WO2010082287A1 - 流路構造体、リアクタ及びリアクタを用いた反応方法 - Google Patents

流路構造体、リアクタ及びリアクタを用いた反応方法 Download PDF

Info

Publication number
WO2010082287A1
WO2010082287A1 PCT/JP2009/050265 JP2009050265W WO2010082287A1 WO 2010082287 A1 WO2010082287 A1 WO 2010082287A1 JP 2009050265 W JP2009050265 W JP 2009050265W WO 2010082287 A1 WO2010082287 A1 WO 2010082287A1
Authority
WO
WIPO (PCT)
Prior art keywords
introduction
path
flow
flow path
raw material
Prior art date
Application number
PCT/JP2009/050265
Other languages
English (en)
French (fr)
Inventor
野一色 公二
吉田 龍生
山本 誠一
岡田 和人
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to PCT/JP2009/050265 priority Critical patent/WO2010082287A1/ja
Priority to CN200980154373.1A priority patent/CN102271799B/zh
Priority to EP09838257.5A priority patent/EP2377605B1/en
Priority to US13/143,092 priority patent/US9242223B2/en
Priority to KR1020117016097A priority patent/KR101274810B1/ko
Publication of WO2010082287A1 publication Critical patent/WO2010082287A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange

Definitions

  • the present invention relates to a flow channel structure, a reactor, and a reaction method using the reactor.
  • Patent Document 1 shows a reactor including such a flow channel structure.
  • a plurality of minute flow paths are provided in parallel in the flow path structure.
  • the first raw material fluid and the second raw material fluid are introduced into the respective flow paths from the end portions thereof.
  • a desired product is manufactured by making it react mutually while distribute
  • the flow rate of the fluid flowing in each flow path be uniform.
  • the flow rate of the fluid flowing in each flow path is made uniform by aligning the flow path length of each flow path and equalizing the pressure loss of each flow path. .
  • An object of the present invention is to improve the degree of freedom of the shape of each flow path while making the flow rate of the fluid flowing through each flow path uniform.
  • the flow channel structure is a flow channel structure that forms a plurality of flow channels into which fluid is introduced, and the plurality of flow channels have different flow channel lengths.
  • the equivalent diameter of each part of each flow path is set according to the flow path length of each flow path so that the entire pressure loss of each flow path is equal.
  • the reactor is a reactor including a flow channel structure that forms a plurality of reaction flow channels for reacting the first raw material fluid and the second raw material fluid
  • Each of the reaction flow paths includes a first introduction path through which the first raw material fluid is introduced, a second introduction path through which the second raw material fluid is introduced, and downstream of the first introduction path and the second introduction path.
  • the first raw material fluid and the second raw material fluid are joined to each other, and the first raw material fluid and the second raw material fluid are caused to react with each other.
  • At least one of a group consisting of a first introduction path of each reaction channel and a group consisting of a second introduction path of each reaction channel has a different channel length.
  • Each of the groups including the introduction paths having different flow path lengths. So that the entire pressure loss of the road is equal to each other, the equivalent diameter of each part of each of the introduction path is set according to the channel length of the each introduction channel.
  • FIG. 1st flow-path structure which comprises the flow-path apparatus shown in FIG. It is the figure which showed schematically the positional relationship of the group of the 1st introduction path in the 1st flow path structure, the group of the 2nd introduction path, the group of the confluence
  • FIG. 6 is a cross-sectional view of the flow path plate taken along line IX-IX in FIG. It is a top view of the surface side of the flow-path plate by the 1st modification of one Embodiment of this invention. It is a top view of the back surface side of the flow-path plate by the 1st modification shown in FIG. It is a perspective view of the flow-path structure by the 2nd modification of one Embodiment of this invention. It is the top view which showed the structure of the flow path in the flow path structure by the 2nd modification shown in FIG.
  • FIGS. 1 to 9 the structure of the reactor according to one embodiment of the present invention and the first flow path structure 1a constituting the reactor will be described.
  • the reactor according to the present embodiment includes a flow path device S as shown in FIG.
  • This flow path device S includes a first flow path structure 1a that forms a plurality of reaction flow paths 2 through which a raw material fluid flows, and a second flow path structure that forms a plurality of heat medium flow paths 30 through which a heat medium flows. It is comprised by the body 1b being laminated
  • the first flow path structure 1a is included in the concept of the flow path structure of the present invention.
  • the reactor according to the present embodiment allows the two raw material fluids, the first raw material fluid and the second raw material fluid, to flow through a plurality of minute reaction flow channels 2 provided in the first flow channel structure 1a.
  • a predetermined reaction product is produced by reacting both raw material fluids with each other.
  • the first flow path structure 1a includes a flow path plate 4 and a pair of sealing plates 6 and 8, as shown in FIG.
  • the first flow path structure 1 a is configured by integrating the sealing plates 6, 8 and the flow path plate 4 with the flow path plate 4 being sandwiched between the pair of sealing plates 6, 8.
  • the plurality of reaction flow paths 2 are arranged at equal intervals in the width direction of the first flow path structure 1a.
  • Each reaction channel 2 includes a first introduction path 10 into which the first raw material fluid is introduced, a second introduction path 12 into which the second raw material fluid is introduced, and downstream of the first introduction path 10 and the second introduction path 12.
  • Each reaction channel 2 is formed by sealing the opening of the groove formed in the channel plate 4. That is, as shown in FIGS. 5 and 6, a plurality of first introduction grooves 18 are formed so as to open on the surface of the flow path plate 4, while a plurality of first introduction grooves 18 are formed as shown in FIGS. 7 and 8. 2
  • the introduction groove 20 and the plurality of reaction grooves 22 are formed so as to open on the back surface of the flow path plate 4.
  • Each of the second introduction grooves 20 includes a small-diameter groove 20a constituting a small-diameter portion 12e described later and a large-diameter groove 20b having a larger width than the small-diameter groove 20a and constituting a large-diameter portion 12f described later.
  • the flow path plate 4 is penetrated in the thickness direction at a position connecting the downstream end portion of the first introduction groove 18 and the downstream end portion of the second introduction groove 20 and the upstream end portion of the reaction groove 22.
  • a through hole 24 is formed.
  • the first introduction path 10 is formed by overlapping the sealing plate 6 on the surface of the flow path plate 4 and sealing the opening of the first introduction groove 18.
  • the sealing plate 8 is overlapped on the back surface of the flow path plate 4 to seal the opening of the second introduction groove 20, thereby forming the second introduction path 12 and the reaction groove 22.
  • the reaction path 16 is formed by sealing the opening.
  • the junction 14 is formed by sealing both openings of the through-hole 24 with the sealing plates 6 and 8.
  • the group consisting of the first introduction channel 10 of each reaction channel 2 the group consisting of the second introduction channel 12 of each reaction channel 2, and the merge of each reaction channel 2
  • the group consisting of the part 14 and the group consisting of the reaction path 16 of each reaction channel 2 are arranged in a positional relationship as shown in FIG.
  • Each first introduction path 10 causes the first raw material fluid to flow in the longitudinal direction from one end portion in the longitudinal direction of the first flow path structure 1a and flow into the joining portions 14.
  • Each of the second introduction passages 12 has the second raw material fluid changed in direction by 90 ° in the middle after flowing the second raw material fluid in the width direction from one end in the width direction of the first flow path structure 1a. Is flown in the longitudinal direction of the first flow path structure 1a which is the same as the first raw material fluid, and the second raw material fluid is joined to the first raw material fluid from the same direction at each joining portion.
  • each reaction path 16 makes it react mutually, flowing the 1st raw material fluid and the 2nd raw material fluid which merged in each confluence
  • each of the first introduction paths 10 has an introduction port 10a at one end in the longitudinal direction of the first flow path structure 1a.
  • Each first introduction path 10 extends linearly from the introduction port 10a in the longitudinal direction of the first flow path structure 1a, and is connected to each corresponding junction 14.
  • a raw material supply section (not shown) is connected to the introduction port 10a of each first introduction path 10, and the first raw material fluid is distributed and introduced to each first introduction path 10 from the raw material supply section.
  • Each first introduction path 10 has a semicircular cross-sectional shape and a constant equivalent diameter over the entire length thereof.
  • the first introduction paths 10 are arranged in parallel at equal intervals in the width direction of the first flow path structure 1a, and each of the first introduction paths 10 has an equal flow path length and an equivalent equivalent diameter. is doing. Thereby, the whole pressure loss of each 1st introduction way 10 is equalized. And since the pressure loss of the whole of each 1st introduction path 10 is equalized, the flow volume of the 1st raw material fluid distributed and distributed to each 1st introduction path 10 from the above-mentioned raw material supply part is made uniform.
  • Each of the second introduction paths 12 has an introduction port 12a at one end in the width direction of the first flow path structure 1a.
  • An unillustrated raw material supply section different from the raw material supply section for supplying the first raw material fluid is connected to the introduction port 12a of each second introduction path 12, and the second raw material fluid is supplied from the raw material supply section to the second raw material fluid. 2 are distributed and introduced to the introduction path 12.
  • each second introduction path 12 extends linearly from the introduction port 12 a in the width direction of the first flow path structure 1 a, that is, in a direction orthogonal to each first introduction path 10.
  • each second introduction path 12 has an introduction port 12a at a position different from the introduction port 10a of each first introduction path 10, and extends in a direction different from each first introduction path 10 from the introduction port 12a. Thereafter, the direction is changed by the bent portion 12d, and the corresponding joining portions 14 are joined from the same direction as the first introduction passages 10.
  • each second introduction path 12 has a different flow path length.
  • the second introduction paths 12 are arranged in parallel at equal intervals in the width direction of the first flow path structure 1a, and are bent in the same direction by the bent portions 12d.
  • the second introduction path 12 arranged on the outer side in the bent portion 12d of each second introduction path 12 has a larger flow path length than the second introduction path 12 arranged on the inner side. That is, the flow path length is increased as the second introduction path 12 is disposed outward in the bent portion 12d of each second introduction path 12.
  • the equivalent diameter of each part of each 2nd introduction path 12 from which flow path length differs differs in each 2nd introduction path 12 so that the whole pressure loss of each 2nd introduction path 12 may become equal, respectively. It is set according to the flow path length.
  • each second introduction path 12 includes a small diameter portion 12e having a predetermined equivalent diameter and a large diameter portion 12f having an equivalent diameter larger than the small diameter portion 12e.
  • the small-diameter portion 12e has a semicircular cross-sectional shape, and a range of a predetermined length from the bent portion 12d side of the first straight portion 12b, the bent portion 12d, and the second straight portion 12c. The portion extending over and below corresponds to the small diameter portion 12e.
  • the large-diameter portion 12f has a semicircular cross-sectional shape, and corresponds to a portion other than the small-diameter portion 12e in the second straight portion 12c.
  • connection part of the small diameter part 12e and the large diameter part 12f is the 2nd introduction
  • the total pressure loss of each second introduction path 12 is obtained by the sum of the pressure loss of the small diameter part 12e and the pressure loss of the large diameter part 12f constituting the second introduction path 12. That is, the overall pressure loss of each second introduction path 12 changes according to the ratio of the lengths of the small diameter portion 12e and the large diameter portion 12f. And in this embodiment, the length of the small diameter part 12e and the large diameter part 12f according to the flow path length of each 2nd introduction path 12 are equalized so that the whole pressure loss of each 2nd introduction path 12 may be equalized. Length ratio is set.
  • the small-diameter portion 12e has a smaller diameter than the large-diameter portion 12f, so that the pressure loss of the small-diameter portion 12e is larger than the pressure loss of the large-diameter portion 12f.
  • the outer diameter is proportional to the flow path length. The pressure loss increases as the second introduction path 12 is disposed closer to the second introduction path 12.
  • the second introduction passage 12 disposed outward in the bent portion 12d of each second introduction passage 12 The entire pressure loss of each second introduction path 12 is equalized. And the flow volume of the 2nd raw material fluid which flows through each 2nd introduction path 12 is equalized by equalizing the pressure loss of each 2nd introduction path 12 whole.
  • the shapes of the small diameter portion 12e and the large diameter portion 12f of each second introduction path 12 are set based on the following principle.
  • the pressure loss ⁇ p of the fluid flowing in the flow path is generally obtained by the following Fanning equation.
  • f a fluid friction coefficient
  • a fluid density
  • v a fluid flow velocity
  • L a channel length
  • D an equivalent diameter of the channel.
  • the second raw material fluid is caused to flow through each of the second introduction passages 12 in a laminar flow region.
  • the fluid flow is in the laminar flow region when the Reynolds number Re is in the range of Re ⁇ 2100.
  • the fluid friction coefficient f is expressed by the following equation (3).
  • ⁇ p 32 ⁇ (L / D 2 ) v (4)
