WO2010070987A1 - Process for producing hollow microspheres and process for producing porous molded ceramic - Google Patents

Process for producing hollow microspheres and process for producing porous molded ceramic Download PDF

Info

Publication number
WO2010070987A1
WO2010070987A1 PCT/JP2009/068869 JP2009068869W WO2010070987A1 WO 2010070987 A1 WO2010070987 A1 WO 2010070987A1 JP 2009068869 W JP2009068869 W JP 2009068869W WO 2010070987 A1 WO2010070987 A1 WO 2010070987A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid material
thermally expandable
outer shell
microspheres
dispersion medium
Prior art date
Application number
PCT/JP2009/068869
Other languages
French (fr)
Japanese (ja)
Inventor
江尻哲男
佐竹義克
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020117016118A priority Critical patent/KR101278410B1/en
Priority to JP2010542918A priority patent/JP5588880B2/en
Priority to CN200980150780.5A priority patent/CN102256695B/en
Publication of WO2010070987A1 publication Critical patent/WO2010070987A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • C04B16/085Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons expanded in situ, i.e. during or after mixing the mortar, concrete or artificial stone ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0024Hollow or porous granular materials expanded in situ, i.e. the material is expanded or made hollow after primary shaping of the mortar, concrete or artificial stone mixture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • C04B38/062Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles the burned-out substance being formed in situ, e.g. by polymerisation of a prepolymer composition containing ceramic powder
    • C04B38/0625Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles the burned-out substance being formed in situ, e.g. by polymerisation of a prepolymer composition containing ceramic powder involving a foaming step of the burnable material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Definitions

