WO2010069115A1 - 自动跟踪太阳的光伏发电装置 - Google Patents

自动跟踪太阳的光伏发电装置 Download PDF

Info

Publication number
WO2010069115A1
WO2010069115A1 PCT/CN2009/000005 CN2009000005W WO2010069115A1 WO 2010069115 A1 WO2010069115 A1 WO 2010069115A1 CN 2009000005 W CN2009000005 W CN 2009000005W WO 2010069115 A1 WO2010069115 A1 WO 2010069115A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
base
main support
support arm
power generation
Prior art date
Application number
PCT/CN2009/000005
Other languages
English (en)
French (fr)
Inventor
王兴华
Original Assignee
中盛光电能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中盛光电能源股份有限公司 filed Critical 中盛光电能源股份有限公司
Priority to US12/995,629 priority Critical patent/US8541679B2/en
Priority to DE212009000065U priority patent/DE212009000065U1/de
Publication of WO2010069115A1 publication Critical patent/WO2010069115A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/02Ballasting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/134Transmissions in the form of gearings or rack-and-pinion transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/13Profile arrangements, e.g. trusses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Photovoltaic power generation device that automatically tracks the sun
  • the invention relates to an automatic tracking solar photovoltaic power generation device, belonging to the field of solar energy application technology.
  • the closest prior art is a single-axis tracking solar photovoltaic device that can only adjust the tilt angle of the PV module. It consists of a pedestal, a solar photovoltaic module, a battery platform, a bracket, a lift, and a control.
  • the system is composed of a lower end of the bracket mounted on a base fixed on the ground, and a battery platform mounted with a solar photovoltaic module is mounted on the upper end of the bracket, one side of the battery platform is connected with the upper end of the bracket through a rotating shaft, and the other of the battery platform The side is connected with the lifting rod of the elevator, the control system gives a control signal to drive the elevator to work, and the lifting platform of the elevator drives the battery platform to rotate around the rotating shaft, thereby realizing automatic tracking of the sunlight in the elevation direction.
  • the present invention provides a A photovoltaic power generation device that automatically tracks the sun with a higher degree of freedom in adjusting the photovoltaic module.
  • a photovoltaic power generation device for automatically tracking the sun having a base mounted on the installation platform, the base is provided with a main support frame, and the main support frame is provided with a battery board a platform, a solar photovoltaic module is disposed on the panel platform, the base is rotatably connected with respect to the mounting platform, and a base circumferential driving planetary reducer is disposed on the base; the main support frame is disposed by the left and right forks
  • the main support arm is composed of a main support arm whose upper end is hinged to the panel platform and the lower end is fixedly connected with the base, and has a "V" structure, and the opening angle ⁇ is 110.
  • the pedestal is composed of a slewing bearing fixedly connected with the mounting platform and a slewing bearing cover which can rotate circumferentially in the slewing bearing, and an internal gear is arranged on the slewing bearing.
  • the seat circumferential drive motor is mounted on the slewing bearing cover, and the planetary gear is meshed with the internal gear on the slewing bearing at the output end of the pedestal circumferential drive planetary reducer.
  • the pedestal is used to drive the planetary reducer as a power source, and the base is rotated by the gear transmission.
  • each side of the main support arm is installed in a " ⁇ " type, the opening angle ⁇ is 17 ° ⁇ 25 °, the upper end of the main support arm is converged and hinged to the panel platform, and the lower end is fixedly disposed on the outer circumferential surface of the base.
  • an auxiliary support frame is arranged in the middle of the main support frame, and the auxiliary support frame is composed of four auxiliary support arms, and the upper end of the auxiliary support arm is gathered and hinged with the panel platform and the main support The arm hinge point is straight, and the lower end is fixedly mounted on the base; the beam is fixedly mounted on one side of the auxiliary support arm.
  • a gas spring for buffering is provided at the hinge of the main support arm and the panel platform.
  • the angle of movement of the telescopic rod with the horizontal direction is 60° to 80°.
  • the pedestal rotation angle is 360°
  • the adjustment range Y of the platform elevation angle is 0° to 55°.
  • the invention realizes the adjustment of the circumferential direction and the pitch of the photovoltaic power generation device, and improves the automatic tracking too
  • the degree of freedom of adjustment of the sun improves the absorption and utilization of sunlight.
  • it has high structural strength, can withstand large dynamic loads, can adapt to complex and harsh outdoor use environments, has strong wind resistance, and can withstand 12 A hurricane that can withstand a maximum wind speed of 135km/h.
  • the installation surface of the PV module can be installed with most of the components produced by the current PV manufacturers.
