3を圧力制御して、サブマスター20に対するガラス基板3の押圧力を所定圧力以下に保持する。 Further, in the position control process, the position control and pressure control of the glass substrate 3 may be executed simultaneously. That is, when the glass substrate 3 is moved to a predetermined position, the pressure of the glass substrate 3 is controlled to keep the pressing force of the glass substrate 3 against the sub master 20 below a predetermined pressure.
 詳しくは、制御装置100がハイトゲージ124の出力値に基づきステージ40の移動を制御するのに加え、ロードセル44の出力値も常に参照しておき、ギヤードモータ50の作動を制御してステージ40のサブマスター20に対する押圧力を所定圧力以下に保持する。この場合、樹脂5Aに必要以上に荷重がかかるのを防止することができ、サブマスター20の変形を確実に防止することができる。 Specifically, in addition to the control device 100 controlling the movement of the stage 40 based on the output value of the height gauge 124, the output value of the load cell 44 is always referred to, and the operation of the geared motor 50 is controlled to control the sub-stage of the stage 40. The pressing force on the master 20 is kept below a predetermined pressure. In this case, it is possible to prevent the resin 5A from being loaded more than necessary, and the deformation of the sub master 20 can be reliably prevented.
 また、圧力制御工程では、ロードセル44の出力値に基づきリアルタイムにギヤードモータ50の作動を制御してもよい。すなわち、制御装置100に対し予め設定しておいた一定の押圧力を閾値として、制御装置100がロードセル44の出力値を受けてその出力値が当該閾値以上になったら、ギヤードモータ50の作動を停止し、ロードセル44の出力値が当該閾値未満になったら、ギヤードモータ50の作動を再開する。 In the pressure control process, the operation of the geared motor 50 may be controlled in real time based on the output value of the load cell 44. That is, with a certain pressing force preset for the control device 100 as a threshold value, when the control device 100 receives the output value of the load cell 44 and the output value exceeds the threshold value, the geared motor 50 is operated. When the output value of the load cell 44 becomes less than the threshold value, the operation of the geared motor 50 is resumed.
 1 ウエハレンズ
 3 ガラス基板
 4、5 凸レンズ部
 4A、5A 樹脂
 20、20B サブマスター
 24、24B キャビティ
 30 ウエハレンズ製造装置
 62 XYステージ
 64 θステージ
 70 静電チャック装置
 80 スタンプホルダ
 82 ツメ
DESCRIPTION OF SYMBOLS 1 Wafer lens 3 Glass substrate 4, 5 Convex lens part 4A, 5A Resin 20, 20B Sub master 24, 24B Cavity 30 Wafer lens manufacturing apparatus 62 XY stage 64 (theta) stage 70 Electrostatic chuck apparatus 80 Stamp holder 82 Claw

Claims (17)

  1.  基板の一方の面に、エネルギー性硬化樹脂製の光学部材を設けた光学部品の製造方法であって、
     前記光学部材の光学面形状に対応したネガ形状の成形面を複数有する成形型と、前記基板の一方の面との間に前記エネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
     前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記基板に対して押圧するインプリント工程と、
     前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める第1硬化工程と、
     前記成形型を前記基板から離型しない状態で、前記エネルギー性硬化樹脂にエネルギーを与えて更に硬化を進める第2硬化工程と、
     を備えることを特徴とする光学部品の製造方法。
    An optical component manufacturing method in which an optical member made of energetic curable resin is provided on one surface of a substrate,
    A dispensing step of dropping or discharging the energetic curable resin between a molding die having a plurality of negative-shaped molding surfaces corresponding to the optical surface shape of the optical member, and one surface of the substrate;
    After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the substrate;
    After the imprinting step, a first curing step of applying energy to the energetic curable resin to advance curing;
    A second curing step in which energy is given to the energy-curable curable resin to further cure the mold without releasing the mold from the substrate;
    An optical component manufacturing method comprising:
  2.  前記第1硬化工程はエネルギーとして光を照射する露光工程であり、
     前記第2硬化工程は加熱する加熱工程であることを特徴とする請求項1に記載の光学部品の製造方法。
    The first curing step is an exposure step of irradiating light as energy,
    The method of manufacturing an optical component according to claim 1, wherein the second curing step is a heating step of heating.