  • the present invention relates to a method for producing hollow microspheres in which solid materials such as fine particles and fine fibers are firmly attached to the outer shell surface. Moreover, this invention relates to the manufacturing method of the porous ceramics molded object used as a porous formation agent of this hollow microsphere.
  • the thermally expandable microsphere has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin.
  • Thermally expandable microspheres are also referred to as thermally foamable microspheres or thermally expandable microcapsules.
  • the heat-expandable microsphere is heated to a temperature equal to or higher than the softening point of the thermoplastic resin forming the outer shell, the heat-expandable microsphere is thermally expanded by gasification of the foaming agent itself or pyrolysis gas of the foaming agent.
  • Hollow microspheres which are hollow body particles, are formed by thermal expansion of the thermally expandable microspheres.
  • Thermal expansion due to heating of thermally expandable microspheres is generally called heating foaming or foaming.
  • Thermally expandable microspheres form hollow microspheres as independent foam particles after foaming.
  • expandable polystyrene particles impregnated with a liquid foaming agent are filled into a mold and heated and foamed to form a foam molded body having a predetermined shape in which the foam particles are fused and integrated. It is formed and is not a thermally expandable microsphere.
  • Hollow microspheres are also called plastic balloons or plastic hollow beads. Thermally expandable microspheres can form hollow microspheres with a low specific gravity by thermal expansion. Therefore, the heat-expandable microsphere is added to various base materials such as ink, paint, and plastic for the purpose of weight reduction and designability.
  • thermally expandable microspheres As the application field of thermally expandable microspheres expands and higher performance is required in each application field, the required level for thermally expandable microspheres is also increasing.
  • One of the required properties for the thermally expandable microspheres is that there is little aggregation due to fusion between the foam particles during and after heat foaming, and furthermore, there is almost no aggregation.
  • Thermally expandable microspheres are not only foamed but are often blended in a foamed state as well as blended with substrates such as inks, paints and plastics.
  • Foam particles (hollow microspheres) in which thermally expandable microspheres are foamed are extremely lightweight. For example, when they are contained in a paint, the object to be coated can be reduced in weight. However, if the foam particles are aggregated, mixing with a substrate such as a paint becomes difficult, and further, the foam particles may be destroyed during the mixing.
  • a porous ceramic molded body is formed by molding a mixture containing a ceramic raw material and a porous forming agent into a molded body having a predetermined shape, Next, the molded body is manufactured by a method of firing.
  • thermally expandable microsphere foam particles (hollow microspheres) as a porous forming agent, it is possible to obtain a porous ceramic molded body having a desired porous structure corresponding to the size of the foam particles. it can.
  • the low specific gravity hollow microspheres that are the foam particles and the high specific gravity ceramic raw material that is the inorganic material are too difficult to uniformly disperse because the specific gravity difference is too large. Therefore, when hollow microspheres are used as the porous forming agent, it is difficult to obtain a porous ceramic molded body having a uniform porous structure.
  • the porous ceramic molded body is used for, for example, a diesel particulate filter (DPF) for reducing particulate matter contained in exhaust gas of a diesel engine, but the porous structure is not uniform. And sufficient performance as a filter cannot be demonstrated.
  • DPF diesel particulate filter
  • the amount of the dispersion stabilizer such as colloidal silica is increased, the amount of inorganic fine particles attached to the outer shell surface of the thermally expandable microsphere can be increased, and the specific gravity can be increased to some extent.
  • this method does not solve the problem of desorption of inorganic fine particles in the cleaning process and the subsequent processing process.
  • the amount of inorganic fine particles attached to the outer shell surface of the thermally expandable microsphere is increased by such a method, the average particle size of the obtained thermally expandable microsphere is decreased and the particle size distribution is increased. Occurs.
  • Patent Document 2 discloses the presence of an organosilicon compound having a reactive group capable of polymerizing a polymerizable mixture containing a polymerizable monomer and a foaming agent in an aqueous dispersion medium.
  • a method for producing thermally expandable microspheres by suspension polymerization below has been proposed.
  • various solid fine particles such as colloidal silica can be attached to the outer shell surface of the thermally expandable microsphere by the action of the organosilicon compound. This method requires the use of an expensive organosilicon compound, and it is difficult to strongly adhere a large amount of solid fine particles with high specific gravity to the outer shell surface of the foam particles after foaming.
  • Patent Document 3 discloses thermally expandable microspheres and solid fine particles. And a method for producing thermally expandable microspheres in which solid fine particles are adhered to the surface of the outer shell.
  • solid fine particles cannot be firmly attached to the outer shell surface of the thermally expandable microsphere, and the solid fine particles easily fall off in the subsequent processing steps.
  • Patent Document 6 JP-A-3-273037
  • Patent Document 6 a wet cake of thermally expandable microspheres is mixed with a granular or fibrous solid, dried until the water content is less than 1% by weight, and then heated and foamed. Is disclosed.
  • the method disclosed in Patent Document 6 is difficult to suppress aggregation and premature foaming of thermally expandable microspheres in the drying process.
  • Patent Document 7 proposes a method of attaching colloidal calcium carbonate together with a surface treatment agent or a dispersant to the surface of foam particles of thermally expandable microspheres. According to the method disclosed in Patent Document 7, although it is possible to suppress the foam particles from being scattered in the air, it is difficult to firmly attach the solid fine particles to the outer shell surface of the foam particles. is there.
  • Patent Document 8 describes a mixture of a thermally expandable microsphere aqueous dispersion and inorganic fine particles, followed by solid-liquid separation to form a cake, or solid-liquid separation followed by drying to obtain a powder.
  • a method has been proposed in which a thermally expandable microsphere is heated and expanded. According to the method disclosed in Patent Document 8, although scattering of the foam particles can be prevented, it is difficult to suppress aggregation and early foaming of the thermally expandable microspheres.
  • Patent Document 9 JP-A-2006-137926 discloses drying a hydrous cake of thermally expandable microspheres having an acrylic polymer outer shell obtained by using dispersion stabilizer particles such as colloidal silica. There has been proposed a method for producing hollow microspheres that is heated and expanded. Since the method disclosed in Patent Document 9 does not require a drying step, it is possible to suppress fusion and early foaming between the hollow microspheres and to mix the hollow microspheres with solid fine particles. And solid fine particles can be obtained. However, in order to heat and foam the water-containing cake, it is necessary to heat it under mechanical shearing using a powder mixer, so that the thermally expandable microspheres and hollow microspheres are likely to be fused or damaged.
  • An object of the present invention is that organic or inorganic fine particles, fine fibers, etc. are not required without requiring complicated operations and the use of expensive compounds, and without causing fusion or premature foaming between thermally expandable microspheres.
  • Another object of the present invention is to provide a method for producing hollow microspheres in which the solid material is firmly attached to the outer shell surface.
  • Another object of the present invention is to provide use of a hollow microsphere as a porous forming agent. More specifically, another object of the present invention is to provide a method for producing a porous ceramic molded body using the hollow microspheres obtained by the above method as a porous forming agent.
  • the present inventors have made a method in which thermally expandable microspheres and a solid material are dispersed in a liquid dispersion medium to form a slurry, and heated steam is blown into the slurry. It was found that when the thermally expandable microspheres were heated and foamed (thermally expanded), the solid material adhered firmly to the outer shell surface softened during the heating and foaming.
  • Hollow microspheres with various functions can be obtained by selecting the amount and type of solid material.
  • hollow microspheres in which a solid material having a high specific gravity is attached to the outer shell surface can be suitably used as a porous forming agent of a raw material for producing a porous ceramic molded body because the entire particle has a high specific gravity. .
  • the following steps 1 and 2 (1) Thermal expansion that has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin, and that thermally expands by heating to form hollow microspheres. And (2) preparing a slurry by dispersing a solid material having an average particle size or an average major axis smaller than the average particle size of the expandable microsphere and the average particle size of the thermally expandable microsphere in a liquid dispersion medium; The thermally expandable microspheres are heated in the slurry to soften the outer shell, and thermally expanded by gasification of the foaming agent or gas generated from the foaming agent, thereby softening the outer shell surface. Forming a hollow microsphere having the solid material attached thereto in step 2; A method for producing hollow microspheres having a solid material attached to the outer shell surface is provided.
  • the ceramic raw material and the porous forming agent are mixed to prepare a mixture; the step a; the mixture is formed into a predetermined shaped body b; and the shaped body is cured or fired.
  • the method for producing a porous ceramic formed body comprising the step c) hollow microspheres obtained by the above production method and having a solid material attached to the surface of the outer shell are used as the porous forming agent.
  • a method for producing a porous ceramic molded body is provided.
  • the thermally expandable microspheres that are freely dispersed in the slurry are foamed, fusion between the thermally expandable microspheres during foaming hardly occurs, and hollow microspheres obtained after foaming It is difficult to cause mutual fusion.
  • the solid material is adhered to the outer shell surface that softens during heating and foaming, the foam of the thermally expandable microsphere is not inhibited, and the solid material is firmly attached to the softened outer shell surface. Can be attached to.
  • the amount and type of the solid material adhered to the outer shell surface can be arbitrarily controlled.
  • the high-specific gravity inorganic fine particles Using high-specific gravity inorganic fine particles as a solid material, and thermally expanding the thermally expandable microspheres while uniformly dispersing each component by stirring the slurry, the high-specific gravity inorganic fine particles firmly adhere to the outer shell surface.
  • hollow microspheres having a high specific gravity of the entire particle can be obtained.
  • Hollow microspheres with increased specific gravity can be mechanically and uniformly mixed with high specific gravity particles such as ceramic raw materials. Therefore, when a hollow microsphere having a solid material with a high specific gravity attached to the outer shell surface is used as a porous forming agent, a porous ceramic molded body having a uniform porous structure can be produced.
  • FIG. 1 is an explanatory diagram showing the thermal expansion of the thermally expandable microsphere.
  • FIG. 2 is an explanatory view showing a method for producing hollow microspheres in which a solid material adheres to the outer shell surface of the present invention.
  • the thermally expandable microsphere used in the present invention has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin, and is thermally expanded by heating. As long as it is a thermally expandable microsphere that forms a hollow microsphere, it may be obtained by any manufacturing method.
  • the thermally expandable microsphere 1 has a structure in which a foaming agent 3 is enclosed by an outer shell 2 made of a thermoplastic resin.
  • the thermally expandable microsphere 1 is heated to a temperature equal to or higher than the softening point of the thermoplastic resin constituting the outer shell 2, as shown in FIG. 1B, the foaming agent 3 is gasified or generated from the foaming agent.
  • a hollow microsphere 101 having a hollow 103 inside the expanded outer shell 102 is obtained by thermal expansion with gas.
  • thermally expandable microspheres can be produced by a method in which a polymerizable monomer mixture containing at least a foaming agent and a polymerizable monomer is subjected to suspension polymerization in an aqueous dispersion medium.
  • a polymer (thermoplastic resin) formed by polymerization of a polymerizable monomer forms an outer shell, and a thermally expandable microsphere having a structure in which a foaming agent is enclosed in the outer shell is generated.
  • the polymerizable monomer a radically polymerizable monomer is usually used.
  • the polymerizable monomer include nitrile monomers such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethoxyacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid Carboxyl group-containing monomers such as citraconic acid; acrylic acid such as methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, isobornyl acrylate, cyclohexyl acrylate, benzyl acrylate, ⁇ -carboxy acrylate Ester monomers: methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl este
  • the thermally expandable microspheres are preferably those in which the polymer forming the outer shell is a thermoplastic resin and has gas barrier properties. From these viewpoints, vinylidene chloride (co) polymers and (meth) acrylonitrile (co) polymers are preferable, but not limited thereto.
  • the “(co) polymer” means a homopolymer and / or a copolymer.
  • the “(meth) acrylonitrile” means acrylonitrile and / or methacrylonitrile.
  • vinylidene chloride (co) polymer a (co) polymer obtained by using, as a polymerizable monomer, vinylidene chloride alone or a mixture of vinylidene chloride and a vinyl monomer copolymerizable therewith is used.
  • examples of the monomer copolymerizable with vinylidene chloride include acrylonitrile, methacrylonitrile, methacrylic acid ester, acrylic acid ester, styrene, and vinyl acetate.
  • the vinylidene chloride (co) polymer is selected from the group consisting of 30 to 100% by weight of vinylidene chloride as a polymerizable monomer, and acrylonitrile, methacrylonitrile, acrylate ester, methacrylate ester, styrene, and vinyl acetate.
  • a (co) polymer obtained using 0 to 70% by mass of the at least one monomer is preferred. If the copolymerization ratio of vinylidene chloride is less than 30% by mass, the gas barrier property becomes too low, which is not preferable.
  • Examples of the vinylidene chloride (co) polymer include 40 to 80% by mass of vinylidene chloride, 0 to 60% by mass of at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, and acrylates and methacrylates.
  • a copolymer of 0 to 60% by mass of at least one monomer selected from the group consisting of By setting it as the copolymer of such a composition, design of foaming temperature is easy and it is easy to achieve a high foaming ratio.
  • the outer shell is preferably formed from a (meth) acrylonitrile (co) polymer.
  • the (meth) acrylonitrile (co) polymer is obtained by using (meth) acrylonitrile alone or (meth) acrylonitrile and a vinyl monomer copolymerizable therewith as the polymerizable monomer (co).
  • a polymer can be mentioned.
  • the vinyl monomer copolymerizable with (meth) acrylonitrile include vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, and vinyl acetate.
  • the (meth) acrylonitrile (co) polymer includes, as a polymerizable monomer, at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 30 to 100% by mass, vinylidene chloride, and acrylate A (co) polymer obtained by using 0 to 70% by mass of at least one monomer selected from the group consisting of methacrylic acid ester, styrene, and vinyl acetate is preferred.
  • the copolymerization ratio of (meth) acrylonitrile is less than 30% by mass, the solvent resistance and heat resistance are insufficient.
  • (Meth) acrylonitrile (co) polymer has a high proportion of (meth) acrylonitrile and a high foaming temperature (co) polymer, a small proportion of (meth) acrylonitrile and a low foaming temperature (co) heavy Can be divided into coalescence.
  • (co) polymer having a large proportion of (meth) acrylonitrile used as a polymerizable monomer, at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 80 to 100% by mass, and chloride (Co) polymers obtained by using 0 to 20% by mass of at least one monomer selected from the group consisting of vinylidene, acrylic acid ester, methacrylic acid ester, styrene, and vinyl acetate.
  • the (co) polymer having a small proportion of (meth) acrylonitrile used is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile as a polymerizable monomer, but not less than 30% by mass and less than 80% by mass. , And at least one monomer selected from the group consisting of vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, and vinyl acetate in excess of 20% by mass and 70% by mass or less. Coalescence is mentioned.
  • Examples of the (meth) acrylonitrile (co) polymer include at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 51 to 100% by mass, vinylidene chloride, 0 to 40% by mass, and acrylates and methacrylic esters. Preference is given to (co) polymers obtained using 0 to 48% by weight of at least one monomer selected from the group consisting of acid esters.
  • At least one monomer 30 selected from the group consisting of acrylonitrile and methacrylonitrile is used as the polymerizable monomer.
  • a (meth) acrylonitrile (co) polymer obtained using ⁇ 100% by mass and at least one monomer selected from the group consisting of acrylic acid ester and methacrylic acid ester is preferred.
  • polymers not containing vinylidene chloride include, as a polymerizable monomer, acrylonitrile 1 to 99% by mass, methacrylonitrile 1 to 99% by mass, and a group consisting of acrylic acid ester and methacrylic acid ester.
  • a copolymer obtained by using 0 to 70% by mass of at least one selected monomer is preferred.
  • (meth) acrylonitrile (co) polymer in the outer shell is used as the polymerizable monomer.
  • Copolymer obtained using 20 to 80% by mass of methacrylonitrile, 20 to 80% by mass of methacrylonitrile, and 0 to 20% by mass of at least one monomer selected from the group consisting of acrylic acid ester and methacrylic acid ester It is preferable that
  • a crosslinkable monomer can be used in combination with the polymerizable monomer in order to improve foaming characteristics, processing characteristics, solvent resistance, and heat resistance.
  • the crosslinkable monomer a compound having two or more carbon-carbon double bonds is usually used.
  • the crosslinkable monomer include divinylbenzene, divinylnaphthalene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, glycerin di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, PEG # 200 di Bifunctional crosslinkable monomers such as (meth) acrylate, PEG # 400 di (me
  • the foaming agent a substance capable of gasification or gas generation by heating is used.
  • a compound that gasifies at a temperature below the softening point of the polymer (thermoplastic resin) forming the outer shell is preferable.
  • a low-boiling organic solvent is suitable.
  • Hydrocarbons such as trimethylpentane, n-hexane, isohexan
  • a foaming agent capable of generating a gas by heating is a compound that generates a gas by being thermally decomposed by heating, such as azodicarbonamide.
  • the content of the foaming agent enclosed in the heat-expandable microsphere is preferably 5 to 50% by mass, more preferably 7 to 40% by mass. It is preferable to adjust the usage ratio of the polymerizable monomer and the foaming agent so that the outer shell polymer and the foaming agent have the above ratio after the polymerization.
  • the polymerization initiator is preferably an oil-soluble polymerization initiator that is soluble in the polymerizable monomer.
  • the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound.
  • the polymerization initiator is usually contained in the monomer mixture. However, when it is necessary to suppress early polymerization, a part or all of the polymerization initiator is added to the aqueous dispersion medium during or after the granulation step. It may be added and transferred into droplets of the polymerizable mixture.
  • the polymerization initiator is usually used in a proportion of 0.0001 to 3% by mass based on the aqueous dispersion medium.
  • Suspension polymerization is usually performed in an aqueous dispersion medium containing a dispersion stabilizer.
  • the dispersion stabilizer include inorganic fine particles such as silica and magnesium hydroxide.
  • auxiliary stabilizers such as a condensation product of diethanolamine and an aliphatic dicarboxylic acid, polyvinyl pyrrolidone, polyethylene oxide, various emulsifiers and the like can be used.
  • the dispersion stabilizer is usually used at a ratio of 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • An aqueous dispersion medium containing a dispersion stabilizer is usually prepared by blending a dispersion stabilizer or an auxiliary stabilizer with deionized water.
  • the pH of the aqueous phase at the time of polymerization is appropriately determined depending on the type of dispersion stabilizer and auxiliary stabilizer used.
  • silica such as colloidal silica
  • polymerization is performed in an acidic environment.
  • an acid is added as necessary to adjust the pH of the system to 7 or less, preferably pH 6 or less, particularly preferably about pH 3 to 4.
  • the polymerization is carried out in an alkaline environment.
  • One preferred combination of dispersion stabilizers is a combination of colloidal silica and a condensation product.
  • a condensation product of diethanolamine and an aliphatic dicarboxylic acid is preferable, and a condensation product of diethanolamine and adipic acid or a condensation product of diethanolamine and itaconic acid is particularly preferable.
  • the acid value of the condensation product is preferably 60 or more and less than 95, and more preferably 65 to 90.
  • an inorganic salt such as sodium chloride or sodium sulfate is added, it becomes easier to obtain thermally expandable microspheres having a more uniform particle shape.
  • sodium chloride is usually preferably used.
  • the amount of colloidal silica used varies depending on the particle size, but is usually in the range of 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, with respect to 100 parts by mass of the polymerizable monomer.
  • the condensation product is usually used at a ratio of 0.05 to 2 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • the inorganic salt is used in a ratio of 0 to 100 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • At least one compound selected from the group consisting of alkali metal nitrite, stannous chloride, stannic chloride, water-soluble ascorbic acid, and boric acid can be present in the aqueous dispersion medium.
  • alkali metal nitrite, stannous chloride, stannic chloride, water-soluble ascorbic acid, and boric acid can be present in the aqueous dispersion medium.
  • alkali metal nitrites sodium nitrite and potassium nitrite are preferable in terms of availability and price.
  • ascorbic acids include ascorbic acid, metal salts of ascorbic acid, esters of ascorbic acid, and the like. Among these, water-soluble ones are preferably used. Water-soluble ascorbic acids mean those having a solubility in water at 23 ° C. of 1 g / 100 cm 3 or more, and ascorbic acid and alkali metal salts thereof are preferred. Among these, L-ascorbic acid (vitamin C), sodium ascorbate, and potassium ascorbate are preferable.
  • the polymerization aid is usually used in a proportion of 0.001 to 2 parts by mass, preferably 0.01 to 1 part by mass, with respect to 100 parts by mass of the polymerizable monomer.
  • the order of adding each component to the aqueous dispersion medium is arbitrary, but usually an aqueous dispersion containing a dispersion stabilizer by adding water and a dispersion stabilizer, and if necessary, a stabilizer or a polymerization assistant.
  • a dispersion stabilizer by adding water and a dispersion stabilizer, and if necessary, a stabilizer or a polymerization assistant.
  • the medium On the other hand, the polymerizable monomer and the foaming agent may be separately added to the aqueous dispersion medium and integrated in the aqueous dispersion medium to form a polymerizable monomer mixture (oil-based mixture). Both are mixed in advance and then added to the aqueous dispersion medium.
  • the polymerization initiator can be used by adding it to the polymerizable monomer in advance, but when it is necessary to avoid early polymerization, for example, a mixture of the polymerizable monomer and the foaming agent is dispersed in water.
  • the polymerization initiator may be added to the medium while stirring, and may be integrated in the aqueous dispersion medium.
  • the polymerization mixture and the aqueous dispersion medium may be mixed in a separate container, stirred and mixed with a stirrer or disperser having high shearing force, and then charged into a polymerization can.
  • a polymerizable monomer mixture droplet is formed in the aqueous dispersion medium by stirring and mixing the polymerizable monomer mixture and the aqueous dispersion medium. It is preferable that the average particle size of the liquid droplets is approximately the same as the average particle size of the target thermally expandable microsphere.
  • the suspension polymerization is usually carried out by degassing the inside of the reaction vessel or replacing it with an inert gas and raising the temperature to 30 to 100 ° C.
  • the aqueous phase is removed by, for example, filtration, centrifugation, and sedimentation.
  • the thermally expandable microspheres are dried after being filtered and washed.
  • the thermally expandable microsphere is dried at a relatively low temperature such that the foaming agent is not gasified.
  • the average particle size of the thermally expandable microspheres of the present invention is usually in the range of 0.5 to 150 ⁇ m, preferably 1 to 130 ⁇ m, more preferably 3 to 100 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the content of the blowing agent in the thermally expandable microsphere of the present invention is usually 5 to 50% by mass, preferably 7 to 40% by mass.
  • the foaming temperature of the thermally expandable microsphere varies depending on the type and thickness of the thermoplastic resin (polymer) constituting the outer shell.
  • the production method of the present invention is a method for producing hollow microspheres including the following steps 1 and 2, in which a solid material adheres to the outer shell surface.
  • FIG. 2A a slurry in which the thermally expandable microspheres 1 and the solid material 23 are dispersed in a liquid dispersion medium 22 is charged in a container 21.
  • a slurry in which the thermally expandable microspheres 1 and the solid material 23 are dispersed in a liquid dispersion medium 22 is charged in a container 21.
  • the thermally expandable microspheres are heated and foamed by heating means such as blowing heated steam into the slurry, as shown in FIG. 2 (b), a foam (hollow microsphere) 101 is generated, A large number of solid materials 23 adhere to the surface.
  • the solid material used in Step 1 is a fine solid material that is solid at normal temperature (25 ⁇ 15 ° C.) and has an average particle diameter or an average major axis smaller than the average particle diameter of the thermally expandable microsphere.
  • the shape of the solid material is not particularly limited, and may be granular, spherical, cubic, spindle, rod, plate, needle, fiber, or the like.
  • the material of the solid material may be inorganic or organic.
  • inorganic solid materials include natural products such as silica, limestone, quartz, apatite, magnetite, zeolite, clay (montmorillonite, hectorite, saponite, vermiculite, talc, mica, mica, etc.); metal carbonates such as calcium carbonate
  • Metal sulfates such as barium sulfate, aluminum sulfate, cobalt sulfate, copper sulfate, nickel sulfate
  • metals such as titanium oxide, zinc oxide, aluminum oxide, tin oxide, vanadium oxide, indium oxide, chromium oxide, tungsten oxide, iron oxide Oxides;
  • Metal hydroxides such as aluminum hydroxide and magnesium hydroxide;
  • Metal sulfides such as copper sulfide and lead sulfide;
  • Metal borates such as aluminum borate and zinc borate;
  • colloidal inorganic solid materials include colloidal silica, colloidal calcium carbonate, magnesium hydroxide colloid, and calcium phosphate colloid.
  • needle-like or fibrous inorganic solid material include glass fiber, carbon fiber, alumina fiber, potassium titanate whisker, aluminum borate whisker, and wollastonite.
  • organic solid material examples include fine particles of organic resin such as polystyrene beads, polymethyl methacrylate beads, and polytetrafluoroethylene beads, cotton fibers, and polyamide fibers.
  • the organic resin fine particles include organic resin fine particles introduced with a crosslinked structure, organic resin fine particles introduced with a functional group or a polar group, and the like.
  • solid materials can be used alone or in combination of two or more.
  • the solid material may be subjected to a surface treatment such as a hydrophobic treatment.
  • a surface treatment such as a hydrophobic treatment.
  • the specific gravity can be controlled, heat insulation, slip, sound insulation, conductivity, magnetism, piezoelectricity, bactericidal, ultraviolet absorption, etc. Can be added.
  • the average particle diameter or average long diameter of the inorganic and / or organic solid material is preferably sufficiently smaller than the average particle diameter of the thermally expandable microsphere, and is usually 10 ⁇ m or less, preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less. Particularly preferably, it is 0.1 ⁇ m or less.
  • the lower limit of the average particle diameter or the average major axis is about 0.001 ⁇ m from the viewpoints of effects and handleability.
  • the average particle diameter of the solid material is an average diameter or an average major axis of primary particles measured by an observation counting method using an electron microscope or an optical microscope.
  • the solid material has an average particle size of 3 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and a specific gravity (true specific gravity) of 1.5 to 6.0 g / cm 3 , preferably 2.0 to 6.
  • a specific gravity true specific gravity
  • the specific gravity of the hollow microsphere can be increased.
  • examples of such inorganic substances include calcium carbonate (for example, heavy calcium carbonate having a specific gravity of about 2.70 g / cm 3 , light and colloidal calcium carbonate having a specific gravity of about 2.60 g / cm 3 ), crystalline silica, and the like.
  • the content (adhesion amount) of the solid material can be appropriately determined according to the desired function and the type of the solid material, but usually 1 to 99.9 masses based on the total amount of the hollow microspheres to which the solid material is adhered. %, Preferably 10 to 99.5% by mass, more preferably 15 to 99.3% by mass, particularly preferably 20 to 99.0% by mass. However, the amount of dispersion stabilizer (for example, inorganic fine particles such as silica and magnesium hydroxide) used for controlling the particle size of the thermally expandable microsphere is excluded from these.
  • dispersion stabilizer for example, inorganic fine particles such as silica and magnesium hydroxide
  • the amount of the solid material attached to the outer shell surface of the hollow microsphere can be generally calculated based on the mass difference between the hollow microspheres obtained in the presence and absence of the solid material.
  • the amount of solid material deposited can be calculated by burning the hollow microsphere with the solid material adhered to the outer shell surface and measuring the amount of ash after combustion. .
  • step 1 the thermally expandable microsphere and a solid material having an average particle diameter or an average major axis smaller than the average particle diameter of the thermally expandable microsphere are dispersed in a liquid dispersion medium to prepare a slurry.
  • liquid dispersion medium a medium that does not dissolve the thermoplastic resin that forms the outer shell of the thermally expandable microsphere or has a low solubility is preferable.
  • the liquid dispersion medium is preferably a medium that does not decompose or has a low degree of decomposition of the thermoplastic resin that forms the outer shell of the thermally expandable microsphere.
  • liquid dispersion medium examples include water; organic solvents such as isopropyl alcohol, ethylene glycol, glycerin, phthalate ester, silicone oil, and paraffin oil; mixed solvents such as water / ethylene glycol mixed solution and water / glycerin mixed solution; Etc.
  • organic solvents such as isopropyl alcohol, ethylene glycol, glycerin, phthalate ester, silicone oil, and paraffin oil
  • mixed solvents such as water / ethylene glycol mixed solution and water / glycerin mixed solution
  • Etc Among these, water and an aqueous dispersion medium such as a mixed solvent containing water are preferable, and water is particularly preferable.
  • a surfactant or a dispersion stabilizer may be added to the liquid dispersion medium.
  • the concentration of the heat-expandable microspheres in the liquid dispersion medium is usually 0.1 to 10% by mass, preferably 0.1 to 8% by mass, more preferably 0.2 to 7% by mass, and particularly preferably 0.8. It is within the range of 3 to 5% by mass. If this concentration is too high, the thermal expansion of the thermally expandable microspheres tends to cause thermal fusion between the foams, or the amount of solid material added must be reduced. If this concentration is too low, the production efficiency decreases.
  • the heat-expandable microspheres are formed by suspension polymerization of a polymerizable monomer mixture containing a polymerizable monomer and a foaming agent in an aqueous dispersion medium
  • a slurry in which the thermally expandable microspheres and the solid material are dispersed in the aqueous dispersion medium can be prepared.
  • the solid material may be added in several batches before and after suspension polymerization, before suspension polymerization and during suspension polymerization.
  • the solid material is a dispersion stabilizer such as colloidal silica, it is usually added during suspension polymerization or after suspension polymerization.
  • a liquid dispersion medium such as water may be added, or a part of the aqueous dispersion medium may be removed by filtration or tilting.
  • the heat-expandable microsphere When the heat-expandable microsphere is formed by suspension polymerization of a polymerizable monomer mixture containing a polymerizable monomer and a foaming agent in an aqueous dispersion medium, the heat recovered from the aqueous dispersion medium
  • the expandable microspheres can be dispersed with a solid material in a liquid dispersion medium to prepare a slurry.
  • the thermally expandable microspheres are heated in the slurry to soften the outer shell, and thermally expanded by the gasification of the foaming agent or the gas generated from the foaming agent, thereby softening the outer shell. Hollow microspheres with solid material attached to the surface are formed.
  • the slurry is charged into a container (tank, polymerization can, etc.) equipped with a stirring device, stirred, and thermally expanded microsphere. It is preferable that the solid material is uniformly dispersed in the slurry.
  • the thermal expansion of the thermally expandable microsphere is also preferably performed while stirring the slurry.
  • the heating and foaming means there are a method of heating the slurry, a method of blowing heated steam into the slurry, a dielectric heating method and the like.
  • a liquid that evaporates at a relatively low temperature such as an aqueous dispersion medium
  • the method of blowing heated steam into the slurry is particularly preferable because the thermally expandable microsphere can be heated and foamed in a very short time.
  • the temperature of the heated steam is usually 100 to 200 ° C., preferably 110 to 190 ° C., more preferably 120 to 180 ° C., although it depends on the foaming temperature of the thermally expandable microsphere.
  • the pressure at which heated steam is blown is usually in the range of 0.1 to 1.56 MPa, preferably 0.14 to 1.26 MPa, more preferably 0.2 to 1.0 MPa.
  • hollow microspheres in which the solid material is firmly attached to the outer shell surface are collected by a method of filtering the slurry and washing the foam particles.
  • the outer shell made of a thermoplastic resin is softened at the time of heating and foaming, and the solid material adheres to the surface of the softened outer shell. There is nothing to do.
  • the average particle size of the hollow microspheres of the present invention is preferably in the range of 2 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, particularly preferably 10 to 60 ⁇ m. If the average particle size of the hollow microspheres is too small, when the hollow microspheres are used as a porous forming agent, formation of a porous structure tends to be insufficient. On the other hand, if the average particle size of the hollow microspheres is too large, the hollow microspheres may be hollow when kneaded with a raw material constituting a porous molded body such as a porous ceramic molded body and / or when a mixture obtained by kneading is molded. Microspheres are liable to collapse, and as a result, the formation of a porous structure may be insufficient.
  • the hollow microsphere of the present invention has a solid material attached to the outer shell surface thereof, mutual fusion is prevented, and scattering from the air during the handling is suppressed.
  • Various functions can be imparted to the hollow microsphere by adjusting the type and amount of the solid material to be attached to the outer shell surface.
  • the hollow microsphere of the present invention can increase the specific gravity (apparent specific gravity) of the entire particle by attaching a solid material having a high specific gravity to the outer shell surface. Uniform mixing is facilitated.
  • the hollow microsphere having a high specific gravity is suitable as a porous forming agent used in the production process of a porous ceramic molded body, for example.
  • a porous ceramic molded body using a porous forming agent can be produced, for example, by a production method disclosed in Japanese Patent Application Laid-Open No. 2007-39333 (Patent Document 1).
  • a process a for mixing a ceramic raw material and a porous forming agent to prepare a mixture a process b for forming the mixture into a molded body having a predetermined shape; and a process c for firing the molded body.
  • a process a for producing a porous ceramic formed body hollow microspheres obtained by the above production method and having a solid material attached to the outer shell surface are used as the porous forming agent.
  • Ceramic raw materials include ceramic mixtures such as talc, kaolin, aluminum oxide, aluminum hydroxide, and silica, silicon carbide, and metal silicon.
  • the use ratio of the hollow microsphere having a solid material attached to the outer shell surface can be appropriately determined according to the desired porous structure.
  • the firing temperature is about 1400 to 2000 ° C.
  • Ceramics In general, the group of substances called ceramics is extremely wide and has various characteristics. Types of ceramics include ceramics, glass, cement, gypsum, enamel, fine ceramics (new ceramics) and the like.
  • the hollow microsphere of the present invention is also used as a porous forming agent for lightweight cellular concrete (ALC), for example.
  • ALC containing the porous forming agent includes closed cells inside, and exhibits excellent properties such as relatively high strength while being very lightweight.
  • ALC is widely used as a building material for walls and floors of buildings because it is lightweight, relatively strong, and excellent in fire resistance, heat insulation, and workability.
  • siliceous raw materials such as silica and calcareous raw materials such as cement and lime are generally used as main raw materials, and gypsum and process repetition raw materials are used as auxiliary raw materials.
  • Water and a porous molding agent are added to these raw material fine powders to form a slurry, which is then placed in a mold and semi-cured.
  • ALC can be obtained by subjecting the semi-cured product to high-temperature and high-pressure steam curing with an autoclave.
  • the step of producing ALC as a porous ceramic molded body includes a step of preparing a mixture by mixing a ceramic raw material and a porous forming agent; a step b of molding the mixture into a molded body having a predetermined shape. And a step c of curing the shaped body.
  • curing may be performed instead of firing.
  • the hollow microsphere of the present invention is used as a porous forming agent such as ALC.
  • Foaming magnification 0.7 g of thermally expandable microspheres was placed in a gear-type oven and heated at a predetermined foaming temperature for 2 minutes for foaming (thermal expansion). The resulting hollow microspheres were placed in a graduated cylinder and the volume was measured. The volume of the hollow microsphere was divided by the volume of the unexpanded thermally expandable microsphere to calculate the expansion ratio. At this time, the foaming temperature was increased from 70 ° C. in increments of 5 ° C. and foamed at each temperature. The expansion ratio at a temperature at which the maximum expansion ratio was obtained under these conditions was defined as the maximum expansion ratio.
  • the specific gravity of the thermally expandable microsphere and the hollow microsphere means the specific gravity of the whole particle, and was measured by a measuring method using a specific gravity bottle defined in JIS Z 8807.
  • ⁇ Quantity of foaming agent The amount and ratio of the remaining foaming agent contained in the hollow microsphere (dried sample) that has been stored in a desiccator for one day after air drying and dried are measured by the following procedure.
  • the cup was covered with an upper lid made of aluminum, subjected to heat treatment at 200 ° C. for 10 minutes to vaporize the foaming agent, and then subjected to the heat treatment (hereinafter referred to as “foaming agent”).
  • Foaming agent The “removed sample”) was weighed.
  • Ws (g) Wb (g) -Wa (g)
  • Preparation Example 1 (1) Preparation of aqueous dispersion medium 22 g of colloidal silica having a solid content of 40% by mass was added to 770 g of deionized water and dispersed therein. Next, 0.8 g of diethanolamine-adipic acid condensate and 0.13 g of sodium nitrite were added to the dispersion and dissolved. Furthermore, hydrochloric acid was added to the dispersion to prepare an aqueous dispersion medium having a pH of 3.5.
  • Thermally expandable microspheres have an average particle size of 14 ⁇ m, a maximum expansion ratio of 50 times at a foaming temperature of 130 ° C., and a specific gravity of 0. 0.02 g / cm 3 .
  • This thermally expandable microsphere contained 3.3% by mass of colloidal silica used as a dispersion stabilizer.
  • Example 1 Deionized water was added to the thermally expandable microsphere obtained in Preparation Example 1 to prepare 500 g of an aqueous slurry having a concentration of 1% by mass of the thermally expandable microsphere. After adding 40 g of colloidal calcium carbonate (average particle diameter 50 nm) to this aqueous slurry, it was charged into a polymerization can equipped with a stirrer having a capacity of 1.5 liters. While stirring the aqueous slurry, steam heated to a temperature of 150 ° C. was blown in at a pressure of 0.48 MPa to heat and expand the thermally expandable microspheres. Foam particles (hollow microspheres) were dispersed in the aqueous slurry after foaming without forming aggregates.
  • colloidal calcium carbonate average particle diameter 50 nm
  • the foam particles in the aqueous slurry were filtered and washed with water. Further, washing with water and filtration were repeated twice, followed by drying to collect foam particles (hollow microspheres).
  • the foam particles had an average particle size of 50 ⁇ m and a specific gravity of 0.095 g / cm 3 .
  • the total content of inorganic substances contained in the foam particles was 80% by mass.
  • the hollow microspheres obtained in this way were those whose scattering properties in air were remarkably suppressed and excellent in mixing properties with inorganic substances having a high specific gravity.
  • Example 2 Foam particles (hollow microspheres) were produced in the same manner as in Example 1 except that 100 g of colloidal silica (solid content 40% by mass, average particle size 12 nm) was used instead of 40 g of colloidal calcium carbonate.
  • the foam particles had an average particle size of 53 ⁇ m and a specific gravity of 0.10 g / cm 3 .
  • the total content of inorganic substances contained in the foam particles was 85% by mass.
  • the hollow microspheres obtained in this way were those whose scattering properties in air were remarkably suppressed and excellent in mixing properties with inorganic substances having a high specific gravity.
  • the hollow microsphere having a solid material adhered to the outer shell surface of the present invention can be used in a wide range of technical fields for the purpose of reducing the weight, making it porous, and imparting various functions to plastics, paints, and various materials.
  • the hollow microsphere having a high specific gravity can also be used as a porous forming agent for a porous ceramic molded body.

Abstract

A process for producing hollow microspheres which comprises: a step (1) in which heat-expandable microspheres having a microcapsular structure comprising a shell formed from a thermoplastic resin and, encapsulated therein, a blowing agent capable of gasifying or generating a gas and a solid material having an average particle diameter or average major-axis length smaller than the average particle diameter of the heat-expandable microspheres are dispersed in a liquid dispersion medium to prepare a slurry; and a step (2) in which the heat-expandable microspheres are heated in the slurry to soften and thermally expand the shells thereof, thereby forming hollow microspheres having the solid material adherent to the surface of the softened shells.