  • the flow velocity v of the fluid can be expressed by the following equation (5) using the flow rate F of the fluid flowing in the flow path and the equivalent diameter D of the flow path.
  • the pressure loss ⁇ p 1 is equal to the pressure loss ⁇ p 2 of the small diameter part 12 e constituting the second introduction path 12 and the pressure of the large diameter part 12 f. Since it is the sum of the loss ⁇ p 3 , if the flow path length of the small diameter portion 12 e is L 2 , the equivalent diameter is D 2 , the flow length of the large diameter portion 12 f is L 3 , and the equivalent diameter is D 3 , the second The total pressure loss ⁇ p 1 of the introduction path 12 is expressed as the following equation (7).
  • the viscosity coefficient ⁇ of the fluid is a constant, so if the value of L 2 / D 2 4 + L 3 / D 3 4 is constant, the overall pressure loss ⁇ p 1 of the second introduction path 12 Is a value directly proportional to the flow rate F of the second raw material fluid. That is, if the value of L 2 / D 2 4 + L 3 / D 3 4 is constant, the second raw material fluid flowing through each second introduction path 12 when the total pressure loss ⁇ p 1 of each second introduction path 12 is equal. The relationship of equalizing the flow rate F is established.
  • the equivalent diameter D 2 equal to the small diameter portion 12e of the second introduction passage 12, and, under the condition that the equivalent diameter D 3 of the large diameter portion 12f is equal in each second introduction passage 12, the ratio of L 2 / D 2 4 + L 3 / D 3 flow path length between the fourth value is constant so as to the flow passage length L 2 of the small diameter portion 12e large diameter part 12f L 3 in each second introduction passage 12 Is set.
  • Each merging portion 14 is provided continuously downstream of the corresponding first introduction path 10 and the second introduction path 12, and the second introduction path 10 and the second introduction path 12 are second.
  • the linear portion 12c extends linearly in the same direction.
  • the joining portion 14 joins the first raw material fluid that has passed through the first introduction path 10 and the second raw material fluid that has passed through the second introduction path 12 while flowing in the longitudinal direction of the first flow path structure 1a.
  • each merging portion 14 has a cross-sectional shape in which two semicircles are coupled to each other in the vicinity of the top of the arc, and the equivalent diameter of the first introduction path 10 and the second introduction path.
  • the equivalent diameter of the passage 12 is larger than the equivalent diameter.
  • Each of the reaction paths 16 is continuously provided on the downstream side of the corresponding merging portion 14, and extends linearly in the same direction as the merging portion 14, that is, in the longitudinal direction of the first flow path structure 1a. ing.
  • Each of the reaction paths 16 causes the first raw material fluid and the second raw material fluid merged at the merging portion 14 to react with each other while flowing in the longitudinal direction of the first flow path structure 1a.
  • Each reaction path 16 has an equal flow path length.
  • Each reaction path 16 has a semicircular cross-sectional shape and an equivalent diameter larger than the equivalent diameter of the large diameter portion 12 f of the second introduction path 12.
  • the second flow path structure 1b forms a plurality of heat medium flow paths 30 through which the heat medium flows as described above, and the second flow path structure 1b is a heat medium flow path plate 26. And a sealing plate 28 laminated on the surface of the heat medium flow path plate 26.
  • the plurality of heat medium flow paths 30 are arranged in the second flow path structure 1b at equal intervals in the width direction of the second flow path structure 1b.
  • Each heat medium flow path 30 corresponds to each first introduction path 10 of the first flow path structure 1a, second straight line portion 12c of each second introduction path 12, each merging section 14, and each reaction path 16. Are provided so as to extend linearly in the same direction as those portions.
  • a plurality of grooves 32 are formed so as to open on the surface of the heat medium channel plate 26, and the openings of the grooves 32 are sealed by the sealing plate 28, whereby the heat medium channel 30 is formed. Is formed.
  • the sealing plate 28 is also used as the sealing plate 8 constituting the first flow path structure 1a.
  • the first raw material fluid is introduced from the raw material supply unit into the first introduction path 10 of each reaction flow channel 2 and the raw material supply unit different from the raw material supply unit.
  • the second raw material fluid is introduced into the second introduction channel 12 of each reaction channel 2.
  • the first raw material fluid is caused to flow through the first introduction passage 10 under a laminar condition
  • the second raw material fluid is caused to flow through the second introduction passage 12 under a laminar condition.
  • the first raw material fluid flows while being distributed at a uniform flow rate to each first introduction path 10 due to equalization of the overall pressure loss of each first introduction path 10.
  • the second raw material fluid flows while being distributed at a uniform flow rate to each second introduction path 12 due to equalization of the entire pressure loss of each second introduction path 12.
  • the first raw material fluid that has passed through the first introduction path 10 and the second raw material fluid that has passed through the second introduction path 12 merge at the junction 14, and the merged first raw material fluid and second raw material fluid are combined.
  • a predetermined reaction product is produced by flowing from the junction 14 to the reaction path 16 and reacting with each other.
  • the entire pressure loss of the second introduction paths 12 is made equal. Since the equivalent diameter of each part of each second introduction path 12 is set according to the flow path length of each second introduction path 12, the second raw material fluid flowing in each second introduction path 12 having a different flow path length The flow rate can be made uniform.
  • the flow of each 2nd introduction path 12 is set. Both the path length and the equivalent diameter of each part of each second introduction path 12 are set appropriately to equalize the overall pressure loss of each second introduction path 12 and flow into each second introduction path 12.
  • the flow rate can be made uniform.
  • the shape of each 2nd introduction path 12 is the same.
  • the degree of freedom can be improved. Therefore, in this embodiment, the degree of freedom of the shape of each second introduction path 12 can be improved while the flow rate of the second raw material fluid flowing through each second introduction path 12 having a different flow path length is made uniform.
  • each second introduction path 12 is reduced by changing the ratio of the lengths of the small diameter part 12e and the large diameter part 12f according to the flow path length of each second introduction path 12. Since it is equalized, each second introduction path 12 is compared with the case where the entire pressure loss of each second introduction path 12 is equalized by changing the entire equivalent diameter of each second introduction path 12 little by little. The shape can be easily adjusted. For this reason, each 2nd introduction path 12 from which flow path length differs can be easily formed in the shape where the whole pressure loss becomes equal, respectively.
  • each second introduction path 12 is bent in the same direction at the bent portion 12d, and the smaller the diameter of the second introduction path 12 arranged at the bent portion 12d, the smaller the diameter is.
  • the length ratio of the portion 12e is set to be small. Therefore, even though each second introduction path 12 is bent in the same direction and the flow path lengths are different from each other, the entire pressure loss of each second introduction path 12 is equalized, and each second introduction path 12 is The flow rate of the second raw material fluid flowing through the first feed fluid 12 can be made uniform, and the degree of freedom of the shape of each second introduction path 12 can be improved.
  • the first introduction passages 10 and the second introduction passages 12 extend in different directions from the introduction ports 10a and the introduction ports 12a provided at different positions, and the second introduction passages 12 Since the bent portion 12d changes the direction in which the second introduction path 12 extends to the same direction as the corresponding first introduction path 10, the first introduction path 10 and each second introduction path 12 are at different positions from each other. Even in the case of having 10a (12a), each of the first introduction paths 10 and each of the second introduction paths 12 can be joined to the joining portion 14 from the same direction. Thereby, while flowing the first raw material fluid and the second raw material fluid in different directions from different positions, both the raw material fluids can be merged in the same direction.
  • the reactor of this embodiment is provided with the some 1st flow-path structure 1a laminated
  • the flow path length, equivalent diameter, and large diameter part 12f of the small diameter part 12e of each second introduction path 12 are set. If the overall pressure loss of each second introduction path 12 is uniform under the condition that the flow path length and the equivalent diameter of the second flow path satisfy a predetermined relationship, the flow rate of the second raw material fluid flowing through each second introduction path 12 is uniform. Can be established.
  • first introduction path the second introduction path
  • merging portion the reaction path
  • reaction path the first introduction path and the second introduction path have various configurations other than those described above.
  • the junction and the reaction path may be formed and arranged.
  • both the first introduction path 36 and the second introduction path 38 are provided on the surface side of the flow path plate 34 as in the first modification of the embodiment shown in FIGS.
  • a reaction path 40 is provided on the back surface side, and a junction 42 is formed so as to connect the downstream end of the first introduction path 36, the downstream end of the second introduction path 38, and the upstream end of the reaction path 40. May be provided.
  • FIG. 10 shows the structure of the surface of the flow path plate 34 according to the first modification
  • FIG. 11 shows the structure of the back surface of the flow path plate 34.
  • a plurality of first introduction grooves 44 constituting a plurality of first introduction paths 36 and a plurality of second introduction grooves 46 constituting a plurality of second introduction paths 38 are formed on the surface of the flow path plate 34. And are formed.
  • a plurality of reaction grooves 48 constituting a plurality of reaction paths 40 are formed on the back surface of the flow path plate 34.
  • the through-hole 50 which comprises the junction part 42 so that the downstream edge part of each 1st introduction groove
  • the through hole 50 is formed so as to penetrate the flow path plate 34 in the thickness direction.
  • the opening of the first introduction groove 44 and the opening of the second introduction groove 46 are sealed, and the first introduction path 36 and the second introduction path 36 are sealed.
  • a path 38 is formed.
  • the reaction channel 40 is formed by sealing the opening of the reaction groove 48 by covering the back surface of the flow path plate 34 with a sealing plate (not shown).
  • the merging portion 42 is formed by sealing both openings of the through hole 50 with the two sealing plates.
  • Both the introduction port 36a of each first introduction path 36 and the introduction port 38a of each second introduction path 38 are provided at one end in the longitudinal direction of the first flow path structure 1a (see FIG. 1).
  • Each first introduction path 36 is linearly extended from the introduction port 36a in the longitudinal direction of the first flow path structure 1a and linear in the width direction of the first flow path structure 1a.
  • a second straight portion 36c connected to the corresponding merge portion 42, and a bend between the straight portions 36b and 36c for changing the direction of the introduction path from the longitudinal direction to the width direction of the first flow path structure 1a. Part 36d.
  • Each first introduction path 36 includes a small-diameter portion 36e having a predetermined equivalent diameter and a large-diameter portion 36f having an equivalent diameter larger than the small-diameter portion 36e.
  • the small diameter portion 36e constitutes a portion of the first straight portion 36b, the bent portion 36d, and the second straight portion 36c that extends from the bent portion 36d side to a predetermined length range, and the large diameter portion 36f In the second linear portion 36c, a portion other than the small diameter portion 36e is configured.
  • each 1st introduction path 36 is constituted so that the ratio of the length of small diameter part 36e may become small, so that it may be arranged in the bent part 36d on the outside like 2nd introduction path 12 of the above-mentioned embodiment. Has been. As a result, the entire pressure loss of each first introduction path 36 having different flow path lengths is equalized, and the flow rate of the first raw material fluid flowing through each first introduction path 36 is equalized.
  • Each second introduction path 38 has a structure in which each first introduction path 36 is inverted with respect to the center line in the width direction of the flow path plate 34. That is, each second introduction path 38 includes a first straight portion 38b, a second straight portion 38c, and a bent portion 38d corresponding to the first straight portion 36b, the second straight portion 36c, and the bent portion 36d. Each second introduction path 38 includes a small-diameter portion 38e having a predetermined equivalent diameter and a large-diameter portion 38f having an equivalent diameter larger than the small-diameter portion 38e, and is disposed outwardly at the bent portion 38d. The smaller the diameter ratio, the smaller the ratio of the lengths of the small diameter portions 38e. As a result, the entire pressure loss of each of the second introduction paths 38 having different flow path lengths is equalized, and the flow rate of the second raw material fluid flowing through each second introduction path 38 is equalized.
  • each 1st introduction path 36 and each 2nd introduction path 38 have joined corresponding junction part 42 from the mutually opposite side.
  • Each merging portion 42 is provided at the center position in the width direction of the first flow path structure 1a. That is, in this first modification, the first raw material fluid introduced into each first introduction path 36 from the inlet 36a at one end in the longitudinal direction of the first flow path structure 1a, and the first flow path structure After the second raw material fluid introduced into the second introduction passages 38 from the introduction port 38a at the same end of 1a flows in the longitudinal direction of the first flow passage structure 1a, the first flow passage structure 1a. Of the first flow path structure 1a at the confluence portion 42 at the center position in the width direction.