  • the installation base does not need to be buried in the ground, and the manufacturing and assembly are easy, the installation and maintenance are convenient, and the whole system is cost-effective.
  • Fig. 1 is a schematic view showing the structure of a stent V of the present invention.
  • Fig. 2 is a schematic view showing the structure of the stent W of the present invention.
  • 3 is a schematic structural view of an elevation adjustment state of the present invention.
  • Fig. 4 is a front view showing the structure of the panel of the present invention in a horizontal state.
  • Figure 5 is a top plan view of Figure 4.
  • Figure 6 is a schematic view of the base structure.
  • Turntable bearing 1-2. Turntable bearing cover 1-3. Internal gear 2.
  • Main support arm 2 2.
  • Planetary reducer 6. Platform elevation adjustment lift 7.
  • Gas spring embodiment is a schematic view showing the structure of a stent V of the present invention.
  • Fig. 2 is a schematic view showing
  • a photovoltaic power generation device for automatically tracking the sun as shown in FIG. 1 has a base 1 mounted on a mounting platform 9, and the base 1 can be provided with an embedded member fixedly connected to the mounting platform 9.
  • Pedestal A main support frame 2 is disposed on the main support frame 2, and a solar panel assembly 3 is disposed on the battery board platform 3.
  • the main support frame 2 is composed of a main support arm 2-1 provided with left and right forks, that is, the upper end of the main support arm 2-1 is hinged to the panel platform 3, and the lower end is fixedly connected with the base 1, and the whole bracket is "V".
  • the opening angle ⁇ is 110 ° ⁇ 130 °, as shown in Figure 4.
  • Three main support arms 2-1 are provided on each side to ensure sufficient structural strength.
  • Each main support arm 2-1 is mounted in a " ⁇ " shape, and the outermost two main support arms 2-1 are opened at an angle ⁇ . 17° ⁇ 25°, as shown in FIG. 3, the upper end of the main support arm 2-1 is converged and hinged to the panel platform 3, and a gas spring 12 for buffering is disposed at the hinge, and the lower end is fixedly disposed outside the base 1 On the circumference.
  • the base 1 is composed of a slewing bearing 1-1 fixedly connected to the mounting platform 9 and a slewing bearing cover 1-2 which can be rotated circumferentially in the slewing bearing 1-1.
  • the inner gear 1-3 is disposed on the bearing 1-1, and the pedestal circumferential drive planetary reducer 5 is disposed on the slewing bearing cover 1-2, and the outer gear is disposed at the output end of the pedestal circumferential drive planetary reducer 5 1-4 is meshed with the internal gear 1-3 on the slewing bearing 1-1, and the yaw bearing cap 1-2 has a deflection angle of ⁇ 120°.
  • a beam 2-2 is disposed between the left and right main support arms 2-1, and a platform elevation adjustment elevator 6 is fixed to the beam 2-2.
  • the hinge point of the main support arm 2-1 is located directly above the base 1, so that the center of gravity of the supported panel platform 3 and the solar photovoltaic module 4 is located just in the middle of the base 1, so that the force distribution is more balanced.
  • the hinge point of the telescopic rod 7 is not in line with the hinge point of the main support arm 2-1, so that the telescopic rod 7 is driven by the platform elevation adjustment elevator 6 to make the panel platform 3 perform the pitching motion, and the adjustment range of the platform elevation is 00. ° ⁇ 55°.
  • Both the pedestal circumferential drive star reducer 5 and the platform elevation adjustment lift 6 are connected to the electrical control unit 8, and the electrical control unit 8 controls both.
  • an auxiliary support frame 11 is disposed in the middle of the main support frame 2,
  • the auxiliary support frame 11 is composed of four auxiliary support arms 11-1.
  • the upper end of the auxiliary support arm 11-1 is converged with the panel platform 3 and is hinged with the main support arm 2-1, and the lower end is fixedly mounted on the base 1.
  • the beam 2-2 is fixedly mounted on one side of the auxiliary support arm 11-1.
  • two main sides of the main support arm 2-1 are disposed on each side, and are symmetrically mounted and fixed.
  • the stent is generally "W" shaped.
  • the solar photovoltaic module 4 senses the angle of illumination of the sunlight and feeds the information back to the electrical control unit 8.
  • the electrical control unit 8 initiates motion control of the pedestal circumferential drive star reduction gear 5 and the platform elevation adjustment elevator 6.
  • the pedestal circumferential drive star reducer 5 causes the main support frame 2 to carry the solar photovoltaic module 4 for circumferential deflection
  • the platform elevation adjustment elevator 6 causes the solar photovoltaic module 4 to pitch and deflect, and adjusts the circumferential and pitch angles to finally make the solar photovoltaic Component 4 maintains a direct position with sunlight.
  • the photovoltaic device of the invention has a single capacity of 11KW and a maximum power of 12kw. Suitable for all types of solar modules, it is more than 35% more efficient than fixed installations, and more than 15% more efficient than single-axis tracking systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

自动跟踪太阳的光伏发电装置 技术领域
本发明涉及一种自动跟踪太阳能光伏发电装置,属于太阳能应用技术 领域。
背景技术
随着太阳能光伏发电的发展, 运用独立运行和并网太阳能光伏发电系 统分别解决边远无电地区用电和在城市中缓解能源供应紧张发挥了重要 的作用, 并网光伏系统正在成为世界范围内的研究热点。 不论是独立运行 系统或并网光伏发电系统,如何利用有限的空间和面积,提高系统的效率, 获得最大的能量, 就显得更为重要, 若在太阳能收集装置中使用自动跟踪 装置, 使太阳光始终垂直照射在太阳能收集器, 则接收到的太阳辐射将大 大增加。 可见, 应用太阳自动跟踪系统可以有效提高太阳能利用率。
目前国内科学工作者和企业界也研究出一些跟踪装置, 但都是停留在 实验室, 主要原因是因跟踪系统的增效和其跟踪装置成本的比值太低, 或 由于设计得装置不太可靠、 结构复杂和跟踪电机功率大, 能耗高, 有些是 因为有复杂的电路, 在室外冬夏季节恶劣的环境下工作时, 其中的电子元 器件极易损坏。 由于两轴跟踪系统的高增效, 现在是竞相研发的重点, 到 目前为止, 国内还没有经过规模工程验证的两轴跟踪系统出现, 尤其是中 大型的可用于并网光伏发电的两轴跟踪系统还是空白。
最接近的现有技术为只能调整光伏组件倾角的单轴跟踪太阳能光伏 发电装置, 它由基座、 太阳能光伏组件、 电池平台、 支架、 升降机、 控制 系统组成, 所述支架下端安装于固定于地面上的基座上, 安装有太阳能光 伏组件的电池平台安装于支架上端, 该电池平台的一侧与支架上端通过转 轴相连接, 电池平台的另一侧与升降机的升降杆相连接, 控制系统给出控 制信号驱动升降机工作, 通过升降机的升降杆驱动电池平台绕转轴转动, 从而实现在仰角方向上对太阳光的自动跟踪。
发明内容
为了改善原来的能自动跟踪太阳的光伏发电装置调整单一, 仅通过 调整光伏组件倾角进行对太阳的跟踪, 调整角度有限, 不能保证所有时刻 太阳光对电池平台的直射的不足, 本发明提供了一种对光伏组件调整自由 度更高的自动跟踪太阳的光伏发电装置。
本发明解决其技术问题所采用的技术方案是: 一种自动跟踪太阳的光 伏发电装置, 具有安装于安装平台上的基座, 基座上设置有主支撑架, 主 支撑架上设置有电池板平台, 在电池板平台上设置有太阳能光伏组件, 所 述基座相对于安装平台转动连接, 在基座上设置有基座周向驱动行星减速 机; 所述主支撑架由左右分叉设置的主支撑臂组成, 主支撑臂的上端与电 池板平台铰接、 下端与基座固定连接, 呈 "V"字结构, 张开角度 δ为 110 。 〜130° ; 在左、 右主支撑臂之间设置有横梁, 横梁上固定有平台仰角 调整升降机, 平台仰角调整升降机上的伸缩杆的端部与电池板平台铰接, 主支撑臂铰接点位于基座正上方且伸缩杆的铰接点与主支撑臂铰接点非 一直线; 所述基座周向驱动行星减速机与平台仰角调整升降机与电气控制 装置相连。 这样就在原来仅能对电池板平台上的太阳能光伏组件进行俯仰 调整的基础上, 实现了对太阳能光伏组件的周向调整, 提高了光伏组件对 太阳跟踪的自由度, 使太阳光始终直射光伏组件, 提高了对太阳能的吸收 利用率。
为了实现基座的便捷周向转动, 进一步地: 所述基座由与安装平台固 定连接转盘轴承和可以在转盘轴承内周向转动的转盘轴承盖组成, 在转盘 轴承上设置有内齿轮, 基座周向驱动电机安装在转盘轴承盖上, 在基座周 向驱动行星减速机的输出端设置有行星齿轮与转盘轴承上的内齿轮相啮 合。 利用基座周向驱动行星减速机作为动力源, 通过齿轮传动方式驱动基 座作周向转动。
为了增强主支撑架的承载能力, 进一步地: 所述主支撑臂左右两侧各 至少设置有两根, 且对称安装固定。另外, 每侧主支撑臂呈" Λ "型安装, 张开角度 α为 17° 〜25° , 主支撑臂的上端汇聚与电池板平台铰接, 下端 固定设置于基座外圆周面上。
为了更一步提高支架的承载能力, 再进一步地: 所述主支撑架中部设 置有辅支撑架, 辅支撑架由四根辅支撑臂组成, 辅支撑臂上端汇聚与电池 板平台铰接并与主支撑臂铰接点一直线, 下端固定安装于基座上; 横梁固 定安装在辅支撑臂的一侧。
为了避免电池板平台在调整过程发生急剧偏转而造成设备的损坏, 再 进一步地: 在主支撑臂和电池板平台铰接处设置有用于缓冲的气弹簧。
为了使伸缩杆对电池板平台的支承达到最佳的受力和施力, 再进一步 地:所述伸缩杆的运动方向与水平方向的夹角 Ρ为 60° 〜80° 。为了使装 置在使用过程中始终保持太阳光的直射, 再进一步地: 所述基座旋转角度 是 360° , 平台仰角的调整范围 Y为 0° 〜55° 。
本发明实现了光伏发电装置的周向和俯仰的调整, 提升了自动跟踪太 阳的调整自由度, 提高了对太阳光的吸收利用率, 另外, 结构强度高, 可 承受很大的动载荷,可适应复杂苛刻的户外使用环境,具有很强的抗风性, 可抵御 12级飓风,其可承受最大风速达 135km/h。光伏组件安装平面可以 安装目前光伏厂家生产的大多数组件, 其安装基座无需埋入地下, 制造装 配容易、 安装维修方便, 整套系统的性价比高。
附图说明 下面结合附图和实施例对本发明进一步说明。 图 1是本发明支架 V结构示意图。 图 2是本发明支架 W结构示意图。 图 3是本发明仰角调整状态结构示意图。 图 4是本发明电池板平台水平状态时的正面结构示意图。 图 5是图 4的俯视结构示意图。 图 6是基座结构示意图。 图中: 1.基座 1-1.转盘轴承 1-2.转盘轴承盖 1-3.内齿轮 2.主支撑 架 2-1.主支撑臂 2- 2.横梁 3.电池板平台 4.太阳能光伏组件 5. 行星减速机 6.平台仰角调整升降机 7.伸缩杆 8.电气控制装置 9. 安装平台 11. 辅支撑架 11-1.辅支撑臂 12.气弹簧 具体实施方式
如图 1所示的一种自动跟踪太阳的光伏发电装置, 具有安装于安装平 台 9上的基座 1, 基座 1上可设置有预埋件与安装平台 9固定连接。 基座 1上设置有主支撑架 2, 主支撑架 2上设置有电池板平台 3, 在电池板平台 3上设置有太阳能光伏组件 4。 所述主支撑架 2由左右分叉设置的主支撑 臂 2-1组成, 即主支撑臂 2-1的上端与电池板平台 3铰接、 下端与基座 1 固定连接, 支架整体呈 "V"型, 张开角度 δ为 110° 〜130° , 如图 4所 示。 每侧主支撑臂 2-1设置三根, 以保证足够的结构强度, 每侧主支撑臂 2-1呈" Λ "型安装,最外侧的两根主支撑臂 2-1之间张开角度 α为 17° 〜 25° , 如图 3所示, 主支撑臂 2-1的上端汇聚与电池板平台 3铰接, 并在 铰接处设置有用于缓冲的气弹簧 12, 下端固定设置于基座 1外圆周面上。 如图 5、 图 6所示, 所述基座 1由与安装平台 9固定连接的转盘轴承 1-1 和可以在转盘轴承 1-1内周向转动的转盘轴承盖 1-2组成,在转盘轴承 1-1 上设置有内齿轮 1-3, 在转盘轴承盖 1-2上设置有基座周向驱动行星减速 机 5, 在基座周向驱动行星减速机 5的输出端设置有外齿轮 1-4与转盘轴 承 1-1上的内齿轮 1-3相啮合, 转盘轴承盖 1-2的偏转角度是 ± 120° 。 在左、 右主支撑臂 2-1之间设置有横梁 2-2, 横梁 2-2上固定有平台仰角 调整升降机 6, 平台仰角调整升降机 6上的伸缩杆 7的端部与电池板平台 3铰接, 伸缩杆 7的运动方向与水平方向的夹角 β为 60° 〜80° , 如图 3 所示。 主支撑臂 2-1铰接点位于基座 1正上方, 使其支承的电池板平台 3 和太阳能光伏组件 4的重心刚好位于基座 1中部, 使受力分布更均衡。 伸 缩杆 7的铰接点与主支撑臂 2-1铰接点非一直线, 这样伸缩杆 7在平台仰 角调整升降机 6的驱动下, 使电池板平台 3作俯仰运动, 平台仰 的调整 范围 Υ为 0° 〜55° 。 所述基座周向驱动星减速机 5与平台仰角调整升降 机 6均与电气控制装置 8相连, 由电气控制装置 8对两者进行控制。
作为另一实施例,如图 2所示,在主支撑架 2中部设置有辅支撑架 11, 辅支撑架 11由四根辅支撑臂 11-1组成, 辅支撑臂 11-1上端汇聚与电池 板平台 3铰接并与主支撑臂 2-1铰接点一直线,下端固定安装于基座 1上; 横梁 2-2固定安装在辅支撑臂 11-1的一侧。 此时主支撑臂 2-1左右每侧 设置有两根, 且对称安装固定。 支架整体呈 "W"型。
工作时, 通过太阳能光伏组件 4感应太阳光的照射角度并将信息反馈 到电气控制装置 8, 电气控制装置 8启动对基座周向驱动星减速机 5与平 台仰角调整升降机 6的运动控制。 基座周向驱动星减速机 5使主支撑架 2 承载太阳能光伏组件 4作周向偏转, 平台仰角调整升降机 6使太阳能光伏 组件 4作俯仰偏转, 通过周向和俯仰角度调节, 最终使太阳能光伏组件 4 与太阳光保持直射位置。
本发明所述的光伏装置, 单台容量达 11KW, 最大功率为 12kw。 适合 于各种类型的太阳能组件, 比固定式安装增效 35%以上, 比单轴跟踪系统 增效 15%以上。
上述两个实施例对于本领域技术人员而言, 阅读本说明书后毋需付出 创造性劳动即可再现出,在此就不详述了。当然,在本发明的发明构思下, 本发明有多种具体实施形式, 这对本领域技术人员阅读本说明书后毋需付 出创造性劳动即可再现出, 在此就不详述了。

Claims

权利 要 求
1. 一种自动跟踪太阳的光伏发电装置, 具有安装于安装平台 (9) 上 的基座 (1), 基座(1)上设置有主支撑架 (2), 主支撑架 (2)上设置有 电池板平台 (3), 在电池板平台 (3) 上设置有太阳能光伏组件 (4), 其 特征是: 所述基座 (1)相对于安装平台 (9)转动连接, 在基座 (1) 上 设置有基座周向驱动行星减速机(5); 所述主支撑架 (2) 由左右分叉设 置的主支撑臂 (2-1)组成, 主支撑臂 (2-1) 的上端与电池板平台 (3) 铰接、下端与基座(1)固定连接, 呈 "V"字结构, 张开角度 δ为 110° 〜 130° ; 在左、 右主支撑臂 (2-1)之间设置有横梁 (2-2), 横梁 (2-2) 上固定有平台仰角调整升降机 (6), 平台仰角调整升降机 (6)上的伸缩 杆(7) 的端部与电池板平台 (3)铰接, 主支撑臂 (2-1)铰接点位于基 座 (1) 正上方且伸缩杆(7) 的铰接点与主支撑臂 (2-1)铰接点非一直 线; 所述基座周向驱动行星减速机(5) 与平台仰角调整升降机(6) 与电 气控制装置 (8)相连。
2. 根据权利要求 1所述的自动跟踪太阳的光伏发电装置, 其特征是: 所述基座 (1) 由与安装平台 (9) 固定连接的转盘轴承 (1-1) 和可以在 转盘轴承(1-1)内周向转动的转盘轴承盖(1-2)组成,在转盘轴承(1-1) 上设置有内齿轮(1-3), 基座周向驱动电机(5)安装在转盘轴承盖(1-2) 上, 在基座周向驱动行星减速机(5) 的输出端设置有行星齿轮(1-4) 与 转盘轴承(1-1)上的内齿轮(1-3)相啮合。
3. 根据权利要求 1所述的自动跟踪太阳的光伏发电装置, 其特征是: 所述主支撑臂 (2-1 )左右两侧各至少设置有两根, 且对称安装固定。
4. 根据权利要求 3所述的自动跟踪太阳的光伏发电装置, 其特征是: 所述每侧主支撑臂 (2-1 ) 呈 " Λ "型安装, 张开角度 α为 17° 〜25° ; 主支撑臂(2-1 ) 的上端汇聚与电池板平台 (3)铰接, 下端固定设置于基 座 (1)外圆周面上。
5. 根据权利要求 1所述的自动跟踪太阳的光伏发电装置, 其特征是: 所述主支撑架(2) 中部设置有辅支撑架(11), 辅支撑架 (11 ) 由四根辅 支撑臂 (11-1 )组成, 辅支撑臂 (11-1 )上端汇聚与电池板平台 (3) 铰 接并与主支撑臂 (2-1 )铰接点一直线, 下端固定安装于基座 (1 )上; 横 梁(2-2) 固定安装在辅支撑臂 (11-1 ) 的一侧。
6. 根据权利要求 1所述的自动跟踪太阳的光伏发电装置, 其特征是: 在主支撑臂( 2- 1 )和电池板平台( 3 )铰接处设置有用于缓冲的气弹簧( 12 )。
7. 根据权利要求 1所述的自动跟踪太阳的光伏发电装置, 其特征是- 所述伸缩杆(7) 的运动方向与水平方向的夹角 β为 60° 〜80° 。
8. 根据权利要求 1所述的自动跟踪太阳的光伏发电装置, 其特征是: 所述电池板平台 (3)仰角的调整范围 Υ为 0° 〜55° 。
9. 根据权利要求 1所述的自动跟踪太阳的光伏发电装置, 其特征是: 所述基座(1 )周向旋转角度是 360° 。
PCT/CN2009/000005 2008-12-18 2009-01-04 自动跟踪太阳的光伏发电装置 WO2010069115A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/995,629 US8541679B2 (en) 2008-12-18 2009-01-04 Photo-voltaic power generation equipment that can automatically track the sun
DE212009000065U DE212009000065U1 (de) 2008-12-18 2009-01-04 Dem Sonnenstand automatisch nachgeführte Photovoltaik-Anlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNU2008202149025U CN201319572Y (zh) 2008-12-18 2008-12-18 自动跟踪太阳的光伏发电装置
CN200820214902.5 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010069115A1 true WO2010069115A1 (zh) 2010-06-24

Family

ID=41198330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000005 WO2010069115A1 (zh) 2008-12-18 2009-01-04 自动跟踪太阳的光伏发电装置

Country Status (6)

Country Link
US (1) US8541679B2 (zh)
CN (1) CN201319572Y (zh)
DE (1) DE212009000065U1 (zh)
FR (1) FR2940524B3 (zh)
IT (1) ITMI20090415U1 (zh)
WO (1) WO2010069115A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441705A (zh) * 2013-08-29 2013-12-11 太王能源科技(上海)有限公司 一种光伏追日系统及其控制方法
CN112387727A (zh) * 2020-11-16 2021-02-23 中原环保股份有限公司 一种太阳能光伏驱动的新型二沉池清洗机器人
CN114688505A (zh) * 2022-04-02 2022-07-01 深圳市尚为照明有限公司 一种户外便携智能跟踪定位照明灯具

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2362141B1 (es) * 2009-12-16 2012-06-07 Energias Renovables Integrales, S.L. Seguidor solar.
CN102064217A (zh) * 2010-12-09 2011-05-18 泰通(泰州)工业有限公司 低倍聚光光热一体化单轴跟踪系统
KR101191456B1 (ko) * 2010-12-29 2012-10-16 민광식 태양광 추적 장치
FR2976058B1 (fr) * 2011-05-30 2013-07-05 Prestige Solaire Systeme motorise d'entrainement en rotation pour un systeme de support suiveur pour capteur solaire
FR2976057A1 (fr) * 2011-05-30 2012-12-07 Prestige Solaire Support de capteurs solaires orientable
FR2986060B1 (fr) * 2012-01-23 2020-02-21 Amaterrasu Dispositif de captation par reflexion et concentration du rayonnement solaire.
CN103455044B (zh) * 2012-05-29 2016-12-14 太阳光电能源科技股份有限公司 太阳能发电机组的自动追日调控装置
CN102868325B (zh) * 2012-09-24 2015-02-18 宁波市科技园区绿牌软包装技术贸易有限公司 太阳能家用墙面机
CN103064428B (zh) * 2012-12-05 2015-08-12 苏州市思玛特电力科技有限公司 一种用于光伏发电的基于液位驱动的主动追日系统
CN102969738A (zh) * 2012-12-12 2013-03-13 中盛光电能源股份有限公司 一种大型光伏并网双轴跟踪系统
CN103148542B (zh) * 2013-03-30 2015-07-08 宁波市科技园区绿牌软包装技术贸易有限公司 太阳能室内空气智能清新机
US10418932B2 (en) 2014-07-09 2019-09-17 Eustratios N. Carabateas Mirror system for considerably increasing the productivity of photovoltaic power plants
CN105577092B (zh) * 2016-01-15 2018-01-30 贵州大学 一种单轴跟踪式光伏发电结构
US10931224B2 (en) 2016-06-03 2021-02-23 RBI Solar, Inc. Single axis in-line gearbox modular tracker system
DE202016007526U1 (de) 2016-12-10 2017-01-12 Thomas Rebitzer Photovoltaikanlage und Vorrichtung zur beweglichen Befestigung
CN106972813A (zh) * 2017-03-15 2017-07-21 天津杰能恒通科技有限公司 一种手动单轴跟踪太阳能光伏发电系统
CN107610385A (zh) * 2017-09-22 2018-01-19 国网山东省电力公司烟台供电公司 一种可侦测移动物体并自动报警予以提醒的安全警示牌
CN107918405A (zh) * 2017-12-26 2018-04-17 福建江夏学院 太阳跟踪器
CN108258993B (zh) * 2018-03-20 2025-04-15 天津博帆科技发展有限公司 一种可自动追踪太阳的光伏发电装置
CN108809229B (zh) * 2018-04-10 2023-09-22 深圳烁圣数字能源有限公司 高效光伏能源系统及光伏电站
CN108331165A (zh) * 2018-04-19 2018-07-27 枣庄宏大伟业金属结构制造有限公司 一种智能型轻钢装配式光伏房屋
CN109546947B (zh) * 2018-12-25 2020-10-09 广西赫阳能源科技有限公司 一种自动调节光伏组件倾角装置
CN110474602A (zh) * 2019-07-29 2019-11-19 合肥中南光电有限公司 一种太阳能采集装置
CN110677108B (zh) * 2019-10-14 2024-06-25 中国科学院西安光学精密机械研究所 一种极轴式光伏发电全跟踪架
CN111487939B (zh) * 2020-04-17 2023-03-10 内蒙古润泰新能源科技有限公司 一种供热、供电、制冷一体自然能源智慧系统及控制方法
WO2022027282A1 (zh) * 2020-08-05 2022-02-10 李�杰 斜坡面上无需光电传感器的光伏发电追踪系统
CN112072991B (zh) * 2020-09-17 2021-08-10 广州翼安科技有限公司 一种太阳能光热发电回转驱动设备
CN112130592B (zh) * 2020-10-10 2024-12-20 上海映晓电子科技有限公司 一种极地太阳追踪装置及光学实现平台
CN113237803B (zh) * 2021-04-09 2023-05-30 宝武清洁能源有限公司 一种可调式光储装置及粉尘监测设备
CN217282822U (zh) * 2021-08-17 2022-08-23 天合光能股份有限公司 一种可调节光伏支架
CN113726279A (zh) * 2021-09-01 2021-11-30 福建金固美能源科技有限公司 一种防腐太阳能矩阵铝合金支架及其制备工艺
CN114337487B (zh) * 2021-10-27 2024-04-19 国家电投集团曲阳新能源发电有限公司 安装快速的太阳能光伏支架
CN115051628A (zh) * 2022-05-23 2022-09-13 许昌学院 一种分布式多用途光伏发电设备
CN115321620A (zh) * 2022-08-11 2022-11-11 无锡市政设计研究院有限公司 一种新型格栅设备
CN116846302B (zh) * 2023-06-09 2024-01-30 江苏宇马铝业有限公司 一种适用于光伏安装的铝合金支架及使用方法
CN116557953A (zh) * 2023-06-16 2023-08-08 韦建秀 太阳能空调系统
CN117792231A (zh) * 2023-12-14 2024-03-29 无锡尚德太阳能电力有限公司 一种移动式光伏发电系统
CN118801789B (zh) * 2024-06-20 2025-02-14 中国建筑设计研究院有限公司 一种跟踪式遮阳光伏装置
CN119675558A (zh) * 2024-12-13 2025-03-21 安徽理工大学 一种光伏电池总成载运及智能安装平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883340A (en) * 1988-08-02 1989-11-28 Solar Lighting Research, Inc. Solar lighting reflector apparatus having slatted mirrors and improved tracker
CN2626054Y (zh) * 2003-05-15 2004-07-14 许卫华 太阳能电池旋转角度调节结构
JP2007180484A (ja) * 2005-09-28 2007-07-12 Tec Okazaki:Kk 太陽追尾システム
WO2007090908A1 (es) * 2006-02-09 2007-08-16 Mecanizados Solares, S.L. Soporte orientador de paneles solares
CN201213244Y (zh) * 2008-06-25 2009-03-25 泰州中盛泰通光电有限公司 自动跟踪太阳能光伏发电装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172739A (en) * 1977-12-27 1979-10-30 Solar Homes, Inc. Sun tracker with dual axis support for diurnal movement and seasonal adjustment
US4215410A (en) * 1979-02-09 1980-07-29 Jerome H. Weslow Solar tracker
DE3131612A1 (de) * 1981-08-10 1983-02-24 Zahnräderfabrik Renk AG, 8900 Augsburg Getriebe zur positionierung von sonnenenergie-kollektoren
US7156088B2 (en) * 2004-03-30 2007-01-02 Energy Innovations, Inc. Solar collector mounting array
EP1601022A1 (de) * 2004-05-28 2005-11-30 Hilber Technic Cooperation GmbH Solaranlage
US7884279B2 (en) * 2006-03-16 2011-02-08 United Technologies Corporation Solar tracker
US7381886B1 (en) * 2007-07-30 2008-06-03 Emcore Corporation Terrestrial solar array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883340A (en) * 1988-08-02 1989-11-28 Solar Lighting Research, Inc. Solar lighting reflector apparatus having slatted mirrors and improved tracker
CN2626054Y (zh) * 2003-05-15 2004-07-14 许卫华 太阳能电池旋转角度调节结构
JP2007180484A (ja) * 2005-09-28 2007-07-12 Tec Okazaki:Kk 太陽追尾システム
WO2007090908A1 (es) * 2006-02-09 2007-08-16 Mecanizados Solares, S.L. Soporte orientador de paneles solares
CN201213244Y (zh) * 2008-06-25 2009-03-25 泰州中盛泰通光电有限公司 自动跟踪太阳能光伏发电装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441705A (zh) * 2013-08-29 2013-12-11 太王能源科技(上海)有限公司 一种光伏追日系统及其控制方法
CN112387727A (zh) * 2020-11-16 2021-02-23 中原环保股份有限公司 一种太阳能光伏驱动的新型二沉池清洗机器人
CN114688505A (zh) * 2022-04-02 2022-07-01 深圳市尚为照明有限公司 一种户外便携智能跟踪定位照明灯具
CN114688505B (zh) * 2022-04-02 2023-08-18 深圳市尚为照明有限公司 一种户外便携智能跟踪定位照明灯具

