WO2010074656A1 - Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof - Google Patents
Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof Download PDFInfo
- Publication number
- WO2010074656A1 WO2010074656A1 PCT/SG2008/000499 SG2008000499W WO2010074656A1 WO 2010074656 A1 WO2010074656 A1 WO 2010074656A1 SG 2008000499 W SG2008000499 W SG 2008000499W WO 2010074656 A1 WO2010074656 A1 WO 2010074656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- binding protein
- influenza
- antibody
- virus
- monoclonal antibody
- Prior art date
Links
- 241000712431 Influenza A virus Species 0.000 title claims abstract description 37
- 108090000765 processed proteins & peptides Proteins 0.000 title description 20
- 101710154606 Hemagglutinin Proteins 0.000 title description 16
- 101710093908 Outer capsid protein VP4 Proteins 0.000 title description 16
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 title description 16
- 101710176177 Protein A56 Proteins 0.000 title description 16
- 239000000185 hemagglutinin Substances 0.000 title description 15
- 230000004927 fusion Effects 0.000 title description 11
- 108091008324 binding proteins Proteins 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 52
- 241000712461 unidentified influenza virus Species 0.000 claims abstract description 25
- 206010022000 influenza Diseases 0.000 claims abstract description 17
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 241001473385 H5N1 subtype Species 0.000 claims description 51
- 230000001900 immune effect Effects 0.000 claims description 15
- 210000004408 hybridoma Anatomy 0.000 claims description 10
- 102000003886 Glycoproteins Human genes 0.000 claims description 8
- 108090000288 Glycoproteins Proteins 0.000 claims description 8
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 7
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 7
- 102000004190 Enzymes Human genes 0.000 claims description 5
- 108090000790 Enzymes Proteins 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- 230000002285 radioactive effect Effects 0.000 claims description 3
- 238000006386 neutralization reaction Methods 0.000 claims description 2
- 102000023732 binding proteins Human genes 0.000 claims 34
- 101710121417 Envelope glycoprotein Proteins 0.000 claims 1
- 102100021696 Syncytin-1 Human genes 0.000 claims 1
- 102000014914 Carrier Proteins Human genes 0.000 abstract description 27
- 238000011282 treatment Methods 0.000 abstract description 21
- 241001465754 Metazoa Species 0.000 abstract description 17
- 230000002265 prevention Effects 0.000 abstract description 8
- 238000003745 diagnosis Methods 0.000 abstract description 5
- 230000001717 pathogenic effect Effects 0.000 abstract description 5
- 241000699670 Mus sp. Species 0.000 description 67
- 230000003612 virological effect Effects 0.000 description 28
- 241000700605 Viruses Species 0.000 description 27
- 102100035824 Unconventional myosin-Ig Human genes 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 25
- 108090000623 proteins and genes Proteins 0.000 description 18
- 238000003556 assay Methods 0.000 description 17
- 230000037396 body weight Effects 0.000 description 17
- 239000012634 fragment Substances 0.000 description 17
- 230000004083 survival effect Effects 0.000 description 17
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 16
- 239000002953 phosphate buffered saline Substances 0.000 description 16
- 208000015181 infectious disease Diseases 0.000 description 15
- 208000037797 influenza A Diseases 0.000 description 13
- 210000004072 lung Anatomy 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 150000001413 amino acids Chemical class 0.000 description 10
- 230000036541 health Effects 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 238000003149 assay kit Methods 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 208000002979 Influenza in Birds Diseases 0.000 description 6
- 238000011529 RT qPCR Methods 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 206010064097 avian influenza Diseases 0.000 description 6
- 231100000518 lethal Toxicity 0.000 description 6
- 230000001665 lethal effect Effects 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229960005486 vaccine Drugs 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010166 immunofluorescence Methods 0.000 description 5
- 238000010240 RT-PCR analysis Methods 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 241000272814 Anser sp. Species 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 206010006451 bronchitis Diseases 0.000 description 3
- 235000013330 chicken meat Nutrition 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 229940042406 direct acting antivirals neuraminidase inhibitors Drugs 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 230000002055 immunohistochemical effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229960003752 oseltamivir Drugs 0.000 description 3
- VSZGPKBBMSAYNT-RRFJBIMHSA-N oseltamivir Chemical compound CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 VSZGPKBBMSAYNT-RRFJBIMHSA-N 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000002911 sialidase inhibitor Substances 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 102000025171 antigen binding proteins Human genes 0.000 description 2
- 108091000831 antigen binding proteins Proteins 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000035931 haemagglutination Effects 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229940126181 ion channel inhibitor Drugs 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 229960001028 zanamivir Drugs 0.000 description 2
- ARAIBEBZBOPLMB-UFGQHTETSA-N zanamivir Chemical compound CC(=O)N[C@@H]1[C@@H](N=C(N)N)C=C(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO ARAIBEBZBOPLMB-UFGQHTETSA-N 0.000 description 2
- 206010001889 Alveolitis Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000012983 Dulbecco’s minimal essential medium Substances 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241001596967 Escherichia coli M15 Species 0.000 description 1
- 101710121925 Hemagglutinin glycoprotein Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241001027439 Huangpi virus Species 0.000 description 1
- 229940124873 Influenza virus vaccine Drugs 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 231100000111 LD50 Toxicity 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940124977 antiviral medication Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 108010029566 avian influenza A virus hemagglutinin Proteins 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 1
- 238000012817 gel-diffusion technique Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000003017 in situ immunoassay Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000011880 melting curve analysis Methods 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000002956 necrotizing effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 235000013594 poultry meat Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000012124 rapid diagnostic test Methods 0.000 description 1
- 238000012131 rapid influenza diagnostic test Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1018—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/08—RNA viruses
- G01N2333/11—Orthomyxoviridae, e.g. influenza virus
Definitions
- This invention relates to methods and products for the diagnosis, surveillance, prevention, and treatment of influenza A virus infections in animals and humans. More particularly, the invention relates to antibodies and related binding proteins for the detection, prevention and treatment of influenza A viruses.