  • each reaction path 40 is provided in the back surface side of the flow-path plate 34 so that it may connect with each confluence
  • the first raw material fluid and the second raw material fluid that have joined at each joining portion 42 pass through the joining portion 42 to the respective reaction passages 40 on the back surface side of the flow path plate 34, and pass through the respective reaction passages 40. It is designed to react with each other while being distributed.
  • Each reaction path 40 extends while being bent a plurality of times, and its outlet 40a is provided on the side surface in the width direction of the first flow path structure 1a.
  • Each reaction path 40 is configured to have the same flow path length. Thereby, the pressure loss of each reaction path 40 is equalized, and the flow rate of each reaction path 40 is equalized.
  • the small diameter portion 36e and the large diameter portion are set in accordance with the flow path length of each first introduction path 36 so that the overall pressure loss of each first introduction path 36 having different flow path lengths becomes equal.
  • the ratio of the length of 36f is set, and the small diameter is set according to the flow path length of each second introduction path 38 so that the entire pressure loss of each second introduction path 38 having different flow path lengths becomes equal. Since the ratio of the lengths of the portion 38e and the large-diameter portion 38f is set, the flow rate of the first raw material fluid flowing in each first introduction path 36 is made uniform according to the same principle as in the above embodiment.
  • the degree of freedom of the shape of the first introduction path 36 can be improved, and the degree of freedom of the shape of each second introduction path 38 is improved while the flow rate of the second raw material fluid flowing in each second introduction path 38 is made uniform. Can be made.
  • each first introduction path 36 and each second introduction path 38 in this first modification are the same as the effects related to the second introduction path 12 in the above embodiment.
  • each introduction path among each 1st introduction path 36 and each 2nd introduction path 38 is width direction from the side edge part of the 1st flow-path structure 1a. It may be configured to extend in a straight line, and may be merged at the merging portion 42 with the other introduction paths that are bent and extended. In this case, each introduction path extending linearly from the side end in the width direction of the first flow path structure 1a is formed so that the equivalent diameter is uniform over the entire length.
  • each 1st introduction path 10 provided in the surface side of the flow-path plate 4 so that it may extend linearly in the longitudinal direction of the 1st flow-path structure 1a
  • each 2nd introduction path 12 provided in the back side was formed in the shape bent, not only this composition but each said 1st introduction path 10 is formed in the shape bent like each said 2nd introduction path 12.
  • the said embodiment demonstrated the 1st flow-path structure 1a of the form which joins the 1st introduction path 10 and the 2nd introduction path 12 in the junction part 14 as an example, this invention is not limited to this structure. . That is, the present invention can also be applied to a flow channel structure that forms a flow channel that extends from one introduction channel without merging with another introduction channel.
  • a flow channel structure 61 according to a second modification of the above embodiment is shown in FIG.
  • the flow path structure 61 includes a flow path plate 64 and a sealing plate 66, and a plurality of flow paths 68 are provided only on the back side of the flow path plate 64.
  • the introduction port 68 a of each flow path 68 is provided at one end in the width direction of the flow path structure 61.
  • each flow path 68 has the 1st linear part 68b, the 2nd linear part 68c, and the bending part 68d, as shown in FIG.
  • the first straight portion 68 b is a portion that linearly extends from the introduction port 68 a in the width direction of the flow path structure 61
  • the second straight portion 68 c is a portion that linearly extends in the longitudinal direction of the flow path structure 61. is there.
  • the bending part 68d is a part for changing the direction of the flow path 68 from the width direction of the flow-path structure 61 to a longitudinal direction between the 1st linear part 68b and the 2nd linear part 68c.
  • Each channel 68 includes a small diameter portion 68e having a predetermined equivalent diameter and a large diameter portion 68f having an equivalent diameter larger than the small diameter portion 68e.
  • the small-diameter portion 68e constitutes a portion of the first straight portion 68b, the bent portion 68d, and the second straight portion 68c that extends from the bent portion 68d side to a predetermined length range, and the large-diameter portion 68f In the second linear portion 68c, a portion other than the small diameter portion 68e is configured.
  • the small diameter part 68e of each flow path 68 has the same structure as the small diameter part 12e of each 2nd introduction path 12 of the said embodiment.
  • the large-diameter portion 68f of each flow path 68 has a structure in which the large-diameter portion 12f of each second introduction path 12 of the above embodiment is linearly extended to the end of the flow path structure 61 as it is downstream. Yes.
  • the ratio of the length of the small diameter part 68e is small, so that the channel 68 arranged on the outer side in the bent part 68d of each channel 68 like the above-mentioned embodiment, Thereby, the entire pressure loss of each flow path 68 having different flow path lengths is equalized.
  • the degree of freedom of the shape of each flow path 68 can be improved while the flow rate of the fluid flowing through each flow path 68 is made uniform.
  • the present invention is not limited to this configuration. That is, you may use the flow-path structure of this invention for the various apparatuses which handle fluids other than a reactor, for example, a heat exchanger etc. In the case of this heat exchanger, the flow path structure 61 according to the second modification may be applied.
  • the flow channel structure according to the present embodiment is a flow channel structure that forms a plurality of flow channels into which a fluid is introduced, and the plurality of flow channels include channels having different flow channel lengths from each other.
  • the equivalent diameter of each part of each flow path is set according to the flow path length of each flow path so that the overall pressure loss of each flow path becomes equal.
  • the equivalent diameter of each part of each flow channel is set according to the flow channel length of each flow channel so that the overall pressure loss of each flow channel becomes equal. Even when the flow path lengths are different, the flow rate of the fluid flowing through each flow path can be made uniform. And in this flow path structure, since the equivalent diameter of each part of each flow path is set according to the flow path length of each flow path, the flow path length of each flow path and the equivalent diameter of each part of each flow path Both can be set appropriately to equalize the overall pressure loss of each flow path, and the flow rate of the fluid flowing through each flow path can be made uniform.
  • the freedom degree of the shape of each flow path can be improved. Therefore, in this channel structure, the degree of freedom of the shape of each channel can be improved while the flow rate of the fluid flowing in each channel is made uniform.
  • each channel includes a small-diameter portion having a predetermined equivalent diameter and a large-diameter portion having an equivalent diameter larger than the equivalent diameter of the small-diameter portion. It is preferable that a ratio between the length of the small diameter portion and the length of the large diameter portion is set according to the flow path length of each flow path so that the pressure loss is equalized.
  • the pressure of each channel is set by appropriately setting the equivalent diameter of each channel according to the channel length of each channel. It may be possible to equalize the loss. However, in this case, it is necessary to gradually change the entire equivalent diameter of each flow path within a minute range in accordance with the flow path length of each flow path. It is very difficult to form each flow path with high accuracy.
  • the pressure loss of each channel by changing the ratio of the length of the small diameter part and the large diameter part according to the channel length of each channel as in the above configuration, The shape of each flow path can be easily adjusted as compared with the case where the equivalent diameter of the entire flow path is changed minutely. For this reason, according to the said structure, each flow path can be easily formed in the shape where the whole pressure loss becomes equal, respectively.
  • the flow paths are arranged in parallel and bent in the same direction, and the flow paths arranged outside of the flow paths in the bent portion are inward.
  • the ratio of the length of the small-diameter portion is smaller as the channel length is larger than that of the arranged channels, and the smaller the diameter of the channel, the smaller the length of the channel. Is preferred.
  • the flow rate of the fluid flowing in each flow path is equalized even if each flow path is bent in the same direction and the flow path lengths are different, and the overall pressure loss of each flow path is equalized. Can be made uniform, and the degree of freedom of the channel shape can be improved.
  • the reactor according to the present embodiment is a reactor including a flow channel structure that forms a plurality of reaction flow channels for causing the first raw material fluid and the second raw material fluid to react with each other.
  • a merging portion for merging the first raw material fluid and the second raw material fluid, a reaction path connected to the downstream side of the merging portion, and causing the first raw material fluid and the second raw material fluid to react with each other;
  • at least one of the group consisting of the first introduction path of each reaction channel and the group consisting of the second introduction path of each reaction channel includes introduction paths having different channel lengths, All of the introduction paths of the group including introduction paths with different flow path lengths As the pressure loss of equal respectively, depending on the flow path length of the introduction passage equivalent diameter of each part of each of the introduction paths are set.
  • the equivalent diameter of each part of each introduction path is set according to the flow path length of each introduction path so that the overall pressure loss of each introduction path of the group including the introduction paths having different flow path lengths becomes equal. Therefore, it is possible to make the flow rate of the raw material fluid flowing in each introduction path of the group including the introduction paths having different flow path lengths uniform.
  • each introduction path of the group including the introduction paths having different flow path lengths includes a small diameter portion having a predetermined equivalent diameter and a large diameter portion having an equivalent diameter larger than the equivalent diameter of the small diameter portion.
  • the ratio of the length of the small-diameter portion and the length of the large-diameter portion is set according to the flow path length of each introduction passage so that the entire pressure loss of each introduction passage is equalized. Is preferred.
  • the pressure loss of each introduction path is set by appropriately setting the equivalent diameter of each introduction path according to the flow length of each introduction path. It may be possible to equalize. However, in this case, it is necessary to gradually change the entire equivalent diameter of each introduction path in a minute range in accordance with the flow path length of each introduction path, so that the entire equivalent diameter is slightly different. It is very difficult to form each introduction path with high accuracy.
  • each introduction path of the group containing the introduction path from which flow path length differs can be easily formed in the shape where the whole pressure loss becomes equal, respectively.
  • the introduction paths of the group including the introduction paths having different flow path lengths are arranged in parallel and bent in the same direction, and the bent portions are outside the introduction paths.
  • the introduction path arranged closer to the inner side has a larger flow path length than the introduction path arranged closer to the inner side, and the smaller the diameter of the introduction path arranged in the bent portion, the closer to the introduction path.
  • the ratio of the lengths of the parts is preferably small.
  • each introduction path of the group including the introduction paths having different flow path lengths is bent in the same direction, the entire pressure loss of each of the introduction paths is equalized to each introduction path.
  • the flow rate of the raw material fluid flowing in the air can be made uniform, and the degree of freedom of the shape of each introduction path can be improved.
  • each of the first introduction paths and each of the second introduction paths has introduction ports at different positions, extends from the introduction ports in different directions, and merges with the merge portion from the same direction, At least one of the first introduction paths and each of the second introduction paths may have a bent portion for changing the extending direction to the same direction as the other introduction paths.
  • each 1st introduction path and each 2nd introduction path have an introduction port in a mutually different position, the extending direction of at least one of each 1st introduction path and each 2nd introduction path is bent.
  • these each 1st introduction path and each 2nd introduction path can be made to join a junction part from the same direction. Accordingly, it is possible to configure a reactor capable of joining both the raw material fluids in the same direction while flowing the first raw material fluid and the second raw material fluid from different positions in different directions.
  • the reactor includes a plurality of the flow path structures stacked on each other. If comprised in this way, since the number of the flow paths in the whole reactor can be increased more, a reaction product can be mass-produced more.
  • reaction method using the reactor according to the present embodiment is a reaction method using any one of the reactors described above, in which the raw material fluid is laminar flow into each introduction path of the group including the introduction paths having different channel lengths. It flows under the following conditions.
  • the flow path length of each introduction path and the equivalent diameter of each part of each introduction path have a predetermined relationship. Under the satisfying conditions, the relationship that the flow rate of the raw material fluid flowing in each introduction path is uniform can be established if the pressure loss of the entire introduction path is uniform.

