WO2010067414A1 - Reactor and method for manufacturing the same - Google Patents

Reactor and method for manufacturing the same Download PDF

Info

Publication number
WO2010067414A1
WO2010067414A1 PCT/JP2008/072290 JP2008072290W WO2010067414A1 WO 2010067414 A1 WO2010067414 A1 WO 2010067414A1 JP 2008072290 W JP2008072290 W JP 2008072290W WO 2010067414 A1 WO2010067414 A1 WO 2010067414A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
resin body
coil
reactor core
core
Prior art date
Application number
PCT/JP2008/072290
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤豊幸
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/072290 priority Critical patent/WO2010067414A1/en
Publication of WO2010067414A1 publication Critical patent/WO2010067414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Definitions

  • the present invention relates to a reactor mounted on an electric vehicle, a hybrid vehicle, and the like and a method for manufacturing the reactor.
  • a reactor of a power conversion circuit is generally housed in a housing (case) in a posture in which a coil is formed at two longitudinal portions of a reactor ring that is substantially horizontally long in plan view.
  • This reactor core is composed of a laminate of a plurality of magnetic steel sheets or a split core consisting of dust cores, and a gap plate made of a non-magnetic material is interposed between each split core.
  • a reactor core is formed by being bonded and fixed with an adhesive.
  • a heat radiating plate (heat sink) is provided on the lower surface (bottom surface) of the housing, and a cooler for recirculating cooling water and air is provided below the heat sink.
  • a structure is used in which the air is discharged from the reactor core to the outside through the heat sink and the cooler.
  • a molded sealing resin body is formed between the housing and the reactor core accommodated in the housing, and heat from the coil or the reactor core is transmitted to the heat radiating plate through the sealing resin body. Be heated.
  • a resin bobbin or insulating paper is interposed between the coil and the reactor core to prevent contact between them and to ensure heat dissipation.
  • the process of separately manufacturing them and the process of installing them on a U-shaped core are included in the manufacturing process. It is necessary to prepare an injection molding die, and there has been a problem that the material cost and the manufacturing cost increase in order to produce these.
  • Insulating paper materials such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate) are generally used, but their thermal conductivity is as low as around 0.2 (W / mK), which reduces the heat dissipation of the core. It was a hindrance. For this reason, when the reactor is under a high load, heat builds up between the core and the coil, the temperature of the insulating paper rises significantly, and the deterioration progresses, which may cause insulation failure. In particular, in a reactor mounted on an electric vehicle, a hybrid vehicle, or the like, this problem becomes significant because a large current is generally applied or a large voltage is applied.
  • Patent Document 1 discloses a reactor in which a coil is formed in a bobbinless posture on the outer periphery of a reactor core.
  • the reactor disclosed in Patent Document 1 is formed by arranging fins in parallel on the outer periphery of the insulating layer on the outer periphery of the coil, and filling and fixing the resin in the gap between the core and the coil and the gap between the coil and the cover.
  • the present invention relates to a reactor excellent in heat dissipation performance.
  • a reactor having a bobbin-less structure that has both excellent heat dissipation performance can be obtained, while a resin to be molded and a mixed material mixed with the resin are specifically specified. Absent. According to the present inventors, due to the heat conduction performance of the resin and the mixture used, in some cases, heat is trapped between the coil and the core, thereby deteriorating the resin mold, and finally insulation failure Has been identified as being at risk. Moreover, when the sealing resin body cannot absorb the difference in linear expansion between the core and the coil, cracks are generated in the sealing resin body itself, which may lead to insulation failure.
  • the present invention has been made in view of the above-described problems, and in addition to the manufacturing process and assembly process of bobbins and insulating paper, the insulating film forming process around the coil can be omitted, and the vibration during the reactor driving can be reduced. It is an object of the present invention to provide a reactor that can effectively reduce both noises resulting from this, and a method for manufacturing the same, that is excellent in heat dissipation performance.
  • a reactor according to the present invention includes a reactor core and a reactor including at least two U-shaped cores in a plan view and a gap layer interposed between the U-shaped cores.
  • the coil is formed on the outer periphery of the core with a clearance from the peripheral surface of the reactor core in a bobbin-less posture, the outer periphery of the reactor core and the outer periphery of the coil, and the clearance between the reactor core and the coil.
  • a coating resin body and a sealing resin body formed on the outer periphery of the coating resin body, and the coating resin body has a relatively low elastic modulus compared to the sealing resin body. Is.
  • the reactor core has a configuration in which two U-shaped cores having magnetism are bonded via a gap layer, or one or more I-type cores are similarly sandwiched between two U-shaped cores via a gap layer. There is a bonded form.
  • the reactor of the present invention is mainly intended for a structure (caseless) without a housing (or case), the reactor core is accommodated in the housing, and a sealing resin body is formed in the reactor core and the housing. This does not eliminate the reactor. Therefore, in this embodiment, a housing made of aluminum or an aluminum alloy thereof can be used.
  • the reactor of the present invention relates to a reactor having a bobbinless structure in which a resin bobbin or insulating paper is not interposed between a coil formed on the outer periphery of the reactor core and the core, and an insulating film such as an enamel film is provided around the reactor.
  • the coil without the insulation film (the coil wound without the coating of the conductive wire made of copper wire or the like) is provided around the reactor core in a bobbin-less posture It is.
  • the reactor of the present invention includes an outer periphery of the reactor core and an outer periphery of the coil, and an outer periphery of the reactor core and the coil. A film resin body is formed between the gaps.
  • This coating resin body further has a relatively low elastic modulus (and therefore is relatively soft and flexible or highly deformable) as compared with the sealing resin body formed around it. Insulation between the coil and the reactor core can be achieved, and vibration from the reactor core can be effectively absorbed by the film resin body having a relatively low elastic modulus (high deformability and high vibration absorption). Thus, it is possible to attenuate the vibration and reduce the vibration transmission to the outermost sealing resin body. It is easy to understand that the generated noise is reduced by reducing the vibration transmitted to the sealing resin body. In addition, regarding insulation between the coils (conductors) on which no insulating film is formed, even if the coating resin is in an energized state without entering between the conductors, the conductors are at the same potential. Insulation is not particularly required.
  • the material of the coating resin body is an insulating material, and in relation to the sealing resin body, it may be any elastic modulus lower than that of the sealing resin body, and is not particularly limited.
  • a resin that exhibits a rubber shape at normal temperature or a resin that exhibits a gel shape while adjusting the crosslinking density of the resin such as a soft epoxy resin, a urethane resin, a silicone resin (including a modified silicone resin), an olefin resin, etc. Can do.
