WO2010077630A1 - Lubricating composition containing a compound derived from a hydroxy-carboxylic acid - Google Patents
Lubricating composition containing a compound derived from a hydroxy-carboxylic acid Download PDFInfo
- Publication number
- WO2010077630A1 WO2010077630A1 PCT/US2009/067091 US2009067091W WO2010077630A1 WO 2010077630 A1 WO2010077630 A1 WO 2010077630A1 US 2009067091 W US2009067091 W US 2009067091W WO 2010077630 A1 WO2010077630 A1 WO 2010077630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydroxy
- carboxylic acid
- derivative
- acid
- imide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/76—Esters containing free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/20—Aldehydes; Ketones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/22—Carboxylic acids or their salts
- C10M105/24—Carboxylic acids or their salts having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/36—Esters of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/42—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/42—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
- C10M105/44—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/42—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
- C10M105/46—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/50—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/16—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/08—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/12—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/124—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/106—Thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/043—Ammonium or amine salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/36—Seal compatibility, e.g. with rubber
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/54—Fuel economy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/76—Reduction of noise, shudder, or vibrations
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/34—Lubricating-sealants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/14—Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- the invention relates to a lubricating composition
- a lubricating composition comprising (a) a compound derived from a hydroxy-carboxylic acid, and (b) an oil of lubricating viscosity.
- the invention further provides for the use of the lubricating composition for lubricating a limited slip differential.
- a limited slip differential in a vehicle typically employs a wet multi- plate clutch, i.e., clutch plates which are immersed in a lubricant.
- the limited slip differential typically has bevel gear or spur gear planetary systems which distribute the drive torque evenly to the two driving wheels irrespective of their rotational speed. This makes it possible for the driven wheels to roll during cornering without slip between the wheel and road surface in spite of their different rotational speed.
- dispersants and sulphur- and/or phosphorus- containing extreme pressure agents may be used. Examples of lubricants of this type are disclosed in US Patents 4,308,154; 5,547,586; 4,180,466; 3,825,495; and European Patent Application 0 399 764 Al .
- Lubricants containing compounds suitable for (i) deposit control (US Patent 3,284,409), and (ii) wear performance are described in International Application WO 96/037585, US Patent Application 2002/0119895, and US Patent 5,487,838.
- a lubricating composition and method as disclosed herein is capable of providing an acceptable level of at least one of (i) lubricant thermal stability, (ii) lubricant oxidative stability, (iii) high static coefficient of friction, (iv) fuel economy, (v) deposit control, (vi) seal compatibility, (vii) cleanliness and (viii) low tendency towards noise, vibration and harshness (NVH) often manifested as chatter (i.e. an abnormal noise typically referred to as a low-frequency "growl” and "groan”, particularly during higher-speed cornering manoeuvres).
- chatter i.e. an abnormal noise typically referred to as a low-frequency "growl" and "groan”, particularly during higher-speed cornering manoeuvres.
- the lubricant composition and method disclosed herein may also be suitable for limited slip systems having one or more distinct plate materials.
- the plate materials may be steel, paper, ceramic, carbon fibers and systems employing a mixture of plate types such as steel on ceramic, carbon fibers in paper or steel on paper.
- the invention provides a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition comprising (a) a derivative of (or a compound derived from) a hydroxy-carboxylic acid, and (b) an oil of lubricating viscosity.
- the invention provides for the use of a lubricating composition
- a lubricating composition comprising (a) a derivative of (or a compound derived from) a hydroxy-carboxylic acid, and (b) an oil of lubricating viscosity in a limited slip differential to provide an acceptable level of at least one of (i) lubricant thermal stability, (ii) lubricant oxidative stability, (iii) friction coefficient, (iv) fuel economy, (v) deposit control, (vi) seal compatibility, and (vii) chattering (abnormal noise).
- the use provides an acceptable level of friction coefficient.
- the present invention provides a lubricating composition and method as disclosed herein above.
- the lubricating composition of the present invention includes a derivative of (or a compound derived from) a hydroxy-carboxylic acid, or mixtures thereof.
- a derivative of is meant to encompass materials that are literally “derived from” the indicated hydroxy- carboxylic acid as well as those materials that are potentially “derivable from” the hydroxy-carboxylic acid, whether or not they are actually prepared using the indicated acid as a starting material.
- Derivatives of hydroxy-carboxylic acids include materials prepared or preparable by reaction of the acid group and/or the alcohol group, such as esters, amides, and imides and mixtures of multiple such functionalities.
- the hydroxy-carboxylic acid includes monohydroxy monocarboxylic acids, polyhydroxy monocarboxylic acids, monohydroxy polycarboxylic acids and polyhydroxy polycarboxylic acids.
- hydroxy polycarboxylic acids may be monohydroxy polycarboxylic acids such as citric acid or polyhydroxy polycarboxylic acids such as tartaric acid.
- the derivative of (or compound derived from) a hydroxy-carboxylic acid includes amide, ester or imide derivatives of a hydroxy-carboxylic acid, or mixtures thereof.
- the derivative of a hydroxy-carboxylic acid may be a derivative of a hydroxy- polycarboxylic acid such as tartaric acid.
- an amide, ester or imide derivative of a hydroxy-carboxylic acid may be at least one of hydroxy-carboxylic acid di- ester, a hydroxy-carboxylic acid di-amide, a hydroxy-carboxylic acid mono- imide, a hydroxy-carboxylic acid di-imide, a hydroxy-carboxylic acid ester- amide, a hydroxy-carboxylic acid ester-imide, and a hydroxy-carboxylic acid imide-amide.
- the amide, ester or imide derivative of a hydroxy-carboxylic acid may be at least one of the group consisting of a hydroxy-carboxylic acid di-ester, a hydroxy-carboxylic acid di-amide, and a hydroxy-carboxylic acid ester-amide.
- Examples of a suitable a hydroxy-carboxylic acid include citric acid, tartaric acid, lactic acid, glycolic acid, hydroxy-propionic acid, hydroxyglutaric acid, or mixtures thereof.
- the amide, ester or imide derivative of a hydroxy-carboxylic acid may be derived from tartaric acid, citric acid, hydroxy-succinic acid, dihydroxy mono-acids, mono-hydroxy diacids, or mixtures thereof.
- the amide, ester or imide derivative of a hydroxy-carboxylic acid includes a derivative or (or compound derived from) tartaric acid or citric acid.
- the amide, ester or imide derivative of a hydroxy-carboxylic acid includes a compound derived from tartaric acid.
- the derivative of a hydroxy-carboxylic acid may be selected from the group consisting of a hydroxy-carboxylic acid di-ester, a hydroxy- carboxylic acid di-amide, a hydroxy-carboxylic acid imide, a hydroxy- carboxylic acid di-imide, a hydroxy-carboxylic acid ester-amide, a hydroxy- carboxylic acid ester-imide, and a hydroxy-carboxylic acid imide-amide.
- the derivative of a hydroxy-carboxylic acid may be selected from the group consisting of a hydroxy-carboxylic acid imide, a hydroxy-carboxylic acid di-imide, a hydroxy-carboxylic acid ester-imide, and a hydroxy-carboxylic acid imide-amide.
- the derivative of a hydroxy-carboxylic acid may be selected from the group consisting of a hydroxy-carboxylic acid imide and a hydroxy- carboxylic acid di-imide.
- the derivative of a hydroxy-carboxylic acid may be derivative of tartaric acid, an imide derivative of citric acid, or mixtures thereof.
