WO2010086400A1 - Combination treatment of breast cancer - Google Patents

Combination treatment of breast cancer Download PDF

Info

Publication number
WO2010086400A1
WO2010086400A1 PCT/EP2010/051060 EP2010051060W WO2010086400A1 WO 2010086400 A1 WO2010086400 A1 WO 2010086400A1 EP 2010051060 W EP2010051060 W EP 2010051060W WO 2010086400 A1 WO2010086400 A1 WO 2010086400A1
Authority
WO
WIPO (PCT)
Prior art keywords
hmgcr
sample
breast cancer
protein
treatment
Prior art date
Application number
PCT/EP2010/051060
Other languages
French (fr)
Inventor
Karin JIRSTRÖM
Donal J. Brennan
Original Assignee
Atlas Antibodies Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/SE2009/000066 external-priority patent/WO2009139681A1/en
Application filed by Atlas Antibodies Ab filed Critical Atlas Antibodies Ab
Priority to US13/146,435 priority Critical patent/US20120053196A1/en
Publication of WO2010086400A1 publication Critical patent/WO2010086400A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/44Multiple drug resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present disclosure relates to the field of breast cancer treatment and treatment prediction. It also relates to means which may be employed in such a treatment or treatment prediction.
  • Cancer is one of the most common diseases, and a major cause of death in the western world. In general, incidence rates increase with age for most forms of cancer. As human populations continue to live longer, due to an increase of the general health status, cancer may affect an increasing number of individuals. The cause of most common cancer types is still largely unknown, although there is an increasing body of knowledge providing a link between environmental factors (dietary, tobacco smoke, UV radiation etc) as well as genetic factors (germ line mutations in "cancer genes" such as p53, APC, BRCA1 , XP etc) and the risk for development of cancer.
  • cancer is essentially a cellular disease and defined as a transformed cell population with net cell growth and anti-social behavior.
  • Malignant transformation represents the transition to a malignant phenotype based on irreversible genetic alterations. Although this has not been formally proven, malignant transformation is believed to take place in one cell, from which a subsequently developed tumor originates (the "clonality of cancer" dogma).
  • Carcinogenesis is the process by which cancer is generated and is generally accepted to include multiple events that ultimately lead to growth of a malignant tumor. This multi-step process includes several rate-limiting steps, such as addition of mutations and possibly also epigenetic events, leading to formation of cancer following stages of precancerous proliferation. The stepwise changes involve accumulation of errors
  • a malignant tumor does not only necessarily consist of the transformed tumor cells themselves but also surrounding normal cells which act as a supportive stroma.
  • This recruited cancer stroma consists of connective tissue, blood vessels and various other normal cells, e.g., inflammatory cells, which act in concert to supply the transformed tumor cells with signals necessary for continued tumor growth.
  • cancers arise in somatic cells and are predominantly of epithelial origin, e.g., prostate, breast, colon, urothelial and skin, followed by cancers originating from the hematopoetic lineage, e.g., leukemia and lymphoma, neuroectoderm, e.g., malignant gliomas, and soft tissue tumors, e.g., sarcomas.
  • epithelial origin e.g., prostate, breast, colon, urothelial and skin
  • cancers originating from the hematopoetic lineage e.g., leukemia and lymphoma
  • neuroectoderm e.g., malignant gliomas
  • soft tissue tumors e.g., sarcomas.
  • mice Microscopic evaluation of biopsy material from suspected tumors remains the golden standard for cancer diagnostics.
  • the tumor tissue is fixated in formalin, histo-processed and paraffin embedded.
  • tissue sections can be produced and stained using both histochemical, i.e., hematoxylin-eosin staining, and immunohistochemical methods.
  • the surgical specimen is then evaluated with pathology techniques, including gross and microscopic analysis. This analysis often forms the basis for assigning a specific diagnosis, i.e., classifying the tumor type and grading the degree of malignancy, of a tumor.
  • Malignant tumors can be categorized into several stages according to classification schemes specific for each cancer type.
  • the most common classification system for solid tumors is the tumor-node-metastasis (TNM) staging system.
  • T stage describes the local extent of the primary tumor, i.e., how far the tumor has invaded and imposed growth into surrounding tissues
  • N stage and M stage describe how the tumor has developed metastases, with the N stage describing spread of tumor to lymph nodes and the M stage describing growth of tumor in other distant organs.
  • Early stages include: T0-1 , NO, MO, representing localized tumors with negative lymph nodes.
  • More advanced stages include: T2-4, NO, MO, localized tumors with more widespread growth and T1 -4, N1 -3, MO, tumors that have metastasized to lymph nodes and T1 -4, N1 -3, M1 , tumors with a metastasis detected in a distant organ.
  • Staging of tumors is often based on several forms of examination, including surgical, radiological and histopathological analyses.
  • the grading systems rely on morphological assessment of a tumor tissue sample and are based on the microscopic features found in a given tumor. These grading systems may be based on the degree of differentiation, proliferation and atypical appearance of the tumor cells. Examples of generally employed grading systems include Gleason grading for prostatic carcinomas and the Nottingham Histological Grade (NHG) grading for breast carcinomas.
  • IHC immunohistochemical staining
  • IHC allows for the detection of protein expression patterns in tissues and cells using specific antibodies.
  • the use of IHC in clinical diagnostics allows for the detection of immunoreactivity in different cell populations, in addition to the information regarding tissue architecture and cellular morphology that is assessed from the histochemically stained tumor tissue section.
  • IHC can be involved in supporting the accurate diagnosis, including staging and grading, of a primary tumor as well as in the diagnostics of metastases of unknown origin.
  • the most commonly used antibodies in clinical practice today include antibodies against cell type "specific" proteins, e.g., PSA (prostate), MelanA (melanocytes) and Thyroglobulin (thyroid gland), and antibodies recognizing intermediate filaments (epithelial, mesenchymal, glial), cluster of differentiation (CD) antigens (hematopoetic, sub-classification of lympoid cells) and markers of malignant potential, e.g., Ki67 (proliferation), p53 (commonly mutated tumor suppressor gene) and HER-2 (growth factor receptor).
  • Breast cancer Breast cancer is the second most common form of cancer worldwide and by far the most frequent cancer of women. Data from the GLOBOCAM 2002 database presented by Parkin et al. reveal 1.15 million new cases in 2002 and 0.41 million deaths during the same period (Parkin DM et al. (2005) CA Cancer J Clin 55, 74-108). If detected at an early stage, the prognosis is relatively good for a patient living in a developed country, with a general five- year survival rate of 73%, compared to 57% in a developing country. The incidence is slowly increasing and about one in every nine women in the developed world is believed to get breast cancer in her lifetime.
  • breast-conserving therapy combining breast conserving surgery and postoperative radiotherapy, has become the primary treatment of choice in women where radical removal of the tumor can be combined with a good cosmetic result.
  • Mastectomy is still preferable in some patients, i.e., women with small breasts, large tumors (> 4 cm) or multifocal/multicentric disease.
  • Axillary dissection is primarily performed for diagnostic purposes and removal of at least 10 lymph nodes gives a good staging guidance with 97- 98% sensitivity (Axelsson CK et al. (1992) Eur J Cancer 28A:1415-8; Israel A and Houlihan MJ (1995) Cancer 6(9):1491 -1512).
  • the next step towards minimal surgery in the treatment of primary cancer has been the introduction of the sentinel node biopsy technique with mapping of axillary lymph nodes instead of axillary lymph node clearance, which is associated with a high complication rate.
  • Adjuvant polychemotherapy is standard treatment for hormone-receptor negative patients with high risk of recurrence, irrespective of nodal status. A beneficial effect on both overall- and relapse-free survival has been demonstrated, especially in premenopausal patients (EBCTCG (1998) Lancet 352(9132): 930-42).
  • EBCTCG 1998 Lancet 352(9132): 930-412.
  • ER estrogen receptor
  • PR progesterone receptor
  • adjuvant polychemotherapy has been delivered in combination with endocrine therapy as sequential chemo-endocrine therapy.
  • adjuvant chemotherapy generally induces amenorrhea, causing a secondary endocrine effect in addition to the cytotoxic (Pagani O et al. (1998) Eur J Cancer 34(5):632-40).
  • Endocrine therapy has been recommended for patients with hormone receptor positive tumors irrespective of age, stage and menopausal status.
  • ovarian ablation by surgery or irradiation, or ovarian suppression by LHRH agonists is efficient adjuvant treatment modalities (Emens LA and Davidson NA (2003) Clin Ca Res (1 Pt 2): 468S-94S).
  • ovarian ablation has no place, since the primary source of estrogen is not from ovarian synthesis but from the conversion of androstenedione to estrone and estradiol in peripheral tissues including the breast.
  • Tamoxifen is a selective estrogen receptor modulator (SERM) with an antagonistic effect on the ER, making it a suitable treatment for advanced breast cancer in both pre- and postmenopausal women.
  • SERM selective estrogen receptor modulator
  • AIs Aromatase inhibitors
  • EBCTCG Lancet 365(9472):1687-7157
  • Aromatase inhibitors function by inhibiting aromatase, the enzyme converting androgens into estrogens.
  • AIs can be given as adjuvant treatment to postmenopausal women, either alone or following tamoxifen treatment and they have been shown to significantly reduce the mortality, possibly even more if given alone (Howell A et al.
  • Adjuvant endocrine therapy is believed to have no place in hormone receptor negative breast cancer, although some studies indicate that some ER negative i.e., ERa negative (ERa-), tumors respond to tamoxifen treatment (EBCTCG (1998) Lancet 351 :1451-1467)
  • the HER2/neu gene is overexpressed in about 20% of all, and in up to 70% of lowly differentiated, breast cancers (Berger MS et al. (1988) Cancer Res 48(5): 1238-43; Borg A et al. (1990) Cancer Res 50(14): 4332-7). Patients with HER2 overexpressing tumors may benefit from treatment with the monoclonal antibody trastuzumab.
  • Experimental data support a relationship between HER2 overexpression and resistance to endocrine treatment (Shou J et al. (2004) J Natl Cancer Inst 96(12):926-35) while clinical data are not consistent (Borg A et al. (1994) Cancer Lett 81 (2):137-44, De Placido S et al. (2003) Clin Ca Res 9(3):1039-46, Ryden L et al. (2005) J Clin Oncol 23(21 ):4695-704).
  • Morphologic criteria are still generally considered important in the establishment of a breast cancer diagnosis, both in situ and invasive cancer.
  • invasive breast carcinomas invasive ductal carcinoma is the most common tumor type (-80 %) and lobular carcinoma is the second largest entity (-10-15%).
  • Tubular and medullary carcinomas are other distinct types with lower prevalence (WHO, Histological typing of breast tumors, in International histological classification of tumors no:2, 1981 , WHO, Geneva).
  • ERa and PR hormone receptor responsive, i.e., express the ER and/or PR.
  • the action of estrogen is mediated by the two receptors ERa and ER ⁇ .
  • ERa and PR are routinely assessed in order to select patients for endocrine therapy, and according to one standard, tumors with >10 % nuclear positivity are considered positive.
  • ERa is today considered a predictor of tamoxifen response.
  • PR positivity may even be a more powerful predictor of tamoxifen response than ERa.
  • ER ⁇ The role of ER ⁇ in breast cancer is not yet fully clarified, although recent studies implicate that ER ⁇ -expression may be associated with a better tamoxifen response (Borgquist S et al, (2008) J Clin Pathol 61 (2):197-203), particularly in ERa- tumors (Gruvberger-Saal SK et al. (2007) Clin Cancer Res 13:1987-1994). However, determination of ER ⁇ is today generally not considered clinically relevant. A major problem to day is that 30-40% of the ERa positive (ERa+) patients do not respond to tamoxifen treatment (Riggins RB et al. (2007) Cancer Letters 1 :1 -24, Gruvberger-Saal SK et al.
  • HER2 status is also assessed routinely, primarily by IHC and in cases with moderate expression (2+), gene amplification status is determined by fluorescence in situ hybridization (FISH) analysis. Patients with a HER2 positive tumor may benefit from treatment with trastuzumab.
  • FISH fluorescence in situ hybridization
  • Endpoint analysis is used to evaluate trials with adjuvant treatments for cancer as this gives information on how the patients respond to a certain therapy. Endpoint analysis may also be useful for studies of a potential biomarker.
  • OS Overall survival
  • OS takes in to account time to death, irrespective of cause, e.g., if the death is due to cancer or not. Loss to follow-up is censored and regional recurrence, distant metastases, second primary breast cancers, and second other primary cancers are ignored.
  • RFS recurrence-free survival
  • BCSS breast cancer-specific survival
  • BCSS Breast cancer-specific survival
  • Method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) concluding that the subject is likely to benefit from an endocrine treatment.
  • Non-treatment strategy method for a mammalian subject having a breast cancer comprising: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is lower than or equal to said reference value, d) refraining from treating said subject with an endocrine treatment.
  • Method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) concluding that the subject is likely to benefit from an endocrine treatment, or if said ER status and said HMGCR status are negative, e2) concluding that the subject is not likely to benefit from the endocrine treatment.
  • said endocrine treatment is selected from a SERM treatment, an aromatase inhibitor treatment, and a steroidal estrogen receptor antagonist treatment.
  • said endocrine treatment is a SERM treatment and said SERM is selected from toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen.
  • body fluid is selected from the group consisting of blood, plasma, serum, cerebral fluid, urine and exudate.
  • tissue sample is a breast cancer tissue sample.
  • step b) is limited to the cytoplasms of cells of said sample.
  • breast cancer is a node positive breast cancer.
  • reference value is a value corresponding to an amount of HMGCR protein in a reference sample.
  • sample value of step b) is determined as being either 1 , corresponding to detectable HMGCR protein in said sample, or 0, corresponding to no detectable HMGCR protein in said sample.
  • step c) corresponds to a reference sample having no detectable HMGCR protein.
  • amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
  • amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
  • step b) comprises: b1 ) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to any HMGCR protein present in said sample; b2) removing non-bound affinity ligand; and b3) quantifying the affinity ligand remaining in association with said sample to evaluate said amount.
  • quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID NO:1.
  • quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the amino acid sequence SEQ ID NO:1.
  • said quantifiable affinity ligand is a protein ligand derived from a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
  • a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
  • quantifiable affinity ligand is capable of selective interaction with an HMGCR protein whose amino acid sequence consists of the sequence of SEQ ID NO:1 or SEQ ID NO:4.
  • said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • said secondary affinity ligand capable of recognizing said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • Kit for carrying out the method according to any one of the preceding claims which comprises a) a quantifiable affinity ligand capable of selective interaction with an HMGCR protein; and b) reagents necessary for quantifying the amount of said quantifiable affinity ligand.
  • Kit according to claim 48 in which said quantifiable affinity ligand is selected from the group consisting of antibodies, fragments thereof and derivatives thereof.
  • Kit according to claim 49 in which said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID NO:1.
  • Kit according to claim 49 in which said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the sequence SEQ ID NO:1.
  • said quantifiable affinity ligand is a protein ligand derived from a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
  • Kit according to claim 48 in which said quantifiable affinity ligand is an oligonucleotide molecule.
  • kits according to any one of claims 48-53 in which said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein comprising, or consisting of, a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
  • kits according to any one of claims 48-54 in which said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein comprising, or consisting of, a sequence selected from: i) SEQ ID NO:2; and a sequence which is at least 85 % identical to SEQ ID NO:2.
  • kits according to any one of claims 48-55 in which said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein comprising, or consisting of, the sequence SEQ ID NO:4.
  • said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • Kit according to any one of claims 48-57 in which said reagents necessary for quantifying said amount of said quantifiable affinity ligand comprise a secondary affinity ligand capable of recognizing said quantifiable affinity ligand.
  • said secondary affinity ligand comprises a label selected from the group consisting of fluorescent dyes or metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • Kit according to claim 60 in which at least one reference sample is a tissue sample comprising no detectable HMGCR protein.
  • Kit according to claim 60 or 61 in which at least one reference sample comprises HMGCR protein.
  • Kit according to claim 63 in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 25 %, or lower.
  • Kit according to claim 64 in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 10 %, or lower.
  • Kit according to claim 65 in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 1 %, or lower.
  • Kit according to claim 69 in which at least one reference sample comprises an amount of HMGCR protein corresponding to a strong cytoplasmic intensity.
  • Kit according to any one of claims 60-71 comprising: a first reference sample comprising an amount of HMGCR protein corresponding to a value (positive reference value) being higher than a reference value; and a second reference sample comprising an amount of HMGCR protein corresponding to a value (negative reference value) being lower than or equal to said reference value.
  • HMGCR protein or an antigenically active fragment thereof, for the production, selection or purification of an endocrine treatment indicating agent for a mammalian subject having a breast cancer.
  • said endocrine treatment indicating agent is an affinity ligand capable of selective interaction with the HMGCR protein, or an antigenically active fragment thereof.
  • affinity ligand is capable of selective interaction with a protein consisting of the sequence SEQ ID NO:1.
  • amino acid sequence of the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
  • amino acid sequence of the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
  • Affinity ligand capable of selective interaction with an HMGCR protein, for in vivo use as an endocrine treatment indicating agent in a mammalian subject having a breast cancer
  • Affinity ligand capable of selective interaction with an HMGCR protein, for in vivo evaluation of an amount of HMGCR protein in a subject having a breast cancer.
  • Affinity ligand according to any one of claims 83-84 which is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID NO:1.
  • Affinity ligand according to claim 85 which is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the sequence SEQ ID NO:1.
  • Affinity ligand according to any one of claims 83-86, capable of selective interaction with a polypeptide consisting of the sequence SEQ ID NO:1.
  • Affinity ligand according to any one of claims 83-86, capable of selective interaction with a polypeptide consisting of the sequence SEQ ID NO:4.
  • Endocrine treatment product according to claim 92 wherein said breast cancer is ER negative or PR negative.
  • Endocrine treatment product according to claim 92 or 93 being tamoxifen.
  • Kit-of-parts including an endocrine treatment product and a statin.
  • Kit-of-parts according to claim 98 for use in therapy 99. Kit-of-parts according to claim 98 for use in therapy.
  • Products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in therapy.
  • 102. Products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in breast cancer therapy.
  • 103. Method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer, comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) treating said subject with an endocrine treatment regimen.
  • Method according to claim 103 wherein said breast cancer is ER negative or PR negative.
  • Method according to claim 104 wherein said breast cancer is ER negative.
  • Method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) treating said subject with an endocrine treatment regimen, or if said ER status and said HMGCR status are negative, e2) treating said subject with a non-endocrine treatment regimen.
  • Method according to claim 106 wherein the ER status is obtained from the sample of step a).
  • said endocrine treatment is selected from a SERM treatment, an aromatase inhibitor treatment, and a steroidal estrogen receptor antagonist treatment.
  • endocrine treatment is a SERM treatment and said SERM is selected from toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen.
  • Method according to claim 111 wherein the body fluid is selected from the group consisting of blood, plasma, serum, cerebral fluid, urine and exudate.
  • step b) is limited to the cytoplasms of cells of said sample.
  • step b) is determined as being either 1 , corresponding to detectable HMGCR protein in said sample, or 0, corresponding to no detectable HMGCR protein in said sample.
  • said reference value of step c) corresponds to a reference sample having no detectable HMGCR protein.
  • amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
  • amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
  • step b) comprises: b1 ) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to any HMGCR protein present in said sample; b2) removing non-bound affinity ligand; and b3) quantifying the affinity ligand remaining in association with said sample to evaluate said amount.
  • Method according to claim 139 wherein said quantifiable affinity ligand is selected from the group consisting of antibodies, fragments thereof and derivatives thereof.
  • quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID NO: 1
  • quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the amino acid sequence SEQ ID NO:1.
  • said quantifiable affinity ligand is a protein ligand derived from a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
  • a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
  • quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • said secondary affinity ligand capable of recognizing said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • Method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer comprising simultaneous, separate or sequential administration of a statin and an endocrine treatment product.
  • Method according to claim 149 wherein the endocrine treatment product is a SERM.
  • statin is a lipophilic/hydrophobic statin or a hydrophobic statin.
  • statin is a lipophilic/hydrophobic statin selected from fluvastatin, lovastatin, simvastatin, atorvastatin and cehvastatin.
  • a solid line represents HMGCR high subjects, and a dotted line represents HMGCR low subjects.
  • Figure 1 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma.
  • Figure 1a shows recurrence free survival in patients treated with adjuvant tamoxifen.
  • Figure 1 b shows recurrence free survival in patients who received no adjuvant endocrine treatment.
  • Figure 2 shows the results of a survival analysis based on immunohistochemical staining of ER positive subjects diagnosed with invasive breast carcinoma. A fraction score of ER > 10 % was considered positive.
  • Figure 2a shows recurrence free survival in patients treated with adjuvant tamoxifen.
  • Figure 2b shows recurrence free survival in patients who received no adjuvant endocrine treatment.
  • Figure 3 shows the impact on survival if splitting subjects into groups with different combinations of HMGCR protein expression status and ER status. Briefly, all subjects were split into four groups based on HMGCR status and ER status, i.e.
  • Figure 3a shows recurrence free survival in patients treated with adjuvant tamoxifen.
  • Figure 3b shows recurrence free survival in patients who received no adjuvant endocrine treatment.
  • Figure 4 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma.
  • Figure 4a shows recurrence free survival in of node positive subjects treated with adjuvant tamoxifen.
  • Figure 4b shows recurrence free survival in node negative subjects treated with adjuvant tamoxifen.
  • Figure 5 shows the results of a survival analysis based on immunohistochemical staining of ER positive subjects diagnosed with invasive breast carcinoma. A fraction score of ER > 10 % was considered positive.
  • Figure 5a shows recurrence free survival in of node positive subjects treated with adjuvant tamoxifen.
  • Figure 5b shows recurrence free survival in of node negative subjects treated with adjuvant tamoxifen.
  • Figure 6 shows the impact on survival if splitting subjects into groups with different combinations of HMGCR protein expression status and ER status. Briefly, all subjects were split into four groups based on HMGCR status and ER status, i.e. subjects that are HMGCR positive and ER positive, subjects that are HMGCR positive and ER negative, subjects that are
  • FIG. 6a shows recurrence free survival in node positive subjects treated with adjuvant tamoxifen.
  • Figure 6b shows recurrence free survival in node negative subjects treated with adjuvant tamoxifen.
  • Figure 7 shows the results of a survival analysis based on immunohistochemical staining of ER negative subjects diagnosed with breast invasive carcinoma. A fraction score of ER expression > 10 % was considered positive.
  • Figure 7a shows recurrence free survival in subjects treated with adjuvant tamoxifen.
  • Figure 7b shows recurrence free survival in subjects treated with adjuvant tamoxifen.
  • tissue cores were scored for high or low
  • a solid line represents a group of subjects given adjuvant tamoxifen, and a dotted line represents patients who received no adjuvant endocrine treatment.
  • Figure 8 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma.
  • Figure 8a shows recurrence free survival in HMGCR high patients.
  • Figure 8b shows recurrence free survival in HMGCR low patients.
  • Figure 9 shows the results of a survival analysis based on immunohistochemical staining of HMGCR positive and ER negative subjects diagnosed with invasive breast carcinoma.
  • Figure 9a shows recurrence free survival.
  • Figure 9b shows recurrence free survival in node positive patients.
  • Figure 10 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma. The subjects were classified as ER positive or ER negative, wherein a fraction score of > 10 % was considered positive and a fraction score of ⁇ 10 % was considered negative.
  • Figure 10a shows recurrence free survival in HMGCR positive or ER positive subjects.
  • Figure 10b shows recurrence free survival in HMGCR negative and ER negative subjects.
  • Figure 11 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma. The subjects were classified as PR positive or PR negative, wherein a fraction score of > 10 % was considered positive and a fraction score of ⁇ 10 % was considered negative.
  • Figure 11a shows recurrence free survival in HMGCR positive or PR positive subjects.
  • Figure 11 b shows recurrence free survival in HMGCR negative and PR negative subjects.
  • Figure 12 shows the recurrence free survival of HMGCR positive and PR negative subjects diagnosed with invasive breast carcinoma. A fraction score of PR expression > 10 % was considered positive.
  • Figure 13 shows Western blot of HMGCR protein expression in tamoxfen sensitive ER positive breast cancer cells (ZR751 , T47D, MCF7RC), and tamoxifen resistant ER positive (BT474) cells.
  • Figure 14 shows HMGCR and ERa expression in MCF7 cells treated with either 10 ⁇ M Simvastatin, 100 nM Tamoxifen, or a combination of both sustances. Blot of actin expression is included as control.
  • Figure 15 shows the level of HMGCR mRNA-levels in MCF7 cells after treatment with either 10 ⁇ M Simvastatin, 100 nM Tamoxifen, or a combination of both sustances.
  • Figure 16 shows Western blot of HMGCR protein expression in tamoxifen sensitive (MCF7) and resistant (LCC2 and LCC9) cell lines.
  • Figure 17 shows Western blot of HMGCR and ERa protein expression after Simvastatin treatment in concentrations ranging from 0 to 9 ⁇ M. Blot of actin expression is included as control.
  • Tamoxifen has been the mainstay of adjuvant endocrine therapy for the last 25 years and a wealth of evidence exists supporting its role in the treatment of breast cancer, irrespective of menopausal status.
  • the results of a meta-analysis have demonstrated significant reductions in both disease recurrence (41 %), and breast cancer specific mortality (34%) when comparing 5 years tamoxifen to no adjuvant treatment (EBCTG: (2005) Lancet 365:1687-717).
  • HMGCR protein acts as a rate-limiting enzyme in the mevalonate pathway.
  • cholesterol represents the main product of this pathway, it also produces a number of non-sterol isoprenoid side products, which have been shown to be important regulators of angiogenesis, proliferation, and migration (Liao JK (2002) J Clin Invest 110:285-8, Wejde J, et al (1992) Anticancer Res 12:317-24).
  • statin induced mevalonate depletion results in an adaptive induction of HMGCR protein expression in Chinese hamster ovary cells (Goldstein JL and Brown MS (1990) Nature 343:425-30) and MCF7 breast cancer cells (Duncan RE, et al (2005) Cancer Lett 224:221 -8).
  • Treatment of MCF7 cells with mevastatin resulted in a 10- to 15-fold induction of HMGCR activity in association with a 2.5- to 3.5-fold induction of HMGCR mRNA expression.
  • statin treatment of breast cancer cell lines increased HMGCR protein expression (see fig 14 and 17).
  • statins have been shown to induce HMGCR protein expression and the finding that increased levels of HMGCR protein expression are associated with an improved response to tamoxifen in both ER positive and ER negative tumors (discussed further below), the inventors conclude that a combination of an endocrine treatment product and one or more statins is a new therapeutic option.
  • products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in therapy, such as breast cancer therapy.
  • the combination of the two products may be provided in a "kit-of parts" or an article of manufacture, which may comprise instruction for the simultaneous, separate or sequential use in therapy, such as breast cancer therapy.
  • kit-of-parts including an endocrine treatment product and a statin.
  • such a kit-of-parts may be for use in therapy, such as breast cancer therapy.
  • therapy such as breast cancer therapy.
  • subjects having breast cancer tumors expressing high levels of HMGCR protein generally respond well to endocrine treatment.
  • subjects having breast cancer tumors expressing low levels of HMGCR protein are shown to be less responsive.
  • a combination of an endocrine treatment product and a statin may thus be a particularly suitable option for the treatment of subjects having low HMGCR protein levels. By this it is not said that subjects having high HMGCR protein levels cannot benefit from such a combination.
  • said breast cancer may be HMGCR protein low.
  • the breast cancer is "HMGCR protein low” if an HMGCR protein value derived from the breast cancer (sample value) is lower than a relevant reference value.
  • HMGCR protein low if an HMGCR protein value derived from the breast cancer (sample value) is lower than a relevant reference value.
  • Relevant sample and reference values are discussed below in connection with the method aspects of the treatment predictive indication.
  • the breast cancer may for example be considered HMGCR protein low if a sample from a primary or secondary breast tumor, shows no detectable HMGCR protein expression in relevant parts of the sample, such as in the tumor cells.
  • the breast cancer may for example be considered HMGCR protein low if such sample contains an amount of HMGCR corresponding to an absent cytoplasmic intensity or a cytoplasmic fraction which is 1 % or lower.
  • Cytoplasmic fraction and cytoplasmic intensity are defined below in connection with the treatment predictive indication. From the present disclosure, the person skilled in the art, such as a pathologist, understands how to determine whether the breast
  • HMGCR protein expression is an indicator of response to endocrine treatment in both ER negative (ER-) and ER positive (ER+) cancers.
  • ER- ER negative
  • ER+ ER positive
  • the need for the combination treatment may be higher among ER- subjects who are generally believed to be less responsive to endocrine treatments such as tamoxifen.
  • the breast cancer therapy may thus be treatment of an ER- or ER+ breast cancer.
  • the breast cancer therapy may be treatment of a lymph node positive breast cancer (in figures 4, 5, 6 and 9 it is shown that the association between HMGCR protein expression and response to endocrine treatment is particularly accentuated in subjects having node positive breast cancers).
  • the breast cancer of the method may be HMGCR protein low.
  • HMGCR protein low is defined above. Whether a breast cancer is HMGCR protein low or not may thus be determined according to the method aspects of the treatment predictive indication presented below, and a person skilled in the art may conclude that the breast cancer is HMGCR protein low if a sample value derived from it is equal to or lower than the reference value.
  • the method of treatment may comprise the steps of establishing that the breast cancer is HMGCR protein low. Tissue material from a surgical removal of the breast cancer may for example be used in this establishment.
  • the breast cancer may be ER- or ER+. In further embodiments, the breast cancer may be a lymph node positive breast cancer. These embodiments are discussed above.
  • an "endocrine treatment product” refers to a compound having an anti-estrogenic effect.
  • antiestrogenic effect refers to suppression of estrogen production or inhibition of estrogen effects in the body.
  • the "endocrine treatment product” may be selected from the group consisting of a selective estrogen receptor modulator (SERM), an aromatase inhibitor, and a steroidal estrogen receptor antagonist.
  • SERM selective estrogen receptor modulator
  • the SERM may for example be selected from toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen.
  • the aromatase inhibitor may for example be selected from anastrozole, letrozole and exemestane.
  • the steroidal estrogen receptor antagonist may for example be fulvestrant.
  • the endocrine treatment product is a SERM, such as tamoxifen.
  • the statin of the present disclosure may be selected from lipophilic/hydrophobic statins and hydrophobic statins.
  • the lipophilic/hydrophobic statins comprise fluvastatin, lovastatin, simvastatin, atorvastatin and cehvastatin.
  • the hydrophobic statins comprise pravastatin and rosuvastatin.
  • the person skilled in the art is capable of determining therapeutically effective amounts of the endocrine treatment product and the statin, respectively.
  • the person skilled in the art is capable of determining suitable doses of the endocrine treatment product and the statin, respectively, in the above-mentioned products or kit-of-parts.
  • the amounts the endocrine treatment product and the statin of the present disclosure required for use in treatment will vary not only with the particular compounds selected but also with the route of administration, the nature of the condition for which treatment is required and the age, weight and condition of the patient, and will be ultimately at the discretion of the attendant physician.
  • a suitable of dose the endocrine treatment product tamoxifen will be in the range of about 1 -100 mg per day, such as in the range of 15-45 mg per day, such as 20-40 mg per day.
  • a suitable dose of statins, such as simvastatin may be in the range of 1 -100 mg per day, such as 5-80 mg per day, typically 10-20 mg per day.
  • Tamoxifen is conveniently administered in unit dosage form; for example containing 1-100 mg, conveniently 10-40 mg, such as about 20 mg.
  • the statins may also be administered in unit dosage form; for example containing 1 -100 mg, conveniently 5-80 mg.
  • the endocrine treatment product and the statin of the present disclosure will normally be administrated via the oral, parenteral, intravenous, intramuscular, subcutaneous or other injectable ways, buccal, rectal, vaginal, transdermal and/or nasal route and/or via inhalation, in the form of pharmaceutical preparations comprising the active ingredient or a pharmaceutically acceptable salt or prodrug or solvate thereof, or a solvate of such a salt, in a pharmaceutically acceptable dosage form.
  • the compositions may be administered at varying doses.
  • the endocrine treatment product and the statin of the present disclosure may be administered as raw chemicals, it is preferred to present the active ingredients as two separate or one single pharmaceutical composition(s).
  • the present disclosure thus further provides one or two pharmaceutical compositions comprising the respective active ingredient or pharmaceutically acceptable salts or prodrugs thereof together with one or more pharmaceutically acceptable carriers.
  • the carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • pharmaceutical formulations include but are not limited to those suitable for oral, rectal, nasal, topical (including buccal and sub-lingual), transdermal, vaginal or parenteral (including intramuscular, sub-cutaneous and intravenous) administration or in a form suitable for administration by inhalation or insufflation.
  • the formulations may, where appropriate, be conveniently presented in discrete dosage units and may be prepared by any of the methods well known in the art of pharmacy. All methods according to this embodiment include the step of bringing into association the active compound with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired composition.
  • compositions suitable for oral administration are conveniently presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules.
  • the formulation is presented as a solution, a suspension or as an emulsion.
  • the active ingredient is alternatively presented as a bolus, electuary or paste.
  • Tablets and capsules for oral administration may contain conventional excipients such as binding agents, fillers, lubricants, disintegrants, or wetting agents.
  • the tablets may be coated according to methods well known in the art.
  • Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for constitution with water or other suitable vehicle before use.
  • Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), or preservatives.
  • the endocrine treatment product and the statin of the present disclosure may be formulated for parenteral administration (e.g. by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative.
  • the compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulation agents such as suspending, stabilizing and/or dispersing agents.
  • the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution, for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.
  • the above described formulations are adapted to give sustained release of the active ingredient.
  • the doses, administration intervals, forms of the active ingredients, pharmaceutically acceptable carriers, pharmaceutical preparations and administration routes may for example be those employed in clinical practice today.
  • the physician responsible for the breast cancer treatment according to the present disclosure may thus use information from established treatment protocols based on administration of endocrine treatment products and statins, respectively.
  • the breast cancer subject is treated with the statin before the endocrine treatment product is administrated.
  • the statin treatment may be neo-adjuvant and/or adjuvant, while the endocrine treatment normally will be adjuvant. Consequently, the statin may be administrated before the tumor is surgically removed. Then (after surgery), the statin may for example be administrated as long as the endocrine treatment is performed.
  • the statin and the endocrine treatment product may be administrated simultaneously during a first period followed by a second period of endocrine treatment without statins, optionally in combination with a different chemotherapeutic agent.
  • the statin may be administrated to the subject at least until the HMGCR protein level of the subject is increased, and then, administration of the endocrine treatment product, optionally in combination with more statin, may follow.
  • the HMGCR level may be monitored by measurements on tumor biopsies.
  • the above method may thus comprise the steps of administration of the statin until an increase in HMGCR protein expression is detected in the subject, followed by administration of the endocrine treatment product, optionally in combination with additional statin administration.
  • a method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) concluding that the subject is likely to benefit from an endocrine treatment.
  • an increase in the amount of HMGCR protein typically results in an increase in the sample value, and not the other way around.
  • the evaluated amount may correspond to any of a predetermined number of discrete sample values.
  • a first amount and a second, increased, amount may correspond to the same sample value.
  • an increase in the amount of HMGCR protein will not result in a decrease in the sample value in the context of the present disclosure.
  • the evaluated amounts may be inversely related to sample values if the qualification between step c) and d) is "if the sample value is lower than the reference value" (see the method above). This applies mutatis mutandis to the other method aspects, configurations and embodiments of the present disclosure.
  • “likely to benefit from an endocrine treatment” refers to having a higher probability of survival or recovery if undergoing an endocrine treatment than if not undergoing an endocrine treatment.
  • “recovery” refers to return from a breast cancer state to a breast cancer free state.
  • the “survival” may be a recurrence free survival or a breast cancer specific survival. Further, the “recovery” may be a recurrence free recovery.
  • the "higher probability” may be a probability benefit at five years, ten years or 15 years of at least 5 %, such as at least 10 %.
  • This first aspect of the present disclosure is based on the previously unrecognized fact that the expression of HMGCR protein in a sample obtained from a subject having a breast cancer may serve as an indicator of response to endocrine treatment in the subject. More particularly, the inventors have identified that, in patients suffering from breast cancer, a correlation between values of HMGCR protein on the one hand and the survival after endocrine treatment on the other. Typically, high HMGCR protein values are shown herein to correlate with responsiveness to endocrine treatment.
  • the present disclosure based on HMGCR protein expression as a breast cancer treatment indicator, provides for a number of benefits. Firstly, it provides an additional, or alternative, tool for predicting whether a patient is likely to respond to endocrine treatment.
  • the present disclosure identifies a subgroup of hormone receptor negative patients that, contrary to earlier beliefs, benefit from to endocrine treatment. Consequently, the present disclosure may provide for accurate treatment of a previously undertreated group.