  3.  減圧下で、前記ディスペンス工程、前記インプリント工程及び前記第1硬化工程を行うことを特徴とする請求項1又は2に記載の光学部品の製造方法。 3. The method of manufacturing an optical component according to claim 1, wherein the dispensing step, the imprinting step, and the first curing step are performed under reduced pressure.
  4.  前記光学部品は複数の光学素子がウエハ状に配列されたウエハレンズであることを特徴とする請求項1~3のいずれか一つに記載の光学部品の製造方法。 4. The method of manufacturing an optical component according to claim 1, wherein the optical component is a wafer lens in which a plurality of optical elements are arranged in a wafer shape.
  5.  基板の両面にエネルギー性硬化樹脂製の光学部材を設けた光学部品の製造方法であって、
     前記基板の一方の面に形成する前記光学部材の形状に対応したネガ形状の成形面を複数有する第1成形型と、前記基板の一方の面との間に前記エネルギー性硬化樹脂を滴下又は吐出する第1ディスペンス工程と、
     前記第1ディスペンス工程後、前記エネルギー性硬化樹脂を前記第1成形型又は前記基板に対して押圧する第1インプリント工程と、
     前記第1インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める第1硬化工程と、
     前記第1成形型を前記基板から離型しない状態で、前記第1成形型及び前記基板を反転し、前記基板の他方の面に形成する前記光学部材の形状に対応したネガ形状の成形面を複数有する第2成形型と、前記基板の他方の面との間に前記エネルギー性硬化樹脂を滴下又は吐出する第2ディスペンス工程と、
     前記第2ディスペンス工程後、前記エネルギー性硬化樹脂を前記第2成形型又は前記基板に対して押圧する第2インプリント工程と、
     前記第2インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める第2硬化工程と、
     前記第1成形型及び前記第2成形型を前記基板から離型しない状態で、前記第1成形型と前記基板との間の前記第1硬化工程で硬化が進んだエネルギー性硬化樹脂及び前記第2成形型と前記基板との間の前記第2硬化工程で硬化が進んだエネルギー性硬化樹脂のいずれか少なくとも一方に対して、更にエネルギーを与えて硬化を進める第3硬化工程と、
     を備えることを特徴とする光学部品の製造方法。
    An optical component manufacturing method in which an optical member made of energy-curable resin is provided on both sides of a substrate,
    The energy-curable curable resin is dropped or discharged between a first mold having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member formed on one surface of the substrate and the one surface of the substrate. A first dispensing step,
    A first imprinting step of pressing the energy-curable curable resin against the first mold or the substrate after the first dispensing step;
    After the first imprint step, a first curing step of applying energy to the energetic curable resin to advance curing;
    In a state where the first molding die is not released from the substrate, the first molding die and the substrate are reversed, and a negative molding surface corresponding to the shape of the optical member formed on the other surface of the substrate is formed. A second dispensing step of dropping or discharging the energetic curable resin between a plurality of second molds and the other surface of the substrate;
    A second imprinting step of pressing the energy-curable curable resin against the second mold or the substrate after the second dispensing step;
    After the second imprint step, a second curing step of applying energy to the energetic curable resin to promote curing;
    The energy-curable curable resin cured in the first curing step between the first mold and the substrate without releasing the first mold and the second mold from the substrate and the first mold A third curing step for further curing by applying energy to at least one of the energy-curable resins cured in the second curing step between the mold and the substrate;
    An optical component manufacturing method comprising:
  6.  前記第1硬化工程及び前記第2硬化工程は光を照射する露光工程であり、
     前記第3硬化工程は加熱する加熱工程であることを特徴とする請求項5に記載の光学部品の製造方法。
    The first curing step and the second curing step are exposure steps for irradiating light,
    The method for manufacturing an optical component according to claim 5, wherein the third curing step is a heating step of heating.
  7.  減圧下で、前記第1ディスペンス工程、前記第1インプリント工程、前記第1硬化工程、前記第2ディスペンス工程、前記第2インプリント工程及び前記第2硬化工程を行うことを特徴とする請求項5又は6に記載の光学部品の製造方法。 The first dispensing step, the first imprinting step, the first curing step, the second dispensing step, the second imprinting step, and the second curing step are performed under reduced pressure. A method for producing the optical component according to 5 or 6.
  8.  前記光学部品は複数の光学素子がウエハ上に配列されたウエハレンズであることを特徴とする請求項5~7のいずれか一つに記載の光学部品の製造方法。 The method of manufacturing an optical component according to any one of claims 5 to 7, wherein the optical component is a wafer lens in which a plurality of optical elements are arranged on a wafer.
  9.  基板の少なくとも一方の面にエネルギー性硬化樹脂製の光学部材を設けた光学部品を製造する光学部品製造装置であって、
     前記基板が配置される基台と、
     前記光学部材の形状に対応したネガ形状の成形面を複数有する成形型を、前記基板に対して対向配置して保持するホルダと、を備え、
     前記成形型は前記ホルダに対して着脱自在であり、
     前記成形型を前記ホルダに取り付け、前記基板の一方の面と前記成形型との間に前記エネルギー性硬化樹脂を充填し、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進めた後、前記成形型を前記基板から離型しない状態で、前記ホルダから前記成形型を取り外すことを特徴とする光学部品製造装置。
    An optical component manufacturing apparatus for manufacturing an optical component in which an optical member made of an energy curable resin is provided on at least one surface of a substrate,
    A base on which the substrate is disposed;
    A holder that holds and holds a molding die having a plurality of negative-shaped molding surfaces corresponding to the shape of the optical member, with respect to the substrate,
    The mold is detachable from the holder,
    The mold is attached to the holder, the energy curable resin is filled between one surface of the substrate and the mold, and energy is applied to the energy curable resin to proceed with curing. An optical component manufacturing apparatus, wherein the molding die is removed from the holder without releasing the molding die from the substrate.
  10.  前記光学部品は複数の光学素子がウエハ上に配列されたウエハレンズであることを特徴とする請求項9に記載の光学部品製造装置。 10. The optical component manufacturing apparatus according to claim 9, wherein the optical component is a wafer lens in which a plurality of optical elements are arranged on a wafer.
  11.  支持部材で支持されたガラス基板の一面と成形型の複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板表面に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
     前記ガラス基板と当接する前記支持部材の表面と成形型との平行度を調整する調整工程と、
     前記支持部材の表面に前記ガラス基板を配置する工程と、
     前記調整工程で調整された成形型の複数の光学転写面と、前記支持部材に支持されたガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
     前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
     前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするウエハレンズの製造方法。
    By placing an energy-curable resin between one surface of the glass substrate supported by the support member and the plurality of optical transfer surfaces of the molding die and press-molding, a negative shape of the optical transfer surface is formed on the glass substrate surface. A wafer lens molding method in which a plurality of optical elements made of energy curable resin having a corresponding shape are formed,
    An adjustment step of adjusting the parallelism between the surface of the support member that contacts the glass substrate and the mold;
    Placing the glass substrate on the surface of the support member;
    A dispensing step of dropping or discharging an energy curable resin between a plurality of optical transfer surfaces of the mold adjusted in the adjustment step and one surface of the glass substrate supported by the support member;
    After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
    A method of manufacturing a wafer lens comprising: a curing step of applying energy to the energetic curable resin to advance curing after the imprinting step.
  12.  前記調整工程は、前記支持部材の表面と前記成形型を保持する成形型保持部材の一面との間に、前記各面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記支持部材の表面と前記スペーサの第1面、前記スペーサの第2面と前記成形型保持部材部材の一面とをそれぞれ当接させる事により行うことを特徴とする請求項11に記載のウエハレンズの製造方法。 The adjusting step includes a first surface that abuts each of the surfaces and a second surface parallel to the first surface between the surface of the support member and one surface of the mold holding member that holds the mold. And a spacer having a first surface, a first surface of the spacer, a second surface of the spacer, and one surface of the mold holding member member. Item 12. A method for producing a wafer lens according to Item 11.
  13.  前記調整工程は、前記支持部材の表面と前記成形型の一面との間に、各面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記支持部材の表面と前記スペーサの第1面、前記スペーサの第2面と前記成形型の一面とを当接させる事により行うことを特徴とする請求項11に記載のウエハレンズの製造方法。 In the adjusting step, a spacer having a first surface that abuts each surface and a second surface parallel to the first surface is disposed between the surface of the support member and one surface of the mold, 12. The method of manufacturing a wafer lens according to claim 11, wherein the wafer lens is manufactured by bringing the surface of the support member into contact with the first surface of the spacer, the second surface of the spacer, and one surface of the mold.
  14.  静電チャック装置に支持されたガラス基板の一面と、成形型保持部材により保持された成形型の複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板の一面に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
     前記ガラス基板が配置される静電チャック装置の表面と前記成形型保持部材の一面との間に、各表面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記静電チャック装置の表面と前記スペーサの第1面、前記スペーサの第2面と前記成形型保持部材部材の一面とをそれぞれ当接させるスペーサ当接工程と、
     前記スペーサ当接工程後、スペーサを前記静電チャック装置と前記成形型保持部材の間から取り出す取出工程と、
     前記静電チャック装置の表面にガラス基板を配置する工程と、
     前記成形型保持部材の一面に前記成形型を固定する工程と、
     前記成形型の複数の光学転写面と、前記ガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
     前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
     前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするウエハレンズの製造方法。
    By placing and molding the energetic curable resin between one surface of the glass substrate supported by the electrostatic chuck device and a plurality of optical transfer surfaces of the mold held by the mold holding member, the glass A wafer lens molding method in which a plurality of optical elements made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface is formed on one surface of a substrate,
    A spacer having a first surface in contact with each surface and a second surface parallel to the first surface between the surface of the electrostatic chuck device on which the glass substrate is disposed and one surface of the mold holding member. A spacer abutting step for abutting the surface of the electrostatic chuck device with the first surface of the spacer, the second surface of the spacer, and one surface of the mold holding member member;
    After the spacer contact step, a step of taking out the spacer from between the electrostatic chuck device and the mold holding member;
    Placing a glass substrate on the surface of the electrostatic chuck device;
    Fixing the mold on one surface of the mold holding member;
    A dispensing step of dropping or discharging an energetic curable resin between a plurality of optical transfer surfaces of the mold and one surface of the glass substrate;
    After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
    A method of manufacturing a wafer lens comprising: a curing step of applying energy to the energetic curable resin to advance curing after the imprinting step.
  15.  ガラス基板の一方の面を、成形面に複数の光学転写面が形成された第一の成形型で支持した状態で、当該ガラス基板の他方の面と第二の成形型の成形面に形成された複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板上に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
     前記第一の成形型の成形面と前記第二の成形型の成形面との間に、各成形面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記第一の成形型の成形面と前記スペーサの第1面、前記スペーサの第2面と前記第二の成形型の成形面とをそれぞれ当接させるスペーサ当接工程と、
     前記スペーサ当接工程後、スペーサを前記第一及び第二の成形型間から取り出す取出工程と、
     前記第一の成形型上にガラス基板を配置する工程と、
     前記第二の成形型の複数の光学転写面と、前記第一の成形型上に配置されたガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
     前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
     前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするウエハレンズの製造方法。
    In a state where one surface of the glass substrate is supported by a first mold having a plurality of optical transfer surfaces formed on the molding surface, it is formed on the other surface of the glass substrate and the molding surface of the second mold. An optical element made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface on the glass substrate by arranging and molding the energy curable resin between the plurality of optical transfer surfaces. A method of molding a plurality of formed wafer lenses,
    A spacer having a first surface abutting on each molding surface and a second surface parallel to the first surface between the molding surface of the first molding die and the molding surface of the second molding die. A spacer contact step in which the molding surface of the first molding die and the first surface of the spacer, the second surface of the spacer and the molding surface of the second molding die are respectively contacted,
    After the spacer contact step, a step of taking out the spacer from between the first and second molding dies,
    Placing a glass substrate on the first mold;
    A dispensing step of dropping or discharging an energy curable resin between the plurality of optical transfer surfaces of the second mold and one surface of the glass substrate disposed on the first mold;
    After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
    A method of manufacturing a wafer lens comprising: a curing step of applying energy to the energetic curable resin to advance curing after the imprinting step.