Abstract

 各流路に流れる流体の流量を均一にしながら、各流路の形状の自由度を向上させる。 流路構造体は、流体が導入される複数の流路を形成する流路構造体であって、前記複数の流路は、互いに流路長の異なる流路を含み、前記各流路の全体の圧力損失がそれぞれ等しくなるようにその各流路の流路長に応じて当該各流路の各部の相当直径が設定されている。

Description

流路構造体、リアクタ及びリアクタを用いた反応方法
 本発明は、流路構造体、リアクタ及びリアクタを用いた反応方法に関するものである。
 従来、流体が導入される微小な流路を内部に有する流路構造体が知られている。例えば、下記の特許文献1には、そのような流路構造体を備えたリアクタが示されている。
 この特許文献1に示されたリアクタでは、その流路構造体内に複数の微小な流路が並列で設けられている。各流路には、その端部から第1原料流体と第2原料流体が導入される。そして、この第1原料流体と第2原料流体を各流路の出口側へ流通させながら互いに反応させることにより、所望の生成物が製造される。
 ところで、上記のように流路構造体に複数の流路を設ける場合には、各流路に流れる流体の流量を均一にすることが望まれる。例えば、特許文献2に示されている熱交換器では、各流路の流路長を揃えて各流路の圧力損失を等しくすることにより、各流路に流れる流体の流量を均一にしている。
 しかしながら、このように各流路の流路長を揃える場合には、各流路の形状が著しく制約を受け、流路の自由な設計が困難になるという問題点がある。
特表2005-525229号公報 特開昭64-3496号公報
 本発明の目的は、各流路に流れる流体の流量を均一にしながら、各流路の形状の自由度を向上させることである。
 本発明の一つの面によれば、流路構造体は、流体が導入される複数の流路を形成する流路構造体であって、前記複数の流路は、互いに流路長の異なる流路を含み、前記各流路の全体の圧力損失がそれぞれ等しくなるようにその各流路の流路長に応じて前記各流路の各部の相当直径が設定されている。
 本発明の別の一つの面によれば、リアクタは、第1原料流体と第2原料流体とを反応させるための複数の反応流路を形成する流路構造体を備えたリアクタであって、前記各反応流路は、前記第1原料流体が導入される第1導入路と、前記第2原料流体が導入される第2導入路と、前記第1導入路と前記第2導入路の下流側に繋がり、前記第1原料流体と前記第2原料流体とを合流させるための合流部と、この合流部の下流側に繋がり、前記第1原料流体と前記第2原料流体とを互いに反応させるための反応路とを含み、前記各反応流路の第1導入路からなるグループと前記各反応流路の第2導入路からなるグループのうち少なくとも一方のグループは、互いに流路長の異なる導入路を含み、前記流路長の異なる導入路を含むグループの各導入路の全体の圧力損失がそれぞれ等しくなるように、その各導入路の流路長に応じて当該各導入路の各部の相当直径が設定されている。
本発明の一実施形態によるリアクタを構成する流路装置の斜視図である。 図1に示した流路装置を構成する第1流路構造体の分解斜視図である。 第1流路構造体における第1導入路のグループと、第2導入路のグループと、合流部のグループと、反応路のグループの位置関係を概略的に示した図である。 図1に示した流路装置を構成する第1流路構造体の第1導入路及び反応路に沿った断面図である。 第1流路構造体を構成する流路プレートの表面側の平面図である。 図5中のA部の拡大図である。 第1流路構造体を構成する流路プレートの裏面側の平面図である。 図7中のB部の拡大図である。 流路プレートの図5中のIX-IX線に沿った断面図である。 本発明の一実施形態の第1変形例による流路プレートの表面側の平面図である。 図10に示した第1変形例による流路プレートの裏面側の平面図である。 本発明の一実施形態の第2変形例による流路構造体の斜視図である。 図12に示した第2変形例による流路構造体における流路の構造を示した平面図である。
 以下、本発明の実施形態を図面を参照して説明する。
 まず、図1~図9を参照して、本発明の一実施形態によるリアクタ及びそのリアクタを構成する第1流路構造体1aの構造について説明する。
 本実施形態によるリアクタは、図1に示すような流路装置Sを備えている。この流路装置Sは、原料流体を流通させる複数の反応流路2を形成する第1流路構造体1aと、熱媒を流通させる複数の熱媒流路30を形成する第2流路構造体1bとが交互に積層されることによって構成されている。なお、第1流路構造体1aは、本発明の流路構造体の概念に含まれるものである。
 そして、本実施形態によるリアクタは、第1流路構造体1a内に設けられた複数の微小な反応流路2に第1原料流体と第2原料流体の2種類の原料流体を流通させながらこの両原料流体を互いに反応させることにより所定の反応生成物を製造する。
 具体的には、第1流路構造体1aは、図4に示すように流路プレート4と一対の封止プレート6,8とからなる。この一対の封止プレート6,8間に前記流路プレート4が挟み込まれた状態でこれら封止プレート6,8及び流路プレート4が一体化されることによって第1流路構造体1aが構成されている。そして、第1流路構造体1a内には、前記複数の反応流路2が当該第1流路構造体1aの幅方向に等間隔で配設されている。各反応流路2は、第1原料流体が導入される第1導入路10と、第2原料流体が導入される第2導入路12と、第1導入路10と第2導入路12の下流側に繋がり、第1原料流体と第2原料流体とを合流させる合流部14と、この合流部14の下流側に繋がり、第1原料流体と第2原料流体とを互いに反応させるための反応路16とによって構成されている。
 前記各反応流路2は、流路プレート4に形成された溝部の開口が封止されることによって形成されている。すなわち、図5及び図6に示すように、複数の第1導入溝18が流路プレート4の表面に開口するように形成されている一方、図7及び図8に示すように、複数の第2導入溝20及び複数の反応溝22が流路プレート4の裏面に開口するように形成されている。前記各第2導入溝20は、後述する小径部12eを構成する小径溝20aと、その小径溝20aよりも大きい幅を有し、後述する大径部12fを構成する大径溝20bとからなる。また、前記第1導入溝18の下流側端部及び前記第2導入溝20の下流側端部と、反応溝22の上流側端部とを繋ぐ位置に流路プレート4を厚み方向に貫通する貫通孔24が形成されている。
 そして、図2に示すように流路プレート4の表面に前記封止プレート6が重ねられて第1導入溝18の開口が封止されることにより、前記第1導入路10が形成されている。一方、流路プレート4の裏面に前記封止プレート8が重ねられて第2導入溝20の開口が封止されることにより、前記第2導入路12が形成されているとともに、反応溝22の開口が封止されることにより、前記反応路16が形成されている。また、前記貫通孔24の両開口が前記封止プレート6,8によって封止されることにより前記合流部14が形成されている。
 そして、第1流路構造体1aにおいて、各反応流路2の第1導入路10からなるグループと、各反応流路2の第2導入路12からなるグループと、各反応流路2の合流部14からなるグループと、各反応流路2の反応路16からなるグループは、図3に示すような位置関係でそれぞれ配置されている。
 各第1導入路10は、第1流路構造体1aの長手方向の一方端部からその長手方向に第1原料流体を流して各合流部14に流入させる。各第2導入路12は、第1流路構造体1aの幅方向の一方端部からその幅方向に第2原料流体を流した後、途中で流通方向を90°変更させて第2原料流体を前記第1原料流体と同じ第1流路構造体1aの長手方向に流し、その第2原料流体を各合流部14で前記第1原料流体に同方向から合流させる。そして、各反応路16は、各合流部14で合流した第1原料流体と第2原料流体を第1流路構造体1aの長手方向に直線的に流しながら互いに反応させる。
 具体的には、前記各第1導入路10は、第1流路構造体1aの長手方向の一方端部に導入口10aを有している。そして、各第1導入路10は、その導入口10aから第1流路構造体1aの長手方向に直線的に延び、対応する各合流部14に繋がっている。各第1導入路10の導入口10aには図略の原料供給部が接続され、その原料供給部から第1原料流体が各第1導入路10に配分されて導入される。各第1導入路10は、半円状の断面形状を有しているとともに、その全長にわたって一定の相当直径を有している。
 そして、各第1導入路10は、第1流路構造体1aの幅方向に等間隔で並列配置されており、これら各第1導入路10は、それぞれ等しい流路長及び等しい相当直径を有している。これにより、各第1導入路10の全体の圧力損失が均等化されている。そして、各第1導入路10の全体の圧力損失が均等化されることによって、前記原料供給部から各第1導入路10に配分されて流れる第1原料流体の流量が均一化される。
 前記各第2導入路12は、第1流路構造体1aの幅方向の一方端部に導入口12aを有している。各第2導入路12の導入口12aには、前記第1原料流体を供給する原料供給部とは別の図略の原料供給部が接続され、その原料供給部から第2原料流体が各第2導入路12に配分されて導入される。
 そして、各第2導入路12は、図8に示すように、前記導入口12aから第1流路構造体1aの幅方向、すなわち前記各第1導入路10と直交する方向に直線的に延びる第1直線部12bと、第1流路構造体1aの長手方向、すなわち前記各第1導入路10に沿って直線的に延び、対応する前記各合流部14に繋がる第2直線部12cと、これら両部分の間で前記各第1導入路10に直交する方向から前記各第1導入路10と同じ方向に導入路の方向を変更するための屈曲部12dとを有する。すなわち、各第2導入路12は、前記各第1導入路10の導入口10aと異なる位置に導入口12aを有し、その導入口12aから前記各第1導入路10と異なる方向に延びた後、屈曲部12dによって方向が変更され、前記各第1導入路10と同じ方向から対応する各合流部14に合流している。
 また、各第2導入路12は、それぞれ流路長が異なっている。具体的には、各第2導入路12は、第1流路構造体1aの幅方向に等間隔で並列配置されているとともに、屈曲部12dによって同じ方向に屈曲している。この各第2導入路12の屈曲部12dにおいて外寄りに配置された第2導入路12は、内寄りに配置された第2導入路12に比べて大きい流路長を有している。すなわち、各第2導入路12の屈曲部12dにおいて外寄りに配置された第2導入路12ほど、流路長が増加するようになっている。
