WO2010070072A1 - Hand hygiene system - Google Patents
Hand hygiene system Download PDFInfo
- Publication number
- WO2010070072A1 WO2010070072A1 PCT/EP2009/067461 EP2009067461W WO2010070072A1 WO 2010070072 A1 WO2010070072 A1 WO 2010070072A1 EP 2009067461 W EP2009067461 W EP 2009067461W WO 2010070072 A1 WO2010070072 A1 WO 2010070072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- healthcare
- personnel
- tags
- hand
- patient
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/24—Reminder alarms, e.g. anti-loss alarms
- G08B21/245—Reminder of hygiene compliance policies, e.g. of washing hands
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/20—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
Definitions
- the present invention relates to hand hygiene systems and more specifically to hand hygiene monitoring systems.
- nosocomial infections Approximately 1 in 10 people admitted to hospitals in the United States acquire a new infection during their stay. These nosocomial infections result in an estimated 100,000 deaths per year in the United States. Nosocomial infections increase the length of patient stays in hospital, contributing to increased healthcare staffing levels, increased costs and increased use of resources. This situation contributes significantly to the overall stress on the healthcare systems and increases wait times. It is estimated that approximately half of these nosocomial infections are the result of inadequate hand hygiene compliance by healthcare staff. There is considerable evidence that hand hygiene compliance is a primary means to reduce nosocomial infections and the transmission of pathogens. Pathogens are normally present on the skin of healthcare workers and patients and on surfaces surrounding the patient. These organisms can be transferred to healthcare workers' hands where they can survive for periods ranging from minutes to hours. The final step in the transmission process is the transfer of organisms from the contaminated hands of the caregiver to other patients or clean environmental surfaces. Alcohol-based hand rubs seem to be significantly more effective than washing with soap and water and in the reduction of transmission of pathogen
- Wearable dispensers of alcohol-based hand rub can provide ready access hand hygiene without the need to visit a fixed hand washing station and can reduce the time required to perform hand hygiene especially for busy staff such as nurses.
- Radio Frequency Identification technology has been used extensively in encoding personnel identification tags.
- RFID Radio Frequency Identification technology
- the passive RFID type (commonly used by credit/debit cards for retail transactions) is not suitable for a hand hygiene monitoring system, since it will require the wearer to handle his/her ID tag and place it close to a RFID reader. For a healthcare worker, this extra step will mean he/she handles the ID tag at least 10 to 20 times an hour and usually with unclean hands.
- the ID tag transmitting its unique ID code at a frequency can be read at a distance by the reader tuned into the same frequency, thus eliminating the extra step of bring the tag to the close proximity of a reader.
- a frequency such as at 2.4 GHz
- the reader will record the ID codes of all those tags and unable to distinguish who is the person actually doing the handwashing.
- Alternative technology such as frequency hopping to enable the reader/detector to detect up to several thousand unique I D signals each at slight different frequency will read/detect all the ID tags within its range in a second.
- the invention described here provides the simplest means of accuracy in identifying the person conducting the hand hygiene event.
- the proactive prompting of this invention fulfills the purpose of reminding a worker to conduct hand hygiene on a timely and unobtrusive manner, but also repeat the reminder to assure compliance rather than simply recording a failure to do hand hygiene as required.
- a system of the present invention provides for evaluating hand hygiene compliance in a medical care facility.
- the invention provides a method, a system, and system components that are designed to promote safe and hygienic practices within a hospital or other health care facility.
- a method includes detecting with a proximity sensor whether a person such as a health care worker or other visitor is in close proximity to or in contact with a patient.
- the term "close proximity" may be defined as being within arms length of a patient support apparatus such as a hospital bed, a stretcher, a crib or the like upon which the patient is positioned, which may be a somewhat greater distance from the patient himself.
- the method further includes determining whether the person has actuated a sanitizing device such as a hand sanitizer.
- a caution and/or warning signal which can take many forms and cause any of a number of selected responses, is generated if the person is in close proximity or in contact with the patient and has not actuated the hand sanitizer.
- the caution or warning signals generated could cause the illumination of an indicator device or a text message to be displayed that reminds the person to wash his hands, advises the person and/or others that a violation has occurred, or instructs the person to vacate the patient care area.
- an aspect of the present invention provides a system for monitoring hygiene compliance in a medical facility, comprising:
- sensors to be carried by healthcare workers, which recognize personnel tags for patients within a distance of 1 meter, preferably 0.75 meter, more preferably 0.5 meter, and most preferably 0.25 meter;
- control unit to be carried by the healthcare workers, said control unit being programmed to detect whether a healthcare worker bearing one of the personnel tags accessed a washing station prior to contacting a patient bearing a separate one of the personnel tags or ID bands.
- the system according to the present invention further comprises an infrared thermosensor attached to the sensors carried by the healthcare workers.
- This thermosensor is preferably focused onto the operational area of the healthcare worker's hand; this can be achieved by fixing the thermosensor (together with the sensors to be carried by the healthcare workers) on the wrist of the healthcare worker.
- each personnel tag will have a unique personnel identifier, making possible the tracking of specific patient healthcare worker interactions. Individual hand cleaning stations can also bear unique identifiers.
- Hand cleaning stations can include hand washing stations, such as a sink with a soap dispenser, and can also include anti-microbial hand rub dispensers. Preferably, they also include an actuation sensor for sensing not just presence but actual use of the hand hygiene station, the actuation sensor being linked to the control means.
- the personnel tags comprise a machine readable sensor, such as an RFID tag. Hand hygiene status of a user bearing the personnel tag is preferably stored on the personnel tag itself.
- Th e control unit comprises a processor, which records the number of patient interactions, the number of patient interactions where proper hand hygiene was practiced, the number of interactions where proper hand hygiene was not practiced, and whether proper hand hygiene was practiced after a patient interaction.
- control unit incorporates some form of alarm which can provide a warning if a personnel tag of a healthcare worker having a status other than "clean" approaches a personal tag of a patient.
- the warning can be both audible and visual.
- the personnel tags comprise a status indicator to indicate the hand hygiene status of its bearer.
- a status indicator can provide a visual indication of the hand hygiene status and also provide an audible indication of a change in status, or an audible warning of improper patient contact.
- the system preferably stores a hand hygiene status of a user, such as "clean” or “potentially contaminated.” This status changes from “clean” after contact with a patient. It will also change from “clean” after a predetermined time regardless of patient contact.
- the personnel tags worn by the healthcare workers comprise a status indicator to indicate a hand hygiene status of the healthcare worker.
- the status indicator provides a visual indication of the hand hygiene status, wherein the status indicator provides an audible indication of a change in status.
- the status indicator provides an audible warning when the personnel tag is within a defined proximity of a personnel tag of a patient and the hand hygiene status is other than "clean".
- a preferred embodiment of the present invention further provides a device that can detect whether or not a healthcare worker has contacted the skin of a patient, a visitor, or another healthcare worker.
- This device can be embodied in the system described above or it can be implemented as an independent system to determine potentially infectious skin contact, e.g. when a healthcare worker conducts wound caring interventions or similar activity, wherein the skin of another person is contacted.
- the detection of skin contact in accordance with this embodiment may be achieved through one or more of the technologies Galvanic Skin Response (GSR), Detection of Temperature Changes, ElectroDermal Response (EDR), Motion Pattern Recognition (MPR), and ElectroMyoGraphy (EMG).
- GSR Galvanic Skin Response
- EDR ElectroDermal Response
- MPR Motion Pattern Recognition
- EMG ElectroMyoGraphy
- GSR is a measure of the skin's conductance between two electrodes. Electrodes are small metal plates that apply a safe, imperceptibly tiny voltage across the skin. In the present invention the electrodes are typically attached to the finger(s) of the healthcare worker using silver-Chloride electrode patches. To measure the resistance, a small voltage is applied to the skin and the skin's current conduction is measured. When the healthcare worker contacts skin of another person the conductance measured by the GSR device changes abruptly indicating that skin contact has taken place.
- the electromyogram measures muscle tension.
- Two electrodes or sensors are placed on the skin over the muscles of the under arm of the healthcare worker to be monitored; muscle activity in the wrist indicates that the hand is being used for e.g. shaking hands with patient or wound care.
- measuring skin temperature is a useful tool to determine if the healthcare worker has contacted a patient.
- the skin temperature sensor should be placed adjacent to the hand, e.g. on the wrist, and monitor if the temperature in the area around the hand increases, indicating that the healthcare worker is in close proximity with the skin of a patient, a visitor or another healthcare worker.
- ElectroDermal Response involves the measurement of skin conductivity or resistance. Since the EDR changes upon skin contact between two persons it can similarly be used to indicate that e.g. e healthcare worker has been potentially contaminated by patient contact.
- MPR Motion Pattern Recognition
- a unit for determining the position and movement of the wrist in 3D is used to determine skin contact.
- the movement pattern of the wrist is unique when the healthcare worker shakes hand with e.g. a patient, or when doing wound caring operations.
- the present invention contemplates a unit comprising an accelerometer component operative to perform acceleration measurements along 3 orthogonal axes, and a gyroscopic component operative to measure rotational velocity along said 3 orthogonal axes.
- skin contact is detected by providing transmission means to the healthcare worker capacitively coupled to ground; providing receiving means to the patient capacitively coupled to ground, said receiving means exhibiting a detectable electrical characteristic representing information; and operating the transmission means to pass, across the healthcare worker's body, a time-varying signal having a magnitude sufficient to be detected by the receiving means when said patient is contacted by the healthcare worker.
- the patient bears a receiver with a personalised ID tag.
- physical contact and hence potential contamination will be detected.
- the receiving means is provided with an I D tag that is transmitted to the healthcare worker and detected through second receiving means attached to the patient when said healthcare worker and said patient approach and/or contact each other.
- the invention provides for an alarm or other means for alerting the health care staff member to perform a hand cleaning manoeuvre in accordance with the above.
- this invention delivers a hand hygiene monitoring system that provides: • continuous monitoring,
- Figure 1 shows a diagram of a hygiene monitoring system which incorporates various features of the present invention therein.
- Figure 2 shows a wrist and hand of a healthcare worker equipped with an RFID sensor
- thermosensor for detecting patient contact.
- Figure 3 is a generalized representation of intra-body and inter-body power and data transmission in accordance with the present invention
- Figure 4 shows a graphical simplified representation of the signal transmitted, the signal received before skin contact, and the signal received after skin contact.
- Figure 1 illustrates a hand hygiene compliance system for a healthcare facility.
- Persons within the facility such as a healthcare worker 1 , patient 2 or visitor 3 are each provided with a personnel tag 4, which incorporates a unique identifying number.
- the tag is fixed to the wrist, e.g. by incorporating it into a bracelet.
- the tag preferably incorporates some form of proximity locator or local communication means.
- the tag incorporates a Radio Frequency Identification (RFID) tag.
- RFID Radio Frequency Identification
- Patient contact is determined by a sensor 5 located adjacent to the personal tag of the healthcare personnel to detect the approach of personnel tags carried by patients and other healthcare workers.
- Multiple sensors and sensors of different types may be employed.
- a passive infrared radiation (IR) sensor which detects the approach of a person's hand can be employed along with an RFID transceiver for reading the RFID tag in the personnel tag.
- IR passive infrared radiation
- the RFID transceiver 5 on the healthcare worker may have a range equivalent to the desired perimeter.
- the perimeter is preferably about 1 meter from the other personal tags. If it is too far it might falsely register a contact and if it is too small it might fail to register a contact.
- the RFID transceiver may also be set with an additional more narrow perimeter, such as 10 cm, indicating that the healthcare worker has shaken hands with a patient, a visitor or another healthcare worker.
- Other machine readable tagging systems may be employed. RFID tags are particularly suitable for this application as they are inexpensive, can be read at a distance and some types can have data written to them and updated.
- Hand cleaning stations 6 (such as an antimicrobial hand rub dispenser or hand wash station, such as a sink with running water and a supply of soap or detergent for hand washing) are provided with an RFID transponder 7, which is recognized by the transceiver of the healthcare worker, when he or she use the hand cleaning station.
- the RFID transceiver is tied through some form of communication to a central data processing station. That communication could take the form of a radio frequency communication.
- the system for monitoring hygiene compliance of the present invention employs the RFID transceiver along with the personnel tags to help ensure that a healthcare worker who approaches a patient has either washed his/her hands or applied an antimicrobial hand rub to reduce the chance of infecting a patient.
- This can be implemented in many different fashions.
- One simple implementation would detect the person's presence at a hand cleaning station and then signal either to the RFID tag or to a central processor, or to both, that the person's status was now "clean".
- the tag of the healthcare worker is equipped with a display of some fashion with an audio output device.
- the display could be as simple as one or more color-coded lights, preferably labelled. Therefore, when the healthcare worker approached the patient the display would indicate such as by a green light or display of the status "clean" that the person had attended to hand hygiene prior to visiting that patient.
- the tag will indicate a warning.
- the warning would include either a warning light or a warning message on the display and an audio alert such as a buzzer or more preferably voice instructions to attend to hand cleaning.
- the RFID tag After leaving the patient, the RFID tag would now have the status "potentially contaminated”. The status "potentially contaminated” would also apply when there had not been previous contact with a hand cleaning station. Status would be changed back to "clean” upon visitation of a hand cleaning station. The "clean" status would be effective for a specified period of time assuming there is no further contact with other patients, healthcare workers or visitors.
- compliance rates for various personnel can be tracked.
- the tracking can be performed on the RFID tag itself or at the central processor.
- Reports can be generated and used to help personnel improve their compliance. Such reports might include the number of times such personnel approached a patient location with a status other than
- Compliance at a hand cleaning station 6 can either be assumed by presence, assumed by presence for a given amount of time or verified with a sensor at the hand hygiene station such as a sensor which reads when soap is dispensed at a hand wash station or a sensor which reads when an antimicrobial hand gel has been dispensed at a hand rub dispenser.
- a sensor at the hand hygiene station such as a sensor which reads when soap is dispensed at a hand wash station or a sensor which reads when an antimicrobial hand gel has been dispensed at a hand rub dispenser.
- Such sensors would be important when the hand hygiene station comprises a portable antimicrobial hand rub dispenser worn on the body of the user.
- Hand hygiene procedures typically require a certain length of scrubbing at hand wash stations and the time of water running after dispensing of the soap might also be measured.
- a proximity sensor especially one already used to turn on water flow, might also be polled to see if hands are in the stream of the water.
- FIG. 2 shows a preferred embodiment of the system according to the present invention.
- the system further comprises an infrared thermosensor 10 attached to the sensor 1 1 carried by the healthcare workers.
- This thermosensor is preferably focused onto the operational area 12 of the healthcare worker's hand; this can be achieved by fixing the thermosensor (together with the sensors to be carried by the healthcare workers) on the wrist 13 of the healthcare worker.
- a person wearing his/her I D band undergoing a handwashing procedure will place his/her hand wearing the ID band under the soap dispenser to trigger e.g. an infrared proximity sensor for activating the dispensing motor as well as an intelligent controller board.
- the active ID band will be transmitting at very low power (in 1 to 3 microwatts range, thus the signal can only be read by a dispenser's RF transceiver circuitry at no greater than 1 meter, preferably 0.5 meter, and most preferably 0.25 meter in distance) a data string containing its personnel ID code and the last time the wearer performed a hand hygiene procedure at 2 Hz or faster repetition rate continuously.
- the intelligent controller board of the soap dispenser While the dispensing motor is turning (or during the depressing of the manual dispensing tab), the intelligent controller board of the soap dispenser is activated to receive the personnel ID code from the ID band along with the data of the most recent handwashing or cleaning of the wearer. If two different people place their hands (which is not very likely) within e.g. 0.5 meter of the soap dispenser at the same time, the controller board will select the ID code belonging to the person with longer time lapse from his/her last hand hygiene event. The controller board then adds this personnel ID code as the lead element to its own dispenser I D codes and transmits back to the ID band.
- This transmission is at higher power (in 2 to 3 milliwatts range) and at 2 Hz or higher repetition rate for a duration of 2 seconds to enable an ID band to receive this signal at a distance up to 1 .5 meter.
- Any other person wearing an ID band standing next to the person who just dispensed soap or walking by within the 1.5 meter radius will not be able to decipher the identification code of the soap dispenser, since it does not have the same personnel ID code as the lead element.
- the ID band of the person undergoing the handwashing procedure will record the identification code of the soap dispenser along with the time-date from its internal programmable clock circuitry as the first piece of data constitutes a handwashing event record.
- the intelligent controller board of the soap dispenser will also start a timer from the moment the dispenser is triggered. Every 5 seconds, it will transmit a timing mark with the personnel ID code of the triggering ID band as the lead element. It will do so until 5 to 6 timing mark signals are transmitted. The number of timing marks can be altered to enforce longer hand scrubbing and rinsing as dictated by the institution implementing this invention. During the first 10 or 15 seconds period, the controller board will flash "SCRUB" on the display panel on the front of the dispenser; then it will flash "RINSE” on the display panel for the next 10 or 15 seconds period. Again, the amount of time for scrubbing and rinsing can be customized by the institution implementing this proactive hand hygiene monitoring system.
- the ID band of the person undergoing the handwashing procedure will record these timing marks to signify that the wearer has or has not gone through the proper handwashing steps, i.e. at least 1 0 seconds of scrubbing with soap and 10 seconds of rinsing with water before walking away from the wash basin.
- the 5 and/or 6 (or more) timing marks constitute the second piece of data of a handwashing event.
- the third piece of data is performed by the I D band of the person undergoing the handwashing procedure.
- it Upon receiving the 5 and/or 6 timing marks, it will assign a "Pass" grade and duration of 30 seconds to the event. If the last two timing marks (the 20 th /25 th or 25 th /30 th second) are missing, then a "Fail" grade and duration of less than 20 seconds is recorded for this event.
- the controller board After issuing the 5 th or 6 th timing mark, the controller board will enter the soap dispenser into standby mode to conserve battery power.
- the intelligent controller board will treat the second dispensing as a single handwashing event if the demand of second aliquot occurs within 2 seconds of the first one. All the subsequent timing marks and transmitting of signal will still be based on the timing of the first dispensing and on the personnel code of the ID band already read. However, if the dispensing triggering is occurred after 2 seconds, then the intelligent controller will read the ID band code again to see whether its is still the same person. If it is the same person, the above described process will be continued. If it is not the same person, the controller board will run a parallel operation of two persons washing hands almost at the same time at the same wash basin. Again, there is no confusion of data recorded by prospective ID band, since the dispenser will issue its own ID codes and timing marks with two separate personnel ID band codes as lead elements.
- a pulsed infrared proximity sensor mounted on the front of the soap dispenser will sense people within its 1 .5 meter or longer detection range. Upon sensing a person, it will activate the RF transceiver to broadcast a proactive "CHECK" signal. Any person wearing an ID band within 1.5 meter of the soap dispenser will receive this signal, and his/her ID band will check the last time he/she had washed or cleaned hands. If the designated time length (determined by the institution's hand hygiene guidelines) is exceeded, then the ID band will issue a prompt (vibration or low tone) to remind the person walking by the wash basin to wash. If a prompt is issued, compliance and non- compliance is recorded by the if) band with time-date. If no hand hygiene action is required, then no record is entered.
- FIG 3 is a generalized representation of intra-body and inter-body power and data transmission in accordance with the present invention, reflecting capacitive coupling of displacement current into the body and the use of the environment as the current return path.
- the schematic arrangement shown in Figure 3 is valid for both intrabody and interbody modes of capacitive coupling.
- a transmitter applies an AC signal to the body of a user via capacitive coupling, represented as a capacitance.
- This signal passes through the user's body to a receiver mounted on another person's body; before contact via a capacitive electrostatic linkage, and upon contact via both a capacitive electrostatic linkage and a galvanic linkage (i.e. the signal becomes both capacitively and/or galvanically coupled resulting in a phase shift).
- the transmitter and receiver are all capacitively coupled to the ambient ground.
- the respective capacitances can be a combination of air and earth ground, and materials in the vicinity of the persons can contribute.
- the noted capacitances are on the order of 1-10 pF.
- Not shown in the figure are various parasitic capacitances. These are usually negligible but, depending on the configuration, can interfere with operation.
- a transmitter (1 ) is connected to a plate capacitor (2) embedded in a shoe warn by person 1.
- the transmitter excites the plate capacitor with an AC voltage signal at a specific frequency controlled by the connected computer (5).
- person 1 By means of this arrangement person 1 now emits an AC electric field (E) throughout the entire body to the surroundings.
- FIG. 4 shows a graphical simplified representation of the signal transmitted (1 ), the signal received before skin contact (2) and the signal received after skin contact (3). As seen in Figure 4 a phase shift in the received signal is observed in respect to the transmitted signal (1 ), when person 1 touches (makes skin contact to) person 2.
- the transmitter in the first person is physically displaced from the second person.
- the second person becomes electrostatically coupled to first person (equipped with transmitter electrode) as she/he approaches.
- capacitive coupling between the transmitter and receiver would be negligible unless brought within centimeters of each other.
- the body effectively extends the coupling range.
- the signal changes phase, which is used to send an ID signal from the patient back to the healthcare worker.
- the user's body is employed as a two-way transmission channel, and the worn device actually transmits information (rather than simply modulating detectable electrical characteristics).
Landscapes
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Emergency Management (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Emergency Alarm Devices (AREA)
- Devices For Medical Bathing And Washing (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2745957A CA2745957A1 (en) | 2008-12-18 | 2009-12-17 | Hand hygiene system |
AU2009327083A AU2009327083A1 (en) | 2008-12-18 | 2009-12-17 | Hand hygiene system |
CN2009801507557A CN102257501A (en) | 2008-12-18 | 2009-12-17 | Hand hygiene system |
JP2011541455A JP2012513052A (en) | 2008-12-18 | 2009-12-17 | Hand hygiene system |
EP09795980A EP2368202A1 (en) | 2008-12-18 | 2009-12-17 | Hand hygiene system |
US13/132,525 US20110254682A1 (en) | 2008-12-18 | 2009-12-17 | Hand hygiene system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13853008P | 2008-12-18 | 2008-12-18 | |
US61/138,530 | 2008-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010070072A1 true WO2010070072A1 (en) | 2010-06-24 |
Family
ID=41625135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/067461 WO2010070072A1 (en) | 2008-12-18 | 2009-12-17 | Hand hygiene system |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110254682A1 (en) |
EP (1) | EP2368202A1 (en) |
JP (1) | JP2012513052A (en) |
CN (1) | CN102257501A (en) |
AU (1) | AU2009327083A1 (en) |
CA (1) | CA2745957A1 (en) |
WO (1) | WO2010070072A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011058293A1 (en) * | 2009-08-04 | 2011-05-19 | Pulse Medical Technologies Ltd | System, apparatus and method for enabling hand hygiene |
GB2490334A (en) * | 2011-04-26 | 2012-10-31 | Veraz Ltd | System for monitoring contact or close proximity between devices |
WO2013031481A1 (en) * | 2011-08-26 | 2013-03-07 | Niiyama Marika | Object proximity and contact detection device |
WO2014060726A1 (en) | 2012-10-16 | 2014-04-24 | University College Cardiff Consultants Limited | Hand hygiene monitoring system |
US9824569B2 (en) | 2011-01-28 | 2017-11-21 | Ecolab Usa Inc. | Wireless communication for dispenser beacons |
EP3022706A4 (en) * | 2013-07-19 | 2018-03-07 | Versus Technology, Inc. | Automatic hygiene compliance assistance |
CN108697339A (en) * | 2015-12-11 | 2018-10-23 | 健康纺织瑞典公司 | Method and system for monitoring medical garment |
WO2021102103A1 (en) | 2019-11-19 | 2021-05-27 | Willo Technologies, Llc | Platform for hygiene behavioral monitoring and modification |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9147334B2 (en) | 2008-11-19 | 2015-09-29 | Proventix Systems, Inc. | System and method for monitoring hospital workflow compliance with a hand hygiene network |
US9030325B2 (en) * | 2009-09-01 | 2015-05-12 | Yordan Gineff Taneff | Hand washing enforcement system |
EP2481033A4 (en) * | 2009-09-25 | 2013-10-30 | 3M Innovative Properties Co | Hygiene monitoring systems and methods |
US20130268293A1 (en) * | 2010-12-30 | 2013-10-10 | 3M Innovative Properties Company | Hygiene compliance systems and methods including optical tags |
US9262905B2 (en) * | 2011-04-27 | 2016-02-16 | Gojo Industries, Inc. | Portable compliance dispenser |
US20130127620A1 (en) | 2011-06-20 | 2013-05-23 | Cerner Innovation, Inc. | Management of patient fall risk |
US10546481B2 (en) | 2011-07-12 | 2020-01-28 | Cerner Innovation, Inc. | Method for determining whether an individual leaves a prescribed virtual perimeter |
US9741227B1 (en) | 2011-07-12 | 2017-08-22 | Cerner Innovation, Inc. | Method and process for determining whether an individual suffers a fall requiring assistance |
US20150221208A1 (en) * | 2011-10-11 | 2015-08-06 | Shanina Knighton | Sanitation Dispenser System and Program |
US9320662B2 (en) * | 2011-10-18 | 2016-04-26 | Stryker Corporation | Patient support apparatus with in-room device communication |
WO2013106440A1 (en) * | 2012-01-09 | 2013-07-18 | Judson Smith | Hand hygiene network system |
US9443062B2 (en) * | 2012-03-28 | 2016-09-13 | Proventix Systems, Inc. | System and method for disabling or enabling automated dispensers |
WO2013188569A2 (en) * | 2012-06-12 | 2013-12-19 | Kimberly-Clark Corporation | System and method for reducing healthcare-associated infections |
US20140279603A1 (en) * | 2013-03-15 | 2014-09-18 | Gojo Industries, Inc. | System for monitoring and recording hand hygiene performance |
US10282969B2 (en) * | 2013-06-19 | 2019-05-07 | Clean Hands Safe Hands | System and methods for wireless hand hygiene monitoring |
US9311809B2 (en) * | 2013-06-21 | 2016-04-12 | Marc Howard Diaz | System and method for improving hand hygiene |
US9904885B2 (en) | 2014-04-06 | 2018-02-27 | Vypin, LLC | Wireless medication compliance sensing device, system, and related methods |
US10121028B2 (en) | 2013-06-26 | 2018-11-06 | Vypin, LLC | Asset tag apparatus and related methods |
US10572700B2 (en) | 2013-06-26 | 2020-02-25 | Vypin, LLC | Wireless asset location tracking system and related techniques |
US10438476B2 (en) | 2013-06-26 | 2019-10-08 | Vypin, LLC | Wireless hand hygiene tracking system and related techniques |
US20150161874A1 (en) * | 2013-12-11 | 2015-06-11 | Hand-Scan, LLC | Close proximity rfid tag and monitoring system |
WO2015087331A1 (en) | 2013-12-11 | 2015-06-18 | Barak Katz | Method and system for monitoring activity of an individual |
US10096223B1 (en) | 2013-12-18 | 2018-10-09 | Cerner Innovication, Inc. | Method and process for determining whether an individual suffers a fall requiring assistance |
US9729833B1 (en) | 2014-01-17 | 2017-08-08 | Cerner Innovation, Inc. | Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections along with centralized monitoring |
US10225522B1 (en) | 2014-01-17 | 2019-03-05 | Cerner Innovation, Inc. | Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections |
US10078956B1 (en) | 2014-01-17 | 2018-09-18 | Cerner Innovation, Inc. | Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections |
JP6400299B2 (en) * | 2014-02-13 | 2018-10-03 | キヤノンメディカルシステムズ株式会社 | Medical information management system and medical information management server |
US9886810B1 (en) | 2014-04-09 | 2018-02-06 | Gpcp Ip Holdings Llc | Universal dispenser interface |
EP3164732A4 (en) | 2014-07-03 | 2018-03-07 | Zohar Laufer | Personnel proximity detection and tracking system |
US20160140830A1 (en) * | 2014-11-14 | 2016-05-19 | James HATHORN | System and method for tracking and reducing human-to-human transmission of infectious pathogens |
US10090068B2 (en) | 2014-12-23 | 2018-10-02 | Cerner Innovation, Inc. | Method and system for determining whether a monitored individual's hand(s) have entered a virtual safety zone |
US10524722B2 (en) | 2014-12-26 | 2020-01-07 | Cerner Innovation, Inc. | Method and system for determining whether a caregiver takes appropriate measures to prevent patient bedsores |
US10091463B1 (en) | 2015-02-16 | 2018-10-02 | Cerner Innovation, Inc. | Method for determining whether an individual enters a prescribed virtual zone using 3D blob detection |
AU2015384144A1 (en) * | 2015-02-25 | 2017-09-07 | Kimberly-Clark Worldwide, Inc. | Method and system for consumer award program for washroom usage |
KR102396044B1 (en) * | 2015-02-25 | 2022-05-10 | 킴벌리-클라크 월드와이드, 인크. | Systems and methods for developing individual and team washroom compliance practices |
US10342478B2 (en) | 2015-05-07 | 2019-07-09 | Cerner Innovation, Inc. | Method and system for determining whether a caretaker takes appropriate measures to prevent patient bedsores |
US9892611B1 (en) | 2015-06-01 | 2018-02-13 | Cerner Innovation, Inc. | Method for determining whether an individual enters a prescribed virtual zone using skeletal tracking and 3D blob detection |
WO2016193973A1 (en) * | 2015-06-01 | 2016-12-08 | Antisep - Tech Ltd. | Method and system for monitoring activity of an individual |
US9542828B1 (en) * | 2015-06-22 | 2017-01-10 | Peter D. Haaland | System, device, and method for measurement of hand hygiene technique |
CN105184721A (en) * | 2015-09-10 | 2015-12-23 | 杨旭平 | Hand hygiene intelligent warning management control system |
US9892310B2 (en) | 2015-12-31 | 2018-02-13 | Cerner Innovation, Inc. | Methods and systems for detecting prohibited objects in a patient room |
CA3015179A1 (en) * | 2016-03-08 | 2016-12-08 | Antisep - Tech Ltd. | Method and system for monitoring activity of an individual |
CA3024845C (en) * | 2016-05-17 | 2021-11-09 | Stone And Steel Systems, Llc | Hand washing station |
US10198779B2 (en) * | 2016-06-03 | 2019-02-05 | Blyncsy, Inc. | Tracking proximity relationships and uses thereof |
US10037641B2 (en) | 2016-08-10 | 2018-07-31 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US10497191B2 (en) | 2016-08-10 | 2019-12-03 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US10424407B2 (en) | 2016-08-10 | 2019-09-24 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US10013832B2 (en) | 2016-08-10 | 2018-07-03 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US10032109B2 (en) | 2016-08-10 | 2018-07-24 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US9905063B1 (en) * | 2016-08-10 | 2018-02-27 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US10019859B2 (en) | 2016-08-10 | 2018-07-10 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US10593137B2 (en) | 2016-08-10 | 2020-03-17 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
JP6669627B2 (en) * | 2016-10-18 | 2020-03-18 | 株式会社ケアコム | Hand hygiene behavior detection system |
US10147184B2 (en) | 2016-12-30 | 2018-12-04 | Cerner Innovation, Inc. | Seizure detection |
EP3607555A1 (en) * | 2017-04-05 | 2020-02-12 | Microsensor Labs, LLC | System and method for proximity sensing of movable portions of a premises |
US11257350B2 (en) | 2017-04-05 | 2022-02-22 | Microsensor Labs, LLC | System and method for opportunity-based reminding or compliance with one or more health protocols |
US11749093B2 (en) | 2017-04-05 | 2023-09-05 | Microsensor Labs, LLC | System and method for predicting hygiene opportunity and hygiene actions for hygiene protocols |
EP3616176A1 (en) * | 2017-04-27 | 2020-03-04 | Essity Hygiene and Health Aktiebolag | Improved hygiene compliance monitoring |
EP3616177B1 (en) * | 2017-04-27 | 2024-03-06 | Essity Hygiene and Health Aktiebolag | Improved hygiene compliance monitoring |
WO2019038271A1 (en) * | 2017-08-21 | 2019-02-28 | Koninklijke Philips N.V. | Predicting, preventing, and controlling infection transmission within a healthcare facility using a real-time locating system and next generation sequencing |
CN107658008A (en) * | 2017-09-22 | 2018-02-02 | 汝城和思生物技术有限公司 | A kind of hand hygiene monitoring system |
BR102017021006A2 (en) * | 2017-09-29 | 2019-04-16 | Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein | SYSTEM AND METHOD OF DETECTION OF PHYSICAL CONTACT EVENTS IN A HOSPITAL ENVIRONMENT AND USE OF THE HUMAN BODY AS A TRANSMISSION OF AN IDENTIFICATION SIGN IN A PHYSICAL CONTACT EVENT DETECTION SYSTEM IN A HOSPITAL ENVIRONMENT |
EP3711064A1 (en) * | 2017-11-17 | 2020-09-23 | Essity Hygiene and Health Aktiebolag | A hygiene monitoring system |
CN111357058A (en) | 2017-11-17 | 2020-06-30 | 易希提卫生与保健公司 | Hygiene monitoring system and method |
US10643446B2 (en) | 2017-12-28 | 2020-05-05 | Cerner Innovation, Inc. | Utilizing artificial intelligence to detect objects or patient safety events in a patient room |
US10482321B2 (en) | 2017-12-29 | 2019-11-19 | Cerner Innovation, Inc. | Methods and systems for identifying the crossing of a virtual barrier |
CN108062164A (en) * | 2018-01-15 | 2018-05-22 | 杭州易同全科技有限公司 | For the intelligent terminal of hand hygiene compliance supervision |
JP2020000651A (en) * | 2018-06-29 | 2020-01-09 | 日本電信電話株式会社 | Hand washing support device, method, and program |
CN109272718A (en) * | 2018-10-15 | 2019-01-25 | 广东小天才科技有限公司 | Hand washing prompting method, intelligent wearing equipment and hand washing accessory |
US10922936B2 (en) | 2018-11-06 | 2021-02-16 | Cerner Innovation, Inc. | Methods and systems for detecting prohibited objects |
EP3905934A4 (en) | 2019-01-02 | 2022-10-26 | Charles Agnew Osborne | Dispensing and monitoring systems and methods |
CN110796836A (en) * | 2019-11-14 | 2020-02-14 | 北京小米移动软件有限公司 | Hand washing monitoring method, hand washing monitoring device and electronic equipment |
WO2021163565A1 (en) | 2020-02-12 | 2021-08-19 | Conservention, Inc. | Personal proximity alert device and associated behavior modification system |
EP3964653A1 (en) * | 2020-09-08 | 2022-03-09 | Ideal Standard International NV | Hygiene system and method for operating a hygiene system |
US11113949B1 (en) * | 2020-09-18 | 2021-09-07 | David Iwankow | Hygiene apparatus and method |
CN112562290B (en) * | 2020-12-25 | 2022-08-19 | 重庆市人民医院 | Medical care sanitary hand disinfection monitoring system based on intelligent wearable equipment |
CN112885444A (en) * | 2021-02-26 | 2021-06-01 | 杭州臻合健康科技有限公司 | Hand hygiene compliance management system and monitoring method thereof |
CN115798069A (en) * | 2021-09-10 | 2023-03-14 | 台达电子工业股份有限公司 | Personnel tracking disinfection system and method |
CN114630272B (en) * | 2022-03-21 | 2022-11-22 | 浙江智尔信息技术有限公司 | Hand hygiene control system |
CN116664819B (en) * | 2023-05-17 | 2024-01-09 | 武汉大学中南医院 | Medical staff hand recognition positioning method, device, equipment and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070080801A1 (en) * | 2003-10-16 | 2007-04-12 | Weismiller Matthew W | Universal communications, monitoring, tracking, and control system for a healthcare facility |
US7242307B1 (en) * | 2003-10-20 | 2007-07-10 | Cognetive Systems Incorporated | System for monitoring hygiene appliances |
EP1913892A2 (en) * | 2006-10-13 | 2008-04-23 | Allegheny-Singer Research Institute | Method and system to monitor hand hygiene compliance |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6236317B1 (en) * | 1998-04-29 | 2001-05-22 | Food Safety Solution Corp. | Method and apparatus for monitoring actions taken by a user for enhancing hygiene |
JP2000098300A (en) * | 1998-09-28 | 2000-04-07 | Sony Corp | Device and method for stereoscopically synthesizing virtual image, game device and recording medium |
US6727818B1 (en) * | 1999-10-29 | 2004-04-27 | Hill-Rom Services, Inc. | Hygiene monitoring system |
EP1702560B1 (en) * | 2000-06-23 | 2014-11-19 | BodyMedia, Inc. | System for monitoring health, wellness and fitness |
US6975231B2 (en) * | 2001-01-23 | 2005-12-13 | Amron Corporation | Systems and methods for improving hand hygiene compliance |
WO2003082351A2 (en) * | 2002-03-22 | 2003-10-09 | Path-X International, Inc. | Hand-washing monitoring system |
US20060015032A1 (en) * | 2004-07-14 | 2006-01-19 | Linda Gordon | Non-invasive method for measuring changes in vascular reactivity |
US7375640B1 (en) * | 2004-10-12 | 2008-05-20 | Plost Gerald N | System, method and implementation for increasing a likelihood of improved hand hygiene in a desirably sanitary environment |
US20060272361A1 (en) * | 2005-06-07 | 2006-12-07 | Snodgrass David L | Handwash monitoring system |
US20070096930A1 (en) * | 2005-11-02 | 2007-05-03 | Joseph Cardoso | System and method for detecting proper cleaning of people and items entering a controlled area |
DK2317700T3 (en) * | 2006-02-10 | 2016-08-22 | Hyintel Ltd | A system and method for monitoring hygiene standards compliance |
GB2439306A (en) * | 2006-06-21 | 2007-12-27 | Natalie Harris | A handcleaning dispenser system |
US20080001763A1 (en) * | 2006-06-29 | 2008-01-03 | Raja Vishnu R | Hand washing compliance system |
US7733233B2 (en) * | 2006-10-24 | 2010-06-08 | Kimberly-Clark Worldwide, Inc. | Methods and systems for monitoring position and movement of human beings |
JP5007404B2 (en) * | 2007-05-09 | 2012-08-22 | 株式会社国際電気通信基礎技術研究所 | Personality discrimination device, personality discrimination method, communication robot and electronic device |
US7893842B2 (en) * | 2007-10-05 | 2011-02-22 | Richard Deutsch | Systems and methods for monitoring health care workers and patients |
JP3147041U (en) * | 2008-09-30 | 2008-12-11 | テルモ株式会社 | Arm-mounted blood pressure monitor |
-
2009
- 2009-12-17 EP EP09795980A patent/EP2368202A1/en not_active Withdrawn
- 2009-12-17 JP JP2011541455A patent/JP2012513052A/en not_active Ceased
- 2009-12-17 WO PCT/EP2009/067461 patent/WO2010070072A1/en active Application Filing
- 2009-12-17 US US13/132,525 patent/US20110254682A1/en not_active Abandoned
- 2009-12-17 AU AU2009327083A patent/AU2009327083A1/en not_active Abandoned
- 2009-12-17 CA CA2745957A patent/CA2745957A1/en not_active Abandoned
- 2009-12-17 CN CN2009801507557A patent/CN102257501A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070080801A1 (en) * | 2003-10-16 | 2007-04-12 | Weismiller Matthew W | Universal communications, monitoring, tracking, and control system for a healthcare facility |
US7242307B1 (en) * | 2003-10-20 | 2007-07-10 | Cognetive Systems Incorporated | System for monitoring hygiene appliances |
EP1913892A2 (en) * | 2006-10-13 | 2008-04-23 | Allegheny-Singer Research Institute | Method and system to monitor hand hygiene compliance |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011058293A1 (en) * | 2009-08-04 | 2011-05-19 | Pulse Medical Technologies Ltd | System, apparatus and method for enabling hand hygiene |
US9824569B2 (en) | 2011-01-28 | 2017-11-21 | Ecolab Usa Inc. | Wireless communication for dispenser beacons |
US9245437B2 (en) | 2011-04-26 | 2016-01-26 | Kenneth Alaric Best | Contact monitoring system |
GB2490334A (en) * | 2011-04-26 | 2012-10-31 | Veraz Ltd | System for monitoring contact or close proximity between devices |
WO2012146896A1 (en) * | 2011-04-26 | 2012-11-01 | Veraz Limited | Contact monitoring system |
GB2490334B (en) * | 2011-04-26 | 2015-09-16 | Veraz Ltd | Contact monitoring system |
WO2013031481A1 (en) * | 2011-08-26 | 2013-03-07 | Niiyama Marika | Object proximity and contact detection device |
WO2014060726A1 (en) | 2012-10-16 | 2014-04-24 | University College Cardiff Consultants Limited | Hand hygiene monitoring system |
EP3022706A4 (en) * | 2013-07-19 | 2018-03-07 | Versus Technology, Inc. | Automatic hygiene compliance assistance |
CN108697339A (en) * | 2015-12-11 | 2018-10-23 | 健康纺织瑞典公司 | Method and system for monitoring medical garment |
CN108697339B (en) * | 2015-12-11 | 2021-08-10 | 健康纺织瑞典公司 | Method and system for monitoring medical garments |
WO2021102103A1 (en) | 2019-11-19 | 2021-05-27 | Willo Technologies, Llc | Platform for hygiene behavioral monitoring and modification |
EP4062412A4 (en) * | 2019-11-19 | 2023-12-20 | Hygiene IQ, LLC | Platform for hygiene behavioral monitoring and modification |
Also Published As
Publication number | Publication date |
---|---|
US20110254682A1 (en) | 2011-10-20 |
CA2745957A1 (en) | 2010-06-24 |
CN102257501A (en) | 2011-11-23 |
AU2009327083A1 (en) | 2011-06-23 |
JP2012513052A (en) | 2012-06-07 |
EP2368202A1 (en) | 2011-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110254682A1 (en) | Hand hygiene system | |
US10223894B2 (en) | Monitor worn by user for providing hygiene habits indication | |
EP1872802A1 (en) | Hand washing compliance system | |
US7605704B2 (en) | RF controlled devices to increase compliance with handwashing protocols | |
US8674840B2 (en) | Sanitization compliance monitoring system | |
AU2010322439B2 (en) | Real-time method and system for monitoring hygiene compliance within a tracking environment | |
US9047755B2 (en) | Hygiene compliance system and method | |
US20090195385A1 (en) | Proactive hand hygiene monitoring system | |
US20090091458A1 (en) | Systems and methods for monitoring health care workers and patients | |
US20140180713A1 (en) | Real-time method and system for monitoring hygiene compliance within a tracking environment utilizing various timers | |
JP2012513052A5 (en) | ||
US20130127615A1 (en) | Sanitization compliance monitoring system with security enhancements | |
WO2015117112A1 (en) | Real-time method and system for monitoring hygiene compliance within a tracking environment utilizing various timers | |
Alić et al. | Ultra-low Power Beacon-based Hand Hygiene Assistance System for Hospitals and Care Facilities | |
Botezatu et al. | Sensing architecture for a nosocomial infection tracing system | |
TR2021005173A2 (en) | HAND HYGIENE TRACKING SYSTEM FOR HEALTHCARE PERSONNEL IN HEALTHCARE ORGANIZATIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980150755.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09795980 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2009795980 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2745957 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011541455 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009327083 Country of ref document: AU Date of ref document: 20091217 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13132525 Country of ref document: US |