- the derivative of a hydroxy-carboxylic acid may be imide derivative of tartaric acid, an imide derivative of citric acid, or mixtures thereof.
- the derivative of a hydroxy-carboxylic acid is either an ester or imide.
- the ester derivative of a hydroxy-carboxylic acid may be a tartrate.
- the imide derivative of a hydroxy-carboxylic acid may be a tartrimide.
- the derivative of (or compound derived from) a hydroxy-carboxylic acid may be imide derivative of a hydroxy-carboxylic acid.
- US Patent Applications US 60/939949 (filed May 24, 2007), now WO2008/147704, and US 60/939952 (filed May 24, 2007), now WO 2008/147700 disclose suitable hydroxy-carboxylic acid compounds, and methods of preparing the same.
- the amide, ester or imide derivative of a hydroxy-carboxylic acid may be represented by Formula (1) (that is, Ia or Ib):
- n' is 0 to 10 for Formula (Ib), and 1 to 10 for Formula (Ia); p is 1 to 5;
- R 1 and R 2 are independently hydrocarbyl groups, typically containing 1 to 150, or 4 to 30, or 8 to 15 carbon atoms;
- R 3 is a hydrocarbyl group
- R 4 and R 5 are independently keto-containing groups (such as acyl groups), ester groups or hydrocarbyl groups, or -OR 6 , or -CO 2 R 6 , or -OH (typically not more than one -OH when X is >CR 4 R 5 ); and
- R 6 is independently hydrogen or a hydrocarbyl group, typically containing 1 to 150, or 4 to 30, or 8 to 15 carbon atoms.
- the compound of Formula (1) has m, n, X, and R 1 , R 2 and R 6 defined as follows: m is 0 or 1, n is 1 to 2, X is >CHOR 6 , and R 1 , R 2 and R 6 are independently hydrocarbyl groups containing 4 to 30 carbon atoms.
- Y and Y' are both -O-.
- the compound of Formula (1) has m, n, X, Y, Y' and R 1 , R 2 and R 6 defined as follows: m is 0 or 1 , n is 1 to 2, X is >CHOR 6 ; Y and Y' are both -O-, and R 1 , R 2 and R 6 are independently hydrogen or hydrocarbyl groups containing 4 to 30 carbon atoms.
- the di-esters, di-amides, ester-amide, ester-imide compounds of Formula (1) may be prepared by reacting a dicarboxylic acid (such as tartaric acid), with an amine or alcohol, optionally in the presence of a known esterification catalyst.
- a dicarboxylic acid such as tartaric acid
- an amine or alcohol optionally in the presence of a known esterification catalyst.
- ester-imide compounds it is necessary to have at least three carboxylic acid groups (such as citric acid).
- the amine or alcohol typically has sufficient carbon atoms to fulfill the requirements of R 1 and/or R 2 as defined in Formula (1).
- R 1 and R 2 are independently linear or branched hydrocarbyl groups. In one embodiment the hydrocarbyl groups are branched. In one embodiment the hydrocarbyl groups are linear.
- the R 1 and R 2 may be incorporated into Formula (1) by either an amine or an alcohol.
- the alcohol includes both monohydric alcohol and polyhydric alcohol.
- the carbon atoms of the alcohol may be linear chains, branched chains, or mixtures thereof.
- Examples of a suitable branched alcohol include 2-ethylhexanol, isotridecanol, Guerbet alcohols, or mixtures thereof.
- Examples of a monohydric alcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, eicosanol, or mixtures thereof.
- the monohydric alcohol contains 5 to 20 carbon atoms.
- the alcohol includes either a monohydric alcohol or a polyhydric alcohol.
- resultant tartrates may be solid, semi-solid, or liquid oil depending on the particular alcohol used in preparing the tartrate.
- the tartrates are advantageously soluble and/or stably dispersible in such oleaginous compositions.
- compositions intended for use in oils are typically oil-soluble and/or stably dispersible in an oil in which they are to be used.
- oil-soluble as used in this specification and appended claims does not necessarily mean that all the compositions in question are miscible or soluble in all proportions in all oils.
- composition is soluble in an oil (mineral, synthetic, etc.) or in a formulated lubricant in which it is intended to function, to an extent which permits the solution to exhibit one or more of the desired properties.
- oil mineral, synthetic, etc.
- formulated lubricant in which it is intended to function, to an extent which permits the solution to exhibit one or more of the desired properties.
- solutions be true solutions in the strict physical or chemical sense. They may instead be micro-emulsions or colloidal dispersions which, for the purpose of this invention, exhibit properties sufficiently close to those of true solutions to be, for practical purposes, interchangeable with them within the context of this invention.
- the derivative of (or compound derived from) a hydroxy-carboxylic acid may be present in the lubricating composition in an amount in the range of
- the lubricating composition further includes an amine salt of a phosphoric acid ester.
- the phosphoric acid utilised to prepare the phosphoric acid ester amine salt may be either a phosphoric acid or a thiophosphoric acid.
- the amine salt of a phosphoric acid ester may contain ester groups each having 1 to 30, 6 to 30, 8 to 30, 10 to 24 or 12 to 20, or 16 to 20 carbon atoms, with the proviso that a portion or all of ester groups are sufficiently long to solubilise the amine salt of a phosphoric acid ester in an oil of lubricating viscosity.
- ester groups containing 4 or more carbon atoms are particularly useful.
- ester groups include isopropyl, methyl-amyl
- ester groups is selected from the group consisting of isopropyl, methyl-amyl (may also be referred to as 1,3-dimethyl butyl), 2-ethylhexyl, heptyl, octyl, nonyl, decyl, and mixtures thereof.
- the amines which may be suitable for use as the amine salt include primary amines, secondary amines, tertiary amines, and mixtures thereof.
- the amines include those with at least one hydrocarbyl group, or, in certain embodiments, two or three hydrocarbyl groups.
- the hydrocarbyl groups may contain 2 to 30 carbon atoms, or in other embodiments 8 to 26, or 10 to 20, or
- Primary amines include ethylamine, propylamine, butylamine,
- fatty amines include commercially available fatty amines such as "Armeen®” amines (products available from Akzo Chemicals, Chicago, Illinois), such as Armeen C, Armeen O, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, or stearyl groups.
- suitable secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diamylamine, dihexylamine, diheptylamine, methylethylamine, ethylbutylamine, ethylamylamine, dicoco- amine and di-2-ethylhexylamine.
- the secondary amines may be cyclic amines such as piperidine, piperazine and morpholine.
- the amine may also be a tertiary-aliphatic primary amine.
- the aliphatic group in this case may be an alkyl group containing 2 to 30, or 6 to 26, or 8 to 24 carbon atoms.
- Tertiary alkyl amines include monoamines such as tert-butylamine, tert-hexylamine, 1 -methyl- 1-amino-cyclohexane, tert- octylamine, tert-decylamine, tertdodecylamine, tert-tetradecylamine, tert- hexadecylamine, tert-octadecylamine, tert-tetracosanylamine, and tert- octacosanylamine.
- the amine salt of a phosphorus acid ester may be a reaction product of a C 12 - 20 alkyl phosphoric acid with a tertiary C 11-22 alkyl primary amine.
- the amine salt of a phosphorus acid ester includes an amine with CI l to C 14 tertiary alkyl primary amino groups or mixtures thereof.
- the amine salt of a phosphorus compound includes an amine with C 14 to C18 tertiary alkyl primary amines or mixtures thereof.