 そして、本実施形態では、流路長の異なる各第2導入路12の各部の相当直径が、各第2導入路12の全体の圧力損失がそれぞれ等しくなるようにその各第2導入路12の流路長に応じて設定されている。
 具体的には、各第2導入路12は、所定の相当直径を有する小径部12eと、この小径部12eよりも大きい相当直径を有する大径部12fとによって構成されている。前記小径部12eは、半円状の断面形状を有しており、前記第1直線部12bと前記屈曲部12dと前記第2直線部12cのうち前記屈曲部12d側から所定の長さの範囲とに亘る部分が、この小径部12eに相当する。前記大径部12fは、半円状の断面形状を有しており、前記第2直線部12cのうち前記小径部12e以外の部分に相当する。そして、小径部12eと大径部12fとの接続部の位置は、各第2導入路12の屈曲部12dにおいて外寄りに配置された第2導入路12から内寄りに配置された第2導入路12へ移るに従って前記合流部14側へ徐々に移行するように配置されている。
 各第2導入路12の全体の圧力損失は、その第2導入路12を構成する小径部12eの圧力損失と大径部12fの圧力損失との和によって求められる。すなわち、小径部12eと大径部12fの長さの比率に応じて各第2導入路12の全体の圧力損失が変化する。そして、本実施形態では、各第2導入路12の全体の圧力損失が均等化されるように、各第2導入路12の流路長に応じて小径部12eの長さと大径部12fの長さの比率が設定されている。
 具体的には、小径部12eは、大径部12fに比べて相当直径が小さいことに起因して、小径部12eの圧力損失は、大径部12fの圧力損失よりも大きくなっている。また、上記したように各第2導入路12の屈曲部12dにおいて外寄りに配置された第2導入路12ほど大きい流路長を有しているため、その流路長に比例して前記外寄りに配置された第2導入路12ほど圧力損失が大きくなる。そこで、本実施形態では、各第2導入路12の屈曲部12dにおいて外寄りに配置された第2導入路12ほど、圧力損失の大きい前記小径部12eの長さの比率を小さくすることによって、各第2導入路12の全体の圧力損失が均等化されている。そして、各第2導入路12の全体の圧力損失が均等化されることによって、各第2導入路12を流れる第2原料流体の流量が均一化される。
 そして、各第2導入路12の小径部12eと大径部12fの形状は、以下の原理に基づいて設定されている。
 すなわち、流路内を流れる流体の圧力損失Δpは、一般的に、以下のファニングの式で求められる。
 Δp=4f(ρv/2)(L/D)・・・(1)
 ただし、この式(1)において、fは流体摩擦係数、ρは流体の密度、vは流体の流速、Lは流路長、Dは流路の相当直径をそれぞれ表す。
 また、流体の乱れの状態を表すレイノルズ数Reは、以下の式(2)で表される。
 Re=ρvD/μ・・・(2)
 ただし、この式(2)において、μは流体の粘性係数を表す。
 そして、後述するように前記各第2導入路12には第2原料流体を層流域にある状態で流す。流体の流れが層流域にあるのは、レイノルズ数ReがRe<2100の範囲にある場合であり、この場合には、流体摩擦係数fが次式(3)のように表される。
 f=16/Re・・・(3)
 この式(3)と上記式(2)を用いて上記式(1)を式変形することにより、流体の流れが層流域にあるときの流路内を流れる流体の圧力損失Δpは、以下の式(4)のように表される。
 Δp=32μ(L/D)v・・・(4)
 ここで、流体の流速vは、流路内を流れる流体の流量Fと流路の相当直径Dを用いて次式(5)のように表せる。
 v=F/D・・・(5)
 この式(5)を用いて上記式(4)は、以下の式(6)のように表せる。
 Δp=32μ(L/D)F・・・(6)
 そして、前記第2導入路12の全体の圧力損失をΔpとすると、この圧力損失Δpは、その第2導入路12を構成する小径部12eの圧力損失Δpと大径部12fの圧力損失Δpの和であるので、小径部12eの流路長をL、相当直径をDとし、大径部12fの流路長をL、相当直径をDとすれば、第2導入路12の全体の圧力損失Δpは次式(7)のように表される。
 Δp=Δp+Δp=32μF(L/D +L/D )・・・(7)
 この式(7)において、流体の粘性係数μは定数であるので、L/D +L/D の値が一定であれば、第2導入路12の全体の圧力損失Δpは、第2原料流体の流量Fに正比例した値となる。すなわち、L/D +L/D の値が一定であれば、各第2導入路12の全体の圧力損失Δpが等しいとき各第2導入路12を流れる第2原料流体の流量Fが均等になるという関係が成り立つ。
 そこで、本実施形態では、各第2導入路12の小径部12eの相当直径Dが等しく、かつ、各第2導入路12の大径部12fの相当直径Dが等しいという条件下で、各第2導入路12においてL/D +L/D の値が一定となるように小径部12eの流路長Lと大径部12fの流路長Lの比率が設定されている。
 前記各合流部14は、対応する前記第1導入路10及び前記第2導入路12の下流側に連続して設けられているとともに、その第1導入路10及び第2導入路12の第2直線部12cと同方向に直線的に延びている。この合流部14は、第1導入路10を通過した第1原料流体と第2導入路12を通過した第2原料流体とを第1流路構造体1aの長手方向に流しながら合流させる。そして、各合流部14は、図9に示すように、2つの半円が円弧の頂点近傍で互いに結合したような断面形状を有するとともに、前記第1導入路10の相当直径及び前記第2導入路12の相当直径よりも大きい相当直径を有する。
 前記各反応路16は、対応する前記合流部14の下流側に連続して設けられているとともに、その合流部14と同方向、すなわち第1流路構造体1aの長手方向に直線的に延びている。この各反応路16は、合流部14で合流させた第1原料流体と第2原料流体を第1流路構造体1aの長手方向に流しながら互いに反応させる。そして、各反応路16は、等しい流路長を有している。また、各反応路16は、半円状の断面形状を有するとともに、前記第2導入路12の大径部12fの相当直径よりも大きい相当直径を有する。
 前記第2流路構造体1bは、上記したように熱媒を流通させる複数の熱媒流路30を形成するものであり、この第2流路構造体1bは、熱媒用流路プレート26と、その熱媒用流路プレート26の表面上に積層された封止プレート28とによって構成されている。前記複数の熱媒流路30は、図1に示すように、第2流路構造体1b内において当該第2流路構造体1bの幅方向に等間隔で配設されている。各熱媒流路30は、前記第1流路構造体1aの各第1導入路10、各第2導入路12の第2直線部12c、各合流部14及び各反応路16に対応する位置にそれら各部と同方向に直線的に延びるように設けられている。そして、熱媒用流路プレート26の表面に開口するように複数の溝部32が形成されており、この溝部32の開口が封止プレート28によって封止されることにより前記熱媒流路30が形成されている。なお、前記封止プレート28は、第1流路構造体1aを構成する封止プレート8と兼用されている。
 そして、第2流路構造体1bの熱媒流路30に図略の熱媒供給部から熱媒が流されることによって、その熱媒と前記第1流路構造体1aの反応路16を流れる第1原料流体及び第2原料流体との熱交換が行われ、反応路16における第1原料流体と第2原料流体の反応が促進されるようになっている。
 次に、本実施形態によるリアクタを用いた反応方法について説明する。
 本実施形態によるリアクタを用いた反応方法では、まず、原料供給部から第1原料流体を各反応流路2の第1導入路10に導入するとともに、前記原料供給部とは別の原料供給部から第2原料流体を各反応流路2の第2導入路12に導入する。この際、第1原料流体を第1導入路10に層流となる条件で流すとともに、第2原料流体を第2導入路12に層流となる条件で流す。第1原料流体は、各第1導入路10の全体の圧力損失が均等化されていることに起因して、各第1導入路10に均一の流量で配分されて流れる。また、第2原料流体は、各第2導入路12の全体の圧力損失が均等化されていることに起因して、各第2導入路12に均一の流量で配分されて流れる。
 そして、第1導入路10を通過した第1原料流体と、第2導入路12を通過した第2原料流体とが合流部14において合流し、この合流した第1原料流体と第2原料流体が合流部14から反応路16へ流れるとともに互いに反応することにより所定の反応生成物が製造される。
 以上説明したように、本実施形態では、各反応流路2の第2導入路12の流路長がそれぞれ異なる場合でも、この各第2導入路12の全体の圧力損失がそれぞれ等しくなるようにその各第2導入路12の流路長に応じて各第2導入路12の各部の相当直径が設定されているので、異なる流路長を有する各第2導入路12に流れる第2原料流体の流量を均一にすることができる。
 さらに本実施形態では、流路長の異なる各第2導入路12の流路長に応じて各第2導入路12の各部の相当直径が設定されているため、各第2導入路12の流路長及び各第2導入路12の各部の相当直径の両方をそれぞれ適切に設定して各第2導入路12の全体の圧力損失を均等化し、各第2導入路12に流れる第2原料流体の流量を均一にすることができる。このため、従来のように各導入路の流路長を揃えることによって各導入路に流れる原料流体の流量を均一にする場合と比べて、本実施形態では、各第2導入路12の形状の自由度を向上させることができる。従って、本実施形態では、流路長の異なる各第2導入路12に流れる第2原料流体の流量を均一にしながら、その各第2導入路12の形状の自由度を向上させることができる。
 また、本実施形態では、各第2導入路12の流路長に応じて小径部12eと大径部12fの長さの比率を変えることにより、各第2導入路12の全体の圧力損失が均等化されているので、各第2導入路12の全体の相当直径を少しずつ変えることによって各第2導入路12の全体の圧力損失を均等化する場合に比べて、各第2導入路12の形状の調整が容易となる。このため、流路長の異なる各第2導入路12を全体の圧力損失がそれぞれ等しくなる形状に容易に形成することができる。