Description

中空マイクロスフェアの製造方法及び多孔質セラミックス成形体の製造方法Method for producing hollow microsphere and method for producing porous ceramic molded body
 本発明は、微粒子や微細繊維などの固体材料が外殻表面に強固に付着した中空マイクロスフェアの製造方法に関する。また、本発明は、該中空マイクロスフェアの多孔質形成剤として使用する多孔質セラミックス成形体の製造方法に関する。 The present invention relates to a method for producing hollow microspheres in which solid materials such as fine particles and fine fibers are firmly attached to the outer shell surface. Moreover, this invention relates to the manufacturing method of the porous ceramics molded object used as a porous formation agent of this hollow microsphere.
 熱膨張性マイクロスフェアは、熱可塑性樹脂から形成された外殻内に、ガス化またはガスの発生が可能な発泡剤が封入されたマイクロカプセル構造を有している。熱膨張性マイクロスフェアは、熱発泡性マイクロスフェアまたは熱膨張性マイクロカプセルとも呼ばれている。熱膨張性マイクロスフェアは、外殻を形成する熱可塑性樹脂の軟化点以上の温度に加熱すると、発泡剤自体のガス化または発泡剤の熱分解ガスによって熱膨張する。熱膨張性マイクロスフェアの熱膨張により、中空体粒子である中空マイクロスフェアが形成される。 The thermally expandable microsphere has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin. Thermally expandable microspheres are also referred to as thermally foamable microspheres or thermally expandable microcapsules. When the heat-expandable microsphere is heated to a temperature equal to or higher than the softening point of the thermoplastic resin forming the outer shell, the heat-expandable microsphere is thermally expanded by gasification of the foaming agent itself or pyrolysis gas of the foaming agent. Hollow microspheres, which are hollow body particles, are formed by thermal expansion of the thermally expandable microspheres.
 熱膨張性マイクロスフェアの加熱による熱膨張は、一般に、加熱発泡または発泡と呼ばれている。熱膨張性マイクロスフェアは、発泡後にも、各々が独立した発泡体粒子として中空マイクロスフェアを形成する。これに対して、液状の発泡剤を含浸させた発泡性ポリスチレン粒子は、金型内に充填して加熱発泡させることにより、発泡体粒子が融着して一体化した所定形状の発泡成形体を形成するものであり、熱膨張性マイクロスフェアではない。 熱 Thermal expansion due to heating of thermally expandable microspheres is generally called heating foaming or foaming. Thermally expandable microspheres form hollow microspheres as independent foam particles after foaming. On the other hand, expandable polystyrene particles impregnated with a liquid foaming agent are filled into a mold and heated and foamed to form a foam molded body having a predetermined shape in which the foam particles are fused and integrated. It is formed and is not a thermally expandable microsphere.
 中空マイクロスフェアは、プラスチックバルーンまたはプラスチック中空ビーズとも呼ばれている。熱膨張性マイクロスフェアは、熱膨張によって低比重の中空マイクロスフェアを形成することができる。そのため、熱膨張性マイクロスフェアは、軽量化や意匠性の付与などの目的で、インク、塗料、プラスチックなどの各種基材に添加されている。 Hollow microspheres are also called plastic balloons or plastic hollow beads. Thermally expandable microspheres can form hollow microspheres with a low specific gravity by thermal expansion. Therefore, the heat-expandable microsphere is added to various base materials such as ink, paint, and plastic for the purpose of weight reduction and designability.
 熱膨張性マイクロスフェアの用途分野が拡大し、それぞれの用途分野での高性能化が要求されるようになると、熱膨張性マイクロスフェアに対する要求水準も高くなってきている。熱膨張性マイクロスフェアに対する要求特性の一つに、加熱発泡時と発泡後に、発泡体粒子間の融着による凝集が少ないこと、さらには、ほとんど凝集しないことが挙げられる。 As the application field of thermally expandable microspheres expands and higher performance is required in each application field, the required level for thermally expandable microspheres is also increasing. One of the required properties for the thermally expandable microspheres is that there is little aggregation due to fusion between the foam particles during and after heat foaming, and furthermore, there is almost no aggregation.
 熱膨張性マイクロスフェアは、未発泡のままで、インク、塗料、プラスチックなどの基材に配合されるだけではなく、発泡した状態で配合されることも多い。熱膨張性マイクロスフェアが発泡した発泡体粒子(中空マイクロスフェア)は、極めて軽量であり、例えば、塗料中に含有させると、被塗装物の軽量化を図ることができる。ところが、発泡体粒子同士が凝集すると、塗料などの基材との混合が困難となり、さらには、混合時に発泡体粒子が破壊されることもある。 Thermally expandable microspheres are not only foamed but are often blended in a foamed state as well as blended with substrates such as inks, paints and plastics. Foam particles (hollow microspheres) in which thermally expandable microspheres are foamed are extremely lightweight. For example, when they are contained in a paint, the object to be coated can be reduced in weight. However, if the foam particles are aggregated, mixing with a substrate such as a paint becomes difficult, and further, the foam particles may be destroyed during the mixing.
 発泡体粒子間の凝集を防ぐ方法として、無機微粒子や有機微粒子などの固体微粒子により、未発泡の熱膨張性マイクロスフェアの外殻表面を被覆する方法が考えられる。しかし、固体微粒子を熱膨張性マイクロスフェアの外殻表面に均一に付着させること、さらに、その付着量を厳密に制御することは、極めて困難である。固体微粒子を熱膨張性マイクロスフェアの外殻表面に均一に付着させることができないと、均一な発泡が困難となる。固体微粒子の付着量が少なすぎると、加熱発泡時の融着を十分に防ぐことができない。固体微粒子の付着量が多すぎると、発泡が困難となり、最悪の場合には、発泡が不能となることがある。 As a method for preventing aggregation between the foam particles, a method of covering the outer shell surface of the unexpanded thermally expandable microsphere with solid fine particles such as inorganic fine particles and organic fine particles is conceivable. However, it is extremely difficult to uniformly attach the solid fine particles to the outer shell surface of the thermally expandable microsphere and to strictly control the amount of the solid fine particles. If the solid fine particles cannot be uniformly attached to the outer shell surface of the thermally expandable microsphere, uniform foaming becomes difficult. If the adhesion amount of the solid fine particles is too small, it is not possible to sufficiently prevent the fusion during heating and foaming. If the amount of solid fine particles attached is too large, foaming becomes difficult, and in the worst case, foaming may be impossible.
 熱膨張性マイクロスフェアの発泡体粒子(中空マイクロスフェア)は、極めて軽量であるため、新たな用途に適用することが困難な場合がある。例えば、特開2007-39333号公報(特許文献1)に開示されているように、多孔質セラミックス成形体は、セラミックス原料及び多孔質形成剤を含有する混合物を所定形状の成形体に成形し、次いで、該成形体を焼成する方法により製造されている。多孔質形成剤として熱膨張性マイクロスフェアの発泡体粒子(中空マイクロスフェア)を使用すると、発泡体粒子の大きさに対応して、所望の多孔質構造を有する多孔質セラミックス成形体を得ることができる。 Since the foam particles (hollow microspheres) of the thermally expandable microsphere are extremely lightweight, it may be difficult to apply to new applications. For example, as disclosed in Japanese Patent Application Laid-Open No. 2007-39333 (Patent Document 1), a porous ceramic molded body is formed by molding a mixture containing a ceramic raw material and a porous forming agent into a molded body having a predetermined shape, Next, the molded body is manufactured by a method of firing. By using thermally expandable microsphere foam particles (hollow microspheres) as a porous forming agent, it is possible to obtain a porous ceramic molded body having a desired porous structure corresponding to the size of the foam particles. it can.
 しかし、発泡体粒子である低比重の中空マイクロスフェアと無機材料である高比重のセラミックス原料とは、比重差が大きすぎるため、均一に分散させることが極めて困難である。そのため、多孔質形成剤として中空マイクロスフェアを用いたのでは、均一な多孔質構造を有する多孔質セラミックス成形体を得ることが困難である。多孔質セラミックス成形体は、例えば、ディーゼルエンジンの排気ガスに含まれる粒子状物質を減少させるためのディーゼル粒子フィルター(Diesel Particulate Filter;DPF)としての用途に用いられるが、多孔質構造が均一ではないと、フィルターとしての十分な性能を発揮することができない。 However, the low specific gravity hollow microspheres that are the foam particles and the high specific gravity ceramic raw material that is the inorganic material are too difficult to uniformly disperse because the specific gravity difference is too large. Therefore, when hollow microspheres are used as the porous forming agent, it is difficult to obtain a porous ceramic molded body having a uniform porous structure. The porous ceramic molded body is used for, for example, a diesel particulate filter (DPF) for reducing particulate matter contained in exhaust gas of a diesel engine, but the porous structure is not uniform. And sufficient performance as a filter cannot be demonstrated.
 水性分散媒体中で懸濁重合法により熱膨張性マイクロスフェアを製造する場合に、コロイダルシリカなどの無機微粒子を分散安定剤として含有する水性分散媒体を用いると、生成する熱膨張性マイクロスフェアの外殻表面に無機微粒子が付着する。しかし、無機微粒子と熱膨張性マイクロスフェアとの間の付着力が小さいため、発泡体粒子同士の融着を防ぐに足る量の無機微粒子を熱膨張性マイクロスフェアの外殻表面に強く付着させることが困難である。 When producing a thermally expandable microsphere by suspension polymerization in an aqueous dispersion medium, if an aqueous dispersion medium containing inorganic fine particles such as colloidal silica as a dispersion stabilizer is used, Inorganic fine particles adhere to the shell surface. However, since the adhesive force between the inorganic fine particles and the thermally expandable microspheres is small, an amount of inorganic fine particles sufficient to prevent the fusion between the foam particles is strongly adhered to the outer shell surface of the thermally expandable microspheres. Is difficult.
 重合終了後の回収工程で、生成した熱膨張性マイクロスフェアを含有する反応混合物を濾過し洗浄すると、分散安定剤として用いた無機微粒子の多くが脱落する。回収した熱膨張性マイクロスフェアの外殻表面に付着した少量の無機微粒子も、その後の処理工程で簡単に脱離しやすい。 When the reaction mixture containing the generated thermally expandable microspheres is filtered and washed in the recovery step after the polymerization is completed, most of the inorganic fine particles used as the dispersion stabilizer fall off. A small amount of inorganic fine particles adhering to the outer shell surface of the recovered heat-expandable microsphere is also easily detached in the subsequent processing step.
 コロイダルシリカなどの分散安定剤の量を増大させると、熱膨張性マイクロスフェアの外殻表面への無機微粒子の付着量を多くすることができ、その比重をある程度まで増大させることもできる。しかし、この方法では、洗浄工程やその後の処理工程での無機微粒子の脱離問題は解決されない。しかも、このような方法で熱膨張性マイクロスフェアの外殻表面への無機微粒子の付着量を多くすると、得られる熱膨張性マイクロスフェアの平均粒径が小さくなり、粒径分布が大きくなるという問題が生じる。 When the amount of the dispersion stabilizer such as colloidal silica is increased, the amount of inorganic fine particles attached to the outer shell surface of the thermally expandable microsphere can be increased, and the specific gravity can be increased to some extent. However, this method does not solve the problem of desorption of inorganic fine particles in the cleaning process and the subsequent processing process. In addition, when the amount of inorganic fine particles attached to the outer shell surface of the thermally expandable microsphere is increased by such a method, the average particle size of the obtained thermally expandable microsphere is decreased and the particle size distribution is increased. Occurs.
 中空マイクロスフェアに様々な機能を付与するために、その外殻表面に各種機能を持つ個体微粒子を付着させる方法が有効である。しかし、中空マイクロスフェアの外殻表面に、各種機能を持つ固体微粒子を強固に付着させ、かつ、その付着量を所望の範囲内に制御することは、極めて困難な課題である。 In order to impart various functions to the hollow microsphere, it is effective to attach solid particles having various functions to the outer shell surface. However, it is a very difficult problem to firmly attach solid fine particles having various functions to the outer shell surface of the hollow microsphere and to control the amount of adhesion within a desired range.
 従来、熱膨張性マイクロスフェアの外殻表面に固体微粒子を付着させる方法として、幾つかの提案がなされている。特開2002-363537号公報(特許文献2)には、水系分散媒体中で、重合性単量体と発泡剤とを含有する重合性混合物を、重合可能な反応基を有する有機ケイ素化合物の存在下に懸濁重合して、熱膨張性マイクロスフェアを製造する方法が提案されている。特許文献2の方法によれば、有機ケイ素化合物の作用によって、熱膨張性マイクロスフェアの外殻表面に、コロイダルシリカなどの各種固体微粒子を付着させることができる。この方法は、高価な有機ケイ素化合物の使用が必要である上、発泡後の発泡体粒子の外殻表面に高比重の固体微粒子を多量に強く付着させることが難しい。 Conventionally, several proposals have been made as a method of attaching solid fine particles to the outer shell surface of a thermally expandable microsphere. Japanese Patent Laid-Open No. 2002-363537 (Patent Document 2) discloses the presence of an organosilicon compound having a reactive group capable of polymerizing a polymerizable mixture containing a polymerizable monomer and a foaming agent in an aqueous dispersion medium. A method for producing thermally expandable microspheres by suspension polymerization below has been proposed. According to the method of Patent Document 2, various solid fine particles such as colloidal silica can be attached to the outer shell surface of the thermally expandable microsphere by the action of the organosilicon compound. This method requires the use of an expensive organosilicon compound, and it is difficult to strongly adhere a large amount of solid fine particles with high specific gravity to the outer shell surface of the foam particles after foaming.
 特開2003-112039号公報(特許文献3)、国際公開2005/049698号パンフレット(特許文献4)、及び特開2006-213930号公報(特許文献5)には、熱膨張性マイクロスフェアと固体微粒子とを混合して、外殻表面に固体微粒子が付着した熱膨張性マイクロスフェアを製造する方法が開示されている。しかし、単なる混合方法では、熱膨張性マイクロスフェアの外殻表面に固体微粒子を強固に付着させることができず、その後の処理工程で固体微粒子が簡単に脱落する。 Japanese Patent Application Laid-Open No. 2003-112039 (Patent Document 3), International Publication No. 2005/049698 Pamphlet (Patent Document 4), and Japanese Patent Application Laid-Open No. 2006-213930 (Patent Document 5) disclose thermally expandable microspheres and solid fine particles. And a method for producing thermally expandable microspheres in which solid fine particles are adhered to the surface of the outer shell. However, with a simple mixing method, solid fine particles cannot be firmly attached to the outer shell surface of the thermally expandable microsphere, and the solid fine particles easily fall off in the subsequent processing steps.
 熱膨張性マイクロスフェアの発泡体粒子(中空マイクロスフェア)の外殻表面に固体微粒子を付着させる方法についても、幾つかの提案がなされている。特開平3-273037号公報(特許文献6)には、熱膨張性マイクロスフェアの湿潤ケーキに粒状または繊維状固体を混合し、含水率が1重量%未満になるまで乾燥させた後、加熱発泡させる方法が開示されている。しかし、特許文献6に開示されている方法は、乾燥工程での熱膨張性マイクロスフェアの凝集と早期発泡を抑制することが困難である。 Several proposals have also been made for a method of attaching solid fine particles to the outer shell surface of foam particles (hollow microspheres) of thermally expandable microspheres. In JP-A-3-273037 (Patent Document 6), a wet cake of thermally expandable microspheres is mixed with a granular or fibrous solid, dried until the water content is less than 1% by weight, and then heated and foamed. Is disclosed. However, the method disclosed in Patent Document 6 is difficult to suppress aggregation and premature foaming of thermally expandable microspheres in the drying process.
 特開2001-98079号公報(特許文献7)には、熱膨張性マイクロスフェアの発泡体粒子の表面に、コロイド状炭酸カルシウムを、表面処理剤または分散剤と共に付着させる方法が提案されている。特許文献7に開示されている方法によれば、発泡体粒子が空気中に飛散するのを抑制することができるものの、発泡体粒子の外殻表面に固体微粒子を強固に付着させることは困難である。 Japanese Patent Laid-Open No. 2001-98079 (Patent Document 7) proposes a method of attaching colloidal calcium carbonate together with a surface treatment agent or a dispersant to the surface of foam particles of thermally expandable microspheres. According to the method disclosed in Patent Document 7, although it is possible to suppress the foam particles from being scattered in the air, it is difficult to firmly attach the solid fine particles to the outer shell surface of the foam particles. is there.
 特開2006-35092号公報(特許文献8)には、熱膨張性マイクロスフェアの水分散体と無機微粒子を混合した後、固液分離してケーキとするか、固液分離後に乾燥して粉体とし、次いで、熱膨張性マイクロスフェアを加熱膨張させる方法が提案されている。特許文献8に開示されている方法によれば、発泡体粒子の飛散を防止することができるものの、熱膨張性マイクロスフェアの凝集と早期発泡を抑制することが困難である。 Japanese Patent Application Laid-Open No. 2006-35092 (Patent Document 8) describes a mixture of a thermally expandable microsphere aqueous dispersion and inorganic fine particles, followed by solid-liquid separation to form a cake, or solid-liquid separation followed by drying to obtain a powder. A method has been proposed in which a thermally expandable microsphere is heated and expanded. According to the method disclosed in Patent Document 8, although scattering of the foam particles can be prevented, it is difficult to suppress aggregation and early foaming of the thermally expandable microspheres.
 特開2006-137926号公報(特許文献9)には、コロイダルシリカなどの分散安定剤粒子を使用して得られたアクリルポリマーを外殻とする熱膨張性マイクロスフェアの含水ケーキを、乾燥させることなく、加熱膨張させる中空マイクロスフェアの製造方法が提案されている。特許文献9に開示されている方法は、乾燥工程を必要としないため、中空マイクロスフェア同士の融着や早期発泡を抑制することができる上、含水ケーキに固体微粒子を混合すれば、中空マイクロスフェアと固体微粒子との混合物を得ることができる。しかし、含水ケーキを加熱発泡させるには、粉体混合機を用いて機械的剪断下に加熱する必要があるため、熱膨張性マイクロスフェアや中空マイクロスフェアの融着や破損を引き起こしやすい。また、特許文献9の方法では、重合時に分散安定剤粒子が熱膨張性マイクロスフェアの外殻表面に付着しているため、他の固体微粒子を強固に付着させることが難しく、しかも付着した分散安定剤粒子の脱落が発生しやすい。 JP-A-2006-137926 (Patent Document 9) discloses drying a hydrous cake of thermally expandable microspheres having an acrylic polymer outer shell obtained by using dispersion stabilizer particles such as colloidal silica. There has been proposed a method for producing hollow microspheres that is heated and expanded. Since the method disclosed in Patent Document 9 does not require a drying step, it is possible to suppress fusion and early foaming between the hollow microspheres and to mix the hollow microspheres with solid fine particles. And solid fine particles can be obtained. However, in order to heat and foam the water-containing cake, it is necessary to heat it under mechanical shearing using a powder mixer, so that the thermally expandable microspheres and hollow microspheres are likely to be fused or damaged. Further, in the method of Patent Document 9, since the dispersion stabilizer particles are attached to the outer shell surface of the thermally expandable microsphere at the time of polymerization, it is difficult to firmly attach other solid fine particles, and the attached dispersion stability. Agent particles are likely to fall off.
特開2007-39333号公報JP 2007-39333 A 特開2002-363537号公報JP 2002-363537 A 特開2003-112039号公報Japanese Patent Laid-Open No. 2003-112039 国際公開2005/049698号パンフレットInternational Publication No. 2005/049698 Pamphlet 特開2006-213930号公報JP 2006-213930 A 特開平3-273037号公報JP-A-3-273037 特開2001-98079号公報JP 2001-98079 A 特開2006-35092号公報JP 2006-35092 A 特開2006-137926号公報JP 2006-137926 A
 本発明の課題は、煩雑な操作や高価な化合物の使用を必要とすることなく、かつ、熱膨張性マイクロスフェア同士の融着や早期発泡を起こすことなく、有機または無機の微粒子や微細繊維などの固体材料が外殻表面に強固に付着した中空マイクロスフェアを製造する方法を提供することにある。 An object of the present invention is that organic or inorganic fine particles, fine fibers, etc. are not required without requiring complicated operations and the use of expensive compounds, and without causing fusion or premature foaming between thermally expandable microspheres. Another object of the present invention is to provide a method for producing hollow microspheres in which the solid material is firmly attached to the outer shell surface.
 本発明の他の課題は、中空マイクロスフェアの多孔質形成剤などとしての使用を提供することにある。より具体的に、本発明の他の課題は、多孔質形成剤として、上記方法により得られた中空マイクロスフェアを使用する多孔質セラミックス成形体の製造方法を提供することにある。 Another object of the present invention is to provide use of a hollow microsphere as a porous forming agent. More specifically, another object of the present invention is to provide a method for producing a porous ceramic molded body using the hollow microspheres obtained by the above method as a porous forming agent.
 本発明者らは、前記課題を達成するために鋭意研究した結果、熱膨張性マイクロスフェアと固体材料とを液状の分散媒体中に分散させてスラリーとし、該スラリーに加熱水蒸気を吹き込むなどの方法で熱膨張性マイクロスフェアを加熱発泡(熱膨張)させると、加熱発泡時に軟化した外殻表面に固体材料が強固に付着することを見出した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have made a method in which thermally expandable microspheres and a solid material are dispersed in a liquid dispersion medium to form a slurry, and heated steam is blown into the slurry. It was found that when the thermally expandable microspheres were heated and foamed (thermally expanded), the solid material adhered firmly to the outer shell surface softened during the heating and foaming.
 固体材料の付着量や種類を選択することによって、様々な機能を有する中空マイクロスフェアを得ることができる。例えば、高比重の固体材料を外殻表面に付着させた中空マイクロスフェアは、粒子全体が高比重となるため、多孔質セラミックス成形体の製造原料の多孔質形成剤として好適に利用することができる。 中空 Hollow microspheres with various functions can be obtained by selecting the amount and type of solid material. For example, hollow microspheres in which a solid material having a high specific gravity is attached to the outer shell surface can be suitably used as a porous forming agent of a raw material for producing a porous ceramic molded body because the entire particle has a high specific gravity. .
 熱膨張性マイクロスフェアと固体材料を分散させたスラリーは、高温条件下での加熱による発泡に適していないと考えられていたが、加熱水蒸気を吹き込む方法などを採用することにより、熱膨張性マイクロスフェアを加熱発泡させることができ、その際、軟化した外殻表面に微細な固体材料を強固に付着させることができることが判明した。本発明は、これらの知見に基づいて完成するに至ったものである。 Slurries in which thermally expandable microspheres and solid materials are dispersed were thought to be unsuitable for foaming by heating under high temperature conditions. However, by adopting a method of blowing heated steam, etc. It has been found that the sphere can be heated and foamed, and at that time, a fine solid material can be firmly attached to the softened outer shell surface. The present invention has been completed based on these findings.
 本発明によれば、下記工程1及び2:
(1)熱可塑性樹脂から形成された外殻内にガス化またはガスの発生が可能な発泡剤が封入されたマイクロカプセル構造を有し、加熱により熱膨張して中空マイクロスフェアを形成する熱膨張性マイクロスフェア、及び該熱膨張性マイクロスフェアの平均粒径よりも小さな平均粒径若しくは平均長径を有する固体材料を、液状分散媒体中に分散させて、スラリーを調製する工程1;並びに
(2)該スラリー中で該熱膨張性マイクロスフェアを加熱して、その外殻を軟化させると共に、該発泡剤のガス化若しくは該発泡剤からの発生ガスにより熱膨張させ、それによって、軟化した外殻表面に該固体材料が付着した中空マイクロスフェアを形成する工程2;
を含むことを特徴とする外殻表面に固体材料が付着した中空マイクロスフェアの製造方法が提供される。
According to the present invention, the following steps 1 and 2:
(1) Thermal expansion that has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin, and that thermally expands by heating to form hollow microspheres. And (2) preparing a slurry by dispersing a solid material having an average particle size or an average major axis smaller than the average particle size of the expandable microsphere and the average particle size of the thermally expandable microsphere in a liquid dispersion medium; The thermally expandable microspheres are heated in the slurry to soften the outer shell, and thermally expanded by gasification of the foaming agent or gas generated from the foaming agent, thereby softening the outer shell surface. Forming a hollow microsphere having the solid material attached thereto in step 2;
A method for producing hollow microspheres having a solid material attached to the outer shell surface is provided.
 また、本発明によれば、セラミックス原料と多孔質形成剤とを混合して、混合物を調製する工程a;該混合物を所定形状の成形体に成形する工程b;及び該成形体を養生または焼成する工程c;を含む多孔質セラミックス成形体の製造方法において、該多孔質形成剤として、前記の製造方法により得られた、外殻表面に固体材料が付着した中空マイクロスフェアを使用することを特徴とする多孔質セラミックス成形体の製造方法が提供される。 In addition, according to the present invention, the ceramic raw material and the porous forming agent are mixed to prepare a mixture; the step a; the mixture is formed into a predetermined shaped body b; and the shaped body is cured or fired. In the method for producing a porous ceramic formed body comprising the step c), hollow microspheres obtained by the above production method and having a solid material attached to the surface of the outer shell are used as the porous forming agent. A method for producing a porous ceramic molded body is provided.
 本発明の製造方法によれば、煩雑な操作や高価な化合物の使用を必要とすることなく、かつ、熱膨張性マイクロスフェア同士の融着や早期発泡を起こすことなく、微粒子や微細繊維などの固体材料が外殻表面に強固に付着した中空マイクロスフェアを提供することができる。 According to the production method of the present invention, such as fine particles and fine fibers, without requiring complicated operations and the use of expensive compounds, and without causing fusion or early foaming between the thermally expandable microspheres. It is possible to provide hollow microspheres in which a solid material is firmly attached to the outer shell surface.
 本発明の方法によれば、スラリー中に自由に分散している熱膨張性マイクロスフェアを発泡させるため、発泡時における熱膨張性マイクロスフェア同士の融着が生じ難く、発泡後に得られる中空マイクロスフェア同士の融着も生じ難い。本発明の方法によれば、加熱発泡時に軟化する外殻表面に固体材料を付着させるため、熱膨張性マイクロスフェアの発泡を阻害することがなく、かつ、軟化した外殻表面に固体材料を強固に付着させることができる。スラリー中に分散させる固体材料の量や種類を変化させることによって、外殻表面に付着させる固体材料の量や種類を任意に制御することができる。 According to the method of the present invention, since the thermally expandable microspheres that are freely dispersed in the slurry are foamed, fusion between the thermally expandable microspheres during foaming hardly occurs, and hollow microspheres obtained after foaming It is difficult to cause mutual fusion. According to the method of the present invention, since the solid material is adhered to the outer shell surface that softens during heating and foaming, the foam of the thermally expandable microsphere is not inhibited, and the solid material is firmly attached to the softened outer shell surface. Can be attached to. By changing the amount and type of the solid material dispersed in the slurry, the amount and type of the solid material adhered to the outer shell surface can be arbitrarily controlled.
 固体材料として、高比重の無機微粒子を使用し、スラリーの撹拌により各成分を均一に分散させながら、熱膨張性マイクロスフェアを加熱発泡させると、外殻表面に高比重の無機微粒子が強固に付着し、それによって、粒子全体の比重が高い中空マイクロスフェアを得ることができる。比重を高めた中空マイクロスフェアは、セラミックス原料のような高比重の粒子と機械的に均一混合させることができる。そのため、外殻表面に高比重の固体材料が付着した中空マイクロスフェアを多孔質形成剤として使用すると、均一な多孔質構造を有する多孔質セラミックス成形体を製造することができる。 Using high-specific gravity inorganic fine particles as a solid material, and thermally expanding the thermally expandable microspheres while uniformly dispersing each component by stirring the slurry, the high-specific gravity inorganic fine particles firmly adhere to the outer shell surface. Thus, hollow microspheres having a high specific gravity of the entire particle can be obtained. Hollow microspheres with increased specific gravity can be mechanically and uniformly mixed with high specific gravity particles such as ceramic raw materials. Therefore, when a hollow microsphere having a solid material with a high specific gravity attached to the outer shell surface is used as a porous forming agent, a porous ceramic molded body having a uniform porous structure can be produced.
図1は、熱膨張性マイクロスフェアの熱膨張を示す説明図である。FIG. 1 is an explanatory diagram showing the thermal expansion of the thermally expandable microsphere. 図2は、本発明の外殻表面に固体材料が付着した中空マイクロスフェアの製造方法を示す説明図である。FIG. 2 is an explanatory view showing a method for producing hollow microspheres in which a solid material adheres to the outer shell surface of the present invention.
 1 熱膨張性マイクロスフェア
 2 外殻
 3 発泡剤
 101 中空マイクロスフェア
 102 外殻
 103 中空
 21 容器
 22 液状分散媒体
 23 固体材料
DESCRIPTION OF SYMBOLS 1 Thermally expandable microsphere 2 Outer shell 3 Foaming agent 101 Hollow microsphere 102 Outer shell 103 Hollow 21 Container 22 Liquid dispersion medium 23 Solid material
 本発明で使用する熱膨張性マイクロスフェアとしては、熱可塑性樹脂から形成された外殻内にガス化またはガスの発生が可能な発泡剤が封入されたマイクロカプセル構造を有し、加熱により熱膨張して中空マイクロスフェアを形成する熱膨張性マイクロスフェアであればよく、如何なる製造方法により得られたものであってもよい。 The thermally expandable microsphere used in the present invention has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin, and is thermally expanded by heating. As long as it is a thermally expandable microsphere that forms a hollow microsphere, it may be obtained by any manufacturing method.
 図1(a)に示すように、熱膨張性マイクロスフェア1は、熱可塑性樹脂からなる外殻2によって発泡剤3が封入された構造を有している。熱膨張性マイクロスフェア1を、その外殻2を構成する熱可塑性樹脂の軟化点以上の温度に加熱すると、図1(b)に示すように、発泡剤3のガス化または発泡剤からの発生ガスにより熱膨張して、膨張した外殻102内が中空103の中空マイクロスフェア101が得られる。 As shown in FIG. 1A, the thermally expandable microsphere 1 has a structure in which a foaming agent 3 is enclosed by an outer shell 2 made of a thermoplastic resin. When the thermally expandable microsphere 1 is heated to a temperature equal to or higher than the softening point of the thermoplastic resin constituting the outer shell 2, as shown in FIG. 1B, the foaming agent 3 is gasified or generated from the foaming agent. A hollow microsphere 101 having a hollow 103 inside the expanded outer shell 102 is obtained by thermal expansion with gas.
 一般に、熱膨張性マイクロスフェアは、水性分散媒体中で、少なくとも発泡剤及び重合性単量体を含有する重合性単量体混合物を懸濁重合する方法により製造することができる。懸濁重合により、重合性単量体の重合により生成した重合体(熱可塑性樹脂)が外殻を形成し、該外殻内に発泡剤が封入された構造を有する熱膨張性マイクロスフェアが生成する。 Generally, thermally expandable microspheres can be produced by a method in which a polymerizable monomer mixture containing at least a foaming agent and a polymerizable monomer is subjected to suspension polymerization in an aqueous dispersion medium. By suspension polymerization, a polymer (thermoplastic resin) formed by polymerization of a polymerizable monomer forms an outer shell, and a thermally expandable microsphere having a structure in which a foaming agent is enclosed in the outer shell is generated. To do.
 重合性単量体としては、通常、ラジカル重合性の重合性単量体が用いられる。重合性単量体の具体例としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エトキシアクリロニトリル、フマロニトリルなどのニトリル系単量体;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸などのカルボキシル基含有単量体;メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、β-カルボキシアクリレートなどのアクリル酸エステル系単量体;メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、β-カルボキシメタクリレートなどのメタクリル酸エステル系単量体;塩化ビニリデン;酢酸ビニル;スチレン、α-メチルスチレン、クロロスチレンなどのスチレン系単量体;アクリルアミド、メタクリルアミドなどのアクリルアミド系単量体;N-フェニルマレイミド、N-(2-クロロフェニル)マレイミド、N-シクロヘキシルマレイミド、N-ラウリルマレイミドなどのマレイミド系単量体;が挙げられる。 As the polymerizable monomer, a radically polymerizable monomer is usually used. Specific examples of the polymerizable monomer include nitrile monomers such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid Carboxyl group-containing monomers such as citraconic acid; acrylic acid such as methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, isobornyl acrylate, cyclohexyl acrylate, benzyl acrylate, β-carboxy acrylate Ester monomers: methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, isobornyl methacrylate, Methacrylic acid ester monomers such as hexyl methacrylate, benzyl methacrylate, β-carboxy methacrylate; vinylidene chloride; vinyl acetate; styrene monomers such as styrene, α-methylstyrene, chlorostyrene; acrylamide, methacrylamide, etc. Acrylamide monomers; maleimide monomers such as N-phenylmaleimide, N- (2-chlorophenyl) maleimide, N-cyclohexylmaleimide, and N-laurylmaleimide;
 熱膨張性マイクロスフェアは、外殻を形成する重合体が熱可塑性樹脂であり、かつ、ガスバリア性を有するものが好ましい。これらの観点から、塩化ビニリデン(共)重合体及び(メタ)アクリロニトリル(共)重合体が好ましいが、これらに限定されない。該「(共)重合体」とは、単独重合体及び/または共重合体を意味する。該「(メタ)アクリロニトリル」とは、アクリロニトリル及び/またはメタクリロニトリルを意味する。 The thermally expandable microspheres are preferably those in which the polymer forming the outer shell is a thermoplastic resin and has gas barrier properties. From these viewpoints, vinylidene chloride (co) polymers and (meth) acrylonitrile (co) polymers are preferable, but not limited thereto. The “(co) polymer” means a homopolymer and / or a copolymer. The “(meth) acrylonitrile” means acrylonitrile and / or methacrylonitrile.
 塩化ビニリデン(共)重合体としては、重合性単量体として、塩化ビニリデン単独、あるいは塩化ビニリデンとこれと共重合可能なビニル系単量体との混合物を用いて得られる(共)重合体を挙げることができる。塩化ビニリデンと共重合可能な単量体としては、例えば、アクリロニトリル、メタクリロニトリル、メタクリル酸エステル、アクリル酸エステル、スチレン、酢酸ビニルなどが挙げられる。 As the vinylidene chloride (co) polymer, a (co) polymer obtained by using, as a polymerizable monomer, vinylidene chloride alone or a mixture of vinylidene chloride and a vinyl monomer copolymerizable therewith is used. Can be mentioned. Examples of the monomer copolymerizable with vinylidene chloride include acrylonitrile, methacrylonitrile, methacrylic acid ester, acrylic acid ester, styrene, and vinyl acetate.
 塩化ビニリデン(共)重合体としては、重合性単量体として、塩化ビニリデン30~100質量%、並びにアクリロニトリル、メタクリロニトリル、アクリル酸エステル、メタクリル酸エステル、スチレン、及び酢酸ビニルからなる群より選ばれた少なくとも一種の単量体0~70質量%を用いて得られた(共)重合体が好ましい。塩化ビニリデンの共重合割合が30質量%未満であるとガスバリア性が低くなりすぎるので、好ましくない。 The vinylidene chloride (co) polymer is selected from the group consisting of 30 to 100% by weight of vinylidene chloride as a polymerizable monomer, and acrylonitrile, methacrylonitrile, acrylate ester, methacrylate ester, styrene, and vinyl acetate. A (co) polymer obtained using 0 to 70% by mass of the at least one monomer is preferred. If the copolymerization ratio of vinylidene chloride is less than 30% by mass, the gas barrier property becomes too low, which is not preferable.
 塩化ビニリデン(共)重合体としては、塩化ビニリデン40~80質量%、アクリロニトリル及びメタクリロニトリルからなる群より選ばれた少なくとも一種の単量体0~60質量%、並びにアクリル酸エステル及びメタクリル酸エステルからなる群より選ばれた少なくとも一種の単量体0~60質量%の共重合体がより好ましい。このような組成の共重合体とすることにより、発泡温度の設計が容易であり、かつ、高発泡倍率を達成しやすい。 Examples of the vinylidene chloride (co) polymer include 40 to 80% by mass of vinylidene chloride, 0 to 60% by mass of at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, and acrylates and methacrylates. A copolymer of 0 to 60% by mass of at least one monomer selected from the group consisting of By setting it as the copolymer of such a composition, design of foaming temperature is easy and it is easy to achieve a high foaming ratio.
 耐溶剤性や高温発泡性を望む場合には、(メタ)アクリロニトリル(共)重合体により外殻を形成することが好ましい。(メタ)アクリロニトリル(共)重合体としては、重合性単量体として、(メタ)アクリロニトリル単独、または(メタ)アクリロニトリルとそれと共重合可能なビニル系単量体とを用いて得られる(共)重合体を挙げることができる。(メタ)アクリロニトリルと共重合可能なビニル系単量体としては、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、酢酸ビニルなどが挙げられる。 When solvent resistance and high-temperature foamability are desired, the outer shell is preferably formed from a (meth) acrylonitrile (co) polymer. The (meth) acrylonitrile (co) polymer is obtained by using (meth) acrylonitrile alone or (meth) acrylonitrile and a vinyl monomer copolymerizable therewith as the polymerizable monomer (co). A polymer can be mentioned. Examples of the vinyl monomer copolymerizable with (meth) acrylonitrile include vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, and vinyl acetate.
 (メタ)アクリロニトリル(共)重合体としては、重合性単量体として、アクリロニトリル及びメタクリロニトリルからなる群より選ばれた少なくとも一種の単量体30~100質量%、並びに塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、及び酢酸ビニルからなる群より選ばれた少なくとも一種の単量体0~70質量%を用いて得られた(共)重合体が好ましい。(メタ)アクリロニトリルの共重合割合が30質量%未満では、耐溶剤性や耐熱性が不十分となる。 The (meth) acrylonitrile (co) polymer includes, as a polymerizable monomer, at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 30 to 100% by mass, vinylidene chloride, and acrylate A (co) polymer obtained by using 0 to 70% by mass of at least one monomer selected from the group consisting of methacrylic acid ester, styrene, and vinyl acetate is preferred. When the copolymerization ratio of (meth) acrylonitrile is less than 30% by mass, the solvent resistance and heat resistance are insufficient.
 (メタ)アクリロニトリル(共)重合体は、(メタ)アクリロニトリルの使用割合が大きく、発泡温度が高い(共)重合体と、(メタ)アクリロニトリルの使用割合が小さく、発泡温度が低い(共)重合体に分けることができる。(メタ)アクリロニトリルの使用割合が大きい(共)重合体としては、重合性単量体として、アクリロニトリル及びメタクリロニトリルからなる群より選ばれた少なくとも一種の単量体80~100質量%、並びに塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、及び酢酸ビニルからなる群より選ばれた少なくとも一種の単量体0~20質量%を用いて得られた(共)重合体が挙げられる。 (Meth) acrylonitrile (co) polymer has a high proportion of (meth) acrylonitrile and a high foaming temperature (co) polymer, a small proportion of (meth) acrylonitrile and a low foaming temperature (co) heavy Can be divided into coalescence. As the (co) polymer having a large proportion of (meth) acrylonitrile used, as a polymerizable monomer, at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 80 to 100% by mass, and chloride (Co) polymers obtained by using 0 to 20% by mass of at least one monomer selected from the group consisting of vinylidene, acrylic acid ester, methacrylic acid ester, styrene, and vinyl acetate.
 (メタ)アクリロニトリルの使用割合が小さい(共)重合体としては、重合性単量体として、アクリロニトリル及びメタクリロニトリルからなる群より選ばれた少なくとも一種の単量体30質量%以上80質量%未満、並びに塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、及び酢酸ビニルからなる群より選ばれた少なくとも一種の単量体20質量%超過70質量%以下とを用いて得られた(共)重合体が挙げられる。 The (co) polymer having a small proportion of (meth) acrylonitrile used is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile as a polymerizable monomer, but not less than 30% by mass and less than 80% by mass. , And at least one monomer selected from the group consisting of vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, and vinyl acetate in excess of 20% by mass and 70% by mass or less. Coalescence is mentioned.
 (メタ)アクリロニトリル(共)重合体としては、アクリロニトリル及びメタクリロニトリルからなる群より選ばれた少なくとも一種の単量体51~100質量%、塩化ビニリデン0~40質量%、並びにアクリル酸エステル及びメタクリル酸エステルからなる群より選ばれた少なくとも一種の単量体0~48質量%とを用いて得られた(共)重合体が好ましい。 Examples of the (meth) acrylonitrile (co) polymer include at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 51 to 100% by mass, vinylidene chloride, 0 to 40% by mass, and acrylates and methacrylic esters. Preference is given to (co) polymers obtained using 0 to 48% by weight of at least one monomer selected from the group consisting of acid esters.
 外殻の重合体として、塩化ビニリデンを含まない(共)重合体が望まれる場合には、重合性単量体として、アクリロニトリル及びメタクリロニトリルからなる群より選ばれた少なくとも一種の単量体30~100質量%、並びにアクリル酸エステル及びメタクリル酸エステルからなる群より選ばれた少なくとも一種の単量体0~70質量%とを用いて得られた(メタ)アクリロニトリル(共)重合体が好ましい。 When a (co) polymer containing no vinylidene chloride is desired as the outer polymer, at least one monomer 30 selected from the group consisting of acrylonitrile and methacrylonitrile is used as the polymerizable monomer. A (meth) acrylonitrile (co) polymer obtained using ˜100% by mass and at least one monomer selected from the group consisting of acrylic acid ester and methacrylic acid ester is preferred.
 塩化ビニリデンを含まない他の(共)重合体としては、重合性単量体として、アクリロニトリル1~99質量%、メタクリロニトリル1~99質量%、並びにアクリル酸エステル及びメタクリル酸エステルからなる群より選ばれた少なくとも一種の単量体0~70質量%を用いて得られた共重合体が好ましい。 Other (co) polymers not containing vinylidene chloride include, as a polymerizable monomer, acrylonitrile 1 to 99% by mass, methacrylonitrile 1 to 99% by mass, and a group consisting of acrylic acid ester and methacrylic acid ester. A copolymer obtained by using 0 to 70% by mass of at least one selected monomer is preferred.
 加工性、発泡性、ガスバリヤー性、耐溶剤性などが特に優れた熱膨張性マイクロスフェアを得るには、外殻の(メタ)アクリロニトリル(共)重合体が、重合性単量体として、アクリロニトリル20~80質量%、メタクリロニトリル20~80質量%、並びにアクリル酸エステル及びメタクリル酸エステルからなる群より選ばれた少なくとも一種の単量体0~20質量%を用いて得られた共重合体であることが好ましい。 In order to obtain thermally expandable microspheres with particularly excellent processability, foamability, gas barrier properties, and solvent resistance, (meth) acrylonitrile (co) polymer in the outer shell is used as the polymerizable monomer. Copolymer obtained using 20 to 80% by mass of methacrylonitrile, 20 to 80% by mass of methacrylonitrile, and 0 to 20% by mass of at least one monomer selected from the group consisting of acrylic acid ester and methacrylic acid ester It is preferable that
 重合性単量体と共に、発泡特性、加工特性、耐溶剤性、耐熱性を改良するために、架橋性単量体を併用することができる。架橋性単量体としては、通常、2つ以上の炭素-炭素二重結合を有する化合物が用いられる。架橋性単量体として、例えば、ジビニルベンゼン、ジビニルナフタレン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#400ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレートなどの二官能架橋性単量体;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアリルイソシアネート、トリアクリルホルマールなどの三官能架橋性単量体;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの三官能以上の多官能架橋性単量体;などが挙げられる。架橋性単量体の使用割合は、重合性単量体の全量基準で、好ましくは0.05~5質量%、より好ましくは0.1~3質量%である。 A crosslinkable monomer can be used in combination with the polymerizable monomer in order to improve foaming characteristics, processing characteristics, solvent resistance, and heat resistance. As the crosslinkable monomer, a compound having two or more carbon-carbon double bonds is usually used. Examples of the crosslinkable monomer include divinylbenzene, divinylnaphthalene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, glycerin di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, PEG # 200 di Bifunctional crosslinkable monomers such as (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tria Trifunctional crosslinkable monomers such as diisocyanate and triacryl formal; trifunctional or more polyfunctional crosslinks such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate and dipentaerythritol hexa (meth) acrylate Monomer, etc. The proportion of the crosslinkable monomer used is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass, based on the total amount of the polymerizable monomer.
 発泡剤として、加熱によりガス化またはガスの発生が可能な物質を使用する。発泡剤としては、外殻を形成する重合体(熱可塑性樹脂)の軟化点以下の温度でガス化する化合物が好ましい。このような発泡剤としては、低沸点有機溶剤が好適であり、例えば、エタン、エチレン、プロパン、プロペン、n-ブタン、イソブタン、ブテン、イソブテン、n-ペンタン、イソペンタン、ネオペンタン、2,2,4-トリメチルペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、2,2,4,6,6-ペンタメチルヘプタン(即ち、イソドデカン)、石油エーテルなどの炭化水素;CCl F、CCl、CClF、CClF-CClFなどのクロロフルオロカーボン;テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル-n-プロピルシランなどのテトラアルキルシラン;などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 As the foaming agent, a substance capable of gasification or gas generation by heating is used. As the foaming agent, a compound that gasifies at a temperature below the softening point of the polymer (thermoplastic resin) forming the outer shell is preferable. As such a foaming agent, a low-boiling organic solvent is suitable. For example, ethane, ethylene, propane, propene, n-butane, isobutane, butene, isobutene, n-pentane, isopentane, neopentane, 2,2,4 Hydrocarbons such as trimethylpentane, n-hexane, isohexane, n-heptane, 2,2,4,6,6-pentamethylheptane (ie isododecane), petroleum ether; CCl 3 F, CCl 2 F 2 , CClF 3 , chlorofluorocarbons such as CClF 2 -CClF 2 ; tetraalkylsilanes such as tetramethylsilane, trimethylethylsilane, trimethylisopropylsilane, trimethyl-n-propylsilane; and the like. These can be used alone or in combination of two or more.
 これらの中でも、イソブタン、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、イソヘキサン、ヘプタン、2,2,4-トリメチルペンタン、イソドデカン、石油エーテル、及びこれらの2種以上の混合物が好ましい。加熱によりガスを発生可能な発泡剤は、アゾジカルボンアミドなどの加熱により熱分解してガスを発生する化合物である。 Of these, isobutane, n-butane, n-pentane, isopentane, n-hexane, isohexane, heptane, 2,2,4-trimethylpentane, isododecane, petroleum ether, and mixtures of two or more thereof are preferred. A foaming agent capable of generating a gas by heating is a compound that generates a gas by being thermally decomposed by heating, such as azodicarbonamide.
 熱膨張性マイクロスフェア中に封入される発泡剤の含有量は、好ましくは5~50質量%、より好ましくは7~40質量%である。重合性単量体と発泡剤の使用割合は、重合後に外殻重合体と発泡剤とが上記割合となるように調節することが好ましい。 The content of the foaming agent enclosed in the heat-expandable microsphere is preferably 5 to 50% by mass, more preferably 7 to 40% by mass. It is preferable to adjust the usage ratio of the polymerizable monomer and the foaming agent so that the outer shell polymer and the foaming agent have the above ratio after the polymerization.
 重合開始剤としては、重合性単量体に可溶性である油溶性重合開始剤が好ましい。重合開始剤として、例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート、及びアゾ化合物が挙げられる。重合開始剤は、通常、単量体混合物中に含有させるが、早期重合を抑制する必要がある場合には、造粒工程中または造粒工程後に、その一部または全部を水性分散媒体中に添加して、重合性混合物の液滴中に移行させてもよい。重合開始剤は、水性分散媒体基準で、通常、0.0001~3質量%の割合で使用される。 The polymerization initiator is preferably an oil-soluble polymerization initiator that is soluble in the polymerizable monomer. Examples of the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound. The polymerization initiator is usually contained in the monomer mixture. However, when it is necessary to suppress early polymerization, a part or all of the polymerization initiator is added to the aqueous dispersion medium during or after the granulation step. It may be added and transferred into droplets of the polymerizable mixture. The polymerization initiator is usually used in a proportion of 0.0001 to 3% by mass based on the aqueous dispersion medium.
 懸濁重合は、通常、分散安定剤を含有する水性分散媒体中で行われる。分散安定剤としては、例えば、シリカ、水酸化マグネシウムなどの無機微粒子を挙げることができる。この他に補助安定剤、例えば、ジエタノールアミンと脂肪族ジカルボン酸の縮合生成物、ポリビニルピロリドン、ポリエチレンオキサイド、各種乳化剤等を使用することができる。分散安定剤は、重合性単量体100質量部に対して、通常、0.1~20質量部の割合で使用される。 Suspension polymerization is usually performed in an aqueous dispersion medium containing a dispersion stabilizer. Examples of the dispersion stabilizer include inorganic fine particles such as silica and magnesium hydroxide. In addition, auxiliary stabilizers such as a condensation product of diethanolamine and an aliphatic dicarboxylic acid, polyvinyl pyrrolidone, polyethylene oxide, various emulsifiers and the like can be used. The dispersion stabilizer is usually used at a ratio of 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
 分散安定剤を含有する水性分散媒体は、通常、分散安定剤や補助安定剤を脱イオン水に配合して調製する。重合時の水相のpHは、使用する分散安定剤や補助安定剤の種類によって適宜決められる。例えば、分散安定剤としてコロイダルシリカなどのシリカを使用する場合は、酸性環境下で重合が行われる。水性分散媒体を酸性にするには、必要に応じて酸を加えて、系のpHを7以下、好ましくはpH6以下、特に好ましくはpH3~4程度に調整する。水酸化マグネシウムやリン酸カルシウムなどの酸性環境下で水性分散媒体に溶解する分散安定剤の場合には、アルカリ性環境下で重合させる。 An aqueous dispersion medium containing a dispersion stabilizer is usually prepared by blending a dispersion stabilizer or an auxiliary stabilizer with deionized water. The pH of the aqueous phase at the time of polymerization is appropriately determined depending on the type of dispersion stabilizer and auxiliary stabilizer used. For example, when silica such as colloidal silica is used as a dispersion stabilizer, polymerization is performed in an acidic environment. In order to make the aqueous dispersion medium acidic, an acid is added as necessary to adjust the pH of the system to 7 or less, preferably pH 6 or less, particularly preferably about pH 3 to 4. In the case of a dispersion stabilizer that dissolves in an aqueous dispersion medium under an acidic environment such as magnesium hydroxide or calcium phosphate, the polymerization is carried out in an alkaline environment.
 分散安定剤の好ましい組み合わせの一つとして、コロイダルシリカと縮合生成物との組み合わせがある。縮合生成物としては、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物が好ましく、特にジエタノールアミンとアジピン酸との縮合物や、ジエタノールアミンとイタコン酸との縮合生成物が好ましい。縮合生成物の酸価は、60以上95未満であることが好ましく、65~90であることがより好ましい。さらに、塩化ナトリウム、硫酸ナトリウム等の無機塩を添加すると、より均一な粒子形状を有する熱膨張性マイクロスフェアが得られやすくなる。無機塩としては、通常、食塩が好適に用いられる。 One preferred combination of dispersion stabilizers is a combination of colloidal silica and a condensation product. As the condensation product, a condensation product of diethanolamine and an aliphatic dicarboxylic acid is preferable, and a condensation product of diethanolamine and adipic acid or a condensation product of diethanolamine and itaconic acid is particularly preferable. The acid value of the condensation product is preferably 60 or more and less than 95, and more preferably 65 to 90. Furthermore, when an inorganic salt such as sodium chloride or sodium sulfate is added, it becomes easier to obtain thermally expandable microspheres having a more uniform particle shape. As the inorganic salt, sodium chloride is usually preferably used.
 コロイダルシリカの使用量は、その粒子径によっても変わるが、通常、重合性単量体100質量部に対して、0.5~20質量部、好ましくは1~15質量部の範囲内である。縮合生成物は、重合性単量体100質量部に対して、通常0.05~2質量部の割合で使用される。無機塩は、重合性単量体100質量部に対して、0~100質量部の割合で使用される。 The amount of colloidal silica used varies depending on the particle size, but is usually in the range of 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, with respect to 100 parts by mass of the polymerizable monomer. The condensation product is usually used at a ratio of 0.05 to 2 parts by mass with respect to 100 parts by mass of the polymerizable monomer. The inorganic salt is used in a ratio of 0 to 100 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
 重合助剤として、水性分散媒体中に、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、水可溶性アスコルビン酸類、及び硼酸からなる群より選ばれる少なくとも一種の化合物を存在させることができる。これらの化合物の存在下に懸濁重合を行うと、重合時に、重合粒子同士の凝集が起こらず、重合物が重合缶壁に付着することがなく、重合による発熱を効率的に除去しながら安定して熱発泡性マイクロスフェアーを製造することができる。 As a polymerization assistant, at least one compound selected from the group consisting of alkali metal nitrite, stannous chloride, stannic chloride, water-soluble ascorbic acid, and boric acid can be present in the aqueous dispersion medium. . When suspension polymerization is performed in the presence of these compounds, polymerization particles do not agglomerate at the time of polymerization, the polymer does not adhere to the polymerization can wall, and is stable while efficiently removing heat generated by polymerization. Thus, a thermally foamable microsphere can be produced.
 亜硝酸アルカリ金属塩の中では、亜硝酸ナトリウム及び亜硝酸カリウムが入手の容易性や価格の点で好ましい。アスコルビン酸類としては、アスコルビン酸、アスコルビン酸の金属塩、アスコルビン酸のエステルなどが挙げられるが、これらの中でも水可溶性のものが好適に用いられる。水可溶性アスコルビン酸類は、23℃の水に対する溶解性が1g/100cm 以上であるものを意味し、アスコルビン酸とそのアルカリ金属塩が好ましい。これらの中でも、L-アスコルビン酸(ビタミンC)、アスコルビン酸ナトリウム、及びアスコルビン酸カリウムが好ましい。重合助剤は、重合性単量体100質量部に対して、通常、0.001~2質量部、好ましくは0.01~1質量部の割合で使用される。 Among the alkali metal nitrites, sodium nitrite and potassium nitrite are preferable in terms of availability and price. Examples of ascorbic acids include ascorbic acid, metal salts of ascorbic acid, esters of ascorbic acid, and the like. Among these, water-soluble ones are preferably used. Water-soluble ascorbic acids mean those having a solubility in water at 23 ° C. of 1 g / 100 cm 3 or more, and ascorbic acid and alkali metal salts thereof are preferred. Among these, L-ascorbic acid (vitamin C), sodium ascorbate, and potassium ascorbate are preferable. The polymerization aid is usually used in a proportion of 0.001 to 2 parts by mass, preferably 0.01 to 1 part by mass, with respect to 100 parts by mass of the polymerizable monomer.
 水性分散媒体に各成分を添加する順序は、任意であるが、通常は、水と分散安定剤、必要に応じて安定助剤や重合助剤などを加えて、分散安定剤を含有する水性分散媒体を調製する。一方、重合性単量体及び発泡剤は、別々に水性分散媒体に加えて、水性分散媒体中で一体化して重合性単量体混合物(油性混合物)を形成してもよいが、通常は、予め両者を混合してから水性分散媒体中に添加する。重合開始剤は、予め重合性単量体に添加して使用することができるが、早期の重合を避ける必要がある場合には、例えば、重合性単量体と発泡剤との混合物を水性分散媒体中に添加し、攪拌しながら重合開始剤を加え、水性分散媒体中で一体化してもよい。重合性混合物と水性分散媒体との混合を別の容器で行って、高剪断力を有する攪拌機や分散機で攪拌混合した後、重合缶に仕込んでもよい。 The order of adding each component to the aqueous dispersion medium is arbitrary, but usually an aqueous dispersion containing a dispersion stabilizer by adding water and a dispersion stabilizer, and if necessary, a stabilizer or a polymerization assistant. Prepare the medium. On the other hand, the polymerizable monomer and the foaming agent may be separately added to the aqueous dispersion medium and integrated in the aqueous dispersion medium to form a polymerizable monomer mixture (oil-based mixture). Both are mixed in advance and then added to the aqueous dispersion medium. The polymerization initiator can be used by adding it to the polymerizable monomer in advance, but when it is necessary to avoid early polymerization, for example, a mixture of the polymerizable monomer and the foaming agent is dispersed in water. The polymerization initiator may be added to the medium while stirring, and may be integrated in the aqueous dispersion medium. The polymerization mixture and the aqueous dispersion medium may be mixed in a separate container, stirred and mixed with a stirrer or disperser having high shearing force, and then charged into a polymerization can.
 重合性単量体混合物と水性分散媒体とを攪拌混合することにより、水性分散媒体中で重合性単量体混合物の液滴を形成する。液滴の平均粒径は、目的とする熱膨張性マイクロスフェアの平均粒径とほぼ一致させることが好ましい。懸濁重合は、通常、反応槽内を脱気するか、もしくは不活性ガスで置換して、30~100℃の温度に昇温して行う。 A polymerizable monomer mixture droplet is formed in the aqueous dispersion medium by stirring and mixing the polymerizable monomer mixture and the aqueous dispersion medium. It is preferable that the average particle size of the liquid droplets is approximately the same as the average particle size of the target thermally expandable microsphere. The suspension polymerization is usually carried out by degassing the inside of the reaction vessel or replacing it with an inert gas and raising the temperature to 30 to 100 ° C.
 懸濁重合後、水相は、例えば、濾過、遠心分離、沈降によって除去される。熱膨張性マイクロスフェアは、濾過・洗浄した後、乾燥する。熱膨張性マイクロスフェアは、発泡剤がガス化しない程度の比較的低温で乾燥される。 After suspension polymerization, the aqueous phase is removed by, for example, filtration, centrifugation, and sedimentation. The thermally expandable microspheres are dried after being filtered and washed. The thermally expandable microsphere is dried at a relatively low temperature such that the foaming agent is not gasified.
 本発明の熱膨張性マイクロスフェアの平均粒径は、通常0.5~150μm、好ましくは1~130μm、より好ましくは3~100μm、特に好ましくは5~50μmの範囲内である。本発明の熱膨張性マイクロスフェアの発泡剤の含有量は、通常5~50質量%、好ましくは7~40質量%である。熱膨張性マイクロスフェアの発泡温度は、外殻を構成する熱可塑性樹脂(重合体)の種類や厚みなどによって変動する。 The average particle size of the thermally expandable microspheres of the present invention is usually in the range of 0.5 to 150 μm, preferably 1 to 130 μm, more preferably 3 to 100 μm, and particularly preferably 5 to 50 μm. The content of the blowing agent in the thermally expandable microsphere of the present invention is usually 5 to 50% by mass, preferably 7 to 40% by mass. The foaming temperature of the thermally expandable microsphere varies depending on the type and thickness of the thermoplastic resin (polymer) constituting the outer shell.
 本発明の製造方法は、下記工程1及び2を含む、外殻表面に固体材料が付着した中空マイクロスフェアの製造方法である。 The production method of the present invention is a method for producing hollow microspheres including the following steps 1 and 2, in which a solid material adheres to the outer shell surface.
(1)熱可塑性樹脂から形成された外殻内にガス化またはガスの発生が可能な発泡剤が封入されたマイクロカプセル構造を有し、加熱により熱膨張して中空マイクロスフェアを形成する熱膨張性マイクロスフェア、及び該熱膨張性マイクロスフェアの平均粒径よりも小さな平均粒径若しくは平均長径を有する固体材料を、液状分散媒体中に分散させて、スラリーを調製する工程1;並びに
(2)該スラリー中で該熱膨張性マイクロスフェアを加熱して、その外殻を軟化させると共に、該発泡剤のガス化若しくは該発泡剤からの発生ガスにより熱膨張させ、それによって、軟化した外殻表面に該固体材料が付着した中空マイクロスフェアを形成する工程2。
(1) Thermal expansion that has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin, and that thermally expands by heating to form hollow microspheres. And (2) preparing a slurry by dispersing a solid material having an average particle size or an average major axis smaller than the average particle size of the expandable microsphere and the average particle size of the thermally expandable microsphere in a liquid dispersion medium; The thermally expandable microspheres are heated in the slurry to soften the outer shell, and thermally expanded by gasification of the foaming agent or gas generated from the foaming agent, thereby softening the outer shell surface. Step 2 of forming a hollow microsphere having the solid material attached thereto.
 図2を参照しながら、本発明の製造方法の概要について説明する。図2(a)に示されているように、容器21内に、液状分散媒体22中に熱膨張性マイクロスフェア1と固体材料23とを分散させたスラリーを仕込む。熱膨張性マイクロスフェア1と固体材料23とを均一に分散させるために、撹拌することが好ましい。このスラリー中に加熱水蒸気を吹き込むなどの加熱手段によって熱膨張性マイクロスフェアを加熱発泡させると、図2(b)に示されているように、発泡体(中空マイクロスフェア)101が生成すると共に、その表面に多数の固体材料23が付着する。 The outline of the production method of the present invention will be described with reference to FIG. As shown in FIG. 2A, a slurry in which the thermally expandable microspheres 1 and the solid material 23 are dispersed in a liquid dispersion medium 22 is charged in a container 21. In order to disperse | distribute the thermally expansible microsphere 1 and the solid material 23 uniformly, it is preferable to stir. When the thermally expandable microspheres are heated and foamed by heating means such as blowing heated steam into the slurry, as shown in FIG. 2 (b), a foam (hollow microsphere) 101 is generated, A large number of solid materials 23 adhere to the surface.
 工程1において使用する固体材料は、常温(25±15℃)で固体であって、熱膨張性マイクロスフェアの平均粒径よりも小さな平均粒径若しくは平均長径を有する微細な固体材料である。固体材料の形状は、粒状、球状、立方体状、紡錘状、棒状、板状、針状、繊維状などであり、特に限定されない。固体材料の材質は、無機物でも有機物でもよい。 The solid material used in Step 1 is a fine solid material that is solid at normal temperature (25 ± 15 ° C.) and has an average particle diameter or an average major axis smaller than the average particle diameter of the thermally expandable microsphere. The shape of the solid material is not particularly limited, and may be granular, spherical, cubic, spindle, rod, plate, needle, fiber, or the like. The material of the solid material may be inorganic or organic.
 無機固体材料としては、例えば、シリカ、石灰石、石英、アパタイト、マグネタイト、ゼオライト、クレイ(モンモリロナイト、ヘクトライト、サポナイト、バーミキュライト、タルク、雲母、マイカなど)などの天然物;炭酸カルシウムなどの炭酸金属塩;硫酸バリウム、硫酸アルミニウム、硫酸コバルト、硫酸銅、硫酸ニッケルなどの金属硫酸塩;酸化チタン、酸化亜鉛、酸化アルミニウム、酸化スズ、酸化バナジウム、酸化インジウム、酸化クロム、酸化タングステン、酸化鉄などの金属酸化物;水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物;硫化銅、硫化鉛などの金属硫化物;ホウ酸アルミニウム、ホウ酸亜鉛などの金属ホウ酸塩;窒化アルミニウム、窒化クロム、窒化コバルトなどの金属窒化物;ガラスフレーク、ガラスビーズなどのガラス;セラミックビーズなどのセラミックス;金属または合金の微粒子;カーボンブラック、カーボンナノチューブ、グラファイト、活性炭、フラーレンなどの炭化物;水晶ビーズ、マイカ、ネフエリンシナイト、ハイドロタルサイト、合成ケイ酸、石英粉、珪石粉、珪藻土、軽石粉、その他の無機顔料などの微粉体を挙げることができる。 Examples of inorganic solid materials include natural products such as silica, limestone, quartz, apatite, magnetite, zeolite, clay (montmorillonite, hectorite, saponite, vermiculite, talc, mica, mica, etc.); metal carbonates such as calcium carbonate Metal sulfates such as barium sulfate, aluminum sulfate, cobalt sulfate, copper sulfate, nickel sulfate; metals such as titanium oxide, zinc oxide, aluminum oxide, tin oxide, vanadium oxide, indium oxide, chromium oxide, tungsten oxide, iron oxide Oxides; Metal hydroxides such as aluminum hydroxide and magnesium hydroxide; Metal sulfides such as copper sulfide and lead sulfide; Metal borates such as aluminum borate and zinc borate; Aluminum nitride, chromium nitride and cobalt nitride Metal nitride such as glass frame Glass such as glass beads; Ceramics such as ceramic beads; Fine particles of metal or alloy; Carbides such as carbon black, carbon nanotubes, graphite, activated carbon, fullerene; Crystal beads, mica, nepheline sinite, hydrotalcite, synthetic silica Examples thereof include fine powders such as acid, quartz powder, quartzite powder, diatomaceous earth, pumice powder, and other inorganic pigments.
 コロイド状の無機固体材料としては、例えば、コロイダルシリカ、コロイド状炭酸カルシウム、水酸化マグネシウムコロイド、リン酸カルシウムコロイドなどを挙げることができる。針状または繊維状の無機固体材料としては、ガラス繊維、炭素繊維、アルミナ繊維、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、ウォラスナイトなどが挙げられる。 Examples of colloidal inorganic solid materials include colloidal silica, colloidal calcium carbonate, magnesium hydroxide colloid, and calcium phosphate colloid. Examples of the needle-like or fibrous inorganic solid material include glass fiber, carbon fiber, alumina fiber, potassium titanate whisker, aluminum borate whisker, and wollastonite.
 有機固体材料としては、例えば、ポリスチレンビーズ、ポリメチルメタクリレートビーズ、ポリテトラフルオロエチレンビーズなどの有機樹脂の微粒子、綿繊維、ポリアミド繊維などが挙げられる。有機樹脂の微粒子には、架橋構造を導入した有機樹脂微粒子、官能基または極性基を導入した有機樹脂微粒子などが含まれる。 Examples of the organic solid material include fine particles of organic resin such as polystyrene beads, polymethyl methacrylate beads, and polytetrafluoroethylene beads, cotton fibers, and polyamide fibers. The organic resin fine particles include organic resin fine particles introduced with a crosslinked structure, organic resin fine particles introduced with a functional group or a polar group, and the like.
 これらの固体材料は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。固体材料は、疎水化処理などの表面処理を施したものであってもよい。中空マイクロスフェアの外殻表面に付着させる固体材料の種類を選択することにより、比重を制御したり、断熱性、スリップ性、遮音性、導電性、磁性、圧電性、殺菌性、紫外線吸収性などの機能を付与したりすることができる。 These solid materials can be used alone or in combination of two or more. The solid material may be subjected to a surface treatment such as a hydrophobic treatment. By selecting the type of solid material to be attached to the outer shell surface of the hollow microsphere, the specific gravity can be controlled, heat insulation, slip, sound insulation, conductivity, magnetism, piezoelectricity, bactericidal, ultraviolet absorption, etc. Can be added.
 無機及び/または有機の固体材料の平均粒径または平均長径は、熱膨張性マイクロスフェアの平均粒径よりも十分に小さいことが好ましく、通常、10μm以下、好ましくは3μm以下、より好ましくは1μm以下、特に好ましくは0.1μm以下である。該平均粒径または平均長径の下限は、効果及び取扱性の観点から、0.001μm程度である。固体材料の平均粒径は、電子顕微鏡または光学顕微鏡を用いた観察計数法により測定した一次粒子の平均直径または平均長径である。 The average particle diameter or average long diameter of the inorganic and / or organic solid material is preferably sufficiently smaller than the average particle diameter of the thermally expandable microsphere, and is usually 10 μm or less, preferably 3 μm or less, more preferably 1 μm or less. Particularly preferably, it is 0.1 μm or less. The lower limit of the average particle diameter or the average major axis is about 0.001 μm from the viewpoints of effects and handleability. The average particle diameter of the solid material is an average diameter or an average major axis of primary particles measured by an observation counting method using an electron microscope or an optical microscope.
 固体材料として、平均粒径が3μm以下、好ましくは1μm以下、より好ましくは0.1μm以下で、比重(真比重)が1.5~6.0g/cm、好ましくは2.0~6.0g/cm、より好ましくは2.5~5.8g/cmの範囲内にある少なくとも一種の無機物を用いることにより、中空マイクロスフェアの比重を高くすることができる。このような無機物としては、例えば、炭酸カルシウム(例えば、比重=約2.70g/cmの重質炭酸カルシウム、比重=約2.60g/cmの軽質及びコロイド状炭酸カルシウム)、結晶性シリカ(比重=2.6g/cm)、酸化アルミニウム(比重=3.98g/cm)、カオリン(クレー)(比重=2.5~2.6g/cm)、酸化チタン(例えば、比重=3.9g/cmのアナターゼ形または比重=4.2g/cmのルチル形)、硫酸バリウム(比重=4.50g/cm)、酸化亜鉛(比重=5.70g/cmの通常酸化亜鉛または比重=5.78g/cmのテトラポット型酸化亜鉛)などが挙げられる。 The solid material has an average particle size of 3 μm or less, preferably 1 μm or less, more preferably 0.1 μm or less, and a specific gravity (true specific gravity) of 1.5 to 6.0 g / cm 3 , preferably 2.0 to 6. By using at least one inorganic substance in the range of 0 g / cm 3 , more preferably 2.5 to 5.8 g / cm 3 , the specific gravity of the hollow microsphere can be increased. Examples of such inorganic substances include calcium carbonate (for example, heavy calcium carbonate having a specific gravity of about 2.70 g / cm 3 , light and colloidal calcium carbonate having a specific gravity of about 2.60 g / cm 3 ), crystalline silica, and the like. (Specific gravity = 2.6 g / cm 3 ), aluminum oxide (specific gravity = 3.98 g / cm 3 ), kaolin (clay) (specific gravity = 2.5 to 2.6 g / cm 3 ), titanium oxide (for example, specific gravity = anatase or rutile type specific gravity = 4.2 g / cm 3 of 3.9g / cm 3), barium sulfate (specific gravity = 4.50g / cm 3), typically oxide of zinc oxide (specific gravity = 5.70 g / cm 3 Zinc or tetrapot-type zinc oxide having a specific gravity of 5.78 g / cm 3 ).
 固体材料の含有量(付着量)は、所望の機能と固体材料の種類に応じて、適宜定めることができるが、固体材料が付着した中空マイクロスフェアの全量基準で、通常1~99.9質量%、好ましくは10~99.5質量%、より好ましくは15~99.3質量%、特に好ましくは20~99.0質量%の範囲内である。ただし、熱膨張性マイクロスフェアの粒径を制御するために用いられる分散安定剤(例えば、シリカ、水酸化マグネシウムなどの無機微粒子)の付着量は、これらから除くものとする。 The content (adhesion amount) of the solid material can be appropriately determined according to the desired function and the type of the solid material, but usually 1 to 99.9 masses based on the total amount of the hollow microspheres to which the solid material is adhered. %, Preferably 10 to 99.5% by mass, more preferably 15 to 99.3% by mass, particularly preferably 20 to 99.0% by mass. However, the amount of dispersion stabilizer (for example, inorganic fine particles such as silica and magnesium hydroxide) used for controlling the particle size of the thermally expandable microsphere is excluded from these.
 中空マイクロスフェアの外殻表面に対する固体材料の付着量は、一般的には、固体材料の存在下と非存在下で得られた各中空マイクロスフェア間の質量差に基づいて算出することができる。固体材料が無機物である場合には、固体材料が外殻表面に付着した中空マイクロスフェアを燃焼させて、燃焼後の灰分の量を測定する方法により、固体材料の付着量を算出することができる。 The amount of the solid material attached to the outer shell surface of the hollow microsphere can be generally calculated based on the mass difference between the hollow microspheres obtained in the presence and absence of the solid material. When the solid material is inorganic, the amount of solid material deposited can be calculated by burning the hollow microsphere with the solid material adhered to the outer shell surface and measuring the amount of ash after combustion. .
 固体材料の含有量が少なすぎると、熱膨張性マイクロスフェア同士の凝集を防ぎつつ、各種機能を十分に発揮することが困難となる。固体材料の含有量を多くしすぎると、熱膨張性マイクロスフェアの発泡が困難になる。 When the content of the solid material is too small, it becomes difficult to sufficiently exhibit various functions while preventing aggregation of the thermally expandable microspheres. When the content of the solid material is excessively large, it is difficult to foam the thermally expandable microsphere.
 前記工程1において、熱膨張性マイクロスフェア、及び該熱膨張性マイクロスフェアの平均粒径よりも小さな平均粒径若しくは平均長径を有する固体材料を、液状分散媒体中に分散させて、スラリーを調製する。 In step 1, the thermally expandable microsphere and a solid material having an average particle diameter or an average major axis smaller than the average particle diameter of the thermally expandable microsphere are dispersed in a liquid dispersion medium to prepare a slurry. .
 液状分散媒体としては、熱膨張性マイクロスフェアの外殻を形成する熱可塑性樹脂を溶解しないか、溶解度が小さなものが好ましい。液状分散媒体は、熱膨張性マイクロスフェアの外殻を形成する熱可塑性樹脂を分解させないか、分解させる程度の低いものが好ましい。 As the liquid dispersion medium, a medium that does not dissolve the thermoplastic resin that forms the outer shell of the thermally expandable microsphere or has a low solubility is preferable. The liquid dispersion medium is preferably a medium that does not decompose or has a low degree of decomposition of the thermoplastic resin that forms the outer shell of the thermally expandable microsphere.
 液状分散媒体の具体例としては、水;イソプロピルアルコール、エチレングリコール、グリセリン、フタル酸エステル、シリコーンオイル、パラフィン油などの有機溶媒;水/エチレングリコール混合液、水/グリセリン混合液などの混合溶媒;などが挙げられる。これらの中でも、水、及び水を含有する混合溶媒などの水性分散媒体が好ましく、特に水が好ましい。液状分散媒体には、所望により、界面活性剤や分散安定剤などを加えてもよい。 Specific examples of the liquid dispersion medium include water; organic solvents such as isopropyl alcohol, ethylene glycol, glycerin, phthalate ester, silicone oil, and paraffin oil; mixed solvents such as water / ethylene glycol mixed solution and water / glycerin mixed solution; Etc. Among these, water and an aqueous dispersion medium such as a mixed solvent containing water are preferable, and water is particularly preferable. If desired, a surfactant or a dispersion stabilizer may be added to the liquid dispersion medium.
 液状分散媒体中での熱膨張性マイクロスフェアの濃度は、通常0.1~10質量%、好ましくは0.1~8質量%、より好ましくは0.2~7質量%、特に好ましくは0.3~5質量%の範囲内である。この濃度が高すぎると、熱膨張性マイクロスフェアの加熱発泡時に、発泡体同士の熱融着が生じやすくなったり、固体材料の添加量を少なくせざるを得なくなったりする。この濃度が低すぎると、生産効率が低下する。 The concentration of the heat-expandable microspheres in the liquid dispersion medium is usually 0.1 to 10% by mass, preferably 0.1 to 8% by mass, more preferably 0.2 to 7% by mass, and particularly preferably 0.8. It is within the range of 3 to 5% by mass. If this concentration is too high, the thermal expansion of the thermally expandable microspheres tends to cause thermal fusion between the foams, or the amount of solid material added must be reduced. If this concentration is too low, the production efficiency decreases.
 熱膨張性マイクロスフェアが、水性分散媒体中で重合性単量体及び発泡剤を含有する重合性単量体混合物を懸濁重合して形成されたものである場合には、懸濁重合前、懸濁重合中または懸濁重合後に、水性分散媒体中に固体材料を添加することにより、熱膨張性マイクロスフェアと固体材料とが水性分散媒体中に分散したスラリーを調製することができる。この場合、懸濁重合の前後、懸濁重合前と懸濁重合中などに、複数回に分けて固体材料を添加してもよい。固体材料がコロイダルシリカのような分散安定剤である場合には、通常、懸濁重合中や懸濁重合後に追加する。スラリー中の熱膨張性マイクロスフェアの濃度調整を行うために、水などの液状分散媒体を追加したり、水性分散媒体の一部を濾過または傾斜により除去してもよい。 When the heat-expandable microspheres are formed by suspension polymerization of a polymerizable monomer mixture containing a polymerizable monomer and a foaming agent in an aqueous dispersion medium, By adding the solid material in the aqueous dispersion medium during or after the suspension polymerization, a slurry in which the thermally expandable microspheres and the solid material are dispersed in the aqueous dispersion medium can be prepared. In this case, the solid material may be added in several batches before and after suspension polymerization, before suspension polymerization and during suspension polymerization. When the solid material is a dispersion stabilizer such as colloidal silica, it is usually added during suspension polymerization or after suspension polymerization. In order to adjust the concentration of the thermally expandable microspheres in the slurry, a liquid dispersion medium such as water may be added, or a part of the aqueous dispersion medium may be removed by filtration or tilting.
 熱膨張性マイクロスフェアが、水性分散媒体中で重合性単量体及び発泡剤を含有する重合性単量体混合物を懸濁重合して形成されたものである場合、水性分散媒体から回収した熱膨張性マイクロスフェアを固体材料と共に液状の分散媒体中に分散させて、スラリーを調製することができる。 When the heat-expandable microsphere is formed by suspension polymerization of a polymerizable monomer mixture containing a polymerizable monomer and a foaming agent in an aqueous dispersion medium, the heat recovered from the aqueous dispersion medium The expandable microspheres can be dispersed with a solid material in a liquid dispersion medium to prepare a slurry.
 前記工程2では、スラリー中で熱膨張性マイクロスフェアを加熱して、その外殻を軟化させると共に、発泡剤のガス化若しくは発泡剤からの発生ガスにより熱膨張させ、それによって、軟化した外殻表面に固体材料が付着した中空マイクロスフェアを形成する。 In the step 2, the thermally expandable microspheres are heated in the slurry to soften the outer shell, and thermally expanded by the gasification of the foaming agent or the gas generated from the foaming agent, thereby softening the outer shell. Hollow microspheres with solid material attached to the surface are formed.
 熱膨張性マイクロスフェアと固体材料との間に比重差のあることが通常であるので、撹拌装置を備えた容器(タンクや重合缶など)にスラリーを仕込み、撹拌して、熱膨張性マイクロスフェアと固体材料をスラリー中に均一に分散させることが好ましい。熱膨張性マイクロスフェアの加熱発泡も、スラリーを撹拌しながら行うことが好ましい。 Since there is usually a specific gravity difference between the thermally expandable microsphere and the solid material, the slurry is charged into a container (tank, polymerization can, etc.) equipped with a stirring device, stirred, and thermally expanded microsphere. It is preferable that the solid material is uniformly dispersed in the slurry. The thermal expansion of the thermally expandable microsphere is also preferably performed while stirring the slurry.
 加熱発泡手段としては、スラリーを加熱する方法、スラリー中に加熱水蒸気を吹き込む方法、誘電加熱法などがある。液状分散媒体として水性分散媒体などの比較的低温で蒸発する液体を用いる場合には、加熱加圧してもよい。これらの中でも、スラリー中に加熱水蒸気を吹き込む方法は、極めて短時間で熱膨張性マイクロスフェアを加熱発泡させることができるため、特に好ましい。加熱水蒸気の温度は、熱膨張性マイクロスフェアの発泡温度にもよるが、通常100~200℃、好ましくは110~190℃、より好ましくは120~180℃の範囲内である。加熱水蒸気の吹き込み時の圧力は、通常0.1~1.56MPa、好ましくは0.14~1.26MPa、より好ましくは0.2~1.0MPaの範囲内である。 As the heating and foaming means, there are a method of heating the slurry, a method of blowing heated steam into the slurry, a dielectric heating method and the like. When a liquid that evaporates at a relatively low temperature, such as an aqueous dispersion medium, is used as the liquid dispersion medium, it may be heated and pressurized. Among these, the method of blowing heated steam into the slurry is particularly preferable because the thermally expandable microsphere can be heated and foamed in a very short time. The temperature of the heated steam is usually 100 to 200 ° C., preferably 110 to 190 ° C., more preferably 120 to 180 ° C., although it depends on the foaming temperature of the thermally expandable microsphere. The pressure at which heated steam is blown is usually in the range of 0.1 to 1.56 MPa, preferably 0.14 to 1.26 MPa, more preferably 0.2 to 1.0 MPa.
 スラリー中での加熱発泡後、スラリーを濾過し、発泡体粒子を洗浄する方法により、固体材料が外殻表面に強固に付着した中空マイクロスフェアを回収する。本発明の中空マイクロスフェアは、加熱発泡時に熱可塑性樹脂からなる外殻が軟化し、その軟化した状態の外殻表面に固体材料が付着するため、通常の水洗工程によって、付着した固体材料が脱落することがない。 After heating and foaming in the slurry, hollow microspheres in which the solid material is firmly attached to the outer shell surface are collected by a method of filtering the slurry and washing the foam particles. In the hollow microsphere of the present invention, the outer shell made of a thermoplastic resin is softened at the time of heating and foaming, and the solid material adheres to the surface of the softened outer shell. There is nothing to do.
 本発明の中空マイクロスフェアの平均粒径は、好ましくは2~200μm、より好ましくは5~100μm、特に好ましくは10~60μmの範囲内である。中空マイクロスフェアの平均粒径が小さすぎると、該中空マイクロスフェアを多孔質形成剤として用いた場合、多孔質構造の形成が不十分となりやすい。他方、該中空マイクロスフェアの平均粒径が大きすぎると、多孔質セラミックス成形体などの多孔質成形体を構成する原料との混練時、及び/または混練により得られた混合物の成形時に、該中空マイクロスフェアがつぶれやすくなり、その結果、多孔質構造の形成が不十分となるおそれが生じる。 The average particle size of the hollow microspheres of the present invention is preferably in the range of 2 to 200 μm, more preferably 5 to 100 μm, particularly preferably 10 to 60 μm. If the average particle size of the hollow microspheres is too small, when the hollow microspheres are used as a porous forming agent, formation of a porous structure tends to be insufficient. On the other hand, if the average particle size of the hollow microspheres is too large, the hollow microspheres may be hollow when kneaded with a raw material constituting a porous molded body such as a porous ceramic molded body and / or when a mixture obtained by kneading is molded. Microspheres are liable to collapse, and as a result, the formation of a porous structure may be insufficient.
 本発明の中空マイクロスフェアは、その外殻表面に固体材料が付着しているため、互いの融着が防止されており、かつ、その取り扱い時に空気中に飛散することが抑制されている。外殻表面に付着させる固体材料の種類と量を調整することにより、中空マイクロスフェアに様々な機能を付与することができる。 Since the hollow microsphere of the present invention has a solid material attached to the outer shell surface thereof, mutual fusion is prevented, and scattering from the air during the handling is suppressed. Various functions can be imparted to the hollow microsphere by adjusting the type and amount of the solid material to be attached to the outer shell surface.
 本発明の中空マイクロスフェアは、その外殻表面に高比重の固体材料を付着させることにより、粒子全体の比重(見掛け比重)を高くすることができ、それによって、比重の高い無機材料などとの均一な混合が容易となる。高比重の中空マイクロスフェアは、例えば、多孔質セラミックス成形体の製造工程で用いられる多孔質形成剤として好適である。多孔質形成剤を用いた多孔質セラミックス成形体は、例えば、特開2007-39333号公報(特許文献1)に開示されている製造方法により製造することができる。 The hollow microsphere of the present invention can increase the specific gravity (apparent specific gravity) of the entire particle by attaching a solid material having a high specific gravity to the outer shell surface. Uniform mixing is facilitated. The hollow microsphere having a high specific gravity is suitable as a porous forming agent used in the production process of a porous ceramic molded body, for example. A porous ceramic molded body using a porous forming agent can be produced, for example, by a production method disclosed in Japanese Patent Application Laid-Open No. 2007-39333 (Patent Document 1).
 具体的には、セラミックス原料と多孔質形成剤とを混合して、混合物を調製する工程a;該混合物を所定形状の成形体に成形する工程b;及び該成形体を焼成する工程c;を含む多孔質セラミックス成形体の製造方法において、該多孔質形成剤として、前記の製造方法により得られた、外殻表面に固体材料が付着した中空マイクロスフェアを使用する。 Specifically, a process a for mixing a ceramic raw material and a porous forming agent to prepare a mixture; a process b for forming the mixture into a molded body having a predetermined shape; and a process c for firing the molded body. In the method for producing a porous ceramic formed body, hollow microspheres obtained by the above production method and having a solid material attached to the outer shell surface are used as the porous forming agent.
 セラミックス原料としては、タルク、カオリン、酸化アルミニウム、水酸化アルミニウム、シリカなどのセラミックス質の混合物、炭化ケイ素、金属シリコンなどが挙げられる。外殻表面に固体材料が付着した中空マイクロスフェアの使用割合は、所望の多孔質構造に応じて適宜定めることができる。焼成温度は、1400~2000℃程度である。 Examples of ceramic raw materials include ceramic mixtures such as talc, kaolin, aluminum oxide, aluminum hydroxide, and silica, silicon carbide, and metal silicon. The use ratio of the hollow microsphere having a solid material attached to the outer shell surface can be appropriately determined according to the desired porous structure. The firing temperature is about 1400 to 2000 ° C.
 一般に、セラミックスと呼ばれる物質群は、極めて広汎であり、その特性も様々である。セラミックスの種類には、陶磁器、ガラス、セメント、石膏、ほうろう、ファインセラミックス(ニューセラミックス)等が含まれる。 In general, the group of substances called ceramics is extremely wide and has various characteristics. Types of ceramics include ceramics, glass, cement, gypsum, enamel, fine ceramics (new ceramics) and the like.
 本発明の中空マイクロスフェアは、例えば、軽量気泡コンクリート(ALC)の多孔質形成剤としても用いられる。該多孔質形成剤を含有するALCは、内部に独立気泡を含み、非常に軽量でありながら、強度が比較的高いという優れた特性を発揮する。ALCは、軽量である上、比較的強度が高く、耐火性、断熱性、施工性にも優れているため、建築物の壁や床などの建築材料として広く使用されている。 The hollow microsphere of the present invention is also used as a porous forming agent for lightweight cellular concrete (ALC), for example. The ALC containing the porous forming agent includes closed cells inside, and exhibits excellent properties such as relatively high strength while being very lightweight. ALC is widely used as a building material for walls and floors of buildings because it is lightweight, relatively strong, and excellent in fire resistance, heat insulation, and workability.
 ALCの製造において、一般に、珪石等の珪酸質原料と、セメントや石灰などの石灰質原料とが主原料として用いられ、石膏及び工程繰り返し原料などが副原料として用いられている。これらの原料の微粉末に、水及び多孔質成形剤を加えてスラリーとした後、該スラリーを型枠内に投入して半硬化させる。次いで、半硬化物にオートクレーブによる高温高圧水蒸気養生を行うことにより、ALCを得ることができる。 In the production of ALC, siliceous raw materials such as silica and calcareous raw materials such as cement and lime are generally used as main raw materials, and gypsum and process repetition raw materials are used as auxiliary raw materials. Water and a porous molding agent are added to these raw material fine powders to form a slurry, which is then placed in a mold and semi-cured. Next, ALC can be obtained by subjecting the semi-cured product to high-temperature and high-pressure steam curing with an autoclave.
 このように、多孔質セラミックス成形体としてALCを製造する工程は、セラミックス原料と多孔質形成剤とを混合して、混合物を調製する工程a;該混合物を所定形状の成形体に成形する工程b;及び該成形体を養生する工程cを含んでいる。セラミックス原料として、セメントや石膏などを使用して多孔質セラミックス成形体を製造する工程では、焼成に代えて、養生を行うことがある。本発明では、ALCなどの多孔質形成剤として、本発明の中空マイクロスフェアを使用する。 Thus, the step of producing ALC as a porous ceramic molded body includes a step of preparing a mixture by mixing a ceramic raw material and a porous forming agent; a step b of molding the mixture into a molded body having a predetermined shape. And a step c of curing the shaped body. In the process of producing a porous ceramic molded body using cement or gypsum as a ceramic raw material, curing may be performed instead of firing. In the present invention, the hollow microsphere of the present invention is used as a porous forming agent such as ALC.
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。本発明において、物性及び特性の測定方法は、以下に示すとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In the present invention, methods for measuring physical properties and characteristics are as follows.
(1)発泡倍率
 熱膨張性マイクロスフェア0.7gを、ギア式オーブン中に入れ、所定の発泡温度で2分間加熱して発泡(熱膨張)させた。得られた中空マイクロスフェアをメスシリンダーに入れて、その体積を測定した。中空マイクロスフェアの体積を未発泡の熱膨張性マイクロスフェアの体積で割って、発泡倍率を算出した。この際、発泡温度を70℃から5℃刻みで昇温して、各温度で発泡させた。この条件下で最大の発泡倍率が得られる温度での発泡倍率を、最大発泡倍率とした。
(1) Foaming magnification 0.7 g of thermally expandable microspheres was placed in a gear-type oven and heated at a predetermined foaming temperature for 2 minutes for foaming (thermal expansion). The resulting hollow microspheres were placed in a graduated cylinder and the volume was measured. The volume of the hollow microsphere was divided by the volume of the unexpanded thermally expandable microsphere to calculate the expansion ratio. At this time, the foaming temperature was increased from 70 ° C. in increments of 5 ° C. and foamed at each temperature. The expansion ratio at a temperature at which the maximum expansion ratio was obtained under these conditions was defined as the maximum expansion ratio.
(2)平均粒径
 日機装株式会社製「マイクロトラックMT3300EX」(登録商標)を用いて、熱発泡性マイクロスフェア及び発泡体粒子の平均粒径(メディアン径)を測定した。
(2) Average particle diameter Using Microtrac MT3300EX (registered trademark) manufactured by Nikkiso Co., Ltd., the average particle diameter (median diameter) of thermally expandable microspheres and foam particles was measured.
(3)比重
 熱膨張性マイクロスフェア及び中空マイクロスフェアの比重は、粒子全体の比重を意味しており、JIS Z 8807に規定されている比重びんを用いた測定法により測定した。
(3) Specific gravity The specific gravity of the thermally expandable microsphere and the hollow microsphere means the specific gravity of the whole particle, and was measured by a measuring method using a specific gravity bottle defined in JIS Z 8807.
(4)固体材料の含有率
 熱膨張性マイクロスフェア及び中空マイクロスフェアの外殻表面に付着した固体材料の含有率は、燃焼後の灰分の質量を測定して算出した。その具体的な手順は、次の通りである。
(4) Content rate of solid material The content rate of the solid material adhering to the outer shell surface of the thermally expandable microsphere and the hollow microsphere was calculated by measuring the mass of ash after combustion. The specific procedure is as follows.
<発泡剤の定量>
 風乾後1昼夜デシケータ内で保管して乾燥した中空マイクロスフェア(乾燥試料)に含まれる残存発泡剤の量と割合を、以下の手順で測定する。
<Quantity of foaming agent>
The amount and ratio of the remaining foaming agent contained in the hollow microsphere (dried sample) that has been stored in a desiccator for one day after air drying and dried are measured by the following procedure.
a)乾燥試料約0.2gをアルミニウム製カップ(径6cm、高さ3cm)に入れる。この際、試料を入れる前のカップだけの質量を秤量しておき、試料を入れた後にカップ込みで秤量し、その差を計算することによって、乾燥試料の正確な質量を測定しておく。 a) About 0.2 g of the dried sample is put into an aluminum cup (diameter 6 cm, height 3 cm). At this time, the exact mass of the dried sample is measured by weighing the mass of only the cup before putting the sample, weighing it with the cup after putting the sample, and calculating the difference.
b)その後、カップにアルミニウム製の上蓋を被せ、発泡剤を気化させるために200℃で10分間加熱処理を行った上で、加熱処理を経た試料(以下、加熱処理後の試料を「発泡剤除去試料」という。)を秤量した。 b) After that, the cup was covered with an upper lid made of aluminum, subjected to heat treatment at 200 ° C. for 10 minutes to vaporize the foaming agent, and then subjected to the heat treatment (hereinafter referred to as “foaming agent”). The “removed sample”) was weighed.
c)ここで、加熱処理前後の質量差を求めると、それは、乾燥試料の粒子から揮発した発泡剤の量に一致することになる。この数値を用いて、乾燥試料全体に対する残存発泡剤の割合(f:質量%)を計算した。定量実験は、各2回行った。 c) Here, when the mass difference before and after the heat treatment is determined, it corresponds to the amount of the foaming agent volatilized from the particles of the dried sample. Using this numerical value, the ratio (f: mass%) of the remaining blowing agent relative to the entire dried sample was calculated. The quantitative experiment was performed twice.
<灰分の定量>
d)上記「発泡剤の定量」と同じ手順で作成した発泡剤除去試料1.5~1.7gを薬包紙上に秤量し、その秤量値をWdf(g)とする。
<Quantification of ash content>
d) Weigh 1.5 to 1.7 g of the blowing agent-removed sample prepared in the same procedure as the above “quantitative determination of blowing agent” on the medicine-wrapped paper, and let the weighed value be Wdf (g).
e)磁性ルツボの空質量を正確に秤量し、その秤量値をWa(g)とする。 e) The empty mass of the magnetic crucible is accurately weighed, and the weighed value is defined as Wa (g).
f)秤量した発泡剤除去試料を磁性ルツボに少量ずつ入れては、電熱器で予備炭化するという操作を繰り返し、試料すべての炭化が完了した後、930℃の電気炉で3時間以上かけて灰化させた。 f) Place the weighed foaming agent-removed sample in small amounts in a magnetic crucible and repeat pre-carbonization with an electric heater. Made it.
g)冷却後、灰化物込みで磁性ルツボの質量を秤量し、その秤量値をWb(g)とする。 g) After cooling, weigh the mass of the magnetic crucible including the ash, and let the weighed value be Wb (g).
h)灰分量Ws(g)は、次式より求めた。
  Ws(g)=Wb(g)-Wa(g)
h) The amount of ash Ws (g) was obtained from the following equation.
Ws (g) = Wb (g) -Wa (g)
i)これらの数値を下記の計算に代入して、乾燥試料全体に対する灰分量(質量%)を計算した。定量実験は、各2回行い、平均値を算出した。 i) These numerical values were substituted into the following calculation to calculate the amount of ash (% by mass) based on the entire dry sample. The quantitative experiment was performed twice, and the average value was calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
[調製例1]
(1)水性分散媒体の調製
 脱イオン水770gに、固形分40質量%のコロイダルシリカ22gを加えて分散させた。次いで、分散液に、ジエタノールアミン-アジピン酸縮合物0.8g、及び亜硝酸ナトリウム0.13gを加えて溶解させた。さらに、分散液に塩酸を加えて、pH3.5の水性分散媒体を調製した。
[Preparation Example 1]
(1) Preparation of aqueous dispersion medium 22 g of colloidal silica having a solid content of 40% by mass was added to 770 g of deionized water and dispersed therein. Next, 0.8 g of diethanolamine-adipic acid condensate and 0.13 g of sodium nitrite were added to the dispersion and dissolved. Furthermore, hydrochloric acid was added to the dispersion to prepare an aqueous dispersion medium having a pH of 3.5.
(2)重合性単量体混合物の調製
 塩化ビニリデン123g、アクリロニトリル86g、メタクリル酸メチル11g、ジエチレングリコールジメタクリレート0.33g、2,2′-アゾビス-ジメチルバレロニトリル1.1g、及びn-ブタン35gを混合して、重合性単量体混合物を調製した。重合性単量体混合物中の各重合性単量体の質量%は、塩化ビニリデン/アクリロニトリル/メタクリル酸メチル=56/39/5である。
(2) Preparation of polymerizable monomer mixture 123 g of vinylidene chloride, 86 g of acrylonitrile, 11 g of methyl methacrylate, 0.33 g of diethylene glycol dimethacrylate, 1.1 g of 2,2′-azobis-dimethylvaleronitrile and 35 g of n-butane By mixing, a polymerizable monomer mixture was prepared. The mass% of each polymerizable monomer in the polymerizable monomer mixture is vinylidene chloride / acrylonitrile / methyl methacrylate = 56/39/5.
(3)液滴の形成
 前記(1)で調製した水性分散媒体と前記(2)で調製した重合性単量体混合物とを、ホモジナイザーで撹拌混合して、水性分散媒体中に重合性単量体混合物の微小な液滴を形成させた。
(3) Formation of droplets The aqueous dispersion medium prepared in the above (1) and the polymerizable monomer mixture prepared in the above (2) are stirred and mixed with a homogenizer, and the polymerizable monomer is mixed in the aqueous dispersion medium. Small droplets of body mixture were formed.
(4)懸濁重合
 重合性単量体混合物の液滴が分散した水性分散媒体を、容量1.5リットルの撹拌機付き重合缶に仕込んだ。この重合缶を温水浴中に入れて、50℃で22時間保持することにより、重合性単量体混合物を重合反応させた。この重合反応によって、塩化ビニリデン-アクリロニトリル-メタクリル酸メチル共重合体から形成された外殻内に発泡剤のn-ブタンが封入されたマイクロカプセル構造を有する熱膨張性マイクロスフェアを形成させた。重合反応後、重合缶内の反応混合物を濾過し、水洗した。さらに、水洗と濾過を2回繰り返した後、乾燥して、熱膨張性マイクロスフェアを回収した。
(4) Suspension polymerization An aqueous dispersion medium in which droplets of a polymerizable monomer mixture were dispersed was charged into a 1.5-liter polymerization can equipped with a stirrer. This polymerization can was placed in a warm water bath and held at 50 ° C. for 22 hours to polymerize the polymerizable monomer mixture. By this polymerization reaction, thermally expandable microspheres having a microcapsule structure in which n-butane as a foaming agent was enclosed in an outer shell formed from a vinylidene chloride-acrylonitrile-methyl methacrylate copolymer were formed. After the polymerization reaction, the reaction mixture in the polymerization can was filtered and washed with water. Further, washing with water and filtration were repeated twice, followed by drying to collect thermally expandable microspheres.
(5)熱膨張性マイクロスフェア
 このようにして得られた熱膨張性マイクロスフェアは、平均粒径が14μmであり、発泡温度130℃での最大発泡倍率が50倍であり、かつ、比重が0.02g/cmであった。この熱膨張性マイクロスフェアは、分散安定剤として使用したコロイダルシリカを3.3質量%の含有量で含有していた。
(5) Thermally expandable microspheres The thermally expandable microspheres thus obtained have an average particle size of 14 μm, a maximum expansion ratio of 50 times at a foaming temperature of 130 ° C., and a specific gravity of 0. 0.02 g / cm 3 . This thermally expandable microsphere contained 3.3% by mass of colloidal silica used as a dispersion stabilizer.
[比較例1]
 調製例1で得られた熱膨張性マイクロスフェアに脱イオン水を加えて、該熱膨張性マイクロスフェアの濃度1質量%の水性スラリー500gを調製した。この水性スラリーを、容量1.5リットルの撹拌機付き重合缶に仕込んだ。水性スラリーを撹拌しながら、その中に、温度150℃の水蒸気を圧力0.48MPaで吹き込み、熱膨張性マイクロスフェアを加熱し発泡させた。熱膨張性マイクロスフェアの発泡により形成された発泡体粒子(中空マイクロスフェア)は、その全てが上部に浮き上がり、その中には、熱融着しているものがあった。
[Comparative Example 1]
Deionized water was added to the thermally expandable microsphere obtained in Preparation Example 1 to prepare 500 g of an aqueous slurry having a concentration of 1% by mass of the thermally expandable microsphere. This aqueous slurry was charged into a 1.5-liter polymerization can equipped with a stirrer. While stirring the aqueous slurry, steam at a temperature of 150 ° C. was blown in at a pressure of 0.48 MPa to heat and expand the thermally expandable microspheres. The foam particles (hollow microspheres) formed by foaming the thermally expandable microspheres all floated to the upper part, and some of them were thermally fused.
[比較例2]
 調製例1で得られた熱膨張性マイクロスフェアに脱イオン水を加えて、該熱膨張性マイクロスフェアの濃度1質量%の水性スラリー500gを調製した。この水性スラリーを、容量1.5リットルの撹拌機付き重合缶に仕込んだ。水性スラリーを撹拌しながら、室温(23℃)で1時間撹拌したところ、遊離したコロイダルシリカにより水性スラリーが白濁した。
[Comparative Example 2]
Deionized water was added to the thermally expandable microsphere obtained in Preparation Example 1 to prepare 500 g of an aqueous slurry having a concentration of 1% by mass of the thermally expandable microsphere. This aqueous slurry was charged into a 1.5-liter polymerization can equipped with a stirrer. While stirring the aqueous slurry at room temperature (23 ° C.) for 1 hour, the aqueous slurry became cloudy due to the released colloidal silica.
 この水性スラリーを濾過して熱膨張性マイクロスフェアを回収したところ、コロイダルシリカの含有量は、当初の3.3質量%から2.4質量%に低下していることが確認された。この熱膨張性マイクロスフェアを130℃に加熱して発泡させたところ、発泡体粒子間に強い融着が認められた。この熱膨張性マイクロスフェアの発泡温度130℃での最大発泡倍率は、50倍であった。 When this aqueous slurry was filtered to collect thermally expandable microspheres, it was confirmed that the content of colloidal silica was reduced from 3.3% by mass to 2.4% by mass. When this thermally expandable microsphere was heated to 130 ° C. and foamed, strong fusion was observed between the foam particles. The maximum expansion ratio of this thermally expandable microsphere at a foaming temperature of 130 ° C. was 50 times.
[実施例1]
 調製例1で得られた熱膨張性マイクロスフェアに脱イオン水を加えて、該熱膨張性マイクロスフェアの濃度1質量%の水性スラリー500gを調製した。この水性スラリーにコロイド状炭酸カルシウム(平均粒径50nm)40gを加えた後、容量1.5リットルの撹拌機付き重合缶に仕込んだ。該水性スラリーを撹拌しながら、その中に、温度150℃に加熱した水蒸気を圧力0.48MPaで吹き込み、熱膨張性マイクロスフェアを加熱発泡させた。発泡処理後の水性スラリー中に、発泡体粒子(中空マイクロスフェア)が、凝集体を形成することなく分散していた。
[Example 1]
Deionized water was added to the thermally expandable microsphere obtained in Preparation Example 1 to prepare 500 g of an aqueous slurry having a concentration of 1% by mass of the thermally expandable microsphere. After adding 40 g of colloidal calcium carbonate (average particle diameter 50 nm) to this aqueous slurry, it was charged into a polymerization can equipped with a stirrer having a capacity of 1.5 liters. While stirring the aqueous slurry, steam heated to a temperature of 150 ° C. was blown in at a pressure of 0.48 MPa to heat and expand the thermally expandable microspheres. Foam particles (hollow microspheres) were dispersed in the aqueous slurry after foaming without forming aggregates.
 水性スラリー中の発泡体粒子を濾過し、水洗した。さらに、水洗と濾過を2回繰り返した後、乾燥して、発泡体粒子(中空マイクロスフェア)を回収した。該発泡体粒子は、平均粒径が50μmで、比重が0.095g/cmであった。この発泡体粒子に含まれる無機物の合計含有量は、80質量%であった。このようにして得られた中空マイクロスフェアは、空気中への飛散性が格段に抑制されたものであり、かつ、比重の高い無機物との混合性に優れるものであった。 The foam particles in the aqueous slurry were filtered and washed with water. Further, washing with water and filtration were repeated twice, followed by drying to collect foam particles (hollow microspheres). The foam particles had an average particle size of 50 μm and a specific gravity of 0.095 g / cm 3 . The total content of inorganic substances contained in the foam particles was 80% by mass. The hollow microspheres obtained in this way were those whose scattering properties in air were remarkably suppressed and excellent in mixing properties with inorganic substances having a high specific gravity.
[実施例2]
 コロイド状炭酸カルシウム40gに代えて、コロイダルシリカ(固形分40質量%、平均粒径12nm)100gを用いたこと以外は、実施例1と同様にして発泡体粒子(中空マイクロスフェア)を作製した。該発泡体粒子は、平均粒径が53μmで、比重が0.10g/cmであった。この発泡体粒子に含まれる無機物の合計含有量は、85質量%であった。このようにして得られた中空マイクロスフェアは、空気中への飛散性が格段に抑制されたものであり、かつ、比重の高い無機物との混合性に優れるものであった。
[Example 2]
Foam particles (hollow microspheres) were produced in the same manner as in Example 1 except that 100 g of colloidal silica (solid content 40% by mass, average particle size 12 nm) was used instead of 40 g of colloidal calcium carbonate. The foam particles had an average particle size of 53 μm and a specific gravity of 0.10 g / cm 3 . The total content of inorganic substances contained in the foam particles was 85% by mass. The hollow microspheres obtained in this way were those whose scattering properties in air were remarkably suppressed and excellent in mixing properties with inorganic substances having a high specific gravity.
 本発明の外殻表面に固体材料が付着した中空マイクロスフェアは、プラスチック、塗料、各種資材などの軽量化、多孔質化、各種機能付与の目的で、広範な技術分野において利用することができる。高比重化した中空マイクロスフェアは、多孔質セラミックス成形体の多孔質形成剤として利用することもできる。 The hollow microsphere having a solid material adhered to the outer shell surface of the present invention can be used in a wide range of technical fields for the purpose of reducing the weight, making it porous, and imparting various functions to plastics, paints, and various materials. The hollow microsphere having a high specific gravity can also be used as a porous forming agent for a porous ceramic molded body.