  • the present disclosure identifies a subgroup of breast cancer patient which generally do not benefit from endocrine treatment.
  • subjects with hormone receptor negative breast cancers, especially ER- breast cancers have not received systemic endocrine treatment.
  • the survival rates in the subgroup of subjects with hormone receptor negative e.g. ER- or PR-, ER-, PR-, or ER- and PR-, breast cancers having high HMGCR values were improved with endocrine treatment.
  • a method for determining whether a mammalian subject having a breast cancer should undergo an endocrine treatment comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) concluding that the subject should undergo an endocrine treatment.
  • a non-treatment strategy method for a mammalian subject having a breast cancer comprising: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is lower than or equal to said reference value, d) refraining from treating said subject with an endocrine treatment.
  • the refraining of step d) may be refraining during at least one week from the completion of steps a) - c), such as at least one month from the completion of steps a) - c), such as at least three months from the completion of steps a) - c), such as at least six months from the completion of steps a) - c), such as at least one year from the completion of steps a) - c), such as at least two years from the completion of steps a) - c).
  • the refraining of step d) may be refraining until the next time the method is performed or until recurrence of a breast cancer tumor.
  • the breast cancer may be a hormone receptor negative breast cancer, such as an ER- or PR- breast cancer, an ER- breast cancer, a PR- breast cancer, or an ER- and PR- breast cancer.
  • the breast cancer may be previously diagnosed as hormone receptor negative.
  • hormone receptor status e.g. ER status or PR status
  • ER status or PR status may be assessed according to any method known to the skilled artisan and the person skilled in the art knows how to obtain the ER and/or PR status of a patient.
  • information may be obtained from the result of a test using the commercially available ER/PR pharmDX kit (DakoCytomation).
  • the method disclosed by Allred et al. (Allred et al. (1998) Mod Pathol 11 (2), 155) may be used to obtain a total score (Allred score), and, for both ER and PR, an Allred score of higher than two is considered positive and an Allred score of two or lower is considered negative.
  • ER refers to "ERa” in the context of the present disclosure.
  • a method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) concluding that the subject is likely to benefit from an endocrine treatment, or if said ER status and said HMGCR status are negative, e2) concluding that the subject is not likely to benefit from the endocrine treatment.
  • the method of the fourth configuration of the first aspect may answer the question whether the subject having a breast cancer is likely to benefit from an endocrine treatment or the question whether the subject having a breast cancer is not likely to benefit from an endocrine treatment.
  • the method of the fourth configuration of the first aspect may, but does not have to, comprise both step e1 ), together with its adherent qualification ("if phrase"), and step e2), together with its adherent qualification ("if phrase").
  • the HMGCR status may be considered positive if the sample value is higher than the reference value and negative if the reference value is lower than, or equal to, the reference value.
  • a single sample from the subject may provide both the ER status and the HMGCR status, for example by means of immunohistochemistry.
  • the ER status may be obtained from the sample of step a).
  • the ER status may be obtained from a tissue material from which the sample of step a) was also obtained. Consequently, the required number of biopsies or amount of biological material from the subject may be kept low.
  • a method for determining whether a sample value corresponding to an amount of HMGCR protein present in at least part of a sample earlier obtained from a mammalian subject having a breast cancer is in favor of a decision to apply an endocrine treatment to the subject comprising the steps of: a) providing the sample earlier obtained from the subject; b) evaluating the amount of HMGCR protein present in at least part of the sample, and determining the sample value corresponding to the amount; c) comparing the sample value obtained in step b) with a reference value; and, if the sample value is higher than the reference value, d1 ) concluding that the sample value is in favor of a decision to treat the subject with an endocrine treatment, and/or if the sample value is lower than or equal to the reference value, d2) concluding that the sample value is in favor of a decision to refrain from treating the subject with an endocrine treatment.
  • the method may answer the question whether the sample value is in favor of a decision to refrain from treating the subject with an endocrine treatment or the question whether the sample value is in favor of a decision to treat the subject with an endocrine treatment.
  • the method of the fifth configuration of the first aspect may, but does not have to, comprise both step d1 ), together with its adherent qualification ("if phrase"), and step d2), together with its adherent qualification ("if phrase").
  • the physician responsible for the treatment may take several parameters into account, such as the result of an immunohistochemical evaluation, patient age, hormone receptor status, general condition, medical history, such as breast cancer history and hereditary characteristics, e.g. whether there is a history of breast cancer in the subject's family.
  • the physician may perform an HMGCR protein test, or order an HMGCR protein test performed, according to the first aspect.
  • a method according to the fifth configuration of the first aspect may be particularly relevant.
  • the physician may instruct someone else, such as lab staff, to perform part of a method according to the present disclosure, such as steps a) to c), and perform the remaining, such as step d) or e), himself.
  • a method for determining an endocrine treatment prediction regarding a mammalian subject having a breast cancer a) providing a sample from the subject; b) evaluating the amount of HMGCR protein present in at least part of the sample, and determining a sample value corresponding to the evaluated amount; c) correlating the sample value of step b) to the endocrine treatment prediction for the subject.
  • the sample may be an earlier obtained sample.
  • the correlating of step c) refers to any way of associating survival data to the obtained sample value so as to establish the treatment prediction.
  • a method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) treating said subject with an endocrine treatment regimen.
  • the breast cancer may be a hormone receptor negative breast cancer, such as an ER- or PR- breast cancer, an ER- breast cancer, a PR- breast cancer, or an ER- and PR- breast cancer.
  • the breast cancer may be previously diagnosed as hormone receptor negative.
  • a method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) treating said subject with an endocrine treatment regimen, or if said ER status and said HMGCR status are negative, e2) treating said subject with a non-endocrine treatment regimen.
  • the method may involve an endocrine treatment regimen or a non-endocrine treatment regimen.
  • the method of the second configuration of the second aspect may, but does not have to, comprise both step e1 ), together with its adherent qualification ("if phrase"), and step e2), together with its adherent qualification ("if phrase”).
  • the physician responsible for the treatment of the subject may perform steps a) to c) himself or instruct someone else, such as lab staff, to perform them.
  • an "endocrine treatment” refers to a systemic treatment with an anti-estrogenic effect. Further, “antiestrogenic effect” refers to suppression of estrogen production or inhibition of estrogen effects in the body. In the art, an endocrine treatment is sometimes referred to as an anti-hormonal treatment.
  • the "endocrine treatment” of the present disclosure may be selected from the group consisting of a selective estrogen receptor modulator (SERM) treatment, an aromatase inhibitor treatment, and a steroidal estrogen receptor antagonist treatment.
  • SERM treatment may for example be a treatment selected from a toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen treatment.
  • the aromatase inhibitor treatment may for example be selected from anastrozole, letrozole and exemestane treatment.
  • the steroidal estrogen receptor antagonist treatment may be a treatment with fulvestrant.
  • a SERM may have either an agonistic or antagonistic effect depending on the target tissue.
  • a SERM may act as an antagonist in breast and as an agonist in uterus.
  • the endocrine treatment is tamoxifen treatment.
  • the "non-endocrine treatment" of the present disclosure may be selected from chemotherapies, radiation therapies and combinations thereof.
  • the chemotherapies comprise mono- or polychemotherapy, such as treatment with CMF (cyclophosphamide, methotrexate, 5-fluorouracil), FEC (fluorouracil, epirubicin, cyclofosfamid) and/or taxanes.
  • CMF cyclophosphamide, methotrexate, 5-fluorouracil
  • FEC fluorouracil, epirubicin, cyclofosfamid
  • taxanes if the breast cancer is HER2 positive (HER2+), the non-endocrine treatment may be an anti-HER2 treatment, such as a treatment with an anti-HER2 antibody, e.g., trastuzumab.
  • a mammalian subject having a breast cancer refers to a mammalian subject having a primary or secondary breast tumor or a mammalian subject which has had such tumor removed from the breast, wherein the removal of the tumor refers to killing or removing the tumor by any type of surgery or therapy. In the latter case, the tumor may for example have been removed less than one year ago. For example, a subject who has had a breast tumor removed by surgery and is about to get adjuvant therapy is considered “having a breast cancer” in the context of the present disclosure.
  • Breast tumor includes ductal carcinoma in situ (DCIS).
  • a mammalian subject having a breast cancer also includes the case wherein the mammalian subject is suspected of having a breast cancer at the time of the performance of the use or method and the breast cancer diagnosis is established later.
  • “earlier obtained” refers to obtained before the method is performed. Consequently, if a sample earlier obtained from a subject is provided in a method, the method does not involve obtaining the sample from the subject, i.e., the sample was previously obtained from the subject in a step separate from the method.
  • Step b) of the methods of the above aspects involve evaluating the amount of HMGCR protein present in at least part of the sample, and determining a sample value corresponding to the amount.
  • the "at least part of the sample” refers to a relevant part, or relevant parts, of the sample for establishing a treatment prediction or drawing conclusions regarding suitable treatments.
  • the person skilled in the art understands which part or parts that are relevant under the circumstances present when performing the method. For example, if the sample comprises tumor and non-tumor cells, the skilled person may only consider the tumor cells, and only the cytoplasms of the tumor cells, of the sample. Further, in step b) an amount is evaluated and a sample value corresponding to the amount is determined.
  • the amount of HMGCR protein may be evaluated by visual inspection of a stained tissue sample and the sample value may then be categorized, e.g., as high or low based on the evaluated amount. The person skilled in the art understands how to perform such evaluation and determination.
  • the "reference value” refers to a predetermined value which is relevant for making decisions, or drawing conclusions, regarding the treatment or treatment prediction.
  • the data of the present disclosure is based on groups of human females.
  • the "mammalian subject” may be a human.
  • the "mammalian subject” may be a female, such as a premenopausal or postmenopausal female.
  • Endocrine treatment is given to both premenopausal and postmenopausal subjects.
  • Premenopausal females are generally considered to be more responsive to tamoxifen treatment.
  • premenopausal human female subjects may be a particularly relevant group.
  • the diagnosed or treated tumors of the present disclosure may be in any stage.
  • the subjects studied as described in Examples, section 4 had stage Il invasive breast cancers.
  • Stage Il refers to pT2 NO MO or pT1 -2 N1 MO according to the TNM staging system.
  • the "breast cancer” may be a stage Il breast cancer.
  • the "breast cancer” may be a node negative or a node positive breast cancer (see e.g. fig 4).
  • Node negative cancer and “node positive cancer” refers to a cancer that has and has not spread to the lymph nodes, respectively.
  • the treatment predictive role of HMGCR protein expression is particularly accentuated in node positive breast cancer.
  • the breast cancer may be node positive.
  • the sample may be a body fluid sample, such as a sample of blood, plasma, serum, cerebral fluid, lymph, urine or exudate.
  • the body fluid sample is sample of blood, plasma, serum or lymph.
  • the sample may be a cytology sample or a stool sample.
  • the level of HMGCR protein expression may preferably be measured intracellular ⁇ .
  • the body fluid, cytology or stool sample may for example comprise cells, such as tumor cells.
  • the sample may be a tissue sample, such as a tumor tissue sample.
  • the tissue sample may be derived from a primary breast tumor, such as an in situ or invasive carcinoma, or a secondary tumor (metastasis).
  • Tissue samples facilitate HMGCR protein expression analysis by means of immunohistochemistry.
  • the evaluation of step b) may be limited to the cytoplasms of cells, such as tumor cells, of the sample.
  • the evaluation is limited to the cytoplasms, only the characteristics, such as the HMGCR protein expression, of the cytoplasms are considered in the evaluation.
  • Such evaluation may for example by aided by immunohistochemical staining.
  • the inventors have found that subjects who suffer from breast cancer and show essentially no HMGCR protein expression generally have poor survival after endocrine treatment (see Examples, section 4 and the figures). Consequently, the "cut-off value" determining whether the subject is "HMGCR high” or "HMGCR low” may be zero.
  • the sample value of step b) may be either 1 , corresponding to detectable HMGCR protein in the sample, or 0, corresponding to no detectable HMGCR protein in the sample. Consequently, in such embodiments, the evaluation of the sample is digital: HMGCR protein is considered to be either present or not.
  • no detectable HMGCR protein refers to an amount of HMGCR protein that is so small that it is not, during normal operational circumstances, detectable by a person or an apparatus performing the method according to any one of the above aspects.
  • the "normal operational circumstances” refer to the laboratory methods and techniques a person skilled in the art would find appropriate for performing the invention.
  • the reference value of step c) may be 0.
  • the reference value of step c) may correspond to a reference sample having no detectable HMGCR protein (see below).
  • HMGCR protein high A sample value of HMGCR protein being higher than the reference value, or a subject from which such sample value is obtained, is sometimes referred to herein as "HMGCR protein high”. Further, a sample value of HMGCR protein being lower than, or equal to, the reference value, or a subject from which such sample value is obtained, is sometimes referred to herein as "HMGCR protein low”.
  • sample value and “reference value” are to be interpreted broadly.
  • the quantification of HMGCR protein to obtain these values may be done via automatic means, via a scoring system based on visual or microscopic inspection of samples, or via combinations thereof.
  • a skilled person such as a person skilled in the art of histopathology, to determine the sample and reference values merely by inspection, e.g., of tissue slides that have been stained for HMGCR protein expression.
  • the determination of the sample value being higher than the reference value may thus correspond to the determination, upon visual or microscopic inspection, that a sample tissue slide is more densely stained and/or exhibit a larger fraction of stained cells than is the case for a reference tissue slide.
  • sample value may also be compared to a reference value given by a literal reference, such as a reference value described in wording or by a reference picture. Consequently, the sample and/or reference values may in some cases be mental values that the skilled person determines upon inspection and comparison.
  • the skilled person may categorize a sample as being HMGCR protein high or low, wherein the sample is categorized as high if it contains more HMGCR protein than a previously inspected reference sample and low if it contains less or equally much.
  • Such evaluation may be assisted by staining the sample, and, if necessary, a reference sample, with a staining solution comprising e.g., antibodies selective for HMGCR protein.
  • a reference value found to be relevant for making treatment decisions regarding breast cancer subjects, for use as comparison with the sample value from the subject, may be provided in various ways. With the knowledge of the teachings of the present disclosure, the skilled artisan can, without undue burden, provide relevant reference values for performing the methods of the present disclosure.
  • the person performing the methods of the above aspects may, for example, adapt the reference value to desired information.
  • the reference value may be adapted to yield the most significant treatment predictive information, e.g., the largest separation between the HMGCR protein high survival curve and the HMGCR protein low survival curve (see e.g., fig 1 ).
  • An example of a reference value that may yield a large separation is an absent cytoplasmic intensity.
  • the reference value may correspond to the amount of HMGCR protein expression in a healthy tissue, such as healthy breast tissue, or stroma tissue of the subject of the method.
  • the reference value may be provided by the amount of HMGCR protein expression measured in a standard sample of normal tissue from another, comparable subject.
  • the reference value may be provided by the amount of HMGCR protein expression measured in a reference sample comprising tumor cells, such as a reference sample of tumor tissue, e.g., breast cancer tissue.
  • the amount of protein expression of the reference sample may preferably be previously established. Consequently, the reference value may be provided by the amount of HMGCR protein measured in a reference sample comprising cells expressing a predetermined amount of HMGCR protein.
  • the reference value may for example be provided by the amount of HMGCR protein expression measured in a reference sample comprising cell lines, such as cancer cell lines, expressing a predetermined, or controlled, amount of HMGCR protein.
  • a reference sample comprising cell lines, such as cancer cell lines, expressing a predetermined, or controlled, amount of HMGCR protein.
  • the person skilled in the art understands how to provide such cell lines, for example guided by the disclosure of Rhodes et al. (2006) The biomedical scientist, p 515-520.
  • the reference value may be a predetermined value corresponding to the amount of HMGCR protein expression in a reference sample.
  • the amount of HMGCR protein in the reference sample does not have to directly correspond to the reference value.
  • the reference sample may also provide an amount of HMGCR protein that helps a person performing the method to assess various reference values.
  • the reference sample(s) may help in creating a mental image of the reference value by providing a "positive" reference value and/or a "negative" reference value.
  • One alternative for the quantification of HMGCR protein expression in a sample is the determination of the fraction of cells in the sample that exhibit HMGCR protein expression over a certain level.
  • the fraction may for example be: a "cellular fraction”, wherein the HMGCR protein expression of the whole cells is taken into account; a "cytoplasmic fraction”, wherein the HMGCR protein expression of only the cytoplasms of the cells is taken into account; or a "nuclear fraction", wherein the HMGCR protein expression of only the nuclei of the cells is taken into account.
  • the cytoplasmic fraction may for example be classified as ⁇ 2 %, 2 - 25 %, > 25 - 75 % or > 75 % immunoreactive cells of the relevant cell population.
  • the "cytoplasmic fraction" corresponds to the percentage of relevant cells in a sample that exhibits a positive staining in the cytoplasm, wherein a medium or distinct and strong immunoreactivity in the cytoplasm is considered positive and no or faint immunoreactivity in the cytoplasm is considered negative.
  • the person skilled in the art of pathology understands which cells that are relevant under the conditions present when performing the method and may determine a cytoplasmic fraction based on his general knowledge and the teachings of the present disclosure.
  • the relevant cells may for example be tumor cells. Further, the skilled artisan understands how to perform corresponding measurements employing the "cellular fraction" or the "nuclear fraction”.
  • the intensity may for example be: a "cellular intensity”, wherein the HMGCR protein expression of the whole cells is taken into account; a "cytoplasmic intensity”, wherein the HMGCR protein expression of only the cytoplasms of the cells is taken into account, or a "nuclear intensity”, wherein the HMGCR protein expression of only the nuclei of the cells is taken into account. Cytoplasmic intensity is subjectively evaluated in accordance with standards used in clinical histopathological diagnostics.
  • the person skilled in the art understands which cells that are relevant under the conditions present when performing the method and may determine a cytoplasmic intensity based on his general knowledge and the teachings of the present disclosure.
  • the relevant cells may for example be tumor cells.
  • the determination of cytoplasmic intensity may for example be performed as described below in the Examples, Section 4, definition of "cytoplasmic intensity”. Further, the skilled artisan understands how to perform corresponding measurements employing the "cellular intensity" or the "nuclear intensity”.
  • the reference value may be a cytoplasmic fraction, a cytoplasmic intensity or a combination thereof.
  • the sample value may be a cytoplasmic fraction, a cytoplasmic intensity or a combination thereof.
  • the sample value and the reference value are both the same type of value.
  • the criterion for the conclusion in step d) is a sample value for the cytoplasmic fraction of HMGCR protein positive cells, i.e., a "cytoplasmic fraction", which is higher than 0 %, such as higher than 1 %, such as higher than 2 %, such as higher than 5 %,such as higher than 10 %, such as higher than 15 %, such as higher than 20 %, such as higher than 25 %, such as higher than 30 %, such as higher than 35 %, such as higher than 40 %, such as higher than 50 %, such as higher than 60 %, such as higher than 70 %, such as higher than 75 %, such as higher than 80 %, such as higher than 90 %.
  • a cytoplasmic fraction which is higher than 0 %, such as higher than 1 %, such as higher than 2 %, such as higher than 5 %,such as higher than 10 %, such as higher than 15 %, such as higher than 20 %, such as higher than
  • the reference value of step c) is a cytoplasmic fraction of 95 % or lower, such as 90 % or lower, such as 85 % or lower, such as 80 % or lower, such as 75 % or lower, such as 70 % or lower, such as 65 % or lower, such as 60 % or lower, such as 55 % or lower, such as 50 % or lower, such as 45 % or lower, such as 40 % or lower, such as 35 % or lower, such as 30 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower, such as 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %.
  • the inventors have realized that low cut-off values, such as a value of
  • the examined tumor samples generally show either a cytoplasmic fraction of higher than 50 % or a cytoplasmic fraction of 1 % or lower, wherein the former group is associated with response to tamoxifen.
  • the reference value is a cytoplasmic fraction, it is preferably 50 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower. Most preferred is 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %.
  • the criterion for the conclusion in step d) may be a sample value for staining intensity of a sample, i.e., a cytoplasmic intensity, which is higher than absent cytoplasmic intensity, such as higher than weak cytoplasmic intensity, such as higher than moderate cytoplasmic intensity.
  • the reference value of step c) may be a moderate cytoplasmic intensity of HMGCR protein expression or lower, such as a weak cytoplasmic intensity of HMGCR protein expression or lower, such as an absent cytoplasmic intensity.
  • the cut-off value "absent" cytoplasmic intensity is employed. Thus, if the reference value is a cytoplasmic intensity, it is preferably low, such as weak or lower. Most preferred is absent.
  • the reference value may be constituted of two values, wherein the criterion for the conclusion in step d) is a sample value being higher than any one of these two values.
  • An example of such a reference value is a cytoplasmic fraction of 25 % or lower and a weak cytoplasmic intensity or lower.
  • the reference value may be a combination of a fraction value and an intensity value, such as a cytoplasmic fraction value and a cytoplasmic intensity value.
  • the reference value may be a function of a cytoplasmic fraction value and a cytoplasmic intensity value.
  • a function may be a staining score.
  • the "staining score" is calculated as described in Examples, Section 3 and table 1 below.
  • the reference value may be a staining score of 2 or lower, such as 1 or lower, such as 0.
  • the reference value may involve two, and possibly even more, criteria.
  • the selection of a cytoplasmic intensity value and/or a cytoplasmic fraction value as the reference value may depend on the staining procedure, e.g., on the employed anti-HMGCR antibody and on the staining reagents.
  • a person skilled in the art e.g., a pathologist, understands how to perform the evaluation yielding a fraction, such as a cellular, cytoplasmic or nuclear fraction, or an intensity, such as a cellular, cytoplasmic or nuclear intensity.
  • a fraction such as a cellular, cytoplasmic or nuclear fraction
  • an intensity such as a cellular, cytoplasmic or nuclear intensity.
  • the skilled artisan may use a reference sample comprising a predetermined amount of HMGCR protein for establishing the appearance of a certain fraction or intensity.
  • a reference sample may not only be used for the provision of the actual reference value, but also for the provision of an example of a sample with an amount of HMGCR protein that is higher than the amount corresponding to the reference value.
  • histochemical staining such as in immunohistochemical staining
  • the skilled artisan may use a reference sample for establishing the appearance of a stained sample having a high amount of HMGCR protein, e.g., a positive reference. Subsequently, the skilled artisan may assess the appearances of samples having lower amounts of HMGCR protein, such as the appearance of a sample with an amount of HMGCR protein corresponding to the reference value.
  • the skilled artisan may use a reference sample to create a mental image of a reference value corresponding to an amount of HMGCR protein which is lower than that of the reference sample.
  • the skilled artisan may use another reference sample having a low amount of HMGCR protein, or lacking detectable HMGCR protein, for establishing the appearance of such sample, e.g., as a "negative reference”.
  • a reference value of 10 % cytoplasmic fraction may be employed: a first reference sample having no detectable HMGCR protein, and thus corresponding to a cytoplasmic fraction of 0, which is lower than the reference value; and a second reference sample having an amount of HMGCR protein corresponding to a cytoplasmic fraction of 75 % or higher, which is higher than the reference value. Consequently, in the evaluation, the skilled artisan may use a reference sample for establishing the appearance of a sample with a high amount of HMGCR protein.
  • Such reference sample may be a sample comprising tissue expressing a high amount of HMGCR protein, such as a sample comprising breast tumor tissue having a pre-established high expression of HMGCR protein.
  • the reference sample may provide an example of a strong cytoplasmic intensity (Cl).
  • Cl cytoplasmic intensity
  • the skilled artisan may then divide samples into the Cl categories absent, weak, moderate and strong. This division may be further assisted by a reference sample lacking detectable HMGCR protein (negative reference), i.e., a reference sample providing an absent cytoplasmic intensity.
  • the reference sample may provide an example of a sample with a cytoplasmic fraction (CF) of 75 % or higher. With the knowledge of the appearance of a sample with more than 75 % positive cells, the skilled artisan may then evaluate the cytoplasmic fraction of other samples having e.g., a lower percentage of positive cells.
  • This division may be further assisted by a reference sample essentially lacking HMGCR protein (negative reference), i.e., a reference sample providing a low CF (e.g., ⁇ 5%, such as ⁇ 2%), or a CF of O.
  • a reference sample essentially lacking HMGCR protein negative reference
  • a reference sample providing a low CF e.g., ⁇ 5%, such as ⁇ 2%
  • a CF of O e.g., a reference sample providing a low CF (e.g., ⁇ 5%, such as ⁇ 2%), or a CF of O.
  • cell lines expressing a controlled amount of HMGCR protein may be used as the reference, in particular as a positive reference.
  • One or more pictures may also be provided as the "reference sample”.
  • a picture may be of an example of a tumor tissue slide stained with a certain antibody during certain conditions that show a certain cellular intensity and/or fraction.
  • the above discussion about the "reference sample” applies mutatis mutandis to pictures.
  • the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
  • sequence ii) above is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:1.
  • the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
  • sequence ii) above is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:2.
  • % identical is calculated as follows.
  • the query sequence is aligned to the target sequence using the CLUSTAL W algorithm (Thompson, J. D., Higgins, D. G. and Gibson, T.J., Nucleic Acids Research, 22: 4673-4680 (1994)).
  • the amino acid residues at each position are compared, and the percentage of positions in the query sequence that have identical correspondences in the target sequence is reported as % identical.
  • the target sequence determines the number of positions that are compared. Consequently, in the context of the present disclosure, a query sequence that is shorter than the target sequence can never be 100 % identical to the target sequence. For example, a query sequence of 85 amino acids may at the most be 85 % identical to a target sequence of 100 amino acids.
  • the HMGCR protein may be detected and/or quantified through the application to the sample of a detectable and/or quantifiable affinity ligand, which is capable of selective interaction with the HMGCR protein.
  • the application of the affinity ligand is performed under conditions that enable binding of the affinity ligand to any HMGCR protein in the sample.
  • step b) may comprise: b1 ) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to HMGCR protein present in said sample; b2) removing non-bound affinity ligand; and b3) quantifying the affinity ligand remaining in association with said sample to evaluate said amount.
  • affinity ligand remaining in association with the sample refers to affinity ligand which was not removed in step b2), e.g., the affinity ligand bound to the sample.
  • the binding may for example be the interaction between antibody and antigen.
  • step b) may comprise: bl) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to HMGCR protein present in said sample; bll) quantifying the affinity bound to said sample to evaluate said amount.
  • the affinity ligand may be selected from the group consisting of antibodies, fragments thereof and derivatives thereof, i.e., affinity ligands based on an immunoglobulin scaffold.
  • the antibodies and the fragments or derivatives thereof may be isolated and/or mono-specific.
  • Antibodies comprise monoclonal and polyclonal antibodies of any origin, including murine, rabbit, human and other antibodies, as well as chimeric antibodies comprising sequences from different species, such as partly humanized antibodies, e.g., partly humanized mouse antibodies.
  • Polyclonal antibodies are produced by immunization of animals with the antigen of choice.
  • Monoclonal antibodies of defined specificity can be produced using the hybridoma technology developed by K ⁇ hler and Milstein (K ⁇ hler G and Milstein C (1976) Eur. J. Immunol. 6:511-519).
  • the antibody fragments and derivatives of the present disclosure are capable of selective interaction with the same antigen (e.g. HMGCR protein) as the antibody they are fragments or derivatives of.
  • Antibody fragments and derivatives comprise Fab fragments, consisting of the first constant domain of the heavy chain (CH1 ), the constant domain of the light chain (CL), the variable domain of the heavy chain (VH) and the variable domain of the light chain (VL) of an intact immunoglobulin protein; Fv fragments, consisting of the two variable antibody domains VH and VL (Skerra A and Pl ⁇ ckthun A (1988) Science 240:1038- 1041 ); single chain Fv fragments (scFv), consisting of the two VH and VL domains linked together by a flexible peptide linker (Bird RE and Walker BW (1991 ) Trends Biotechnol.
  • Fab fragments consisting of the first constant domain of the heavy chain (CH1 ), the constant domain of the light chain (CL), the variable domain of the heavy chain (VH) and the variable domain of the light chain (VL) of an intact immunoglobulin protein
  • Fv fragments consisting of the two variable antibody domains VH and
  • SEQ ID NO:1 was designed for immunizations, e.g., designed to lack transmembrane regions to ensure efficient expression in E. coli, and to lack any signal peptide, since those are cleaved off in the mature protein. Consequently, an antibody or fragment or derivative thereof according to the present disclosure may for example be one that is obtainable by a process comprising a step of immunizing an animal, such as a rabbit, with a protein whose amino acid sequence comprises, preferably consists of, the sequence SEQ ID NO:1.
  • the immunization process may comprise primary immunization with the protein in Freund's complete adjuvant.
  • the immunization process may further comprise boosting at least two times, in intervals of 2-6 weeks, with the protein in Freund's incomplete adjuvant.
  • a "mono-specific antibody” is one of a population of polyclonal antibodies which has been affinity purified on its own antigen, thereby separating such mono-specific antibodies from other antiserum proteins and non-specific antibodies. This affinity purification results in antibodies that bind selectively to its antigen.
  • the polyclonal antisera are purified by a two-step immunoaffinity based protocol to obtain mono-specific antibodies selective for the target protein.
  • Antibodies directed against generic affinity tags of antigen fragments are removed in a primary depletion step, using the immobilized tag protein as the capturing agent.
  • the serum is loaded on a second affinity column with the antigen as capturing agent, in order to enrich for antibodies specific for the antigen (see also Nilsson P et al. (2005) Proteomics 5:4327-4337).
  • the biomolecular diversity needed for selection of affinity ligands may be generated by combinatorial engineering of one of a plurality of possible scaffold molecules, and specific and/or selective affinity ligands are then selected using a suitable selection platform.
  • the scaffold molecule may be of immunoglobulin protein origin (Bradbury AR and Marks JD (2004) J. Immunol. Meths. 290:29-49), of non-immunoglobulin protein origin (Nygren PA and Skerra A (2004) J. Immunol. Meths. 290:3-28), or of an oligonucleotide origin (Gold L et al. (1995) Annu. Rev. Biochem. 64:763-797).
  • Non-limiting examples of such structures useful for generating affinity ligands against HMGCR protein for use according to the present disclosure, are staphylococcal protein A and domains thereof and derivatives of these domains, such as protein Z (Nord K et al. (1997) Nat. Biotechnol. 15:772- 777); lipocalins (Beste G et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96:1898- 1903); ankyrin repeat domains (Binz HK et al. (2003) J. MoI. Biol.
  • CBD cellulose binding domains
  • CBD cellulose binding domains
  • GFP green fluorescent protein
  • CTL-4 human cytotoxic T lymphocyte-associated antigen 4
  • protease inhibitors such as Knottin proteins (Wentzel A et al. (2001 ) J. Bacterid. 183:7273-7284; Baggio R et al. (2002) J. MoI. Recognit. 15:126- 134) and Kunitz domains (Roberts BL et al. (1992) Gene 121 :9-15; Dennis MS and Lazarus RA (1994) J. Biol. Chem. 269:22137-22144); PDZ domains (Schneider s et al. (1999) Nat. Biotechnol.
  • peptide aptamers such as thioredoxin (Lu Z et al. (1995) Biotechnology 13:366-372; Klevenz B et al. (2002) Cell. MoI. Life Sci. 59:1993-1998); staphylococcal nuclease (Norman TC et al. (1999) Science 285:591 -595); tendamistats (McConell SJ and Hoess RH (1995) J. MoI. Biol. 250:460-479; Li R et al. (2003) Protein Eng. 16:65-72); trinectins based on the fibronectin type III domain (Koide A et al. (1998) J. MoI. Biol.
  • non-immunoglobulin protein scaffolds include scaffold proteins presenting a single randomized loop used for the generation of novel binding specificities, protein scaffolds with a rigid secondary structure where side chains protruding from the protein surface are randomized for the generation of novel binding specificities, and scaffolds exhibiting a non-contiguous hyper-variable loop region used for the generation of novel binding specificities.
  • oligonucleotides may also be used as affinity ligands.
  • Single stranded nucleic acids called aptamers or decoys, fold into well-defined three-dimensional structures and bind to their target with high affinity and specificity.
  • the oligonucleotide ligands can be either RNA or DNA and can bind to a wide range of target molecule classes.
  • Selection platforms include, but are not limited to, phage display (Smith GP (1985) Science 228:1315-1317), ribosome display (Hanes J and Pl ⁇ ckthun A (1997) Proc. Natl. Acad. Sci. U.S.A.
  • yeast two- hybrid system Yields S and Song O (1989) Nature 340:245-246
  • yeast display Gai SA and Wittrup KD (2007) Curr Opin Struct Biol 17:467-473
  • mRNA display Robotts RW and Szostak JW (1997) Proc. Natl. Acad. Sci. U.S.A. 94:12297-12302
  • bacterial display Daugherty PS (2007) Curr Opin Struct Biol 17:474-480, Kronqvist N et al. (2008) Protein Eng Des SeI 1 -9, Harvey BR et al.
  • the affinity ligand may be a non-immunoglobulin affinity ligand derived from any of the protein scaffolds listed above, or an oligonucleotide molecule.
  • the HMGCR protein SEQ ID NO:1 was designed to consist of a unique sequence with low homology with other human proteins and to minimize cross reactivity of generated affinity reagents. Consequently, in embodiments of the present disclosure, the affinity ligand may be capable of selective interaction with a polypeptide consisting of the sequence SEQ ID NO:1.
  • an antibody binding to an HMGCR epitope having the sequence SEQ ID NO:4 is employed.
  • SEQ ID NO:4 refers to the amino acid sequence CKDNPGENARQLAR (i.e. amino acids 827-840 of EnsEMBL entry no. ENSP00000287936). This antibody resulted in strong staining. Consequently, in further embodiments of the present disclosure, the quantifiable affinity ligand may be capable of selective interaction with an HMGCR protein comprising, or consisting of, the sequence SEQ ID NO:4. In some embodiments of present disclosure, an affinity ligand capable of selective interaction with the HMGCR protein is detectable and/or quantifiable.
  • affinity ligand may be accomplished in any way known to the skilled person for detection and/or quantification of binding reagents in assays based on biological interactions.
  • any affinity ligand as described above, may be used quantitatively or qualitatively to detect the presence of the HMGCR protein.
  • affinity ligands may be labeled themselves with various markers or may in turn be detected by secondary, labeled affinity ligands to allow detection, visualization and/or quantification.
  • Non-limiting examples of labels that can be conjugated to primary and/or secondary affinity ligands include fluorescent dyes or metals (e.g., fluorescein, rhodamine, phycoerythrin, fluorescamine), chromophoric dyes (e.g., rhodopsin), chemiluminescent compounds (e.g., luminal, imidazole) and bioluminescent proteins (e.g., luciferin, luciferase), haptens (e.g., biotin).
  • fluorescent dyes or metals e.g., fluorescein, rhodamine, phycoerythrin, fluorescamine
  • chromophoric dyes e.g., rhodopsin
  • chemiluminescent compounds e.g., luminal, imidazole
  • bioluminescent proteins e.g., luciferin, luciferase
  • haptens
  • Affinity ligands can also be labeled with enzymes (e.g., horseradish peroxidase, alkaline phosphatase, beta-lactamase), radioisotopes (e.g., 3 H, 14 C, 32 P, 35 S or 125 I) and particles (e.g., gold).
  • enzymes e.g., horseradish peroxidase, alkaline phosphatase, beta-lactamase
  • radioisotopes e.g., 3 H, 14 C, 32 P, 35 S or 125 I
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.g., gold
  • particles e.
  • the different types of labels can be conjugated to an affinity ligand using various chemistries, e.g., the amine reaction or the thiol reaction.
  • chemistries e.g., the amine reaction or the thiol reaction.
  • other reactive groups than amines and thiols can be used, e.g., aldehydes, carboxylic acids and glutamine.
  • the detection, localization and/or quantification of a labeled affinity ligand bound to its HMGCR protein target may involve visualizing techniques, such as light microscopy or immunofluoresence microscopy. Other methods may involve the detection via flow cytometry or luminometry.
  • a biological sample such as a tumor tissue sample (biopsy), for example from breast tissue, which has been removed from the subject may be used for detection and/or quantification of HMGCR protein.
  • the biological sample such as the biopsy, may be an earlier obtained sample. If using an earlier obtained sample in a method, no steps of the method are practiced on the human or animal body.
  • the affinity ligand may be applied to the biological sample for detection and/or quantification of the HMGCR protein.
  • the method of visualization of labels on the affinity ligand may include, but is not restricted to, fluoromethc, luminometric and/or enzymatic techniques. Fluorescence is detected and/or quantified by exposing fluorescent labels to light of a specific wavelength and thereafter detecting and/or quantifying the emitted light in a specific wavelength region. The presence of a luminescently tagged affinity ligand may be detected and/or quantified by luminescence developed during a chemical reaction. Detection of an enzymatic reaction is due to a color shift in the sample arising from chemical reaction.
  • a biological sample may be immobilized onto a solid phase support or carrier, such as nitrocellulose or any other solid support matrix capable of immobilizing HMGCR protein present in the biological sample applied to it.
  • solid state support materials include glass, carbohydrate (e.g., Sepharose), nylon, plastic, wool, polystyrene, polyethene, polypropylene, dextran, amylase, films, resins, cellulose, polyacrylamide, agarose, alumina, gabbros and magnetite.
  • primary affinity ligand specific to HMGCR protein may be applied, e.g., as described in Examples, Sections 3, 4 or 5, of the present disclosure. If the primary affinity ligand is not labeled in itself, the supporting matrix may be washed with one or more appropriate buffers known in the art, followed by exposure to a secondary labeled affinity ligand and washed once again with buffers to remove unbound affinity ligands. Thereafter, selective affinity ligands may be detected and/or quantified with conventional methods.
  • the binding properties for an affinity ligand may vary from one solid state support to the other, but those skilled in the art should be able to determine operative and optimal assay conditions for each determination by routine experimentation.