 また、本実施形態では、各第2導入路12が屈曲部12dにおいて同じ方向に屈曲しているとともに、その屈曲部12dにおいて各第2導入路12のうち外寄りに配置されたものほど、小径部12eの長さの比率が小さくなるように設定されている。このため、各第2導入路12が同方向に屈曲して流路長がそれぞれ異なっているにもかかわらず、その各第2導入路12の全体の圧力損失を均等化し、各第2導入路12に流れる第2原料流体の流量を均一にすることができるとともに、各第2導入路12の形状の自由度を向上することができる。
 また、本実施形態では、互いに異なる位置に設けられた導入口10aと導入口12aから各第1導入路10と各第2導入路12が互いに異なる方向へ延びるとともに、各第2導入路12の屈曲部12dが第2導入路12の延びる方向を対応する第1導入路10と同じ方向に変更しているので、各第1導入路10と各第2導入路12が互いに異なる位置に導入口10a(12a)を有する場合でも、これら各第1導入路10と各第2導入路12を同じ方向から合流部14に合流させることができる。これにより、第1原料流体と第2原料流体を互いに異なる位置から互いに異なる方向へ流しながらも、これら両原料流体を互いに同じ方向に合流させることができる。
 また、本実施形態のリアクタは、互いに積層された複数の第1流路構造体1aを備えるので、リアクタ全体での流路数をより増加させることができ、反応生成物をより大量生産することができる。
 また、本実施形態では、第2原料流体を各第2導入路12に層流となる条件で流すので、各第2導入路12の小径部12eの流路長及び相当直径と大径部12fの流路長及び相当直径とが所定の関係を満たす条件下において、各第2導入路12の全体の圧力損失が均等であれば各第2導入路12に流れる第2原料流体の流量が均一になるという関係を成立させることができる。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均一の意味及び範囲内でのすべての変更が含まれる。
 すなわち、第1導入路、第2導入路、合流部及び反応路の形状及び配置は、上記実施形態において示したものに限らず、上記以外の種々の構成で第1導入路、第2導入路、合流部及び反応路を形成及び配置してもよい。
 例えば、図10及び図11に示す上記実施形態の第1変形例のように流路プレート34の表面側に第1導入路36と第2導入路38を両方とも設けるとともに、流路プレート34の裏面側に反応路40を設け、前記第1導入路36の下流側端部と前記第2導入路38の下流側端部と前記反応路40の上流側端部とを繋ぐように合流部42を設けてもよい。
 具体的には、図10にこの第1変形例による流路プレート34の表面の構造が示されており、図11にその流路プレート34の裏面の構造が示されている。
 この第1変形例では、流路プレート34の表面に複数の第1導入路36を構成する複数の第1導入溝44と、複数の第2導入路38を構成する複数の第2導入溝46とが形成されている。また、流路プレート34の裏面には、複数の反応路40を構成する複数の反応溝48が形成されている。そして、各第1導入溝44の下流側端部及び各第2導入溝46の下流側端部と、各反応溝48の上流側端部とを繋ぐように合流部42を構成する貫通孔50が設けられている。この貫通孔50は、流路プレート34を厚み方向に貫通するように形成されている。
 そして、流路プレート34の表面が図略の封止プレートによって覆われることにより、第1導入溝44の開口及び第2導入溝46の開口が封止されて第1導入路36及び第2導入路38が形成されている。一方、流路プレート34の裏面が図略の封止プレートによって覆われることにより反応溝48の開口が封止されて反応路40が形成されている。また、前記貫通孔50の両開口が前記両封止プレートによって封止されることにより合流部42が形成されている。
 各第1導入路36の導入口36a及び各第2導入路38の導入口38aは、共に第1流路構造体1a(図1参照)の長手方向の一方端部に設けられている。そして、各第1導入路36は、その導入口36aから第1流路構造体1aの長手方向に直線的に延びる第1直線部36bと、第1流路構造体1aの幅方向に直線的に延び、対応する合流部42に繋がる第2直線部36cと、これら両直線部36b,36c間で第1流路構造体1aの長手方向から幅方向に導入路の方向を変更するための屈曲部36dとを有する。また、各第1導入路36は、所定の相当直径を有する小径部36eと、その小径部36eよりも大きい相当直径を有する大径部36fとからなる。小径部36eは、前記第1直線部36bと前記屈曲部36dと前記第2直線部36cのうち前記屈曲部36d側から所定の長さの範囲とに亘る部分を構成し、大径部36fは、前記第2直線部36cのうち前記小径部36e以外の部分を構成する。
 そして、各第1導入路36は、上記実施形態の第2導入路12と同様、その屈曲部36dにおいて外寄りに配置されたものほど、小径部36eの長さの比率が小さくなるように構成されている。これによって、流路長の異なる各第1導入路36の全体の圧力損失が均等化されるとともに、各第1導入路36を流れる第1原料流体の流量が均一化されている。
 そして、各第2導入路38は、流路プレート34の幅方向の中心線に対して前記各第1導入路36を反転させた構造を有している。すなわち、各第2導入路38は、前記第1直線部36b、前記第2直線部36c及び前記屈曲部36dに対応する第1直線部38b、第2直線部38c及び屈曲部38dを有する。また、各第2導入路38は、所定の相当直径を有する小径部38eと、その小径部38eよりも大きい相当直径を有する大径部38fとからなり、前記屈曲部38dにおいて外寄りに配置されたものほど、小径部38eの長さの比率が小さくなるように構成されている。これによって、流路長の異なる各第2導入路38の全体の圧力損失が均等化されるとともに、各第2導入路38を流れる第2原料流体の流量が均一化されている。
 そして、各第1導入路36と各第2導入路38は、対応する合流部42に互いに反対側から合流している。各合流部42は、第1流路構造体1aの幅方向の中心位置に設けられている。すなわち、この第1変形例では、第1流路構造体1aの長手方向の一方端部の導入口36aから各第1導入路36に導入された第1原料流体と、第1流路構造体1aの同端部の導入口38aから各第2導入路38に導入された第2原料流体とが、共に第1流路構造体1aの長手方向に流れた後、第1流路構造体1aの幅方向内側へ互いに接近するように流れ、第1流路構造体1aの幅方向の中心位置にある合流部42において合流する。
 そして、各合流部42に繋がるように流路プレート34の裏面側に各反応路40が設けられている。従って、前記各合流部42で合流した第1原料流体と第2原料流体は、その合流部42を通って流路プレート34の裏面側の各反応路40へ抜けるとともに、この各反応路40を流通しながら互いに反応するようになっている。そして、各反応路40は、複数回屈曲しながら延びており、その導出口40aが第1流路構造体1aの幅方向の側面に設けられている。各反応路40は、その流路長が等しくなるように構成されている。これにより、各反応路40の圧力損失が均等化されるとともに、各反応路40の流量が均一化されている。
 この第1変形例では、流路長の異なる各第1導入路36の全体の圧力損失がそれぞれ等しくなるように、各第1導入路36の流路長に応じて小径部36eと大径部36fの長さの比率が設定されているとともに、流路長の異なる各第2導入路38の全体の圧力損失がそれぞれ等しくなるように、各第2導入路38の流路長に応じて小径部38eと大径部38fの長さの比率が設定されているので、上記実施形態と同様の原理により、各第1導入路36に流れる第1原料流体の流量を均一にしながら、その各第1導入路36の形状の自由度を向上させることができるとともに、各第2導入路38に流れる第2原料流体の流量を均一にしながら、その各第2導入路38の形状の自由度を向上させることができる。
 この第1変形例における各第1導入路36及び各第2導入路38に関する上記以外の効果は、上記実施形態における第2導入路12に関する効果と同様である。
 また、この第1変形例の構成に限らず、各第1導入路36と各第2導入路38のうちいずれか一方の各導入路を第1流路構造体1aの側端部から幅方向に直線的に延びるように構成し、屈曲して延びる他方の各導入路と合流部42において合流させるようにしてもよい。この場合、第1流路構造体1aの幅方向の側端部から直線的に延びる各導入路は、全長にわたって相当直径が均一となるように形成する。
 また、上記実施形態では、流路プレート4の表面側に設けた各第1導入路10を第1流路構造体1aの長手方向に直線的に延びるように形成するとともに、流路プレート4の裏面側に設けた各第2導入路12を屈曲した形状に形成したが、この構成に限らず、前記各第1導入路10を前記各第2導入路12と同様に屈曲した形状に形成するとともに、小径部と大径部とによって構成してもよい。
 また、上記実施形態では、第1導入路10と第2導入路12とを合流部14において合流させる形態の第1流路構造体1aを例にとって説明したが、本発明はこの構成に限らない。すなわち、1つの導入路から他の導入路と合流することなく延びる流路を形成する流路構造体にも本発明を適用することができる。例えば、この形態の一例として図12に上記実施形態の第2変形例による流路構造体61が示されている。
 この第2変形例による流路構造体61は、流路プレート64と封止プレート66とからなり、流路プレート64の裏面側にのみ複数の流路68が設けられている。各流路68の導入口68aは、流路構造体61の幅方向の一方端部に設けられている。そして、各流路68は、図13に示すように第1直線部68bと、第2直線部68cと、屈曲部68dとを有する。第1直線部68bは、導入口68aから流路構造体61の幅方向に直線的に延びる部分であり、第2直線部68cは、流路構造体61の長手方向に直線的に延びる部分である。そして、屈曲部68dは、第1直線部68bと第2直線部68cとの間で流路構造体61の幅方向から長手方向に流路68の方向を変更するための部分である。