Claims (15)

  1.  下記工程1及び2:
    (1)熱可塑性樹脂から形成された外殻内にガス化またはガスの発生が可能な発泡剤が封入されたマイクロカプセル構造を有し、加熱により熱膨張して中空マイクロスフェアを形成する熱膨張性マイクロスフェア、及び該熱膨張性マイクロスフェアの平均粒径よりも小さな平均粒径若しくは平均長径を有する固体材料を、液状分散媒体中に分散させて、スラリーを調製する工程1;並びに
    (2)該スラリー中で該熱膨張性マイクロスフェアを加熱して、その外殻を軟化させると共に、該発泡剤のガス化若しくは該発泡剤からの発生ガスにより熱膨張させ、それによって、軟化した外殻表面に該固体材料が付着した中空マイクロスフェアを形成する工程2;
    を含むことを特徴とする外殻表面に固体材料が付着した中空マイクロスフェアの製造方法。
    Steps 1 and 2 below:
    (1) Thermal expansion that has a microcapsule structure in which a foaming agent capable of gasification or gas generation is enclosed in an outer shell formed of a thermoplastic resin, and that thermally expands by heating to form hollow microspheres. And (2) preparing a slurry by dispersing a solid material having an average particle size or an average major axis smaller than the average particle size of the expandable microsphere and the average particle size of the thermally expandable microsphere in a liquid dispersion medium; The thermally expandable microspheres are heated in the slurry to soften the outer shell, and thermally expanded by gasification of the foaming agent or gas generated from the foaming agent, thereby softening the outer shell surface. Forming a hollow microsphere having the solid material attached thereto in step 2;
    A method for producing hollow microspheres comprising a solid material attached to the outer shell surface.
  2.  前記工程1において、該熱膨張性マイクロスフェアの濃度が0.1~10質量%の範囲内にあるスラリーを調製する請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein in the step 1, a slurry in which the concentration of the thermally expandable microsphere is in a range of 0.1 to 10% by mass is prepared.
  3.  該固体材料が、粒状、球状、立方体状、紡錘状、棒状、板状、針状若しくは繊維状の形状を有する無機物及び有機物からなる群より選ばれる少なくとも一種の固体材料である請求項1記載の製造方法。 2. The solid material according to claim 1, wherein the solid material is at least one solid material selected from the group consisting of inorganic materials and organic materials having a granular, spherical, cubic, spindle, rod, plate, needle or fiber shape. Production method.
  4.  該固体材料が、平均粒径が3μm以下で、比重が1.5~6.0g/cmの範囲内にある少なくとも一種の無機物である請求項1記載の製造方法。 The production method according to claim 1, wherein the solid material is at least one inorganic substance having an average particle diameter of 3 µm or less and a specific gravity in the range of 1.5 to 6.0 g / cm 3 .
  5.  該固体材料が、炭酸カルシウム、結晶性シリカ、酸化アルミニウム、カオリン、酸化チタン、硫酸バリウム、及び酸化亜鉛からなる群より選ばれる少なくとも一種の無機物である請求項1記載の製造方法。 The method according to claim 1, wherein the solid material is at least one inorganic substance selected from the group consisting of calcium carbonate, crystalline silica, aluminum oxide, kaolin, titanium oxide, barium sulfate, and zinc oxide.
  6.  該熱膨張性マイクロスフェアが、0.5~150μmの範囲内の平均粒径を有するものである請求項1記載の製造方法。 The production method according to claim 1, wherein the thermally expandable microspheres have an average particle size in the range of 0.5 to 150 µm.
  7.  該液状分散媒体が、水性分散媒体である請求項1記載の製造方法。 The production method according to claim 1, wherein the liquid dispersion medium is an aqueous dispersion medium.
  8.  該熱膨張性マイクロスフェアが、水性分散媒体中で重合性単量体及び発泡剤を含有する重合性単量体混合物を懸濁重合して形成されたものであり、かつ、前記工程1が、懸濁重合前、懸濁重合中または懸濁重合後に、該水性分散媒体中に固体材料を添加することにより、熱膨張性マイクロスフェアと固体材料とが水性分散媒体中に分散したスラリーを調製する工程である請求項1記載の製造方法。 The thermally expandable microsphere is formed by suspension polymerization of a polymerizable monomer mixture containing a polymerizable monomer and a foaming agent in an aqueous dispersion medium, and the step 1 is A slurry in which the thermally expandable microspheres and the solid material are dispersed in the aqueous dispersion medium is prepared by adding the solid material into the aqueous dispersion medium before, during or after the suspension polymerization. The manufacturing method according to claim 1, which is a process.
  9.  該熱膨張性マイクロスフェアが、水性分散媒体中で重合性単量体及び発泡剤を含有する重合性単量体混合物を懸濁重合して形成され、次いで、該水性分散媒体から回収することによって得られたものであり、かつ、前記工程1において、該熱膨張性マイクロスフェアを固体材料と共に液状の分散媒体中に分散させて、スラリーを調製する請求項1記載の製造方法。 The thermally expandable microspheres are formed by suspension polymerization of a polymerizable monomer mixture containing a polymerizable monomer and a blowing agent in an aqueous dispersion medium, and then recovered from the aqueous dispersion medium The manufacturing method according to claim 1, wherein in the step 1 obtained, the thermally expandable microspheres are dispersed together with a solid material in a liquid dispersion medium to prepare a slurry.
  10.  前記工程2において、該スラリー中に加熱水蒸気を吹き込んで該熱膨張性マイクロスフェアを加熱し、熱膨張させる請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein in the step 2, heated steam is blown into the slurry to heat and expand the thermally expandable microsphere.
  11.  前記工程2において、該中空マイクロスフェアの全量基準で1~99.9質量%の範囲内の固体材料が外殻表面に付着した中空マイクロスフェアを形成する請求項1記載の製造方法。 The method according to claim 1, wherein, in the step 2, hollow microspheres are formed in which a solid material in the range of 1 to 99.9% by mass based on the total amount of the hollow microspheres adheres to the outer shell surface.
  12.  該中空マイクロスフェアが、2~200μmの範囲内の平均粒径を有するものである請求項1記載の製造方法。 The production method according to claim 1, wherein the hollow microspheres have an average particle diameter in the range of 2 to 200 µm.
  13.  セラミックス原料と多孔質形成剤とを混合して、混合物を調製する工程a;該混合物を所定形状の成形体に成形する工程b;及び該成形体を養生または焼成する工程c;を含む多孔質セラミックス成形体の製造方法において、該多孔質形成剤として、請求項1に記載の製造方法により得られた、外殻表面に固体材料が付着した中空マイクロスフェアを使用することを特徴とする多孔質セラミックス成形体の製造方法。 A porous material comprising: a step of mixing a ceramic raw material and a porous forming agent to prepare a mixture; a step b of forming the mixture into a formed body having a predetermined shape; and a step c of curing or firing the formed body. In a method for producing a ceramic molded body, a porous microsphere obtained by the production method according to claim 1 and having a solid material attached to the outer shell surface is used as the porous forming agent. A method for producing a ceramic molded body.
  14.  該固体材料が、平均粒径が3μm以下で、比重が1.5~6.0g/cmの範囲内にある少なくとも一種の無機物である請求項13記載の製造方法。 The production method according to claim 13, wherein the solid material is at least one inorganic substance having an average particle diameter of 3 µm or less and a specific gravity in the range of 1.5 to 6.0 g / cm 3 .
  15.  該固体材料が、炭酸カルシウム、結晶性シリカ、酸化アルミニウム、カオリン、酸化チタン、硫酸バリウム、及び酸化亜鉛からなる群より選ばれる少なくとも一種の無機物である請求項13記載の製造方法。 The method according to claim 13, wherein the solid material is at least one inorganic substance selected from the group consisting of calcium carbonate, crystalline silica, aluminum oxide, kaolin, titanium oxide, barium sulfate, and zinc oxide.
PCT/JP2009/068869 2008-12-18 2009-11-05 Process for producing hollow microspheres and process for producing porous molded ceramic WO2010070987A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117016118A KR101278410B1 (en) 2008-12-18 2009-11-05 Process for producing hollow microspheres and process for producing porous molded ceramic
JP2010542918A JP5588880B2 (en) 2008-12-18 2009-11-05 Method for producing hollow microsphere and method for producing porous ceramic molded body
CN200980150780.5A CN102256695B (en) 2008-12-18 2009-11-05 Process for producing hollow microspheres and process for producing porous molded ceramic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008321971 2008-12-18
JP2008-321971 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010070987A1 true WO2010070987A1 (en) 2010-06-24

Family

ID=42268663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068869 WO2010070987A1 (en) 2008-12-18 2009-11-05 Process for producing hollow microspheres and process for producing porous molded ceramic

Country Status (4)

Country Link
JP (1) JP5588880B2 (en)
KR (1) KR101278410B1 (en)
CN (1) CN102256695B (en)
WO (1) WO2010070987A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764616A (en) * 2011-05-03 2012-11-07 中国科学院化学研究所 Hollow microsphere and its preparation method
WO2013156589A1 (en) * 2012-04-19 2013-10-24 Construction Research & Technology Gmbh Method for manufacturing a cementitious composition
WO2015005363A1 (en) * 2013-07-12 2015-01-15 松本油脂製薬株式会社 Pore-forming material for ceramic composition and application for same
JP2015111530A (en) * 2013-12-06 2015-06-18 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Microcapsule for nonaqueous electrolyte secondary batteries, separator for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, electrode active material layer for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9333685B2 (en) 2012-04-19 2016-05-10 AkzoNobel Chemicals International B.V. Apparatus and system for expanding expandable polymeric microspheres
WO2016091741A1 (en) * 2014-12-11 2016-06-16 Construction Research & Technology Gmbh Method for manufacturing a cementitious composition
WO2016091740A1 (en) * 2014-12-11 2016-06-16 Construction Research & Technology Gmbh Method for manufacturing cement
CN107108379A (en) * 2014-12-11 2017-08-29 建筑研究和技术有限公司 The method of cement of the manufacture comprising expanded polymeric microspheres
US10640422B2 (en) 2013-12-06 2020-05-05 Construction Research & Technology Gmbh Method of manufacturing cementitious compositions
CN112691621A (en) * 2019-10-23 2021-04-23 浙江大学 Preparation method of hollow porous microspheres
WO2021129968A1 (en) * 2019-12-25 2021-07-01 Unilever Ip Holdings B.V. Microcapsules and cosmetic compositions comprising the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108395269B (en) * 2017-02-08 2021-04-20 协兴建筑科技有限公司 Water capsule and preparation method thereof, and preparation method and structure of lightweight concrete
JP6927310B2 (en) * 2017-08-14 2021-08-25 日産自動車株式会社 Heat shield parts and their manufacturing methods
CN107663107B (en) * 2017-09-29 2021-07-23 山东亿豪陶瓷有限公司 Expanded microsphere foamed building ceramic thin-sheet brick and preparation method thereof
KR102039455B1 (en) * 2017-11-22 2019-11-04 주식회사 금양 Process for production of a thermally expanded microsphere having high solvent-resistant toward dioctyl phthalate
WO2019181987A1 (en) 2018-03-23 2019-09-26 富士フイルム株式会社 Hollow particles and method for producing same, pore-making material, particles for cosmetics, and weight-reducing material
CN109738128B (en) * 2018-12-29 2020-10-02 中国矿业大学 Temperature-sensitive material for predicting spontaneous combustion of coal in goaf, preparation method and application
CN109721366A (en) * 2019-01-30 2019-05-07 中国科学院宁波材料技术与工程研究所 A kind of preparation method of porous silicon carbide ceramic
CN110050559A (en) * 2019-04-09 2019-07-26 清华大学 Orchard liquid manure Tao Zhu and its application
CN110256105B (en) * 2019-06-21 2021-12-07 济南大学 Structure-controllable ultra-light foam concrete composite material and preparation method thereof
CN110683860B (en) * 2019-11-18 2021-10-22 萍乡学院 Ceramic hollow ball with double-shell structure and preparation method thereof
CN111073028B (en) * 2019-12-31 2023-02-03 联塑科技发展(贵阳)有限公司 Inorganic material modified microcapsule and preparation method and application thereof
JP7333300B2 (en) * 2020-10-26 2023-08-24 プライムプラネットエナジー&ソリューションズ株式会社 Electrode manufacturing method, battery manufacturing method, electrode and battery
CN112707718A (en) * 2020-12-28 2021-04-27 快思瑞科技(上海)有限公司 Lightweight porous ceramic and preparation method thereof
CN114505062A (en) * 2022-01-26 2022-05-17 瑞声光电科技(常州)有限公司 Gas adsorption material, preparation method thereof and loudspeaker box using gas adsorption material
CN114538882A (en) * 2022-03-08 2022-05-27 宁波华芯新材料有限公司 Non-combustible silicate composite material and preparation method thereof
CN116621582A (en) * 2023-05-04 2023-08-22 中国海洋大学 Carbon material with honeycomb porous structure, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240040A (en) * 1993-02-16 1994-08-30 Dainichiseika Color & Chem Mfg Co Ltd Composite microballoon and its production
JP2004137293A (en) * 2002-08-23 2004-05-13 Sekisui Chem Co Ltd Method for producing thermally expanded microcapsule and apparatus for production
JP2005103469A (en) * 2003-09-30 2005-04-21 Sekisui Chem Co Ltd Method of manufacturing heat-expansible microcapsule
JP2006035092A (en) * 2004-07-27 2006-02-09 Sanyo Chem Ind Ltd Method for producing mixture of hollow resin particle and inorganic fine particle
JP2007039333A (en) * 2001-03-01 2007-02-15 Ngk Insulators Ltd Manufacturing method of ceramic structural body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394329B2 (en) * 2001-03-01 2010-01-06 日本碍子株式会社 Manufacturing method of ceramic structure
KR20030089702A (en) * 2001-03-14 2003-11-22 세키스이가가쿠 고교가부시키가이샤 Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
JP4320356B2 (en) * 2005-11-21 2009-08-26 松本油脂製薬株式会社 Thermally expansible microspheres, production method and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240040A (en) * 1993-02-16 1994-08-30 Dainichiseika Color & Chem Mfg Co Ltd Composite microballoon and its production
JP2007039333A (en) * 2001-03-01 2007-02-15 Ngk Insulators Ltd Manufacturing method of ceramic structural body
JP2004137293A (en) * 2002-08-23 2004-05-13 Sekisui Chem Co Ltd Method for producing thermally expanded microcapsule and apparatus for production
JP2005103469A (en) * 2003-09-30 2005-04-21 Sekisui Chem Co Ltd Method of manufacturing heat-expansible microcapsule
JP2006035092A (en) * 2004-07-27 2006-02-09 Sanyo Chem Ind Ltd Method for producing mixture of hollow resin particle and inorganic fine particle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764616B (en) * 2011-05-03 2014-07-16 中国科学院化学研究所 Hollow microsphere and its preparation method
CN102764616A (en) * 2011-05-03 2012-11-07 中国科学院化学研究所 Hollow microsphere and its preparation method
US9586348B2 (en) 2012-04-19 2017-03-07 Construction Research & Technology Gmbh Apparatus and system for expanding expandable polymeric microspheres
WO2013156589A1 (en) * 2012-04-19 2013-10-24 Construction Research & Technology Gmbh Method for manufacturing a cementitious composition
JP2015516902A (en) * 2012-04-19 2015-06-18 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Method for producing cement composition
US10774000B2 (en) 2012-04-19 2020-09-15 Construction Research & Technology Gmbh Admixture and method for freeze-thaw damage resistance and scaling damage resistance of cementitious compositions
US9150452B2 (en) 2012-04-19 2015-10-06 Construction Research & Technology, Gmbh Method for manufacturing a cementitious composition
US9333685B2 (en) 2012-04-19 2016-05-10 AkzoNobel Chemicals International B.V. Apparatus and system for expanding expandable polymeric microspheres
US9365453B2 (en) 2012-04-19 2016-06-14 Construction Research & Technology Gmbh Admixture and method for freeze-thaw damage resistance and scaling damage resistance of cementitious compositions
RU2665325C2 (en) * 2012-04-19 2018-08-29 Констракшн Рисёрч Энд Текнолоджи Гмбх Method for manufacture of binding composition
WO2015005363A1 (en) * 2013-07-12 2015-01-15 松本油脂製薬株式会社 Pore-forming material for ceramic composition and application for same
JPWO2015005363A1 (en) * 2013-07-12 2017-03-02 松本油脂製薬株式会社 Porous material for ceramic composition and use thereof
US10640422B2 (en) 2013-12-06 2020-05-05 Construction Research & Technology Gmbh Method of manufacturing cementitious compositions
JP2015111530A (en) * 2013-12-06 2015-06-18 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Microcapsule for nonaqueous electrolyte secondary batteries, separator for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, electrode active material layer for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10865142B2 (en) 2013-12-06 2020-12-15 Construction Research & Technology Gmbh Method of making cementitious compositions
CN107108379A (en) * 2014-12-11 2017-08-29 建筑研究和技术有限公司 The method of cement of the manufacture comprising expanded polymeric microspheres
WO2016091740A1 (en) * 2014-12-11 2016-06-16 Construction Research & Technology Gmbh Method for manufacturing cement
WO2016091741A1 (en) * 2014-12-11 2016-06-16 Construction Research & Technology Gmbh Method for manufacturing a cementitious composition
CN112691621A (en) * 2019-10-23 2021-04-23 浙江大学 Preparation method of hollow porous microspheres
CN112691621B (en) * 2019-10-23 2021-09-14 浙江大学 Preparation method of hollow porous microspheres
WO2021129968A1 (en) * 2019-12-25 2021-07-01 Unilever Ip Holdings B.V. Microcapsules and cosmetic compositions comprising the same

Also Published As

Publication number Publication date
CN102256695B (en) 2014-08-06
KR101278410B1 (en) 2013-06-24
JP5588880B2 (en) 2014-09-10
KR20110106359A (en) 2011-09-28
JPWO2010070987A1 (en) 2012-05-24
CN102256695A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
JP5588880B2 (en) Method for producing hollow microsphere and method for producing porous ceramic molded body
JP5484673B2 (en) Thermally foamable microspheres and their production methods and applications
JP6034992B2 (en) Thermally expandable microspheres and their uses
JP6704732B2 (en) Porous material for ceramic composition and use thereof
JP6534929B2 (en) Pore material for ceramic composition and use thereof
JP6152237B2 (en) Method for producing thermally expandable microsphere and use thereof
WO2006030946A1 (en) Thermally foaming microsphere, method for production thereof, use thereof, composition containing the same, and article
JP6534834B2 (en) Thermally expandable microspheres, method for producing the same and use thereof
JP5943555B2 (en) Thermally expandable microspheres and their applications
JP4620812B2 (en) Method for producing foamable microspheres
Liu et al. Novel strategy to prepare hierarchically porous ceramic microspheres via a self-assembly method on tunable superamphiphobic surfaces
WO2001023081A1 (en) Process for producing heat-expandable microcapsules
JP4903924B2 (en) Foamable microsphere and method for producing the same
JP2005067943A (en) Pore forming material for ceramic composition
WO2023140263A1 (en) Thermally expandable microspheres, hollow particles, and use thereof
WO2023281867A1 (en) Hollow particles and use thereof
JP7369329B1 (en) Thermally expandable microspheres and their uses
JP7259140B1 (en) THERMALLY EXPANDABLE MICROSPHERES, COMPOSITION, AND MOLDED PRODUCT
JP7394263B2 (en) Thermally expandable microspheres and their uses
WO2016088800A1 (en) Heat-expanding microspheres having adhesive properties, and method for producing same
JP5358074B2 (en) Microcapsule, resin composition for coating film formation, coating film and method for producing microcapsule
JP2006137926A (en) Method for producing hollow resin particle
JP2022078397A (en) Heat-expandable microsphere, method for producing the same, and application
CN116803963A (en) TATB/RDX/PSt/GO composite microsphere and preparation method thereof
JPWO2018092554A1 (en) Method for producing thermally expandable microspheres

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150780.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117016118

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09833292

Country of ref document: EP

Kind code of ref document: A1