  • the quantifiable affinity ligand of b1 may be detected using a secondary affinity ligand capable of recognizing the quantifiable affinity ligand.
  • the quantification of b3) may thus be carried out by means of a secondary affinity ligand with affinity for the quantifiable affinity ligand.
  • the secondary affinity ligand may be an antibody or a fragment or a derivative thereof.
  • one available method for detection and/or quantification of the HMGCR protein is by linking the affinity ligand to an enzyme that can then later be detected and/or quantified in an enzyme immunoassay (such as an EIA or ELISA).
  • the biological sample is brought into contact with a solid material or with a solid material conjugated to an affinity ligand against the HMGCR protein, which is then detected and/or quantified with an enzymatically labeled secondary affinity ligand.
  • an appropriate substrate is brought to react in appropriate buffers with the enzymatic label to produce a chemical moiety, which for example is detected and/or quantified using a spectrophotometer, fluorometer, luminometer or by visual means.
  • a spectrophotometer fluorometer, luminometer or by visual means.
  • primary and any secondary affinity ligands can be labeled with radioisotopes to enable detection and/or quantification.
  • Non- limiting examples of appropriate radiolabels in the present disclosure are 3 H, 14 C, 32 P, 35 S or 125 I.
  • the specific activity of the labeled affinity ligand is dependent upon the half-life of the radiolabel, isotopic purity, and how the label has been incorporated into the affinity ligand.
  • Affinity ligands are preferably labeled using well-known techniques (Wensel TG and Meares CF (1983) in: Radioimmunoimaging and Radioimmunotherapy (Burchiel SW and Rhodes BA eds.) Elsevier, New York, pp 185-196).
  • a thus radiolabeled affinity ligand can be used to visualize HMGCR protein by detection of radioactivity in vivo or in vitro.
  • Radionuclear scanning with e.g., gamma camera, magnetic resonance spectroscopy or emission tomography function for detection in vivo and in vitro, while gamma/beta counters, scintillation counters and radiographies are also used in vitro.
  • kits for carrying out a method according to the above aspects which comprises: a) a quantifiable affinity ligand capable of selective interaction with an HMGCR protein; and b) reagents necessary for quantifying the amount of the affinity ligand.
  • a quantifiable affinity ligand capable of selective interaction with an HMGCR protein
  • reagents necessary for quantifying the amount of the affinity ligand Various components of the kit according to the third aspect may be selected and specified as described above in connection with the method aspects of the present disclosure.
  • the kit according to the present disclosure comprises an affinity ligand against an HMGCR protein, as well as other means that help to quantify the specific and/or selective affinity ligand after it has bound specifically and/or selectively to the HMGCR protein.
  • the kit may contain a secondary affinity ligand for detecting and/or quantifying a complex formed by the HMGCR protein and the affinity ligand capable of selective interaction with the HMGCR protein.
  • the kit may also contain various auxiliary substances other than affinity ligands, to enable the kit to be used easily and efficiently.
  • auxiliary substances include solvents for dissolving or reconstituting lyophilized protein components of the kit, wash buffers, substrates for measuring enzyme activity in cases where an enzyme is used as a label, target retrieval solution to enhance the accessibility to antigens in cases where paraffin or formalin-fixed tissue samples are used, and substances such as reaction arresters, e.g., endogenous enzyme block solution to decrease the background staining and/or counterstaining solution to increase staining contrast, that are commonly used in immunoassay reagent kits.
  • reaction arresters e.g., endogenous enzyme block solution to decrease the background staining and/or counterstaining solution to increase staining contrast, that are commonly used in immunoassay reagent kits.
  • the affinity ligand may be selected as described above in connection with the method aspects.
  • the detectable affinity ligand may in embodiments of the kit aspect comprise a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • the reagents necessary for quantifying the amount of the affinity ligand comprise a secondary affinity ligand capable of recognizing the quantifiable affinity ligand.
  • the secondary affinity ligand capable of recognizing the quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes or metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
  • the kit according to the kit aspect may also advantageously comprise a reference sample for provision of, or yielding, the reference value to be used for comparison with the sample value.
  • the reference may sample comprise a predetermined amount of HMGCR protein.
  • Such a reference sample may for example be constituted by a tissue sample having the predetermined amount of HMGCR protein.
  • the tissue reference sample may then be used by the person of skill in the art in the determination of the HMGCR expression status in the sample being studied, by manual, such as ocular, or automated comparison of expression levels in the reference tissue sample and the subject sample.
  • the reference sample may comprise cell lines, such as cancer cell lines, expressing a predetermined, or controlled, amount of HMGCR protein. The person skilled in the art understands how to provide such cell lines, for example guided by the disclosure of Rhodes et al. (2006) The biomedical scientist, p 515-520.
  • the cell lines may be formalin fixed. Also, such formalin fixed cell lines may be paraffin embedded.
  • the wording "reference sample for provision of the reference value” is to be interpreted broadly in the context of the present disclosure.
  • the reference sample may comprise an amount of HMGCR protein actually corresponding to the reference value, but it may also comprise an amount of HMGCR protein corresponding to a value being higher than the reference value.
  • the "high" value may be used by a person performing the method as an upper reference (positive reference) for assessing, e.g., the appearance of, a reference value which is lower than the "high” value.
  • the person skilled in the art of immunohistochemistry understands how to do such an assessment.
  • the skilled person may use another reference sample comprising a low amount of HMGCR protein for provision of a "low" value in such an assessment, e.g., as a negative reference. This is further discussed above in connection with the method aspects.
  • the reference sample may comprise an amount of HMGCR protein corresponding to the reference value.
  • the reference sample may comprise an amount of HMGCR protein corresponding to a cytoplasmic fraction of 95 % or lower, such as 90 % or lower, such as 85 % or lower, such as 80 % or lower, such as 75 % or lower, such as 70 % or lower, such as 65 % or lower, such as 60 % or lower, such as 55 % or lower, such as 50 % or lower, such as 45 % or lower, such as 40 % or lower, such as 35 % or lower, such as 30 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower, such as 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %.
  • the inventors have realized that low cut-off values, such as a value of 0, are particularly relevant for the treatment prediction.
  • the examined tumor samples generally show either a cytoplasmic fraction of higher than 50 % or a cytoplasmic fraction of 1 % or lower, wherein the former group is associated with response to tamoxifen.
  • the reference sample may comprise an amount of HMGCR protein corresponding to a cytoplasmic fraction of 50 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower, such as 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %.
  • the reference sample may comprise an amount of HMGCR protein corresponding to a moderate cytoplasmic intensity of HMGCR protein expression or lower, such as a weak cytoplasmic intensity of HMGCR protein expression or lower.
  • a low cytoplasmic intensity such as an absent cytoplasmic intensity
  • the reference sample may comprise an amount of HMGCR protein corresponding to weak cytoplasmic intensity or lower, such as an absent cytoplasmic intensity.
  • the reference sample may comprise an amount of HMGCR protein corresponding to a staining score of 0, 1 or 2, preferably 0.
  • cytoplasmic fraction values or cytoplasmic intensity values are discussed above in connection with the method aspects.
  • the kit may comprise a reference sample comprising an amount of HMGCR protein corresponding to a value being higher than the reference value.
  • the reference sample may for example comprise an amount of HMGCR protein corresponding to a cytoplasmic fraction of 75 % or higher and/or a strong cytoplasmic intensity of nuclear expression.
  • the kit may comprise a reference sample comprising an amount of HMGCR protein corresponding to a value being lower than or equal to the reference value, e.g., an absent cytoplasmic intensity and/or a cytoplasmic fraction of ⁇ 1 % HMGCR protein positive cells, such as 0 % HMGCR protein positive cells.
  • the kit may thus comprise: a reference sample comprising an amount of HMGCR protein corresponding to a predetermined reference value; a reference sample comprising an amount of HMGCR protein corresponding to a value being higher than a predetermined reference value; and/or a reference sample comprising an amount of HMGCR protein corresponding to a value being lower than or equal to a predetermined reference value.
  • kits may comprise: a first reference sample comprising an amount of HMGCR protein being higher than a predetermined reference value; and a second reference sample comprising an amount of HMGCR protein being lower than or equal to the predetermined reference value.
  • the reference sample may be a tissue sample, such as a tissue sample adapted to ocular or microscopic evaluation.
  • the tissue reference sample may be fixated in paraffin or buffered formalin and/or histo-processed to ⁇ m-thin sections that are mounted on microscopic glass-slides.
  • the tissue reference sample may be further adapted to staining with affinity ligands, such as antibodies, against an HMGCR protein. Consequently, in embodiments of the kit aspect, the reference sample may be adapted to directly, or indirectly, provide any relevant reference value, such as any one of the reference values discussed above.
  • the combination of a level of HMGCR protein expression and hormone receptor status may provide information relevant for drawing conclusions regarding a treatment prediction breast cancer subject.
  • the "breast cancer" of the third aspect and the further aspects described below may be a hormone receptor negative breast cancer, such as an ER- or PR- breast cancer, an ER- breast cancer, a PR- breast cancer, or an ER- and PR- breast cancer.
  • the breast cancer may be previously diagnosed as hormone receptor negative.
  • the kit may also include means for establishing the hormone receptor status of a subject.
  • the kit may further comprise: a') a quantifiable affinity ligand capable of selective interaction with the estrogen receptor and b') reagents necessary for quantifying the amount of such affinity ligand; and/or a") a quantifiable affinity ligand capable of selective interaction with the progesterone receptor and b") reagents necessary for quantifying the amount of such affinity ligand.
  • the quantifiable affinity ligands of a') and a") are provided for the determination of the ER status and PR status, respectively.
  • the reagents of b), b') and b") may be the same or different.
  • the kit may include means for provision of the hormonal status information necessary for drawing conclusions according to some embodiments of the method aspects of the present disclosure.
  • an HMGCR protein as an endocrine treatment indicating marker for a mammalian subject having a breast cancer.
  • endocrine treatment indicating marker refers to a something material which presence indicates a suitability of an endocrine treatment.
  • the marker may thus be a biomarker, such as a human protein.
  • an HMGCR protein or an antigenically active fragment thereof, for the production, selection or purification of an endocrine treatment indicating agent for a mammalian subject having a breast cancer.
  • endocrine treatment indicating agent refers to an agent having at least one property being valuable in an establishment of a treatment prediction for an endocrine treatment, e.g., of a mammalian subject having a breast cancer.
  • the indicating agent may be capable of selective interaction with the indicating marker.
  • the endocrine treatment indicating agent may be an affinity ligand capable of selective interaction with the HMGCR protein, or an antigenically active fragment thereof. Examples of such affinity ligands are discussed above in connection with the method aspects.
  • the use may comprise affinity purification on a solid support onto which the HMGCR protein has been immobilized.
  • the solid support may for example be arranged in a column.
  • the use may comprise selection of affinity ligands having specificity for the HMGCR protein using a solid support onto which the polypeptide has been immobilized.
  • Such solid support may be well plates (such as 96 well plates), magnetic beads, agarose beads or sepharose beads.
  • the use may comprise analysis of affinity ligands on a soluble matrix, for example using a dextran matrix, or use in a surface plasmon resonance instrument, such as a BiacoreTM instrument, wherein the analysis may for example comprise monitoring the affinity for the immobilized HMGCR protein of a number of potential affinity ligands.
  • the HMGCR protein may be used in an immunization of an animal. Such use may be involved in a method comprising the steps: i) immunizing an animal using the HMGCR protein as the antigen; ii) obtaining serum comprising the endocrine treatment indicating agent from the immunized animal; and, optionally, iii) isolating the endocrine treatment indicating agent from the serum.
  • the steps following the first step may be: ii') obtaining cells from the immunized animal, which cells comprise
  • DNA encoding the endocrine treatment indicating agent iii') fusing the cells with myeloma cells to obtain at least one clone, and iv') obtaining the endocrine treatment indicating agent expressed by the clone.
  • HMGCR protein may comprise a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
  • sequence ii) is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:1.
  • amino acid sequence of the HMGCR protein may comprise a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
  • sequence ii) is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:2.
  • an affinity ligand capable of selective interaction with an HMGCR protein.
  • affinity ligands examples are discussed above in connection with the method aspects.
  • the affinity ligand may be used for in vivo diagnosis, such as in vivo imaging.
  • an affinity ligand capable of selective interaction with an HMGCR protein, for in vivo use as an endocrine treatment indicating agent in a mammalian subject having a breast cancer.
  • the affinity ligand may be for use in an in vivo method for establishing a prediction of an outcome of an endocrine treatment, such as a tamoxifen treatment, of a mammalian subject having a breast cancer, such as an ER negative breast cancer.
  • the establishment of a prediction of the outcome of an endocrine treatment of a subject may for example be a determination of whether the subject is likely to benefit from the endocrine treatment.
  • the affinity ligand may for example be labeled to enable imaging, i.e. labeled with a detectable label. Appropriate labels for labeling affinity ligands such as antibodies are well known to the skilled person.
  • the in vivo method for establishing a treatment prediction for a mammalian subject having a breast cancer may for example reveal HMGCR protein expression in a tumor in vivo, which in turn may form the basis of a treatment decision.
  • HMGCR protein expression in vivo
  • Various in vivo methods, labels and detection techniques that may be used in the context of this embodiment are further discussed above.
  • an affinity ligand capable of selective interaction with an HMGCR protein, for in vivo evaluation an amount of HMGCR protein in a subject having a breast cancer. For example, the level of HMGCR expression in the breast cancer tumor may be evaluated.
  • an affinity ligand according to the fifth aspect as an endocrine treatment indicating agent for a mammalian subject having a breast cancer. Consequently, the affinity ligand may be used for indicating whether a mammalian subject having a breast cancer would benefit from an endocrine treatment. Such use may for example be performed in vitro, e.g., involving the determination of the amount of HMGCR in at least part of a sample earlier obtained from the subject.
  • endocrine treatment in particular SERM treatment, such as tamoxifen treatment
  • SERM treatment such as tamoxifen treatment
  • tamoxifen treatment is shown to be particularly beneficial for those subjects who are HMGCR positive (see Examples, section 4 and the figures).
  • the breast cancer subjects who are HMGCR positive are a previously unrecognized subgroup in the context of endocrine treatment.
  • an endocrine treatment product for use in treatment of a mammalian subject having a breast cancer, wherein said subject is HMCGR protein positive.
  • the subject is "HMGCR protein positive" if any HMGCR protein parameter derived from said subject indicates that the subject is likely to benefit from an endocrine treatment.
  • the subject may be considered HMGCR protein positive if a relevant biological sample from the subject has been found to contain an amount of HMGCR protein corresponding to a sample value being higher than a relevant reference value. Relevant sample and reference values are discussed above in connection with the method aspects.
  • the breast cancer subject may for example be considered HMGCR protein positive if a relevant sample, such as a tissue sample from a primary or secondary tumor, shows detectable HMGCR protein expression in relevant parts of the sample, such as in the tumor cells.
  • the breast cancer subject may for example be considered HMGCR protein positive if such sample contains an amount of HMGCR corresponding to a cytoplasmic intensity which is higher than absent or a cytoplasmic fraction which is higher than 1 %. From the present disclosure, the person skilled in the art, such as a pathologist, understands how to determine whether the subject is HMGCR protein positive of not.
  • HMGCR expression is a powerful (independent) indicator of response to endocrine treatment in all groups of breast cancer subjects, it may be considered particularly relevant for the subjects having ER- breast cancers, since they have traditionally been considered non-responsive to such treatment.
  • the breast cancer may be ER-.
  • a suitable fragment of the target protein encoded by the EnsEMBL Gene ID ENSG00000113161 was selected using bioinformatic tools with the human genome sequence as template (Lindskog M et al. (2005) Biotechniques 38:723-727, EnsEMBL, www.ensembl.org). The fragment was used as template for the production of a 140 amino acid long fragment corresponding to amino acids 742-881 (SEQ ID NO:1 ) of the HMGCR protein (SEQ ID NO:2; EnsEMBL entry no. ENSP00000287936).
  • a fragment of the HMGCR gene transcript containing nucleotides 2274-2693 of EnsEMBL entry number ENST00000287936 was isolated by a SuperscriptTM One-Step RT-PCR amplification kit with Platinum® Taq (Invitrogen) and a human total RNA pool panel as template (Human Total RNA Panel IV, BD Biosciences Clontech). Flanking restriction sites Notl and Ascl were introduced into the fragment through the PCR amplification primers, to allow in-frame cloning into the expression vector (forward primer: ATGGCTGGGAGCATAGGAG (SEQ ID NO:5), reverse primer: TCCTTGGAGGTCTTGTAAATTG (SEQ ID NO:6)).
  • downstream primer was biotinylated to allow solid-phase cloning as previously described, and the resulting biotinylated PCR product was immobilized onto Dynabeads M280 Streptavidin (Dynal Biotech) (Larsson M et al. (2000) J. Biotechnol. 80:143-157).
  • the fragment was released from the solid support by Notl-Ascl digestion (New England Biolabs), ligated into the pAff8c vector (Larsson M et al, supra) in frame with a dual affinity tag consisting of a hexahistidyl tag for immobilized metal ion chromatography (IMAC) purification and an immunopotentiating albumin binding protein (ABP) from streptococcal protein G (Sj ⁇ lander A et al. (1997) J. Immunol. Methods 201 :115-123; Stahl S et al.
  • IMAC immobilized metal ion chromatography
  • BL21 (DE3) cells harboring the expression vector were inoculated in 100 ml 30 g/l tryptic soy broth (Merck KGaA) supplemented with 5 g/l yeast extract (Merck KGaA) and 50 mg/l kanamycin (Sigma-Aldrich) by addition of 1 ml of an overnight culture in the same culture medium.
  • the cell culture was incubated in a 1 liter shake flask at 37 0 C and 150 rpm until the optical density at 600 nm reached 0.5-1.5.
  • Protein expression was then induced by addition of isopropyl- ⁇ -D-thiogalactopyranoside (Apollo Scientific) to a final concentration of 1 mM, and the incubation was continued overnight at 25 0 C and 150 rpm.
  • the His ⁇ -tagged fusion protein was purified by immobilized metal ion affinity chromatography (IMAC) on columns with 1 ml Talon® metal (Co 2+ ) affinity resin (BD Biosciences Clontech) using an automated protein purification procedure (Steen J et al. (2006) Protein Expr. Purif. 46:173-178) on an ASPEC XL4TM (Gilson).
  • the resin was equilibrated with 20 ml denaturing washing buffer (6 M guanidine hydrochloride, 46.6 mM Na 2 HPO 4 , 3.4 mM NaH 2 PO 4 , 300 mM NaCI, pH 8.0-8.2). Clarified cell lysates were then added to the column.
  • the resin was washed with a minimum of 31.5 ml washing buffer prior to elution in 2.5 ml elution buffer (6 M urea, 50 mM NaH 2 PO 4 , 100 mM NaCI, 30 mM acetic acid, 70 mM Na-acetate, pH 5.0).
  • the eluted material was fractioned in three pools of 500, 700 and 1300 ⁇ l.
  • the 700 ⁇ l fraction, containing the antigen, and the pooled 500 and 1300 ⁇ l fractions were stored for further use.
  • the antigen fraction was diluted to a final concentration of 1 M urea with phosphate buffered saline (PBS; 1.9 mM NaH 2 PO 4 , 8.1 mM Na 2 HPO 4 , 154 mM NaCI) followed by a concentration step to increase the protein concentration using Vivapore 10/20 ml concentrator with molecular weight cut off at 7500 Da (Vivascience AG).
  • the protein concentration was determined using a bicinchoninic acid (BCA) micro assay protocol (Pierce) with a bovine serum albumin standard according to the manufacturer's recommendations.
  • BCA bicinchoninic acid
  • the protein quality was analyzed on a Bioanalyzer instrument using the Protein 50 or 200 assay (Agilent Technologies).
  • the protein fragment was designed to consist of a unique sequence with low homology with other human proteins, to minimize cross reactivity of generated affinity reagents, and to be of a suitable size to allow the formation of conformational epitopes and still allow efficient cloning and expression in bacterial systems.
  • a clone encoding the correct amino acid sequence was identified, and, upon expression in E. coli, a single protein of the correct size was produced and subsequently purified using immobilized metal ion chromatography. After dilution of the eluted sample to a final concentration of 1 M urea and concentration of the sample to 1 ml, the concentration of the protein fragment was determined to be 11.7 mg/ml and was 84.2 % pure according to purity analysis.
  • the purified HMGCR fragment as obtained above was used as antigen to immunize a rabbit in accordance with the national guidelines (Swedish permit no. A 84-02).
  • the rabbit was immunized intramuscularly with 200 ⁇ g of antigen in Freund's complete adjuvant as the primary immunization, and boosted three times in four week intervals with 100 ⁇ g antigen in Freund's incomplete adjuvant.
  • Antiserum from the immunized animal was purified by a three-step immunoaffinity based protocol (Agaton C et al. (2004) J. Chromatogr. A 1043:33-40; Nilsson P et al. (2005) Proteomics 5:4327-4337).
  • the first step 7 ml of total antiserum was buffered with 10x PBS to a final concentration of 1x PBS (1.9 mM NaH 2 PO 4 , 8.1 mM Na 2 HPO 4 , 154 mM NaCI), filtered using a 0.45 ⁇ m pore-size filter (Acrodisc®, Life Science) and applied to an affinity column containing 5 ml N-hydroxysuccinimide-activated SepharoseTM 4 Fast Flow (GE Healthcare) coupled to the dual affinity tag protein His ⁇ -ABP (a hexahistidyl tag and an albumin binding protein tag) expressed from the pAff8c vector and purified in the same way as described above for the antigen protein fragment.
  • 1x PBS 1.9 mM NaH 2 PO 4 , 8.1 mM Na 2 HPO 4 , 154 mM NaCI
  • the flow-through depleted of antibodies against the dual affinity tag His ⁇ -ABP, was loaded at a flow rate of 0.5 ml/min on a 1 ml Hi-Trap NHS-activated HP column (GE Healthcare) coupled with the HMGCR protein fragment used as antigen for immunization (SEQ ID NO: 1
  • the His ⁇ -ABP protein and the protein fragment antigen were coupled to the NHS activated matrix as recommended by the manufacturer. Unbound material was washed away with 1x PBST (1x PBS, 0.1 % Tween20, pH 7.25), and captured antibodies were eluted using a low pH glycine buffer (0.2 M glycine, 1 mM EGTA, pH 2.5). The eluted antibody fraction was collected automatically, and loaded onto two 5 ml HiTrapTM desalting columns (GE Healthcare) connected in series for efficient buffer exchange in the third step. The second and third purification steps were run on the AKTAxpressTM platform (GE Healthcare).
  • msAbs antigen selective (mono-specific) antibodies
  • PBS buffer supplemented with glycerol and NaN 3 to final concentrations of 40 % and 0.02 %, respectively, for long term storage at -20 0 C (Nilsson P et al. (2005) Proteomics 5:4327-4337).
  • the specificity and selectivity of the affinity purified antibody fraction were analyzed by binding analysis against the antigen itself and against 383 other human protein fragments in a protein array set-up (Nilsson P et al. (2005) Proteomics 5:4327-4337).
  • the protein fragments were diluted to 40 ⁇ g/ml in 0.1 M urea and 1x PBS (pH 7.4) and 50 ⁇ l of each were transferred to the wells of a 96-well spotting plate.
  • the protein fragments were spotted in duplicate and immobilized onto epoxy slides (SuperEpoxy, TeleChem) using a pin-and-ring arrayer (Affymethx 427).
  • the slide was washed in 1x PBS (5 min) and the surface was then blocked (SuperBlock®, Pierce) for 30 minutes.
  • An adhesive 16-well silicone mask (Schleicher & Schuell) was applied to the glass before the mono-specific antibodies were added (diluted 1 :2000 in 1x PBST to appr. 50 ng/ml) and incubated on a shaker for 60 min.
  • Affinity tag-specific IgY antibodies were co-incubated with the mono-specific antibodies in order to quantify the amount of protein in each spot.
  • the slide was washed with 1x PBST and 1x PBS twice for 10 min each.
  • a two-color dye labeling system was used, with a combination of primary and secondary antibodies.
  • Tag-specific IgY antibodies generated in hen were detected with a secondary goat anti-hen antibody labeled with Alexa 555 fluorescent dye.
  • the specific binding of the rabbit msAb to its antigen on the array was detected with a fluorescently Alexa 647 labeled goat anti-rabbit antibody.
  • the protein array analysis showed that the affinity purified monospecific antibody against HMGCR is highly selective to the correct protein fragment and has a very low background to all other protein fragments analyzed on the array.
  • tissue microarray TMA
  • All tissues used as donor blocks for tissue microarray (TMA) production were selected from the archives at the Department of Pathology, University Hospital, Uppsala, in agreement with approval from the local ethical committee. All tissue sections used for TMA analysis were examined to determine diagnosis and to select representative areas in donor blocks.
  • Normal tissue was defined as microscopically normal (non-neoplastic) and was most often selected from specimens collected from the vicinity of surgically removed tumors. Cancer tissue was reviewed for diagnosis and classification. All tissues were formalin fixated, paraffin embedded, and sectioned for diagnostic purposes.
  • TMA production was performed essentially as previously described (Kononen J et al. (1998) Nature Med. 4:844-847; Kallioniemi OP et al. (2001 ) Hum. MoI. Genet. 10:657-662). Briefly, a hole was made in the recipient TMA block and a cylindrical core tissue sample from the donor block was acquired and deposited in the recipient TMA block. This was repeated in an automated tissue arrayer from Beecher Instrument (ATA-27, Beecher Instruments, Sun Prairie, CA, USA) until a complete TMA design was produced. TMA recipient blocks were baked at 42 0 C for 2 h prior to sectioning.
  • TMA The design of TMA:s was focused on obtaining samples from a large range of representative normal tissues, and on including representative cancer tissues. This has previously been described in detail in Kampf C et al. (2004) Clin. Proteomics 1 :285-300. In brief, samples from 48 normal tissues and from 20 of the most common cancer types affecting humans were selected. In total, eight different designs of TMA blocks, each containing 72 cores of tissue with 1 mm diameter, were produced. Two of the TMA:s represented normal tissues, corresponding to 48 different normal tissues in triplicates from different individuals. The remaining 6 TMA:s represented cancer tissue from 20 different types of cancer.
  • TMA blocks were sectioned with 4 ⁇ m thickness using a waterfall microtome (Leica), and placed onto SuperFrost® (Roche Applied Science) glass slides for IHC analysis.
  • the slides were incubated for 30 min at room temperature with the primary antibody obtained as in Examples, Section 2, followed by incubation for 30 min at room temperature with goat anti-rabbit peroxidase conjugated Envision®. Between all steps, slides were rinsed in wash buffer (DakoCytomation). Finally, diaminobenzidine (DakoCytomation) was used as chromogen and Harris hematoxylin (Sigma-Aldrich) was used for counterstaining. The slides were mounted with Pertex® (Histolab).
  • Table 2 shows the HMGCR protein expression pattern in normal human tissues. Using IHC and TMA technology, 144 spots (1 mm in diameter) representing 48 different types of normal tissue were screened for expression of HMGCR. Immunoreactivity was observed mainly in cytoplasm of most tissues. Some cases showed additional nuclear or membranous positivity. Strongest staining was found in glandular epithelia. In a few cases no representative tissue (N. R.) were observed.
  • HMGCR protein expression was further evaluated in tissue samples from various cancer types. Table 3 shows the level of HMGCR expression in 12 different breast carcinoma tissues samples. All of these samples showed representative tissue and ten showed positivity, i.e., a staining score of higher than zero. HMGCR expression was observed in cytoplasm.
  • the inclusion criteria were pre-menopausal patients, or patients younger than 50 years, with stage Il (pT2 NO MO, pT1-2 N1 MO) invasive breast cancer treated by modified mastectomy or breast conserving surgery with axillary lymph node dissection.
  • Post-operative radiotherapy (50 Gy) was administered after breastconserving surgery and all lymph node-positive patients received locoregional radiotherapy. Less than 2% of the patients received adjuvant systemic chemotherapy. The median follow-up time for patients without breast cancer events was 13.9 years. Median age at diagnosis was 45 (25-57) years. The study design is described in detail elsewhere (Ryden L et al, Eur J Cancer, 2005, 41 (2): 256-64). Ethical permission was obtained from the Local Ethics Committees at Lund and Link ⁇ ping Universities.
  • Tissue blocks from 500 of the 564 patients could be retrieved for TMA- construction. All cases had been histopathologically re-evaluated on hematoxylin and eosin stained slides.
  • TMA s were constructed by sampling 2 x 0.6 mm cores per case from areas representative of invasive cancer, using an manual arraying device (MTA-1 , Beecher Inc, Wl, USA).
  • cytoplasmic intensity (Cl) level was evaluated, in line with what is described in Examples, Section 3 above.
  • This classification of samples was used for RFS analysis according to the Kaplan-Meier estimator, and the log-rank test was used to compare survival in different strata.
  • ER and PR negativity was defined as ⁇ 10% positively staining nuclei, according to current clinical guidelines in Sweden. All statistical tests were two-sided, and p-values of ⁇ 0.05 were considered significant. All calculations were made with the statistical package SPSS 17.0 (SPSS Inc. Illinois, USA).
  • HMGCR refers to HMGCR protein.
  • immunohistochemical analysis of HMGCR expression could be performed on 423 tumors. The remaining cores either did not contain invasive cancer or had been lost during histoprocessing.
  • 324 were ER positive (i.e. ER ⁇ +), defined as >10% ER nuclear fraction, which is in line with the clinically established cut-off used for hormone receptor assessment.
  • HMGCR protein is an endocrine treatment marker which may be an alternative or complement to ER.
  • the impact on RFS based on node status in strata with different combinations of HMGCR expression and ER status in tamoxifen treated subjects was analyzed.
  • HMGCR positive and ER negative patients had a better outcome than HMGCR negative and ER positive patients in the treated cohort (fig 6a).
  • PR has been proposed as an alternative or complement to ER in endocrine treatment prediction. Accordingly, its relation to HMGCR status has been investigated. PR positive and HMGCR positive subjects showed significant response to tamoxifen treatment, while no response was observed in the group of PR negative and HMGCR negative subjects (11 a and 11 b, respectively). In the group of HMGCR positive and PR negative subjects a trend of tamoxifen impact on survival may be observed (fig 12). Probably due to too few patients in this group the trend is not statistically significant.
  • MCF7 cells were obtained from Prof Robert Clarke, Georgetown University,
  • T47D Dulbecco's Modified Eagle Medium (DMEM, Sigma) with 10% (Fetal calf serum (FCS, Sigma) and 100 U/ml penicillin and 100 ug/ml streptomycin (Gibco).
  • DMEM Dulbecco's Modified Eagle Medium
  • FCS Fetal calf serum
  • streptomycin Gibco
  • ZR751 DMEM with 10% FCS (Sigma) and 100 U/ml penicillin and 100 ug/ml streptomycin (Gibco). Supplemented with 1 nM betaestradiol (Sigma).
  • MCF7RC phenolred free DMEM (Gibco), 10 % FCS (Sigma) and 100 U/ml penicillin and 100 ug/ml streptomycin (Gibco). Cells were maintained in humidified air with 5 % CO2. All cell lines were free of Mycoplasma contamination.
  • protein was extracted from cells grown to 80% confluence with radioimmunoprecipitation assay buffer [20 mmol/L Tris (pH 7.5), 150 mmol/L NaCI, 1 % NP40, 0.5% sodium deoxycholate, 1 mmol/L EDTA, 0.1 % SDS]. Protein levels were determined using the bicinchoninic acid method (Pierce, Rockford, IL). Samples containing 50 ⁇ g aliquots of protein were separated on a 10% Bis-Ths gel (Invitrogen) by SDS-PAGE under reducing conditions. After electrophoresis, proteins were transferred to a polyvinylidene fluoride membrane. Membranes were blocked in 5% nonfat milk over night. HMGCR was detected using a rabbit polyclonal antibody (cat # 07-457, Upstate) at a dilution of 1 :500.
  • radioimmunoprecipitation assay buffer [20 mmol/L Tris (pH 7.5), 150
  • Membranes were washed and incubated for 1 hour with horseradish peroxidase-conjugated antirabbit immunoglobulin. Enhanced chemiluminescence plus (Amersham Biosciences, Buckinghamshire, United Kingdom) was used for detection. All steps were carried out at room temperature. Western blotting experiments were done in triplicate to confirm reproducibility of results.
  • MCF7 cells were obtained and grown as described above (Examples, section 5). For 2 days before the start of the experiment, the cells were grown in serum-free medium. Cells were then treated for five days with either 10 ⁇ M
  • Simvastatin 100 nM Tamoxifen, or a combination of both.
  • Western blot was performed as described above (Examples, section 5), and in addition ERa was detected using antibody 6F11 (obtained from Novacastra) at a dilution of 1 :250.
  • Membranes were then stripped and reprobed with an anti-b-actin antibody (Abeam, Cambridge, United Kingdom) at a dilution of 1 :5,000 to provide a loading control.
  • Simvastatin treatment clearly induced HMGCR as well as ERa expression in a tamoxifen the sensitive cell line. Tamoxifen treatment induced a slight HMGCR expression, but no ERa expression. The induced HMGCR expression was substantially increased when cells were treated with a combination of Simvastatin and tamoxifen ( Figure 14). The combination treatment also reduced ERa expression compared to Simvastatin treatment alone.
  • MCF7 cells were obtained and grown as described above (Examples section 5). Cells were treated for five days with either 10 ⁇ M Simvastatin, 100 nM Tamoxifen, or a combination of both.
  • Total RNA was isolated using the mirVANATM miRNA Isolation Kit (Ambion) and reverse transcribed using Superscript IITM Reverse Transcriptase (Invitrogen) according to the manufacturer's instructions.
  • HMG-CoAR-R CCACCAAGACCTATTGCTCTG (SEQ ID NO:8) primers were designed using Primer Express software (Applied Biosystems Version 2.0) and used to amplify a HMG-CoAR-specific DNA fragment with SYBR Green PCR Master Mix (Applied Biosystems) using a 7900HT Fast Real-Time PCR System (Applied Biosystems).
  • Relative HMG-CoAR expression levels in breast cancer cell lines were calculated using the qBase real-time PCR relative quantification software with all samples normalised to 18s rRNA. Negative controls included a no template control and a no reverse transcriptase control. All qRT-PCR reactions were performed in triplicate.
  • MCF7 cells were obtained as described above (Examples, section 5).
  • the tamoxifen resistant cell lines LCC2 and LCC9 were obtained from Prof Robert Clarke, Georgetown University, Washington USA. Cells were grown in phenolredfree DMEM (Gibco), 5% charcoal/dextran treated Fetal Bovine Serum (FBS, HyClone) supplemented with 1.46 mg/ml L-Glutamine (Gibco). Cells were plated in 6 cm dishes (500 000 cells/dish) and when 70% confluent they were treated with different concentrations of simvastatin (0, 1 , 3, 5 and 9 ⁇ M). After five days treatment the cells were harvested by trypsination.
  • HMGCR The expression of HMGCR was considerably lower in the tamoxifen resistant cell lines LCC2 and LCC9 than in the tamoxifen sensitive cell line MCF7 ( Figure 16), supporting earlier data (see Figure 13).
  • HMGCR and ER expression were considerably lower in the tamoxifen resistant cell lines LCC2 and LCC9 than in the tamoxifen sensitive cell line MCF7 ( Figure 16), supporting earlier data (see Figure 13).
  • Simvastatin there was an increase in HMGCR expression for the most tamoxifen resistant cell line (LCC9), while the ER expression level remained constant (Figure 17). This indicates that tamoxifen resistant cells can be made tamoxifen sensitive by statin treatment.
  • a breast cancer patient can present symptoms or signs such as a palpable lump/tumor, secretion from the mammilla or skin deformities.
  • symptoms or signs such as a palpable lump/tumor, secretion from the mammilla or skin deformities.
  • a proportion of breast cancers, generally without symptoms, are also detected by screening mammography. If those tests are not conclusive for diagnosis, a breast biopsy may be performed i.e. removal of a selected physical piece of tissue from the suspected tumor.
  • the tumor is normally removed by surgery (e.g. by mastectomy or partial mastectomy).
  • a tumor tissue sample is obtained.
  • the tumor tissue sample may be obtained from a specimen from an earlier surgical removal of the tumor or from a biopsy performed earlier during the diagnosis of the cancer.
  • a material is taken from a tissue having no HMGCR expression, e.g. archival material comprising tissue lacking detectable HMGCR protein expression.
  • the negative reference may show an absent cytoplasmic intensity.
  • a material is taken from a tissue having high HMGCR expression, e.g. breast cancer tissue having a pre-established high HMGCR protein expression.
  • the positive reference may show a strong cytoplasmic intensity.
  • the materials are fixated in buffered formalin and histo-processed in order to obtain thin sections (4 ⁇ m).
  • the reference samples may be preprepared, e.g. already fixated in buffered formalin or already mounted on slides (see below). lmmunohistochemistry is performed as described in Examples, section 3.
  • One or more sample sections from each sample are mounted on glass slides that are incubated for 45 min in 60 0 C, de-paraffin ized in xylene (2 x 15 min) and hydrated in graded alcohols.
  • the slides are immersed in TRS (Target Retrieval Solution, pH 6.0, DakoCytomation) and boiled for 4 min at 125 0 C in a Decloaking chamber® (Biocare Medical). Then, the slides are placed in the Autostainer® (DakoCytomation) and endogenous peroxidase is initially blocked with H2O2 (DakoCytomation). The reason for mounting multiple sample sections may be to increase the accuracy of the results.
  • TRS Target Retrieval Solution, pH 6.0, DakoCytomation
  • H2O2 Decloaking chamber
  • a primary HMGCR specific antibody e.g. the anti-HMGCR antibody of
  • section 2 or 4 is added to the slides, which are then incubated for 30 min in room temperature, followed incubation for 30 min in room temperature with the labeled secondary antibody (e.g. goat-anti-rabbit peroxidase conjugated Envision®).
  • the labeled secondary antibody e.g. goat-anti-rabbit peroxidase conjugated Envision®.
  • diaminobenzidine (DakoCytomation) is used as chromogen, contrasted with a Harris hematoxylin (Sigma-Aldrich) counterstaining. Between all steps, slides are rinsed in wash buffer (DakoCytomation). The slides are then mounted with Pertex® (Histolab).
  • control cell-lines may be used; e.g. one slide with cells expressing HMGCR (positive cell line) and one slide with cells without HMGCR expression (negative cell line).
  • HMGCR positive cell line
  • negative cell line negative cell line
  • the skilled artisan understands how to provide such cell lines, for example guided by the disclosure of Rhodes et al. (2006) The biomedical scientist, p 515-520.
  • the control-line slides may be simultaneously stained in the same procedure as the breast cancer slides, i.e. incubated with the same primary and secondary antibodies.
  • the breast cancer tumor slides, the reference slides, and optionally, the slides with control cell-lines may be scanned in a light microscope using a ScanScope T2 automated slide scanning system (Aperio Technologies) at x20 magnification.
  • this scanning step is not necessary, but may make the procedure easier if, for example, the preparation and staining of the slides and the evaluation of the cytoplasmic intensity (see below) are performed at different locations or by different persons.
  • control cell-lines are used, these are inspected to validate the staining procedure. If the cell-lines display staining results outside acceptable criteria, e.g.
  • staining artifacts recognized by the skilled artisan the staining of the slides is considered as invalid and the whole staining procedure is repeated with new slides. If the positive and negative cell-lines display strong staining intensity and no staining intensity, respectively, the staining is considered as valid.
  • the stained sample slide(s) from the tumor sample is/are evaluated manually by visual inspection, and the cytoplasmic intensity (Cl) of the breast cancer slide(s) is/are graded as described in Examples, Section 3.
  • the person performing the evaluation and grading is aided by visual inspection of the stained positive and negative reference slides.
  • the reference value may be an absent Cl, and in such case it is concluded that the patient in question is likely to benefit from an endocrine treatment if the sample value derived from the subject is higher than an absent Cl, i.e. if the sample value is a weak, moderate or strong Cl.
  • the above conclusion may lead a physician to apply an endocrine treatment.
  • decision may depend on several parameters. Anyhow, the fact that the patient is HMGCR positive (sample value higher than reference value) is in favor of a decision to treat the patient with an endocrine treatment product, especially tamoxifen. If, however, the sample value is lower than or equal to the reference value (e.g. absent Cl), the decision may be to refrain from endocrine treatment or apply a combination treatment comprising application of a statin and an endocrine treatment product.
  • the reference value e.g. absent Cl