 また、各流路68は、所定の相当直径を有する小径部68eと、その小径部68eよりも大きい相当直径を有する大径部68fとからなる。小径部68eは、前記第1直線部68bと前記屈曲部68dと前記第2直線部68cのうち前記屈曲部68d側から所定の長さの範囲とに亘る部分を構成し、大径部68fは、前記第2直線部68cのうち前記小径部68e以外の部分を構成する。
 各流路68の小径部68eは、上記実施形態の各第2導入路12の小径部12eと同様の構造を有している。各流路68の大径部68fは、上記実施形態の各第2導入路12の大径部12fをそのまま下流側に流路構造体61の端部まで直線的に延ばした構造を有している。そして、この第2変形例においても、上記実施形態と同様、各流路68の屈曲部68dにおいて外寄りに配置された流路68ほど、小径部68eの長さの比率が小さくなっており、それによって流路長の異なる各流路68の全体の圧力損失が均等化されている。
 この第2変形例では、流路長の異なる各流路68の全体の圧力損失が等しくなるように各流路68の流路長に応じて小径部68eと大径部68fの長さの比率が設定されており、上記実施形態と同様の原理により、各流路68に流れる流体の流量を均一にしながら、その各流路68の形状の自由度を向上させることができる。
 この第2変形例における各流路68に関する上記以外の効果は、上記実施形態における第2導入路12に関する効果と同様である。
 また、上記実施形態では、リアクタに本発明を適用した例について説明したが、本発明はこの構成に限らない。すなわち、リアクタ以外の流体を扱う各種装置、例えば、熱交換器等に本発明の流路構造体を用いてもよい。この熱交換器の場合には、上記第2変形例による流路構造体61を適用すればよい。
(本実施形態の概要)
 本実施形態をまとめると以下のようになる。
 すなわち、本実施形態に係る流路構造体は、流体が導入される複数の流路を形成する流路構造体であって、前記複数の流路は、互いに流路長の異なる流路を含み、前記各流路の全体の圧力損失がそれぞれ等しくなるようにその各流路の流路長に応じて当該各流路の各部の相当直径が設定されている。
 この流路構造体では、各流路の全体の圧力損失が等しくなるように各流路の流路長に応じて各流路の各部の相当直径が設定されているので、各流路がそれぞれ異なる流路長を有する場合でも、各流路に流れる流体の流量を均一にすることができる。そして、この流路構造体では、各流路の流路長に応じて各流路の各部の相当直径が設定されているため、各流路の流路長及び各流路の各部の相当直径の両方をそれぞれ適切に設定して各流路の全体の圧力損失を均等化し、各流路に流れる流体の流量を均一にすることができる。このため、従来のように各流路の流路長を揃えることによって各流路に流れる流体の流量を均一にする場合と比べて、各流路の形状の自由度を向上させることができる。従って、この流路構造体では、各流路に流れる流体の流量を均一にしながら、各流路の形状の自由度を向上させることができる。
 上記流路構造体において、前記各流路は、所定の相当直径を有する小径部と、その小径部の相当直径よりも大きい相当直径を有する大径部とを含み、前記各流路の全体の圧力損失が均等化されるように、前記各流路の流路長に応じて前記小径部の長さと前記大径部の長さの比率が設定されているのが好ましい。
 流路長の異なる各流路の圧力損失を均等化する場合には、各流路の全体の相当直径をその各流路の流路長に応じて適切に設定することにより各流路の圧力損失の均等化を図ることも考えられる。しかしながら、この場合には、各流路の流路長に応じて各流路の全体の相当直径を微小な範囲で徐々に変える必要があり、そのように全体の相当直径が微小に異なるように各流路を精度良く形成することは非常に困難である。これに対して、上記構成のように各流路の流路長に応じて小径部と大径部の長さの比率を変えることによって各流路の圧力損失を均等化する場合には、各流路の全体の相当直径を微小に変える場合に比べて、各流路の形状の調整が容易となる。このため、上記構成によれば、各流路を全体の圧力損失がそれぞれ等しくなる形状に容易に形成することができる。
 この場合において、前記各流路は、並列に配置されているとともに、同じ方向に屈曲しており、その屈曲した部分において前記各流路のうち外寄りに配置された流路は、内寄りに配置された流路に比べて大きい流路長を有し、前記屈曲した部分において前記各流路のうち外寄りに配置されたものほど、前記小径部の長さの比率が小さくなっているのが好ましい。
 このように構成すれば、各流路が同方向に屈曲して流路長がそれぞれ異なっているにもかかわらず、各流路の全体の圧力損失を均等化して各流路に流れる流体の流量を均一にすることができるとともに、流路形状の自由度を向上することができる。
 また、本実施形態に係るリアクタは、第1原料流体と第2原料流体とを反応させるための複数の反応流路を形成する流路構造体を備えたリアクタであって、前記各反応流路は、前記第1原料流体が導入される第1導入路と、前記第2原料流体が導入される第2導入路と、前記第1導入路と前記第2導入路の下流側に繋がり、前記第1原料流体と前記第2原料流体とを合流させるための合流部と、この合流部の下流側に繋がり、前記第1原料流体と前記第2原料流体とを互いに反応させるための反応路とを含み、前記各反応流路の第1導入路からなるグループと前記各反応流路の第2導入路からなるグループのうち少なくとも一方のグループは、互いに流路長の異なる導入路を含み、前記流路長の異なる導入路を含むグループの各導入路の全体の圧力損失がそれぞれ等しくなるように、その各導入路の流路長に応じて当該各導入路の各部の相当直径が設定されている。
 このリアクタでは、各反応流路の第1導入路からなるグループと各反応流路の第2導入路からなるグループのうち少なくとも一方のグループが互いに流路長の異なる導入路を含む場合でも、この流路長の異なる導入路を含むグループの各導入路の全体の圧力損失がそれぞれ等しくなるように、その各導入路の流路長に応じて各導入路の各部の相当直径が設定されているので、前記流路長の異なる導入路を含むグループの各導入路に流れる原料流体の流量を均一にすることができる。そして、このリアクタでは、前記流路長の異なる導入路を含むグループの各導入路の流路長に応じてその各導入路の各部の相当直径が設定されているため、前記各導入路の流路長及び各部の相当直径の両方をそれぞれ適切に設定して前記各導入路の全体の圧力損失を均等化し、前記各導入路に流れる原料流体の流量を均一にすることができる。このため、各導入路の流路長を揃えることによって各導入路の流量を均一にする場合と比べて、流路長の異なる導入路を含むグループの各導入路の形状の自由度を向上させることができる。従って、このリアクタでは、流路長の異なる導入路を含むグループの各導入路に流れる原料流体の流量を均一にしながら、その各導入路の形状の自由度を向上させることができる。
 この場合において、前記流路長の異なる導入路を含むグループの各導入路は、所定の相当直径を有する小径部と、その小径部の相当直径よりも大きい相当直径を有する大径部とを含み、その各導入路の全体の圧力損失が均等化されるように、当該各導入路の流路長に応じて前記小径部の長さと前記大径部の長さの比率が設定されているのが好ましい。
 流路長の異なる導入路の圧力損失を均等化する場合には、各導入路の全体の相当直径をその各導入路の流路長に応じて適切に設定することにより各導入路の圧力損失の均等化を図ることも考えられる。しかしながら、この場合には、各導入路の流路長に応じて各導入路の全体の相当直径を微小な範囲で徐々に変える必要があり、そのように全体の相当直径が微小に異なるように各導入路を精度良く形成することは非常に困難である。これに対して、上記構成のように各導入路の流路長に応じて小径部と大径部の長さの比率を変えることによって各導入路の圧力損失を均等化する場合には、各導入路の全体の相当直径を微小に変える場合に比べて、各導入路の形状の調整が容易となる。このため、上記構成によれば、流路長の異なる導入路を含むグループの各導入路を全体の圧力損失がそれぞれ等しくなる形状に容易に形成することができる。
 さらにこの場合において、前記流路長の異なる導入路を含むグループの各導入路は、並列に配置されているとともに、同じ方向に屈曲しており、その屈曲した部分において前記各導入路のうち外寄りに配置された導入路は、内寄りに配置された導入路に比べて大きい流路長を有し、前記屈曲した部分において前記各導入路のうち外寄りに配置されたものほど、前記小径部の長さの比率が小さくなっているのが好ましい。
 このように構成すれば、流路長の異なる導入路を含むグループの各導入路が同方向に屈曲しているにもかかわらず、その各導入路の全体の圧力損失を均等化して各導入路に流れる原料流体の流量を均一にすることができるとともに、各導入路の形状の自由度を向上することができる。
 この場合において、前記各第1導入路と前記各第2導入路は、互いに異なる位置に導入口を有し、その導入口から互いに異なる方向へ延びるとともに、前記合流部に同じ方向から合流し、前記各第1導入路と前記各第2導入路のうち少なくとも一方の各導入路は、その延びる方向を他方の各導入路と同じ方向に変更するための屈曲部を有していてもよい。
 このように構成すれば、各第1導入路と各第2導入路が互いに異なる位置に導入口を有する場合でも、各第1導入路と各第2導入路のうち少なくとも一方の延びる方向を屈曲部によって変更させることにより、これら各第1導入路と各第2導入路を同じ方向から合流部に合流させることができる。これにより、第1原料流体と第2原料流体を互いに異なる位置から互いに異なる方向へ流しながらも、これら両原料流体を互いに同じ方向に合流させることが可能なリアクタを構成することができる。
 上記リアクタにおいて、互いに積層された複数の前記流路構造体を備えるのが好ましい。このように構成すれば、リアクタ全体での流路数をより増加させることができるので、反応生成物をより大量生産することができる。
 また、本実施形態によるリアクタを用いた反応方法は、上記いずれかのリアクタを用いた反応方法であって、前記流路長の異なる導入路を含むグループの各導入路に原料流体を層流となる条件で流すものである。
 この反応方法のように異なる流路長を有する各導入路に原料流体を層流となる条件で流せば、各導入路の流路長と各導入路の各部の相当直径とが所定の関係を満たす条件下において、各導入路の全体の圧力損失が均等であれば各導入路に流れる原料流体の流量が均一になるという関係を成立させることができる。