- the amine salt of a phosphorus compound includes an amine with C 18 to C22 tertiary alkyl primary amines or mixtures thereof.
- the amine salt of a phosphorus acid ester includes the reaction product of octadecenyl phosphoric acid with Primene 81RTM.
- Mixtures of amines may also be used in the invention.
- a useful mixture of amines is "PrimeneTM 8 IR” and “PrimeneTM JMT.”
- PrimeneTM 8 IR and PrimeneTM JMT are mixtures of CI l to C 14 tertiary alkyl primary amines and Cl 8 to C22 tertiary alkyl primary amines respectively.
- the amine salt of a phosphorus acid ester is the reaction product of a C 14 to C18 alkylated phosphoric acid with Primene 81RTM which is a mixture of Cl 1 to C 14 tertiary alkyl primary amines.
- Examples of the amine salt of a phosphorus acid ester include the reaction product(s) of isopropyl, methyl-amyl (1,3-dimethyl butyl or mixtures thereof), 2-ethylhexyl, heptyl, octyl, nonyl or decyl dithiophosphoric acids with ethylene diamine, morpholine, or Primene 81RTM, and mixtures thereof.
- Examples of the amine salt of a phosphorus acid ester include the reaction product(s) of tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl or eicosyl dithiophosphoric acids with ethylene diamine, morpholine, or Primene 81RTM, and mixtures thereof.
- the amine salt of a phosphorus acid ester includes the reaction product of octadecenyl dithiophosphoric acid with Primene 81RTM.
- the amine salt of a phosphorus compound may be an amine salt of either (i) a hydroxy-substituted di- ester of phosphoric acid, or (ii) a phosphorylated hydroxy-substituted di- or tri- ester of phosphoric acid.
- a hydroxy-substituted di- ester of phosphoric acid or (ii) a phosphorylated hydroxy-substituted di- or tri- ester of phosphoric acid.
- the amine salt of a phosphoric acid is a compound described in US Patent 3,197,405.
- the amine salt of a phosphorus compound other than those disclosed above may be prepared by any one of examples 1 to 25 of US Patent 3,197,405.
- the amine salt of a phosphorus compound other than those disclosed above is a reaction product prepared from a dithiophosphoric acid is reacting with an epoxide or a glycol. This reaction product is further reacted with a phosphorus acid, anhydride, or lower ester (where "lower” signifies 1 to 8, or 1 to 6, or 1 to 4, or 1 to 2 carbon atoms in the alcohol-derived portion of the ester).
- the epoxide includes an aliphatic epoxide or a styrene oxide.
- useful epoxides include ethylene oxide, propylene oxide, butene oxide, octene oxide, dodecene oxide, styrene oxide and the like.
- the epoxide is propylene oxide.
- the glycols include aliphatic glycols having 2 to 12, or 2 to 6, or 2 to 3 carbon atoms.
- the dithiophosphoric acids, glycols, epoxides, inorganic phosphorus reagents and methods of reacting the same are described in U.S. Patent numbers 3,197,405 and 3,544,465. The resulting acids are then salted with amines.
- dithiophosphoric acid based product is prepared by adding phosphorus pentoxide (about 64 grams) at 58 0 C over a period of 45 minutes to 514 grams of hydroxypropyl O,O-di(l ,3- dimethylbutyl)phosphorodithioate (prepared by reacting di(l,3-dimethylbutyl)- phosphorodithioic acid with 1.3 moles of propylene oxide at 25 0 C). The mixture is heated at 75 0 C for 2.5 hours, mixed with a diatomaceous earth and filtered at 70 0 C. The filtrate contains 11.8% by weight phosphorus, 15.2% by weight sulphur, and an acid number of 87 (bromophenol blue).
- the amine salt of a phosphorus acid ester may be present at 0 wt % to 5 wt %, or 0.01 wt % to 5 wt %, or 0.01 wt % to 2 wt %, or 0.25 wt % to 1 wt % of the lubricating composition.
- the lubricating composition comprises an oil of lubricating viscosity.
- oils include natural and synthetic oils, oil derived from hydrocracking, hydro gen ation, and hydrofinishing, unrefined, refined and re- refined oils and mixtures thereof.
- Unrefined oils are those obtained directly from a natural or synthetic source generally without (or with little) further purification treatment.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Purification techniques are known in the art and include solvent extraction, secondary distillation, acid or base extraction, filtration, percolation and the like.
- Re-refined oils are also known as reclaimed or reprocessed oils, and are obtained by processes similar to those used to obtain refined oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
- Natural oils useful in making the inventive lubricants include animal oils (e.g., lard oil), vegetable oils (e.g., castor oil), mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types and oils derived from coal or shale or mixtures thereof.
- Synthetic lubricating oils are useful and include hydrocarbon oils such as polymerised and interpolymerised olefins (e.g., polybutylenes, polypropylenes, propyleneisobutylene copolymers); poly(l-hexenes), poly(l- octenes), poly(l-decenes), and mixtures thereof; alkylbenzenes (e.g.
- dodecylbenzenes tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)- benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls); alkylated diphenyl ethers and alkylated diphenyl sulphides and the derivatives, analogs and homo logs thereof or mixtures thereof.
- polyphenyls e.g., biphenyls, terphenyls, alkylated polyphenyls
- alkylated diphenyl ethers alkylated diphenyl sulphides and the derivatives, analogs and homo logs thereof or mixtures thereof.
- Other synthetic lubricating oils include polyol esters (such as Priolube®3970), diesters, liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, and the diethyl ester of decane phosphonic acid), or polymeric tetrahydrofurans.
- Synthetic oils may be produced by Fischer-Tropsch reactions and typically may be hydroisomerised Fischer-Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
- Oils of lubricating viscosity may also be defined as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
- the five base oil groups are as follows: Group I (sulphur content >0.03 wt %, and/or ⁇ 90 wt % saturates, viscosity index 80-120); Group II (sulphur content ⁇ 0.03 wt %, and >90 wt % saturates, viscosity index 80-120); Group III (sulphur content ⁇ 0.03 wt %, and >90 wt % saturates, viscosity index >120); Group IV (all polyalphaolefins (PAOs)); and Group V (all others not included in Groups I, II, III, or IV).
- PAOs polyalphaolefins
- the oil of lubricating viscosity includes an API Group I, Group II, Group III, Group IV, Group V oil or mixtures thereof. Often the oil of lubricating viscosity is an API Group I, Group II, Group III, Group IV oil or mixtures thereof. Alternatively the oil of lubricating viscosity is often an API Group II, Group III or Group IV oil or mixtures thereof. [0062] The amount of the oil of lubricating viscosity present is typically the balance remaining after subtracting from 100 wt % the sum of the amount of the borated phospholipid, the amine salt of a phosphoric acid ester, and the other performance additives.
- the lubricating composition may be in the form of a concentrate and/or a fully formulated lubricant. If the lubricating composition disclosed herein is in the form of a concentrate (which may be combined with additional oil to form, in whole or in part, a finished lubricant), the ratio of the of components of the lubricating composition to the oil of lubricating viscosity and/or to diluent oil include the ranges of 1 :99 to 99: 1 by weight or 80:20 to 10:90 by weight. When in the form of a concentrate, the present invention may be part of a full lubricant composition or may be a supplemental additive package or "top treat". Other Performance Additives
- the composition of the invention optionally further includes at least one other performance additive.