Abstract

The present disclosure provides products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in therapy. Further, there is provided a method of treatment of a mammalian breast cancer subject, comprising simultaneous, separate or sequential administration of therapeutically effective amounts of a statin and an endocrine treatment product.

Description

COMBINATION TREATMENT OF BREAST CANCER
Technical field
The present disclosure relates to the field of breast cancer treatment and treatment prediction. It also relates to means which may be employed in such a treatment or treatment prediction.
Background
Cancer
Cancer is one of the most common diseases, and a major cause of death in the western world. In general, incidence rates increase with age for most forms of cancer. As human populations continue to live longer, due to an increase of the general health status, cancer may affect an increasing number of individuals. The cause of most common cancer types is still largely unknown, although there is an increasing body of knowledge providing a link between environmental factors (dietary, tobacco smoke, UV radiation etc) as well as genetic factors (germ line mutations in "cancer genes" such as p53, APC, BRCA1 , XP etc) and the risk for development of cancer.
No definition of cancer is entirely satisfactory from a cell biological point of view, despite the fact that cancer is essentially a cellular disease and defined as a transformed cell population with net cell growth and anti-social behavior. Malignant transformation represents the transition to a malignant phenotype based on irreversible genetic alterations. Although this has not been formally proven, malignant transformation is believed to take place in one cell, from which a subsequently developed tumor originates (the "clonality of cancer" dogma). Carcinogenesis is the process by which cancer is generated and is generally accepted to include multiple events that ultimately lead to growth of a malignant tumor. This multi-step process includes several rate-limiting steps, such as addition of mutations and possibly also epigenetic events, leading to formation of cancer following stages of precancerous proliferation. The stepwise changes involve accumulation of errors
(mutations) in vital regulatory pathways that determine cell division, asocial behavior and cell death. Each of these changes may provide a selective Darwinian growth advantage compared to surrounding cells, resulting in a net growth of the tumor cell population. A malignant tumor does not only necessarily consist of the transformed tumor cells themselves but also surrounding normal cells which act as a supportive stroma. This recruited cancer stroma consists of connective tissue, blood vessels and various other normal cells, e.g., inflammatory cells, which act in concert to supply the transformed tumor cells with signals necessary for continued tumor growth.
The most common forms of cancer arise in somatic cells and are predominantly of epithelial origin, e.g., prostate, breast, colon, urothelial and skin, followed by cancers originating from the hematopoetic lineage, e.g., leukemia and lymphoma, neuroectoderm, e.g., malignant gliomas, and soft tissue tumors, e.g., sarcomas.
Cancer diagnostics and prognostics
Microscopic evaluation of biopsy material from suspected tumors remains the golden standard for cancer diagnostics. To obtain a firm diagnosis, the tumor tissue is fixated in formalin, histo-processed and paraffin embedded. From the resulting paraffin block, tissue sections can be produced and stained using both histochemical, i.e., hematoxylin-eosin staining, and immunohistochemical methods. The surgical specimen is then evaluated with pathology techniques, including gross and microscopic analysis. This analysis often forms the basis for assigning a specific diagnosis, i.e., classifying the tumor type and grading the degree of malignancy, of a tumor.
Malignant tumors can be categorized into several stages according to classification schemes specific for each cancer type. The most common classification system for solid tumors is the tumor-node-metastasis (TNM) staging system. The T stage describes the local extent of the primary tumor, i.e., how far the tumor has invaded and imposed growth into surrounding tissues, whereas the N stage and M stage describe how the tumor has developed metastases, with the N stage describing spread of tumor to lymph nodes and the M stage describing growth of tumor in other distant organs. Early stages include: T0-1 , NO, MO, representing localized tumors with negative lymph nodes. More advanced stages include: T2-4, NO, MO, localized tumors with more widespread growth and T1 -4, N1 -3, MO, tumors that have metastasized to lymph nodes and T1 -4, N1 -3, M1 , tumors with a metastasis detected in a distant organ. Staging of tumors is often based on several forms of examination, including surgical, radiological and histopathological analyses. In addition to staging, there is also a classification system to grade the level of malignancy for most tumor types. The grading systems rely on morphological assessment of a tumor tissue sample and are based on the microscopic features found in a given tumor. These grading systems may be based on the degree of differentiation, proliferation and atypical appearance of the tumor cells. Examples of generally employed grading systems include Gleason grading for prostatic carcinomas and the Nottingham Histological Grade (NHG) grading for breast carcinomas.
Accurate staging and grading is crucial for a correct diagnosis and may provide an instrument to predict a prognosis. The diagnostic and prognostic information for a specific tumor subsequently determines an adequate therapeutic strategy for a given cancer patient. A commonly used method, in addition to histochemical staining of tissue sections, to obtain more information regarding a tumor is immunohistochemical staining. IHC allows for the detection of protein expression patterns in tissues and cells using specific antibodies. The use of IHC in clinical diagnostics allows for the detection of immunoreactivity in different cell populations, in addition to the information regarding tissue architecture and cellular morphology that is assessed from the histochemically stained tumor tissue section. IHC can be involved in supporting the accurate diagnosis, including staging and grading, of a primary tumor as well as in the diagnostics of metastases of unknown origin. The most commonly used antibodies in clinical practice today include antibodies against cell type "specific" proteins, e.g., PSA (prostate), MelanA (melanocytes) and Thyroglobulin (thyroid gland), and antibodies recognizing intermediate filaments (epithelial, mesenchymal, glial), cluster of differentiation (CD) antigens (hematopoetic, sub-classification of lympoid cells) and markers of malignant potential, e.g., Ki67 (proliferation), p53 (commonly mutated tumor suppressor gene) and HER-2 (growth factor receptor).
Aside from IHC, the use of in situ hybridization for detecting gene amplification and gene sequencing for mutation analysis are evolving technologies within cancer diagnostics. In addition, global analysis of transcripts, proteins or metabolites all add relevant information. However, most of these analyses still represent basic research and have yet to be evaluated and standardized for the use in clinical medicine.
Breast cancer Breast cancer is the second most common form of cancer worldwide and by far the most frequent cancer of women. Data from the GLOBOCAM 2002 database presented by Parkin et al. reveal 1.15 million new cases in 2002 and 0.41 million deaths during the same period (Parkin DM et al. (2005) CA Cancer J Clin 55, 74-108). If detected at an early stage, the prognosis is relatively good for a patient living in a developed country, with a general five- year survival rate of 73%, compared to 57% in a developing country. The incidence is slowly increasing and about one in every nine women in the developed world is believed to get breast cancer in her lifetime. Although lifestyle changes related to female steroid hormones, including exposure to exogenous hormones, affect the risk of developing breast cancer, these factors only make up for a small fraction of the etiology, and the benefit of preventive manipulation is believed to be low. The decreased mortality is mainly due to earlier detection by mammography screening and the use of modern adjuvant systemic treatment.
Treatment of breast cancer
Since its introduction in the late seventies, breast-conserving therapy, combining breast conserving surgery and postoperative radiotherapy, has become the primary treatment of choice in women where radical removal of the tumor can be combined with a good cosmetic result. Mastectomy is still preferable in some patients, i.e., women with small breasts, large tumors (> 4 cm) or multifocal/multicentric disease.
Axillary dissection is primarily performed for diagnostic purposes and removal of at least 10 lymph nodes gives a good staging guidance with 97- 98% sensitivity (Axelsson CK et al. (1992) Eur J Cancer 28A:1415-8; Recht A and Houlihan MJ (1995) Cancer 6(9):1491 -1512). However, the next step towards minimal surgery in the treatment of primary cancer has been the introduction of the sentinel node biopsy technique with mapping of axillary lymph nodes instead of axillary lymph node clearance, which is associated with a high complication rate. This technique was introduced as a consequence of the knowledge that most of the lymphatic drainage to the axilla from the breast initially passes through one (or a few) lymph node(s) - the sentinel node(s) - supporting that analysis of this lymph node may be a sufficient indicator of axillary node status (Veronesi U et al. (2003) New Engl J Med 349(6): 546-53.) The concept of breast cancer as a systemic disease, i.e., the presence of disseminating micro-metastases at the time of diagnosis that may explain treatment failure after locoregional therapy, paved the way for adjuvant randomized trials in the 1970s, including endocrine therapy and chemotherapy. Adjuvant polychemotherapy is standard treatment for hormone-receptor negative patients with high risk of recurrence, irrespective of nodal status. A beneficial effect on both overall- and relapse-free survival has been demonstrated, especially in premenopausal patients (EBCTCG (1998) Lancet 352(9132): 930-42). For patients with hormone-responsive disease, e.g., estrogen receptor (ER) and/or progesterone receptor (PR) positive disease, adjuvant polychemotherapy has been delivered in combination with endocrine therapy as sequential chemo-endocrine therapy. Also, adjuvant chemotherapy generally induces amenorrhea, causing a secondary endocrine effect in addition to the cytotoxic (Pagani O et al. (1998) Eur J Cancer 34(5):632-40).
Endocrine therapy has been recommended for patients with hormone receptor positive tumors irrespective of age, stage and menopausal status. In hormone-responsive premenopausal patients, ovarian ablation by surgery or irradiation, or ovarian suppression by LHRH agonists is efficient adjuvant treatment modalities (Emens LA and Davidson NA (2003) Clin Ca Res (1 Pt 2): 468S-94S). In postmenopausal patients, ovarian ablation has no place, since the primary source of estrogen is not from ovarian synthesis but from the conversion of androstenedione to estrone and estradiol in peripheral tissues including the breast. Tamoxifen is a selective estrogen receptor modulator (SERM) with an antagonistic effect on the ER, making it a suitable treatment for advanced breast cancer in both pre- and postmenopausal women. Studies have shown that five years of tamoxifen as adjuvant treatment after primary surgery reduces the breast cancer mortality in patients with ER positive (ER+) tumors, irrespective of lymph node status (EBCTCG (1998) Lancet 351 (9114): 1451 - 67). While tamoxifen has a protective effect against cardiovascular disease, the risk of developing endometrial cancer is increased, due to an agonistic effect on the ER in the endometrium (EBCTCG (2005) Lancet 365(9472):1687-717) Aromatase inhibitors (AIs) function by inhibiting aromatase, the enzyme converting androgens into estrogens. For example, AIs can be given as adjuvant treatment to postmenopausal women, either alone or following tamoxifen treatment and they have been shown to significantly reduce the mortality, possibly even more if given alone (Howell A et al. (1995) Lancet 345(8941 ):29-30; Ellis MJ and Rigden CE (2006) Curr Med Res Opin 22(12):2479-87; Coates AS et al. (2007) J Clin Oncol 25(5):486-92). However, this therapy is relatively new and the long-term side effects are not yet fully known (Buzdar A et al. (2006) Lancet Oncol 7(8):633-43), but the most important are cardiovascular complications and osteoporosis.
Newly developed pure anti-estrogens such as fulvestrant, which completely blocks the ER, are currently only used in advanced breast cancer and not in the adjuvant setting (Rutqvist LE (2004) Best Pract Res Clin Endocrinol Metab 18(1 ): 81 -95).
Adjuvant endocrine therapy is believed to have no place in hormone receptor negative breast cancer, although some studies indicate that some ER negative i.e., ERa negative (ERa-), tumors respond to tamoxifen treatment (EBCTCG (1998) Lancet 351 :1451-1467)
The HER2/neu gene is overexpressed in about 20% of all, and in up to 70% of lowly differentiated, breast cancers (Berger MS et al. (1988) Cancer Res 48(5): 1238-43; Borg A et al. (1990) Cancer Res 50(14): 4332-7). Patients with HER2 overexpressing tumors may benefit from treatment with the monoclonal antibody trastuzumab. Experimental data support a relationship between HER2 overexpression and resistance to endocrine treatment (Shou J et al. (2004) J Natl Cancer Inst 96(12):926-35) while clinical data are not consistent (Borg A et al. (1994) Cancer Lett 81 (2):137-44, De Placido S et al. (2003) Clin Ca Res 9(3):1039-46, Ryden L et al. (2005) J Clin Oncol 23(21 ):4695-704).
Breast cancer diagnostics
Morphologic criteria are still generally considered important in the establishment of a breast cancer diagnosis, both in situ and invasive cancer. Among invasive breast carcinomas, invasive ductal carcinoma is the most common tumor type (-80 %) and lobular carcinoma is the second largest entity (-10-15%). Tubular and medullary carcinomas are other distinct types with lower prevalence (WHO, Histological typing of breast tumors, in International histological classification of tumors no:2, 1981 , WHO, Geneva).
Breast cancer prognostics and treatment predictive factors A correct histological classification of the tumor type may be of prognostic relevance, since certain subtypes, such as medullary carcinomas, in general have a more favorable prognosis. Nevertheless, assessment of the histological grade using the Nottingham Histological Grade (NHG) system is still a prognostic tool (Elston CW and Ellis IO (1991 ) 19(5):403-10; Sundquist M et al. (1999) Breast Cancer Res Treat 53(1 ):1 -8).
The majority of breast cancers are hormone receptor responsive, i.e., express the ER and/or PR. The action of estrogen is mediated by the two receptors ERa and ERβ. ERa and PR are routinely assessed in order to select patients for endocrine therapy, and according to one standard, tumors with >10 % nuclear positivity are considered positive. ERa is today considered a predictor of tamoxifen response. However, there are studies that indicate that PR positivity may even be a more powerful predictor of tamoxifen response than ERa. A study of premenopausal patients randomized to tamoxifen or no adjuvant endocrine treatment revealed that a high expression (>75% nuclear fraction) of PR was significantly associated with an increased recurrence-free and overall survival in tamoxifen treated patients, irrespectively of ERa status. At a lower PR level, <75%, no positive effect from tamoxifen treatment was observed (Stendahl M et al. (2006) Clin Cancer Res 12:4614-18). Yu et al. recently studied the predictive value of PR for adjuvant endocrine therapy, and found that older patients (> 60 years) with ERα+/PR+ tumors had a significantly longer disease free survival when treated with tamoxifen than patients that received no adjuvant treatment. In younger patients (<60 years), no significant effect was observed (Yu KD et al. (2007) The Breast 16:307-315). Interestingly, a report from the ATAC trial (postmenopausal women treated with arimidex, tamoxifen or in combination), showed that the recurrence rate was halved for anastrozole-treated patients with ERα+/PR- tumors over the follow-up period of 6 years, compared to patients treated with tamoxifen (Dowsett M et al. (2005) J Clin Oncol 23(30):7512-7).
The role of ERβ in breast cancer is not yet fully clarified, although recent studies implicate that ERβ-expression may be associated with a better tamoxifen response (Borgquist S et al, (2008) J Clin Pathol 61 (2):197-203), particularly in ERa- tumors (Gruvberger-Saal SK et al. (2007) Clin Cancer Res 13:1987-1994). However, determination of ERβ is today generally not considered clinically relevant. A major problem to day is that 30-40% of the ERa positive (ERa+) patients do not respond to tamoxifen treatment (Riggins RB et al. (2007) Cancer Letters 1 :1 -24, Gruvberger-Saal SK et al. (2007) Clin Cancer Res 13:1987-1994), which results in unnecessary treatment. In addition, a fraction of the ERa- patients do respond to tamoxifen treatment, and the reason for that is currently not known. Gruvberger-Saal suggests that ERβ expression may be a positive predictor of tamoxifen response in ERa- patients (Gruvberger-Saal SK et al. (2007) Clin Cancer Res 13:1987-1994).
HER2 status is also assessed routinely, primarily by IHC and in cases with moderate expression (2+), gene amplification status is determined by fluorescence in situ hybridization (FISH) analysis. Patients with a HER2 positive tumor may benefit from treatment with trastuzumab.
Breast cancer is a truly heterogeneous disease and despite the increasing understanding of its nature, the arsenal of available prognostic and treatment predictive markers is still not sufficient and some patients may therefore receive unnecessary treatment while others may get insufficient or even ineffective treatment. Additional molecular markers are needed in order to better define different subgroups of breast cancer and increase the options for tailored therapies.
Endpoint analysis
Endpoint analysis is used to evaluate trials with adjuvant treatments for cancer as this gives information on how the patients respond to a certain therapy. Endpoint analysis may also be useful for studies of a potential biomarker.
Overall survival (OS) has been considered the standard primary endpoint. OS takes in to account time to death, irrespective of cause, e.g., if the death is due to cancer or not. Loss to follow-up is censored and regional recurrence, distant metastases, second primary breast cancers, and second other primary cancers are ignored.
To date, an increasing number of effective treatments available in many types of cancer have resulted in the need for surrogate endpoints to allow for a better evaluation of the effect of adjuvant treatments. Thus, the much longer follow-up required to demonstrate that adjuvant treatments improve OS is often complemented with other clinical endpoints that give an earlier indication on how successful the treatment is. For these observations, recurrence-free survival (RFS) and breast cancer-specific survival (BCSS) may be analyzed. RFS includes time to any event related to the same cancer, i.e., all cancer recurrences and deaths from the same cancer are events. Distant, local and regional metastases as well as breast cancer specific death are considered. On the other hand, second primary same cancers and other primary cancers are ignored, as well as contralateral breast cancer. Deaths from other cancers, non-cancer-related deaths, treatment-related deaths, and loss to follow-up are censored observations. Breast cancer-specific survival (BCSS) includes time to death caused by breast cancer due to the original tumor. Both endpoints are relevant, since similarities or differences may reflect different tumor biological behaviors. Biomarkers associated with a locally aggressive behavior may for instance have greater impact on RFS than BCSS, while biomarkers associated with the development of distant metastases may be reflected in both RFS and BCSS.
Summary of the present disclosure
It is an object an object of some other aspects of the present disclosure to provide means, methods and/or uses useful in the treatment of a mammalian subject having a breast cancer. It is also an object of some aspects of the present disclosure to provide means, methods and/or uses useful in treatment prediction, in particular breast cancer treatment prediction, regarding such a subject.
The following is a non-limiting and itemized listing of embodiments of the present disclosure, presented for the purpose of providing various features and combinations provided by the invention in certain of its aspects.
ITEMS
1. Method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment, comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) concluding that the subject is likely to benefit from an endocrine treatment.
2. Non-treatment strategy method for a mammalian subject having a breast cancer, comprising: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is lower than or equal to said reference value, d) refraining from treating said subject with an endocrine treatment.
3. Method according to any one of claims 1 and 2, wherein said breast cancer is ER negative or PR negative.
4. Method according to claim 3, wherein said breast cancer is ER negative.
5. Method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment, comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) concluding that the subject is likely to benefit from an endocrine treatment, or if said ER status and said HMGCR status are negative, e2) concluding that the subject is not likely to benefit from the endocrine treatment.
6. Method according to claim 5, wherein the ER status is obtained from the sample of step a).
7. Method according to any one of the preceding claims, wherein said endocrine treatment is selected from a SERM treatment, an aromatase inhibitor treatment, and a steroidal estrogen receptor antagonist treatment.
8. Method according to any one of the preceding claims, wherein said endocrine treatment is a SERM treatment and said SERM is selected from toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen.
9. Method according to any one of the preceding claims, wherein said endocrine treatment is tamoxifen treatment.
10. Method according to any one of the preceding claims, wherein said sample is a body fluid sample.
11. Method according to claim 10, wherein the body fluid is selected from the group consisting of blood, plasma, serum, cerebral fluid, urine and exudate.
12. Method according to any one of claims 1 -9, wherein said sample is a cytology sample. 13. Method according to any one of claims 1 -9, wherein said sample is a stool sample.
14. Method according to any one of the preceding claims, wherein said sample comprises cells from said subject.
15. Method according to any one of the preceding claims, wherein said sample comprises tumor cells from said subject.
16. Method according to any one of claims 1 -9, wherein said sample is a tissue sample.
17. Method according to claim 16, wherein said tissue sample is a breast cancer tissue sample.
18. Method according to any one of claims 14-17, wherein the evaluation of step b) is limited to the cytoplasms of cells of said sample.
19. Method according to claim 18, wherein said cells of said sample are tumor cells.
20. Method according to any one of the preceding claims, wherein said subject is a human female.
21. Method according any one of the preceding claims, wherein said subject is a premenopausal female.
22. Method according any one of the preceding claims, wherein said breast cancer is a stage Il breast cancer.
23. Method according any one of the preceding claims, wherein said breast cancer is a node positive breast cancer. 24. Method according to any one of the preceding claims, wherein said reference value is a value corresponding to an amount of HMGCR protein in a reference sample.
25. Method according to any one of the preceding claims, wherein said sample value of step b) is determined as being either 1 , corresponding to detectable HMGCR protein in said sample, or 0, corresponding to no detectable HMGCR protein in said sample.
26. Method according to any one of the preceding claims, wherein said reference value of step c) corresponds to a reference sample having no detectable HMGCR protein.
27. Method according to any one of the preceding claims, wherein said reference value of step c) is 0.
28. Method according to any one of the preceding claims, wherein said reference value is selected from the group consisting of a cytoplasmic fraction, a cytoplasmic intensity, a function of a cytoplasmic fraction and a cytoplasmic intensity, a nuclear fraction, a nuclear intensity and a function of a nuclear fraction and a nuclear intensity.
29. Method according to any one of the preceding claims, wherein said reference value is selected from the group consisting of a cytoplasmic fraction, a cytoplasmic intensity and a function of a cytoplasmic fraction and a cytoplasmic intensity.
30. Method according to any one of the preceding claims, wherein said reference value is a cytoplasmic fraction of 50 % HMGCR protein positive cells, or lower. 31. Method according to any one of the preceding claims, wherein said reference value is a cytoplasmic fraction of 25 % HMGCR protein positive cells, or lower.
32. Method according to any one of the preceding claims, wherein said reference value is a cytoplasmic fraction of 10 % HMGCR protein positive cells, or lower.
33. Method according to any one of claims 1 -29, wherein said reference value is a weak cytoplasmic intensity of HMGCR protein expression, or lower.
34. Method according to any one of claims 1 -29 and 33, wherein said reference value is an absent cytoplasmic intensity of HMGCR protein expression.
35. Method according to any one of claims 1 -29, wherein said reference value is a cytoplasmic fraction of 25 % HMGCR protein or lower or a weak cytoplasmic intensity of HMGCR protein expression or lower.
36. Method according to any one of the preceding claims, wherein the amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
37. Method according to any one of the preceding claims, wherein the amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
38. Method according to any one of the preceding claims, wherein step b) comprises: b1 ) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to any HMGCR protein present in said sample; b2) removing non-bound affinity ligand; and b3) quantifying the affinity ligand remaining in association with said sample to evaluate said amount.
39. Method according to claim 38, wherein said quantifiable affinity ligand is selected from the group consisting of antibodies, fragments thereof and derivatives thereof.
40. Method according to claim 39, wherein said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID NO:1.
41. Method according to claim 40, wherein said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the amino acid sequence SEQ ID NO:1.
42. Method according to claim 38, wherein said quantifiable affinity ligand is a protein ligand derived from a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
43. Method according to claim 38, wherein said quantifiable affinity ligand is an oligonucleotide molecule.
44. Method according to any one of claims 38-43, wherein said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein whose amino acid sequence consists of the sequence of SEQ ID NO:1 or SEQ ID NO:4. 45. Method according to any one of claims 38-44, wherein said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
46. Method according to any one of claims 38-45, wherein said quantifiable affinity ligand is detected using a secondary affinity ligand capable of recognizing said quantifiable affinity ligand.
47. Method according to claim 46, wherein said secondary affinity ligand capable of recognizing said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
48. Kit for carrying out the method according to any one of the preceding claims, which comprises a) a quantifiable affinity ligand capable of selective interaction with an HMGCR protein; and b) reagents necessary for quantifying the amount of said quantifiable affinity ligand.
49. Kit according to claim 48, in which said quantifiable affinity ligand is selected from the group consisting of antibodies, fragments thereof and derivatives thereof.
50. Kit according to claim 49, in which said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID NO:1.
51. Kit according to claim 49, in which said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the sequence SEQ ID NO:1. 52. Kit according to claim 48, in which said quantifiable affinity ligand is a protein ligand derived from a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
53. Kit according to claim 48, in which said quantifiable affinity ligand is an oligonucleotide molecule.
54. Kit according to any one of claims 48-53, in which said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein comprising, or consisting of, a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
55. Kit according to any one of claims 48-54, in which said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein comprising, or consisting of, a sequence selected from: i) SEQ ID NO:2; and a sequence which is at least 85 % identical to SEQ ID NO:2.
56. Kit according to any one of claims 48-55, in which said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein comprising, or consisting of, the sequence SEQ ID NO:4.
57. Kit according to any one of claims 48-56, in which said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
58. Kit according to any one of claims 48-57, in which said reagents necessary for quantifying said amount of said quantifiable affinity ligand comprise a secondary affinity ligand capable of recognizing said quantifiable affinity ligand. 59. Kit according to claim 58, in which said secondary affinity ligand comprises a label selected from the group consisting of fluorescent dyes or metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
60. Kit according to any one of claims 48-59, further comprising at least one reference sample for provision of a reference value.
61. Kit according to claim 60, in which at least one reference sample is a tissue sample comprising no detectable HMGCR protein.
62. Kit according to claim 60 or 61 , in which at least one reference sample comprises HMGCR protein.
63. Kit according to any one of claims 60-62, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 50 %, or lower.
64. Kit according to claim 63, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 25 %, or lower.
65. Kit according to claim 64, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 10 %, or lower.
66. Kit according to claim 65, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 1 %, or lower.
67. Kit according to any one of claims 60-66, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a weak cytoplasmic intensity, or lower. 68. Kit according to claim 67, in which at least one reference sample comprises an amount of HMGCR protein corresponding to an absent cytoplasmic intensity.
69. Kit according to any one of claims 60-68, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a value being higher than said reference value.
70. Kit according to claim 69, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a strong cytoplasmic intensity.
71. Kit according to claim 69 or 70, in which at least one reference sample comprises an amount of HMGCR protein corresponding to a cytoplasmic fraction of 75 % or higher.
72. Kit according to any one of claims 60-71 comprising: a first reference sample comprising an amount of HMGCR protein corresponding to a value (positive reference value) being higher than a reference value; and a second reference sample comprising an amount of HMGCR protein corresponding to a value (negative reference value) being lower than or equal to said reference value.
73. Kit according to any one of claims 60-72, in which said reference sample(s) is/are tissue sample(s).
74. Kit according to any one of claims 48-73, further comprising a') a quantifiable affinity ligand capable of selective interaction with an estrogen receptor; and b') reagents necessary for quantifying the amount of the quantifiable affinity ligand of a').
75. Kit according to any one of claims 48-74, further comprising a") a quantifiable affinity ligand capable of selective interaction with a progesterone receptor; and b") reagents necessary for quantifying the amount of the quantifiable affinity ligand of a").
76. Use of an HMGCR protein as an endocrine treatment indicating marker for a mammalian subject having a breast cancer.
77. Use of an HMGCR protein, or an antigenically active fragment thereof, in the manufacture of an endocrine treatment indicating agent for a mammalian subject having a breast cancer.
78. Use of an HMGCR protein, or an antigenically active fragment thereof, for the production, selection or purification of an endocrine treatment indicating agent for a mammalian subject having a breast cancer.
79. Use according to claim 78, wherein said endocrine treatment indicating agent is an affinity ligand capable of selective interaction with the HMGCR protein, or an antigenically active fragment thereof.
80. Use according to claim 79, wherein the affinity ligand is capable of selective interaction with a protein consisting of the sequence SEQ ID NO:1.
81. Use according to anyone of claims 76-80, wherein the amino acid sequence of the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
82. Use according to anyone of claims 76-80, wherein the amino acid sequence of the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2. 83. Affinity ligand, capable of selective interaction with an HMGCR protein, for in vivo use as an endocrine treatment indicating agent in a mammalian subject having a breast cancer
84. Affinity ligand, capable of selective interaction with an HMGCR protein, for in vivo evaluation of an amount of HMGCR protein in a subject having a breast cancer.
85. Affinity ligand according to any one of claims 83-84, which is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID NO:1.
86. Affinity ligand according to claim 85, which is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the sequence SEQ ID NO:1.
87. Affinity ligand according to any one of claims 83-86, capable of selective interaction with a polypeptide consisting of the sequence SEQ ID NO:1.
88. Affinity ligand according to any one of claims 83-86, capable of selective interaction with a polypeptide consisting of the sequence SEQ ID NO:4.
89. Use in vitro of an affinity ligand according to any one of claims 83-
88 as an endocrine treatment indicating agent for a mammalian subject having a breast cancer.
90. Use in vitro of an affinity ligand according to any one of claims 83- 88 for indicating whether a mammalian subject having a breast cancer would benefit from an endocrine treatment.
91. Use of the affinity ligand according to any one of claims 83-88 in the manufacture of an endocrine treatment indicating agent for a mammalian subject having a breast cancer. 92. Endocrine treatment product for use in treatment of a mammalian subject having a breast cancer, wherein said subject is HMCGR positive.
93. Endocrine treatment product according to claim 92, wherein said breast cancer is ER negative or PR negative.
94. Endocrine treatment product according to claim 92 or 93 being tamoxifen.
95. Use of an endocrine treatment product in the manufacture of a medicament for treatment of a mammalian subject having a breast cancer, wherein said subject is HMCGR positive.
96. Use according to claim 95, wherein said breast cancer is ER negative or PR negative.
97. Use according to claim 95 or 96, wherein the endocrine treatment product is tamoxifen.
98. Kit-of-parts including an endocrine treatment product and a statin.
99. Kit-of-parts according to claim 98 for use in therapy.
100. Kit-of-parts according to claim 99 for use in breast cancer therapy.
101. Products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in therapy.
102. Products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in breast cancer therapy. 103. Method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer, comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) treating said subject with an endocrine treatment regimen.
104. Method according to claim 103, wherein said breast cancer is ER negative or PR negative.
105. Method according to claim 104, wherein said breast cancer is ER negative.
106. Method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer, comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) treating said subject with an endocrine treatment regimen, or if said ER status and said HMGCR status are negative, e2) treating said subject with a non-endocrine treatment regimen.
107. Method according to claim 106, wherein the ER status is obtained from the sample of step a). 108. Method according to any one of claims 103-107, wherein said endocrine treatment is selected from a SERM treatment, an aromatase inhibitor treatment, and a steroidal estrogen receptor antagonist treatment.
109. Method according to any one of claims 103-108, wherein said endocrine treatment is a SERM treatment and said SERM is selected from toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen.
110. Method according to any one of claims 103-109, wherein said endocrine treatment is tamoxifen treatment.
111. Method according to any one of claims 103-110, wherein said sample is a body fluid sample.
112. Method according to claim 111 , wherein the body fluid is selected from the group consisting of blood, plasma, serum, cerebral fluid, urine and exudate.
113. Method according to any one of claims 103-110, wherein said sample is a cytology sample.
114. Method according to any one of claims 103-110, wherein said sample is a stool sample.
115. Method according to any one of claims 103-114, wherein said sample comprises cells from said subject.
116. Method according to any one of claims 103-115, wherein said sample comprises tumor cells from said subject.
117. Method according to any one of claims 103-110, wherein said sample is a tissue sample. 118. Method according to claim 117, wherein said tissue sample is a breast cancer tissue sample.
119. Method according to any one of claims 115-118, wherein the evaluation of step b) is limited to the cytoplasms of cells of said sample.
120. Method according to claim 119, wherein said cells of said sample are tumor cells.
121. Method according to any one of claims 103-120, wherein said subject is a human female.
122. Method according to any one of claims 103-121 , wherein said subject is a premenopausal female.
123. Method according to any one of claims 103-122, wherein said breast cancer is a stage Il breast cancer.
124. Method according to any one of claims 103-123, wherein said breast cancer is a node positive breast cancer.
125. Method according to any one of claims 103-124, wherein said reference value is a value corresponding to an amount of HMGCR protein in a reference sample.
126. Method according to any one of claims 103-125, wherein said sample value of step b) is determined as being either 1 , corresponding to detectable HMGCR protein in said sample, or 0, corresponding to no detectable HMGCR protein in said sample. 127. Method according to any one of claims 103-126, wherein said reference value of step c) corresponds to a reference sample having no detectable HMGCR protein.
128. Method according to any one of claims 103-127, wherein said reference value of step c) is 0.
129. Method according to any one of claims 103-128, wherein said reference value is selected from the group consisting of a cytoplasmic fraction, a cytoplasmic intensity, a function of a cytoplasmic fraction and a cytoplasmic intensity, a nuclear fraction, a nuclear intensity and a function of a nuclear fraction and a nuclear intensity.
130. Method according to any one of claims 103-129, wherein said reference value is selected from the group consisting of a cytoplasmic fraction, a cytoplasmic intensity and a function of a cytoplasmic fraction and a cytoplasmic intensity.
131. Method according to any one of claims 103-130, wherein said reference value is a cytoplasmic fraction of 50 % HMGCR protein positive cells, or lower.
132. Method according to any one of claims 103-131 , wherein said reference value is a cytoplasmic fraction of 25 % HMGCR protein positive cells, or lower.
133. Method according to any one of claims 103-132, wherein said reference value is a cytoplasmic fraction of 10 % HMGCR protein positive cells, or lower.
134. Method according to any one of claims 103-130, wherein said reference value is a weak cytoplasmic intensity of HMGCR protein expression, or lower. 135. Method according to any one of claims 103-130 and 134, wherein said reference value is an absent cytoplasmic intensity of HMGCR protein expression.
136. Method according to any one of claims 103-130, wherein said reference value is a cytoplasmic fraction of 25 % HMGCR protein or lower or a weak cytoplasmic intensity of HMGCR protein expression or lower.
137. Method according to any one of claims 103-136, wherein the amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
138. Method according to any one of claims 103-136, wherein the amino acid sequence of the HMGCR protein comprises a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
139. Method according to any one of claims 103-138, wherein step b) comprises: b1 ) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to any HMGCR protein present in said sample; b2) removing non-bound affinity ligand; and b3) quantifying the affinity ligand remaining in association with said sample to evaluate said amount.
140. Method according to claim 139, wherein said quantifiable affinity ligand is selected from the group consisting of antibodies, fragments thereof and derivatives thereof.
141. Method according to claim 140, wherein said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence comprises the sequence SEQ ID
142. Method according to claim 141 , wherein said quantifiable affinity ligand is obtainable by a process comprising a step of immunizing an animal with a protein whose amino acid sequence consists of the amino acid sequence SEQ ID NO:1.
143. Method according to claim 139, wherein said quantifiable affinity ligand is a protein ligand derived from a scaffold selected from the group consisting of staphylococcal protein A and domains thereof, lipocalins, ankyrin repeat domains, cellulose binding domains, Y crystallines, green fluorescent protein, human cytotoxic T lymphocyte-associated antigen 4, protease inhibitors, PDZ domains, peptide aptamers, staphylococcal nuclease, tendamistats, fibronectin type III domain and zinc fingers.
144. Method according to claim 139, wherein said quantifiable affinity ligand is an oligonucleotide molecule.
145. Method according to any one of claims 139-144, wherein said quantifiable affinity ligand is capable of selective interaction with an HMGCR protein whose amino acid sequence consists of the sequence of SEQ ID NO:1 or SEQ ID NO:4.
146. Method according to any one of claims 139-145, wherein said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
147. Method according to any one of claims 139-146, wherein said quantifiable affinity ligand is detected using a secondary affinity ligand capable of recognizing said quantifiable affinity ligand.
148. Method according to claim 147, wherein said secondary affinity ligand capable of recognizing said quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots.
149. Method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer, comprising simultaneous, separate or sequential administration of a statin and an endocrine treatment product.
150. Method according to claim 149, wherein the endocrine treatment product is a SERM.
151. Method according to claim 149 or 150, wherein the endocrine treatment product is tamoxifen.
152. Method according to any one of claims 149-151 , wherein said statin is a lipophilic/hydrophobic statin or a hydrophobic statin.
153. Method according to claim 152, wherein said statin is a lipophilic/hydrophobic statin selected from fluvastatin, lovastatin, simvastatin, atorvastatin and cehvastatin.
Brief description of the figures
With regard to figures 1-7, tumor tissue was scored for high or low HMGCR level, wherein a high HMGCR level is Cl = weak, moderate and strong and a low HMGCR level is a Cl = absent. In figure 1-2, 4-5 and 7 a solid line represents HMGCR high subjects, and a dotted line represents HMGCR low subjects.
Figure 1 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma. Figure 1a shows recurrence free survival in patients treated with adjuvant tamoxifen. Figure 1 b shows recurrence free survival in patients who received no adjuvant endocrine treatment.
Figure 2 shows the results of a survival analysis based on immunohistochemical staining of ER positive subjects diagnosed with invasive breast carcinoma. A fraction score of ER > 10 % was considered positive. Figure 2a shows recurrence free survival in patients treated with adjuvant tamoxifen. Figure 2b shows recurrence free survival in patients who received no adjuvant endocrine treatment. Figure 3 shows the impact on survival if splitting subjects into groups with different combinations of HMGCR protein expression status and ER status. Briefly, all subjects were split into four groups based on HMGCR status and ER status, i.e. subjects that are HMGCR positive and ER positive, subjects that are HMGCR positive and ER negative, subjects that are HMGCR negative and ER positive or subjects that are HMGCR negative and ER negative. ER positive = fraction score of > 10 % and ER negative = fraction score of < 10 %. Figure 3a shows recurrence free survival in patients treated with adjuvant tamoxifen. Figure 3b shows recurrence free survival in patients who received no adjuvant endocrine treatment. Figure 4 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma. Figure 4a shows recurrence free survival in of node positive subjects treated with adjuvant tamoxifen. Figure 4b shows recurrence free survival in node negative subjects treated with adjuvant tamoxifen. Figure 5 shows the results of a survival analysis based on immunohistochemical staining of ER positive subjects diagnosed with invasive breast carcinoma. A fraction score of ER > 10 % was considered positive. Figure 5a shows recurrence free survival in of node positive subjects treated with adjuvant tamoxifen. Figure 5b shows recurrence free survival in of node negative subjects treated with adjuvant tamoxifen.
Figure 6 shows the impact on survival if splitting subjects into groups with different combinations of HMGCR protein expression status and ER status. Briefly, all subjects were split into four groups based on HMGCR status and ER status, i.e. subjects that are HMGCR positive and ER positive, subjects that are HMGCR positive and ER negative, subjects that are
HMGCR negative and ER positive or subjects that are HMGCR negative and ER negative. ER positive = fraction score of > 10 % and ER negative = fraction score of > 10 %. Figure 6a shows recurrence free survival in node positive subjects treated with adjuvant tamoxifen. Figure 6b shows recurrence free survival in node negative subjects treated with adjuvant tamoxifen.
Figure 7 shows the results of a survival analysis based on immunohistochemical staining of ER negative subjects diagnosed with breast invasive carcinoma. A fraction score of ER expression > 10 % was considered positive. Figure 7a shows recurrence free survival in subjects treated with adjuvant tamoxifen. Figure 7b shows recurrence free survival in subjects treated with adjuvant tamoxifen. With regard to figures 8-12, tissue cores were scored for high or low
HMGCR level, wherein a high HMGCR level is Cl > absent and a low HMGCR level is a Cl = absent. Further, a solid line represents a group of subjects given adjuvant tamoxifen, and a dotted line represents patients who received no adjuvant endocrine treatment. Figure 8 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma. Figure 8a shows recurrence free survival in HMGCR high patients. Figure 8b shows recurrence free survival in HMGCR low patients. Figure 9 shows the results of a survival analysis based on immunohistochemical staining of HMGCR positive and ER negative subjects diagnosed with invasive breast carcinoma. A fraction score of ER expression > 10 % was considered positive. Figure 9a shows recurrence free survival. Figure 9b shows recurrence free survival in node positive patients. Figure 10 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma. The subjects were classified as ER positive or ER negative, wherein a fraction score of > 10 % was considered positive and a fraction score of < 10 % was considered negative. Figure 10a shows recurrence free survival in HMGCR positive or ER positive subjects. Figure 10b shows recurrence free survival in HMGCR negative and ER negative subjects.
Figure 11 shows the results of a survival analysis based on immunohistochemical staining of subjects diagnosed with invasive breast carcinoma. The subjects were classified as PR positive or PR negative, wherein a fraction score of > 10 % was considered positive and a fraction score of < 10 % was considered negative. Figure 11a shows recurrence free survival in HMGCR positive or PR positive subjects. Figure 11 b shows recurrence free survival in HMGCR negative and PR negative subjects.
Figure 12 shows the recurrence free survival of HMGCR positive and PR negative subjects diagnosed with invasive breast carcinoma. A fraction score of PR expression > 10 % was considered positive. Figure 13 shows Western blot of HMGCR protein expression in tamoxfen sensitive ER positive breast cancer cells (ZR751 , T47D, MCF7RC), and tamoxifen resistant ER positive (BT474) cells.
Figure 14 shows HMGCR and ERa expression in MCF7 cells treated with either 10 μM Simvastatin, 100 nM Tamoxifen, or a combination of both sustances. Blot of actin expression is included as control.
Figure 15 shows the level of HMGCR mRNA-levels in MCF7 cells after treatment with either 10 μM Simvastatin, 100 nM Tamoxifen, or a combination of both sustances. Figure 16 shows Western blot of HMGCR protein expression in tamoxifen sensitive (MCF7) and resistant (LCC2 and LCC9) cell lines.
Figure 17 shows Western blot of HMGCR and ERa protein expression after Simvastatin treatment in concentrations ranging from 0 to 9 μM. Blot of actin expression is included as control.
Description Therapeutic indication
Tamoxifen has been the mainstay of adjuvant endocrine therapy for the last 25 years and a wealth of evidence exists supporting its role in the treatment of breast cancer, irrespective of menopausal status. The results of a meta-analysis have demonstrated significant reductions in both disease recurrence (41 %), and breast cancer specific mortality (34%) when comparing 5 years tamoxifen to no adjuvant treatment (EBCTG: (2005) Lancet 365:1687-717). HMGCR protein acts as a rate-limiting enzyme in the mevalonate pathway. Although cholesterol represents the main product of this pathway, it also produces a number of non-sterol isoprenoid side products, which have been shown to be important regulators of angiogenesis, proliferation, and migration (Liao JK (2002) J Clin Invest 110:285-8, Wejde J, et al (1992) Anticancer Res 12:317-24).
Despite an ever-growing body of literature describing the antineoplastic properties of statins, epidemiologic data regarding their preventive effect against cancer in general and breast cancer in particular remain inconclusive. Partly in view of the teachings of the present disclosure, the inventors believe that the mevalonate pathway may play a key role in certain breast cancers, in particular in ER negative and/or lymph node positive tumors.
In vitro studies have demonstrated that statin induced mevalonate depletion results in an adaptive induction of HMGCR protein expression in Chinese hamster ovary cells (Goldstein JL and Brown MS (1990) Nature 343:425-30) and MCF7 breast cancer cells (Duncan RE, et al (2005) Cancer Lett 224:221 -8). Treatment of MCF7 cells with mevastatin resulted in a 10- to 15-fold induction of HMGCR activity in association with a 2.5- to 3.5-fold induction of HMGCR mRNA expression.
Further, it is shown herein that statin treatment of breast cancer cell lines increased HMGCR protein expression (see fig 14 and 17).
Based on the fact that statins have been shown to induce HMGCR protein expression and the finding that increased levels of HMGCR protein expression are associated with an improved response to tamoxifen in both ER positive and ER negative tumors (discussed further below), the inventors conclude that a combination of an endocrine treatment product and one or more statins is a new therapeutic option.
This is further supported by the finding that tamoxifen resistant breast cancer cell lines express less HMGCR than tamoxifen sensitive breast cancer cell lines (see fig 13 and 16).
Thus, there are provided products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in therapy, such as breast cancer therapy. The combination of the two products may be provided in a "kit-of parts" or an article of manufacture, which may comprise instruction for the simultaneous, separate or sequential use in therapy, such as breast cancer therapy.
There is thus provided a kit-of-parts including an endocrine treatment product and a statin.
For example, such a kit-of-parts may be for use in therapy, such as breast cancer therapy. As shown herein, subjects having breast cancer tumors expressing high levels of HMGCR protein generally respond well to endocrine treatment. However, subjects having breast cancer tumors expressing low levels of HMGCR protein are shown to be less responsive. A combination of an endocrine treatment product and a statin may thus be a particularly suitable option for the treatment of subjects having low HMGCR protein levels. By this it is not said that subjects having high HMGCR protein levels cannot benefit from such a combination.
Consequently, in some embodiments, said breast cancer may be HMGCR protein low.
The breast cancer is "HMGCR protein low" if an HMGCR protein value derived from the breast cancer (sample value) is lower than a relevant reference value. Relevant sample and reference values are discussed below in connection with the method aspects of the treatment predictive indication. Thus, the breast cancer may for example be considered HMGCR protein low if a sample from a primary or secondary breast tumor, shows no detectable HMGCR protein expression in relevant parts of the sample, such as in the tumor cells. Further, the breast cancer may for example be considered HMGCR protein low if such sample contains an amount of HMGCR corresponding to an absent cytoplasmic intensity or a cytoplasmic fraction which is 1 % or lower. "Cytoplasmic fraction" and "cytoplasmic intensity" are defined below in connection with the treatment predictive indication. From the present disclosure, the person skilled in the art, such as a pathologist, understands how to determine whether the breast cancer is HMGCR protein low of not.
The results presented herein indicate that the level of HMGCR protein expression is an indicator of response to endocrine treatment in both ER negative (ER-) and ER positive (ER+) cancers. However, the need for the combination treatment may be higher among ER- subjects who are generally believed to be less responsive to endocrine treatments such as tamoxifen.
In embodiments, the breast cancer therapy may thus be treatment of an ER- or ER+ breast cancer. In further embodiments, the breast cancer therapy may be treatment of a lymph node positive breast cancer (in figures 4, 5, 6 and 9 it is shown that the association between HMGCR protein expression and response to endocrine treatment is particularly accentuated in subjects having node positive breast cancers).
Further, there is provided a method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer, comprising simultaneous, separate or sequential administration of therapeutic effective amounts of a statin and an endocrine treatment product. In embodiments, the breast cancer of the method may be HMGCR protein low. "HMGCR protein low" is defined above. Whether a breast cancer is HMGCR protein low or not may thus be determined according to the method aspects of the treatment predictive indication presented below, and a person skilled in the art may conclude that the breast cancer is HMGCR protein low if a sample value derived from it is equal to or lower than the reference value.
Consequently, the method of treatment may comprise the steps of establishing that the breast cancer is HMGCR protein low. Tissue material from a surgical removal of the breast cancer may for example be used in this establishment.
In conclusion, guided by the present disclosure, the person skilled in the art is able to establish whether a breast cancer is HMGCR protein low or not without undue burden.
In embodiments of the method, the breast cancer may be ER- or ER+. In further embodiments, the breast cancer may be a lymph node positive breast cancer. These embodiments are discussed above.
In the context of the present disclosure, an "endocrine treatment product" refers to a compound having an anti-estrogenic effect. Further, "antiestrogenic effect" refers to suppression of estrogen production or inhibition of estrogen effects in the body.
In embodiments of the present disclosure, the "endocrine treatment product" may be selected from the group consisting of a selective estrogen receptor modulator (SERM), an aromatase inhibitor, and a steroidal estrogen receptor antagonist. The SERM may for example be selected from toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen. The aromatase inhibitor may for example be selected from anastrozole, letrozole and exemestane. The steroidal estrogen receptor antagonist may for example be fulvestrant. In preferred embodiments, the endocrine treatment product is a SERM, such as tamoxifen.
The statin of the present disclosure may be selected from lipophilic/hydrophobic statins and hydrophobic statins. The lipophilic/hydrophobic statins comprise fluvastatin, lovastatin, simvastatin, atorvastatin and cehvastatin. The hydrophobic statins comprise pravastatin and rosuvastatin.
The person skilled in the art is capable of determining therapeutically effective amounts of the endocrine treatment product and the statin, respectively. Likewise, the person skilled in the art is capable of determining suitable doses of the endocrine treatment product and the statin, respectively, in the above-mentioned products or kit-of-parts.
In particular, it will be appreciated that the amounts the endocrine treatment product and the statin of the present disclosure required for use in treatment will vary not only with the particular compounds selected but also with the route of administration, the nature of the condition for which treatment is required and the age, weight and condition of the patient, and will be ultimately at the discretion of the attendant physician. In general however a suitable of dose the endocrine treatment product tamoxifen will be in the range of about 1 -100 mg per day, such as in the range of 15-45 mg per day, such as 20-40 mg per day. Further, a suitable dose of statins, such as simvastatin, may be in the range of 1 -100 mg per day, such as 5-80 mg per day, typically 10-20 mg per day.
The desired doses are conveniently presented in single doses or as divided doses administered at appropriate intervals, for example as two, three, four or more doses per day. Tamoxifen is conveniently administered in unit dosage form; for example containing 1-100 mg, conveniently 10-40 mg, such as about 20 mg. The statins may also be administered in unit dosage form; for example containing 1 -100 mg, conveniently 5-80 mg. The endocrine treatment product and the statin of the present disclosure will normally be administrated via the oral, parenteral, intravenous, intramuscular, subcutaneous or other injectable ways, buccal, rectal, vaginal, transdermal and/or nasal route and/or via inhalation, in the form of pharmaceutical preparations comprising the active ingredient or a pharmaceutically acceptable salt or prodrug or solvate thereof, or a solvate of such a salt, in a pharmaceutically acceptable dosage form. Depending upon stage and type of the breast cancer, the general condition of the patient to be treated and the route of administration, the compositions may be administered at varying doses.
While it is possible that, for use in therapy, the endocrine treatment product and the statin of the present disclosure may be administered as raw chemicals, it is preferred to present the active ingredients as two separate or one single pharmaceutical composition(s). The present disclosure thus further provides one or two pharmaceutical compositions comprising the respective active ingredient or pharmaceutically acceptable salts or prodrugs thereof together with one or more pharmaceutically acceptable carriers. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. According to one embodiment of the present invention, pharmaceutical formulations include but are not limited to those suitable for oral, rectal, nasal, topical (including buccal and sub-lingual), transdermal, vaginal or parenteral (including intramuscular, sub-cutaneous and intravenous) administration or in a form suitable for administration by inhalation or insufflation. The formulations may, where appropriate, be conveniently presented in discrete dosage units and may be prepared by any of the methods well known in the art of pharmacy. All methods according to this embodiment include the step of bringing into association the active compound with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired composition.
Pharmaceutical compositions suitable for oral administration are conveniently presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules. In another embodiment, the formulation is presented as a solution, a suspension or as an emulsion. The active ingredient is alternatively presented as a bolus, electuary or paste.
Tablets and capsules for oral administration may contain conventional excipients such as binding agents, fillers, lubricants, disintegrants, or wetting agents. The tablets may be coated according to methods well known in the art. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), or preservatives.
The endocrine treatment product and the statin of the present disclosure may be formulated for parenteral administration (e.g. by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulation agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution, for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.
The above described formulations are adapted to give sustained release of the active ingredient.
The doses, administration intervals, forms of the active ingredients, pharmaceutically acceptable carriers, pharmaceutical preparations and administration routes may for example be those employed in clinical practice today. The physician responsible for the breast cancer treatment according to the present disclosure may thus use information from established treatment protocols based on administration of endocrine treatment products and statins, respectively. In some embodiments, the breast cancer subject is treated with the statin before the endocrine treatment product is administrated. The statin treatment may be neo-adjuvant and/or adjuvant, while the endocrine treatment normally will be adjuvant. Consequently, the statin may be administrated before the tumor is surgically removed. Then (after surgery), the statin may for example be administrated as long as the endocrine treatment is performed. Alternatively, the statin and the endocrine treatment product may be administrated simultaneously during a first period followed by a second period of endocrine treatment without statins, optionally in combination with a different chemotherapeutic agent.
In some embodiments, the statin may be administrated to the subject at least until the HMGCR protein level of the subject is increased, and then, administration of the endocrine treatment product, optionally in combination with more statin, may follow. For example, during neo-adjuvant statin treatment, the HMGCR level may be monitored by measurements on tumor biopsies.
The above method may thus comprise the steps of administration of the statin until an increase in HMGCR protein expression is detected in the subject, followed by administration of the endocrine treatment product, optionally in combination with additional statin administration.
Treatment predictive indication
As a first configuration of a first aspect of the present disclosure, there is provided a method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment, comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) concluding that the subject is likely to benefit from an endocrine treatment.
Regarding step b) of the methods of the present disclosure, an increase in the amount of HMGCR protein typically results in an increase in the sample value, and not the other way around. However, in some embodiments, the evaluated amount may correspond to any of a predetermined number of discrete sample values. In such embodiments, a first amount and a second, increased, amount may correspond to the same sample value. In any case, an increase in the amount of HMGCR protein will not result in a decrease in the sample value in the context of the present disclosure.
However inconvenient, but in an equivalent fashion, the evaluated amounts may be inversely related to sample values if the qualification between step c) and d) is "if the sample value is lower than the reference value" (see the method above). This applies mutatis mutandis to the other method aspects, configurations and embodiments of the present disclosure.
In the context of the present disclosure, "likely to benefit from an endocrine treatment" refers to having a higher probability of survival or recovery if undergoing an endocrine treatment than if not undergoing an endocrine treatment. In this context, "recovery" refers to return from a breast cancer state to a breast cancer free state. The "survival" may be a recurrence free survival or a breast cancer specific survival. Further, the "recovery" may be a recurrence free recovery. Also, the "higher probability" may be a probability benefit at five years, ten years or 15 years of at least 5 %, such as at least 10 %.
This first aspect of the present disclosure is based on the previously unrecognized fact that the expression of HMGCR protein in a sample obtained from a subject having a breast cancer may serve as an indicator of response to endocrine treatment in the subject. More particularly, the inventors have identified that, in patients suffering from breast cancer, a correlation between values of HMGCR protein on the one hand and the survival after endocrine treatment on the other. Typically, high HMGCR protein values are shown herein to correlate with responsiveness to endocrine treatment. The present disclosure, based on HMGCR protein expression as a breast cancer treatment indicator, provides for a number of benefits. Firstly, it provides an additional, or alternative, tool for predicting whether a patient is likely to respond to endocrine treatment. Secondly it identifies a subgroup of hormone receptor negative patients that, contrary to earlier beliefs, benefit from to endocrine treatment. Consequently, the present disclosure may provide for accurate treatment of a previously undertreated group. Thirdly, the present disclosure identifies a subgroup of breast cancer patient which generally do not benefit from endocrine treatment. Traditionally, subjects with hormone receptor negative breast cancers, especially ER- breast cancers, have not received systemic endocrine treatment. However, as shown in the present disclosure, the survival rates in the subgroup of subjects with hormone receptor negative, e.g. ER- or PR-, ER-, PR-, or ER- and PR-, breast cancers having high HMGCR values were improved with endocrine treatment. Consequently, the inventors have identified new subgroups of subjects that may be treated with an endocrine treatment. Accordingly, various aspects of the present disclosure may be particularly relevant for the subjects having hormone receptor negative cancers. As a second configuration of the first aspect, there is provided a method for determining whether a mammalian subject having a breast cancer should undergo an endocrine treatment, comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) concluding that the subject should undergo an endocrine treatment.
As a third configuration of the first aspect of the present invention, there is provided a non-treatment strategy method for a mammalian subject having a breast cancer, comprising: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is lower than or equal to said reference value, d) refraining from treating said subject with an endocrine treatment. For example, the refraining of step d) may be refraining during at least one week from the completion of steps a) - c), such as at least one month from the completion of steps a) - c), such as at least three months from the completion of steps a) - c), such as at least six months from the completion of steps a) - c), such as at least one year from the completion of steps a) - c), such as at least two years from the completion of steps a) - c). Alternatively, the refraining of step d) may be refraining until the next time the method is performed or until recurrence of a breast cancer tumor. In embodiments of configurations one to three of the first aspect, the breast cancer may be a hormone receptor negative breast cancer, such as an ER- or PR- breast cancer, an ER- breast cancer, a PR- breast cancer, or an ER- and PR- breast cancer. For example, the breast cancer may be previously diagnosed as hormone receptor negative.
In general, hormone receptor status, e.g. ER status or PR status, may be assessed according to any method known to the skilled artisan and the person skilled in the art knows how to obtain the ER and/or PR status of a patient. For example, such information may be obtained from the result of a test using the commercially available ER/PR pharmDX kit (DakoCytomation). As another example, the method disclosed by Allred et al. (Allred et al. (1998) Mod Pathol 11 (2), 155) may be used to obtain a total score (Allred score), and, for both ER and PR, an Allred score of higher than two is considered positive and an Allred score of two or lower is considered negative.
Alternatively, when classifying a sample as being positive or negative for ER or PR, a cutoff of 10% positive cells may be used, which is a recognized limit within the art. If not otherwise stated, "ER" refers to "ERa" in the context of the present disclosure.
As a fourth configuration of the first aspect of the present invention, there is provided a method for determining whether a mammalian subject having a breast cancer is likely to benefit from an endocrine treatment, comprising the steps of: a) providing a sample earlier obtained from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) concluding that the subject is likely to benefit from an endocrine treatment, or if said ER status and said HMGCR status are negative, e2) concluding that the subject is not likely to benefit from the endocrine treatment. However closely related and covered by the same concept, e1 ) and e2) provide two alternative conclusion options. Accordingly, the method of the fourth configuration of the first aspect may answer the question whether the subject having a breast cancer is likely to benefit from an endocrine treatment or the question whether the subject having a breast cancer is not likely to benefit from an endocrine treatment. Thus, the method of the fourth configuration of the first aspect may, but does not have to, comprise both step e1 ), together with its adherent qualification ("if phrase"), and step e2), together with its adherent qualification ("if phrase").
For example, in step c), the HMGCR status may be considered positive if the sample value is higher than the reference value and negative if the reference value is lower than, or equal to, the reference value.
A single sample from the subject may provide both the ER status and the HMGCR status, for example by means of immunohistochemistry. Thus, in embodi merits of the method aspects of the present disclosure, the ER status may be obtained from the sample of step a). Also, the ER status may be obtained from a tissue material from which the sample of step a) was also obtained. Consequently, the required number of biopsies or amount of biological material from the subject may be kept low.
As a fifth configuration of the first aspect of the present disclosure, there is provided a method for determining whether a sample value corresponding to an amount of HMGCR protein present in at least part of a sample earlier obtained from a mammalian subject having a breast cancer is in favor of a decision to apply an endocrine treatment to the subject, comprising the steps of: a) providing the sample earlier obtained from the subject; b) evaluating the amount of HMGCR protein present in at least part of the sample, and determining the sample value corresponding to the amount; c) comparing the sample value obtained in step b) with a reference value; and, if the sample value is higher than the reference value, d1 ) concluding that the sample value is in favor of a decision to treat the subject with an endocrine treatment, and/or if the sample value is lower than or equal to the reference value, d2) concluding that the sample value is in favor of a decision to refrain from treating the subject with an endocrine treatment. However closely related and covered by the same concept, d1 ) and d2) of the fifth configuration of the first aspect provide two alternative conclusion options. Accordingly, the method may answer the question whether the sample value is in favor of a decision to refrain from treating the subject with an endocrine treatment or the question whether the sample value is in favor of a decision to treat the subject with an endocrine treatment. Thus, the method of the fifth configuration of the first aspect may, but does not have to, comprise both step d1 ), together with its adherent qualification ("if phrase"), and step d2), together with its adherent qualification ("if phrase"). When deciding on a suitable treatment strategy for a patient having breast cancer, the physician responsible for the treatment may take several parameters into account, such as the result of an immunohistochemical evaluation, patient age, hormone receptor status, general condition, medical history, such as breast cancer history and hereditary characteristics, e.g. whether there is a history of breast cancer in the subject's family. To be guided in such decision, the physician may perform an HMGCR protein test, or order an HMGCR protein test performed, according to the first aspect. In such case, a method according to the fifth configuration of the first aspect may be particularly relevant.
Also, the physician may instruct someone else, such as lab staff, to perform part of a method according to the present disclosure, such as steps a) to c), and perform the remaining, such as step d) or e), himself.
As a sixth configuration of the first aspect, there is provided a method for determining an endocrine treatment prediction regarding a mammalian subject having a breast cancer: a) providing a sample from the subject; b) evaluating the amount of HMGCR protein present in at least part of the sample, and determining a sample value corresponding to the evaluated amount; c) correlating the sample value of step b) to the endocrine treatment prediction for the subject.
In an embodiment of the above method, the sample may be an earlier obtained sample. The correlating of step c) refers to any way of associating survival data to the obtained sample value so as to establish the treatment prediction.
The identified correlation between high HMGCR protein expression and responsiveness to endocrine treatment may also form a basis for the application of a specific regimen for treatment of the subject. Thus, as a first configuration of a second aspect of the present disclosure, there is provided a method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer, comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step b) with a reference value; and, if said sample value is higher than said reference value, d) treating said subject with an endocrine treatment regimen.
In embodiments of the first configuration of the second aspect, the breast cancer may be a hormone receptor negative breast cancer, such as an ER- or PR- breast cancer, an ER- breast cancer, a PR- breast cancer, or an ER- and PR- breast cancer. For example, the breast cancer may be previously diagnosed as hormone receptor negative.
As a second configuration of the second aspect, there is provided a method of treatment of a mammalian subject in need thereof, wherein said subject has a breast cancer, comprising the steps of: a) providing a sample from said subject; b) evaluating the amount of HMGCR protein present in at least part of said sample, and determining a sample value corresponding to said amount; c) comparing the sample value obtained in step c) with a reference value and thereby determining the HMGCR status of said subject; d) obtaining the ER status for said subject; and if said ER status or said HMGCR status is positive, e1 ) treating said subject with an endocrine treatment regimen, or if said ER status and said HMGCR status are negative, e2) treating said subject with a non-endocrine treatment regimen.
However closely related and covered by the same concept, e1 ) and e2) of the second configuration of the second aspect provide two alternative conclusion options. Accordingly, the method may involve an endocrine treatment regimen or a non-endocrine treatment regimen. Thus, the method of the second configuration of the second aspect may, but does not have to, comprise both step e1 ), together with its adherent qualification ("if phrase"), and step e2), together with its adherent qualification ("if phrase"). Generally regarding the method of treatment aspects of the present disclosure, the physician responsible for the treatment of the subject may perform steps a) to c) himself or instruct someone else, such as lab staff, to perform them. In the context of the present disclosure, an "endocrine treatment" refers to a systemic treatment with an anti-estrogenic effect. Further, "antiestrogenic effect" refers to suppression of estrogen production or inhibition of estrogen effects in the body. In the art, an endocrine treatment is sometimes referred to as an anti-hormonal treatment. The "endocrine treatment" of the present disclosure may be selected from the group consisting of a selective estrogen receptor modulator (SERM) treatment, an aromatase inhibitor treatment, and a steroidal estrogen receptor antagonist treatment. The SERM treatment may for example be a treatment selected from a toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen treatment. The aromatase inhibitor treatment may for example be selected from anastrozole, letrozole and exemestane treatment. Further, the steroidal estrogen receptor antagonist treatment may be a treatment with fulvestrant.
A SERM may have either an agonistic or antagonistic effect depending on the target tissue. For example, a SERM may act as an antagonist in breast and as an agonist in uterus.
In the Examples section of the present disclosure, various results of treatment with the SERM tamoxifen are presented. The results show that the level of HMGCR protein expression is relevant for predicting whether the subjects are responsive to tamoxifen treatment. Thus, in preferred embodiments of the present disclosure, the endocrine treatment is tamoxifen treatment.
For example, the "non-endocrine treatment" of the present disclosure may be selected from chemotherapies, radiation therapies and combinations thereof. The chemotherapies comprise mono- or polychemotherapy, such as treatment with CMF (cyclophosphamide, methotrexate, 5-fluorouracil), FEC (fluorouracil, epirubicin, cyclofosfamid) and/or taxanes. Also, if the breast cancer is HER2 positive (HER2+), the non-endocrine treatment may be an anti-HER2 treatment, such as a treatment with an anti-HER2 antibody, e.g., trastuzumab.
In the context of the present disclosure, "a mammalian subject having a breast cancer" refers to a mammalian subject having a primary or secondary breast tumor or a mammalian subject which has had such tumor removed from the breast, wherein the removal of the tumor refers to killing or removing the tumor by any type of surgery or therapy. In the latter case, the tumor may for example have been removed less than one year ago. For example, a subject who has had a breast tumor removed by surgery and is about to get adjuvant therapy is considered "having a breast cancer" in the context of the present disclosure. "Breast tumor" includes ductal carcinoma in situ (DCIS). In the method and use aspects of the present disclosure, "a mammalian subject having a breast cancer" also includes the case wherein the mammalian subject is suspected of having a breast cancer at the time of the performance of the use or method and the breast cancer diagnosis is established later.
In the context of the method aspects of the present disclosure, "earlier obtained" refers to obtained before the method is performed. Consequently, if a sample earlier obtained from a subject is provided in a method, the method does not involve obtaining the sample from the subject, i.e., the sample was previously obtained from the subject in a step separate from the method.
Accordingly, all methods and uses of the present disclosure, may be performed entirely in vitro unless otherwise stated.
Step b) of the methods of the above aspects involve evaluating the amount of HMGCR protein present in at least part of the sample, and determining a sample value corresponding to the amount. The "at least part of the sample" refers to a relevant part, or relevant parts, of the sample for establishing a treatment prediction or drawing conclusions regarding suitable treatments. The person skilled in the art understands which part or parts that are relevant under the circumstances present when performing the method. For example, if the sample comprises tumor and non-tumor cells, the skilled person may only consider the tumor cells, and only the cytoplasms of the tumor cells, of the sample. Further, in step b) an amount is evaluated and a sample value corresponding to the amount is determined. Consequently, an exact measurement of the amount of HMGCR protein is not required for obtaining the sample value. For example, the amount of HMGCR protein may be evaluated by visual inspection of a stained tissue sample and the sample value may then be categorized, e.g., as high or low based on the evaluated amount. The person skilled in the art understands how to perform such evaluation and determination.
Still further, in the context of the present disclosure, the "reference value" refers to a predetermined value which is relevant for making decisions, or drawing conclusions, regarding the treatment or treatment prediction.
The data of the present disclosure is based on groups of human females. Thus, in embodiments of the present disclosure, the "mammalian subject" may be a human. Also, in embodiments of the present disclosure, the "mammalian subject" may be a female, such as a premenopausal or postmenopausal female. Endocrine treatment is given to both premenopausal and postmenopausal subjects. Premenopausal females are generally considered to be more responsive to tamoxifen treatment. Thus, in some embodiments, in particular those wherein tamoxifen is selected as the endocrine treatment, premenopausal human female subjects may be a particularly relevant group.
The diagnosed or treated tumors of the present disclosure may be in any stage. However, the subjects studied as described in Examples, section 4 had stage Il invasive breast cancers. Stage Il refers to pT2 NO MO or pT1 -2 N1 MO according to the TNM staging system. Thus, in embodiments of the present disclosure, the "breast cancer" may be a stage Il breast cancer.
Also, in embodiments of the present disclosure, the "breast cancer" may be a node negative or a node positive breast cancer (see e.g. fig 4). "Node negative cancer" and "node positive cancer" refers to a cancer that has and has not spread to the lymph nodes, respectively.
A seen in figures 4-7 and 9, the treatment predictive role of HMGCR protein expression is particularly accentuated in node positive breast cancer. Thus, in embodiments of the present disclosure, the breast cancer may be node positive.
In embodiments of the methods of the above aspects, the sample may be a body fluid sample, such as a sample of blood, plasma, serum, cerebral fluid, lymph, urine or exudate. Preferably, the body fluid sample is sample of blood, plasma, serum or lymph. Alternatively, the sample may be a cytology sample or a stool sample.
The level of HMGCR protein expression may preferably be measured intracellular^. Thus, the body fluid, cytology or stool sample may for example comprise cells, such as tumor cells.
In further embodiments of the methods of the above aspects, the sample may be a tissue sample, such as a tumor tissue sample. As an example, the tissue sample may be derived from a primary breast tumor, such as an in situ or invasive carcinoma, or a secondary tumor (metastasis). Tissue samples facilitate HMGCR protein expression analysis by means of immunohistochemistry.
The inventors have found that the relevant HMGCR protein expression is primarily cytoplasmic. Thus, in embodiments of the methods of the present disclosure, the evaluation of step b) may be limited to the cytoplasms of cells, such as tumor cells, of the sample. When the evaluation is limited to the cytoplasms, only the characteristics, such as the HMGCR protein expression, of the cytoplasms are considered in the evaluation. Such evaluation may for example by aided by immunohistochemical staining.
The inventors have found that subjects who suffer from breast cancer and show essentially no HMGCR protein expression generally have poor survival after endocrine treatment (see Examples, section 4 and the figures). Consequently, the "cut-off value" determining whether the subject is "HMGCR high" or "HMGCR low" may be zero.
Thus, in embodiments of the methods of the present disclosure, the sample value of step b) may be either 1 , corresponding to detectable HMGCR protein in the sample, or 0, corresponding to no detectable HMGCR protein in the sample. Consequently, in such embodiments, the evaluation of the sample is digital: HMGCR protein is considered to be either present or not. In the context of the present disclosure, "no detectable HMGCR protein" refers to an amount of HMGCR protein that is so small that it is not, during normal operational circumstances, detectable by a person or an apparatus performing the method according to any one of the above aspects. The "normal operational circumstances" refer to the laboratory methods and techniques a person skilled in the art would find appropriate for performing the invention.
Accordingly, in embodiments of the methods of the present disclosure, the reference value of step c) may be 0. And it follows that, in further embodiments of the methods of the present disclosure, the reference value of step c) may correspond to a reference sample having no detectable HMGCR protein (see below).
A sample value of HMGCR protein being higher than the reference value, or a subject from which such sample value is obtained, is sometimes referred to herein as "HMGCR protein high". Further, a sample value of HMGCR protein being lower than, or equal to, the reference value, or a subject from which such sample value is obtained, is sometimes referred to herein as "HMGCR protein low".
In the context of the present disclosure, the terms "sample value" and "reference value" are to be interpreted broadly. The quantification of HMGCR protein to obtain these values may be done via automatic means, via a scoring system based on visual or microscopic inspection of samples, or via combinations thereof. However, it is also possible for a skilled person, such as a person skilled in the art of histopathology, to determine the sample and reference values merely by inspection, e.g., of tissue slides that have been stained for HMGCR protein expression. The determination of the sample value being higher than the reference value may thus correspond to the determination, upon visual or microscopic inspection, that a sample tissue slide is more densely stained and/or exhibit a larger fraction of stained cells than is the case for a reference tissue slide. The sample value may also be compared to a reference value given by a literal reference, such as a reference value described in wording or by a reference picture. Consequently, the sample and/or reference values may in some cases be mental values that the skilled person determines upon inspection and comparison.
For example, the skilled person may categorize a sample as being HMGCR protein high or low, wherein the sample is categorized as high if it contains more HMGCR protein than a previously inspected reference sample and low if it contains less or equally much. Such evaluation may be assisted by staining the sample, and, if necessary, a reference sample, with a staining solution comprising e.g., antibodies selective for HMGCR protein.
A reference value, found to be relevant for making treatment decisions regarding breast cancer subjects, for use as comparison with the sample value from the subject, may be provided in various ways. With the knowledge of the teachings of the present disclosure, the skilled artisan can, without undue burden, provide relevant reference values for performing the methods of the present disclosure. The person performing the methods of the above aspects may, for example, adapt the reference value to desired information. For example, the reference value may be adapted to yield the most significant treatment predictive information, e.g., the largest separation between the HMGCR protein high survival curve and the HMGCR protein low survival curve (see e.g., fig 1 ). An example of a reference value that may yield a large separation is an absent cytoplasmic intensity.
In embodiments of the methods of the above aspects, the reference value may correspond to the amount of HMGCR protein expression in a healthy tissue, such as healthy breast tissue, or stroma tissue of the subject of the method. As another example, the reference value may be provided by the amount of HMGCR protein expression measured in a standard sample of normal tissue from another, comparable subject. As another example, the reference value may be provided by the amount of HMGCR protein expression measured in a reference sample comprising tumor cells, such as a reference sample of tumor tissue, e.g., breast cancer tissue. The amount of protein expression of the reference sample may preferably be previously established. Consequently, the reference value may be provided by the amount of HMGCR protein measured in a reference sample comprising cells expressing a predetermined amount of HMGCR protein.
Further, the reference value may for example be provided by the amount of HMGCR protein expression measured in a reference sample comprising cell lines, such as cancer cell lines, expressing a predetermined, or controlled, amount of HMGCR protein. The person skilled in the art understands how to provide such cell lines, for example guided by the disclosure of Rhodes et al. (2006) The biomedical scientist, p 515-520.
Consequently, in embodiments of the methods of the present disclosure, the reference value may be a predetermined value corresponding to the amount of HMGCR protein expression in a reference sample.
However, as discussed further below, the amount of HMGCR protein in the reference sample does not have to directly correspond to the reference value. The reference sample may also provide an amount of HMGCR protein that helps a person performing the method to assess various reference values. For example, the reference sample(s) may help in creating a mental image of the reference value by providing a "positive" reference value and/or a "negative" reference value.
One alternative for the quantification of HMGCR protein expression in a sample, such as the sample earlier obtained from the subject or the reference sample, is the determination of the fraction of cells in the sample that exhibit HMGCR protein expression over a certain level. The fraction may for example be: a "cellular fraction", wherein the HMGCR protein expression of the whole cells is taken into account; a "cytoplasmic fraction", wherein the HMGCR protein expression of only the cytoplasms of the cells is taken into account; or a "nuclear fraction", wherein the HMGCR protein expression of only the nuclei of the cells is taken into account. The cytoplasmic fraction may for example be classified as < 2 %, 2 - 25 %, > 25 - 75 % or > 75 % immunoreactive cells of the relevant cell population. The "cytoplasmic fraction" corresponds to the percentage of relevant cells in a sample that exhibits a positive staining in the cytoplasm, wherein a medium or distinct and strong immunoreactivity in the cytoplasm is considered positive and no or faint immunoreactivity in the cytoplasm is considered negative. The person skilled in the art of pathology understands which cells that are relevant under the conditions present when performing the method and may determine a cytoplasmic fraction based on his general knowledge and the teachings of the present disclosure. The relevant cells may for example be tumor cells. Further, the skilled artisan understands how to perform corresponding measurements employing the "cellular fraction" or the "nuclear fraction".
Another alternative for the quantification of HMGCR protein expression in a sample, such as the sample earlier obtained from the subject or the reference sample, is the determination of the overall staining intensity of the sample. The intensity may for example be: a "cellular intensity", wherein the HMGCR protein expression of the whole cells is taken into account; a "cytoplasmic intensity", wherein the HMGCR protein expression of only the cytoplasms of the cells is taken into account, or a "nuclear intensity", wherein the HMGCR protein expression of only the nuclei of the cells is taken into account. Cytoplasmic intensity is subjectively evaluated in accordance with standards used in clinical histopathological diagnostics. Outcome of a cytoplasmic intensity determination may be classified as: absent = no overall immunoreactivity in the cytoplasms of relevant cells of the sample, weak = faint overall immunoreactivity in the cytoplasms of relevant cells of the sample, moderate = medium overall immunoreactivity in the cytoplasms of relevant cells of the sample, or strong = distinct and strong overall immunoreactivity in the cytoplasms of relevant cells of the sample. The person skilled in the art understands which cells that are relevant under the conditions present when performing the method and may determine a cytoplasmic intensity based on his general knowledge and the teachings of the present disclosure. The relevant cells may for example be tumor cells. The determination of cytoplasmic intensity may for example be performed as described below in the Examples, Section 4, definition of "cytoplasmic intensity". Further, the skilled artisan understands how to perform corresponding measurements employing the "cellular intensity" or the "nuclear intensity".
The inventors have found that the cytoplasmic expression of HMGCR protein is particularly relevant for making the treatment predictions. Thus, in embodi merits of the methods of the above aspects, the reference value may be a cytoplasmic fraction, a cytoplasmic intensity or a combination thereof. Accordingly, the sample value may be a cytoplasmic fraction, a cytoplasmic intensity or a combination thereof. Preferably, the sample value and the reference value are both the same type of value.
In embodiments of the methods of the above aspects, the criterion for the conclusion in step d) is a sample value for the cytoplasmic fraction of HMGCR protein positive cells, i.e., a "cytoplasmic fraction", which is higher than 0 %, such as higher than 1 %, such as higher than 2 %, such as higher than 5 %,such as higher than 10 %, such as higher than 15 %, such as higher than 20 %, such as higher than 25 %, such as higher than 30 %, such as higher than 35 %, such as higher than 40 %, such as higher than 50 %, such as higher than 60 %, such as higher than 70 %, such as higher than 75 %, such as higher than 80 %, such as higher than 90 %.
In alternative or complementing embodiments of the methods of the above aspects, the reference value of step c) is a cytoplasmic fraction of 95 % or lower, such as 90 % or lower, such as 85 % or lower, such as 80 % or lower, such as 75 % or lower, such as 70 % or lower, such as 65 % or lower, such as 60 % or lower, such as 55 % or lower, such as 50 % or lower, such as 45 % or lower, such as 40 % or lower, such as 35 % or lower, such as 30 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower, such as 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %. The inventors have realized that low cut-off values, such as a value of
0, are particularly relevant for the treatment prediction. However, they have further noted that the examined tumor samples generally show either a cytoplasmic fraction of higher than 50 % or a cytoplasmic fraction of 1 % or lower, wherein the former group is associated with response to tamoxifen. Thus, if the reference value is a cytoplasmic fraction, it is preferably 50 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower. Most preferred is 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %. Further, in embodiments of the methods of the above aspects, the criterion for the conclusion in step d) may be a sample value for staining intensity of a sample, i.e., a cytoplasmic intensity, which is higher than absent cytoplasmic intensity, such as higher than weak cytoplasmic intensity, such as higher than moderate cytoplasmic intensity. In alternative or complementing embodiments of the methods of the above aspects, the reference value of step c) may be a moderate cytoplasmic intensity of HMGCR protein expression or lower, such as a weak cytoplasmic intensity of HMGCR protein expression or lower, such as an absent cytoplasmic intensity. In the examples section, the cut-off value "absent" cytoplasmic intensity is employed. Thus, if the reference value is a cytoplasmic intensity, it is preferably low, such as weak or lower. Most preferred is absent.
Further, in embodiments of the methods of the above aspects, the reference value may be constituted of two values, wherein the criterion for the conclusion in step d) is a sample value being higher than any one of these two values. An example of such a reference value is a cytoplasmic fraction of 25 % or lower and a weak cytoplasmic intensity or lower.
Alternatively, in embodiments of the methods of the above aspects, the reference value may be a combination of a fraction value and an intensity value, such as a cytoplasmic fraction value and a cytoplasmic intensity value.
Also, in embodiments of the methods of the above aspects, the reference value may be a function of a cytoplasmic fraction value and a cytoplasmic intensity value. For example, such a function may be a staining score. The "staining score" is calculated as described in Examples, Section 3 and table 1 below. For example, the reference value may be a staining score of 2 or lower, such as 1 or lower, such as 0.
The person skilled in the art realizes that other reference values being an intensity value or a fraction value also fall within the scope of the present invention. Likewise, the person skilled in the art realizes that other combinations of fractions and intensities also fall within the scope of the present invention. Consequently, the reference value may involve two, and possibly even more, criteria. In general, the selection of a cytoplasmic intensity value and/or a cytoplasmic fraction value as the reference value may depend on the staining procedure, e.g., on the employed anti-HMGCR antibody and on the staining reagents. Guided by the present disclosure, a person skilled in the art, e.g., a pathologist, understands how to perform the evaluation yielding a fraction, such as a cellular, cytoplasmic or nuclear fraction, or an intensity, such as a cellular, cytoplasmic or nuclear intensity. For example, the skilled artisan may use a reference sample comprising a predetermined amount of HMGCR protein for establishing the appearance of a certain fraction or intensity.
However, a reference sample may not only be used for the provision of the actual reference value, but also for the provision of an example of a sample with an amount of HMGCR protein that is higher than the amount corresponding to the reference value. As an example, in histochemical staining, such as in immunohistochemical staining, the skilled artisan may use a reference sample for establishing the appearance of a stained sample having a high amount of HMGCR protein, e.g., a positive reference. Subsequently, the skilled artisan may assess the appearances of samples having lower amounts of HMGCR protein, such as the appearance of a sample with an amount of HMGCR protein corresponding to the reference value. In other words, the skilled artisan may use a reference sample to create a mental image of a reference value corresponding to an amount of HMGCR protein which is lower than that of the reference sample. Alternatively, or as a complement, in such assessments, the skilled artisan may use another reference sample having a low amount of HMGCR protein, or lacking detectable HMGCR protein, for establishing the appearance of such sample, e.g., as a "negative reference".
For example, if a reference value of 10 % cytoplasmic fraction is used, two reference samples may be employed: a first reference sample having no detectable HMGCR protein, and thus corresponding to a cytoplasmic fraction of 0, which is lower than the reference value; and a second reference sample having an amount of HMGCR protein corresponding to a cytoplasmic fraction of 75 % or higher, which is higher than the reference value. Consequently, in the evaluation, the skilled artisan may use a reference sample for establishing the appearance of a sample with a high amount of HMGCR protein. Such reference sample may be a sample comprising tissue expressing a high amount of HMGCR protein, such as a sample comprising breast tumor tissue having a pre-established high expression of HMGCR protein.
Accordingly, the reference sample may provide an example of a strong cytoplasmic intensity (Cl). With the knowledge of the appearance of a sample with strong Cl, the skilled artisan may then divide samples into the Cl categories absent, weak, moderate and strong. This division may be further assisted by a reference sample lacking detectable HMGCR protein (negative reference), i.e., a reference sample providing an absent cytoplasmic intensity. Also, the reference sample may provide an example of a sample with a cytoplasmic fraction (CF) of 75 % or higher. With the knowledge of the appearance of a sample with more than 75 % positive cells, the skilled artisan may then evaluate the cytoplasmic fraction of other samples having e.g., a lower percentage of positive cells. This division may be further assisted by a reference sample essentially lacking HMGCR protein (negative reference), i.e., a reference sample providing a low CF (e.g., < 5%, such as < 2%), or a CF of O.
As mentioned above, cell lines expressing a controlled amount of HMGCR protein may be used as the reference, in particular as a positive reference.
One or more pictures may also be provided as the "reference sample". For example, such a picture may be of an example of a tumor tissue slide stained with a certain antibody during certain conditions that show a certain cellular intensity and/or fraction. The above discussion about the "reference sample" applies mutatis mutandis to pictures.
Further, the skilled person should recognize that the usefulness of the methods according to the above aspects is not limited to the quantification of any particular variant of the HMGCR protein present in the subject in question, as long as the protein is encoded by the relevant gene and presents the relevant pattern of expression. As a non-limiting example, the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1. In some embodiments, sequence ii) above is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:1.
As another non-limiting example, the HMGCR protein comprises, or consists of, a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
In some embodiments, sequence ii) above is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:2.
The term "% identical", as used in the context of the present disclosure, is calculated as follows. The query sequence is aligned to the target sequence using the CLUSTAL W algorithm (Thompson, J. D., Higgins, D. G. and Gibson, T.J., Nucleic Acids Research, 22: 4673-4680 (1994)). The amino acid residues at each position are compared, and the percentage of positions in the query sequence that have identical correspondences in the target sequence is reported as % identical. Also, the target sequence determines the number of positions that are compared. Consequently, in the context of the present disclosure, a query sequence that is shorter than the target sequence can never be 100 % identical to the target sequence. For example, a query sequence of 85 amino acids may at the most be 85 % identical to a target sequence of 100 amino acids.
In embodiments of the methods of the aspects above, the HMGCR protein may be detected and/or quantified through the application to the sample of a detectable and/or quantifiable affinity ligand, which is capable of selective interaction with the HMGCR protein. The application of the affinity ligand is performed under conditions that enable binding of the affinity ligand to any HMGCR protein in the sample. To concretize, in embodiments of the methods of the aspects above, step b) may comprise: b1 ) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to HMGCR protein present in said sample; b2) removing non-bound affinity ligand; and b3) quantifying the affinity ligand remaining in association with said sample to evaluate said amount.
"Affinity ligand remaining in association with the sample" refers to affinity ligand which was not removed in step b2), e.g., the affinity ligand bound to the sample. Here, the binding may for example be the interaction between antibody and antigen.
However, in some embodiments, the removal of non-bound affinity ligand according to b2), e.g. the washing, may not be necessary. Thus, in some embodiments of the methods of the aspects above, step b) may comprise: bl) applying to said sample a quantifiable affinity ligand capable of selective interaction with the HMGCR protein to be evaluated, said application being performed under conditions that enable binding of said affinity ligand to HMGCR protein present in said sample; bll) quantifying the affinity bound to said sample to evaluate said amount.
It is regarded as within the capabilities of those of ordinary skill in the art to select or manufacture the proper affinity ligand and to select the proper format and conditions for detection and/or quantification, once the connection between HMGCR protein and treatment prediction for breast cancer is known through the teaching of the present disclosure. Nevertheless, examples of affinity ligands that may prove useful, as well as examples of formats and conditions for detection and/or quantification, are given below for the sake of illustration. Thus, in embodiments of the present disclosure, the affinity ligand may be selected from the group consisting of antibodies, fragments thereof and derivatives thereof, i.e., affinity ligands based on an immunoglobulin scaffold. The antibodies and the fragments or derivatives thereof may be isolated and/or mono-specific. Antibodies comprise monoclonal and polyclonal antibodies of any origin, including murine, rabbit, human and other antibodies, as well as chimeric antibodies comprising sequences from different species, such as partly humanized antibodies, e.g., partly humanized mouse antibodies. Polyclonal antibodies are produced by immunization of animals with the antigen of choice. Monoclonal antibodies of defined specificity can be produced using the hybridoma technology developed by Kόhler and Milstein (Kόhler G and Milstein C (1976) Eur. J. Immunol. 6:511-519). The antibody fragments and derivatives of the present disclosure are capable of selective interaction with the same antigen (e.g. HMGCR protein) as the antibody they are fragments or derivatives of. Antibody fragments and derivatives comprise Fab fragments, consisting of the first constant domain of the heavy chain (CH1 ), the constant domain of the light chain (CL), the variable domain of the heavy chain (VH) and the variable domain of the light chain (VL) of an intact immunoglobulin protein; Fv fragments, consisting of the two variable antibody domains VH and VL (Skerra A and Plϋckthun A (1988) Science 240:1038- 1041 ); single chain Fv fragments (scFv), consisting of the two VH and VL domains linked together by a flexible peptide linker (Bird RE and Walker BW (1991 ) Trends Biotechnol. 9:132-137); Bence Jones dimers (Stevens FJ et al. (1991 ) Biochemistry 30:6803-6805); camelid heavy-chain dimers (Hamers- Casterman C et al. (1993) Nature 363:446-448) and single variable domains (Cai X and Garen A (1996) Proc. Natl. Acad. Sci. U.S.A. 93:6280-6285; Masat L et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91 :893-896), and single domain scaffolds like e.g., the New Antigen Receptor (NAR) from the nurse shark (Dooley H et al. (2003) MoI. Immunol. 40:25-33) and minibodies based on a variable heavy domain (Skerra A and Plϋckthun A (1988) Science 240:1038-1041 ).
SEQ ID NO:1 was designed for immunizations, e.g., designed to lack transmembrane regions to ensure efficient expression in E. coli, and to lack any signal peptide, since those are cleaved off in the mature protein. Consequently, an antibody or fragment or derivative thereof according to the present disclosure may for example be one that is obtainable by a process comprising a step of immunizing an animal, such as a rabbit, with a protein whose amino acid sequence comprises, preferably consists of, the sequence SEQ ID NO:1. For example, the immunization process may comprise primary immunization with the protein in Freund's complete adjuvant. Also, the immunization process may further comprise boosting at least two times, in intervals of 2-6 weeks, with the protein in Freund's incomplete adjuvant. Processes for the production of antibodies or fragments or derivatives thereof against a given target are known in the art, and may be applied in connection with this aspect of the present disclosure. In the context of the present disclosure, a "mono-specific antibody" is one of a population of polyclonal antibodies which has been affinity purified on its own antigen, thereby separating such mono-specific antibodies from other antiserum proteins and non-specific antibodies. This affinity purification results in antibodies that bind selectively to its antigen. In the case of the present disclosure, the polyclonal antisera are purified by a two-step immunoaffinity based protocol to obtain mono-specific antibodies selective for the target protein. Antibodies directed against generic affinity tags of antigen fragments are removed in a primary depletion step, using the immobilized tag protein as the capturing agent. Following the first depletion step, the serum is loaded on a second affinity column with the antigen as capturing agent, in order to enrich for antibodies specific for the antigen (see also Nilsson P et al. (2005) Proteomics 5:4327-4337).
Polyclonal and monoclonal antibodies, as well as their fragments and derivatives, represent the traditional choice of affinity ligands in applications requiring selective biomolecular recognition, such as in the detection and/or quantification of HMGCR protein according to the method aspects above. However, those of skill in the art know that, due to the increasing demand of high throughput generation of selective binding ligands and low cost production systems, new biomolecular diversity technologies have been developed during the last decade. This has enabled a generation of novel types of affinity ligands of both immunoglobulin as well as non- immunoglobulin origin that have proven equally useful as binding ligands in biomolecular recognition applications and can be used instead of, or together with, immunoglobulins.
The biomolecular diversity needed for selection of affinity ligands may be generated by combinatorial engineering of one of a plurality of possible scaffold molecules, and specific and/or selective affinity ligands are then selected using a suitable selection platform. The scaffold molecule may be of immunoglobulin protein origin (Bradbury AR and Marks JD (2004) J. Immunol. Meths. 290:29-49), of non-immunoglobulin protein origin (Nygren PA and Skerra A (2004) J. Immunol. Meths. 290:3-28), or of an oligonucleotide origin (Gold L et al. (1995) Annu. Rev. Biochem. 64:763-797).
A large number of non-immunoglobulin protein scaffolds have been used as supporting structures in development of novel binding proteins. Non- limiting examples of such structures, useful for generating affinity ligands against HMGCR protein for use according to the present disclosure, are staphylococcal protein A and domains thereof and derivatives of these domains, such as protein Z (Nord K et al. (1997) Nat. Biotechnol. 15:772- 777); lipocalins (Beste G et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96:1898- 1903); ankyrin repeat domains (Binz HK et al. (2003) J. MoI. Biol. 332:489- 503); cellulose binding domains (CBD) (Smith GP et al. (1998) J. MoI. Biol. 277:317-332; Lehtiό J et al. (2000) Proteins 41 :316-322); y crystallines (Fiedler U and Rudolph R, WO01/04144); green fluorescent protein (GFP) (Peelle B et al. (2001 ) Chem. Biol. 8:521-534); human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (Hufton SE et al. (2000) FEBS Lett. 475:225-231 ; Irving RA et al. (2001 ) J. Immunol. Meth. 248:31 -45); protease inhibitors, such as Knottin proteins (Wentzel A et al. (2001 ) J. Bacterid. 183:7273-7284; Baggio R et al. (2002) J. MoI. Recognit. 15:126- 134) and Kunitz domains (Roberts BL et al. (1992) Gene 121 :9-15; Dennis MS and Lazarus RA (1994) J. Biol. Chem. 269:22137-22144); PDZ domains (Schneider s et al. (1999) Nat. Biotechnol. 17:170-175); peptide aptamers, such as thioredoxin (Lu Z et al. (1995) Biotechnology 13:366-372; Klevenz B et al. (2002) Cell. MoI. Life Sci. 59:1993-1998); staphylococcal nuclease (Norman TC et al. (1999) Science 285:591 -595); tendamistats (McConell SJ and Hoess RH (1995) J. MoI. Biol. 250:460-479; Li R et al. (2003) Protein Eng. 16:65-72); trinectins based on the fibronectin type III domain (Koide A et al. (1998) J. MoI. Biol. 284:1141-1151 ; Xu L et al. (2002) Chem. Biol. 9:933- 942); and zinc fingers (Bianchi E et al. (1995) J. MoI. Biol. 247:154-160; Klug A (1999) J. MoI. Biol. 293:215-218; Segal DJ et al. (2003) Biochemistry 42:2137-2148). The above-mentioned examples of non-immunoglobulin protein scaffolds include scaffold proteins presenting a single randomized loop used for the generation of novel binding specificities, protein scaffolds with a rigid secondary structure where side chains protruding from the protein surface are randomized for the generation of novel binding specificities, and scaffolds exhibiting a non-contiguous hyper-variable loop region used for the generation of novel binding specificities.
In addition to non-immunoglobulin proteins, oligonucleotides may also be used as affinity ligands. Single stranded nucleic acids, called aptamers or decoys, fold into well-defined three-dimensional structures and bind to their target with high affinity and specificity. (Ellington AD and Szostak JW (1990) Nature 346:818-822; Brody EN and Gold L (2000) J. Biotechnol. 74:5-13; Mayer G and Jenne A (2004) BioDrugs 18:351 -359). The oligonucleotide ligands can be either RNA or DNA and can bind to a wide range of target molecule classes.
For selection of the desired affinity ligand from a pool of variants of any of the scaffold structures mentioned above, a number of selection platforms are available for the isolation of a specific novel ligand against a target protein of choice. Selection platforms include, but are not limited to, phage display (Smith GP (1985) Science 228:1315-1317), ribosome display (Hanes J and Plϋckthun A (1997) Proc. Natl. Acad. Sci. U.S.A. 94:4937-4942), yeast two- hybrid system (Fields S and Song O (1989) Nature 340:245-246), yeast display (Gai SA and Wittrup KD (2007) Curr Opin Struct Biol 17:467-473), mRNA display (Roberts RW and Szostak JW (1997) Proc. Natl. Acad. Sci. U.S.A. 94:12297-12302), bacterial display (Daugherty PS (2007) Curr Opin Struct Biol 17:474-480, Kronqvist N et al. (2008) Protein Eng Des SeI 1 -9, Harvey BR et al. (2004) PNAS 101 (25):913-9198), microbead display (Nord O et al. (2003) J Biotechnol 106:1 -13, WO01/05808), SELEX (System Evolution of Ligands by Exponential Enrichment) (Tuerk C and Gold L (1990) Science 249:505-510) and protein fragment complementation assays (PCA) (Remy I and Michnick SW (1999) Proc. Natl. Acad. Sci. U.S.A. 96:5394-5399).
Thus, in embodiments of the present disclosure, the affinity ligand may be a non-immunoglobulin affinity ligand derived from any of the protein scaffolds listed above, or an oligonucleotide molecule.
The HMGCR protein SEQ ID NO:1 was designed to consist of a unique sequence with low homology with other human proteins and to minimize cross reactivity of generated affinity reagents. Consequently, in embodiments of the present disclosure, the affinity ligand may be capable of selective interaction with a polypeptide consisting of the sequence SEQ ID NO:1.
In Examples below, an antibody binding to an HMGCR epitope having the sequence SEQ ID NO:4 is employed. SEQ ID NO:4 refers to the amino acid sequence CKDNPGENARQLAR (i.e. amino acids 827-840 of EnsEMBL entry no. ENSP00000287936). This antibody resulted in strong staining. Consequently, in further embodiments of the present disclosure, the quantifiable affinity ligand may be capable of selective interaction with an HMGCR protein comprising, or consisting of, the sequence SEQ ID NO:4. In some embodiments of present disclosure, an affinity ligand capable of selective interaction with the HMGCR protein is detectable and/or quantifiable. The detection and/or quantification of such an affinity ligand may be accomplished in any way known to the skilled person for detection and/or quantification of binding reagents in assays based on biological interactions. Thus, any affinity ligand, as described above, may be used quantitatively or qualitatively to detect the presence of the HMGCR protein. These "primary" affinity ligands may be labeled themselves with various markers or may in turn be detected by secondary, labeled affinity ligands to allow detection, visualization and/or quantification. This can be accomplished using any one or more of a multitude of labels, which can be conjugated to the affinity ligand capable of interaction with HMGCR protein or to any secondary affinity ligand, using any one or more of a multitude of techniques known to the skilled person, and not as such involving any undue experimentation.
Non-limiting examples of labels that can be conjugated to primary and/or secondary affinity ligands include fluorescent dyes or metals (e.g., fluorescein, rhodamine, phycoerythrin, fluorescamine), chromophoric dyes (e.g., rhodopsin), chemiluminescent compounds (e.g., luminal, imidazole) and bioluminescent proteins (e.g., luciferin, luciferase), haptens (e.g., biotin). A variety of other useful fluorescers and chromophores are described in Stryer L (1968) Science 162:526-533 and Brand L and Gohlke JR (1972) Annu. Rev. Biochem. 41 :843-868. Affinity ligands can also be labeled with enzymes (e.g., horseradish peroxidase, alkaline phosphatase, beta-lactamase), radioisotopes (e.g., 3H, 14C, 32P, 35S or 125I) and particles (e.g., gold). In the context of the present disclosure, "particles" refer to particles, such as metal particles, suitable for labeling of molecules. Further, the affinity ligands may also be labeled with fluorescent semiconductor nanocrystals (quantum dots). Quantum dots have superior quantum yield and are more photostable compared to organic fluorophores and are therefore more easily detected (Chan et al. (2002) Curr Opi Biotech. 13: 40-46). The different types of labels can be conjugated to an affinity ligand using various chemistries, e.g., the amine reaction or the thiol reaction. However, other reactive groups than amines and thiols can be used, e.g., aldehydes, carboxylic acids and glutamine.
The method aspects above may be put to use in any of several known formats and set-ups, of which a non-limiting selection is discussed below.
In a set-up based on histology, the detection, localization and/or quantification of a labeled affinity ligand bound to its HMGCR protein target may involve visualizing techniques, such as light microscopy or immunofluoresence microscopy. Other methods may involve the detection via flow cytometry or luminometry. A biological sample, such as a tumor tissue sample (biopsy), for example from breast tissue, which has been removed from the subject may be used for detection and/or quantification of HMGCR protein. The biological sample, such as the biopsy, may be an earlier obtained sample. If using an earlier obtained sample in a method, no steps of the method are practiced on the human or animal body. The affinity ligand may be applied to the biological sample for detection and/or quantification of the HMGCR protein. This procedure enables not only detection of HMGCR protein, but may in addition show the distribution and relative level of expression thereof. The method of visualization of labels on the affinity ligand may include, but is not restricted to, fluoromethc, luminometric and/or enzymatic techniques. Fluorescence is detected and/or quantified by exposing fluorescent labels to light of a specific wavelength and thereafter detecting and/or quantifying the emitted light in a specific wavelength region. The presence of a luminescently tagged affinity ligand may be detected and/or quantified by luminescence developed during a chemical reaction. Detection of an enzymatic reaction is due to a color shift in the sample arising from chemical reaction. Those of skill in the art are aware that a variety of different protocols can be modified in order for proper detection and/or quantification. In embodiments of the methods of the above aspects, a biological sample may be immobilized onto a solid phase support or carrier, such as nitrocellulose or any other solid support matrix capable of immobilizing HMGCR protein present in the biological sample applied to it. Some well- known solid state support materials useful in the present invention include glass, carbohydrate (e.g., Sepharose), nylon, plastic, wool, polystyrene, polyethene, polypropylene, dextran, amylase, films, resins, cellulose, polyacrylamide, agarose, alumina, gabbros and magnetite. After immobilization of the biological sample, primary affinity ligand specific to HMGCR protein may be applied, e.g., as described in Examples, Sections 3, 4 or 5, of the present disclosure. If the primary affinity ligand is not labeled in itself, the supporting matrix may be washed with one or more appropriate buffers known in the art, followed by exposure to a secondary labeled affinity ligand and washed once again with buffers to remove unbound affinity ligands. Thereafter, selective affinity ligands may be detected and/or quantified with conventional methods. The binding properties for an affinity ligand may vary from one solid state support to the other, but those skilled in the art should be able to determine operative and optimal assay conditions for each determination by routine experimentation.
Consequently, in embodiments of the methods of the above aspects, the quantifiable affinity ligand of b1 ) may be detected using a secondary affinity ligand capable of recognizing the quantifiable affinity ligand. The quantification of b3) may thus be carried out by means of a secondary affinity ligand with affinity for the quantifiable affinity ligand. As an example, the secondary affinity ligand may be an antibody or a fragment or a derivative thereof. As an example, one available method for detection and/or quantification of the HMGCR protein is by linking the affinity ligand to an enzyme that can then later be detected and/or quantified in an enzyme immunoassay (such as an EIA or ELISA). Such techniques are well established, and their realization does not present any undue difficulties to the skilled person. In such methods, the biological sample is brought into contact with a solid material or with a solid material conjugated to an affinity ligand against the HMGCR protein, which is then detected and/or quantified with an enzymatically labeled secondary affinity ligand. Following this, an appropriate substrate is brought to react in appropriate buffers with the enzymatic label to produce a chemical moiety, which for example is detected and/or quantified using a spectrophotometer, fluorometer, luminometer or by visual means. As stated above, primary and any secondary affinity ligands can be labeled with radioisotopes to enable detection and/or quantification. Non- limiting examples of appropriate radiolabels in the present disclosure are 3H, 14C, 32P, 35S or 125I. The specific activity of the labeled affinity ligand is dependent upon the half-life of the radiolabel, isotopic purity, and how the label has been incorporated into the affinity ligand. Affinity ligands are preferably labeled using well-known techniques (Wensel TG and Meares CF (1983) in: Radioimmunoimaging and Radioimmunotherapy (Burchiel SW and Rhodes BA eds.) Elsevier, New York, pp 185-196). A thus radiolabeled affinity ligand can be used to visualize HMGCR protein by detection of radioactivity in vivo or in vitro. Radionuclear scanning with e.g., gamma camera, magnetic resonance spectroscopy or emission tomography function for detection in vivo and in vitro, while gamma/beta counters, scintillation counters and radiographies are also used in vitro.
As a third aspect of the present disclosure, there is provided a kit for carrying out a method according to the above aspects, which comprises: a) a quantifiable affinity ligand capable of selective interaction with an HMGCR protein; and b) reagents necessary for quantifying the amount of the affinity ligand. Various components of the kit according to the third aspect may be selected and specified as described above in connection with the method aspects of the present disclosure.
Thus, the kit according to the present disclosure comprises an affinity ligand against an HMGCR protein, as well as other means that help to quantify the specific and/or selective affinity ligand after it has bound specifically and/or selectively to the HMGCR protein. For example, the kit may contain a secondary affinity ligand for detecting and/or quantifying a complex formed by the HMGCR protein and the affinity ligand capable of selective interaction with the HMGCR protein. The kit may also contain various auxiliary substances other than affinity ligands, to enable the kit to be used easily and efficiently. Examples of auxiliary substances include solvents for dissolving or reconstituting lyophilized protein components of the kit, wash buffers, substrates for measuring enzyme activity in cases where an enzyme is used as a label, target retrieval solution to enhance the accessibility to antigens in cases where paraffin or formalin-fixed tissue samples are used, and substances such as reaction arresters, e.g., endogenous enzyme block solution to decrease the background staining and/or counterstaining solution to increase staining contrast, that are commonly used in immunoassay reagent kits.
In embodiments of the kit aspect, the affinity ligand may be selected as described above in connection with the method aspects.
Further, in accordance with what is described above in connection with the method aspects, the detectable affinity ligand may in embodiments of the kit aspect comprise a label selected from the group consisting of fluorescent dyes and metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots. Alternatively, the reagents necessary for quantifying the amount of the affinity ligand comprise a secondary affinity ligand capable of recognizing the quantifiable affinity ligand. As an example, the secondary affinity ligand capable of recognizing the quantifiable affinity ligand comprises a label selected from the group consisting of fluorescent dyes or metals, chromophoric dyes, chemiluminescent compounds and bioluminescent proteins, enzymes, radioisotopes, particles and quantum dots. The kit according to the kit aspect may also advantageously comprise a reference sample for provision of, or yielding, the reference value to be used for comparison with the sample value. For example, the reference may sample comprise a predetermined amount of HMGCR protein. Such a reference sample may for example be constituted by a tissue sample having the predetermined amount of HMGCR protein. The tissue reference sample may then be used by the person of skill in the art in the determination of the HMGCR expression status in the sample being studied, by manual, such as ocular, or automated comparison of expression levels in the reference tissue sample and the subject sample. As another example, the reference sample may comprise cell lines, such as cancer cell lines, expressing a predetermined, or controlled, amount of HMGCR protein. The person skilled in the art understands how to provide such cell lines, for example guided by the disclosure of Rhodes et al. (2006) The biomedical scientist, p 515-520. As an example, the cell lines may be formalin fixed. Also, such formalin fixed cell lines may be paraffin embedded.
The wording "reference sample for provision of the reference value" is to be interpreted broadly in the context of the present disclosure. The reference sample may comprise an amount of HMGCR protein actually corresponding to the reference value, but it may also comprise an amount of HMGCR protein corresponding to a value being higher than the reference value. In the latter case, the "high" value may be used by a person performing the method as an upper reference (positive reference) for assessing, e.g., the appearance of, a reference value which is lower than the "high" value. The person skilled in the art of immunohistochemistry understands how to do such an assessment. Further, as an alternative or a complementing example, the skilled person may use another reference sample comprising a low amount of HMGCR protein for provision of a "low" value in such an assessment, e.g., as a negative reference. This is further discussed above in connection with the method aspects.
Consequently, in embodiments of the kit aspect, the reference sample may comprise an amount of HMGCR protein corresponding to the reference value. As an example, the reference sample may comprise an amount of HMGCR protein corresponding to a cytoplasmic fraction of 95 % or lower, such as 90 % or lower, such as 85 % or lower, such as 80 % or lower, such as 75 % or lower, such as 70 % or lower, such as 65 % or lower, such as 60 % or lower, such as 55 % or lower, such as 50 % or lower, such as 45 % or lower, such as 40 % or lower, such as 35 % or lower, such as 30 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower, such as 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %.
As mentioned above, the inventors have realized that low cut-off values, such as a value of 0, are particularly relevant for the treatment prediction. However, they have further noted that the examined tumor samples generally show either a cytoplasmic fraction of higher than 50 % or a cytoplasmic fraction of 1 % or lower, wherein the former group is associated with response to tamoxifen.
Thus, in preferred embodiments, the reference sample may comprise an amount of HMGCR protein corresponding to a cytoplasmic fraction of 50 % or lower, such as 25 % or lower, such as 20 % or lower, such as 15 % or lower, such as 10 % or lower, such as 5 % or lower, such as 2 % or lower, such as 1 % or lower, such as 0 %.
Alternatively, or as a complement, the reference sample may comprise an amount of HMGCR protein corresponding to a moderate cytoplasmic intensity of HMGCR protein expression or lower, such as a weak cytoplasmic intensity of HMGCR protein expression or lower. As shown in the attached figures, a low cytoplasmic intensity, such as an absent cytoplasmic intensity, is a relevant cut-off. Thus, in an embodiment, the reference sample may comprise an amount of HMGCR protein corresponding to weak cytoplasmic intensity or lower, such as an absent cytoplasmic intensity. Further, the reference sample may comprise an amount of HMGCR protein corresponding to a staining score of 0, 1 or 2, preferably 0.
The provision of cytoplasmic fraction values or cytoplasmic intensity values is discussed above in connection with the method aspects.
Further, in alternative or complementing embodiments of the kit aspect, the kit may comprise a reference sample comprising an amount of HMGCR protein corresponding to a value being higher than the reference value. In these embodiments, the reference sample may for example comprise an amount of HMGCR protein corresponding to a cytoplasmic fraction of 75 % or higher and/or a strong cytoplasmic intensity of nuclear expression. In other alternative or complementing embodiments of the kit aspect, the kit may comprise a reference sample comprising an amount of HMGCR protein corresponding to a value being lower than or equal to the reference value, e.g., an absent cytoplasmic intensity and/or a cytoplasmic fraction of < 1 % HMGCR protein positive cells, such as 0 % HMGCR protein positive cells.
The kit may thus comprise: a reference sample comprising an amount of HMGCR protein corresponding to a predetermined reference value; a reference sample comprising an amount of HMGCR protein corresponding to a value being higher than a predetermined reference value; and/or a reference sample comprising an amount of HMGCR protein corresponding to a value being lower than or equal to a predetermined reference value.
Consequently, embodiments of the kit may comprise: a first reference sample comprising an amount of HMGCR protein being higher than a predetermined reference value; and a second reference sample comprising an amount of HMGCR protein being lower than or equal to the predetermined reference value.
In embodiments of the kit aspect, the reference sample may be a tissue sample, such as a tissue sample adapted to ocular or microscopic evaluation. As an example, the tissue reference sample may be fixated in paraffin or buffered formalin and/or histo-processed to μm-thin sections that are mounted on microscopic glass-slides. The tissue reference sample may be further adapted to staining with affinity ligands, such as antibodies, against an HMGCR protein. Consequently, in embodiments of the kit aspect, the reference sample may be adapted to directly, or indirectly, provide any relevant reference value, such as any one of the reference values discussed above.
Accordingly, further embodiments of the reference sample of the kit aspect are discussed above in connection with the reference values and reference samples of the method aspects.
As further discussed above, the combination of a level of HMGCR protein expression and hormone receptor status may provide information relevant for drawing conclusions regarding a treatment prediction breast cancer subject. For the reasons described above, the "breast cancer" of the third aspect and the further aspects described below may be a hormone receptor negative breast cancer, such as an ER- or PR- breast cancer, an ER- breast cancer, a PR- breast cancer, or an ER- and PR- breast cancer. For example, the breast cancer may be previously diagnosed as hormone receptor negative.
Thus, the kit may also include means for establishing the hormone receptor status of a subject.
Accordingly, in embodiments of the kit aspect, the kit may further comprise: a') a quantifiable affinity ligand capable of selective interaction with the estrogen receptor and b') reagents necessary for quantifying the amount of such affinity ligand; and/or a") a quantifiable affinity ligand capable of selective interaction with the progesterone receptor and b") reagents necessary for quantifying the amount of such affinity ligand.
The quantifiable affinity ligands of a') and a") are provided for the determination of the ER status and PR status, respectively.
The reagents of b), b') and b"), may be the same or different.
Quantifiable affinity ligands appropriate for steps a') and a"), respectively, are well known to the skilled person and commercially available.
Consequently, the kit may include means for provision of the hormonal status information necessary for drawing conclusions according to some embodiments of the method aspects of the present disclosure.
Following the findings presented above, the inventors have realized several uses for the HMGCR protein.
Thus, as a first configuration of a fourth aspect of the present disclosure, there is provided a use of an HMGCR protein as an endocrine treatment indicating marker for a mammalian subject having a breast cancer.
In the context of the present disclosure, "endocrine treatment indicating marker" refers to a something material which presence indicates a suitability of an endocrine treatment. The marker may thus be a biomarker, such as a human protein.
As a second configuration of the fourth aspect, there is provided a use of an HMGCR protein, or an antigenically active fragment thereof, for the production, selection or purification of an endocrine treatment indicating agent for a mammalian subject having a breast cancer. In the context of the present disclosure, "endocrine treatment indicating agent" refers to an agent having at least one property being valuable in an establishment of a treatment prediction for an endocrine treatment, e.g., of a mammalian subject having a breast cancer. For example, the indicating agent may be capable of selective interaction with the indicating marker.
The endocrine treatment indicating agent may be an affinity ligand capable of selective interaction with the HMGCR protein, or an antigenically active fragment thereof. Examples of such affinity ligands are discussed above in connection with the method aspects.
Guided by the teachings of the present disclosure, the person skilled in the art understands how to use HMGCR protein in the production, selection or purification of the endocrine treatment indicating agent. For example, the use may comprise affinity purification on a solid support onto which the HMGCR protein has been immobilized. The solid support may for example be arranged in a column. Further, the use may comprise selection of affinity ligands having specificity for the HMGCR protein using a solid support onto which the polypeptide has been immobilized. Such solid support may be well plates (such as 96 well plates), magnetic beads, agarose beads or sepharose beads. Further, the use may comprise analysis of affinity ligands on a soluble matrix, for example using a dextran matrix, or use in a surface plasmon resonance instrument, such as a Biacore™ instrument, wherein the analysis may for example comprise monitoring the affinity for the immobilized HMGCR protein of a number of potential affinity ligands.