  • the sealing resin body formed around it has a caseless structure
  • the sealing resin body is required to have an appropriate hardness. It can be molded from a hard epoxy resin, which is a hard resin, BMC (resin made of a mixed material such as unsaturated polyester, calcium carbonate and glass fiber).
  • the manufacturing process thereof can be eliminated, the manufacturing cost can be reduced, and the coating resin having a relatively low elastic modulus is formed from the reactor core.
  • the coating resin having a relatively low elastic modulus is formed from the reactor core.
  • the reactor of the present invention by disposing the insulating film on the outer periphery of the coil and providing a coating resin body, it becomes possible to mix a conductive filler into the resin for molding the sealing resin body, and therefore As compared with a conventional reactor in which only an insulating filler can be used as a resin for molding a sealing resin body, the heat dissipation can be further enhanced.
  • a coil is formed by winding a conductive wire having an insulating film formed on its outer periphery, but there is a pinhole in one layer of thin insulating film, or potting of sealing resin, etc. If the insulation film is damaged by the external pressure acting when the sealing resin body containing a conductive filler is interposed between the coil and the reactor core, the insulation between the reactor core and the coil must be secured there. Will not be able to. Therefore, in the reactor of the conventional structure, the filler mixed in order to improve the heat dissipation of a sealing resin body was limited to the insulating filler which consists of boron nitride, a silica, etc.
  • the insulation between the reactor core and the coil is sufficiently secured by the coating resin body, so that the resin material for the sealing resin body is iron or copper,
  • the sealing resin body can be formed by mixing conductive fillers made of aluminum or an alloy thereof, and the heat dissipation can be remarkably improved.
  • the film resin body in the range of 100 kPa to 10 MPa is used, and further, the elastic modulus of the sealing resin body on the outer periphery thereof is used. It has been proved that a high effect of reducing both vibration and noise can be obtained by setting the elastic modulus higher than that of the coating resin body.
  • the reactor of the present invention described above has excellent heat dissipation performance as described above, and vibration and noise are remarkably low. It is most suitable for application to electric vehicles.
  • the reactor manufacturing method includes at least an outer periphery of a reactor core including a U-shaped core having two U-shaped planar views and a gap layer interposed between the U-shaped cores.
  • a method of forming the first intermediate body by interposing a spacer made of the same material as the coating resin body in a part between the reactor core and the coil can be applied.
  • the second intermediate is performed by performing the step of immersing the first intermediate in a container containing a resin for molding the resin film body, taking it out and drying it one or more times.
  • a method of forming a body can also be applied.
  • the sealing resin body can be formed of a material in which a conductive filler is mixed with a resin material.
  • the coating resin body can be applied with an extremely simple method in which the first intermediate is simply dipped in a resin for molding the coating resin body and dried, for example, by automating these operations. By using a robot hand or the like, the manufacturing efficiency can be further improved.
  • the sealing resin body may be molded by storing the second intermediate body in a mold and potting the resin for the sealing resin body between the mold and the second intermediate body.
  • FIG. 2 is an II-II arrow view of FIG. 1. It is the graph which showed the experimental result which measured the vibration reduction value and the noise reduction value at the time of changing the elasticity modulus of a film resin body. It is the graph which showed the experimental result which measured the vibration reduction value and the noise reduction value at the time of changing the thickness of a film resin body.
  • the illustrated example shows a reactor core composed of two U-type cores and a gap layer, but an I-type core having one or more magnets is interposed between the U-type cores, Of course, it may be a reactor core in which a gap layer is interposed between the I-type core and the U-type core.
  • FIG. 1 is a longitudinal sectional view of an embodiment of a reactor according to the present invention
  • FIG. 2 is a view taken in the direction of arrows II-II in FIG.
  • Reactor 10 is an annular reactor core 1 formed by adhering ends of U-shaped cores 11 and 11 having two U-shaped magnets in plan view with an adhesive via gap layers 12 and 12; Coils 2 and 2 formed in a posture in which a gap G is provided on the outer periphery of the core of the reactor core 1, and the outer periphery of the reactor core 1 in which the coil 2 is formed and the coating resin body 3 formed on the outer periphery of the coil 2
  • the sealing resin body 4 formed on the outer periphery of the coating resin body 3 and the heat sink 5 disposed on the lower end of the coil 2 are roughly configured.
  • a structure in which a cooler or the like for circulating cooling water from a radiator or the like is provided below the heat sink 5 may be provided, and a housing (case) in which the illustrated reactor 10 is made of aluminum or an aluminum alloy thereof. The form accommodated in may be sufficient.
  • the U-shaped core 11 may be formed of a laminate formed by laminating electromagnetic steel plates, and press-molds a magnetic powder in which a soft magnetic metal powder or a soft magnetic metal oxide powder is coated with a resin binder. It may be formed from a dust core.
  • the soft magnetic metal powder includes iron, iron-silicon alloy, iron-nitrogen alloy, iron-nickel alloy, iron-carbon alloy, iron-boron alloy, iron-cobalt alloy, iron- Phosphorous alloys, iron-nickel-cobalt alloys, iron-aluminum-silicon alloys, and the like can be used.
  • the gap layer 12 is formed of a gap plate or an air gap. When the gap layer 12 is formed from the gap plate, the gap layer 12 may be formed of ceramics such as alumina (Al 2 O 3 ) or zirconia (ZrO 2 ). it can.
  • the elastic modulus of the coating resin body 3 is set to be lower than that of the sealing resin body 4, and therefore the reactor core 1 and the coil 2 are formed by the coating resin body 3 having relatively excellent deformability. The entire structure is enclosed.
  • the thickness of a film resin body it is desirable that it is 1 mm or more from the experimental result mentioned later.
  • an insulating film such as an enamel film is not formed on the outer periphery of the conducting wire constituting the coil 2, and insulation between the two is ensured by interposing a film resin body 3 between the coil 2 and the reactor core 1. Has been.
  • the film resin body 3 is, for example, a resin that exhibits a rubber shape or a gel shape at room temperature while adjusting the cross-linking density of the resin, and is a soft epoxy resin, urethane resin, silicone resin (modified silicone resin). Including), an olefin resin, and the like.
  • the sealing resin body 4 can be molded from a resin having a relatively high hardness at room temperature, for example, a hard epoxy resin, BMC (resin made of a mixed material such as unsaturated polyester, calcium carbonate, and glass fiber). it can. Further, the molding material of the sealing resin body 4 may contain conductive fillers such as iron, copper, and aluminum in these resin materials.
  • a resin having a relatively high hardness at room temperature for example, a hard epoxy resin, BMC (resin made of a mixed material such as unsaturated polyester, calcium carbonate, and glass fiber).