- the monoclonal antibodies and related binding proteins of the invention are useful for the treatment of the highly pathogenic H5 subtypes of avian influenza virus (AIV).
- H5 strains are currently causing major morbidity and mortality in poultry populations across Asia, Europe, and Africa and have caused 385 confirmed human infections, with a fatality rate of 63.11 % (1 , 2) 1 .
- Preventive and therapeutic measures against circulating H5N1 strains have received a lot of interest and effort globally to prevent another pandemic outbreak.
- Influenza A virus poses a challenge as it
- a bibliography is provided at the end of the disclosure. rapidly alters its appearance to the immune system by antigenic drift (mutating) and antigenic shift (exchanging its components) (3).
- the current combat strategies against influenza include vaccination and anti-viral drug treatment, with vaccination being the preferred option.
- the annual influenza vaccine aims to stimulate the generation of anti-hemagglutinin neutralizing antibodies, which confer protection against homologous strains.
- the current vaccines have met with varying degrees of success (4).
- the fact that these strategies target the highly variable HA determinant and predicting the major HA types that pose the next epidemic threat can impose limitations to the current viral strategy. In the absence of an effective vaccine, therapy is the mainstay of control of influenza infection.
- H5N1 viruses are known to be resistant to the M2 ion channel inhibitors (5, 6). Newer strains of H5N1 viruses are being isolated which are even resistant to the neuraminidase inhibitors (Oseltamivir and Zanamivir) (3, 7). The neuraminidase inhibitors also may need high doses and prolonged treatment (3, 8). Hence, alternative strategies for treatment of influenza are warranted. Recently, passive immunotherapy using monoclonal antibodies are being viewed upon as a viable treatment option (9).
- Testing during an outbreak of an acute respiratory disease can determine if influenza is the cause.
- testing of selected patients presenting with respiratory illnesses compatible with influenza can help establish whether influenza is present in a specific patient population and help health-care providers determine how to use their clinical judgment for diagnosing and treating respiratory illness.
- a rapid influenza test helps in the determination of whether to use an antiviral medication.
- Some tests, such as a viral culture, reverse-transcriptase polymerase chain reaction (RT-PCR) and serological testing are the routine methods, but results may not be available in a timely manner to assist clinicians. At present, most of the rapid diagnostic tests currently in use are monoclonal antibody-based immunoassays.
- Immunofluorescence is the alternative to rapid influenza diagnostic tests which can be used in many hospital laboratories and generally can yield test results in 2-4 hours. Above all, specific monoclonal antibody generation is fundamental to most currently used rapid, sensitive and cost-effective diagnostic methods.
- Hemagglutinin (HA) is the most variable gene of the influenza virus and also the most promising target for generating antibodies. It is synthesized as a precursor polypeptide HAO, which is post-translationally cleaved to two polypeptides HA1 and HA2 linked by a disulphide bond. Monoclonal antibodies against the HA1 are known to neutralize the infectivity of the virus and hence provide good protection against infection (10).
- the HA2 N-terminal fusion peptide is the most highly conserved region in HA among all influenza A subtypes (11). This HA2 polypeptide is responsible for the fusion of the virus and the host endosomal membrane during the entry of the virus into the cell (12). Part of the HA2 N-terminal fusion peptide is exposed as a surface loop in the precursor molecule (13, 14). As most HA subtypes are cleaved by extracellular enzymes, this surface loop is accessible to antibody on HAO expressed in the plasma membrane of infected host cells (15).
- An object of this invention is to provide monoclonal antibodies (mAbs) and related binding proteins that bind to influenza A virus, particularly to the HA2 polypeptide of influenza A viruses.
- the HA2 polypeptide is highly conserved in influenza A subtypes.
- mAbs that specifically recognize the HA2 polypeptide will recognize all influenza A subtypes.
- the specificity of these monoclonal antibodies provides a basis for effective prophylactic and therapeutic agents.
- a monoclonal antibody that is specific for conformational epitopes of the influenza A hemagglutinin glycoprotein is provided.
- the HA2 polypeptide represents the highly conserved region of the hemagglutinin across influenza A strains.
- the monoclonal antibody binds specifically to the antigenically conserved fusion peptide of HA2 and is effective in providing cross-clade protection against influenza A infections.
- MAbs that target conserved epitopes are useful for detecting the virus in tissues which have not been pre-treated, such as frozen tissue specimens and other biological tissues and fluids.
- a mAb designated 1C9 targets an epitope on HA2 of influenza A virus, for example, AIV subtypes.
- this invention comprises a binding protein having substantially the immunological binding characteristics for a conformational HA2 epitope as those of mAb 1 C9.
- the invention comprises a method for detecting influenza A virus in a specimen which comprises detecting the binding of the HA2 polypeptide with a mAb or binding protein having substantially the immunological binding characteristics of mAb 1C9.
- the invention relates to immunofluorescence assays, immunohistochemical assays and other methods that utilize such binding proteins.
- kits for the detection of influenza A virus which comprise binding proteins having substantially the immunological binding characteristics of mAb 1C9.
- the invention further relates to methods of treating subjects infected with influenza A virus strain, which comprise administering to such subjects effective amounts of one or more recombinant monoclonal antibodies or binding proteins or fragments thereof having substantially the immunological binding characteristics of mAb 1C9.