- the other performance additives include dispersants, metal deactivators, detergents, viscosity modifiers, extreme pressure agents (typically boron- and/or sulphur- and/or phosphorus- containing), antiwear agents, antioxidants (such as hindered phenols, aminic antioxidants or molybdenum compounds), corrosion inhibitors, foam inhibitors, demulsifiers, pour point depressants, seal swelling agents, friction modifiers and mixtures thereof.
- the total combined amount of the other performance additives (excluding the viscosity modifiers) present on an oil free basis may include ranges of 0 wt % to 25 wt %, or 0.01 wt % to 20 wt %, or 0.1 wt % to 15 wt % or 0.5 wt % to 10 wt %, or 1 to 5 wt % of the composition. Although one or more of the other performance additives may be present, it is common for the other performance additives to be present in different amounts relative to each other.
- the lubricating composition is free of molybdenum- containing additives. Viscosity Modifiers
- the lubricating composition further includes one or more viscosity modifiers.
- the viscosity modifier may be present in an amount of 0.5 wt % to 70 wt %, 1 wt % to 60 wt %, or 5 wt % to 50 wt %, or 10 wt % to 50 wt % of the lubricating composition.
- Viscosity modifiers include (a) polymethacrylates, (b) esterified copolymers of (i) a vinyl aromatic monomer and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) esterified interpolymers of (i) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) hydrogenated copolymers of styrene-butadiene, (e) ethylene- propylene copolymers, (f) polyisobutenes, (g) hydrogenated styrene-isoprene polymers, (h) hydrogenated isoprene polymers, or (i) mixtures thereof.
- the viscosity modifier includes (a) a polymethacrylate, (b) an esterified copolymer of (i) a vinyl aromatic monomer; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) an esterified interpolymer of (i) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) mixtures thereof.
- Extreme pressure agents include compounds containing boron and/or sulphur and/or phosphorus.
- the extreme pressure agent may be present in the lubricating composition at 0 wt % to 20 wt %, or 0.05 wt % to 10 wt %, or 0.1 wt % to 8 wt % of the lubricating composition.
- the extreme pressure agent is a sulphur- containing compound.
- the sulphur-containing compound may be a sulphurised olefin, a polysulphide, or mixtures thereof.
- the sulphurised olefin include a sulphurised olefin derived from propylene, isobutylene, pentene; an organic sulphide and/or polysulphide including benzyldisulphide; bis-(chlorobenzyl) disulphide; dibutyl tetrasulphide; di-tertiary butyl polysulphide; and sulphurised methyl ester of oleic acid, a sulphurised alkylphenol, a sulphurised dipentene, a sulphurised terpene, a sulphurised Diels- Alder adduct, an alkyl sulphenyl N '
- the extreme pressure agent sulphur-containing compound includes a dimercaptothiadiazole or derivative, or mixtures thereof.
- dimercaptothiadiazole examples include 2,5-dimercapto-l,3,4-thia- diazole or a hydrocarbyl-substituted 2,5-dimercapto-l,3,4-thiadiazole, or oligomers thereof.
- the oligomers of hydrocarbyl-substituted 2,5-dimercapto- 1,3,4-thiadiazole typically form by forming a sulphur-sulphur bond between 2,5-dimercapto-l,3,4-thiadiazole units to form derivatives or oligomers of two or more of said thiadiazole units.
- Suitable 2,5-dimercapto-l,3,4-thiadiazole derived compounds include 2,5-bis(tert-nonyldithio)-l,3,4-thiadiazole or 2-tert- nonyldithio-5-mercapto-l,3,4-thiadiazole.
- the number of carbon atoms on the hydrocarbyl substituents of the hydrocarbyl-substituted 2,5-dimercapto-l,3,4-thiadiazole typically include 1 to 30, or 2 to 20, or 3 to 16.
- the extreme pressure agent includes a boron- containing compound.
- the boron-containing compound includes a borate ester (which in some embodiments may also be referred to as a borated epoxide), a borated alcohol, a borated dispersant or mixtures thereof.
- the boron-containing compound may be a borate ester or a borated alcohol.
- the borate ester may be prepared by the reaction of a boron compound and at least one compound selected from epoxy compounds, halohydrin compounds, epihalohydrin compounds, alcohols and mixtures thereof.
- the alcohols include dihydric alcohols, trihydric alcohols or higher alcohols, with the proviso for one embodiment that hydroxyl groups are on adjacent carbon atoms i.e. vicinal.
- Boron compounds suitable for preparing the borate ester include the various forms selected from the group consisting of boric acid (including metaboric acid, HBO 2 , orthoboric acid, H3BO3, and tetraboric acid, H2B4O7), boric oxide, boron trioxide and alkyl borates.
- the borate ester may also be prepared from boron halides.
- suitable borate ester compounds include tripropyl borate, tributyl borate, tripentyl borate, trihexyl borate, triheptyl borate, trioctyl borate, trinonyl borate and tridecyl borate.
- the borate ester compounds include tributyl borate, tri-2-ethylhexyl borate or mixtures thereof.
- the boron-containing compound is a borated dispersant, typically derived from an N-substituted long chain alkenyl succinimide.
- the borated dispersant includes a polyisobutylene succinimide. Borated dispersants are described in more detail in US Patents 3,087,936; and Patent 3,254,025.
- the borated dispersant may be used in combination with a sulphur-containing compound or a borate ester.
- the extreme pressure agent is other than a borated dispersant.
- the number average molecular weight of the hydrocarbon from which the long chain alkenyl group was derived includes ranges of 350 to 5000, or 500 to 3000, or 550 to 1500.
- the long chain alkenyl group may have a number average molecular weight of 550, or 750, or 950 to 1000.
- the N-substituted long chain alkenyl succinimides are borated using a variety of agents including boric acid (for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7 ), boric oxide, boron trioxide, and alkyl borates.
- boric acid for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
- boric oxide for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
- boric oxide for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
- boric oxide for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetrabor
- the borated dispersant may be prepared by blending the boron compound and the N-substituted long chain alkenyl succinimides and heating them at a suitable temperature, such as, 80 0 C to 250 0 C, or 90 0 C to 230 0 C, or
- the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may have ranges including 10: 1 to 1 :4, or 4: 1 to 1 :3; or the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may be 1 :2.
- Friction modifiers include fatty amines, esters such as borated glycerol esters, fatty phosphites, fatty acid amides, fatty epoxides, borated fatty epoxides, alkoxylated fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, or fatty imidazolines, condensation products of carboxylic acids and poly alky lene-poly amines.
- esters such as borated glycerol esters, fatty phosphites, fatty acid amides, fatty epoxides, borated fatty epoxides, alkoxylated fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, or fatty imidazolines, condensation products of carboxylic acids and poly alky lene-poly amines.
- the lubricating composition may contain phosphorus- or sulphur- containing antiwear agents other than compounds described as an extreme pressure agent of the amine salt of a phosphoric acid ester described above.
- antiwear agent may include a non-ionic phosphorus compound (typically compounds having phosphorus atoms with an oxidation state of +3 or +5), a metal dialkyldithiophosphate (typically zinc dialkyldithiophosphates), a metal mono- or di- alkylphosphate (typically zinc phosphates), or mixtures thereof.
- the non-ionic phosphorus compound includes a phosphite ester, a phosphate ester, or mixtures thereof.
- a more detailed description of the non- ionic phosphorus compound include column 9, line 48 to column 11, line 8 of US 6,103,673.
- the lubricating composition of the invention further includes a dispersant.