  • BMC resin made of a mixed material such as unsaturated polyester, calcium carbonate, and glass fiber.
  • the molding material of the sealing resin body 4 may contain conductive fillers such as iron, copper, and aluminum in these resin materials.
  • the degree of penetration which is an index of hardness
  • the degree can be defined as rubbery when the degree is less than 10, or Shore A hardness in the Asker C hardness tester is 100 or less, and hard solid when Shore D hardness is 50 or more.
  • the resin for molding the sealing resin body 4 contains a conductive filler. And the heat dissipation performance is greatly improved. Further, the reactor resin 1 is interposed between the reactor resin 1 and the relatively hard sealing resin body 4 so that the film resin body 3 having relatively low elasticity (and therefore low rigidity and high deformation performance) is interposed.
  • the film resin body 3 can effectively absorb the vibration at the time of one drive, and the film resin body 3 can reduce the vibration and also can reduce noise due to this. . Due to this vibration reduction, the outermost sealing resin body 4 is not transmitted with a relatively large vibration like a reactor having a conventional structure. Therefore, the hard sealing resin body 4 is cracked by the vibration. Problems such as occurrence are less likely to occur.
  • the outer surface of the reactor core 1 and the gap G are formed on the outer periphery of the reactor core 1 including the two U-shaped cores 11 and 11 and the gap layer 12 interposed between the U-shaped cores 11 and 11. And forming a first intermediate body in which the coil is disposed in a bobbin-less posture (first step).
  • a predetermined gap G is formed between the coil 2 and the reactor core 1 by interposing a spacer made of the same material as the coating resin body 3 to be molded in a later process in a part between the reactor core 1 and the coil 2.
  • a first intermediate (not shown) in which is formed can be manufactured.
  • the coating resin body 3 is formed in the outer periphery of the reactor core 1 and the outer periphery of the coil 2 and the gap G between the reactor core 1 and the coil 2 to form a second intermediate body (second step).
  • the resin for forming the coating resin body 3 is accommodated in a container (not shown), and the step of immersing the first intermediate body, taking it out and drying it is performed one or more times (for example, by repeating about three times).
  • the 2nd intermediate body not shown which has the membrane
  • a mold is set on the periphery of the second intermediate body on which the coating resin body 3 is formed on the outer periphery, a sealing resin body resin is injected between the mold and the second intermediate body, and the curing is performed.
  • the reactor 10 shown in FIGS. 1 and 2 is manufactured (third step). In this step, it is desirable to form the sealing resin body using a material obtained by mixing a conductive filler such as iron with a resin material for the sealing resin body.
  • the insulating coating around the conductor forming the coil 2 is eliminated, and no bobbin or insulating paper is interposed between the coil 2 and the reactor core 1; Since the coating resin body 3 having a thickness of 1 is interposed between the outer periphery and the outer periphery thereof, it is possible to omit both the insulating film forming step on the outer periphery of the conductive wire and the manufacturing process of the bobbin, insulating paper and the like. Therefore, although the coating resin body forming process is required, the man-hours of the entire process can be reduced, and the process can be shortened.
  • the reactor sealing resin body to be manufactured was molded from BMC having a flexural modulus of 15 GPa.
  • the coating resin bodies having different elastic moduli as shown in Table 1 below, four reactors having an elastic modulus in the range of 100 kPa to 10 MPa are referred to as Examples 1 to 4, and a reactor having an elastic modulus of less than 100 kPa is a comparative example.
  • Reactors having an elastic modulus of 1 to 3 and an elastic modulus exceeding 10 MPa are shown as Comparative Examples 4 to 6 (however, Comparative Example 6 has no coating resin body), and the vibration reduction value and noise reduction value of each reactor are shown.
  • the resin materials for molding the respective film resin bodies of Examples 1 to 4 and Comparative Examples 1 to 5 are as follows.
  • Example 1 is a silicone gel (so-called tough gel)
  • Example 2 is a urethane resin
  • Example 3 is a rubber silicone resin
  • Example 4 is an olefin resin
  • Comparative Examples 1 to 3 are silicone gels
  • Comparative Example 4 is a polyamide Resin and Comparative Example 5 use PPS resin, respectively, and change their elastic modulus.
  • the inventors further manufactured a plurality of reactors by changing the thickness of the coating resin body, and conducted an experiment for obtaining the vibration reduction value and the noise reduction value of each reactor.
  • both the reactor sealing resin bodies to be manufactured were molded from BMC having a flexural modulus of 15 GPa, and the coating resin had an elastic modulus of 3 MPa in the range of 100 kPa to 10 MPa as described above. Therefore, the reactor was manufactured by changing the thickness in the range of 0 to 2 mm.
  • the experimental results are shown in FIG.
  • X5 is an example in which the thickness of the coating resin body is 1 mm
  • X6 is an example in which the thickness is 1.5 mm
  • X7 is an example in which the thickness is 2 mm
  • Y5 is a comparative example in which the thickness is 0.7 mm
  • Y6 represents a comparative example having a thickness of 0.2 mm
  • Y7 represents a comparative example having a thickness of 0 mm (no coating resin body).
  • the thickness of the coating resin body is 1 mm and the inflection point.
  • both the vibration reduction value and the noise reduction value rapidly decrease. Therefore, it was demonstrated that it is desirable to apply a film resin body having a thickness of at least 1 mm or more.
  • a reactor having a sealing resin body molded from a material containing PPS in BMC and a material containing LCP in BMC with respect to the measurement temperature of the thermocouple in the reactor having a sealing resin body made only of BMC The temperature reduction value of each reactor having a sealing resin body molded from the above was determined.
  • a reactor having a sealing resin body made of a material containing PPS has a temperature drop of 21 ° C.
  • a reactor having a sealing resin body made of a material containing LCP has a temperature drop of 39 ° C.
  • a film resin body having a relatively low elastic modulus is interposed between the reactor core and the sealing resin body, thereby obtaining a high vibration reduction effect and a noise reduction effect. Therefore, the generation of cracks in the sealing resin body can be effectively suppressed. Furthermore, since the insulation between the coil and the reactor core is sufficiently secured by the coating resin body, the sealing resin body can be molded from a resin material containing a conductive filler, resulting in heat dissipation performance. Can be significantly improved. This high-quality, high-performance reactor is optimal for application to recent hybrid vehicles, electric vehicles, and the like that require higher performance in the on-board equipment.

Abstract

A reactor and a method for manufacturing the reactor, in which a process for forming an insulating film around a coil can be eliminated, both vibration at the time of driving a reactor and noise caused by such vibration can be reduced effectively, and thereby a sealing resin body is not cracked easily. The reactor (10) comprises a reactor core (1) consisting of two U-shaped cores (11, 11) having a U-shaped plan view and a gap layer (12) interposed between the U-shaped cores (11, 11), a coil (2) formed in bobbinless posture on the outer circumference of the reactor core (1) while having a gap (G) to the circumferential surface of the reactor core (1), a film resin body (3) formed on the outer circumference of the reactor core (1) and that of the coil (2) and in the gap (G) between the reactor core (1) and the coil (2), and a sealing resin body (4) formed on the outer circumference of the film resin body (3). The film resin body (3) has a relatively low modulus of elasticity as compared with the sealing resin body (4).

Description

リアクトルとその製造方法Reactor and its manufacturing method
 本発明は、電気自動車やハイブリッド車等に搭載されるリアクトルとその製造方法に関するものである。 The present invention relates to a reactor mounted on an electric vehicle, a hybrid vehicle, and the like and a method for manufacturing the reactor.
電力変換回路のリアクトルは、一般に平面視が略横長環状のリアクトルコアの2つの長手部にコイルが形成された姿勢でハウジング(ケース)内に収容されている。このリアクトルコアは複数の電磁鋼板の積層体もしくは圧粉磁心からなる分割コアから構成されており、各分割コア間にはたとえば非磁性素材のギャップ板が介装されており、ギャップ板とコアは接着剤にて接着固定されてリアクトルコアが形成されている。 A reactor of a power conversion circuit is generally housed in a housing (case) in a posture in which a coil is formed at two longitudinal portions of a reactor ring that is substantially horizontally long in plan view. This reactor core is composed of a laminate of a plurality of magnetic steel sheets or a split core consisting of dust cores, and a gap plate made of a non-magnetic material is interposed between each split core. A reactor core is formed by being bonded and fixed with an adhesive.
このハウジングの下面(底面)には放熱板(ヒートシンク)が設けてあり、さらにその下方には冷却水やエアを還流させる冷却器が設けられており、コイルに通電した際の発熱を該コイルまたはリアクトルコアからこの放熱板を介し、冷却器を介してクーリングしながら外部へ逃がす構造が一般的である。ここで、ハウジングとハウジング内に収容されたリアクトルコアの間にはモールドされた封止樹脂体が形成されており、コイルまたはリアクトルコアからの熱はこの封止樹脂体を介して放熱板に伝熱される。 A heat radiating plate (heat sink) is provided on the lower surface (bottom surface) of the housing, and a cooler for recirculating cooling water and air is provided below the heat sink. In general, a structure is used in which the air is discharged from the reactor core to the outside through the heat sink and the cooler. Here, a molded sealing resin body is formed between the housing and the reactor core accommodated in the housing, and heat from the coil or the reactor core is transmitted to the heat radiating plate through the sealing resin body. Be heated.
従来のリアクトルにおいては、上記コイルとリアクトルコアとの間に樹脂製のボビンまたは絶縁紙を介在させることで双方の接触を防止するとともに、放熱性をも担保していた。このボビンを介在させる形態や絶縁紙を介在させる形態では、それらを別途製作する工程と、たとえばU型コアにそれらを設置する工程が製造工程に含まれているが、特にボビン製作工程では、専用の射出成形型を用意する必要があり、これらを製作するために材料コストや製造コストが嵩んでしまうという問題があった。また、絶縁紙はコアの外周に挿入する必要があるが、ボビンに比してその位置決めが困難であり、その寸法精度が出難いという課題も有していた。これらのことから、その製作やコアへの設置に手間と費用を要し、製造効率の低下を招くものであった。 In a conventional reactor, a resin bobbin or insulating paper is interposed between the coil and the reactor core to prevent contact between them and to ensure heat dissipation. In the form in which the bobbin is interposed and the form in which the insulating paper is interposed, the process of separately manufacturing them and the process of installing them on a U-shaped core, for example, are included in the manufacturing process. It is necessary to prepare an injection molding die, and there has been a problem that the material cost and the manufacturing cost increase in order to produce these. In addition, it is necessary to insert the insulating paper into the outer periphery of the core. However, it is difficult to position the paper as compared with the bobbin, and it is difficult to obtain the dimensional accuracy. For these reasons, the production and installation on the core require labor and cost, leading to a decrease in production efficiency.
さらに製作されたリアクトルの品質面からの課題を挙げれば、ボビンとコアとの線膨張差の相違から、リアクトルの使用環境におけるヒートショックによって該ボビンにクラックが発生しやすく、このクラックの発生によって絶縁不良が起こり、これがリアクトルの焼損に繋がる虞があった。 In addition, if the issues regarding the quality of the manufactured reactor are listed, cracks are likely to occur in the bobbin due to the heat shock in the usage environment of the reactor due to the difference in linear expansion between the bobbin and the core. There was a possibility that a defect occurred and this could lead to burning of the reactor.
また、絶縁紙の素材としては、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)などが一般に使用されるが、その熱伝導率が0.2(W/mK)前後と低く、コアの放熱を妨げるものとなっていた。このためにリアクトルの高負荷時にはコア-コイル間で熱ごもりが起こってしまい、絶縁紙の温度が著しく上昇して劣化が進行し、これが絶縁不良の原因となり得るものであった。特に電気自動車やハイブリッド車等に車載されるリアクトルにおいては、一般に大電流が通電され、もしくは大電圧が印加されることから、この課題が顕著となる。 Insulating paper materials such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate) are generally used, but their thermal conductivity is as low as around 0.2 (W / mK), which reduces the heat dissipation of the core. It was a hindrance. For this reason, when the reactor is under a high load, heat builds up between the core and the coil, the temperature of the insulating paper rises significantly, and the deterioration progresses, which may cause insulation failure. In particular, in a reactor mounted on an electric vehicle, a hybrid vehicle, or the like, this problem becomes significant because a large current is generally applied or a large voltage is applied.
ところで、リアクトルコアの外周にボビンレスの姿勢でコイルを形成してなるリアクトルがたとえば特許文献1に開示されている。特許文献1に開示のリアクトルは、コイルの外周の絶縁層の外周にフィンを並列配置させ、コアとコイルの間の空隙部およびコイルとカバーの間の空隙部に樹脂を充填固着してできる、放熱性能に優れたリアクトルに関するものである。 Incidentally, for example, Patent Document 1 discloses a reactor in which a coil is formed in a bobbinless posture on the outer periphery of a reactor core. The reactor disclosed in Patent Document 1 is formed by arranging fins in parallel on the outer periphery of the insulating layer on the outer periphery of the coil, and filling and fixing the resin in the gap between the core and the coil and the gap between the coil and the cover. The present invention relates to a reactor excellent in heat dissipation performance.
上記する特許文献1に開示のリアクトルによれば、ともに放熱性能に優れた、ボビンレス構造のリアクトルが得られる一方で、モールドされる樹脂や該樹脂に混合される混合材が具体的に特定されていない。本発明者等によれば、使用される樹脂や混合材の熱伝導性能により、場合によっては、コイルとコア間に熱がこもってしまい、これによって樹脂モールドが劣化し、最終的には絶縁不良に至る危険性があることが特定されている。また、封止樹脂体がコアとコイルの線膨張差を吸収できない場合には、当該封止樹脂体自体にクラックが発生してしまい、これによっても絶縁不良に至る危険性がある。さらには、これらのリアクトルが電力変換回路として使用され、これを近時その生産が拡大の一途を辿り、その生産コストのさらなる低減が叫ばれている上記ハイブリッド車や電気自動車に搭載される場合においては、導体周りにエナメル皮膜等の絶縁皮膜が形成されたコイルがリアクトルコア周縁に設けられていることから、このコイルの絶縁皮膜形成工程を省略することで、より低コストでリアクトルを製造可能な技術の開発も切望されている。 According to the reactor disclosed in Patent Document 1 described above, a reactor having a bobbin-less structure that has both excellent heat dissipation performance can be obtained, while a resin to be molded and a mixed material mixed with the resin are specifically specified. Absent. According to the present inventors, due to the heat conduction performance of the resin and the mixture used, in some cases, heat is trapped between the coil and the core, thereby deteriorating the resin mold, and finally insulation failure Has been identified as being at risk. Moreover, when the sealing resin body cannot absorb the difference in linear expansion between the core and the coil, cracks are generated in the sealing resin body itself, which may lead to insulation failure. Furthermore, when these reactors are used as power conversion circuits, and these are installed in the above hybrid vehicles and electric vehicles that have recently been steadily expanding their production cost Since a coil having an insulating film such as an enamel film around the conductor is provided at the periphery of the reactor core, it is possible to manufacture a reactor at a lower cost by omitting the insulating film forming step of this coil. Technology development is also eagerly awaited.
さらに、上記するリアクトルの製造コスト低減に加えて、リアクトル駆動時の振動の発生とこれに起因する騒音の発生、さらには、振動に起因して封止樹脂体にクラックが生じること、などを抑止することも重要な課題の一つである。ここで、ハウジング(ケース)を使用せず、コイルが形成されたリアクトルコアを封止樹脂体のみで囲繞してなる構造のリアクトルも知られるところである。しかし、このハウジングを具備しない構造では、ハウジングが存在しないために封止樹脂体に比較的高い剛性を期待することから、おのずと該封止樹脂体の可撓性が低下せざるを得ない。そのため、振動低減効果を十分に期待することができず、上記する発生騒音を抑止できないという致命的な課題が存在する。なお、ハウジング(ケース)とリアクトルコアの間に充填される封止樹脂体を異種樹脂からなる2層構造とし、耐熱性が高くて比較的高価なエポキシ樹脂の使用量を低減してなるリアクトルが特許文献2に開示されている。しかし、このリアクトルを適用したとしても、上記する課題、すなわち、コイル周りの絶縁皮膜製造工程は依然として残ること、封止樹脂体を異種樹脂の2層構造としたとしても、リアクトル駆動時の振動の発生とこれに起因する騒音の発生、この振動によってこれらの封止樹脂体に生じ得るクラックの発生を効果的に抑止できるか否かは依然として不明である。
特開平8-222442号公報 特開2007-134374号公報
Furthermore, in addition to reducing the manufacturing cost of the reactor as described above, the generation of vibration during the reactor drive and the generation of noise due to this, and further the suppression of cracks in the sealing resin body due to vibration, etc. It is also an important issue. Here, there is also known a reactor having a structure in which a reactor (in which a coil is formed) is surrounded only by a sealing resin body without using a housing (case). However, in the structure without the housing, since the sealing resin body is expected to have a relatively high rigidity because the housing does not exist, the flexibility of the sealing resin body is inevitably lowered. Therefore, there is a fatal problem that the vibration reduction effect cannot be sufficiently expected and the generated noise cannot be suppressed. Note that there is a reactor in which the sealing resin body filled between the housing (case) and the reactor core has a two-layer structure made of a different resin, and the amount of use of the epoxy resin having high heat resistance and relatively high cost is reduced. It is disclosed in Patent Document 2. However, even if this reactor is applied, the above-mentioned problem, that is, the insulating film manufacturing process around the coil still remains, and even if the sealing resin body has a two-layer structure of different resins, the vibration of the reactor driving It is still unclear whether the generation, the noise caused by this, and the occurrence of cracks that can occur in these sealing resin bodies due to this vibration can be effectively suppressed.
JP-A-8-222442 JP 2007-134374 A
本発明は、上記する問題に鑑みてなされたものであり、ボビンや絶縁紙の製造工程や組み付け工程に加えて、コイル周りの絶縁皮膜形成工程を省略することができ、リアクトル駆動時の振動とこれに起因する騒音の双方を効果的に低減することができ、さらには、放熱性能に優れたリアクトルとその製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and in addition to the manufacturing process and assembly process of bobbins and insulating paper, the insulating film forming process around the coil can be omitted, and the vibration during the reactor driving can be reduced. It is an object of the present invention to provide a reactor that can effectively reduce both noises resulting from this, and a method for manufacturing the same, that is excellent in heat dissipation performance.
前記目的を達成すべく、本発明によるリアクトルは、少なくとも、2つの平面視がU型のU型コアと、該U型コア間に介装されたギャップ層と、からなる、リアクトルコアと、リアクトルコアの外周において該リアクトルコアの周面と隙間をもって、かつ、ボビンレスの姿勢で形成されるコイルと、リアクトルコアの外周およびコイルの外周と、リアクトルコアとコイルの間の前記隙間と、に形成された皮膜樹脂体と、前記皮膜樹脂体の外周に形成された封止樹脂体と、からなり、前記皮膜樹脂体が前記封止樹脂体に比して相対的に低い弾性率を有しているものである。 In order to achieve the above object, a reactor according to the present invention includes a reactor core and a reactor including at least two U-shaped cores in a plan view and a gap layer interposed between the U-shaped cores. The coil is formed on the outer periphery of the core with a clearance from the peripheral surface of the reactor core in a bobbin-less posture, the outer periphery of the reactor core and the outer periphery of the coil, and the clearance between the reactor core and the coil. A coating resin body and a sealing resin body formed on the outer periphery of the coating resin body, and the coating resin body has a relatively low elastic modulus compared to the sealing resin body. Is.
ここで、リアクトルコアは、磁性を有する2つのU型コアがギャップ層を介して接着された形態や、2つのU型コア間に1または2以上のI型コアが同様にギャップ層を介して接着された形態などがある。さらに、本発明のリアクトルはハウジング(もしくはケース)のない構造(ケースレス)を主に対象としているが、リアクトルコアがハウジング内に収容され、該リアクトルコアとハウジング内に封止樹脂体が形成されるリアクトルを排除するものではない。したがって、この形態の場合には、アルミニウムまたはそのアルミ合金などからなるハウジングを使用することができる。 Here, the reactor core has a configuration in which two U-shaped cores having magnetism are bonded via a gap layer, or one or more I-type cores are similarly sandwiched between two U-shaped cores via a gap layer. There is a bonded form. Furthermore, although the reactor of the present invention is mainly intended for a structure (caseless) without a housing (or case), the reactor core is accommodated in the housing, and a sealing resin body is formed in the reactor core and the housing. This does not eliminate the reactor. Therefore, in this embodiment, a housing made of aluminum or an aluminum alloy thereof can be used.
本発明のリアクトルは、特にリアクトルコア外周に形成されるコイルと該コア間に樹脂製のボビンや絶縁紙を介在させないボビンレス構造のリアクトルに関するものであり、さらに、エナメル皮膜等の絶縁皮膜がその周囲に形成されていた従来のコイルと異なり、該絶縁皮膜のないコイル(銅線などからなる導線が皮膜処理されることなく、巻装されたコイル)をボビンレスの姿勢でリアクトルコア周囲に備えたものである。 The reactor of the present invention relates to a reactor having a bobbinless structure in which a resin bobbin or insulating paper is not interposed between a coil formed on the outer periphery of the reactor core and the core, and an insulating film such as an enamel film is provided around the reactor. Unlike the conventional coil formed on the coil, the coil without the insulation film (the coil wound without the coating of the conductive wire made of copper wire or the like) is provided around the reactor core in a bobbin-less posture It is.
ボビンレス構造であってコイル周囲の絶縁皮膜を廃した上で、該コイルとリアクトルコア間の絶縁を図るために、本発明のリアクトルでは、リアクトルコアの外周およびコイルの外周と、リアクトルコアとコイルの間の隙間と、に皮膜樹脂体を形成する。 In order to insulate between the coil and the reactor core after the bobbin-less structure is used and the insulation film around the coil is eliminated, the reactor of the present invention includes an outer periphery of the reactor core and an outer periphery of the coil, and an outer periphery of the reactor core and the coil. A film resin body is formed between the gaps.
この皮膜樹脂体は、さらにその周囲に形成される封止樹脂体よりも相対的に低い弾性率(したがって、相対的に柔らかく、可撓性もしくは変形性が高い)を有するものであり、この構成により、コイルとリアクトルコア間の絶縁を図ることができ、さらには、リアクトルコアからの振動を相対的に低い弾性率(高い変形性、高い振動吸収性)の皮膜樹脂体にて効果的に吸収して該振動を減衰させ、最外周の封止樹脂体への振動伝達を少なくすることを可能としている。封止樹脂体に伝達される振動が低減されることで、発生騒音が低減されることは理解に易い。なお、絶縁皮膜が形成されていないコイル(導線)間の絶縁に関しては、仮に皮膜樹脂が導線間に入り込まずに通電状態であったとしても、導線同士は同電位であることから、導線間の絶縁性が特に要求されることはない。 This coating resin body further has a relatively low elastic modulus (and therefore is relatively soft and flexible or highly deformable) as compared with the sealing resin body formed around it. Insulation between the coil and the reactor core can be achieved, and vibration from the reactor core can be effectively absorbed by the film resin body having a relatively low elastic modulus (high deformability and high vibration absorption). Thus, it is possible to attenuate the vibration and reduce the vibration transmission to the outermost sealing resin body. It is easy to understand that the generated noise is reduced by reducing the vibration transmitted to the sealing resin body. In addition, regarding insulation between the coils (conductors) on which no insulating film is formed, even if the coating resin is in an energized state without entering between the conductors, the conductors are at the same potential. Insulation is not particularly required.
ここで、皮膜樹脂体の素材は、絶縁素材であり、かつ、封止樹脂体との関係で、該封止樹脂体よりも低い弾性率であればよく、特に限定されるものではないが、たとえば、樹脂の架橋密度を調整しながら、常温でゴム状を呈する樹脂、ゲル状を呈する樹脂で、軟質なエポキシ樹脂、ウレタン樹脂、シリコーン樹脂(変成シリコーン樹脂を含む)、オレフィン樹脂などを挙げることができる。 Here, the material of the coating resin body is an insulating material, and in relation to the sealing resin body, it may be any elastic modulus lower than that of the sealing resin body, and is not particularly limited. For example, a resin that exhibits a rubber shape at normal temperature or a resin that exhibits a gel shape while adjusting the crosslinking density of the resin, such as a soft epoxy resin, a urethane resin, a silicone resin (including a modified silicone resin), an olefin resin, etc. Can do.
上記する皮膜樹脂体に対して、その周囲に形成される封止樹脂体は、ケースレス構造を採用する場合には、該封止樹脂体に適宜の硬度が要求されることから、常温で比較的硬質な樹脂である、硬質のエポキシ樹脂、BMC(不飽和ポリエステルと炭酸カルシウムとガラス繊維などの混合材からなる樹脂)などから成形することができる。 Compared to the above-mentioned coating resin body, when the sealing resin body formed around it has a caseless structure, the sealing resin body is required to have an appropriate hardness. It can be molded from a hard epoxy resin, which is a hard resin, BMC (resin made of a mixed material such as unsaturated polyester, calcium carbonate and glass fiber).
上記する本発明のリアクトルによれば、絶縁紙やボビンを廃したことでそれらの製造工程を不要とでき、製造コストの低減を図ることができること、相対的に低い弾性率の皮膜樹脂がリアクトルコア(およびコイル)と硬質の封止樹脂体の間に介在したことで、リアクトルコアからの振動低減とこれに起因する騒音低減を図ることができる。しかも、最外周の封止樹脂体は所望の硬度を有しており、ケースレス構造のリアクトルを得ることが可能である。 According to the reactor of the present invention described above, since the insulating paper and the bobbin are eliminated, the manufacturing process thereof can be eliminated, the manufacturing cost can be reduced, and the coating resin having a relatively low elastic modulus is formed from the reactor core. By interposing between (and the coil) and the hard sealing resin body, it is possible to reduce the vibration from the reactor core and reduce the noise caused by this. And the outermost sealing resin body has desired hardness, and it is possible to obtain the reactor of a caseless structure.
また、本発明のリアクトルが奏するさらなる効果として、コイル外周の絶縁皮膜を廃して皮膜樹脂体を設けたことにより、封止樹脂体成形用の樹脂に導電性フィラーを混合することが可能となり、したがって、封止樹脂体成形用の樹脂に絶縁性フィラーしか使用できなかった従来リアクトルに比して、その放熱性を一層高めることができる。 Further, as a further effect exhibited by the reactor of the present invention, by disposing the insulating film on the outer periphery of the coil and providing a coating resin body, it becomes possible to mix a conductive filler into the resin for molding the sealing resin body, and therefore As compared with a conventional reactor in which only an insulating filler can be used as a resin for molding a sealing resin body, the heat dissipation can be further enhanced.
従来構造のリアクトルでは、その外周に絶縁皮膜が形成された導線を巻装してコイルが形成されていたものの、1層でしかも薄い絶縁皮膜にピンホールがあったり、あるいは封止樹脂をポッティング等する際に作用する外圧によって絶縁皮膜が損傷した場合に、仮にコイルとリアクトルコア間に導電性フィラーを含有する封止樹脂体が介在すると、そこでリアクトルコアとコイルの間の絶縁性を確保することができなくなってしまう。したがって、従来構造のリアクトルでは、封止樹脂体の放熱性を高めるために混合されるフィラーは窒化ホウ素やシリカ等からなる絶縁性フィラーに限定されていた。 In a reactor having a conventional structure, a coil is formed by winding a conductive wire having an insulating film formed on its outer periphery, but there is a pinhole in one layer of thin insulating film, or potting of sealing resin, etc. If the insulation film is damaged by the external pressure acting when the sealing resin body containing a conductive filler is interposed between the coil and the reactor core, the insulation between the reactor core and the coil must be secured there. Will not be able to. Therefore, in the reactor of the conventional structure, the filler mixed in order to improve the heat dissipation of a sealing resin body was limited to the insulating filler which consists of boron nitride, a silica, etc.
これに対して、本発明のリアクトルの構造を適用することにより、リアクトルコアとコイル間の絶縁が皮膜樹脂体によって十分に確保されることから、封止樹脂体用の樹脂材に鉄や銅、アルミやその合金などからなる導電性フィラーを混合して該封止樹脂体を成形することが可能となり、その放熱性を格段に向上させることができるというものである。 On the other hand, by applying the structure of the reactor of the present invention, the insulation between the reactor core and the coil is sufficiently secured by the coating resin body, so that the resin material for the sealing resin body is iron or copper, The sealing resin body can be formed by mixing conductive fillers made of aluminum or an alloy thereof, and the heat dissipation can be remarkably improved.
ここで、本発明者等の検証によれば、上記する皮膜樹脂体の弾性率に関し、100kPa~10MPaの範囲の皮膜樹脂体を使用すること、さらには、その外周の封止樹脂体の弾性率を該皮膜樹脂体の弾性率よりも高弾性率とすることで、振動と騒音双方の高い低減効果が得られることが実証されている。 Here, according to the verification by the present inventors, regarding the elastic modulus of the above-mentioned film resin body, the film resin body in the range of 100 kPa to 10 MPa is used, and further, the elastic modulus of the sealing resin body on the outer periphery thereof is used. It has been proved that a high effect of reducing both vibration and noise can be obtained by setting the elastic modulus higher than that of the coating resin body.
さらには、上記する皮膜樹脂体の厚みが1mm以上の場合においても、振動と騒音双方の高い低減効果が得られることが実証されている。 Furthermore, it has been demonstrated that even when the thickness of the above-described coating resin body is 1 mm or more, a high reduction effect of both vibration and noise can be obtained.
上記する本発明のリアクトルは、上記のごとく放熱性能に優れ、振動および騒音が格段に少ないものであることから、高性能と乗り心地への寄与をその搭載機器に要求する、近時のハイブリッド車や電気自動車等への適用に最適である。 The reactor of the present invention described above has excellent heat dissipation performance as described above, and vibration and noise are remarkably low. It is most suitable for application to electric vehicles.
また、本発明によるリアクトルの製造方法は、少なくとも、2つの平面視がU型のU型コアと、該U型コア間に介装されたギャップ層と、からなる、リアクトルコアの外周に、該リアクトルコアの周面と隙間をもって、かつ、ボビンレスの姿勢でコイルを配設してなる第1の中間体を形成する第1の工程と、リアクトルコアの外周およびコイルの外周と、リアクトルコアとコイルの間の前記隙間に皮膜樹脂体を形成して第2の中間体を形成する第2の工程と、前記皮膜樹脂体の外周に、該皮膜樹脂体よりも高い弾性率を有する封止樹脂体を形成してリアクトルを製造する第3の工程と、からなるものである。 The reactor manufacturing method according to the present invention includes at least an outer periphery of a reactor core including a U-shaped core having two U-shaped planar views and a gap layer interposed between the U-shaped cores. A first step of forming a first intermediate having a coil and a bobbin-less posture with a clearance from the peripheral surface of the reactor core, an outer periphery of the reactor core and an outer periphery of the coil, and a reactor core and a coil A sealing resin body having a higher modulus of elasticity than the coating resin body on the outer periphery of the coating resin body, and a second step of forming a coating resin body in the gap between them to form a second intermediate And forming a reactor to form a reactor.
ここで、前記第1の工程では、リアクトルコアとコイルの間の一部に、前記皮膜樹脂体と同素材のスペーサを介在させて前記第1の中間体を形成する方法を適用することもできる。 Here, in the first step, a method of forming the first intermediate body by interposing a spacer made of the same material as the coating resin body in a part between the reactor core and the coil can be applied. .
また、前記第2の工程では、皮膜樹脂体成形用の樹脂が収容された容器内に前記第1の中間体を浸漬させ、取り出して乾燥させるステップを1回以上おこなうことで前記第2の中間体を形成する方法を適用することもできる。 Further, in the second step, the second intermediate is performed by performing the step of immersing the first intermediate in a container containing a resin for molding the resin film body, taking it out and drying it one or more times. A method of forming a body can also be applied.
また、前記第3の工程では、樹脂材に導電性フィラーが混合された材料で封止樹脂体を形成することもできる。 In the third step, the sealing resin body can be formed of a material in which a conductive filler is mixed with a resin material.