- the invention further relates to methods of providing cross-clade protection against infection against the fusion peptide of the HA2 glycoprotein which comprise administering to such subjects effective amounts of one or more recombinant monoclonal antibodies or binding proteins or fragments thereof having substantially the immunological binding characteristics of mAb 1C9.
- Figures 1a-1c show the epitope mapping of monoclonal antibodies 1C9.
- Figure 1a represents gene-segments coding for fragments 1 to 14 of HA2.
- Western Blotting analyses of the monoclonal antibodies were performed to map their respective epitopes (the numbers indicate the amino acid number on HAO).
- Figure 1b Western blot analysis of the 14 fragments: mAb1C9 was used as the primary antibody. Lane 1 had the protein molecular weight marker. Lanes 2 and 18 show recombinant HA2 gp, Lane 3 shows HA2 from whole virus, Lanes 4 to 17 show the 14 fragments. Only fragments 1 to 6 show positive results, while fragments 7 to 14 show negative results. The samples were run on three different gels but processed identically.
- Figure 1c The results of Western blot analysis of point mutants also expressed as histidine-fusion peptides.
- the membrane was developed using ECL reagents. The analysis was carried out to determine the amino acid sequence of the epitope for mAb 1C9.
- Lanes 1 and 16 had the protein molecular weight marker.
- Lanes 2 and 17 show the wild-type fragment 1.
- Lanes 3 to 15, 18 and 19 were loaded with the over expressed point mutants. Positive results were seen only in lanes with wild type fragment 1 , point mutants I340A (12), E341A (13), G342A (14), G343A (15), W344A (18) and Q345A (19), indicating the absence of the role of the respective amino acids in binding to the HA2 gp.
- Photomicrographs of hematoxylin- and eosin- stained lung sections of mice infected with Clade 2.1 H5N1 virus at 5 days post challenge a) Normal morphology seen in uninfected mice, b) infected and untreated mice, c) infected mice treated with 5mg/kg of 1C9 at 24 hour post challenge, d) infected mice treated with 10 mg/kg of 1C9 at 24 hour post challenge, e) infected mice treated with 5 mg/kg of 1C9, 24 hours prior to viral challenge, f) infected mice treated with 10 mg/kg of 1C9, 24 hours prior to viral challenge.
- FIG 4a Protection of mice from lethal H5N1 viral challenge.
- Each group of mice was intra-peritoneally treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb after 1 day post viral challenge with mouse-adapted Indonesian HPAI H5N1 (A/Vietnam/1203/04-Clade 1.0) virus. Mice were monitored for survival throughout a 14 day observation period. The results are expressed in terms of percent survival.
- Figures 4b and 4c Protection of mice from lethal H5N1 viral challenge.
- mice Each group of mice was intra-peritoneally treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb after 1 day post viral challenge with mouse-adapted Indonesian HPAI H5N1 (A/TLL013/06-Clade 2.1 ) virus. Mice were monitored for survival (Fig. 4b) and weight loss (Fig. 4c) throughout a 14 day observation period. The results are expressed in terms of percent survival and percent body weight (at the beginning of the trial), respectively (* represents no survival of any animals in the group).
- Figure 4d Protection of mice from lethal H5N1 viral challenge.
- Each group of mice were intra-peritoneally treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb after 3 day post viral challenge with mouse-adapted Indonesian HPAI H5N1 (A/Vietnam/1203/04-Clade 1.0) virus. Mice were monitored for survival throughout a 14 day observation period. The results are expressed in terms of percent survival.
- Figures 4e and 4f Protection of mice from lethal H5N1 viral challenge.
- mice were intraperitoneal ⁇ treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb after 3 day post viral challenge with mouse-adapted Indonesian HPAI H5N1 (A/TLL013/06-Clade 2.1 ) virus.
- Mice were monitored for survival (Fig. 4e) and weight loss (Fig. 4f) throughout a 14 day observation period. The results are expressed in terms of percent survival and percent body weight (at the beginning of the trial), respectively (* represents no survival of any animals in the group).
- Figure 5a Protection of mice from lethal H5N1 viral challenge.
- mice were intra-peritoneally pre-treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb on 1 day before challenge with mouse-adapted Indonesian HPAI H5N1 (A/Vietnam/1203/04-Clade 1.0) virus. Mice were monitored for survival throughout a 14 day observation period. The results are expressed in terms of percent survival. Figures 5b and 5c. Protection of mice from lethal H5N1 viral challenge. Each group of mice were pre-treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb on 1 day before challenge with mouse-adapted Indonesian HPAI H5N1 (A/TLL013/06-Clade 2.1 ) virus.
- FIG. 5b mice were monitored for survival (Fig. 5b) and weight loss (Fig. 5c) throughout a 14 day observation period. The results are expressed in terms of percent survival and percent body weight (at the beginning of the trial), respectively (* represents no survival of any animals in the group).
- Figure 6a shows the measurement of viral loads by qPCR , in the lungs of pre-treated mice and mice challenged with virus. Each group of mice was pre- treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb on 1 day before challenge with mouse-adapted Indonesian HPAI H5N1 (A/TLL013/06-Clade 2.1) virus. The viral loads were measured in the lungs of the infected animals on days 2, 4 and 10 post challenge.
- FIG. 6b shows the measurement of viral loads by qPCR , in the lungs of infected animals challenged with virus and subsequently treated.
- Each group of mice was challenged with mouse-adapted Indonesian HPAI H5N1 (A/TLL013/06-Clade 2.1 ) virus and treated with 10 mg/kg, 5 mg/kg or 0 mg/kg (PBS) of 1C9 mAb 1 day after challenge.
- the viral loads were measured in the lungs of the infected animals on days 2, 4 and 10 post challenge.