- the dispersant may be a succinimide dispersant (for example N-substituted long chain alkenyl succinimides), a Mannich dispersant, an ester-containing dispersant, a condensation product of a fatty hydrocarbyl monocarboxylic acylating agent with an amine or ammonia, an alkyl amino phenol dispersant, a hydrocarbyl-amine dispersant, a polyether dispersant or a poly ether amine dispersant.
- succinimide dispersant for example N-substituted long chain alkenyl succinimides
- a Mannich dispersant for example N-substituted long chain alkenyl succinimides
- an ester-containing dispersant for example N-substituted long chain alkenyl succinimides
- the succinimide dispersant includes a polyisobutylene-substituted succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to 5000, or 950 to 1600.
- Suitable ester-containing dispersants are typically high molecular weight esters. These materials are described in more detail in U.S. Patents 4,234,435 and 3,172,892.
- the dispersant includes a borated dispersant.
- the borated dispersant includes a succinimide dispersant including a polyisobutylene succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to
- Borated dispersants are described in more detail above within the extreme pressure agent description.
- Dispersant viscosity modifiers include functionalised polyolefins, for example, ethylene-propylene copolymers that have been functionalized with the reaction product of maleic anhydride and an amine, a polymethacrylate functionalised with an amine, or esterified styrene- maleic anhydride copolymers reacted with an amine may also be used in the composition of the invention.
- functionalised polyolefins for example, ethylene-propylene copolymers that have been functionalized with the reaction product of maleic anhydride and an amine, a polymethacrylate functionalised with an amine, or esterified styrene- maleic anhydride copolymers reacted with an amine may also be used in the composition of the invention.
- Corrosion inhibitors include l-amino-2-propanol, octylamine octanoate, condensation products of dodecenyl succinic acid or anhydride and/or a fatty acid such as oleic acid with a polyamine.
- Metal deactivators include derivatives of benzotriazoles (typically tolyltriazole), 1 ,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles or
- the metal deactivators may also be described as corrosion inhibitors.
- Foam inhibitors include copolymers of ethyl acrylate and 2- ethylhexylacrylate and optionally vinyl acetate.
- Demulsifiers include trialkyl phosphates, and various polymers and copolymers of ethylene glycol, ethylene oxide, propylene oxide, or mixtures thereof.
- Pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, polyacrylates or polyacrylamides.
- the limited slip differential typically incorporates a self-contained lubricant supply isolated from the lubricant disposed in the differential housing or carrier.
- the self-contained lubricant of the limited slip differential is generally different from the lubricant supplied to a manual transmission or an automatic transmission fluid.
- one lubricant is typically sufficient to lubricate all of the transmission constituents.
- An axle gear may have any one of a number of different types of differentials.
- a differential typically has three major functions. The first function is to transmit engine power to the wheels. The second function is act as the final gear reduction in the vehicle, slowing the rotational speed from the transmission to the wheels. The third function is to transmit the power to the wheels while allowing them to rotate at different speeds.
- a number of differentials are known and include an open differential, a clutch-type limited slip differential, a viscous coupling differential, a Torsen differential and a locking differential. All of these differentials may be generically referred to as axle gears.
- Axle gears typically require a lubricant.
- the lubricant formulation is dependent on the type of axle gear, and the operating conditions of the axle gear.
- an open differential axle gear is believed to require antiwear and/or extreme pressure additives.
- a limited slip differential typically requires a friction modifier because, in addition to an open differential (known from many axle fluids), a spring pack and a clutch pack are typically present.
- the clutch pack may contain one or more reaction plates (often made from steel) and one or more friction plates.
- the friction plates are known, and may be made from a number of materials including paper, carbon, graphite, steel and a composite.
- the lubricating composition suitable for the limited slip differential may have a sulphur content in the range of 0.3 wt % to 5 wt %, or 0.5 wt % to 5 wt %, or 0.5 wt % to 3 wt % or 0.8 wt % to 2.5 wt %, or 1 wt % to 2 wt %.
- the lubricating composition suitable for the limited slip differential may be a fully formulated fluid.
- the lubricating composition suitable for the limited slip differential may be a top treat concentrate.
- the concentrate may be added at 0.2 wt % to 10 wt %, or 0.5 wt % to 7 wt % relative to the amount of lubricant in a limited slip differential.
- Comparative Example 1 is the same commercially available axle fluid as EXl, except the oleyl tartrimides is not added.
- Each test has a total of 600 cycles (six pressures x four speeds x twenty- five cycles).
- a 600 cycle mu-PVT or friction map is conducted before and after a durability cycle to assess the change in friction performance.
- the durability cycle consists of a constant apply pressure of 570 kPa at a fluid temperature of 80 0 C and cycling the plate differential speed between 120 and 0 rpm.
- One complete cycle consists of 5 seconds at 0 rpm and 5 seconds at 120 rpm. This is repeated for a total of 2500 cycles.
- the primary measurement is an NVH rating that depicts the variation in the torque signal during each discrete speed event or the difference between the minimum and maximum friction coefficient obtained during the event. This measurement assigns a number to the magnitude of the torque signal variation according to the following table:
- the lubricating composition of the invention is capable of providing a limited slip differential with a low tendency towards post durability NVH often manifested as chatter.
- some of the materials described above may interact in the final formulation, so that the components of the final formulation may be different from those that are initially added.
- the products formed thereby, including the products formed upon employing lubricant composition of the present invention in its intended use, may not be susceptible of easy description. Nevertheless, all such modifications and reaction products are included within the scope of the present invention; the present invention encompasses lubricant composition prepared by admixing the components described above.
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
- hydrocarbyl groups include:
- hydrocarbon substituents that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
- aliphatic e.g., alkyl or alkenyl
- alicyclic e.g., cycloalkyl, cycloalkenyl
- aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
- substituted hydrocarbon substituents that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulphoxy);
- hetero substituents that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms;
- heteroatoms include sulphur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
- substituents as pyridyl, furyl, thienyl and imidazolyl.
- no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980156261XA CN102307976A (en) | 2008-12-09 | 2009-12-08 | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid |
KR1020117015289A KR101679093B1 (en) | 2008-12-09 | 2009-12-08 | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid |
AU2009333576A AU2009333576B2 (en) | 2008-12-09 | 2009-12-08 | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid |
JP2011539789A JP5455170B2 (en) | 2008-12-09 | 2009-12-08 | Lubricating composition comprising a compound derived from hydroxycarboxylic acid |
US13/133,183 US20120172265A1 (en) | 2008-12-09 | 2009-12-08 | Lubricating Composition Containing a Compound Derived from a Hydroxy-carboxylic Acid |
EP09764995A EP2367917A1 (en) | 2008-12-09 | 2009-12-08 | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid |
CA2746319A CA2746319C (en) | 2008-12-09 | 2009-12-08 | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12093208P | 2008-12-09 | 2008-12-09 | |
US61/120,932 | 2008-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010077630A1 true WO2010077630A1 (en) | 2010-07-08 |
Family
ID=42072863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/067091 WO2010077630A1 (en) | 2008-12-09 | 2009-12-08 | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120172265A1 (en) |
EP (1) | EP2367917A1 (en) |
JP (1) | JP5455170B2 (en) |
KR (1) | KR101679093B1 (en) |
CN (2) | CN105602652A (en) |
AU (1) | AU2009333576B2 (en) |
CA (1) | CA2746319C (en) |
WO (1) | WO2010077630A1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011022347A1 (en) * | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Antiwear composition and method of lubricating an internal combustion engine |
WO2011022263A1 (en) * | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Antiwear composition and method of lubricating driveline device |
WO2011130142A1 (en) | 2010-04-15 | 2011-10-20 | The Lubrizol Corporation | Low-ash lubricating oils for diesel engines |
WO2012027254A1 (en) | 2010-08-23 | 2012-03-01 | The Lubrizol Corporation | Lubricants containing aromatic dispersants and titanium |
WO2012112658A1 (en) | 2011-02-17 | 2012-08-23 | The Lubrzol Corporation | Lubricants with good tbn retention |
WO2012112648A3 (en) * | 2011-02-16 | 2012-10-11 | The Lubrizol Corporation | Method of lubricating a driveline device |
WO2012151084A1 (en) | 2011-05-04 | 2012-11-08 | The Lubrizol Corporation | Motorcycle engine lubricant |
WO2013059173A1 (en) | 2011-10-20 | 2013-04-25 | The Lubrizol Corporation | Bridged alkylphenol compounds |
WO2013101882A1 (en) * | 2011-12-29 | 2013-07-04 | The Lubrizol Corporation | Limited slip friction modifiers for differentials |
WO2013119623A1 (en) | 2012-02-08 | 2013-08-15 | The Lubrizol Corporation | Method of preparing a sulfurized alkaline earth metal dodecylphenate |
WO2013148146A1 (en) | 2012-03-26 | 2013-10-03 | The Lubrizol Corporation | Manual transmission lubricants with improved synchromesh performance |
WO2013148171A1 (en) | 2012-03-26 | 2013-10-03 | The Lubrizol Corporation | Manual transmission lubricants with improved synchromesh performance |
WO2014124187A1 (en) | 2013-02-11 | 2014-08-14 | The Lubrizol Corporation | Bridged alkaline earth metal alkylphenates |
WO2015017172A1 (en) | 2013-07-31 | 2015-02-05 | The Lubrizol Corporation | Method of lubricating a transmission which includes a synchronizer with a non-metallic surface |
US9051529B2 (en) | 2009-06-04 | 2015-06-09 | The Lubrizol Corporation | Lubricating composition containing friction modifier and viscosity modifier |
WO2015088769A2 (en) | 2013-12-10 | 2015-06-18 | The Lubrizol Corporation | Method for preparing functionalized graft polymers |
WO2015142482A1 (en) | 2014-03-19 | 2015-09-24 | The Lubrizol Corporation | Lubricants containing blends of polymers |
WO2015153160A1 (en) | 2014-04-04 | 2015-10-08 | The Lubrizol Corporation | Method for preparing a sulfurized alkaline earth metal dodecylphenate |
WO2015171364A1 (en) | 2014-05-06 | 2015-11-12 | The Lubrizol Corporation | Anti-corrosion additives |
WO2016089565A1 (en) | 2014-11-12 | 2016-06-09 | The Lubrizol Corporation | Mixed phosphorus esters for lubricant applications |
WO2017079016A1 (en) | 2015-11-06 | 2017-05-11 | The Lubrizol Corporation | Lubricant with high pyrophosphate level |
WO2017079017A1 (en) | 2015-11-06 | 2017-05-11 | The Lubrizol Corporation | Low viscosity gear lubricants |
WO2017105747A1 (en) | 2015-12-18 | 2017-06-22 | The Lubrizol Corporation | Nitrogen-functionalized olefin polymers for engine lubricants |
WO2017147380A1 (en) | 2016-02-24 | 2017-08-31 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2018017454A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
WO2018017449A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
US9976104B2 (en) | 2009-08-18 | 2018-05-22 | The Lubrizol Corporation | Antiwear composition and method of lubricating driveline device |
WO2019035905A1 (en) | 2017-08-17 | 2019-02-21 | The Lubrizol Company | Nitrogen-functionalized olefin polymers for driveline lubricants |
WO2019204141A1 (en) | 2018-04-18 | 2019-10-24 | The Lubrizol Corporation | Lubricant with high pyrophosphate level |
WO2020150123A1 (en) | 2019-01-17 | 2020-07-23 | The Lubrizol Corporation | Traction fluids |
WO2021003265A1 (en) | 2019-07-01 | 2021-01-07 | The Lubrizol Corporation | Basic ashless additives and lubricating compositions containing same |
WO2021126338A1 (en) | 2019-12-20 | 2021-06-24 | The Lubrizol Corporation | Lubricant composition containing a detergent derived from cashew nut shell liquid |
WO2021155081A1 (en) | 2020-01-31 | 2021-08-05 | The Lubrizol Corporation | Processes for producing alkyl salicylic acids and overbased detergents derived therefrom |
WO2021262988A1 (en) | 2020-06-25 | 2021-12-30 | The Lubrizol Corporation | Cyclic phosphonate esters for lubricant applications |
WO2022150464A1 (en) | 2021-01-06 | 2022-07-14 | The Lubrizol Corporation | Basic ashless additives and lubricating compositions containing same |
WO2024019952A1 (en) | 2022-07-18 | 2024-01-25 | The Lubrizol Corporation | Deposit control compounds for lubricating compositions |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105339476A (en) * | 2013-05-30 | 2016-02-17 | 路博润公司 | Synergistic additive combination for industrial gear oils |
JP6130309B2 (en) * | 2014-01-14 | 2017-05-17 | Jxtgエネルギー株式会社 | Lubricating oil composition for differential gear device |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087936A (en) | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3172892A (en) | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3197405A (en) | 1962-07-09 | 1965-07-27 | Lubrizol Corp | Phosphorus-and nitrogen-containing compositions and process for preparing the same |
US3284409A (en) | 1965-06-22 | 1966-11-08 | Lubrizol Corp | Substituted succinic acid-boron-alkylene amine phosphatide derived additive and lubricating oil containing same |
US3381022A (en) | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
US3544465A (en) | 1968-06-03 | 1970-12-01 | Mobil Oil Corp | Esters of phosphorodithioates |
US3825495A (en) | 1971-02-19 | 1974-07-23 | Sun Research Development | Lubricant for controlled-slip differential |
US4180466A (en) | 1971-02-19 | 1979-12-25 | Sun Ventures, Inc. | Method of lubrication of a controlled-slip differential |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4308154A (en) | 1979-05-31 | 1981-12-29 | The Lubrizol Corporation | Mixed metal salts and lubricants and functional fluids containing them |
GB2105743A (en) | 1981-09-10 | 1983-03-30 | Lubrizol Corp | Fuel economy additives or lubricants |
US4741848A (en) * | 1986-03-13 | 1988-05-03 | The Lubrizol Corporation | Boron-containing compositions, and lubricants and fuels containing same |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
EP0628623A1 (en) * | 1993-05-25 | 1994-12-14 | Idemitsu Kosan Company Limited | Lubricant composition for limited slip differential of car |
US5487838A (en) | 1991-04-18 | 1996-01-30 | The Lubrizol Corporation | Reaction products of a boron compound and a phospholipid, and lubricant and aqueous fluids containing same |
US5547586A (en) | 1994-05-02 | 1996-08-20 | Rossmark Medical Publishers, Inc. | Method and apparatus for the desalination of salt containing water |
WO1996037585A1 (en) | 1995-05-26 | 1996-11-28 | The Lubrizol Corporation | Lubricants with molybdenum containing compositions and methods of using the same |
US6103673A (en) | 1998-09-14 | 2000-08-15 | The Lubrizol Corporation | Compositions containing friction modifiers for continuously variable transmissions |
US20020119895A1 (en) | 1995-05-26 | 2002-08-29 | Susan P. Cook | Lubricants with molybdenum containing compositions and methods of using the same |
US20060079413A1 (en) | 2004-10-12 | 2006-04-13 | The Lubrizol Corporation, A Corporation Of The State Of Ohio | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
US20060183647A1 (en) | 2004-10-12 | 2006-08-17 | Jody Kocsis | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
EP1816183A1 (en) * | 2004-11-26 | 2007-08-08 | Nippon Oil Corporation | Lubricant composition and driving force transmitting system using same |
WO2008067259A1 (en) | 2006-11-28 | 2008-06-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
WO2008094759A2 (en) | 2007-01-26 | 2008-08-07 | The Lubrizol Corporation | Antiwear agent and lubricating compositions thereof |
WO2008147704A1 (en) | 2007-05-24 | 2008-12-04 | The Lubrizol Corporation | Lubricating composition containing ashfree antiwear agent based on hydroxypolycarboxylic acid derivative and a molybdenum compound |
WO2008147700A1 (en) | 2007-05-24 | 2008-12-04 | The Lubrizol Corporation | Lubricating composition containing suphur, phosphorous and ashfree antiwear agent and amine containing friction modifier |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100415909B1 (en) * | 2001-04-30 | 2004-01-24 | (주)메디엔스 | Preparation of soft capsule sheath using ginseng extract and soft capsule sheath prepared thereby |
JP4199945B2 (en) * | 2001-10-02 | 2008-12-24 | 新日本石油株式会社 | Lubricating oil composition |
JP5042106B2 (en) * | 2002-04-08 | 2012-10-03 | 株式会社豊田中央研究所 | Lubricating oil composition for automatic transmission |
JP2004155924A (en) * | 2002-11-07 | 2004-06-03 | Tonengeneral Sekiyu Kk | Lubricating oil composition for transmission |
US7635668B2 (en) * | 2004-03-16 | 2009-12-22 | The Lubrizol Corporation | Hydraulic composition containing a substantially nitrogen free dispersant |
US8070837B2 (en) * | 2005-05-13 | 2011-12-06 | The Lubrizol Corporation | Use of fatty acid alkoxylates as a method to remedy engine intake valve sticking |
EP1954790B1 (en) * | 2005-10-11 | 2019-04-10 | The Lubrizol Corporation | Method of lubricating an automatic transmission |
US20080274921A1 (en) * | 2007-05-04 | 2008-11-06 | Ian Macpherson | Environmentally-Friendly Lubricant Compositions |
-
2009
- 2009-12-08 CN CN201610028609.9A patent/CN105602652A/en active Pending
- 2009-12-08 US US13/133,183 patent/US20120172265A1/en not_active Abandoned
- 2009-12-08 AU AU2009333576A patent/AU2009333576B2/en not_active Ceased
- 2009-12-08 WO PCT/US2009/067091 patent/WO2010077630A1/en active Application Filing
- 2009-12-08 CA CA2746319A patent/CA2746319C/en active Active
- 2009-12-08 JP JP2011539789A patent/JP5455170B2/en active Active
- 2009-12-08 EP EP09764995A patent/EP2367917A1/en not_active Withdrawn
- 2009-12-08 CN CN200980156261XA patent/CN102307976A/en active Pending
- 2009-12-08 KR KR1020117015289A patent/KR101679093B1/en active IP Right Grant
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172892A (en) | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3087936A (en) | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3254025A (en) | 1961-08-18 | 1966-05-31 | Lubrizol Corp | Boron-containing acylated amine and lubricating compositions containing the same |
US3197405A (en) | 1962-07-09 | 1965-07-27 | Lubrizol Corp | Phosphorus-and nitrogen-containing compositions and process for preparing the same |
US3381022A (en) | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
US3284409A (en) | 1965-06-22 | 1966-11-08 | Lubrizol Corp | Substituted succinic acid-boron-alkylene amine phosphatide derived additive and lubricating oil containing same |
US3544465A (en) | 1968-06-03 | 1970-12-01 | Mobil Oil Corp | Esters of phosphorodithioates |
US3825495A (en) | 1971-02-19 | 1974-07-23 | Sun Research Development | Lubricant for controlled-slip differential |
US4180466A (en) | 1971-02-19 | 1979-12-25 | Sun Ventures, Inc. | Method of lubrication of a controlled-slip differential |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4308154A (en) | 1979-05-31 | 1981-12-29 | The Lubrizol Corporation | Mixed metal salts and lubricants and functional fluids containing them |
GB2105743A (en) | 1981-09-10 | 1983-03-30 | Lubrizol Corp | Fuel economy additives or lubricants |
CA1183125A (en) | 1981-09-10 | 1985-02-26 | Daniel E. Barrer | Compositions, concentrates, lubricant compositions and methods for improving fuel economy of internal combustion engines |
US4741848A (en) * | 1986-03-13 | 1988-05-03 | The Lubrizol Corporation | Boron-containing compositions, and lubricants and fuels containing same |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
US5487838A (en) | 1991-04-18 | 1996-01-30 | The Lubrizol Corporation | Reaction products of a boron compound and a phospholipid, and lubricant and aqueous fluids containing same |
EP0628623A1 (en) * | 1993-05-25 | 1994-12-14 | Idemitsu Kosan Company Limited | Lubricant composition for limited slip differential of car |
US5547586A (en) | 1994-05-02 | 1996-08-20 | Rossmark Medical Publishers, Inc. | Method and apparatus for the desalination of salt containing water |
WO1996037585A1 (en) | 1995-05-26 | 1996-11-28 | The Lubrizol Corporation | Lubricants with molybdenum containing compositions and methods of using the same |
US20020119895A1 (en) | 1995-05-26 | 2002-08-29 | Susan P. Cook | Lubricants with molybdenum containing compositions and methods of using the same |
US6103673A (en) | 1998-09-14 | 2000-08-15 | The Lubrizol Corporation | Compositions containing friction modifiers for continuously variable transmissions |
US20060079413A1 (en) | 2004-10-12 | 2006-04-13 | The Lubrizol Corporation, A Corporation Of The State Of Ohio | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
US20060183647A1 (en) | 2004-10-12 | 2006-08-17 | Jody Kocsis | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
EP1816183A1 (en) * | 2004-11-26 | 2007-08-08 | Nippon Oil Corporation | Lubricant composition and driving force transmitting system using same |
WO2008067259A1 (en) | 2006-11-28 | 2008-06-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
WO2008094759A2 (en) | 2007-01-26 | 2008-08-07 | The Lubrizol Corporation | Antiwear agent and lubricating compositions thereof |
WO2008147704A1 (en) | 2007-05-24 | 2008-12-04 | The Lubrizol Corporation | Lubricating composition containing ashfree antiwear agent based on hydroxypolycarboxylic acid derivative and a molybdenum compound |
WO2008147700A1 (en) | 2007-05-24 | 2008-12-04 | The Lubrizol Corporation | Lubricating composition containing suphur, phosphorous and ashfree antiwear agent and amine containing friction modifier |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9051529B2 (en) | 2009-06-04 | 2015-06-09 | The Lubrizol Corporation | Lubricating composition containing friction modifier and viscosity modifier |
WO2011022263A1 (en) * | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Antiwear composition and method of lubricating driveline device |
WO2011022347A1 (en) * | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Antiwear composition and method of lubricating an internal combustion engine |
EP2467458B1 (en) * | 2009-08-18 | 2019-06-26 | The Lubrizol Corporation | Method for lubricating driveline device |
US8951943B2 (en) | 2009-08-18 | 2015-02-10 | The Lubrizol Corporation | Antiwear composition and method of lubricating driveline device |
US9976104B2 (en) | 2009-08-18 | 2018-05-22 | The Lubrizol Corporation | Antiwear composition and method of lubricating driveline device |
WO2011130142A1 (en) | 2010-04-15 | 2011-10-20 | The Lubrizol Corporation | Low-ash lubricating oils for diesel engines |
WO2012027254A1 (en) | 2010-08-23 | 2012-03-01 | The Lubrizol Corporation | Lubricants containing aromatic dispersants and titanium |
AU2012217763B2 (en) * | 2011-02-16 | 2017-06-08 | The Lubrizol Corporation | Method of lubricating a driveline device |
US9540582B2 (en) | 2011-02-16 | 2017-01-10 | The Lubrizol Corporation | Method of lubricating a driveline device |
WO2012112648A3 (en) * | 2011-02-16 | 2012-10-11 | The Lubrizol Corporation | Method of lubricating a driveline device |
WO2012112658A1 (en) | 2011-02-17 | 2012-08-23 | The Lubrzol Corporation | Lubricants with good tbn retention |
WO2012151084A1 (en) | 2011-05-04 | 2012-11-08 | The Lubrizol Corporation | Motorcycle engine lubricant |
WO2013059173A1 (en) | 2011-10-20 | 2013-04-25 | The Lubrizol Corporation | Bridged alkylphenol compounds |
WO2013101882A1 (en) * | 2011-12-29 | 2013-07-04 | The Lubrizol Corporation | Limited slip friction modifiers for differentials |
WO2013119623A1 (en) | 2012-02-08 | 2013-08-15 | The Lubrizol Corporation | Method of preparing a sulfurized alkaline earth metal dodecylphenate |
WO2013148171A1 (en) | 2012-03-26 | 2013-10-03 | The Lubrizol Corporation | Manual transmission lubricants with improved synchromesh performance |
WO2013148146A1 (en) | 2012-03-26 | 2013-10-03 | The Lubrizol Corporation | Manual transmission lubricants with improved synchromesh performance |
WO2014124187A1 (en) | 2013-02-11 | 2014-08-14 | The Lubrizol Corporation | Bridged alkaline earth metal alkylphenates |
WO2015017172A1 (en) | 2013-07-31 | 2015-02-05 | The Lubrizol Corporation | Method of lubricating a transmission which includes a synchronizer with a non-metallic surface |
WO2015088769A2 (en) | 2013-12-10 | 2015-06-18 | The Lubrizol Corporation | Method for preparing functionalized graft polymers |
WO2015142482A1 (en) | 2014-03-19 | 2015-09-24 | The Lubrizol Corporation | Lubricants containing blends of polymers |
WO2015153160A1 (en) | 2014-04-04 | 2015-10-08 | The Lubrizol Corporation | Method for preparing a sulfurized alkaline earth metal dodecylphenate |
WO2015171364A1 (en) | 2014-05-06 | 2015-11-12 | The Lubrizol Corporation | Anti-corrosion additives |
WO2016089565A1 (en) | 2014-11-12 | 2016-06-09 | The Lubrizol Corporation | Mixed phosphorus esters for lubricant applications |
WO2017079016A1 (en) | 2015-11-06 | 2017-05-11 | The Lubrizol Corporation | Lubricant with high pyrophosphate level |
WO2017079017A1 (en) | 2015-11-06 | 2017-05-11 | The Lubrizol Corporation | Low viscosity gear lubricants |
WO2017079614A1 (en) | 2015-11-06 | 2017-05-11 | The Lubrizol Corporation | Method of lubricating a mechanical device |
EP4119639A1 (en) | 2015-11-06 | 2023-01-18 | The Lubrizol Corporation | Lubricant with high pyrophosphate level |
EP3786264A1 (en) | 2015-11-06 | 2021-03-03 | The Lubrizol Corporation | Low vicosity gear lubricants |
WO2017105747A1 (en) | 2015-12-18 | 2017-06-22 | The Lubrizol Corporation | Nitrogen-functionalized olefin polymers for engine lubricants |
EP3778837A1 (en) | 2016-02-24 | 2021-02-17 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2017147380A1 (en) | 2016-02-24 | 2017-08-31 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2018017454A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
WO2018017449A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
WO2019035905A1 (en) | 2017-08-17 | 2019-02-21 | The Lubrizol Company | Nitrogen-functionalized olefin polymers for driveline lubricants |
EP3913040A1 (en) | 2017-08-17 | 2021-11-24 | The Lubrizol Corporation | Driveline lubricants comprising nitrogen-functionalized olefin polymers |
WO2019204141A1 (en) | 2018-04-18 | 2019-10-24 | The Lubrizol Corporation | Lubricant with high pyrophosphate level |
WO2020150123A1 (en) | 2019-01-17 | 2020-07-23 | The Lubrizol Corporation | Traction fluids |
WO2021003265A1 (en) | 2019-07-01 | 2021-01-07 | The Lubrizol Corporation | Basic ashless additives and lubricating compositions containing same |
US11859148B2 (en) | 2019-07-01 | 2024-01-02 | The Lubrizol Corporation | Basic ashless additives and lubricating compositions containing same |
WO2021126338A1 (en) | 2019-12-20 | 2021-06-24 | The Lubrizol Corporation | Lubricant composition containing a detergent derived from cashew nut shell liquid |
WO2021155081A1 (en) | 2020-01-31 | 2021-08-05 | The Lubrizol Corporation | Processes for producing alkyl salicylic acids and overbased detergents derived therefrom |
WO2021262988A1 (en) | 2020-06-25 | 2021-12-30 | The Lubrizol Corporation | Cyclic phosphonate esters for lubricant applications |
WO2022150464A1 (en) | 2021-01-06 | 2022-07-14 | The Lubrizol Corporation | Basic ashless additives and lubricating compositions containing same |
WO2024019952A1 (en) | 2022-07-18 | 2024-01-25 | The Lubrizol Corporation | Deposit control compounds for lubricating compositions |
Also Published As
Publication number | Publication date |
---|---|
AU2009333576A1 (en) | 2011-06-23 |
KR20110106865A (en) | 2011-09-29 |
EP2367917A1 (en) | 2011-09-28 |
AU2009333576B2 (en) | 2016-05-26 |
JP2012511593A (en) | 2012-05-24 |
AU2009333576A2 (en) | 2011-06-30 |
CN102307976A (en) | 2012-01-04 |
CA2746319C (en) | 2017-09-19 |
US20120172265A1 (en) | 2012-07-05 |
CN105602652A (en) | 2016-05-25 |
CA2746319A1 (en) | 2010-07-08 |
JP5455170B2 (en) | 2014-03-26 |
KR101679093B1 (en) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2746319C (en) | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid | |
EP2046926B1 (en) | Multi-dispersant lubricating composition | |
AU2010295801A1 (en) | Lubricating composition containing an ester | |
AU2009342167B2 (en) | Antiwear composition and method of lubricating driveline device | |
EP2430133B1 (en) | Method of lubricating with a composition containing a malic acid derivative | |
EP2066771A2 (en) | Lubricating composition | |
US9309478B2 (en) | Lubricating composition containing metal carboxylate | |
EP2240560B1 (en) | Method of lubricating a limited slip differential |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980156261.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09764995 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011539789 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2746319 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009764995 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009333576 Country of ref document: AU Date of ref document: 20091208 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117015289 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13133183 Country of ref document: US |