Claims (9)

  1.  流体が導入される複数の流路を形成する流路構造体であって、
     前記複数の流路は、互いに流路長の異なる流路を含み、
     前記各流路の全体の圧力損失がそれぞれ等しくなるようにその各流路の流路長に応じて当該各流路の各部の相当直径が設定されている、流路構造体。
  2.  請求項1に記載の流路構造体において、
     前記各流路は、所定の相当直径を有する小径部と、その小径部の相当直径よりも大きい相当直径を有する大径部とを含み、
     前記各流路の全体の圧力損失が均等化されるように、前記各流路の流路長に応じて前記小径部の長さと前記大径部の長さの比率が設定されている、流路構造体。
  3.  請求項2に記載の流路構造体において、
     前記各流路は、並列に配置されているとともに、同じ方向に屈曲しており、
     その屈曲した部分において前記各流路のうち外寄りに配置された流路は、内寄りに配置された流路に比べて大きい流路長を有し、
     前記屈曲した部分において前記各流路のうち外寄りに配置されたものほど、前記小径部の長さの比率が小さくなっている、流路構造体。
  4.  第1原料流体と第2原料流体とを反応させるための複数の反応流路を形成する流路構造体を備えたリアクタであって、
     前記各反応流路は、前記第1原料流体が導入される第1導入路と、前記第2原料流体が導入される第2導入路と、前記第1導入路と前記第2導入路の下流側に繋がり、前記第1原料流体と前記第2原料流体とを合流させるための合流部と、この合流部の下流側に繋がり、前記第1原料流体と前記第2原料流体とを互いに反応させるための反応路とを含み、
     前記各反応流路の第1導入路からなるグループと前記各反応流路の第2導入路からなるグループのうち少なくとも一方のグループは、互いに流路長の異なる導入路を含み、
     前記流路長の異なる導入路を含むグループの各導入路の全体の圧力損失がそれぞれ等しくなるように、その各導入路の流路長に応じて当該各導入路の各部の相当直径が設定されている、リアクタ。
  5.  請求項4に記載のリアクタにおいて、
     前記流路長の異なる導入路を含むグループの各導入路は、所定の相当直径を有する小径部と、その小径部の相当直径よりも大きい相当直径を有する大径部とを含み、
     その各導入路の全体の圧力損失が均等化されるように、当該各導入路の流路長に応じて前記小径部の長さと前記大径部の長さの比率が設定されている、リアクタ。
  6.  請求項5に記載のリアクタにおいて、
     前記流路長の異なる導入路を含むグループの各導入路は、並列に配置されているとともに、同じ方向に屈曲しており、
     その屈曲した部分において前記各導入路のうち外寄りに配置された導入路は、内寄りに配置された導入路に比べて大きい流路長を有し、
     前記屈曲した部分において前記各導入路のうち外寄りに配置されたものほど、前記小径部の長さの比率が小さくなっている、リアクタ。
  7.  請求項6に記載のリアクタにおいて、
     前記各第1導入路と前記各第2導入路は、互いに異なる位置に導入口を有し、その導入口から互いに異なる方向へ延びるとともに、前記合流部に同じ方向から合流し、
     前記各第1導入路と前記各第2導入路のうち少なくとも一方の各導入路は、その延びる方向を他方の各導入路と同じ方向に変更するための屈曲部を有する、リアクタ。
  8.  請求項4~7のいずれか1項に記載のリアクタにおいて、
     互いに積層された複数の前記流路構造体を備える、リアクタ。
  9.  請求項4~8のいずれか1項に記載のリアクタを用いた反応方法であって、
     前記流路長の異なる導入路を含むグループの各導入路に原料流体を層流となる条件で流す、リアクタを用いた反応方法。
PCT/JP2009/050265 2009-01-13 2009-01-13 流路構造体、リアクタ及びリアクタを用いた反応方法 WO2010082287A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/050265 WO2010082287A1 (ja) 2009-01-13 2009-01-13 流路構造体、リアクタ及びリアクタを用いた反応方法
CN200980154373.1A CN102271799B (zh) 2009-01-13 2009-01-13 流路构造体、反应器以及使用反应器的反应方法
EP09838257.5A EP2377605B1 (en) 2009-01-13 2009-01-13 Fluid path structure, reactor, and reaction method using the reactor
US13/143,092 US9242223B2 (en) 2009-01-13 2009-01-13 Fluid path structure, reactor, and reaction method using the reactor
KR1020117016097A KR101274810B1 (ko) 2009-01-13 2009-01-13 유로 구조체, 리액터 및 리액터를 사용한 반응 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050265 WO2010082287A1 (ja) 2009-01-13 2009-01-13 流路構造体、リアクタ及びリアクタを用いた反応方法

Publications (1)

Publication Number Publication Date
WO2010082287A1 true WO2010082287A1 (ja) 2010-07-22

Family

ID=42339556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050265 WO2010082287A1 (ja) 2009-01-13 2009-01-13 流路構造体、リアクタ及びリアクタを用いた反応方法

Country Status (5)

Country Link
US (1) US9242223B2 (ja)
EP (1) EP2377605B1 (ja)
KR (1) KR101274810B1 (ja)
CN (1) CN102271799B (ja)
WO (1) WO2010082287A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120138176A1 (en) * 2010-12-07 2012-06-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flow channel structure
JP2015211942A (ja) * 2014-05-02 2015-11-26 株式会社神戸製鋼所 反応器、反応方法及び反応生成物
WO2016021141A1 (ja) * 2014-08-04 2016-02-11 株式会社デンソー 蒸発器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642488B2 (ja) 2010-10-04 2014-12-17 株式会社神戸製鋼所 流路構造体
JP5547120B2 (ja) 2011-03-18 2014-07-09 株式会社神戸製鋼所 流路構造体、流体の混合方法、抽出方法及び反応方法
JP6190352B2 (ja) * 2014-12-19 2017-08-30 株式会社神戸製鋼所 流体流通装置及びその運転方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643496A (en) 1987-05-21 1989-01-09 Hiitoritsuku Pty Ltd Heat exchanger consisting of plate
JPH03129271A (ja) * 1989-10-13 1991-06-03 Mitsubishi Electric Corp 混相流体分配器
JPH05346245A (ja) * 1992-06-15 1993-12-27 Tokyo Electric Power Co Inc:The 蓄熱式空気調和機
JP2005525229A (ja) 2002-05-11 2005-08-25 ユニヴァーシティ・オヴ・ダーラム 流体リアクタ
JP2006055770A (ja) * 2004-08-20 2006-03-02 Tosoh Corp 微小流路構造体
JP2009018280A (ja) * 2007-07-13 2009-01-29 Kobe Steel Ltd 流路構造体、リアクタ及びリアクタを用いた反応方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6637463B1 (en) * 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
US7422910B2 (en) 2003-10-27 2008-09-09 Velocys Manifold designs, and flow control in multichannel microchannel devices
CN101224402B (zh) 2006-09-01 2012-06-27 东曹株式会社 微小流路结构及采用它的微小颗粒制造方法
JP4970959B2 (ja) 2007-01-09 2012-07-11 株式会社神戸製鋼所 反応装置及び反応方法
US8192703B2 (en) 2009-01-13 2012-06-05 Kobe Steel, Ltd. Reactor and reacting method
US8142741B2 (en) 2009-01-13 2012-03-27 Kobe Steel, Ltd. Reactor and method for manufacturing reactor
US9713802B2 (en) 2009-01-13 2017-07-25 Kobe Steel, Ltd. Method and apparatus for manufacturing liquid microspheres

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643496A (en) 1987-05-21 1989-01-09 Hiitoritsuku Pty Ltd Heat exchanger consisting of plate
JPH03129271A (ja) * 1989-10-13 1991-06-03 Mitsubishi Electric Corp 混相流体分配器
JPH05346245A (ja) * 1992-06-15 1993-12-27 Tokyo Electric Power Co Inc:The 蓄熱式空気調和機
JP2005525229A (ja) 2002-05-11 2005-08-25 ユニヴァーシティ・オヴ・ダーラム 流体リアクタ
JP2006055770A (ja) * 2004-08-20 2006-03-02 Tosoh Corp 微小流路構造体
JP2009018280A (ja) * 2007-07-13 2009-01-29 Kobe Steel Ltd 流路構造体、リアクタ及びリアクタを用いた反応方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2377605A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120138176A1 (en) * 2010-12-07 2012-06-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flow channel structure
US8858067B2 (en) * 2010-12-07 2014-10-14 Kobe Steel, Ltd. Flow channel structure
JP2015211942A (ja) * 2014-05-02 2015-11-26 株式会社神戸製鋼所 反応器、反応方法及び反応生成物
WO2016021141A1 (ja) * 2014-08-04 2016-02-11 株式会社デンソー 蒸発器
JP2016035376A (ja) * 2014-08-04 2016-03-17 株式会社デンソー 蒸発器

Also Published As

Publication number Publication date
US9242223B2 (en) 2016-01-26
KR20110106357A (ko) 2011-09-28
KR101274810B1 (ko) 2013-06-13
US20110266498A1 (en) 2011-11-03
EP2377605A4 (en) 2013-10-09
EP2377605A1 (en) 2011-10-19
CN102271799A (zh) 2011-12-07
EP2377605B1 (en) 2015-03-11
CN102271799B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2010082287A1 (ja) 流路構造体、リアクタ及びリアクタを用いた反応方法
CA2547968C (en) Manifold designs, and flow control in multichannel microchannel devices
US9962678B2 (en) Micro-reactor system assembly
JP4660510B2 (ja) リアクタ及びリアクタを用いた反応方法
JP4970959B2 (ja) 反応装置及び反応方法
WO2010024123A1 (ja) 反応装置及び反応プラント
JP4677969B2 (ja) マイクロリアクタ
WO2014010180A1 (ja) 熱交換器
US20160038904A1 (en) Microchannel Apparatus and Methods of Conducting Unit Operations With Disrupted Flow
JP2006346671A (ja) 液液界面反応装置
EP2975352B1 (en) Heat exchanger
JP4403943B2 (ja) 流体混合器及びマイクロリアクタシステム
JP3810778B2 (ja) 平板静止型混合器
CN108855265B (zh) 一种多通道微反应芯片、微流体混合方法及其制备方法
JP2012120962A (ja) 流路構造体
JP2009233514A (ja) マイクロ化学反応装置及びマイクロ化学反応システム
JP4983664B2 (ja) 冷却装置
JP5507296B2 (ja) 化学反応物の製造方法及び製造装置
JP2010234302A (ja) 反応器の合流流路
JP2012101141A (ja) 流体混合装置
JP2010042333A (ja) 反応器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154373.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009838257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13143092

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117016097

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP