WO2010069238A1 - 网状及星型拓扑结构无线传感器网络的通信方法 - Google Patents

网状及星型拓扑结构无线传感器网络的通信方法 Download PDF

Info

Publication number
WO2010069238A1
WO2010069238A1 PCT/CN2009/075501 CN2009075501W WO2010069238A1 WO 2010069238 A1 WO2010069238 A1 WO 2010069238A1 CN 2009075501 W CN2009075501 W CN 2009075501W WO 2010069238 A1 WO2010069238 A1 WO 2010069238A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
network
superframe
communication
routing
Prior art date
Application number
PCT/CN2009/075501
Other languages
English (en)
French (fr)
Inventor
梁炜
于海斌
张晓玲
杨淼
徐伟杰
王军
曾鹏
杨志家
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200810229991A external-priority patent/CN101754436A/zh
Priority claimed from CN200810229994A external-priority patent/CN101754423A/zh
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Priority to EP09832920.4A priority Critical patent/EP2381737B1/en
Publication of WO2010069238A1 publication Critical patent/WO2010069238A1/zh
Priority to US13/220,724 priority patent/US8730838B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication technologies, and more particularly to a communication method for a wireless sensor network of a mesh and star topology based on hybrid multiple access and adaptive frequency hopping. Background technique
  • a technical problem to be solved by the present invention is to provide a reliable, real-time, flexible, hybrid-based multi-access access solution for a wireless sensor network in the prior art that cannot simultaneously meet the requirements of reliability, real-time, and energy-saving requirements.
  • the technical solution adopted by the present invention is:
  • the communication method of the mesh and star topology wireless sensor network of the present invention comprises the following steps: building various nodes in the wireless sensor network into a mesh and star hybrid topology;
  • a long-period data processing method a connectivity evaluation method, a medium access control method, a channel metric method, a frequency hopping method, a beacon frame format, and a two-stage communication resource allocation method are defined;
  • the mesh and star network includes four types of physical nodes: gateway nodes, routing nodes, field nodes, and handheld nodes; wherein the gateway nodes are data aggregation centers, providing interfaces for MSTN networks and other wireless sensor networks, and Ethernet, etc. Wired network connection; routing node is used to copy and forward data in MSTN network, support various types of sensors; field node is installed in industrial field, connected with sensors and actuators, used to transmit process measurement and control information, thus completing Specific applications; Handheld nodes are used to configure and maintain MSTN network nodes for temporary access to the network.
  • the gateway node includes two functional modules: a network manager and a security manager, respectively implementing network management and security management functions; wherein, the network manager is responsible for managing node joining, forming a network, and monitoring the performance of the entire network; Key management and security authentication for routing nodes and field nodes.
  • the mesh and star hybrid topology is:
  • the first layer is a mesh network, which is composed of a routing node and a gateway node; the routing node communicates with at least one site node, communicates with the gateway node or at least communicates with one other routing node;
  • the second layer is a star network, which consists of routing nodes and field nodes, also known as clusters. Field nodes do not communicate directly, and field nodes only communicate with one routing node.
  • the superframe structure is based on a MAC layer superframe of IEEE 802. 15.4, and the specific structure includes a beacon frame phase, a contention access phase, a non-contention access phase, an intra-cluster communication phase, an inter-cluster communication phase, and a sleep phase, where:
  • the beacon frame phase is used for slot synchronization and superframe information release;
  • the competitive access phase is used for node join and intra-cluster management, and the slot access CSMA/CA algorithm is used to implement media access control;
  • the non-competitive access phase is used for emergency communication, communication between the handheld node and the cluster head, and is independently assigned by the routing node.
  • the non-competitive access phase uses the time division multiple access method for communication;
  • the intra-cluster communication phase is an extension of the non-competitive access phase for intra-cluster communication
  • the inter-cluster communication phase is used for inter-cluster communication and management
  • Both the intra-cluster communication phase and the inter-cluster communication phase use the time division multiple access method and the slot hopping mode to communicate, and the communication resources are written into the node in the form of "channel, slot".
  • the superframe is maintained by each node, and the length of each stage of the superframe is customized; the superframe length is 2 N times of the length of the basic superframe, and N is a positive integer, wherein the basic superframe length is 32 slots;
  • the superframe length of the node is determined by the data update rate of the application; the superframe length of the routing node takes the minimum superframe length of all the on-site nodes in the star network; the superframe length of the gateway node takes the minimum superframe length of its neighbor routing node. .
  • the intra-cluster communication refers to communication between a routing node and a field node; inter-cluster communication refers to communication between routing nodes and between routing nodes and gateway nodes.
  • Beacon frame phase The competitive access phase phase and the non-contention access phase phase use the same channel in the same superframe period; if the channel is insufficient, the intra-cluster communication phase of different clusters adopts a time division strategy.
  • the payload of the beacon frame is used to issue extended superframe information, including at least the following information: cluster ID, absolute slot number, and channel used in the beacon frame phase and active period in the next superframe period.
  • the transmission mode of the beacon frame includes:
  • the gateway node and the routing node send the beacon frame, but do not forward the beacon frame;
  • the gateway node sends a beacon frame for time synchronization and joining of its neighbor routing nodes, and broadcast of the super-frame information of the gateway node;
  • the routing node sends a beacon frame for time synchronization and join of the on-site nodes in the cluster, as well as broadcast of the super-frame information of the routing node.
  • the long-period data is defined as: the data update rate is greater than the maximum length of the superframe in IEEE 802. 15. 4-2006 or the data of the data update period of the routing node of the cluster;
  • the frequency hopping method supports the following three frequency hopping mechanisms:
  • the beacon phase, the competitive access phase and the non-contention access phase use the same channel in the same superframe period, in different super
  • the channel is switched according to the channel condition in the frame period; when the channel quality is poor, the node changes the communication channel; the channel condition is evaluated by the packet loss rate and the number of retransmissions;
  • each time slot in the intra-cluster communication phase changes the communication channel according to the channel condition; when the channel quality is poor, the node changes the channel condition of the communication channel through The packet loss rate and the number of retransmissions are evaluated; the in-cluster communication phase in the inactive period uses an adaptive frequency hopping mechanism; the hopping sequence ⁇ (the structure of J is: ⁇ timeslot 1, channel 1> ⁇ timeslot 2, channel 2> ⁇ ⁇ ⁇ timeslot i, channel i> ;
  • Time slot frequency hopping In order to avoid interference and attenuation, the communication channel is changed in each time slot according to the user's own predefined frequency hopping sequence; the slot frequency hopping mechanism is adopted in the inter-cluster communication phase in the inactive period; the structure of the frequency hopping sequence is : ⁇ timeslot 1, channel 1> ⁇ timeslot 2, channel 2>* ⁇ ⁇ timeslot i, channel i>.
  • the beacon frame of the previous superframe period predicts the channel used by the next superframe period; for adaptive frequency hopping, the previous slot predicts the channel used by the next slot.
  • the channel metric method is:
  • a field node or routing node measures one or more channel conditions and reports statistical information to the routing node or network manager; the field node sends the collected metric results to the routing node, and the routing node collects the channel status of itself and The channel conditions collected by the on-site nodes are sent to the network manager.
  • each node records the status of all channels communicating with the node during the metric period; the recorded performance information includes: Link Quality Indication (LQI), packet loss rate, and number of retransmissions
  • LQI Link Quality Indication
  • the packet loss rate is determined by the number of acknowledged frames and the number of transmitted packets.
  • the two-stage communication resource allocation method is:
  • the network manager in the gateway node allocates resources to the routing nodes in the mesh network, and the partial resources include resources used by the routing nodes for communicating in the mesh network and resources allocated by the routing nodes to the site nodes;
  • the routing node then allocates resources for the on-site nodes of the star network.
  • the rules for the allocation of two-phase communication resources include:
  • the node time slot allocation with fast update rate takes precedence
  • the data frame with early start time is sent first;
  • the data frame with a high priority is assigned a time slot priority.
  • the routing node and the site node respectively store the resources allocated by the network manager for the routing node and the resources allocated by the routing node for the site node, involving the superframe attribute and the link attribute; wherein the link attribute relates to each time slot in the superframe attribute
  • the communication-related information declares the communication parameters between adjacent nodes in the network, and each node needs to maintain its own link information.
  • the attributes of each superframe include: an ID number of the superframe, a ratio of a maximum data update period of the field node to a data update period of a routing node of the network, a superframe size, a superframe activation flag, and an absolute time of superframe activation.
  • the slot attribute; the link attribute corresponding to each slot in the superframe includes the link ID number, the neighbor node ID number, the link type, the link characteristics, the slot type, the relative slot number, and the data update period of the field node.
  • the routing node or the site node performs one or more connectivity evaluations before joining the MSTN network, and selects one or more parent nodes;
  • the evaluated indicators include: receiving channel strength indication, detecting energy, and Link quality indication.
  • the network construction method is:
  • the joining of the site node and the handheld node requires that the routing node of the network forwards the joining request and the joining response of the node; if the routing node cannot reach the gateway node in one hop, it also needs other routing nodes to forward the joining request and join of the node. response.
  • the content of the join request includes the physical address and the node type of the node to be joined; the content of the join response includes the join status, the physical address of the node to be joined, and the short address of the node to be joined; wherein the join status is used to indicate the result of the node applying to join the network.
  • the short address to be added to the node is the 16-bit address assigned to the node by the gateway node after the node joins successfully.
  • Time synchronization The node to be joined to the network selects the beacon issuing node as the proxy routing node, and uses the time information in the beacon to complete the time synchronization;
  • Sending a join request The node to be joined to the network sends a join request to the proxy routing node, and the proxy routing node forwards the join request to the sink node;
  • the node to be joined to the network receives the join response forwarded by the proxy routing node. If the join response is a negative response, the node to be joined to the network will restart the join process; if the acknowledgement information is positive, the join process succeeds and ends. ;
  • the gateway node In the resource allocation process of the routing node, if the routing node newly joining the network joins the network through one-hop mode, the gateway node directly establishes a superframe for it, and passes commands for superframe, link, and routing operations. The frame allocates superframes, links, and routes to the routing node. If the network joins the network through multi-hop mode, the network routing node needs to forward the command frame of the super-frame, link, and routing operations of the newly added routing node to the gateway node.
  • the resource allocation process of the routing node is:
  • the routing node After the routing node joins the network, it reports neighbor information to the gateway node.
  • the gateway node configures a routing table for the newly added routing node according to the neighbor information reported by the gateway; the gateway node configures a superframe table for the newly added routing node according to the reported neighbor information; the gateway node newly joins the neighbor information according to the reporting
  • the routing node of the network configures the link table.
  • the communication resource is pre-assigned by the gateway node to the routing node of the cluster in which it is located, and then the pre-allocated communication resource is allocated by the cluster head to the newly joined network.
  • the site node; the communication resource of the site node is the intra-cluster communication phase of the superframe;
  • the resource allocation process of the site node is:
  • the user configures the site node
  • the routing node saves the routing, superframe, and link information locally, and allocates resources to the field nodes according to their own resources, and writes the information of the superframe and link to the site node.
  • the communication resource allocation process of the handheld node is different from the field node in that the communication resource of the handheld node is a non-competitive access phase of the superframe.
  • the invention is proposed under the premise of fully considering the characteristics of industrial measurement and control applications, and has the advantages of real-time, reliability, low energy consumption, etc., and the specific performance is as follows: 1.
  • the present invention adopts a mesh and star (Mesh+Star) hybrid topology, which simplifies the network structure through the star structure, reduces the difficulty of maintenance and management, and improves the flexibility of the system.
  • the utilization improves the reliability of the network.
  • the present invention adopts a superframe structure based on the IEEE 802.15 standard and expands it. On the one hand, it fully utilizes the advantages of IEEE 802. 15. 4, improves system compatibility, and protects existing Investment, on the other hand, simplifies design by expanding to meet the requirements of industrial applications.
  • the present invention expands the process of long-period data, and can process the transmission of data with a large data update period in the process industry, which is simple and easy.
  • the present invention adopts a frequency division and time division hybrid mechanism, which expands the capacity of the network on the one hand and improves the reliability of the network on the other hand.
  • the present invention adopts a hybrid channel switching between cycles and a frequency hopping technique in a period.
  • using a fixed channel in one cycle improves network compatibility, and on the other hand, adaptive channel switching and frequency hopping techniques are improved. The reliability of the network.
  • the invention adopts a competition-based and scheduling-based hybrid medium access control method, which utilizes the flexibility of the contention-based medium access control method on the one hand, and uses the scheduling-based medium access control method to have good real-time performance and energy consumption. Low features.
  • the present invention adopts a global and local hybrid two-stage resource allocation strategy.
  • the global resource allocation ensures the optimality of resource allocation, and on the other hand, the local resource allocation shares the burden of global resource allocation and improves resources.
  • the efficiency of the distribution improves the flexibility and scalability of the network.
  • the method of the present invention designs a multi-hop join of a routing node, and the routing node forwards the join request and the join response of the field node and the handheld node, on the one hand making full use of the joining mechanism supported by the IEEE 802. 15. 4 protocol; On the basis of the original IEEE 802. 15. 4 protocol, the multi-hop joining mode of the network node is extended, so that the node to be joined to the network does not need to be located in the receiving range of the gateway node, thereby expanding the network scale and implementing the gateway node. Unified management of network nodes. DRAWINGS
  • FIG. 1 is a schematic diagram of a physical topology structure of an MSTN network in the method of the present invention
  • FIG. 2 is a schematic structural diagram of an MSTN superframe in the method of the present invention.
  • FIG. 3 is a schematic diagram of long-period data processing in the method of the present invention.
  • 4A is a schematic diagram of MSTN superframe-frequency division multiple access in the method of the present invention.
  • FIG. 4B is a schematic diagram of MSTN superframe-time division multiple access + frequency division multiple access in the method of the present invention
  • FIG. 4C is a schematic diagram of time division multiple access of MSTN superframe in the method of the present invention
  • FIG. 5 is a schematic diagram of a detailed beacon frame payload structure in the method of the present invention.
  • FIG. 6 is a schematic diagram of a format of a beacon frame based on an IEEE 802.15.4 in the method of the present invention
  • FIG. 7A is a diagram showing an example of a network topology in the method of the present invention.
  • FIG. 7B is a resource allocation result diagram of FIG. 7A; FIG.
  • FIG. 8 is a schematic diagram of a joining process of nodes in the method of the present invention.
  • FIG. 9 is a schematic diagram of a communication resource allocation and route allocation process of a routing node in the method of the present invention.
  • FIG. 10 is a schematic diagram of a communication resource allocation process of a site node in the method of the present invention.
  • the communication method of the mesh and star topology wireless sensor network of the present invention comprises the following steps: building various nodes in the wireless sensor network into a mesh and star hybrid topology; Defining a superframe structure based on IEEE 802. 15. 4 based on the above topology;
  • a long-period data processing method a connectivity evaluation method, a medium access control method, a channel metric method, a frequency hopping method, a beacon frame format, and a two-stage communication resource allocation method are defined;
  • the technology related to the present invention is directed to a wireless sensor network mesh and star hybrid topology, which includes the following four types of physical nodes:
  • the gateway node is the aggregation center for data and provides an interface to the MSTN network and other wireless sensor networks.
  • the "gateway node” referred to in the present invention refers to a single node in the network that acts as a measurement and control clearing center.
  • the gateway node can be connected to a wired network such as Ethernet.
  • the two functional modules of the gateway node, the network manager and the security manager implement network management and security management functions respectively.
  • Network managers are responsible for managing node joins, forming networks, and monitoring overall network performance.
  • the security manager is responsible for key management and security authentication of routing nodes and field nodes.
  • the routing node is used to copy and forward data in the MSTN network.
  • the routing node can send or forward data to gateway nodes, routing nodes, field nodes, and handheld nodes in the network. Routing nodes can also support various types of sensors.
  • the field nodes are installed in the industrial field and are connected to sensors and actuators for transmitting process measurement and control information to complete specific applications.
  • Handheld nodes are used to configure and maintain MSTN network nodes.
  • the handheld node can temporarily access the network.
  • the field node referred to in the present invention includes a hand-held node unless otherwise specified.
  • the MSTN network of a mesh and star hybrid hierarchical topology shown in Figure 1 consists of two layers:
  • the first layer is a mesh network, consisting of routing nodes and gateway nodes; the routing node is at least one site. Node communication, communicating with the gateway node or at least communicating with one other routing node;
  • the second layer is a star network, consisting of a routing node and a site node; the field nodes are not directly communicating, the field node is only one routing node Communication.
  • a star network is also called a cluster, a routing node is a cluster head, and a field node is a cluster member.
  • IEEE 802. 15. 4 is the most promising wireless standard for the underlying communication protocol of wireless sensor networks due to its low power consumption, low cost, and simplicity.
  • the communication method of the present invention is based on the IEEE 802.15.4 standard.
  • the present invention proposes an extended superframe structure based on IEEE 802. 15. 4, which specifically includes:
  • beacon frame phase used for slot synchronization and superframe information release
  • CAP Contention Access Period
  • CSMA/CA Carrier Sense Multiple Access with Col I is Avoidance
  • CPP Contention-free Period
  • TDMA Time Division Multiple Access
  • Intra-cluster communication phase is an extension of the non-competitive access phase.
  • intra-cluster communication phase is used for inter-cluster communication and management; intra-cluster communication phase and inter-cluster communication phase use TDMA method for communication.
  • the intra-cluster communication refers to communication between a routing node and a field node; the inter-cluster communication refers to communication between routing nodes and between routing nodes and gateway nodes.
  • the basic superframe length of the present invention is 32 time slots, and the superframe length of the present invention. It is 2 N times the length of the basic superframe, N is a positive integer, and the length of the superframe is determined by the update rate of the data.
  • the superframe length of the site node is determined by the data update rate of the application; the superframe length of the routing node takes the minimum superframe length of all the site nodes in the star network; the superframe length of the gateway node takes the minimum superframe of its neighbor routing node. length.
  • the IEEE 802. 15. 4 maximum superframe length is limited, but in many applications there may be data with an update period greater than the IEEE 802. 15. 4 maximum superframe length, so this embodiment defines that the long period data is a data update rate greater than IEEE 802. 15. 4-2006 The maximum length of the superframe is either greater than the data update period of the routing node of the cluster.
  • SuperframeMul tiple- represents the least common multiple of the data update period of all long-period data
  • LinkSuperframeNum represents the ratio of the update period of the long-period data to the superframe length.
  • the field node receives the beacon frame and determines whether its long-period data is transmitted during the superframe period.
  • the specific criteria are as follows - if 6? Transmi tFlag ⁇ SuperframeMul tiple, and Transmi tFlag - LinkSuperframeNum, then Transmitted during the superframe period;
  • Figure 4A shows that the Beacon phase, the CAP phase, and the CFP phase only perform frequency division without The case of time division;
  • Figure 4B shows the frequency division and time division of the Beacon phase, the CAP phase and the CFP phase;
  • Figure 4C shows the case where the Beacon phase, the CAP phase, and the CFP phase are only time-divided.
  • the superframe lengths corresponding to the three routing nodes R1, R2 and R3 in Fig. 4A are respectively 2 basic superframe lengths, 4 basic superframe lengths and 8 basic superframe lengths, and Beacon phases of R1, R2 and R3.
  • the CAP phase and the CFP phase overlap, so the three routing nodes require three channels to complete the communication of the beacon Beacon phase, the CAP phase, and the CFP phase.
  • the superframe lengths corresponding to the three routing nodes R1, R2, and R3 in FIG. 4B are respectively 2 basic superframe lengths, 4 basic superframe lengths, and 8 basic superframe lengths
  • the beacon Beacon phase and CAP of R1 are respectively The phase and CFP phases do not overlap with the beacon Beacon phase, CAP phase and CFP phase of R2 and R3, so the three routing nodes only need two channels to complete the communication of the beacon Beacon phase, the CAP phase and the CFP phase.
  • the three routing nodes R1, R2, and R3 have corresponding superframe lengths of 4 basic superframe lengths, 8 basic superframe lengths, and 16 basic superframe lengths, because of the beacons of R1, R2, and R3.
  • the Beacon phase, the CAP phase, and the CFP phase do not overlap, so the three routing nodes only need one channel to complete the communication of the beacon Beacon phase, the CAP phase, and the CFP phase.
  • the present invention uses the beacon frame payload of the IEEE 802. 15. 4 medium access control layer (MAC) to issue extended superframe information.
  • the beacon frame payload is as shown in FIG. 5, and specifically includes the following contents:
  • the cluster ID, the absolute slot number, and the channel used in the beacon frame phase and active period in the next superframe period are the cluster ID, the absolute slot number, and the channel used in the beacon frame phase and active period in the next superframe period.
  • the beacon frame format is as shown in FIG. 6.
  • the beacon frame adopts the format of the beacon frame of the IEEE 802. 15. 4 MAC layer, and the meaning of the specific parameter is referred to the IEEE 802. 15. 4-2006 standard.
  • the beacon enable mode in the IEEE 802. 15. 4 standard lacks scalability and is only applicable to star topologies.
  • the coordinator periodically transmits beacon frames for synchronizing its neighbor nodes. Therefore, the coverage of the network is limited to the transmission range of the coordinator, which limits the number of nodes and network size in the network.
  • the MSTN network requires coverage over a large range, so the beacon enable mode in the IEEE 802.15 4 standard does not apply to the MSTN network.
  • the beacon enable mode in the IEEE 802.15 4 standard In order for the beacon enable mode in the IEEE 802.15 4 standard to be applied to the MSTN network, the following modifications are required to enable the beacon frame transmission to follow the following pattern:
  • the gateway node and the routing node send the beacon frame, but do not forward the beacon frame;
  • the gateway node sends a beacon frame for time synchronization and joining of its neighbor routing nodes, and broadcast of the super-frame information of the gateway node;
  • the routing node sends a beacon frame for time synchronization and join of the on-site nodes in the cluster, as well as broadcast of the super-frame information of the routing node.
  • MSTN supports frequency hopping communication, and the hopping sequence is specified by the network administrator. As shown in Table 1, the MSTN network specifically supports three frequency hopping mechanisms: AFS, AFH, and TH.
  • Adaptive Frequency Switch In the MSTN superframe, the beacon phase, CAP phase and CFP phase use the same channel in the same superframe period, according to different superframe periods.
  • Channel condition switching channel When the channel quality is poor, the node changes the communication channel. The channel condition is evaluated by the packet loss rate and the number of retransmissions.
  • each time slot in the intra-cluster communication phase changes the communication channel according to the channel condition.
  • the node changes the communication channel.
  • the channel condition is evaluated by the packet loss rate and the number of retransmissions.
  • the structure of the hopping sequence is: ⁇ tim es lot 1, channel 1> ⁇ timeslot 2, channel 2> ⁇ ⁇ timeslot i, channel i>.
  • Timeslot Hopping In order to avoid interference and attenuation, the communication channel is changed in each time slot according to the user's own predefined frequency hopping sequence; the inter-cluster communication segment in the inactive period uses slot hopping.
  • Mechanism; hopping sequence ⁇ J structure: ⁇ timeslot 1, channel 1> ⁇ timeslot 2, channel 2> ⁇ ⁇ timeslot i, channel i>.
  • Channel metrics are used to provide network administrators and routing nodes with status information for the channels, helping network managers and routing nodes to allocate communication channels.
  • a field node (or routing node) can measure one or more channel conditions and report statistics to the routing node (or network manager).
  • the on-site node sends the collected measurement result to the routing node, and the routing node sends the channel status collected by itself to the network manager along with the channel status collected by the on-site node.
  • each node During the channel metric, each node records the status of all channels communicating with the node during the metric period.
  • the MSTN specifies the following performance information collected with each neighbor node:
  • LQI Link Quality Indication
  • the packet loss rate is determined by the number of acknowledged frames (ACKs) and the number of transmitted packets.
  • ACKs acknowledged frames
  • AFS the beacon frame of the previous superframe period predicts the channel used by the next superframe period.
  • AFH the previous time slot predicts the channel used by the next time slot.
  • the present invention employs the TDMA and FDMA methods, and the allocation of communication resources is necessary. Since the present invention is directed to a network of mesh and star structures, the present invention employs a two-stage resource allocation method that schedules communication resources in two phases.
  • the specific two-stage resource scheduling includes: The network manager in the gateway node allocates resources to the routing nodes in the mesh network, and the partial resources include resources and routing nodes used by the routing nodes to communicate in the mesh network can be allocated to the site nodes. Resources; the routing node then allocates resources for the on-site nodes of the star network.
  • the communication resources include channels and time slots, and the communication resource resource allocation of the present invention follows the following main scheduling rules - the channel allocation of the fixed channel portion takes precedence;
  • the node time slot allocation with fast update rate takes precedence
  • the data frame with early start time is sent first;
  • the data frame with a high priority is assigned a time slot priority.
  • FIG. 7A is an example of an MSTN topology
  • FIG. 7B is a result of allocating resources according to the topology given in FIG. 7A.
  • the gateway node GW first allocates resources to the routing nodes R1, R2 and R3 in the mesh network. This part of the resources includes resources for communication between the routing nodes R1, R2 and R3, communication resources between the routing node and the gateway node GW, and communication resources that can be allocated to the on-site nodes in the cluster.
  • the routing node After receiving the communication resource allocated by the gateway node GW, the routing node selects a part of the communication resource that can be allocated to the field node and allocates it to the field node in the cluster, and the communication resource is used for communication between the field node and the cluster routing node. .
  • R1, R2, and R3 As shown in FIG. 7B, after the gateway node GW allocates communication resources for R1, R2, and R3, R1 allocates communication resources for F1 and F2, R2 allocates communication resources for F5, and R3 allocates communication resources for F3 and F4.
  • the node needs to store the allocated communication resources, specifically related to superframe information and link information.
  • the link relates to communication-related information for each time slot in the superframe. The link declares the communication parameters between adjacent nodes in the network, and each node maintains its own link information.
  • the attributes of each superframe include a superframe identifier (ID), a ratio of the maximum data update period of the field node to the data update period of the routing node of the network, a superframe size, and a superframe activation flag. And the absolute slot number activated by the superframe.
  • Link characteristics send, receive, and share transmission
  • time slot type data and management
  • relative time slot number ratio of data update period of the site node to the data update period of the routing node of the network
  • link usage flag Primary channel number and superframe identifier
  • Bit 7 indicates the type of link:
  • Bits 5-6 indicate the characteristics of the link:
  • LinkType 0 to 32 bits 3-4 indicates the type of slot:
  • Bit 2 represents the aggregation characteristics of the time slot:
  • LinkSuperf rameNum 0 ⁇ 255 The ratio of the data update period of the routing node of the network. Used to process long-period data Lose.
  • the routing node or the on-site node can perform one or more connectivity evaluations before joining the MSTN network, and can select one or more parent nodes.
  • Indicators for assessing connectivity include: Received Channel Strength Indicator (RSSI); Detection Energy (ED); Link Quality Indicator (LQI).
  • RSSI Received Channel Strength Indicator
  • ED Detection Energy
  • LQI Link Quality Indicator
  • a routing node or a site node to be joined to the network listens for packets of neighboring routing nodes (or gateway nodes) to determine routing nodes (or gateway nodes) within the communication range.
  • the specific process is as follows: The routing node or the field node to be joined to the network listens for messages from the routing node (or gateway node) on one channel, collects connection information, and then switches to another channel to collect from other routing nodes (or gateway nodes). ) connection information.
  • the node to be joined to the network may select one of the most connected routing nodes (or gateway nodes) from multiple routing nodes, and is not limited to a specific one.
  • the routing node (or gateway node) of the band may select one of the most connected routing nodes (or gateway nodes) from multiple routing nodes, and is not limited to a specific one. The routing node (or gateway node) of the band.
  • the joining of the site node and the handheld node requires that the routing node of the network forwards the joining request and the joining response of the node; if the routing node cannot reach the gateway node in one hop, it also needs other routing nodes to forward the joining request and join of the node. response.
  • the in-network routing node used for forwarding join requests and joining responses within one hop range is called a proxy routing node.
  • the content of the join request includes the physical address and node type (route node, field node or handheld node) of the node to be joined;
  • the content of the join response includes the join status, the physical address of the node to be joined, and the short address of the node to be joined.
  • the join status is used to indicate the result (success or failure) of the node applying to join the network;
  • the short address to be added to the node is the 16-bit address assigned to the node by the gateway node after the node joins successfully.
  • the routing node joining process is divided into a one-hop joining process of the routing node and a multi-hop joining process of the routing node according to the hop count between the routing node and the sink node. If the routing node can join the aggregation node by one hop, the hop join process joins the network. If the routing node needs to forward to other aggregation nodes on the network to join the aggregation node, the multi-hop join process is initiated. The join process of the on-site node and the handheld node is the same as the multi-hop join process of the routing node.
  • the one-hop join process of the routing node completely adopts the join primitive and join message of the MAC layer of the original IEEE 802. 15. 4 protocol, and will not be described in detail herein.
  • the process of joining the node to the network is as follows:
  • Time synchronization The node to be joined to the network selects the beacon issuing node as the proxy routing node, and uses the time information in the beacon to complete the time synchronization;
  • Sending a join request The node to be joined to the network sends a join request to the proxy routing node, and the proxy routing node forwards the join request to the gateway node;
  • the gateway For a newly added routing node, if it joins the network through one-hop, the gateway directly establishes a superframe for it, and allocates superframes, links, and routes through command frames for superframes, links, and routing operations. To the routing node; if the network is joined in multiple hops, the network routing node needs to forward the command frame of the gateway node to the newly added routing node superframe, link, and routing operations.
  • the communication resource allocation process of the routing node is:
  • the routing node After the routing node joins the network, it reports neighbor information to the gateway node.
  • the gateway node configures a routing table for the newly added routing node according to the neighbor information reported by the gateway; the gateway node configures a superframe table for the newly added routing node according to the reported neighbor information; the gateway node newly joins the neighbor information according to the reporting
  • the routing node of the network configures the link table.
  • the gateway node For a site node newly joining the network, its communication resources are pre-allocated by the gateway node to the routing node (ie, the cluster head) of the cluster in which it is located, and then the pre-allocated communication resources are allocated by the cluster head to the site node newly joining the network.
  • the communication resources of the site node are the intra-cluster communication phase of the superframe.
  • the resource allocation process of the site node is as follows:
  • the user configures the site node
  • the routing node saves the routing, superframe, and link information locally, and allocates resources to the field nodes according to their own resources, and writes the information of the superframe and link to the site node.
  • the communication resource allocation process of the handheld node is similar to that of the on-site node, except that the communication resource of the handheld node is the CFP segment of the superframe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

网状及星型拓扑结构无线传感器网络的通信方法 技术领域
本发明涉及无线通信技术,具体地说是一种基于混合多址访问和自适应跳频的网 状及星型拓扑结构无线传感器网络的通信方法。 背景技术
工业是无线传感器网络最具潜力的应用领域之一。与有线网络相比,无线网络具 有无需布线、 易于维护、 高度灵活、 快速实施等特点, 对于工业应用而言这无疑是一 个巨大的优势。随着无线通信技术的成熟与成本的降低, 工业网络无线化已成为趋势 之一。 一个典型的工业无线测控网络如附图 1所示, 大量的无线传感器或执行器节 点分布在工业现场的各个监测点上, 这些节点与具有路由功能的节点共同形成网络, 并将现场监测数据以多跳的方式传送回网关节点。 工业网络无线化带来便利的同时, 工业应用对无线网络提出了更为严格的可靠性、实时性和节能性等通信质量要求。在 可靠性方面, 工业现场环境下, 窄带多频噪声、 共存网络干扰和多途效应, 使得利用 稀缺的信道资源实现可靠通信成为急需解决的难题; 在实时性方面, 工业对实时性的 要求较其它应用更为严格, 微小的延迟都会造成重大事故, 具有硬实时保证的通信是 工业的基本要求;在节能性方面,低能耗是保证节点长期运行、降低维护成本的关键, 也是工业应用的又一要求, 特别是对电源更换困难的节点而言。随着无线传感器网络 (Wireless Sensor Network, WSN) 技术从实验室研究到现实可行, 越来越多的人们 关注 MSTN网络采用的通信拓扑和通信过程, 其中网状及星型拓扑结构无线传感器网 络 (Mesh and Star Topology wireless sensor Network, MSTN) 是在工业上应用的 一种典型 WSN。 而目前, 能够同时满足上述可靠性、 实时性以及节能性三方面要求的 网状及星型拓扑结构无线传感器网络, 尚未见报道。 发明内容
针对现有技术中存在的无线传感器网络不能同时满足可靠性、实时性以及节能性 三方面要求的缺陷, 本发明要解决的技术问题是提供一种可靠、 实时、 灵活的、 基于 混合多址访问和自适应跳频的网状及星型拓扑结构无线传感器网络的通信方法。
为解决上述技术问题, 本发明采用的技术方案是:
本发明网状及星型拓扑结构无线传感器网络的通信方法包括以下步骤: 将无线传感器网络中的各种节点搭建成网状及星型混合拓扑结构;
基于上述拓扑结构定义基于 IEEE 802. 15. 4的超帧结构;
基于上述拓扑结构和超帧结构, 定义长周期数据处理方法、连接性评估方法、 介 质访问控制方法、信道度量方法、跳频方法、信标帧格式以及两阶段通信资源分配方 法;
基于上述拓扑结构、 超帧结构和方法, 定义网络构建方法;
通过上述网络构建方法, 构建能够实现 MSTN通信过程的通信方法。
网状及星型网络中包括四类物理节点: 网关节点、路由节点、现场节点和手持节 点;其中,网关节点是数据的汇聚中心,为 MSTN网络和其它无线传感器网络提供接口, 与以太网等有线网络连接; 路由节点用于复制和转发 MSTN网络中的数据,支持各种类 型的传感器; 现场节点安装在工业现场, 与传感器和执行器相连接, 用于传输过程测 量和控制信息, 从而完成特定的应用; 手持节点用于配置和维护 MSTN网络节点, 临时 访问网络。 所述网关节点包含两个功能模块: 网络管理者和安全管理者, 分别实现网络管理 和安全管理功能; 其中, 网络管理者负责管理节点加入、 形成网络和监视整个网络性 能等; 安全管理者负责路由节点和现场节点的密钥管理和安全认证等。
所述网状及星型混合拓扑结构为:
第一层为网状网络, 由路由节点和网关节点构成; 路由节点至少和一个现场节 点通信, 和网关节点通信或者至少和一个其它路由节点通信;
第二层为星型网络, 路由节点和现场节点构成, 又称为簇; 现场节点之间不直 接通信, 现场节点只和一个路由节点通信。
所述超帧结构基于 IEEE 802. 15. 4的 MAC层超帧, 具体结构包括信标帧阶段、 竞 争访问阶段、 非竞争访问阶段、 簇内通信阶段、 簇间通信阶段以及休眠阶段, 其中: 信标帧阶段用于时隙同步和超帧信息的发布;
竞争访问阶段用于节点加入和簇内管理,采用时隙 CSMA/CA算法实现介质访问控 制;
非竞争访问阶段用于紧急通信、 手持节点与簇首间通信, 由路由节点自主分配。 非竞争访问阶段采用时分多址方法进行通信;
簇内通信阶段是非竞争访问阶段的扩展, 用于簇内通信;
簇间通信阶段用于簇间通信和管理;
簇内通信阶段和簇间通信阶段都采用时分多址方法和时隙跳频方式进行通信,通 信资源以〈信道、 时隙〉的形式写到节点中。
所述超帧由每个节点各自维护、 自定义超帧各阶段的长度; 超帧长度为基本超帧 长度的 2N倍, N为正整数, 其中基本超帧长度为 32个时隙; 现场节点的超帧长度由 应用的数据更新速率决定;路由节点的超帧长度取其星型网络内所有现场节点的最小 超帧长度; 网关节点的超帧长度取其邻居路由节点的最小超帧长度。
所述簇内通信指路由节点和现场节点之间的通信;簇间通信指路由节点之间以及 路由节点与网关节点之间的通信。
信标帧阶段 竞争访问阶段阶段和非竞争访问阶段阶段在同一个超帧周期内使用 相同的信道; 如果信道不足, 则不同簇的簇内通信阶段采用时分策略。
信标帧的载荷用于发布扩展的超帧信息, 至少包括以下信息: 簇 ID、 绝对时隙 号和下一个超帧周期中信标帧阶段和活动期使用的信道。
所述信标帧的发送模式包括:
网关节点和路由节点发送信标帧, 但不转发信标帧;
网关节点发送信标帧, 用于其邻居路由节点的时间同步和加入, 以及网关节点超 帧信息的广播;
路由节点发送信标帧, 用于其簇内现场节点的时间同步和加入, 以及路由节点超 帧信息的广播。
所述长周期数据的定义为: 数据更新率大于 IEEE 802. 15. 4-2006中超帧的最大 长度的数据或者大于所在簇的路由节点的数据更新周期的数据;
判断长周期数据,否在当前超帧周期内传输的方法为: ^ Super frameMul tiple
如果 6? Transmi tFlag < Super frameMul tiple, 且 Transmi tFlag - LinkSuperframeNum, 则在该超帧周期内传输;
如果 Transmi tFlag Λ 且 L inkSuperframeNum SuperframeMul tiple, 贝 (J 在该超帧周期内传输; 否则, 不传输。
所述跳频方法支持以下三种跳频机制:
自适应频率切换: 在网状及星型混合拓扑结构无线传感器网络的超帧中, 信标阶 段、 竞争访问阶段和非竞争访问阶段在同一个超帧周期内使用相同的信道, 在不同 的超帧周期内根据信道状况切换信道; 信道质量差时, 节点改变通信信道; 信道状况 通过丢包率和重传次数进行评价;
自适应跳频: 在网状及星型混合拓扑结构无线传感器网络的超帧中,簇内通信阶 段的每个时隙根据信道状况更换通信信道; 信道质量差时,节点改变通信信道信道状 况通过丢包率和重传次数进行评价; 非活动期的簇内通信阶段采用自适应跳频机制; 跳频序歹 (J的结构为: <timeslot 1, channel 1> <timeslot 2, channel 2>··· <timeslot i, channel i> ;
时隙跳频: 为了避免干扰和衰减, 按用户自行预定义的跳频序列在每个时隙改变 通信信道; 非活动期的簇间通信阶段采用时隙跳频机制; 跳频序列的结构为: <timeslot 1, channel 1〉 <timeslot 2, channel 2>*·· <timeslot i, channel i〉。
对于自适应频率切换,前一个超帧周期的信标帧预告后一个超帧周期所采用的信 道; 对于自适应跳频, 前一个时隙预告下一个时隙所用的信道。
所述信道度量方法为:
一个现场节点或者路由节点度量一个或多个信道状况, 并且将统计信息汇报给 路由节点或者网络管理者; 现场节点将收集到的度量结果发送给路由节点, 路由节点 将自身收集到的信道状况和现场节点收集到的信道状况一起发送给网络管理者。
在信道度量的过程中, 每个节点记录度量周期内与该节点通信的所有信道的状 况; 记录的性能信息包括: 链路质量指示 (Link Qual ity Indication, LQI )、 丢包 率和重传次数; 其中, 丢包率由确认帧的数量和传输的报文数量决定。
所述两阶段通信资源分配方法为:
网关节点中的网络管理者为网状网络中的路由节点分配资源,该部分资源包括路 由节点用于在网状网络中通信的资源和路由节点分配给现场节点的资源;
然后路由节点为星型网络的现场节点分配资源。
两阶段通信资源的分配规则包括:
固定信道部分的信道分配优先;
更新速率快的节点时隙分配优先;
起始时间早的数据帧发送优先;
优先级高的数据帧分配时隙优先。
路由节点和现场节点分别要存储网络管理者为路由节点分配的资源以及路由节 点为现场节点分配的资源, 涉及超帧属性和链路属性; 其中, 链路属性涉及超帧属性 中每个时隙与通信相关的信息, 声明了网络中相邻节点间的通信参数,每个节点需要 维护自己的链路信息。
所述每个超帧的属性包括: 超帧的 ID号、 现场节点最大数据更新周期与所在网 络的路由节点的数据更新周期的比值、超帧大小、超帧激活标志和超帧激活的绝对时 隙号;超帧中每个时隙所对应的链路属性包括链路 ID号、邻居节点 ID号、链路类型、 链路特性、 时隙类型、相对时隙号、现场节点的数据更新周期与所在网络的路由节点 的数据更新周期的比值、 链路使用标志、 主信道编号和超帧标识符。
所述连接性评估方法中, 路由节点或者现场节点在加入 MSTN网络之前, 进行一 个或者多个连接性评估, 并且选择一个或者多个父节点; 评估的指标包括: 接收信道 强度指示、 探测能量和链路质量指示。 所述网络构建方法为:
现场节点和手持节点的加入需要已在网的路由节点转发该节点的加入请求和加 入响应; 路由节点在无法一跳到达网关节点的情况下, 也需要其它路由节点转发该节 点的加入请求和加入响应。
加入请求的内容包括待加入节点的物理地址和节点类型;加入响应的内容包括加 入状态、待加入节点的物理地址和待加入节点的短地址; 其中, 加入状态用于表示节 点申请加入网络的结果; 待加入节点的短地址是节点加入成功后, 由网关节点分配给 该节点的 16位地址。
节点加入网络的过程如下:
1 ) 网络发现: 待加入网络的节点持续扫描网络中的可用信道, 直到成功收到已 加入路由节点或汇聚节点发出的信标;
2 ) 时间同步: 待加入网络的节点选择信标发出节点作为代理路由节点, 使用信 标中的时间信息完成时间同步;
3 ) 发送加入请求: 待加入网络的节点向代理路由节点发出加入请求, 代理路由 节点将此加入请求转发到汇聚节点;
4)返回加入响应: 汇聚节点收到加入请求后, 完成安全认证, 且返回加入响应;
5 ) 响应处理: 待加入网络的节点收到代理路由节点转发来的加入响应, 如果加 入响应是负响应, 待加入网络的节点将重新开始加入过程; 如果确认信息是正响应, 加入过程成功, 结束;
6 ) 广播信标: 如果待加入网络的节点加入成功且为路由节点, 则广播信标。 节点加入后, 网关节点为其分配通信资源和路由; 路由节点、现场节点和手持节 点的资源分配过程各不相同;
所述路由节点的资源分配过程中, 对于新加入网络的路由节点, 如果是通过一跳 方式加入网络, 则网关节点直接为其建立超帧, 并通过对超帧、链路和路由操作的命 令帧将超帧、链路和路由分配给该路由节点; 如果是通过多跳方式加入网络, 则需要 在网路由节点转发网关节点对新加入路由节点超帧、 链路和路由操作的命令帧。
路由节点的资源分配过程为:
路由节点加入网络后, 向网关节点汇报邻居信息;
网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置路由表; 网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置超帧表; 网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置链路表。
所述现场节点的资源分配过程中, 对于新加入网络的现场节点, 其通信资源由 网关节点预分配给其所在簇的路由节点,再由簇首将预分配的通信资源分配给新加入 网络的现场节点; 现场节点的通信资源为超帧的簇内通信阶段;
现场节点的资源分配过程为:
用户配置现场节点;
如果固定现场节点的加入影响路由节点的超帧, 则需要更新路由节点的路由、超 帧和链路;
路由节点将路由、超帧和链路信息保存在本地, 并根据自己的资源情况, 为现场 节点分配资源, 并将超帧和链路的信息写入现场节点。
所述手持节点的资源分配过程中,手持节点的通信资源分配过程与现场节点不同 之处在于手持节点的通信资源为超帧的非竞争访问阶段。
本发明是在充分考虑工业测控应用特点的前提下提出的, 具有实时、可靠、低能 耗等优点, 具体表现在: 1. 本发明采用网状及星型(Mesh+Star)混合拓扑结构, 一方面通过星型结构简 化了网络结构, 降低了维护和管理的难度, 提高了系统的灵活性, 另一方面, 利用网 状结构, 提高了网络的可靠性。
2. 本发明采用基于 IEEE 802. 15. 4标准的超帧结构, 并对其进行了扩展, 一方 面充分利用了 IEEE 802. 15. 4的优势, 提高了系统的兼容性, 保护了已有投资, 另一 方面通过扩展满足了工业应用的要求, 简化了设计。
3. 本发明拓展了长周期数据的过程, 可以处理过程工业中数据更新周期大的数 据的传输, 简单易行。
4. 本发明采用频分、 时分混合机制, 一方面扩大了网络的容量, 另一方面也提 高了网络的可靠性。
5. 本发明采用周期间的自适应信道切换和周期内的跳频技术混合策略, 一方面 在一个周期内采用固定信道提高了网络的兼容性,另一方面自适应信道切换和跳频技 术提高了网络的可靠性。
6. 本发明采用基于竞争和基于调度的混合介质访问控制方法, 一方面利用了基 于竞争的介质访问控制方法的灵活性;另一方面利用了基于调度的介质访问控制方法 实时性好、 能耗低的特点。
7. 本发明采用全局和局部混合的两阶段资源分配策略, 一方面通过全局资源分 配保证了资源分配的最优性,另一方面通过局部的资源分配分担了全局资源分配的负 担, 提高了资源分配的效率, 改进了网络的灵活性和可扩展性。
8. 本发明方法设计了路由节点的多跳加入, 以及路由节点转发现场节点和手持 节点的加入请求和加入响应, 一方面充分利用了 IEEE 802. 15. 4协议所支持的加入机 制; 另一方面在原有 IEEE 802. 15. 4协议的基础上扩展了网络节点的多跳加入方式, 使得待加入网络的节点不需要位于网关节点的接收范围内, 从而扩大了网络规模, 并 且可以实现网关节点对网络节点的统一管理。 附图说明
图 1为本发明方法中 MSTN网络的物理拓扑结构示意图;
图 2为本发明方法中 MSTN超帧结构示意图;
图 3为本发明方法中长周期数据处理示意图;
图 4A为本发明方法中 MSTN超帧 -频分多路访问示意图;
图 4B为本发明方法中 MSTN超帧 -时分多路访问 +频分多路访问示意图; 图 4C为本发明方法中 MSTN超帧时分多路访问示意图;
图 5为本发明方法中详细的信标帧载荷结构示意图;
图 6为本发明方法中基于 IEEE 802. 15. 4信标帧格式示意图;
图 7A为本发明方法中网络拓扑示例图;
图 7B为图 7A的资源分配结果图;
图 8为本发明方法中节点的加入过程示意图;
图 9为本发明方法中路由节点的通信资源分配和路由分配过程示意图; 图 10为本发明方法中现场节点的通信资源分配过程示意图; 具体实施方式
下面通过具体实施例来介绍本发明中涉及的技术。 需要强调的是, 本发明涉及的技术并不仅 适用于下面提及的例子, 这些技术可以被用于任何适用的系统和网络。
本发明网状及星型拓扑结构无线传感器网络的通信方法, 包括以下步骤: 将无线传感器网络中的各种节点搭建成网状及星型混合拓扑结构; 基于上述拓扑结构定义基于 IEEE 802. 15. 4的超帧结构;
基于上述拓扑结构和超帧结构, 定义长周期数据处理方法、连接性评估方法、 介 质访问控制方法、信道度量方法、跳频方法、信标帧格式以及两阶段通信资源分配方 法;
基于上述拓扑结构、 超帧结构和方法, 定义网络构建方法;
通过上述网络构建方法, 构建能够实现 MSTN通信过程的通信方法。
如图 1所示, 本发明涉及的技术针对无线传感器网络网状及星型混合拓扑结构, 其中包括以下 4类物理节点:
1 ) 网关节点
网关节点是数据的汇聚中心, 并为 MSTN网络和其它无线传感器网络提供接口。本 发明中提到的 "网关节点"是指网络中作为测量和控制清算中心的一个单独节点。 网 关节点可以与以太网等有线网络连接。网关节点的两个功能模块网络管理者和安全管 理者分别实现网络管理和安全管理功能。 网络管理者负责管理节点加入、形成网络和 监视整个网络性能等。 安全管理者负责路由节点和现场节点的密钥管理和安全认证 等。
2 ) 路由节点
路由节点用于复制和转发 MSTN网络中的数据。路由节点可以将数据发送或转发给 网络中的网关节点、路由节点、现场节点和手持节点。路由节点也可以支持各种类型 的传感器。
3 ) 现场节点
现场节点安装在工业现场, 与传感器和执行器相连接,用于传输过程测量和控制 信息, 从而完成特定的应用。
4) 手持节点
手持节点用于配置和维护 MSTN网络节点。手持节点可以临时访问网络。如果没有 特别说明, 本发明中提及的现场节点包括手持节点。
图 1所示的一个网状及星型混合的层次型拓扑结构的 MSTN网络包括两个层次: 第 一层为网状(mesh) 网络, 由路由节点和网关节点构成; 路由节点至少和一个现场节 点通信, 和网关节点通信或者至少和一个其它路由节点通信; 第二层为星型 (star) 网络, 由路由节点和现场节点构成; 现场节点之间不直接通信, 现场节点只和一个路 由节点通信。 星型网络又称为簇, 路由节点为簇首, 现场节点为簇成员。
在目前的无线通信标准中, IEEE 802. 15. 4以其低功耗、 低成本和简单灵活等特 点, 最有希望地成为无线传感器网络底层通信协议的无线标准。 为此, 本发明的通信 方法基于 IEEE802. 15. 4标准。
如图 2所示, 为了兼容 IEEE 802. 15. 4, 本发明提出了基于 IEEE 802. 15. 4的扩展 超帧 (Superframe ) 结构, 具体包括:
1 ) 信标帧阶段, 用于时隙同步和超帧信息的发布;
2 ) 竞争访问阶段 (Contention Access Period, CAP) , 主要用于节点加入和簇 内管理, 采用时隙的带冲突检测的载波多路访问 (Carrier Sense Multiple Access with Col l ision Avoidance, CSMA/CA) 方法进行通信;
3 ) 非竞争访问阶段 (Contention-free Period, CFP) , 用于紧急通信、 手持 节点与簇首间通信, 由路由节点自主分配; 非一竞争访问阶段采用时分多路访问 (Time Division Multiple Access , TDMA) 方法进行通信;
4 ) 非活动期, 用于簇内 (Intra-cluster ) 通信、 簇间 (Inter-cluster) 通信 以及休眠, 由网络管理者统一分配, 其中簇内通信阶段是非竞争访问阶段的扩展, 用 于簇内通信, 簇间通信阶段用于簇间通信和管理; 簇内通信阶段和簇间通信阶段都采 用 TDMA方法进行通信。
所述簇内通信是指指路由节点和现场节点之间的通信;所述簇间通信是指路由节 点之间以及路由节点与网关节点之间的通信。
考虑到本发明在 IEEE 802. 15. 4超帧非活动期的时隙用于簇内通信、 簇间通信以 及休眠, 本发明的基本超帧长度为 32个时隙, 本发明的超帧长度为基本超帧长度的 2N 倍, N为正整数, 超帧的长度由数据的更新速率决定。 现场节点的超帧长度由应用的 数据更新速率决定;路由节点的超帧长度取其星型网络内所有现场节点的最小超帧长 度; 网关节点的超帧长度取其邻居路由节点的最小超帧长度。
IEEE 802. 15. 4最大超帧长度受限, 但是很多应用中可能存在更新周期大于 IEEE 802. 15. 4 最大超帧长度的数据, 因此本实施例定义长周期数据为数据更新率大于 IEEE 802. 15. 4-2006 中超帧的最大长度的数据或者大于所在簇的路由节点的数据更 新周期的数据。
为了处理长周期数据, 需要利用以下参数:
Absolut eSlo tNumber-. 信标帧中的绝对时隙号;
Ac tiveS lo t: 超帧的激活时隙号;
NumberS lo ts-. 超帧的大小;
SuperframeMul tiple-. 表示所有长周期数据的数据更新周期的最小公倍数; LinkSuperframeNum: 表示长周期数据的更新周期与超帧长度的比值。
以上参数的取值范围和具体含义参见表 2和表 3。
定义长周期数据的传输标志 Transmi tFlag如以下公式:
AbosoluteS lotNumber - ActiveSlot + 1
TransmitFl ag VoSuperframe Multiple
NumberSlot s
在每个超帧周期, 现场节点收到信标帧,判断自己的长周期数据是否在该超帧周 期内传输, 具体准则如下- 如果 6? Transmi tFlag < SuperframeMul tiple, 且 Transmi tFlag - LinkSuperframeNum, 则在该超帧周期内传输;
如果 Transmi tFlag =0, 且 L inkSuperframeNum= SuperframeMul tiple-, 贝 lj在该 超帧周期内传输;
否则不传输。
长周期数据的处理实例如图 3所示,假设有一个数据分配的时隙是第 4个周期的 时隙 4, 当前 Beacon 的绝对时隙是 27, 且 Superfr置 Mul tiPle=4 则有: NumberSlo ts=8, Ac tiveSlo t=3, AbsoluteSlo tNumber=27 , LinkSuperframeNum = 4„ Transmi tFlag = \ AbsoluteSlo tNumbe:r-Ac tiveSlo t+]) / NumberSlo ts ] %
SuperframeMul tiple
= Γ (27-3+1) / 8] %4
= 0
由 计 算 结 果 知 : Transmi tFlag = (? 且 L inkSuperframeNum = SuperframeMul tiple, 则在当前超帧周期发送该数据。 信标 Beacon阶段、 CAP阶段和 CFP阶段在同一个超帧周期内使用相同的信道; 如果信道不足, 则不同簇的簇内通信阶段采用时分策略。 三个超帧的实例如图 4A、 4B、 4C所示。 图 4A是信标 Beacon阶段、 CAP阶段和 CFP阶段只进行频分而未进行时 分的情况; 图 4B是信标 Beacon阶段、 CAP阶段和 CFP阶段进行频分和时分的情况; 图 4C是信标 Beacon阶段、 CAP阶段和 CFP阶段只进行时分的情况。 图 4A中 3个路 由节点 Rl、 R2和 R3对应的超帧长度分别为 2个基本超帧长度、 4个基本超帧长度和 8个基本超帧长度, Rl 、 R2和 R3的信标 Beacon阶段、 CAP阶段和 CFP阶段重叠, 所 以三个路由节点需要三个信道来完成信标 Beacon阶段、 CAP阶段和 CFP阶段的通信。 由于图 4B中 3个路由节点 Rl, R2, R3对应的超帧长度分别为 2个基本超帧长度、 4 个基本超帧长度和 8个基本超帧长度, 且 R1的信标 Beacon阶段、 CAP阶段和 CFP阶 段与 R2和 R3的信标 Beacon阶段、 CAP阶段和 CFP阶段不重叠, 所以三个路由节点 只需要两个信道来完成信标 Beacon阶段、 CAP阶段和 CFP阶段的通信。 图 4C中 3 个路由节点 Rl, R2, R3, 对应的超帧长度分别为 4个基本超帧长度、 8个基本超帧长 度和 16个基本超帧长度, 由于 Rl 、 R2和 R3的信标 Beacon阶段、 CAP阶段和 CFP 阶段不重叠, 所以三个路由节点只需要一个信道来完成信信标 Beacon阶段、 CAP阶 段和 CFP阶段的通信。
本发明利用 IEEE 802. 15. 4 介质访问控制层 (Medium Access Control layer, MAC) 的信标帧载荷发布扩展的超帧信息, 信标帧载荷如图 5所示, 具体包括以下内 容:
簇 ID、 绝对时隙号和下一个超帧周期中信标帧阶段和活动期使用的信道。
信标帧格式如图 6所示, 本实施例中信标帧采用 IEEE 802. 15. 4MAC层的信标帧 的格式, 其中具体参数的含义参见 IEEE 802. 15. 4-2006标准。
IEEE 802. 15. 4标准中的信标使能模式缺乏可扩展性, 仅适用于星型拓扑。 在采 用信标使能模式的星型网络中, 协调器周期性的发送信标帧, 用于同步其邻居节点。 因此, 网络的覆盖范围仅局限于协调器的发送范围, 从而限制了网络中的节点数量和 网络规模。 MSTN网络要求覆盖较大的范围, 因此, IEEE 802. 15. 4标准中的信标使能 模式不适用于 MSTN网络。 为了使 IEEE 802. 15. 4标准中的信标使能模式适用于 MSTN 网络, 需要做如下修改以使信标帧的发送遵循以下模式:
网关节点和路由节点发送信标帧, 但不转发信标帧;
网关节点发送信标帧, 用于其邻居路由节点的时间同步和加入, 以及网关节点超 帧信息的广播;
路由节点发送信标帧, 用于其簇内现场节点的时间同步和加入, 以及路由节点超 帧信息的广播。
MSTN支持跳频通信方式, 跳频序列由网络管理者指定。 如表 1所示, MSTN网络 具体支持 3种跳频机制: AFS、 AFH和 TH。
表 1 本发明 MAC机制
Figure imgf000010_0001
1 ) 自适应频率切换 (Adaptive Frequency Switch, AFS ): 在 MSTN超帧中, 信 标 Beacon阶段、 CAP阶段和 CFP阶段在同一个超帧周期内使用相同的信道, 在不同 的超帧周期内根据信道状况切换信道。信道质量差时, 节点改变通信信道。信道状况 通过丢包率和重传次数进行评价。
2 ) 自适应跳频 (Adaptive Frequency Hopping, AFH): 在 MSTN超帧中, 簇内通 信阶段的每个时隙根据信道状况更换通信信道。 信道质量差时, 节点改变通信信道。 信道状况通过丢包率和重传次数进行评价。跳频序列的结构为:〈timeslot 1, channel 1> <timeslot 2, channel 2〉··· <timeslot i, channel i〉。
3 ) 时隙跳频 (Timeslot Hopping, TH): 为了避免干扰和衰减, 按用户自行预定 义的跳频序列在每个时隙改变通信信道; 非活动期的簇间通信段采用时隙跳频机制; 跳频序歹 (J的结构为: <timeslot 1, channel 1> <timeslot 2, channel 2>··· <timeslot i, channel i〉。
对于 AFS和 AFH, 需要对信道进行度量。 信道度量用于向网络管理者和路由节 点提供信道的状况信息,帮助网络管理者和路由节点分配通信信道。一个现场节点(或 者路由节点)可以度量一个或多个信道状况, 并且将统计信息汇报给路由节点(或者 网络管理者)。 现场节点将收集到的度量结果发送给路由节点, 路由节点将自身收集 到的信道状况和现场节点收集到的信道状况一起发送给网络管理者。
在信道度量的过程中, 每个节点记录度量周期内与该节点通信的所有信道的状 况。
MSTN规定收集与每个邻居节点的如下性能信息:
链路质量指示 ( Link Qual ity Indication, LQI ); 丢包率; 重传次数。
其中, 丢包率由确认帧 (Acknowledge, ACK) 的数量和传输的报文数量决定。 对于 AFS, 前一个超帧周期的信标帧预告后一个超帧周期所采用的信道。 对于 AFH, 前一个时隙预告下一个时隙所用的信道。
如上所述, 本发明采用了 TDMA和 FDMA方法, 通信资源的分配是必需的。 由于本 发明面向网状及星型 (mesh+star) 结构的网络, 所以本发明采用两阶段资源分配方 法, 即通过两个阶段对通信资源进行调度。 具体的两阶段资源调度包括: 网关节点 中的网络管理者为网状网络中的路由节点分配资源,该部分资源包括路由节点用于在 网状网络中通信的资源和路由节点可分配给现场节点的资源;然后路由节点为星型网 络的现场节点分配资源。
通信资源包括信道和时隙, 本发明的通信资源资源分配遵循以下主要的调度规 则- 固定信道部分的信道分配优先;
更新速率快的节点时隙分配优先;
起始时间早的数据帧发送优先;
优先级高的数据帧分配时隙优先。
如图 7A和 7B所示, 为资源分配的一个例子。其中, 图 7A为 MSTN拓扑的一个示 例; 图 7B为根据图 7A所给拓扑分配资源的结果。 网关节点 GW将资源首先分配给网 状网络中的路由节点 Rl、 R2和 R3。 这部分资源包括路由节点 Rl、 R2和 R3之间相互 通信的资源、 路由节点与网关节点 GW之间的通信资源以及可分配给簇内现场节点的 通信资源。 路由节点接收到网关节点 GW分配的通信资源后, 选择其中可分配给现场 节点的通信资源的一部分分配给簇内的现场节点,这部分通信资源用于现场节点和本 簇路由节点之间的通信。 如 7B所示, 网关节点 GW为 Rl、 R2和 R3分配通信资源后, R1为 F1和 F2分配通信资源, R2为 F5分配通信资源, R3为 F3和 F4分配通信资源。 为了实现通信, 节点需要将所分配的通信资源存储起来, 具体涉及超帧信息和链 路(Link)信息。 链路涉及超帧中每个时隙与通信相关的信息。 链路声明了网络中相 邻节点间的通信参数, 每个节点维护自己的链路信息。
如表 2所示, 每个超帧的属性包括超帧标识符 (IDentifier, ID) 、 现场节点最 大数据更新周期与所在网络的路由节点的数据更新周期的比值、超帧大小、超帧激活 标志和超帧激活的绝对时隙号。
表 2 超帧属性
Figure imgf000012_0001
链路特性 (发送、 接收和共享发送) 、 时隙类型 (数据和管理) 、 相对时隙号、 现场 节点的数据更新周期与所在网络的路由节点的数据更新周期的比值、 链路使用标志、 主信道编号和超帧标识符。
表 3 链路属性
参数名称 取值范围 参数描述
LinkID 0〜65535 链路 ID号
Ne i ghborlD 0〜65535 邻居节点 ID号
位 7表示链路的类型:
0=单播;
1=广播。
位 5-6表示链路的特性:
00 =发送;
01 =共享发送;
10 =接收。
LinkType 0〜32 位 3-4表示时隙的类型:
0=专用数据时隙;
1=共享数据时隙;
2=专用管理时隙;
3=共享管理时隙。
位 2表示时隙的聚合特性:
0=非聚合时隙;
1=聚合时隙。
Re lat iveSlotNumber 0〜65535 相对时隙号
现场节点的数据更新周期与所在
LinkSuperf rameNum 0〜255 网络的路由节点的数据更新周期 的比值。用于处理长周期数据的传 输。
指示该链路是否正在使用:
Act iveFlag 0〜1
0=不使用; 1 =正在使用。
表示当前采用的信道编号,即主信
Channel Index 0〜255
道编号。
Superf ramelD 0〜65535 对应的超帧的标识符。
下面将介绍网络构建方法。
路由节点或者现场节点在加入 MSTN网络之前, 可以进行一个或者多个连接性评 估, 并且可以选择一个或者多个父节点。
评估连接性的指标包括: 接收信道强度指示(RSSI ) ; 探测能量 (ED) ; 链路质 量指示 (LQI ) 。
为了评估连接性, 待加入网络的路由节点或者现场节点侦听周围邻居路由节点 (或者网关节点) 的报文, 从而确定通信范围内的路由节点 (或者网关节点) 。 具体 过程为: 待加入网络的路由节点或者现场节点在一个信道侦听来自路由节点(或者网 关节点) 的消息, 并收集连接信息, 然后切换到另一个信道, 收集来自其它路由节点 (或者网关节点) 的连接信息。 根据多个路由节点 (或者网关节点) 的连接性评估, 待加入网络的节点可以从多个路由节点中选择一个连接性最好的路由节点(或者网关 节点) , 而并不局限于某个特定频段的路由节点 (或者网关节点) 。
现场节点和手持节点的加入需要已在网的路由节点转发该节点的加入请求和加 入响应; 路由节点在无法一跳到达网关节点的情况下, 也需要其它路由节点转发该节 点的加入请求和加入响应。将一跳范围内用于转发加入请求和加入响应的在网路由节 点称为代理路由节点。
加入请求的内容包括待加入节点的物理地址和节点类型(路由节点、现场节点或 者手持节点); 加入响应的内容包括加入状态、 待加入节点的物理地址和待加入节点 的短地址。 其中, 加入状态用于表示节点申请加入网络的结果 (成功或失败); 待加 入节点的短地址是节点加入成功后, 由网关节点分配给该节点的 16位地址。
本发明在具体实现路由节点的加入过程中, 根据路由节点和汇聚节点之间的跳 数, 将路由节点加入过程区分为路由节点的一跳加入过程和路由节点的多跳加入过 程。 如果路由节点可以通过一跳加入到汇聚节点, 则启动一跳加入过程入网; 如果路 由节点需要通过在网其他路由节点的转发才能加入到汇聚节点,则启动多跳加入过程 入网。 现场节点和手持节点的加入过程与路由节点的多跳加入过程相同。
路由节点的一跳加入过程完全采用原有 IEEE 802. 15. 4协议的 MAC层的加入原语 和加入报文, 在此不再详述。
下面介绍路由节点的多跳加入过程以及传感器节点和手持节点的加入过程。 在节点 (路由节点、 现场节点或者手持节点)开始加入网络前, 应该已经通过预 配置(如手持节点设置、 厂商设置等)取得了网络认证所需密钥。 如图 8所示, 所述 节点加入网络的过程如下:
1 ) 网络发现: 待加入网络的节点持续扫描网络中的可用信道, 直到成功收到已 加入路由节点或网关节点发出的信标;
2 ) 时间同步: 待加入网络的节点选择信标发出节点作为代理路由节点, 使用信 标中的时间信息完成时间同步;
3 ) 发送加入请求: 待加入网络的节点向代理路由节点发出加入请求, 代理路由 节点将此加入请求转发到网关节点;
4)返回加入响应: 网关节点收到加入请求后, 完成安全认证, 且返回加入响应; 5 ) 响应处理: 待加入网络的节点收到代理路由节点转发来的加入响应, 如果加 入响应是负响应, 待加入网络的节点将重新开始加入过程; 如果确认信息是正响应, 加入过程成功, 结束;
6 ) 广播信标: 如果待加入网络的节点加入成功且为路由节点, 则广播信标。 节点加入后, 需要网关节点为其分配通信资源。 由于本实施例中采用两阶段资源 分配方法, 因此路由节点、现场节点和手持节点的资源分配过程不同, 下面将分别进 行描述。
对于新加入网络的路由节点, 如果是通过一跳方式加入网络, 则网关节点直接为 其建立超帧, 并通过对超帧、链路和路由操作的命令帧将超帧、链路和路由分配给该 路由节点; 如果是通过多跳方式加入网络, 则需要在网路由节点转发网关节点对新加 入路由节点超帧、 链路和路由操作的命令帧。
如图 9所示, 路由节点的通信资源分配过程为:
路由节点加入网络后, 向网关节点汇报邻居信息;
网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置路由表; 网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置超帧表; 网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置链路表。
对于新加入网络的现场节点,其通信资源由网关节点预分配给其所在簇的路由节 点 (即簇首), 再由簇首将预分配的通信资源分配给新加入网络的现场节点。 现场节 点的通信资源为超帧的簇内通信阶段。
如图 10所示, 现场节点的资源分配过程如下:
用户配置现场节点;
如果固定现场节点的加入影响路由节点的超帧,则需要更新路由节点的超帧和链 路;
路由节点将路由、超帧和链路信息保存在本地, 并根据自己的资源情况, 为现场 节点分配资源, 并将超帧和链路的信息写入现场节点。
手持节点的通信资源分配过程与现场节点相似,不同之处在于手持节点的通信资 源为超帧的 CFP段。

Claims

权 利 要 求 书
1 . 一种网状及星型拓扑结构无线传感器网络的通信方法, 其特征在于包括以下 步骤:
将无线传感器网络中的各种节点搭建成网状及星型混合拓扑结构;
基于上述拓扑结构定义基于 IEEE 802. 15. 4的超帧结构;
基于上述拓扑结构和超帧结构, 定义长周期数据处理方法、连接性评估方法、 介 质访问控制方法、信道度量方法、跳频方法、信标帧格式以及两阶段通信资源分配方 法;
基于上述拓扑结构、 超帧结构和方法, 定义网络构建方法;
通过上述网络构建方法, 构建能够实现 MSTN通信过程的通信方法。
2. 按权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征 在于: 网状及星型网络中包括四类物理节点: 网关节点、 路由节点、 现场节点和手持 节点; 其中, 网关节点是数据的汇聚中心, 为 MSTN网络和其它无线传感器网络提供接 口, 与以太网等有线网络连接; 路由节点用于复制和转发 MSTN网络中的数据, 支持各 种类型的传感器; 现场节点安装在工业现场, 与传感器和执行器相连接, 用于传输过 程测量和控制信息, 从而完成特定的应用; 手持节点用于配置和维护 MSTN网络节点, 临时访问网络。
3. 按权利要求 2所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征 在于:
所述网关节点包含两个功能模块: 网络管理者和安全管理者, 分别实现网络管理 和安全管理功能; 其中, 网络管理者负责管理节点加入、 形成网络和监视整个网络性 能等; 安全管理者负责路由节点和现场节点的密钥管理和安全认证等。
4. 按权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征 在于:
所述网状及星型混合拓扑结构为:
第一层为网状网络, 由路由节点和网关节点构成; 路由节点至少和一个现场节 点通信, 和网关节点通信或者至少和一个其它路由节点通信;
第二层为星型网络, 路由节点和现场节点构成, 又称为簇; 现场节点之间不直 接通信, 现场节点只和一个路由节点通信。
5. 按权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特 征在于:所述超帧结构基于 IEEE 802. 15. 4的 MAC层超帧,具体结构包括信标帧阶段、 竞争访问阶段、非竞争访问阶段、簇内通信阶段、簇间通信阶段以及休眠阶段,其中: 信标帧阶段用于时隙同步和超帧信息的发布;
竞争访问阶段用于节点加入和簇内管理,采用时隙 CSMA/CA算法实现介质访问控 制;
非竞争访问阶段用于紧急通信、 手持节点与簇首间通信, 由路由节点自主分配。 非竞争访问阶段采用时分多址方法进行通信;
簇内通信阶段是非竞争访问阶段的扩展, 用于簇内通信;
簇间通信阶段用于簇间通信和管理;
簇内通信阶段和簇间通信阶段都采用时分多址方法和时隙跳频方式进行通信,通 信资源以〈信道、 时隙〉的形式写到节点中。
6. 按权利要求 5所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特 征在于: 所述超帧由每个节点各自维护、 自定义超帧各阶段的长度; 超帧长度为基本 超帧长度的 2N倍, N为正整数, 其中基本超帧长度为 32个时隙; 现场节点的超帧长 度由应用的数据更新速率决定;路由节点的超帧长度取其星型网络内所有现场节点的 最小超帧长度; 网关节点的超帧长度取其邻居路由节点的最小超帧长度。
7. 按照权利要求 5所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 所述簇内通信指路由节点和现场节点之间的通信;簇间通信指路由节点之间以及 路由节点与网关节点之间的通信。
8. 按照权利要求 5所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于: 信标帧阶段、竞争访问阶段阶段和非竞争访问阶段阶段在同一个超帧周期 内使用相同的信道; 如果信道不足, 则不同簇的簇内通信阶段采用时分策略。
9. 按照权利要求 5所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 信标帧的载荷用于发布扩展的超帧信息, 至少包括以下信息: 簇 ID、 绝对时隙 号和下一个超帧周期中信标帧阶段和活动期使用的信道。
10. 按照权利要求 5所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于所述信标帧的发送模式包括:
网关节点和路由节点发送信标帧, 但不转发信标帧;
网关节点发送信标帧, 用于其邻居路由节点的时间同步和加入, 以及网关节点超 帧信息的广播;
路由节点发送信标帧, 用于其簇内现场节点的时间同步和加入, 以及路由节点超 帧信息的广播。
11. 照权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于所述长周期数据的定义为: 数据更新率大于 IEEE 802. 15. 4-2006中超帧的 最大长度的数据或者大于所在簇的路由节点的数据更新周期的数据;
判断长周期数据,否在当前超帧周期内传输的方法为: ^
Super frameMul tiple
如果 6? Transmi tFlag < Super frameMul tiple, 且 Transmi tFlag - LinkSuperframeNum, 则在该超帧周期内传输;
如果 Transmi tFlag Λ 且 L inkSuperframeNum SuperframeMul tiple, 贝 (J 在该超帧周期内传输;
否则, 不传输。
12. 按照权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于: 所述跳频方法支持以下三种跳频机制:
自适应频率切换: 在网状及星型混合拓扑结构无线传感器网络的超帧中, 信标阶 段、 竞争访问阶段和非竞争访问阶段在同一个超帧周期内使用相同的信道, 在不同 的超帧周期内根据信道状况切换信道; 信道质量差时, 节点改变通信信道; 信道状况 通过丢包率和重传次数进行评价;
自适应跳频: 在网状及星型混合拓扑结构无线传感器网络的超帧中,簇内通信阶 段的每个时隙根据信道状况更换通信信道; 信道质量差时,节点改变通信信道信道状 况通过丢包率和重传次数进行评价; 非活动期的簇内通信阶段采用自适应跳频机制; 跳频序歹 (J的结构为: <timeslot 1, channel 1> <timeslot 2, channel 2>··· <timeslot i, channel i> ;
时隙跳频: 为了避免干扰和衰减, 按用户自行预定义的跳频序列在每个时隙改变 通信信道; 非活动期的簇间通信阶段采用时隙跳频机制; 跳频序列的结构为: <timeslot 1, channel 1〉 <timeslot 2, channel 2>*·· <timeslot i, channel i〉。
13. 按照权利要求 12所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征在于- 对于自适应频率切换,前一个超帧周期的信标帧预告后一个超帧周期所采用的信 道; 对于自适应跳频, 前一个时隙预告下一个时隙所用的信道。
14. 照权利要求 1所述的基网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于所述信道度量方法为:
一个现场节点或者路由节点度量一个或多个信道状况, 并且将统计信息汇报给 路由节点或者网络管理者; 现场节点将收集到的度量结果发送给路由节点, 路由节点 将自身收集到的信道状况和现场节点收集到的信道状况一起发送给网络管理者。
15. 照权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特 征在于:
在信道度量的过程中, 每个节点记录度量周期内与该节点通信的所有信道的状 况; 记录的性能信息包括: 链路质量指示 (Link Qual ity Indication, LQI )、 丢包 率和重传次数; 其中, 丢包率由确认帧的数量和传输的报文数量决定。
16. 按照权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征在于所述两阶段通信资源分配方法为:
网关节点中的网络管理者为网状网络中的路由节点分配资源,该部分资源包括路 由节点用于在网状网络中通信的资源和路由节点分配给现场节点的资源;
然后路由节点为星型网络的现场节点分配资源。
17. 按照权利要求 16所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征在于: 两阶段通信资源的分配规则包括:
固定信道部分的信道分配优先;
更新速率快的节点时隙分配优先;
起始时间早的数据帧发送优先;
优先级高的数据帧分配时隙优先。
18. 按照权利要求 16所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征在于- 路由节点和现场节点分别要存储网络管理者为路由节点分配的资源以及路由节 点为现场节点分配的资源, 涉及超帧属性和链路属性; 其中, 链路属性涉及超帧属性 中每个时隙与通信相关的信息, 声明了网络中相邻节点间的通信参数,每个节点需要 维护自己的链路信息。
19. 按照权利要求 18所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征在于: 所述每个超帧的属性包括: 超帧的 ID号、 现场节点最大数据更新周期 与所在网络的路由节点的数据更新周期的比值、超帧大小、超帧激活标志和超帧激活 的绝对时隙号; 超帧中每个时隙所对应的链路属性包括链路 ID号、 邻居节点 ID号、 链路类型、 链路特性、 时隙类型、 相对时隙号、 现场节点的数据更新周期与所在网络 的路由节点的数据更新周期的比值、 链路使用标志、 主信道编号和超帧标识符。
20. 按照权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特征在于所述连接性评估方法中, 路由节点或者现场节点在加入 MSTN网络之前, 进行一个或者多个连接性评估, 并且选择一个或者多个父节点; 评估的指标包括: 接 收信道强度指示、 探测能量和链路质量指示。
21. 按权利要求 1所述的网状及星型拓扑结构无线传感器网络的通信方法, 其特 征在于所述网络构建方法为:
现场节点和手持节点的加入需要已在网的路由节点转发该节点的加入请求和加 入响应; 路由节点在无法一跳到达网关节点的情况下, 也需要其它路由节点转发该节 点的加入请求和加入响应。
22. 按权利要求 21所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 加入请求的内容包括待加入节点的物理地址和节点类型;加入响应的内容包括加 入状态、待加入节点的物理地址和待加入节点的短地址; 其中, 加入状态用于表示节 点申请加入网络的结果; 待加入节点的短地址是节点加入成功后, 由网关节点分配给 该节点的 16位地址。
23. 按权利要求 21所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 节点加入网络的过程如下:
1 ) 网络发现: 待加入网络的节点持续扫描网络中的可用信道, 直到成功收到已 加入路由节点或汇聚节点发出的信标;
2 ) 时间同步: 待加入网络的节点选择信标发出节点作为代理路由节点, 使用信 标中的时间信息完成时间同步;
3 ) 发送加入请求: 待加入网络的节点向代理路由节点发出加入请求, 代理路由 节点将此加入请求转发到汇聚节点;
4)返回加入响应: 汇聚节点收到加入请求后, 完成安全认证, 且返回加入响应;
5 ) 响应处理: 待加入网络的节点收到代理路由节点转发来的加入响应, 如果加 入响应是负响应, 待加入网络的节点将重新开始加入过程; 如果确认信息是正响应, 加入过程成功, 结束;
6 ) 广播信标: 如果待加入网络的节点加入成功且为路由节点, 则广播信标。
24. 按权利要求 21所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 节点加入后, 网关节点为其分配通信资源和路由; 路由节点、现场节点和手持节 点的资源分配过程各不相同;
所述路由节点的资源分配过程中, 对于新加入网络的路由节点, 如果是通过一跳 方式加入网络, 则网关节点直接为其建立超帧, 并通过对超帧、链路和路由操作的命 令帧将超帧、链路和路由分配给该路由节点; 如果是通过多跳方式加入网络, 则需要 在网路由节点转发网关节点对新加入路由节点超帧、 链路和路由操作的命令帧。
25. 按权利要求 24所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 路由节点的资源分配过程为:
路由节点加入网络后, 向网关节点汇报邻居信息;
网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置路由表; 网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置超帧表; 网关节点根据汇报上来的邻居信息为新加入网络的路由节点配置链路表。
26. 按权利要求 24所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 所述现场节点的资源分配过程中, 对于新加入网络的现场节点, 其通信资源由 网关节点预分配给其所在簇的路由节点,再由簇首将预分配的通信资源分配给新加入 网络的现场节点; 现场节点的通信资源为超帧的簇内通信阶段; 现场节点的资源分配过程为:
用户配置现场节点;
如果固定现场节点的加入影响路由节点的超帧, 则需要更新路由节点的路由、超 帧和链路;
路由节点将路由、超帧和链路信息保存在本地, 并根据自己的资源情况, 为现场 节点分配资源, 并将超帧和链路的信息写入现场节点。
27. 按权利要求 24所述的网状及星型拓扑结构无线传感器网络的通信方法, 其 特征在于- 所述手持节点的资源分配过程中,手持节点的通信资源分配过程与现场节点不同 之处在于手持节点的通信资源为超帧的非竞争访问阶段。
PCT/CN2009/075501 2008-12-19 2009-12-11 网状及星型拓扑结构无线传感器网络的通信方法 WO2010069238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09832920.4A EP2381737B1 (en) 2008-12-19 2009-12-11 Communication method for mesh and star topology structure wireless sensor network
US13/220,724 US8730838B2 (en) 2008-12-19 2011-08-30 Communication method for mesh and star topology structure wireless sensor network

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810229991A CN101754436A (zh) 2008-12-19 2008-12-19 一种面向工业无线网络的混合介质访问控制方法
CN200810229994A CN101754423A (zh) 2008-12-19 2008-12-19 一种基于ieee 802.15.4的工业无线通信方法
CN200810229991.5 2008-12-19
CN200810229994.9 2008-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US201113164765A Continuation 2008-12-19 2011-06-20

Publications (1)

Publication Number Publication Date
WO2010069238A1 true WO2010069238A1 (zh) 2010-06-24

Family

ID=42268314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075501 WO2010069238A1 (zh) 2008-12-19 2009-12-11 网状及星型拓扑结构无线传感器网络的通信方法

Country Status (3)

Country Link
US (1) US8730838B2 (zh)
EP (1) EP2381737B1 (zh)
WO (1) WO2010069238A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111822A (zh) * 2011-01-04 2011-06-29 南京邮电大学 一种基于认知技术的物联网方法
CN110719335A (zh) * 2019-10-21 2020-01-21 中国科学院空间应用工程与技术中心 天基云雾计算架构下的资源调度方法、系统和存储介质
CN112702708A (zh) * 2020-12-21 2021-04-23 国网安徽省电力有限公司检修分公司 一种变电站射频传感器自组网数据传输方法
CN113724485A (zh) * 2021-09-03 2021-11-30 重庆邮电大学 一种快速密集信息采集方法
CN114928415A (zh) * 2022-06-01 2022-08-19 武汉理工大学 基于边缘计算网关链路质量评估的多参数组网方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817022B1 (ko) * 2006-11-15 2008-03-26 한국전자통신연구원 스타-메쉬 혼합형 구조를 갖는 온칩 네트워크 기반의동영상 디코더
US8913550B2 (en) * 2010-02-16 2014-12-16 Intel Corporation Clustering management in mmWave wireless systems
KR101761962B1 (ko) * 2010-02-22 2017-07-26 삼성전자주식회사 무선 통신 네트워크에서 통신을 수행하는 방법 및 장치
US8873520B2 (en) * 2011-02-08 2014-10-28 Toumaz Uk Limited TDMA-based wireless networks
CN107095680B (zh) 2011-09-23 2020-09-08 德克斯康公司 用于处理和传输传感器数据的系统和方法
WO2013046069A1 (en) * 2011-09-30 2013-04-04 International Business Machines Corporation Method and device for transmitting data to and from nodes of a clustered multi-hop network with a tdma scheme
US8942197B2 (en) * 2011-10-24 2015-01-27 Harris Corporation Mobile ad hoc network with dynamic TDMA slot assignments and related methods
US8737378B2 (en) 2011-10-31 2014-05-27 Itron, Inc. Synchronization of nodes in a network
EP2587872B1 (en) * 2011-10-31 2014-08-13 Itron, Inc. Synchronization of nodes in a network
US9226219B2 (en) * 2011-12-21 2015-12-29 Silver Spring Networks System and method for route learning and auto-configuration
CN102857327B (zh) * 2012-04-16 2014-12-03 华为技术有限公司 一种数据传输方法和装置
US9882995B2 (en) 2012-06-25 2018-01-30 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide automatic wireless configuration
CN102769894A (zh) * 2012-07-04 2012-11-07 上海大学 一种多网关多节点无线传感器网络及其多网关信道选择和节点自适应入网方法
US9235983B2 (en) * 2012-10-19 2016-01-12 Intel Corporation Apparatus and methods for group-based reactive service discovery
CN103117772B (zh) * 2013-02-05 2014-11-26 北京芯同汇科技有限公司 无线传感器网络中的同步跳频方法及系统
US9148849B2 (en) 2013-06-03 2015-09-29 King Fahd University Of Petroleum And Minerals Coverage, connectivity and communication (C3) protocol method for wireless sensor networks
US9088983B2 (en) 2013-08-06 2015-07-21 Cisco Technology, Inc. Interleaving low transmission power and medium transmission power channels in computer networks
US9172613B2 (en) 2013-08-06 2015-10-27 Cisco Technology, Inc. Multiple topology routing architecture in computer networks
US8891588B1 (en) 2013-08-06 2014-11-18 Cisco Technology, Inc. On-demand medium to low transmission power channel switching in computer networks
EP3024267B1 (en) * 2013-08-15 2018-01-03 Huawei Technologies Co., Ltd. Method and device for judging node movement
EP3032914B1 (en) * 2013-08-28 2017-10-18 Huawei Technologies Co., Ltd. Method and apparatus for selecting preferred parent node in wireless sensor network
US9594355B2 (en) 2013-11-26 2017-03-14 Everspring Industry Co., Ltd. Wireless monitoring method and device thereof
PL2879399T3 (pl) 2013-11-29 2018-03-30 Everspring Industry Co., Ltd. Sposób i urządzenie do monitoringu bezprzewodowego
US9651656B2 (en) 2014-02-28 2017-05-16 Tyco Fire & Security Gmbh Real-time location system in wireless sensor network
CN105208573B (zh) * 2014-06-18 2018-10-30 赵海 一种无线传感器网络分析方法
US9565657B2 (en) * 2014-07-22 2017-02-07 Honeywell International Inc. IOT enabled wireless one-go/all-go platform sensor network solution for connected home security systems
US10284386B2 (en) * 2014-08-28 2019-05-07 Maxlinear, Inc. Method and apparatus for providing a high security mode in a network
KR102233358B1 (ko) 2014-10-22 2021-03-29 삼성전자주식회사 멀티 레이트 전송을 위한 블록 애크 기법과 링크 어댑테이션을 지원하는 코디네이터 및 노드의 동작 방법
ES2553783B1 (es) * 2015-01-15 2016-08-22 Universitat Politècnica De València Método de despliegue rápido de nodos en una red y nodo para poner en práctica dicho método
JP6698702B2 (ja) * 2015-05-22 2020-05-27 リニアー テクノロジー エルエルシー 無線ネットワークの低電力センサーノード動作
KR102419647B1 (ko) * 2015-09-10 2022-07-11 삼성전자주식회사 패킷을 전송하는 장치 및 방법
US10091786B2 (en) * 2016-02-19 2018-10-02 Texas Instruments Incorporated Wideband beacon channel for frequency hopping systems
CN106792916B (zh) * 2016-12-13 2023-07-21 浙江科技学院 一种混合型远距离无线传感器网络系统及其通信方法
GB2557992B (en) 2016-12-21 2021-08-18 Texecom Ltd Frequency hopping spread spectrum communication in mesh networks
KR102300791B1 (ko) * 2017-03-20 2021-09-09 엘지전자 주식회사 공기조화기 및 그 제어방법
KR101892418B1 (ko) * 2017-04-25 2018-08-28 영남대학교 산학협력단 사물인터넷 등록을 위한 단말 인증 장치 및 그 장치를 이용한 인증 및 결합 방법
US11350381B2 (en) * 2017-10-26 2022-05-31 Benchmark Electronics, Inc. Mesh ranging and network message and slot structure for ad-hoc networks and method therefor
US10607012B2 (en) 2017-12-29 2020-03-31 Delphian Systems, LLC Bridge computing device control in local networks of interconnected devices
CN110519803B (zh) * 2019-09-10 2023-04-07 广州空天通讯技术服务有限公司 无线射频自组网方法及装置
CN111556586B (zh) * 2020-05-19 2022-04-19 西安电子科技大学 一种分簇wsn中采用超帧的自适应媒体接入控制方法
CN113872637B (zh) * 2020-06-30 2022-12-27 华为技术有限公司 基于Mesh网络的网络通信跳频方法、系统、电子设备和介质
EP3958079A1 (en) * 2020-08-21 2022-02-23 Basf Se Inter-plant communication
CN112135268B (zh) * 2020-09-28 2023-11-14 奇点新源国际技术开发(北京)有限公司 无线组网系统的数据传输方法及无线组网系统
CN112911672B (zh) * 2021-01-15 2023-04-07 中国科学院上海微系统与信息技术研究所 一种基于可靠度的无线传感网资源分配方法
CN114584172B (zh) * 2022-03-21 2024-02-13 沈阳中科奥维科技股份有限公司 一种增大wia-pa网络规模的方法
CN115174011B (zh) * 2022-04-15 2023-08-08 中国科学院沈阳自动化研究所 面向高可靠通信的工业无线上行重传方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049415A1 (en) * 2004-11-01 2006-05-11 Electronics And Telecommunications Research Institute Radio communications system, radio communication apparatus and radio communication method for uwb impulse communication
CN101140695A (zh) * 2007-09-30 2008-03-12 浙江大学 基于ZigBee无线传感器网络的温室环境监控系统
CN101252512A (zh) * 2008-03-05 2008-08-27 中科院嘉兴中心微系统所分中心 基于Mesh和分簇相结合的无线传感网通信调度方法
CN101286911A (zh) * 2008-03-05 2008-10-15 中科院嘉兴中心微系统所分中心 基于分簇和Mesh相结合的无线传感器网络组网方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701858B2 (en) * 2003-07-17 2010-04-20 Sensicast Systems Method and apparatus for wireless communication in a mesh network
KR20060124498A (ko) * 2005-05-31 2006-12-05 삼성전자주식회사 무선 센서 네트워크에서의 매체접근 제어방법
US20070195808A1 (en) * 2006-02-17 2007-08-23 Wabash National, L.P. Wireless vehicle mesh network
US20100158494A1 (en) * 2008-12-07 2010-06-24 Leap Devices, LLC Radio Wireless Mesh Network System and Method for Photographic Camera Integration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049415A1 (en) * 2004-11-01 2006-05-11 Electronics And Telecommunications Research Institute Radio communications system, radio communication apparatus and radio communication method for uwb impulse communication
CN101140695A (zh) * 2007-09-30 2008-03-12 浙江大学 基于ZigBee无线传感器网络的温室环境监控系统
CN101252512A (zh) * 2008-03-05 2008-08-27 中科院嘉兴中心微系统所分中心 基于Mesh和分簇相结合的无线传感网通信调度方法
CN101286911A (zh) * 2008-03-05 2008-10-15 中科院嘉兴中心微系统所分中心 基于分簇和Mesh相结合的无线传感器网络组网方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111822A (zh) * 2011-01-04 2011-06-29 南京邮电大学 一种基于认知技术的物联网方法
CN110719335A (zh) * 2019-10-21 2020-01-21 中国科学院空间应用工程与技术中心 天基云雾计算架构下的资源调度方法、系统和存储介质
CN110719335B (zh) * 2019-10-21 2022-10-04 中国科学院空间应用工程与技术中心 天基云雾计算架构下的资源调度方法、系统和存储介质
CN112702708A (zh) * 2020-12-21 2021-04-23 国网安徽省电力有限公司检修分公司 一种变电站射频传感器自组网数据传输方法
CN112702708B (zh) * 2020-12-21 2022-07-08 国网安徽省电力有限公司检修分公司 一种变电站射频传感器自组网数据传输方法
CN113724485A (zh) * 2021-09-03 2021-11-30 重庆邮电大学 一种快速密集信息采集方法
CN114928415A (zh) * 2022-06-01 2022-08-19 武汉理工大学 基于边缘计算网关链路质量评估的多参数组网方法
CN114928415B (zh) * 2022-06-01 2023-04-07 武汉理工大学 基于边缘计算网关链路质量评估的多参数组网方法

Also Published As

Publication number Publication date
EP2381737B1 (en) 2015-01-21
EP2381737A4 (en) 2012-10-31
US8730838B2 (en) 2014-05-20
EP2381737A1 (en) 2011-10-26
US20110310770A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
WO2010069238A1 (zh) 网状及星型拓扑结构无线传感器网络的通信方法
Bachir et al. MAC essentials for wireless sensor networks
Ergen ZigBee/IEEE 802.15. 4 Summary
Lee et al. FlexiTP: a flexible-schedule-based TDMA protocol for fault-tolerant and energy-efficient wireless sensor networks
Ye et al. Medium access control with coordinated adaptive sleeping for wireless sensor networks
JP5479356B2 (ja) フレキシブルなmacスーパーフレーム構造及びビーコン送信方法
CN107040878B (zh) 一种多链型无线传感器网络的无分层通信方法
Nieberg et al. Collaborative algorithms for communication in wireless sensor networks
Muthukumaran et al. Meshmac: Enabling mesh networking over ieee 802.15. 4 through distributed beacon scheduling
KR20100113140A (ko) 다중 홉 통신 시스템 내에서 동작하는 노드들의 기상 속도를 제어하기 위한 방법
JP2010529762A (ja) ワイヤレスネットワークにわたる情報パケットの転送及びその転送を実施するルーティングノードを管理する方法
Pawar et al. Hybrid mechanisms: Towards an efficient wireless sensor network medium access control
Koubâa et al. IEEE 802.15. 4: a federating communication protocol for time-sensitive wireless sensor networks
Amadou et al. Energy-efficient beacon-less protocol for wsn
Coskun et al. Virtual wlan: Going beyond virtual access points
Qin et al. ZigBee-assisted power saving for more efficient and sustainable ad hoc networks
Cunha On the use of IEEE 802.15. 4/ZigBee as federating communication protocols for Wireless Sensor Networks
Abid et al. Collision free communication for energy saving in wireless sensor networks
Manoj et al. Wireless mesh networks: issues and solutions
Koubaa et al. Time sensitive IEEE 802.15. 4 protocol
Liu et al. ORAS: Opportunistic routing with asynchronous sleep in Wireless Sensor Networks
Bernard et al. Impact of routing protocols on packet retransmission over wireless networks
da Silva Green Wireless Video Sensor Networks using a Low-Power Control Channel
Ghannay et al. The monitoring of ad hoc networks based on routing
Ren et al. A probe for the performance of low-rate wireless personal area networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009832920

Country of ref document: EP