  16.  前記スペーサ当接工程の前に、前記第一の成形型の複数の光学転写面と、前記ガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンスした後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリントする工程を更に有することを特徴とする請求項15に記載のウエハレンズの製造方法。 Before the spacer contact step, after the dispensing of dropping or discharging the energy curable resin between the plurality of optical transfer surfaces of the first mold and one surface of the glass substrate, the energy curable resin The method of manufacturing a wafer lens according to claim 15, further comprising an imprinting step of pressing the mold against the mold or the glass substrate.
  17.  ガラス基板の一方の面を、成形面に複数の光学転写面が形成された第一の成形型で支持した状態で、当該ガラス基板の他方の面と第二の成形型の成形面に形成された複数の光学転写面との間にエネルギー性硬化樹脂を配置して押圧成形する事により、前記ガラス基板上に当該光学転写面のネガ形状に対応する形状を有するエネルギー硬化樹脂製の光学素子を複数形成したウエハレンズの成形方法であって、
     前記第一の成形型と当接する支持部材の表面と、成形型保持部材の一面との間に、前記各面とそれぞれ当接する第1面と当該第1面と平行な第2面とを有するスペーサを配置し、前記支持部材の表面と前記スペーサの第1面、前記スペーサの第2面と前記支持部材の一面とをそれぞれ当接させるスペーサ当接工程と、
     前記スペーサ当接工程後、スペーサを前記支持部材と前記成形型保持部材の間から取り出す取出工程と、
     前記支持部材上に、成形面に複数の光学転写面が形成された第一の成形型を配置する工程と、
     前記成形型保持部材に第二の成形型を保持させる工程と、
     前記第二の成形型の複数の光学転写面と、前記第一の成形型上に配置されたガラス基板の一面との間にエネルギー性硬化樹脂を滴下又は吐出するディスペンス工程と、
     前記ディスペンス工程後、前記エネルギー性硬化樹脂を前記成形型又は前記ガラス基板に対して押圧するインプリント工程と、
     前記インプリント工程後、前記エネルギー性硬化樹脂に対してエネルギーを与えて硬化を進める硬化工程と、を備えることを特徴とするウエハレンズの製造方法。
    In a state where one surface of the glass substrate is supported by a first mold having a plurality of optical transfer surfaces formed on the molding surface, it is formed on the other surface of the glass substrate and the molding surface of the second mold. An optical element made of energy curable resin having a shape corresponding to the negative shape of the optical transfer surface on the glass substrate by arranging and molding the energy curable resin between the plurality of optical transfer surfaces. A method of molding a plurality of formed wafer lenses,
    Between the surface of the support member that contacts the first mold and one surface of the mold holding member, a first surface that contacts each of the surfaces and a second surface that is parallel to the first surface are provided. A spacer contact step in which a spacer is disposed, and the surface of the support member and the first surface of the spacer, and the second surface of the spacer and one surface of the support member are contacted;
    After the spacer contact step, a step of taking out the spacer from between the support member and the mold holding member,
    Disposing a first mold having a plurality of optical transfer surfaces formed on a molding surface on the support member;
    Holding the second mold on the mold holding member;
    A dispensing step of dropping or discharging an energy curable resin between the plurality of optical transfer surfaces of the second mold and one surface of the glass substrate disposed on the first mold;
    After the dispensing step, an imprint step of pressing the energy curable resin against the mold or the glass substrate;
    A method of manufacturing a wafer lens comprising: a curing step of applying energy to the energetic curable resin to advance curing after the imprinting step.