Also, for the production of the endocrine treatment indicating agent or the treatment predictive agent, the HMGCR protein may be used in an immunization of an animal. Such use may be involved in a method comprising the steps: i) immunizing an animal using the HMGCR protein as the antigen; ii) obtaining serum comprising the endocrine treatment indicating agent from the immunized animal; and, optionally, iii) isolating the endocrine treatment indicating agent from the serum.
Alternatively the steps following the first step may be: ii') obtaining cells from the immunized animal, which cells comprise
DNA encoding the endocrine treatment indicating agent, iii') fusing the cells with myeloma cells to obtain at least one clone, and iv') obtaining the endocrine treatment indicating agent expressed by the clone. In embodiments of the fourth aspect, the amino acid sequence of the
HMGCR protein may comprise a sequence selected from: i) SEQ ID NO:1 ; and ii) a sequence which is at least 85 % identical to SEQ ID NO:1.
In some embodiments, sequence ii) is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:1.
Further, in embodiments of the fourth aspect the amino acid sequence of the HMGCR protein may comprise a sequence selected from: i) SEQ ID NO:2; and ii) a sequence which is at least 85 % identical to SEQ ID NO:2.
In some embodiments, sequence ii) is at least 90 % identical, at least 91 % identical, at least 92 % identical, at least 93 % identical, at least 94 % identical, at least 95 % identical, at least 96 % identical, at least 97 % identical, at least 98 % identical or at least 99 % identical to SEQ ID NO:2.
As a fifth aspect of the present disclosure, there is provided an affinity ligand capable of selective interaction with an HMGCR protein.
Examples of such affinity ligands are discussed above in connection with the method aspects. The affinity ligand may be used for in vivo diagnosis, such as in vivo imaging.
Thus, as a first configuration of the fifth aspect, there is provided an affinity ligand capable of selective interaction with an HMGCR protein, for in vivo use as an endocrine treatment indicating agent in a mammalian subject having a breast cancer.
Accordingly, in an embodiment, the affinity ligand may be for use in an in vivo method for establishing a prediction of an outcome of an endocrine treatment, such as a tamoxifen treatment, of a mammalian subject having a breast cancer, such as an ER negative breast cancer. The establishment of a prediction of the outcome of an endocrine treatment of a subject may for example be a determination of whether the subject is likely to benefit from the endocrine treatment. In such embodiments the affinity ligand may for example be labeled to enable imaging, i.e. labeled with a detectable label. Appropriate labels for labeling affinity ligands such as antibodies are well known to the skilled person. The in vivo method for establishing a treatment prediction for a mammalian subject having a breast cancer may for example reveal HMGCR protein expression in a tumor in vivo, which in turn may form the basis of a treatment decision. Various in vivo methods, labels and detection techniques that may be used in the context of this embodiment are further discussed above.
In a similar configuration of the fifth aspect, there is provided an affinity ligand, capable of selective interaction with an HMGCR protein, for in vivo evaluation an amount of HMGCR protein in a subject having a breast cancer. For example, the level of HMGCR expression in the breast cancer tumor may be evaluated.
As a sixth aspect of the present disclosure, there is provided a use of an affinity ligand according to the fifth aspect as an endocrine treatment indicating agent for a mammalian subject having a breast cancer. Consequently, the affinity ligand may be used for indicating whether a mammalian subject having a breast cancer would benefit from an endocrine treatment. Such use may for example be performed in vitro, e.g., involving the determination of the amount of HMGCR in at least part of a sample earlier obtained from the subject.
In the present disclosure, endocrine treatment, in particular SERM treatment, such as tamoxifen treatment, is shown to be particularly beneficial for those subjects who are HMGCR positive (see Examples, section 4 and the figures). The breast cancer subjects who are HMGCR positive are a previously unrecognized subgroup in the context of endocrine treatment.
Thus, as a seventh aspect of the present disclosure, there is provided an endocrine treatment product for use in treatment of a mammalian subject having a breast cancer, wherein said subject is HMCGR protein positive. As an eighth aspect of the present disclosure, there is provided a use of an endocrine treatment product in the manufacture of a medicament for treatment of a mammalian subject having a breast cancer, wherein said subject is HMCGR protein positive.
The subject is "HMGCR protein positive" if any HMGCR protein parameter derived from said subject indicates that the subject is likely to benefit from an endocrine treatment. For example, the subject may be considered HMGCR protein positive if a relevant biological sample from the subject has been found to contain an amount of HMGCR protein corresponding to a sample value being higher than a relevant reference value. Relevant sample and reference values are discussed above in connection with the method aspects. Thus, the breast cancer subject may for example be considered HMGCR protein positive if a relevant sample, such as a tissue sample from a primary or secondary tumor, shows detectable HMGCR protein expression in relevant parts of the sample, such as in the tumor cells. Further, the breast cancer subject may for example be considered HMGCR protein positive if such sample contains an amount of HMGCR corresponding to a cytoplasmic intensity which is higher than absent or a cytoplasmic fraction which is higher than 1 %. From the present disclosure, the person skilled in the art, such as a pathologist, understands how to determine whether the subject is HMGCR protein positive of not.
Even though HMGCR expression is a powerful (independent) indicator of response to endocrine treatment in all groups of breast cancer subjects, it may be considered particularly relevant for the subjects having ER- breast cancers, since they have traditionally been considered non-responsive to such treatment.
Thus, in embodiments of the seventh and eighth aspect, the breast cancer may be ER-.
Examples
Generation of mono-specific antibodies against HMGCR and use thereof to detect HMGCR in normal and cancerous samples
1. Generation of antigen a) Materials and methods
A suitable fragment of the target protein encoded by the EnsEMBL Gene ID ENSG00000113161 was selected using bioinformatic tools with the human genome sequence as template (Lindskog M et al. (2005) Biotechniques 38:723-727, EnsEMBL, www.ensembl.org). The fragment was used as template for the production of a 140 amino acid long fragment corresponding to amino acids 742-881 (SEQ ID NO:1 ) of the HMGCR protein (SEQ ID NO:2; EnsEMBL entry no. ENSP00000287936).
A fragment of the HMGCR gene transcript containing nucleotides 2274-2693 of EnsEMBL entry number ENST00000287936 (SEQ ID NO:3), was isolated by a Superscript™ One-Step RT-PCR amplification kit with Platinum® Taq (Invitrogen) and a human total RNA pool panel as template (Human Total RNA Panel IV, BD Biosciences Clontech). Flanking restriction sites Notl and Ascl were introduced into the fragment through the PCR amplification primers, to allow in-frame cloning into the expression vector (forward primer: ATGGCTGGGAGCATAGGAG (SEQ ID NO:5), reverse primer: TCCTTGGAGGTCTTGTAAATTG (SEQ ID NO:6)). Then, the downstream primer was biotinylated to allow solid-phase cloning as previously described, and the resulting biotinylated PCR product was immobilized onto Dynabeads M280 Streptavidin (Dynal Biotech) (Larsson M et al. (2000) J. Biotechnol. 80:143-157). The fragment was released from the solid support by Notl-Ascl digestion (New England Biolabs), ligated into the pAff8c vector (Larsson M et al, supra) in frame with a dual affinity tag consisting of a hexahistidyl tag for immobilized metal ion chromatography (IMAC) purification and an immunopotentiating albumin binding protein (ABP) from streptococcal protein G (Sjόlander A et al. (1997) J. Immunol. Methods 201 :115-123; Stahl S et al. (1999) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation (Fleckinger MC and Drew SW, eds) John Wiley and Sons Inc., New York, pp 49-63), and transformed into E. coli BL21 (DE3) cells (Novagen). The sequences of the clones were verified by dye-terminator cycle sequencing of plasmid DNA amplified using TempliPhi DNA sequencing amplification kit (GE Healthcare, Uppsala, Sweden) according to the manufacturer's recommendations.
BL21 (DE3) cells harboring the expression vector were inoculated in 100 ml 30 g/l tryptic soy broth (Merck KGaA) supplemented with 5 g/l yeast extract (Merck KGaA) and 50 mg/l kanamycin (Sigma-Aldrich) by addition of 1 ml of an overnight culture in the same culture medium. The cell culture was incubated in a 1 liter shake flask at 37 0C and 150 rpm until the optical density at 600 nm reached 0.5-1.5. Protein expression was then induced by addition of isopropyl-β-D-thiogalactopyranoside (Apollo Scientific) to a final concentration of 1 mM, and the incubation was continued overnight at 25 0C and 150 rpm. The cells were harvested by centrifugation at 2400 g, and the pellet was re-suspended in 5 ml lysis buffer (7 M guanidine hydrochloride, 47 mM Na2HPO4, 2.65 mM NaH2PO4, 10 mM Tris-HCI, 100 mM NaCI, 20 mM β- mercaptoethanol; pH = 8.0) and incubated for 2 hours at 37 0C and 150 rpm. After centrifugation at 35300 g, the supernatant containing the denatured and solubilized protein was collected.
The Hisβ-tagged fusion protein was purified by immobilized metal ion affinity chromatography (IMAC) on columns with 1 ml Talon® metal (Co2+) affinity resin (BD Biosciences Clontech) using an automated protein purification procedure (Steen J et al. (2006) Protein Expr. Purif. 46:173-178) on an ASPEC XL4™ (Gilson). The resin was equilibrated with 20 ml denaturing washing buffer (6 M guanidine hydrochloride, 46.6 mM Na2HPO4, 3.4 mM NaH2PO4, 300 mM NaCI, pH 8.0-8.2). Clarified cell lysates were then added to the column. Thereafter, the resin was washed with a minimum of 31.5 ml washing buffer prior to elution in 2.5 ml elution buffer (6 M urea, 50 mM NaH2PO4, 100 mM NaCI, 30 mM acetic acid, 70 mM Na-acetate, pH 5.0). The eluted material was fractioned in three pools of 500, 700 and 1300 μl. The 700 μl fraction, containing the antigen, and the pooled 500 and 1300 μl fractions were stored for further use.
The antigen fraction was diluted to a final concentration of 1 M urea with phosphate buffered saline (PBS; 1.9 mM NaH2PO4, 8.1 mM Na2HPO4, 154 mM NaCI) followed by a concentration step to increase the protein concentration using Vivapore 10/20 ml concentrator with molecular weight cut off at 7500 Da (Vivascience AG). The protein concentration was determined using a bicinchoninic acid (BCA) micro assay protocol (Pierce) with a bovine serum albumin standard according to the manufacturer's recommendations. The protein quality was analyzed on a Bioanalyzer instrument using the Protein 50 or 200 assay (Agilent Technologies).
b) Results A gene fragment corresponding to nucleotides 2274-2693 of the long transcript (SEQ ID NO:3) of the HMGCR gene and encoding a peptide (SEQ ID NO:1 ) consisting of amino acids 742 to 881 of the target protein HMGCR (SEQ ID NO:2) was successfully isolated by RT-PCR from a human RNA pool using primers specific for the protein fragment. The 140 amino acid fragment (SEQ ID NO:1 ) of the target protein (SEQ ID NO:2) was designed to lack transmembrane regions to ensure efficient expression in E. coli, and to lack any signal peptide, since those are cleaved off in the mature protein. In addition, the protein fragment was designed to consist of a unique sequence with low homology with other human proteins, to minimize cross reactivity of generated affinity reagents, and to be of a suitable size to allow the formation of conformational epitopes and still allow efficient cloning and expression in bacterial systems.
A clone encoding the correct amino acid sequence was identified, and, upon expression in E. coli, a single protein of the correct size was produced and subsequently purified using immobilized metal ion chromatography. After dilution of the eluted sample to a final concentration of 1 M urea and concentration of the sample to 1 ml, the concentration of the protein fragment was determined to be 11.7 mg/ml and was 84.2 % pure according to purity analysis.
2. Generation of antibodies a) Materials and methods
The purified HMGCR fragment as obtained above was used as antigen to immunize a rabbit in accordance with the national guidelines (Swedish permit no. A 84-02). The rabbit was immunized intramuscularly with 200 μg of antigen in Freund's complete adjuvant as the primary immunization, and boosted three times in four week intervals with 100 μg antigen in Freund's incomplete adjuvant.
Antiserum from the immunized animal was purified by a three-step immunoaffinity based protocol (Agaton C et al. (2004) J. Chromatogr. A 1043:33-40; Nilsson P et al. (2005) Proteomics 5:4327-4337). In the first step, 7 ml of total antiserum was buffered with 10x PBS to a final concentration of 1x PBS (1.9 mM NaH2PO4, 8.1 mM Na2HPO4, 154 mM NaCI), filtered using a 0.45 μm pore-size filter (Acrodisc®, Life Science) and applied to an affinity column containing 5 ml N-hydroxysuccinimide-activated Sepharose™ 4 Fast Flow (GE Healthcare) coupled to the dual affinity tag protein Hisβ-ABP (a hexahistidyl tag and an albumin binding protein tag) expressed from the pAff8c vector and purified in the same way as described above for the antigen protein fragment. In the second step, the flow-through, depleted of antibodies against the dual affinity tag Hisβ-ABP, was loaded at a flow rate of 0.5 ml/min on a 1 ml Hi-Trap NHS-activated HP column (GE Healthcare) coupled with the HMGCR protein fragment used as antigen for immunization (SEQ ID
NO:1 ). The Hisβ-ABP protein and the protein fragment antigen were coupled to the NHS activated matrix as recommended by the manufacturer. Unbound material was washed away with 1x PBST (1x PBS, 0.1 % Tween20, pH 7.25), and captured antibodies were eluted using a low pH glycine buffer (0.2 M glycine, 1 mM EGTA, pH 2.5). The eluted antibody fraction was collected automatically, and loaded onto two 5 ml HiTrap™ desalting columns (GE Healthcare) connected in series for efficient buffer exchange in the third step. The second and third purification steps were run on the AKTAxpress™ platform (GE Healthcare). The antigen selective (mono-specific) antibodies (msAbs) were eluted with PBS buffer, supplemented with glycerol and NaN3 to final concentrations of 40 % and 0.02 %, respectively, for long term storage at -20 0C (Nilsson P et al. (2005) Proteomics 5:4327-4337).
The specificity and selectivity of the affinity purified antibody fraction were analyzed by binding analysis against the antigen itself and against 383 other human protein fragments in a protein array set-up (Nilsson P et al. (2005) Proteomics 5:4327-4337). The protein fragments were diluted to 40 μg/ml in 0.1 M urea and 1x PBS (pH 7.4) and 50 μl of each were transferred to the wells of a 96-well spotting plate. The protein fragments were spotted in duplicate and immobilized onto epoxy slides (SuperEpoxy, TeleChem) using a pin-and-ring arrayer (Affymethx 427). The slide was washed in 1x PBS (5 min) and the surface was then blocked (SuperBlock®, Pierce) for 30 minutes. An adhesive 16-well silicone mask (Schleicher & Schuell) was applied to the glass before the mono-specific antibodies were added (diluted 1 :2000 in 1x PBST to appr. 50 ng/ml) and incubated on a shaker for 60 min. Affinity tag- specific IgY antibodies were co-incubated with the mono-specific antibodies in order to quantify the amount of protein in each spot. The slide was washed with 1x PBST and 1x PBS twice for 10 min each. Secondary antibodies (goat anti-rabbit antibody conjugated with Alexa 647 and goat anti-chicken antibody conjugated with Alexa 555, Molecular Probes) were diluted 1 :60000 to 30 ng/ml in 1x PBST and incubated for 60 min. After the same washing procedure, as for the first incubation, the slide was spun dry and scanned (G2565BA array scanner, Agilent), thereafter images were quantified using image analysis software (GenePix 5.1 , Axon Instruments).
b) Results
The quality of polyclonal antibody preparations has proven to be dependent on the degree of stringency in the antibody purifications, and it has previously been shown that depletion of antibodies directed against epitopes not originated from the target protein is necessary to avoid cross-reactivity to other proteins and background binding (Agaton C et al. (2004) J. Chromatogr. A 1043:33-40). Thus, a protein microarray analysis was performed to ensure that mono-specific polyclonal antibodies of high specificity had been generated by depletion of antibodies directed against the Hisβ-tag as well as of antibodies against the ABP-tag.
To quantify the amount of protein in each spot of the protein array, a two-color dye labeling system was used, with a combination of primary and secondary antibodies. Tag-specific IgY antibodies generated in hen were detected with a secondary goat anti-hen antibody labeled with Alexa 555 fluorescent dye. The specific binding of the rabbit msAb to its antigen on the array was detected with a fluorescently Alexa 647 labeled goat anti-rabbit antibody. The protein array analysis showed that the affinity purified monospecific antibody against HMGCR is highly selective to the correct protein fragment and has a very low background to all other protein fragments analyzed on the array.
3. Tissue profiling by immunohistochemistry a) Material and methods
In total, 576 paraffin cores containing human tissues were analyzed using the mono-specific antibody sample obtained in Examples, section 2. All tissues used as donor blocks for tissue microarray (TMA) production were selected from the archives at the Department of Pathology, University Hospital, Uppsala, in agreement with approval from the local ethical committee. All tissue sections used for TMA analysis were examined to determine diagnosis and to select representative areas in donor blocks. Normal tissue was defined as microscopically normal (non-neoplastic) and was most often selected from specimens collected from the vicinity of surgically removed tumors. Cancer tissue was reviewed for diagnosis and classification. All tissues were formalin fixated, paraffin embedded, and sectioned for diagnostic purposes.
The TMA production was performed essentially as previously described (Kononen J et al. (1998) Nature Med. 4:844-847; Kallioniemi OP et al. (2001 ) Hum. MoI. Genet. 10:657-662). Briefly, a hole was made in the recipient TMA block and a cylindrical core tissue sample from the donor block was acquired and deposited in the recipient TMA block. This was repeated in an automated tissue arrayer from Beecher Instrument (ATA-27, Beecher Instruments, Sun Prairie, CA, USA) until a complete TMA design was produced. TMA recipient blocks were baked at 42 0C for 2 h prior to sectioning.
The design of TMA:s was focused on obtaining samples from a large range of representative normal tissues, and on including representative cancer tissues. This has previously been described in detail in Kampf C et al. (2004) Clin. Proteomics 1 :285-300. In brief, samples from 48 normal tissues and from 20 of the most common cancer types affecting humans were selected. In total, eight different designs of TMA blocks, each containing 72 cores of tissue with 1 mm diameter, were produced. Two of the TMA:s represented normal tissues, corresponding to 48 different normal tissues in triplicates from different individuals. The remaining 6 TMA:s represented cancer tissue from 20 different types of cancer. For 17 of the 20 cancer types, 12 individually different tumors were sampled, and for the remaining 3 cancer types, 4 individually different tumors were sampled, all in duplicates from the same tumor. The TMA blocks were sectioned with 4 μm thickness using a waterfall microtome (Leica), and placed onto SuperFrost® (Roche Applied Science) glass slides for IHC analysis.
Automated IHC was performed as previously described (Kampf C et al. (2004) Clin. Proteomics 1 :285-300). In brief, the glass slides were incubated for 45 min in 60 0C, de-pa raff inized in xylene (2 x 15 min) and hydrated in graded alcohols. For antigen retrieval, slides were immersed in TRS (Target Retrieval Solution, pH 6.0, DakoCytomation) and boiled for 4 min at 125 0C in a Decloaking chamber® (Biocare Medical). Slides were placed in the Autostainer® (DakoCytomation) and endogenous peroxidase was initially blocked with H2O2 (DakoCytomation). The slides were incubated for 30 min at room temperature with the primary antibody obtained as in Examples, Section 2, followed by incubation for 30 min at room temperature with goat anti-rabbit peroxidase conjugated Envision®. Between all steps, slides were rinsed in wash buffer (DakoCytomation). Finally, diaminobenzidine (DakoCytomation) was used as chromogen and Harris hematoxylin (Sigma-Aldrich) was used for counterstaining. The slides were mounted with Pertex® (Histolab).
All immunohistochemically stained sections from the eight different TMA:s were scanned using a ScanScope T2 automated slide-scanning systems (Aperio Technologies). In order to represent the total content of the eight TMA:s, 576 digital images were generated. Scanning was performed at 20 times magnification. Digital images were separated and extracted as individual tagged image file format (TIFF) files for storage of original data. In order to be able to handle the images in a web-based annotation system, the individual images were compressed from TIFF format into JPEG format. All images of immunohistochemically stained tissue were manually evaluated under the microscope and annotated by a certified pathologist or by specially educated personnel, subsequently verified by a pathologist.
Annotation of each different normal and cancer tissue was performed using a simplified scheme for classification of IHC outcome. Each tissue was examined for representativity and immunoreactivity. The different tissue specific cell types included in each normal tissue type were annotated. For each cancer, tumor cells and stroma were annotated. Basic annotation parameters included an evaluation of i) subcellular localization (nuclear and/or cytoplasmic/membranous), ii) staining intensity (Sl) and iii) fraction of stained cells (FSC). Staining intensity was subjectively evaluated in accordance to standards used in clinical histo-pathological diagnostics and outcome was classified as: absent = no immunoreactivity, weak = faint immunoreactivity, moderate = medium immunoreactivity or strong = distinct and strong immunoreactivity. The fraction of stained cells was estimated and classified as < 2 %, 2 - 25 %, > 25 - 75 % or > 75 % immunoreactive cells of the relevant cell population. Based on both the intensity and fraction of immunoreactive cells, a "staining score" was given for each tissue sample: 0 = negative, 1 = weak, 2 = moderate and 3 = strong. N. R. means that no representative tissues were present. In detail, the staining score was given according to the following criteria: 0 was given if SI = absent or weak and FSC < 25%; 1 was given if SI = weak and FSC > 25% or if SI = moderate and FSC < 25%; 2 was given if SI = moderate and FSC > 25% or if SI = strong and FSC < 25% and SI = moderate; and finally 3 was given if SI = strong and FSC > 25%. See also table 1. The skilled artisan should recognize that this procedure is similar to a calculation of an Allred score, see e.g., Allred et al. (1998) Mod Pathol 11 (2), 155.
Figure imgf000084_0001
Figure imgf000085_0001
b) Results
The results from tissue profiling with the mono-specific antibody generated towards a recombinant protein fragment of the human target protein HMGCR obtained as in Examples, Section 2 showed a particular immunoreactivity in several normal tissues. Table 2 shows the HMGCR protein expression pattern in normal human tissues. Using IHC and TMA technology, 144 spots (1 mm in diameter) representing 48 different types of normal tissue were screened for expression of HMGCR. Immunoreactivity was observed mainly in cytoplasm of most tissues. Some cases showed additional nuclear or membranous positivity. Strongest staining was found in glandular epithelia. In a few cases no representative tissue (N. R.) were observed.
Figure imgf000085_0002
Figure imgf000086_0001
Figure imgf000087_0001
HMGCR protein expression was further evaluated in tissue samples from various cancer types. Table 3 shows the level of HMGCR expression in 12 different breast carcinoma tissues samples. All of these samples showed representative tissue and ten showed positivity, i.e., a staining score of higher than zero. HMGCR expression was observed in cytoplasm.
Table 3: Expression pattern of HMGCR
Figure imgf000088_0001
4. Randomized premenopausal cohort TMA a) Material and methods Between 1984 and 1991 , 564 pre-menopausal women with primary breast cancer in the South and Southeast regions of Sweden were enrolled in a multi-centre clinical trial and randomly assigned to either two years of adjuvant tamoxifen (n=276) or a control group (n=288). The control group did not receive adjuvant endocrine treatment, i.e. tamoxifen. The inclusion criteria were pre-menopausal patients, or patients younger than 50 years, with stage Il (pT2 NO MO, pT1-2 N1 MO) invasive breast cancer treated by modified mastectomy or breast conserving surgery with axillary lymph node dissection. Post-operative radiotherapy (50 Gy) was administered after breastconserving surgery and all lymph node-positive patients received locoregional radiotherapy. Less than 2% of the patients received adjuvant systemic chemotherapy. The median follow-up time for patients without breast cancer events was 13.9 years. Median age at diagnosis was 45 (25-57) years. The study design is described in detail elsewhere (Ryden L et al, Eur J Cancer, 2005, 41 (2): 256-64). Ethical permission was obtained from the Local Ethics Committees at Lund and Linkόping Universities.
Tissue blocks from 500 of the 564 patients could be retrieved for TMA- construction. All cases had been histopathologically re-evaluated on hematoxylin and eosin stained slides. TMA:s were constructed by sampling 2 x 0.6 mm cores per case from areas representative of invasive cancer, using an manual arraying device (MTA-1 , Beecher Inc, Wl, USA). Four μm sections were dried, deparaffinized an pretreated using the PT-link system (DAKO, Copenhagen, Denmark), then stained in a Techmate 500 (DAKO, Copenhagen, Denmark) with a polyclonal anti-HMGCR antibody (Catalog # 07-457, Upstate) dilutedi :250, which antibody selectively interacts with a peptide consisting of the sequence SEQ ID NO:4. IHC staining of ER and PR had been performed previously. In line with current clinical praxis, a cut-off at 10 % positive nuclei was used to define hormone receptor positivity.
For statistical analyses, the cytoplasmic intensity (Cl) level was evaluated, in line with what is described in Examples, Section 3 above. The level of staining intensity of the cytoplasm was subjectively evaluated in accordance to standards used in clinical histo-pathological diagnostics and outcome was classified as: absent = no immunoreactivity, weak = faint immunoreactivity, moderate = medium immunoreactivity or strong = distinct and strong immunoreactivity. Based on the survival trends for all different strata, a dichotomized variable were constructed for further statistical analyses. Two categories were defined: "HMGCR high" corresponding to Cl = weak, moderate and strong and "HMGCR low" corresponding to Cl = absent This classification of samples was used for RFS analysis according to the Kaplan-Meier estimator, and the log-rank test was used to compare survival in different strata. ER and PR negativity was defined as < 10% positively staining nuclei, according to current clinical guidelines in Sweden. All statistical tests were two-sided, and p-values of < 0.05 were considered significant. All calculations were made with the statistical package SPSS 17.0 (SPSS Inc. Illinois, USA).
b) Results
In this results section, "HMGCR" refers to HMGCR protein. For the present study, immunohistochemical analysis of HMGCR expression could be performed on 423 tumors. The remaining cores either did not contain invasive cancer or had been lost during histoprocessing. Of the 423 analyzed tumors, 324 were ER positive (i.e. ERα+), defined as >10% ER nuclear fraction, which is in line with the clinically established cut-off used for hormone receptor assessment.
Analysis of recurrence free survival (RFS) based on high or low HMGCR protein levels in patients treated with tamoxifen and a control group of patients that received no adjuvant endocrine therapy are presented in fig 1 a and 1 b, respectively. This analysis reveals a significantly better RFS for the HMGCR high category than for the HMGCR low category as seen in figure 1 a (p = 0.001 ). Analysis of RFS based on high or low HMGCR levels in ER positive patients of the tamoxifen treated patients and the control group are presented in fig 2a and 2b, respectively. This analysis reveals a significantly better RFS for the HMGCR high category of the tamoxifen treated subjects as seen in figure 2a. In light of the apparent influence of HMGCR on tamoxifen response in this cohort, the impact on RFS in strata with different combinations of HMGCR protein expression status and ER status were analyzed. Briefly, all subjects were split into four groups based on HMGCR and ER status, i.e. subjects that are HMGCR positive and ER positive, subjects that are HMGCR positive and ER negative, subjects that are HMGCR negative and ER positive and subjects that are HMGCR negative and ER negative. The analysis revealed that these strata were associated with differences in RFS in the tamoxifen treated cohort (p = 0.001 ) (fig 3a). However very small differences between the strata in the untreated cohort were observed (fig 3b). Surprisingly as illustrated in figure 3a, HMGCR positive and ER negative patients have a better outcome than HMGCR negative and ER positive patients in the treated cohort.
Thus, a favorable effect of HMGCR expression on tamoxifen response has been demonstrated. Further, a group of ER negative patients who may respond to tamoxifen is identified. Consequently, HMGCR protein is an endocrine treatment marker which may be an alternative or complement to ER.
Next, the relationship between HMGCR expression and RFS in lymph node positive patients treated with tamoxifen was investigated. This revealed that HMGCR expression was associated with an improved RFS (p = 0.001 ) in lymph node positive patients who received tamoxifen (fig 4a). Similar results were obtained when analyzing the ER positive subjects of the same subgroup (fig 5a). A trend of better survival for the HMGCR positive subjects of the node negative subgroups was also observed (fig 4b and 5b), but these subgroups contained too few patients to yield statistically significant results. The impact on RFS based on node status in strata with different combinations of HMGCR expression and ER status in tamoxifen treated subjects was analyzed. In node positive, tamoxifen treated subjects, HMGCR/ER status had a highly significant impact on RFS (p = 0.000) (fig 6a), compared to lymph node negative tamoxifen treated patients (fig 6b). Regarding the node positive subjects, HMGCR positive and ER negative patients had a better outcome than HMGCR negative and ER positive patients in the treated cohort (fig 6a).
The impact on survival for tamoxifen treated subjects that are HMGCR positive and ER negative subjects is seen in more detail in figure 7. The positive effect on RFS based on the HMGCR level in ER negative subjects is seen in figure 7a, and that effect appears to be further enhanced in lymph node positive patients is seen in figure 7b. If the parameters were changed, and the RFS analysis was based on tamoxifen treatment of HMGCR high or low subjects, irrespective of ER status, the results revealed a significantly improved survival upon tamoxifen treatment for patients with HMGCR high tumors (fig 8a) in contrast to patients with HMGCR low tumors, where tamoxifen treatment had no impact on survival (fig 8b).
An improved survival upon tamoxifen treatment was also observed when analyzing HMGCR positive and ER negative subjects as seen in fig 9a. That trend appears to be further enhanced in lymph node positive patients is seen in figure 9b. The results of fig 8 and 9 further support that HMGCR positive subjects benefit from tamoxifen treatment and that such benefit also exists in HMGCR positive subjects in the subgroup of ER negative patients, which have previously been considered non-responsive to tamoxifen.
When the breast cancer subjects were divided into HMGCR positive or ER positive and HMGCR negative and ER negative, respectively, a significantly positive effect of tamoxifen treatment was observed in the former group, while no positive effect was observed in the latter (10a and 10b, respectively).
In the literature, PR has been proposed as an alternative or complement to ER in endocrine treatment prediction. Accordingly, its relation to HMGCR status has been investigated. PR positive and HMGCR positive subjects showed significant response to tamoxifen treatment, while no response was observed in the group of PR negative and HMGCR negative subjects (11 a and 11 b, respectively). In the group of HMGCR positive and PR negative subjects a trend of tamoxifen impact on survival may be observed (fig 12). Probably due to too few patients in this group the trend is not statistically significant.
Cell culture experiments
5. HMGCR expression in tamoxifen sensitive and resistant cell lines a) Material and methods
MCF7 cells were obtained from Prof Robert Clarke, Georgetown University,
Washington USA. All other tumor cell lines were obtained from the Eurpoean Collection of Cell Cultures (Salisbury, UK) and grown as follows. BT474 and
T47D: Dulbecco's Modified Eagle Medium (DMEM, Sigma) with 10% (Fetal calf serum (FCS, Sigma) and 100 U/ml penicillin and 100 ug/ml streptomycin (Gibco).
ZR751 : DMEM with 10% FCS (Sigma) and 100 U/ml penicillin and 100 ug/ml streptomycin (Gibco). Supplemented with 1 nM betaestradiol (Sigma). MCF7RC: phenolred free DMEM (Gibco), 10 % FCS (Sigma) and 100 U/ml penicillin and 100 ug/ml streptomycin (Gibco). Cells were maintained in humidified air with 5 % CO2. All cell lines were free of Mycoplasma contamination. For western blot analysis, protein was extracted from cells grown to 80% confluence with radioimmunoprecipitation assay buffer [20 mmol/L Tris (pH 7.5), 150 mmol/L NaCI, 1 % NP40, 0.5% sodium deoxycholate, 1 mmol/L EDTA, 0.1 % SDS]. Protein levels were determined using the bicinchoninic acid method (Pierce, Rockford, IL). Samples containing 50 μg aliquots of protein were separated on a 10% Bis-Ths gel (Invitrogen) by SDS-PAGE under reducing conditions. After electrophoresis, proteins were transferred to a polyvinylidene fluoride membrane. Membranes were blocked in 5% nonfat milk over night. HMGCR was detected using a rabbit polyclonal antibody (cat # 07-457, Upstate) at a dilution of 1 :500.
Membranes were washed and incubated for 1 hour with horseradish peroxidase-conjugated antirabbit immunoglobulin. Enhanced chemiluminescence plus (Amersham Biosciences, Buckinghamshire, United Kingdom) was used for detection. All steps were carried out at room temperature. Western blotting experiments were done in triplicate to confirm reproducibility of results.
b) Results
There was a considerably higher HMGCR expression in the tamoxifen sensitive cell lines (ZR751 , T47D, and MCF7RC) than in the tamoxifen resistant cell line BT474, supporting HMGCR expression as an indicator of tamoxifen response (Figure 13).
6. HMGCR and ERa expression after tamoxifen and simvastatin treatment a) Material and methods
MCF7 cells were obtained and grown as described above (Examples, section 5). For 2 days before the start of the experiment, the cells were grown in serum-free medium. Cells were then treated for five days with either 10 μM
Simvastatin, 100 nM Tamoxifen, or a combination of both. Western blot was performed as described above (Examples, section 5), and in addition ERa was detected using antibody 6F11 (obtained from Novacastra) at a dilution of 1 :250. Membranes were then stripped and reprobed with an anti-b-actin antibody (Abeam, Cambridge, United Kingdom) at a dilution of 1 :5,000 to provide a loading control.
b) Results
Simvastatin treatment clearly induced HMGCR as well as ERa expression in a tamoxifen the sensitive cell line. Tamoxifen treatment induced a slight HMGCR expression, but no ERa expression. The induced HMGCR expression was substantially increased when cells were treated with a combination of Simvastatin and tamoxifen (Figure 14). The combination treatment also reduced ERa expression compared to Simvastatin treatment alone.
7. HMGCR mRMA levels after tamoxifen and simvastatin treatment a) Material and methods
MCF7 cells were obtained and grown as described above (Examples section 5). Cells were treated for five days with either 10 μM Simvastatin, 100 nM Tamoxifen, or a combination of both. Total RNA was isolated using the mirVANA™ miRNA Isolation Kit (Ambion) and reverse transcribed using Superscript II™ Reverse Transcriptase (Invitrogen) according to the manufacturer's instructions. HMG-CoAR-F
(GGACCCCTTTGCTTAGATGAAA (SEQ ID NO:7)) and HMG-CoAR-R (CCACCAAGACCTATTGCTCTG (SEQ ID NO:8)) primers were designed using Primer Express software (Applied Biosystems Version 2.0) and used to amplify a HMG-CoAR-specific DNA fragment with SYBR Green PCR Master Mix (Applied Biosystems) using a 7900HT Fast Real-Time PCR System (Applied Biosystems). Relative HMG-CoAR expression levels in breast cancer cell lines were calculated using the qBase real-time PCR relative quantification software with all samples normalised to 18s rRNA. Negative controls included a no template control and a no reverse transcriptase control. All qRT-PCR reactions were performed in triplicate.
b) Results There was only a slight increase in HMGCR levels of mRNA after treatment with either Simvastatin or Tamoxifen, but the combination treatment gave an almost twice as high level of HMGCR mRNA as did treatment with either substance alone (Figure 15). These results support those in Examples, section 6 where there was a more marked increase in the amount of HMGCR protein expressed after the combination treatment than after each treatment alone (see also Figure 14).
8. Induced HMGCR expression in tamoxifen resistant cell lines a) Material and methods
MCF7 cells were obtained as described above (Examples, section 5). The tamoxifen resistant cell lines LCC2 and LCC9 were obtained from Prof Robert Clarke, Georgetown University, Washington USA. Cells were grown in phenolredfree DMEM (Gibco), 5% charcoal/dextran treated Fetal Bovine Serum (FBS, HyClone) supplemented with 1.46 mg/ml L-Glutamine (Gibco). Cells were plated in 6 cm dishes (500 000 cells/dish) and when 70% confluent they were treated with different concentrations of simvastatin (0, 1 , 3, 5 and 9 μM). After five days treatment the cells were harvested by trypsination. After detachment they were collected with DMEM and washed once in PBS and lysed in RIPA lysis buffer (150 mM NaCI, 1 % NP40, 0.5% SOC, 0.1 % SDS, 50 mM Tris-HCI (pH 8), 2 mM EDTA, 1 mM DTT, 0.1 μM PEFA bloc and 10X mini complete (Roche)) on ice for 10 minutes. Western blots were performed as described above (Examples, section 6).
b) Results
The expression of HMGCR was considerably lower in the tamoxifen resistant cell lines LCC2 and LCC9 than in the tamoxifen sensitive cell line MCF7 (Figure 16), supporting earlier data (see Figure 13). Surprisingly, when looking at HMGCR and ER expression in cells treated with increasing concentrations of Simvastatin, there was an increase in HMGCR expression for the most tamoxifen resistant cell line (LCC9), while the ER expression level remained constant (Figure 17). This indicates that tamoxifen resistant cells can be made tamoxifen sensitive by statin treatment.
Determination of whether a breast cancer patient is likely to benefit from an endocrine treatment and treatment of said patient
9) A non-limiting example A breast cancer patient can present symptoms or signs such as a palpable lump/tumor, secretion from the mammilla or skin deformities. A proportion of breast cancers, generally without symptoms, are also detected by screening mammography. If those tests are not conclusive for diagnosis, a breast biopsy may be performed i.e. removal of a selected physical piece of tissue from the suspected tumor.
Following the diagnosis of breast cancer, the tumor is normally removed by surgery (e.g. by mastectomy or partial mastectomy).
To perform the treatment predictive method, a tumor tissue sample is obtained. The tumor tissue sample may be obtained from a specimen from an earlier surgical removal of the tumor or from a biopsy performed earlier during the diagnosis of the cancer.
For the provision of a reference sample showing a negative HMGCR staining (negative reference), a material is taken from a tissue having no HMGCR expression, e.g. archival material comprising tissue lacking detectable HMGCR protein expression. The negative reference may show an absent cytoplasmic intensity.
For the provision of a reference sample showing a high HMGCR staining (positive reference), a material is taken from a tissue having high HMGCR expression, e.g. breast cancer tissue having a pre-established high HMGCR protein expression. The positive reference may show a strong cytoplasmic intensity.
The materials (the tumor tissue sample and the reference samples) are fixated in buffered formalin and histo-processed in order to obtain thin sections (4 μm). Alternatively, the reference samples may be preprepared, e.g. already fixated in buffered formalin or already mounted on slides (see below). lmmunohistochemistry is performed as described in Examples, section 3. One or more sample sections from each sample are mounted on glass slides that are incubated for 45 min in 60 0C, de-paraffin ized in xylene (2 x 15 min) and hydrated in graded alcohols. For antigen retrieval, the slides are immersed in TRS (Target Retrieval Solution, pH 6.0, DakoCytomation) and boiled for 4 min at 125 0C in a Decloaking chamber® (Biocare Medical). Then, the slides are placed in the Autostainer® (DakoCytomation) and endogenous peroxidase is initially blocked with H2O2 (DakoCytomation). The reason for mounting multiple sample sections may be to increase the accuracy of the results. A primary HMGCR specific antibody (e.g. the anti-HMGCR antibody of
Examples, section 2 or 4) is added to the slides, which are then incubated for 30 min in room temperature, followed incubation for 30 min in room temperature with the labeled secondary antibody (e.g. goat-anti-rabbit peroxidase conjugated Envision®). To detect the secondary antibody, diaminobenzidine (DakoCytomation) is used as chromogen, contrasted with a Harris hematoxylin (Sigma-Aldrich) counterstaining. Between all steps, slides are rinsed in wash buffer (DakoCytomation). The slides are then mounted with Pertex® (Histolab).
As a tool to validate the staining procedure, two control cell-lines may be used; e.g. one slide with cells expressing HMGCR (positive cell line) and one slide with cells without HMGCR expression (negative cell line). The skilled artisan understands how to provide such cell lines, for example guided by the disclosure of Rhodes et al. (2006) The biomedical scientist, p 515-520. The control-line slides may be simultaneously stained in the same procedure as the breast cancer slides, i.e. incubated with the same primary and secondary antibodies.
To obtain digital images, the breast cancer tumor slides, the reference slides, and optionally, the slides with control cell-lines, may be scanned in a light microscope using a ScanScope T2 automated slide scanning system (Aperio Technologies) at x20 magnification. However, this scanning step is not necessary, but may make the procedure easier if, for example, the preparation and staining of the slides and the evaluation of the cytoplasmic intensity (see below) are performed at different locations or by different persons. If control cell-lines are used, these are inspected to validate the staining procedure. If the cell-lines display staining results outside acceptable criteria, e.g. staining artifacts recognized by the skilled artisan, the staining of the slides is considered as invalid and the whole staining procedure is repeated with new slides. If the positive and negative cell-lines display strong staining intensity and no staining intensity, respectively, the staining is considered as valid.
The stained sample slide(s) from the tumor sample is/are evaluated manually by visual inspection, and the cytoplasmic intensity (Cl) of the breast cancer slide(s) is/are graded as described in Examples, Section 3. In the grading, the cytoplasmic intensity (Cl) is subjectively classified as: absent = no immunoreactivity, weak = faint immunoreactivity, moderate = medium immunoreactivity or strong = distinct and strong immunoreactivity. The person performing the evaluation and grading is aided by visual inspection of the stained positive and negative reference slides.
The reference value may be an absent Cl, and in such case it is concluded that the patient in question is likely to benefit from an endocrine treatment if the sample value derived from the subject is higher than an absent Cl, i.e. if the sample value is a weak, moderate or strong Cl.
The above conclusion may lead a physician to apply an endocrine treatment. However, in some cases, such decision may depend on several parameters. Anyhow, the fact that the patient is HMGCR positive (sample value higher than reference value) is in favor of a decision to treat the patient with an endocrine treatment product, especially tamoxifen. If, however, the sample value is lower than or equal to the reference value (e.g. absent Cl), the decision may be to refrain from endocrine treatment or apply a combination treatment comprising application of a statin and an endocrine treatment product.