Also Published As

Publication number Publication date
FR2940524A3 (fr) 2010-06-25
CN201319572Y (zh) 2009-09-30
ITMI20090415U1 (it) 2010-06-19
DE212009000065U1 (de) 2011-01-05
US8541679B2 (en) 2013-09-24
US20110168241A1 (en) 2011-07-14
FR2940524B3 (fr) 2010-11-26

Similar Documents

Publication Publication Date Title
WO2010069115A1 (zh) 自动跟踪太阳的光伏发电装置
CN201213244Y (zh) 自动跟踪太阳能光伏发电装置
US10008977B2 (en) Heliostat apparatus and solar heat collecting apparatus and concentrating photovoltaic apparatus
CN107171619B (zh) 一种多功能发电系统
CN109209758B (zh) 风光一体化发电装置及其使用方法
KR101131482B1 (ko) 고효율 태양광 발전시스템
CN104777849A (zh) 平轴鳞片式双轴双联动跟踪支架装置
CN116169943B (zh) 一种风电和光伏互补发电系统
CN202424582U (zh) 一种太阳能光伏电池
JP2012069610A (ja) 太陽光追尾装置集合システム
CN110855234A (zh) 一种太阳能发电装置
CN201234218Y (zh) 双轴式太阳能发电跟踪系统
CN118868754A (zh) 一种具有自动追光功能的服务区光伏幕墙支架及方法
CN201081444Y (zh) 太阳能集热器及太阳能电池板用陀螺式万向支架
CN102468782A (zh) 两轴自动跟踪太阳能光伏发电装置
CN210297620U (zh) 智能光伏装置
CN108400765A (zh) 一种自动追踪太阳光的双自由度光伏发电装置及追踪方法
CN208539839U (zh) 一种能调节角度的光伏板安装结构
CN202975824U (zh) 一种自动调整角度的新型太阳光跟踪机构
CN110109485B (zh) 一种光伏组件的光照跟踪装置
CN217037108U (zh) 一种低重心光伏跟踪支架结构
CN115808934A (zh) 利用太阳能获取能量的系统
CN105958928A (zh) 一种太阳光线双轴跟踪装置
CN2697527Y (zh) 自动跟踪太阳装置
CN111998296A (zh) 一种节能型路灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12995629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09832797

Country of ref document: EP

Kind code of ref document: A1