PCT/JP2009/070746 2009-01-30 2009-12-11 Method for producing optical component, apparatus for producing optical component, and method for producing wafer lens WO2010087077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010512427A JP4586940B2 (en) 2009-01-30 2009-12-11 Optical component manufacturing method, optical component manufacturing apparatus, and wafer lens manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-020259 2009-01-30
JP2009020259 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010087077A1 true WO2010087077A1 (en) 2010-08-05

Family

ID=42395344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070746 WO2010087077A1 (en) 2009-01-30 2009-12-11 Method for producing optical component, apparatus for producing optical component, and method for producing wafer lens

Country Status (2)

Country Link
JP (1) JP4586940B2 (en)
WO (1) WO2010087077A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028163A1 (en) * 2010-09-02 2012-03-08 Ev Group Gmbh Stamping tool, device and method for producing a lens wafer
EP2436498A4 (en) * 2009-05-29 2013-03-13 Konica Minolta Opto Inc Method for producing wafer lens, and method and apparatus for producing wafer lens laminate
JP2013112453A (en) * 2011-11-28 2013-06-10 Toshiba Mach Co Ltd Workpiece installing device and workpiece installing method
EP2639033A4 (en) * 2010-11-09 2016-12-21 Konica Minolta Inc Wafer lens production method
US9643366B2 (en) 2010-10-26 2017-05-09 Ev Group Gmbh Method and device for producing a lens wafer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140439A (en) * 1986-12-02 1988-06-13 Daicel Chem Ind Ltd Apparatus for producing optical disk substrate
JP2003286301A (en) * 2002-01-22 2003-10-10 Omron Corp Two-stage curing resin composition, finely shaped molded article, its manufacturing method and precision equipment
JP2006139251A (en) * 2004-11-11 2006-06-01 Lg Phillips Lcd Co Ltd Thin film patterning device and method for manufacturing color filter array substrate utilizing the same
JP2006154236A (en) * 2004-11-29 2006-06-15 Ricoh Opt Ind Co Ltd Resin curing method, apparatus and resin used therefor, article having fine surface structure and its manufacturing method
JP2008152039A (en) * 2006-12-18 2008-07-03 Seiko Epson Corp Method of manufacturing microlens array, microlens array, organic electroluminescence line head and image forming apparatus using the microlens array
JP2008155547A (en) * 2006-12-25 2008-07-10 Seiko Epson Corp Manufacturing process of optical element, optical element, and optical apparatus
JP2008162191A (en) * 2006-12-28 2008-07-17 Asahi Glass Co Ltd Manufacturing method of optical element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294311A (en) * 1985-10-22 1987-04-30 Toray Ind Inc Positioning of mold for molding plastic lens
JPH0740357A (en) * 1993-07-27 1995-02-10 Konica Corp Production of plastic lens having distribution of refractive index
JP4371777B2 (en) * 2003-11-12 2009-11-25 リコー光学株式会社 Resin curing method and resin molded product manufacturing method
JP2007145626A (en) * 2005-11-25 2007-06-14 Konica Minolta Opto Inc Apparatus for producing optical glass element
JP4996150B2 (en) * 2006-07-07 2012-08-08 株式会社日立ハイテクノロジーズ Fine structure transfer apparatus and fine structure transfer method
JP4418476B2 (en) * 2007-03-20 2010-02-17 株式会社日立ハイテクノロジーズ MICROSTRUCTURE TRANSFER APPARATUS AND MICROSTRUCTURE MANUFACTURING METHOD

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140439A (en) * 1986-12-02 1988-06-13 Daicel Chem Ind Ltd Apparatus for producing optical disk substrate
JP2003286301A (en) * 2002-01-22 2003-10-10 Omron Corp Two-stage curing resin composition, finely shaped molded article, its manufacturing method and precision equipment
JP2006139251A (en) * 2004-11-11 2006-06-01 Lg Phillips Lcd Co Ltd Thin film patterning device and method for manufacturing color filter array substrate utilizing the same
JP2006154236A (en) * 2004-11-29 2006-06-15 Ricoh Opt Ind Co Ltd Resin curing method, apparatus and resin used therefor, article having fine surface structure and its manufacturing method