Claims

1. Products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in therapy.
2. Products including an endocrine treatment product and a statin as a combined preparation for simultaneous, separate or sequential use in breast cancer therapy.
3. Products according to claim 2, wherein said breast cancer is HMGCR protein low.
4. Products according to claim 2 or 3, wherein said breast cancer is estrogen receptor negative.
5. Products according to claim 2-4, wherein said breast cancer is node positive.
6. Products according to anyone of claims 1 -5, wherein the endocrine treatment product is selected from the group consisting of a selective estrogen receptor modulator (SERM), an aromatase inhibitor, and a steroidal estrogen receptor antagonist.
7. Products according to claim 6, wherein the endocrine treatment product is a SERM selected from the group consisting of toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen.
8. Products according to claim 7, wherein the endocrine treatment product is tamoxifen.
9. Products according to anyone of claims 1 -8, wherein the statin is a lipophilic/hydrophobic statin or a hydrophobic statin.
10. Products according to claim 9, wherein the statin is a lipophilic/hydrophobic statin selected from fluvastatin, lovastatin, simvastatin, atorvastatin and cehvastatin.
11. Composition comprising the products of anyone of claims 1 -10 and a pharmaceutically active carrier.
12. Composition according to claim 11 for use in therapy.
13. Composition according to claim 12 for use in breast cancer therapy.
14. Composition according to anyone of claims 11 -13, wherein said breast cancer is HMGCR protein low.
15. Composition according to anyone of claims 11 -14, wherein said breast cancer is estrogen receptor negative.
16. Composition according to anyone of claims 11 -15, wherein said breast cancer is node positive.
17. Kit-of-parts including an endocrine treatment product and a statin.
18. Kit-of-parts according to claim 17 for use in therapy.
19. Kit-of-parts according to claim 18 for use in breast cancer therapy.
20. Method of treatment of a mammalian subject having a breast cancer, comprising simultaneous, separate or sequential administration of therapeutically effective amounts of a statin and an endocrine treatment product.
21. Method according to claim 20, wherein the endocrine treatment product is selected from the group consisting of a selective estrogen receptor modulator (SERM), an aromatase inhibitor, and a steroidal estrogen receptor antagonist.
22. Method according to claim 21 , wherein the endocrine treatment product is a SERM selected from the group consisting of toremifene, raloxifene, droloxifene, arzoxifene and tamoxifen.
23. Method according to claim 22, wherein the endocrine treatment product is tamoxifen.
24. Method according to any one of claims 20-23, wherein said statin is a lipophilic/hydrophobic statin or a hydrophobic statin.
25. Method according to claim 24, wherein said statin is a lipophilic/hydrophobic statin selected from fluvastatin, lovastatin, simvastatin, atorvastatin and cehvastatin.
26. Method according to any one of claims 20-25, wherein said breast cancer is HMGCR protein low.
27. Method according to any one of claims 20-26, wherein said breast cancer is estrogen receptor negative.
28. Method according to any one of claims 20-27, wherein said breast cancer is node positive.
29. Method according to any one of claims 20-28, wherein the statin is administrated without the endocrine treatment product during a first period followed by a second period of administration of the endocrine treatment product, optionally in combination with additional statin administration.
30. Method according to any one of claims 20-28, wherein the statin is administrated to the subject until an increase in HMGCR protein expression is detected in the subject, followed by administration of the endocrine treatment product, optionally in combination with additional statin administration.
PCT/EP2010/051060 2008-05-16 2010-01-29 Combination treatment of breast cancer WO2010086400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/146,435 US20120053196A1 (en) 2008-05-16 2010-01-29 Combination Treatment of Breast Cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/SE2009/000066 WO2009139681A1 (en) 2008-05-16 2009-01-30 Treatment prediction involving hmgcr protei
SEPCT/SE2009/000066 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010086400A1 true WO2010086400A1 (en) 2010-08-05

Family

ID=41809251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051060 WO2010086400A1 (en) 2008-05-16 2010-01-29 Combination treatment of breast cancer

Country Status (1)

Country Link
WO (1) WO2010086400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115813991A (en) * 2022-11-29 2023-03-21 三峡大学 Application of citrus fruit extract in preparation of medicine for treating breast cancer endocrine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004144A2 (en) 1999-07-13 2001-01-18 Scil Proteins Gmbh Fabrication of beta-pleated sheet proteins with specific binding properties
WO2001005808A2 (en) 1999-07-20 2001-01-25 Affibody Technology Sweden Ab In vitro selection and optional identification of polypeptides using solid support carriers
WO2008154402A2 (en) * 2007-06-06 2008-12-18 University Of Maryland, Baltimore Hdac inhibitors and hormone targeted drugs for the treatment of cancer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004144A2 (en) 1999-07-13 2001-01-18 Scil Proteins Gmbh Fabrication of beta-pleated sheet proteins with specific binding properties
WO2001005808A2 (en) 1999-07-20 2001-01-25 Affibody Technology Sweden Ab In vitro selection and optional identification of polypeptides using solid support carriers
WO2008154402A2 (en) * 2007-06-06 2008-12-18 University Of Maryland, Baltimore Hdac inhibitors and hormone targeted drugs for the treatment of cancer

Non-Patent Citations (103)

* Cited by examiner, † Cited by third party
Title
"EBCTCG", LANCET, vol. 351, 1998, pages 1451 - 1467
"EBCTCG", LANCET, vol. 351, no. 9114, 1998, pages 1451 - 67
"EBCTCG", LANCET, vol. 352, no. 9132, 1998, pages 930 - 42
"EBCTCG", LANCET, vol. 365, no. 9472, 2005, pages 1687 - 717
"International histological classification of tumors", 1981, WHO, article "Histological typing of breast tumors"
AGATON C ET AL., J. CHROMATOGR., vol. 1043, 2004, pages 33 - 40
ALLRED ET AL., MOD PATHOL, vol. 11, no. 2, 1998, pages 155
AXELSSON CK ET AL., EUR J CANCER, vol. 28, 1992, pages 1415 - 8
BAGGIO R ET AL., J. MOL. RECOGNIT., vol. 15, 2002, pages 126 - 134
BERGER MS ET AL., CANCER RES, vol. 48, no. 5, 1988, pages 1238 - 43
BESTE G ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 96, 1999, pages 1898 - 1903
BIANCHI E ET AL., J. MOL. BIOL., vol. 247, 1995, pages 154 - 160
BINZ HK ET AL., J. MOL. BIOL., vol. 332, 2003, pages 489 - 503
BIRD RE; WALKER BW, TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137
BORG A ET AL., CANCER LETT, vol. 81, no. 2, 1994, pages 137 - 44
BORG A ET AL., CANCER RES, vol. 50, no. 14, 1990, pages 4332 - 7
BORGQUIST S ET AL., J CLIN PATHOL, vol. 61, no. 2, 2008, pages 197 - 203
BORGQUIST SIGNE ET AL: "HMG-CoA reductase expression in breast cancer is associated with a less aggressive phenotype and influenced by anthropometric factors", INTERNATIONAL JOURNAL OF CANCER, JOHN WILEY & SONS, INC, UNITED STATES, SWITZERLAND, GERMANY, vol. 123, no. 5, 1 September 2008 (2008-09-01), pages 1146 - 1153, XP002530265, ISSN: 0020-7136 *
BORGQUIST SIGNE ET AL: "Prognostic impact of tumour-specific HMG-CoA reductase expression in primary breast cancer", BREAST CANCER RESEARCH, CURRENT SCIENCE, LONDON, GB, vol. 10, no. 5, 22 September 2008 (2008-09-22), pages R79, XP021046858, ISSN: 1465-5411 *
BRADBURY AR; MARKS JD, J. IMMUNOL. METHS., vol. 290, 2004, pages 29 - 49
BRAND L; GOHLKE JR, ANNU. REV. BIOCHEM., vol. 41, 1972, pages 843 - 868
BRODY EN; GOLD L, J. BIOTECHNOL., vol. 74, 2000, pages 5 - 13
BUZDAR A ET AL., LANCET ONCOL, vol. 7, no. 8, 2006, pages 633 - 43
CAI X; GAREN A, PROC. NATL. ACAD. SCI. U.S.A., vol. 93, 1996, pages 6280 - 6285
CHAN ET AL., CURR OPI BIOTECH., vol. 13, 2002, pages 40 - 46
COATES AS ET AL., J CLIN ONCOL, vol. 25, no. 5, 2007, pages 486 - 92
DAUGHERTY PS, CURR OPIN STRUCT BIOL, vol. 17, 2007, pages 474 - 480
DE PLACIDO S ET AL., CLIN CA RES, vol. 9, no. 3, 2003, pages 1039 - 46
DENNIS MS; LAZARUS RA, J. BIOL. CHEM., vol. 269, 1994, pages 22137 - 22144
DOOLEY H ET AL., MOL. IMMUNOL., vol. 40, 2003, pages 25 - 33
DOWSETT M ET AL., J CLIN ONCOL, vol. 23, no. 30, 2005, pages 7512 - 7
DUNCAN RE ET AL., CANCER LETT, vol. 224, 2005, pages 221 - 8
ELLINGTON AD; SZOSTAK JW, NATURE, vol. 346, 1990, pages 818 - 822
ELLIS MJ; RIGDEN CE, CURR MED RES OPIN, vol. 22, no. 12, 2006, pages 2479 - 87
EMENS LA; DAVIDSON NA, CLIN CA RES, no. 1 PT 2, 2003, pages 468S - 94S
FIELDS S; SONG 0, NATURE, vol. 340, 1989, pages 245 - 246
GAI SA; WITTRUP KD, CURR OPIN STRUCT BIOL, vol. 17, 2007, pages 467 - 473
GOLD L ET AL., ANNU. REV. BIOCHEM., vol. 64, 1995, pages 763 - 797
GOLDSTEIN JL; BROWN MS, NATURE, vol. 343, 1990, pages 425 - 30
GRUVBERGER-SAAL SK ET AL., CLIN CANCER RES, vol. 13, 2007, pages 1987 - 1994
HAMERS-CASTERMAN C ET AL., NATURE, vol. 363, 1993, pages 446 - 448
HANES J; P UCKTHUN, PROC. NATL. ACAD. SCI. U.S.A., vol. 94, 1997, pages 4937 - 4942
HARVEY BR ET AL., PNAS, vol. 101, no. 25, 2004, pages 913 - 9198
HOWELL A ET AL., LANCET, vol. 345, no. 8941, 1995, pages 29 - 30
HUFTON SE ET AL., FEBS LETT., vol. 475, 2000, pages 225 - 231
IRVING RA ET AL., J. IMMUNOL. METH., vol. 248, 2001, pages 31 - 45
K6HLER G; MILSTEIN C, EUR. J. IMMUNOL., vol. 6, 1976, pages 511 - 519
KALLIONIEMI OP ET AL., HUM. MOL. GENET., vol. 10, 2001, pages 657 - 662
KAMPF C ET AL., CLIN. PROTEOMICS, vol. 1, 2004, pages 285 - 300
KLEVENZ B ET AL., CELL. MOL. LIFE SCI., vol. 59, 2002, pages 1993 - 1998
KLUG A, J. MOL. BIOL., vol. 293, 1999, pages 215 - 218
KOIDE A ET AL., J. MOL. BIOL., vol. 284, 1998, pages 1141 - 1151
KONONEN J ET AL., NATURE MED., vol. 4, 1998, pages 844 - 847
KRONQVIST N ET AL., PROTEIN ENG DES SEL, 2008, pages 1 - 9
KUMAR ANJALI S ET AL: "Estrogen receptor-negative breast cancer is less likely to arise among lipophilic statin users", CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, vol. 17, no. 5, May 2008 (2008-05-01), pages 1028 - 1033, XP002573861, ISSN: 1055-9965 *
LANCET, vol. 365, 2005, pages 1687 - 717
LARSSON M ET AL., J. BIOTECHNOL., vol. 80, 2000, pages 143 - 157
LEHTI6 J ET AL., PROTEINS, vol. 41, 2000, pages 316 - 322
LI R ET AL., PROTEIN ENG., vol. 16, 2003, pages 65 - 72
LIAO JK, J CLIN INVEST, vol. 110, 2002, pages 285 - 8
LINDSKOG M ET AL., BIOTECHNIQUES, vol. 38, 2005, pages 723 - 727
LU Z ET AL., BIOTECHNOLOGY, vol. 13, 1995, pages 366 - 372
MASAT L ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 91, 1994, pages 893 - 896
MAYER G; JENNE A, BIODRUGS, vol. 18, 2004, pages 351 - 359
MCCONELL SJ; HOESS RH, J. MOL. BIOL., vol. 250, 1995, pages 460 - 479
NILSSON P ET AL., PROTEOMICS, vol. 5, 2005, pages 4327 - 4337
NORD 0 ET AL., J BIOTECHNOL, vol. 106, 2003, pages 1 - 13
NORD K ET AL., NAT. BIOTECHNOL., vol. 15, 1997, pages 772 - 777
NORMAN TC ET AL., SCIENCE, vol. 285, 1999, pages 591 - 595
NYGREN PA; SKERRA A, J. IMMUNOL. METHS., vol. 290, 2004, pages 3 - 28
PAGANI 0 ET AL., EUR J CANCER, vol. 34, no. 5, 1998, pages 632 - 40
PARKIN DM ET AL., CA CANCER J CLIN, vol. 55, 2005, pages 74 - 108
PEELLE B ET AL., CHEM. BIOL., vol. 8, 2001, pages 521 - 534
RECHT A; HOULIHAN MJ, CANCER, vol. 6, no. 9, 1995, pages 1491 - 1512
REMY I; MICHNICK SW, PROC. NATL. ACAD. SCI. U.S.A., vol. 96, 1999, pages 5394 - 5399
RHODES ET AL., THE BIOMEDICAL SCIENTIST, 2006, pages 515 - 520
RIGGINS RB ET AL., CANCER LETTERS, vol. 1, 2007, pages 1 - 24
ROBERTS BL ET AL., GENE, vol. 121, 1992, pages 9 - 15
ROBERTS RW; SZOSTAK JW, PROC. NATL. ACAD. SCI. U.S.A., vol. 94, 1997, pages 12297 - 12302
RUTQVIST LE, BEST PRACT RES CLIN ENDOCRINOL METAB, vol. 18, no. 1, 2004, pages 81 - 95
RYDEN L ET AL., EUR J CANCER, vol. 41, no. 2, 2005, pages 256 - 64
RYDEN L ET AL., J CLIN ONCOL, vol. 23, no. 21, 2005, pages 4695 - 704
SCHNEIDER S ET AL., NAT. BIOTECHNOL., vol. 17, 1999, pages 170 - 175
SEGAL DJ ET AL., BIOCHEMISTRY, vol. 42, 2003, pages 2137 - 2148
SHOU J ET AL., J NATL CANCER INST, vol. 96, no. 12, 2004, pages 926 - 35
SJÖLANDER A ET AL., J. IMMUNOL. METHODS, vol. 201, 1997, pages 115 - 123
SKERRA A; P UCKTHUN, SCIENCE, vol. 240, 1988, pages 1038 - 1041
SMITH GP ET AL., J. MOL. BIOL., vol. 277, 1998, pages 317 - 332
SMITH GP, SCIENCE, vol. 228, 1985, pages 1315 - 1317
STAH S ET AL.: "Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation", 1999, JOHN WILEY AND SONS INC., pages: 49 - 63
STEEN J ET AL., PROTEIN EXPR. PURIF., vol. 46, 2006, pages 173 - 178
STENDAHL M ET AL., CLIN CANCER RES, vol. 12, 2006, pages 4614 - 18
STEVENS FJ ET AL., BIOCHEMISTRY, vol. 30, 1991, pages 6803 - 6805
STRYER L, SCIENCE, vol. 162, 1968, pages 526 - 533
SUNDQUIST M ET AL., BREAST CANCER RES TREAT, vol. 53, no. 1, 1999, pages 1 - 8
THOMPSON, J.D.; HIGGINS, D.G.; GIBSON, T.J., NUCLEIC ACIDS RESEARCH, vol. 22, 1994, pages 4673 - 4680
TUERK C; GOLD L, SCIENCE, vol. 249, 1990, pages 505 - 510
VERONESI U ET AL., NEW ENGL J MED, vol. 349, no. 6, 2003, pages 546 - 53
WEJDE J ET AL., ANTICANCER RES, vol. 12, 1992, pages 317 - 24
WENSEL TG; MEARES CF: "Radioimmunoimaging and Radioimmunotherapy", 1983, ELSEVIER, pages: 185 - 196
WENTZEL A ET AL., J. BACTERIOL., vol. 183, 2001, pages 7273 - 7284
XU L ET AL., CHEM. BIOL., vol. 9, 2002, pages 933 - 942
YU KD ET AL., THE BREAST, vol. 16, 2007, pages 307 - 315

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115813991A (en) * 2022-11-29 2023-03-21 三峡大学 Application of citrus fruit extract in preparation of medicine for treating breast cancer endocrine

Similar Documents

Publication Publication Date Title
EP2494359B1 (en) Podxl protein in colorectal cancer
EP2396660B1 (en) Prediction of response to platinum-based therapy
EP2318841B1 (en) Anln protein as an endocrine treatment predictive factor
US20120053196A1 (en) Combination Treatment of Breast Cancer
US8728739B2 (en) RBM3 in colorectal cancer prognostics
EP2243032B1 (en) Rbm3 as a marker for breast cancer prognosis
US8945832B2 (en) Treatment prediction involving HMGCR
EP2073010A1 (en) Means for selecting a breast cancer treatment
WO2010086400A1 (en) Combination treatment of breast cancer
EP2241889A1 (en) RBM3 protein in colorectal cancer prognostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13146435

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10702283

Country of ref document: EP

Kind code of ref document: A1