- the results are expressed in terms of mean value of log (number of copies)/400ng of RNA ⁇ S. D. (# represents no survival of any animals in the group and & represents undetectable viral numbers; *** p ⁇ 0.01 ).
- the present invention is directed to mAbs and related antigen-binding proteins that bind specifically to the HA2 N-terminal fusion peptide of influenza A virus.
- the mAb or related antigen binding protein possesses the immunological binding characteristics of mAb 1C9, as produced by hybridoma 1C9, deposited with the American Type Culture Collection (ATCC), VA, USA, under the terms of the Budapest Treaty on November 6, 2007, and assigned Accession Number PTA-8759.
- the invention further embodies this hybridoma which provides a continuous source of the mAbs and binding proteins of the invention.
- the invention further relates to methods for the detection and diagnosis of influenza A infection and assay kits that comprise the mAbs or binding proteins of the invention.
- the invention further relates to methods of treating a subject infected with an influenza A virus through the administration of effective amounts of an antibody fragment or recombinant antibody comprising an antibody or related binding protein of the invention.
- the subject is infected with an H5 AIV.
- the antibody of this invention also can be administered to subjects on the advent of a possible influenza pandemic as a precautionary measure. In this instance, effective amounts of antibody to be administered are about half of the amounts used to treat influenza A virus infections.
- immunological binding characteristics of a mAb or related binding protein, in all of its grammatical forms, refers to the specificity, affinity and cross-reactivity of the mAb or binding protein for its antigen.
- binding protein@ refers to a protein, including those described below, that includes the antigen binding site of a mAb of the present invention or a mAb having the immunological binding characteristics of a mAb of the present invention.
- the present invention advantageously provides methods for preparing monoclonal antibodies having the binding characteristics of mAb 1C9 by immunizing an animal with an H5N1 virus (A/goose/Guangdong/97). Any such antigen can be used as an immunogen to generate antibodies with the desired immunological binding characteristics.
- Such antibodies include, but are not limited to, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments and proteins comprising the antigen binding sequence of mAb 1 C9.
- the mAb of the present invention can be produced by any technique that provides for the production of antibody molecules by continuous cell lines in culture. Such methods include, but are not limited to, the hybridoma technique originally developed in 1975 by Kohler and Milstein (Nature 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72) and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., in Monoclonal Antibodies and Cancer Therapy Alan R. Liss, Inc., pp 77-96 (1985)).
- Chimeric antibodies are those that contain a human Fc portion and a murine (or other non-human) Fv portion.
- Humanized antibodies are those in which the murine (or other non-human) complementarity determining regions (CDR) are incorporated into a human antibody. Both chimeric and humanized antibodies are monoclonal. Such human or humanized chimeric antibodies are preferred for use in in vivo diagnosis or therapy of human diseases or disorders.
- Such antibody fragments can be generated from any of the polyclonal or monoclonal antibodies of the invention.
- screening for the desired antibody can be accomplished by techniques known in the art, e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbent assay), "sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), immunofluorescence assays and Immunoelectrophoresis assays, etc.
- radioimmunoassay e.g., ELISA (enzyme-linked immunosorbent assay), "sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radiois
- antibody binding is detected by detecting a label on the primary antibody.
- the primary antibody is detected by detecting binding of a secondary antibody or other reagent to the primary antibody.
- the secondary antibody is labeled. Means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
- the foregoing antibodies can be used in methods known in the art relating to the detection or localization of influenza A viruses, e.g., Western blotting, ELISA, radioimmunoassay, immunofluorescence assay, immunohistochemical assay, and the like.
- the techniques disclosed herein may be applied to the qualitative and quantitative determination of the HA2 peptide of influenza A viruses and to the diagnosis and surveillance of animals or humans infected with influenza A viruses.
- the present invention also includes assay and test kits for the qualitative and/or quantitative determination of the HA2 peptide of influenza A viruses.
- assay systems and test kits may comprise a labeled component prepared, e.g., by labeling with a radioactive atom, a fluorescent group or an enzyme, coupling a label to the mAb or related binding protein of the present invention, or to a binding partner thereof.
- assay or test kits further may comprise reagents, diluents and instructions for use, as is well known to those skilled in immunoassay techniques.
- kits will contain at least the mAb or related binding protein of the invention, means for detecting immunospecific binding of said mAb or related binding protein to AIV in a biological sample, and instructions for use, depending upon the method selected, e.g., "competitive,” “sandwich,” “DASP” and the like.
- the kits may also contain positive and negative controls. They may be configured to be used with automated analyzers or automated immunohistochemical slide staining instruments.
- An assay kit of the invention can further comprise a second antibody or binding protein that can be labeled or can be provided for attachment to a solid support (or attached to a solid support).
- a second antibody or binding protein may be, for example, one that binds to influenza A viruses, particularly AIV.
- Such second antibodies or binding proteins can be polyclonal or monoclonal antibodies.
- Monoclonal antibodies to HA2 peptide of Influenza A hemagglutinin protein can be prepared by immunizing animals with Influenza A virus HA protein or fragments thereof.
- a preferred method involves amplification of the H5N1 HAO and HA2 genes followed by expression of the gene, recovery and purification of H5N1 recombinant proteins and use of the purified proteins as immunogens.
- H5N1 AIV is propagated by inoculation of chicken embryos with available strains of the virus, followed by isolation of the viral RNA.
- the HA2 gene is amplified by reverse transcriptase polymerase chain reaction (RT-PCR) and then can be cloned into a baculovirus vector that is used to express H5N1 proteins in insect cells.
- RT-PCR reverse transcriptase polymerase chain reaction
- the proteins so produced then can be used to immunize mice or other suitable species for production of hybridomas.
- immunological methods to detect influenza viruses include, for example, dot-blot and in situ hybridization formats.
- influenza A virus mAb of this invention has advantages over other current methodologies as diagnostic tools.
- the monoclonal antibody of the present invention can recognize all, or essentially all, influenza A viruses including the highly infectious H5 AIV. Additionally, this mAb provides a safe and convenient diagnostic approach for the detection of influenza A viruses including H5 AIV.
- the antibody and related binding proteins of the invention can be administered to treat subjects suffering from an influenza A infection, for example, an infection from an avian influenza virus, such as an H5 subtype, and particularly an H5N1 subtype of AIV.
- the antibody and related binding proteins of the invention also can be administered to subjects as a preventive measure in the event of an influenza pandemic or threatened pandemic.
- the antibody and related binding proteins can be administered in a single dose or in repeated administrations, optionally in a slow release form. Administration can be made by any means that enables the antibody to reach its site of action in the body of the subject being treated, e.g., intravenously, intramuscularly, intradermally, orally or nasally.
- the antibody is administered in a pharmaceutically acceptable diluent or carrier, such as a sterile aqueous solution, and the composition can further comprise one or more stabilizers, adjuvants, solubilizers, buffers, etc.
- a pharmaceutically acceptable diluent or carrier such as a sterile aqueous solution
- the composition can further comprise one or more stabilizers, adjuvants, solubilizers, buffers, etc.
- the dosage of antibody administered is within the range of about 0.1 mg/kg to about 10 mg/kg body weight when the antibody is administered to treat patients suffering from influenza A infection.
- the dosage is reduced by about half, i.e.
- a single recombinant antibody or binding protein of the invention can be administered for therapeutic purposes or combined with one or more antibodies.
- the antibody of the present invention can be combined with neutralizing antibodies against HA1 protein. If antibodies to one or more generations of neutralization escape mutants have been produced, such antibodies and the 1C9 antibody described above can be administered as therapeutic antibody cocktails
- CHO-K1 cells and MDCK cells were obtained from American Type Culture Collection. They were cultured in Ham's F12-K medium and Dulbecco's Minimal Essential Medium respectively, both supplemented with 10% fetal bovine serum (FBS), 100 mg/ml streptomycin and 100 units penicillin, and maintained at 37 0 C, 5% CO 2.
- FBS fetal bovine serum
- streptomycin 100 mg/ml streptomycin and 100 units penicillin
- the human HPAI H5N1 virus A/lndonesia/TLL013/06 was obtained from Ministry of Health (MOH), Indonesia.
- the clade 1.0 virus, A ⁇ /ietnam/1203/2004 (H5N1) was rescued by reverse genetics. Briefly, the synthesized HA and NA genes were cloned into a dual- promoter plasmid for influenza A reverse genetics (16). Dual-promoter plasmids were obtained from the Center for Disease Control and Prevention, Atlanta, GA 1 USA.
- the reassortant virus was rescued by transfecting plasmids containing HA and NA together with the remaining six gene plasmids derived from A/Puerto Rico/8/34 (H1 N1 ) into co-culture of 293T and MDCK cells using Lipofectamine 2000 (Invitrogen Corp). After 72 h of transfection, culture medium from the transfected cells was inoculated into 11 day-old embryonated chicken eggs or MDCK cells. The HA and NA genes of reassortant viruses were sequenced to confirm presence of introduced HA and NA genes. The viruses were propagated in the allantoic cavity of 11 day old chicken embryos and the allantoic fluid was harvested from the eggs after 48 h.
- Virus titers were determined using hemagglutination assays (17). The virus was then clarified and stored at -80° C. All experiments with live viruses were performed in a biosafety level 3 containment laboratory and all the animal experiments were carried out in an Animal biosafety level 3 (ABSL3) containment laboratory in compliance with CDC/NIH and WHO recommendations (18, 19) and also were approved by the Agri-Food and Veterinary Agency (AVA) and MOH, Singapore.
- ABSL3 Animal biosafety level 3
- the total RNA was extracted from H5N1 (A/goose/Guangdong/97) by using Trizol (Invitrogen, USA).
- the HAO gene and the HA2 gene were amplified from the cDNA and cloned into pQE-30 vector (Qiagen, Germany) using standard cloning techniques for expression in bacteria.
- the clones were transformed into Escherichia coli M15 pREP4 competent cells to express the protein.
- the transformed E.coli M15 cells were grown at 37° C to an OD 6 oo of 0.5 - 0.6 in Luria-Bertani (LB) medium containing ampicillin (100 ⁇ g/ml) and protein expression was induced by the addition of 1 mmol/L IPTG for 3 h with shaking.
- the histidine tagged protein was purified on Ni-NTA column (Qiagen, Germany) using standard protocols.
- mice were immunized two times subcutaneously at regular intervals of 2 weeks with 25 ⁇ g of recombinant H5N1 HAO antigen in 0.1 ml of Phosphate Buffered Saline (PBS), which was emulsified with an equal volume of adjuvant (SEPPIC, France). Thereafter, mice were boosted intravenously with 25 ⁇ g of recombinant antigen 3 days before the fusion of splenocytes with SP2/0 cells (20). The fused cells were seeded in 96-well plates, and their supematants were screened by immunofluorescence assays as described below. Positive clones were checked for isotype by using a one-minute isotyping kit (Amersham Bioscience, England) as described in the manufacturer's protocol.
- PBS Phosphate Buffered Saline
- SEPPIC adjuvant
- the monoclonal antibody 1C9 which was positive by IFA and immunoblotting, was chosen for epitope mapping.
- a total of 14 clones expressing fragments of HA2 with sequentially increasing number of amino acids were generated (Fig 1 ).
- the cell lysates, after protein induction, from these clones were run on a SDS-PAGE and Immunoblotting analysis using the anti-HA2 mAbs showed mAb 1C9 was positive to the fragments number 1- 6 and negative to all the other fragments (Fig 1 b). With this, it was concluded that the mAb 1C9 recognized an epitope containing amino acids 331 to 345 of HAO (1-15 of HA2).
- the HAO precursor of influenza A hemagglutinin was expressed on the surface of CHO-K1 cells. Upon treatment with trypsin and low pH, the HAO undergoes a conformational change from the native to the fusion active form resulting in polykaryon formation. Normal polykaryon formation was observed in the control well. The formation of polykaryon was completely inhibited by mAb 1 C9 at a concentration of 100 ⁇ g/ml and partially at a concentration of 50 ⁇ g/ml. An irrelevant monoclonal antibody 3H5 did not show any inhibition of polykaryon formation.
- mice were used.
- mice challenged with the H5N1 viruses PBS control group (untreated mice) showed the most rapid decline in bodyweight, culminating in 100% mortality within 5 days after viral challenge.
- the body weight of succumbed mice from this group was below 80% of the original body weight (Fig. 4c).
- the mice from the group treated one day after infection, with 10mg/kg of 1C9 mAb showed up to 15% loss of bodyweight and from 5 days after challenge the mice started gradually regaining their bodyweight (Fig. 4c).
- mAb1 C9 completely protected mice from disease upon challenge with both the clades of H5N1 viruses (Fig 4b).
- mice showed ⁇ 23% loss of bodyweight and from 4 days after challenge and gradually regained about 8-10% of the lost bodyweight (Fig 4c).
- the groups of mice treated with 5mg/kg of 1C9 showed a loss of body weight less than 22%.
- the mortality studies showed that this concentration provided 50% protection against 5 MLD 50 of two H5N1 strains, clade 1.0 (Fig. 4a) and clade 2.1 (Fig. 4b).
- the groups of mice were treated with 1C9 mAb three days post challenge with the two H5N1 strains. Three days after the challenge (before treatment) 16.6-33.3 % (1-2 mice out of six/group) of the mice/group died and the therapeutic efficacy of the mAb was tested only in the surviving mice.
- the 10 mg/kg of 1C9 mAb provided 75% (3 out of 4 mice survived) protection against H5N1 strains (Fig. 4d and Fig. 4e).
- the 5 mg of 1C9 mAb provided 50% (2 out of 4 survived) protection against 5MLD 5 o H5N1 strains (Fig. 4d and Fig. 4e).
- PBS 0 mg/kg
- mice were challenged with 5MLD 50 of the two different H5N1 strains. Mice were observed daily to monitor body weight and mortality. Monitoring continued until all animals died or until day 14 after challenge.
- mice pre-treated with 10 mg/kg of 1 C9 mAb provided 100% protection against 5 MLD 50 of two H5N1 strains, clade 1.0 (Fig. 5a) and clade 2.1 (Fig. 5b). This group of mice showed only 15% loss in body weight on day 5 and regained the body weight (Fig.5c).
- Pre-treatment with 1C9 mAb at 5mg/kg provided 50% protection against 5MLD 50 H5N1 viruses from clade 1.0 (Fig. 5a) and clade 2.1 respectively (Fig. 5b).
- RNA 400 ng/sample
- AMV reverse transcriptase 20 U of AMV reverse transcriptase (Roche).
- the cDNA suspension was used for amplification in a quantitative real-time PCR reaction.
- DyNAmo TM Capillary SYBR Green qPCR kit (Finnzymes) was used in the PCR assay.
- the cDNA was amplified in 20 ⁇ l containing, 0.25 ⁇ mol of forward primer (5'-GAAATCAAACAGATTAGTCCTTGC-S') (SEQ ID NO:1 ), and 0.25 ⁇ mol of reverse primer (5'-CCTGCCATCCTCCCTCTATAAA-S') (SEQ ID NO:2), and 1X of the DyNAmo master mix. Reactions were performed in a Light Cycler (Roche, Indiana, USA) with the following conditions: 10 min at 95° C, followed by 50 cycles of 95° C for 10 s, 57° C for 5 s, and 72° C for 9 s. Fluorescence signals from these reactions were captured at the end of the extension step in each cycle.
- PCR products were subjected to melting curve analysis at the end of the assay (65 to 95° C; 0.1 ° C/s). Plasmids containing the target sequence were used as positive controls.
- serial dilutions of plasmid DNA containing the target sequence were made and subjected to the real-time quantitative PCR assay. The assay was able to distinguish 10-fold differences in concentration over a range from 1000 to 10 9 copies, and no signal was observed in the water control. Relative quantification in triplicate for each experimental sample was obtained by using the standard curve method.
- a real time polymerase chain reaction assay was used to evaluate the kinetics of the influenza A virus load in the lung samples of the animals infected with clade 2.1. Titers of viruses in the lungs of mice treated with mAb 1C9 24 hours pre-challenge were compared with those for the untreated mice (Fig. 6a). Titers of viruses in the lungs of mice treated with mAb 1C9 24 hours post- challenge were compared with those for the untreated mice (Fig. 6b). Mice receiving 10mg/kg of 1C9 showed significantly lesser viral load when compared to the untreated mice on day 4 and no virus titer was detected on day 10 post- challenge. Moreover, mice receiving 5 mg/kg of the same mAb showed lesser viral clearance when compared to the mice receiving 10 mg/kg of 1 C9 in a dose dependent manner.
- mice infected with the clade 2.1 H5N1 virus had pulmonary lesions consisting of moderate to severe necrotizing bronchitis, moderate to severe histiocytic alveolitis with associated pulmonary edema (Fig 3b).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Communicable Diseases (AREA)
- Pulmonology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- General Physics & Mathematics (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008365616A AU2008365616A1 (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza A viruses and uses thereof |
US13/141,160 US8540995B2 (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza A viruses and uses thereof |
PCT/SG2008/000499 WO2010074656A1 (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof |
SG2011045911A SG172333A1 (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof |
CN2008801327259A CN102292350A (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof |
EP08879238A EP2379591A4 (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof |
TW098144590A TW201028166A (en) | 2008-12-24 | 2009-12-23 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SG2008/000499 WO2010074656A1 (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010074656A1 true WO2010074656A1 (en) | 2010-07-01 |
Family
ID=42288019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG2008/000499 WO2010074656A1 (en) | 2008-12-24 | 2008-12-24 | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza a viruses and uses thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US8540995B2 (en) |
EP (1) | EP2379591A4 (en) |
CN (1) | CN102292350A (en) |
AU (1) | AU2008365616A1 (en) |
SG (1) | SG172333A1 (en) |
TW (1) | TW201028166A (en) |
WO (1) | WO2010074656A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2582721A1 (en) * | 2010-06-17 | 2013-04-24 | Trellis Bioscience, LLC | Antibodies useful in passive influenza immuization |
US8877200B2 (en) | 2012-05-10 | 2014-11-04 | Visterra, Inc. | HA binding agents |
US9718875B2 (en) | 2013-03-14 | 2017-08-01 | Contrafect Corporation | Composition and methods based on neutralizing antibodies delivered intranasally for enhanced therapeutic efficacy |
US10513553B2 (en) | 2015-11-13 | 2019-12-24 | Visterra, Inc. | Compositions and methods for treating and preventing influenza |
US10639370B2 (en) | 2014-02-04 | 2020-05-05 | Contrafect Corporation | Antibodies useful in passive influenza immunization, and compositions, combinations and methods for use thereof |
US10654915B2 (en) | 2011-12-05 | 2020-05-19 | Trellis Bioscience, Llc | Antibodies useful in passive influenza immunization |
US11230593B2 (en) | 2019-03-25 | 2022-01-25 | Visterra, Inc. | Compositions and methods for treating and preventing influenza |
US11246928B2 (en) | 2014-02-04 | 2022-02-15 | Contrafect Corporation | Antibodies useful in passive influenza immunization, and compositions, combinations and methods for use thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2687147C (en) * | 2007-05-11 | 2016-08-23 | Temasek Life Sciences Laboratory Limited | H5 subtype-specific binding proteins useful for h5 avian influenza diagnosis and surveillance |
JP2013540425A (en) | 2010-08-03 | 2013-11-07 | ザ ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャライゼーション | Polypeptide for treating and / or limiting influenza infection |
WO2013138259A2 (en) | 2012-03-13 | 2013-09-19 | University Of Washington Through Its Center For Commercialization | Polypeptides for treating and/or limiting influenza infection |
WO2015143339A2 (en) | 2014-03-21 | 2015-09-24 | University Of Washington | Enhanced influenza hemagglutinin binders |
TWI702229B (en) | 2014-12-19 | 2020-08-21 | 美商再生元醫藥公司 | Human antibodies to influenza hemagglutinin |
KR20200115517A (en) | 2018-01-26 | 2020-10-07 | 리제너론 파마슈티칼스 인코포레이티드 | Human antibodies to influenza hemagglutinin |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6720409B2 (en) * | 1992-09-17 | 2004-04-13 | Takara Shuzo Co., Ltd. | Anti-human influenza virus antibody |
WO2005021574A2 (en) * | 2003-08-26 | 2005-03-10 | Brd, Vertreten Durch Das Bundesministerium Für Gesundheit Und Soziale Sicherung, Letztvertreten Durch Den Präsidenten Des Robert-Koch-Institutes | Induction of antiviral neutralizing antibodies in humans and animals |
WO2007082734A2 (en) * | 2006-01-17 | 2007-07-26 | Creatogen Laboratories Gmbh | Influenza vaccine |
WO2007089753A2 (en) * | 2006-01-26 | 2007-08-09 | Hx Diagnostics, Inc. | Monoclonal antibodies binding to avian influenza virus subtype h5 haemagglutinin and uses thereof |
US20070243629A1 (en) * | 2003-10-20 | 2007-10-18 | Glykos Finland Oy | High Affinity Ligands for Influenza Virus and Methods for Their Production |
WO2008028946A2 (en) * | 2006-09-07 | 2008-03-13 | Crucell Holland B.V. | Human binding molecules capable of neutralizing influenza virus h5n1 and uses thereof |
US20080260762A1 (en) * | 1992-08-07 | 2008-10-23 | Grey Howard M | HLA binding motifs and peptides and their uses |
WO2008140415A1 (en) * | 2007-05-11 | 2008-11-20 | Temasek Life Sciences Laboratory Limited | H5 subtype-specific binding proteins useful for h5 avian influenza diagnosis and surveillance |
-
2008
- 2008-12-24 WO PCT/SG2008/000499 patent/WO2010074656A1/en active Application Filing
- 2008-12-24 AU AU2008365616A patent/AU2008365616A1/en not_active Abandoned
- 2008-12-24 EP EP08879238A patent/EP2379591A4/en not_active Withdrawn
- 2008-12-24 SG SG2011045911A patent/SG172333A1/en unknown
- 2008-12-24 CN CN2008801327259A patent/CN102292350A/en active Pending
- 2008-12-24 US US13/141,160 patent/US8540995B2/en active Active
-
2009
- 2009-12-23 TW TW098144590A patent/TW201028166A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080260762A1 (en) * | 1992-08-07 | 2008-10-23 | Grey Howard M | HLA binding motifs and peptides and their uses |
US6720409B2 (en) * | 1992-09-17 | 2004-04-13 | Takara Shuzo Co., Ltd. | Anti-human influenza virus antibody |
WO2005021574A2 (en) * | 2003-08-26 | 2005-03-10 | Brd, Vertreten Durch Das Bundesministerium Für Gesundheit Und Soziale Sicherung, Letztvertreten Durch Den Präsidenten Des Robert-Koch-Institutes | Induction of antiviral neutralizing antibodies in humans and animals |
US20070243629A1 (en) * | 2003-10-20 | 2007-10-18 | Glykos Finland Oy | High Affinity Ligands for Influenza Virus and Methods for Their Production |
WO2007082734A2 (en) * | 2006-01-17 | 2007-07-26 | Creatogen Laboratories Gmbh | Influenza vaccine |
WO2007089753A2 (en) * | 2006-01-26 | 2007-08-09 | Hx Diagnostics, Inc. | Monoclonal antibodies binding to avian influenza virus subtype h5 haemagglutinin and uses thereof |
WO2008028946A2 (en) * | 2006-09-07 | 2008-03-13 | Crucell Holland B.V. | Human binding molecules capable of neutralizing influenza virus h5n1 and uses thereof |
WO2008140415A1 (en) * | 2007-05-11 | 2008-11-20 | Temasek Life Sciences Laboratory Limited | H5 subtype-specific binding proteins useful for h5 avian influenza diagnosis and surveillance |
Non-Patent Citations (1)
Title |
---|
See also references of EP2379591A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2582721A4 (en) * | 2010-06-17 | 2013-11-20 | Trellis Bioscience Llc | Antibodies useful in passive influenza immuization |
KR101849738B1 (en) | 2010-06-17 | 2018-04-17 | 트렐리스 바이오싸이언스 인코포레이티드 | Antibodies useful in passive influenza immunization |
EP2582721A1 (en) * | 2010-06-17 | 2013-04-24 | Trellis Bioscience, LLC | Antibodies useful in passive influenza immuization |
US10676520B2 (en) | 2010-06-17 | 2020-06-09 | Trellis Bioscience, Llc | Antibodies useful in passive influenza immunization |
US10654915B2 (en) | 2011-12-05 | 2020-05-19 | Trellis Bioscience, Llc | Antibodies useful in passive influenza immunization |
US8877200B2 (en) | 2012-05-10 | 2014-11-04 | Visterra, Inc. | HA binding agents |
US9096657B2 (en) | 2012-05-10 | 2015-08-04 | Visterra, Inc. | HA binding agents |
US9969794B2 (en) | 2012-05-10 | 2018-05-15 | Visterra, Inc. | HA binding agents |
US12024552B2 (en) | 2012-05-10 | 2024-07-02 | Visterra, Inc. | Ha binding agents |
US10800835B2 (en) | 2012-05-10 | 2020-10-13 | Visterra, Inc. | HA binding agents |
US11827693B2 (en) | 2013-03-14 | 2023-11-28 | Contrafect Corporation | Composition and methods based on neutralizing antibodies delivered intranasally for enhanced therapeutic efficacy |
US9718875B2 (en) | 2013-03-14 | 2017-08-01 | Contrafect Corporation | Composition and methods based on neutralizing antibodies delivered intranasally for enhanced therapeutic efficacy |
US10639370B2 (en) | 2014-02-04 | 2020-05-05 | Contrafect Corporation | Antibodies useful in passive influenza immunization, and compositions, combinations and methods for use thereof |
US11246928B2 (en) | 2014-02-04 | 2022-02-15 | Contrafect Corporation | Antibodies useful in passive influenza immunization, and compositions, combinations and methods for use thereof |
US10513553B2 (en) | 2015-11-13 | 2019-12-24 | Visterra, Inc. | Compositions and methods for treating and preventing influenza |
US11230593B2 (en) | 2019-03-25 | 2022-01-25 | Visterra, Inc. | Compositions and methods for treating and preventing influenza |
Also Published As
Publication number | Publication date |
---|---|
EP2379591A1 (en) | 2011-10-26 |
US20110256141A1 (en) | 2011-10-20 |
EP2379591A4 (en) | 2012-10-17 |
CN102292350A (en) | 2011-12-21 |
TW201028166A (en) | 2010-08-01 |
SG172333A1 (en) | 2011-07-28 |
US8540995B2 (en) | 2013-09-24 |
AU2008365616A1 (en) | 2011-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8540995B2 (en) | Monoclonal antibodies specific to the fusion peptide from hemagglutinin from influenza A viruses and uses thereof | |
AU2008297594B2 (en) | Monoclonal antibodies specific to hemagglutinin and neuraminidase from influenza virus H5-subtype or N1-subtype and uses thereof | |
AU2007353481B2 (en) | H5 subtype-specific binding proteins useful for H5 avian influenza diagnosis and surveillance | |
US10072070B2 (en) | Potent anti-influenza A neuraminidase subtype N1 antibody | |
EP3348568B1 (en) | Monoclonal antibodies targeting neutralizing epitopes on h7 influenza viruses | |
WO2010110737A1 (en) | Monoclonal antibody against a conserved domain of m2e polypeptide in influenza viruses | |
AU2013224734A1 (en) | Monoclonal antibodies specific to hemagglutinin and neuraminidase from influenza virus h5-subtype or n1-subtype and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880132725.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08879238 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13141160 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2011543476 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2626/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008365616 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008879238 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008365616 Country of ref document: AU Date of ref document: 20081224 Kind code of ref document: A |