JP2008152039A (en) * 2006-12-18 2008-07-03 Seiko Epson Corp Method of manufacturing microlens array, microlens array, organic electroluminescence line head and image forming apparatus using the microlens array
JP2008155547A (en) * 2006-12-25 2008-07-10 Seiko Epson Corp Manufacturing process of optical element, optical element, and optical apparatus
JP2008162191A (en) * 2006-12-28 2008-07-17 Asahi Glass Co Ltd Manufacturing method of optical element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436498A4 (en) * 2009-05-29 2013-03-13 Konica Minolta Opto Inc Method for producing wafer lens, and method and apparatus for producing wafer lens laminate
WO2012028163A1 (en) * 2010-09-02 2012-03-08 Ev Group Gmbh Stamping tool, device and method for producing a lens wafer
CN103080779A (en) * 2010-09-02 2013-05-01 Ev集团有限责任公司 Stamping tool, device and method for producing a lens wafer
KR101508077B1 (en) * 2010-09-02 2015-04-07 에베 그룹 게엠베하 Device and method for producing a lens wafer
EP3073299A1 (en) * 2010-09-02 2016-09-28 EV Group GmbH Device and method for making a lens wafer
US9738042B2 (en) 2010-09-02 2017-08-22 Ev Group Gmbh Die tool, device and method for producing a lens wafer
TWI626149B (en) * 2010-09-02 2018-06-11 Ev集團有限公司 Die tool, device and method for producing a lens wafer
US10668678B2 (en) 2010-09-02 2020-06-02 Ev Group Gmbh Die tool, device and method for producing a lens wafer
US9643366B2 (en) 2010-10-26 2017-05-09 Ev Group Gmbh Method and device for producing a lens wafer
US9662846B2 (en) 2010-10-26 2017-05-30 Ev Group Gmbh Method and device for producing a lens wafer
EP2639033A4 (en) * 2010-11-09 2016-12-21 Konica Minolta Inc Wafer lens production method
JP2013112453A (en) * 2011-11-28 2013-06-10 Toshiba Mach Co Ltd Workpiece installing device and workpiece installing method

Also Published As

Publication number Publication date
JPWO2010087077A1 (en) 2012-07-26
JP4586940B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
WO2010137368A1 (en) Method for producing wafer lens, and method and apparatus for producing wafer lens laminate
JP4226067B2 (en) Modeling method, lens manufacturing method, and modeling apparatus
JP4586940B2 (en) Optical component manufacturing method, optical component manufacturing apparatus, and wafer lens manufacturing method
CA2810676C (en) Lens plate for wafer-level camera and method of manufacturing same
US7964135B2 (en) Method and apparatus for imprinting energy ray-setting resin, and discs and semiconductor devices with imprinted resin layer
TWI503580B (en) Manufacturing method of molding tool, wafer lens, and optical lens
WO2010050290A1 (en) Wafer lens manufacturing method and wafer lens
EP2384874B1 (en) Method for producing wafer lens and apparatus for producing wafer lens
EP2033050B1 (en) Manufacturing a replication tool
US20120153518A1 (en) Apparatus for Manufacturing Wafer Lens, Molding Die, And Method for Manufacturing Wafer Lens
JP5136648B2 (en) Wafer lens manufacturing apparatus and manufacturing method
JP2011051132A (en) Method and apparatus for manufacturing optical component
JP5503115B2 (en) Manufacturing method of modeling object and manufacturing system of modeling object
JP2011051129A (en) Method of manufacturing optical component
KR20140081975A (en) Apparatus for manufacturing film used micro size pattern and method using the same
US9789656B2 (en) Methods for producing molding die, wafer lens, and optical lens
JP2010107879A (en) Method of manufacturing wafer lens, wafer lens, and device for manufacturing wafer lens
JP2014069556A (en) Method for producing mold formed part, and mold formed part production apparatus
JP2006224342A (en) Manufacturing method of hybrid lens
CN209813364U (en) Micro-nano hot stamping equipment based on elastic template
CN109119404B (en) Alignment method, imprint method, and wafer stacking method
WO2017195879A1 (en) Molded resin article molding method and molded resin article
JP2018171791A (en) Molding apparatus and molded product molding method
JP2011216808A (en) Transfer device, transfer system, and transfer method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010512427

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839264

Country of ref document: EP

Kind code of ref document: A1