上記する本発明のリアクトルの製造方法によれば、ボビンや絶縁紙を不要とできることで、それらの製造に要する工程とコストの削減を図ることが可能となる。また、皮膜樹脂体は、第1の中間体をたとえば皮膜樹脂体成形用の樹脂内に浸漬(ディップ)して乾燥させるだけの極めて簡易な方法を適用でき、たとえば、これらの操作を自動化して、ロボットハンド等にておこなうことで、製造の一層の効率化を図ることが可能となる。なお、封止樹脂体の成形は、第2の中間体を型内に収容し、該型と第2の中間体の間に封止樹脂体用の樹脂をポッティングすればよい。 According to the reactor manufacturing method of the present invention described above, since the bobbin and the insulating paper can be made unnecessary, it is possible to reduce the processes and costs required for manufacturing them. In addition, the coating resin body can be applied with an extremely simple method in which the first intermediate is simply dipped in a resin for molding the coating resin body and dried, for example, by automating these operations. By using a robot hand or the like, the manufacturing efficiency can be further improved. The sealing resin body may be molded by storing the second intermediate body in a mold and potting the resin for the sealing resin body between the mold and the second intermediate body.
 以上の説明から理解できるように、本発明のリアクトルとその製造方法によれば、放熱性能に優れ、低振動かつ低騒音なリアクトルを提供することができる。 As can be understood from the above description, according to the reactor and the manufacturing method thereof of the present invention, it is possible to provide a reactor having excellent heat radiation performance, low vibration and low noise.
本発明のリアクトルの一実施の形態の縦断面図である。It is a longitudinal cross-sectional view of one embodiment of the reactor of the present invention. 図1のII-II矢視図である。FIG. 2 is an II-II arrow view of FIG. 1. 皮膜樹脂体の弾性率を変化させた場合の、振動低減値と騒音低減値を測定した実験結果を示したグラフである。It is the graph which showed the experimental result which measured the vibration reduction value and the noise reduction value at the time of changing the elasticity modulus of a film resin body. 皮膜樹脂体の厚みを変化させた場合の、振動低減値と騒音低減値を測定した実験結果を示したグラフである。It is the graph which showed the experimental result which measured the vibration reduction value and the noise reduction value at the time of changing the thickness of a film resin body.
符号の説明Explanation of symbols
1…リアクトルコア、11…U型コア、12…ギャップ層、2…コイル、3…皮膜樹脂体、4…封止樹脂体、5…ヒートシンク、10…リアクトル、G…リアクトルコアとコイル間の隙間 DESCRIPTION OF SYMBOLS 1 ... Reactor core, 11 ... U-shaped core, 12 ... Gap layer, 2 ... Coil, 3 ... Coating resin body, 4 ... Sealing resin body, 5 ... Heat sink, 10 ... Reactor, G ... Gap between reactor core and coil
以下、図面を参照して本発明の実施の形態を説明する。なお、図示例は、2つのU型コアとギャップ層とからなるリアクトルコアを示しているが、U型コア間に、1以上の磁性を有するI型コアが介層され、I型コア間やI型コアとU型コア間にもギャップ層が介層されるリアクトルコアであってもよいことは勿論のことである。 Embodiments of the present invention will be described below with reference to the drawings. The illustrated example shows a reactor core composed of two U-type cores and a gap layer, but an I-type core having one or more magnets is interposed between the U-type cores, Of course, it may be a reactor core in which a gap layer is interposed between the I-type core and the U-type core.
図1は、本発明のリアクトルの一実施の形態の縦断面図であり、図2は、図1のII-II矢視図である。リアクトル10は、平面視がU型の2つの磁性を有するU型コア11,11の端部同士をギャップ層12,12を介して接着剤にて固着してできる円環状のリアクトルコア1と、このリアクトルコア1のコア外周に隙間Gを設けた姿勢で形成されたコイル2,2と、このコイル2が形成されたリアクトルコア1の外周とコイル2の外周に成形された皮膜樹脂体3と、皮膜樹脂体3の外周に成形された封止樹脂体4と、コイル2の下端に配されたヒートシンク5と、から大略構成されている。なお、ヒートシンク5の下方にラジエータ等からのクーリング水を内部で還流させる冷却器などが設けられた構造であってもよいし、図示するリアクトル10がアルミニウムやそのアルミ合金などからなるハウジング(ケース)内に収容される形態であってもよい。 FIG. 1 is a longitudinal sectional view of an embodiment of a reactor according to the present invention, and FIG. 2 is a view taken in the direction of arrows II-II in FIG. Reactor 10 is an annular reactor core 1 formed by adhering ends of U-shaped cores 11 and 11 having two U-shaped magnets in plan view with an adhesive via gap layers 12 and 12; Coils 2 and 2 formed in a posture in which a gap G is provided on the outer periphery of the core of the reactor core 1, and the outer periphery of the reactor core 1 in which the coil 2 is formed and the coating resin body 3 formed on the outer periphery of the coil 2 The sealing resin body 4 formed on the outer periphery of the coating resin body 3 and the heat sink 5 disposed on the lower end of the coil 2 are roughly configured. Note that a structure in which a cooler or the like for circulating cooling water from a radiator or the like is provided below the heat sink 5 may be provided, and a housing (case) in which the illustrated reactor 10 is made of aluminum or an aluminum alloy thereof. The form accommodated in may be sufficient.
ここで、U型コア11は、電磁鋼板を積層してなる積層体から形成されてもよく、軟磁性金属粉末または軟磁性金属酸化物粉末が樹脂バインダーで被覆された磁性粉末を加圧成形してなる圧粉磁心から形成されてもよい。なお、この軟磁性金属粉末としては、鉄、鉄-シリコン系合金、鉄-窒素系合金、鉄-ニッケル系合金、鉄-炭素系合金、鉄-ホウ素系合金、鉄-コバルト系合金、鉄-リン系合金、鉄-ニッケル-コバルト系合金および鉄-アルミニウム-シリコン系合金などを用いることができる。また、ギャップ層12は、ギャップ板やエアギャップからなり、ギャップ板からギャップ層12を形成する場合には、例えばアルミナ(Al)やジルコニア(ZrO)などのセラミックスで成形することができる。 Here, the U-shaped core 11 may be formed of a laminate formed by laminating electromagnetic steel plates, and press-molds a magnetic powder in which a soft magnetic metal powder or a soft magnetic metal oxide powder is coated with a resin binder. It may be formed from a dust core. The soft magnetic metal powder includes iron, iron-silicon alloy, iron-nitrogen alloy, iron-nickel alloy, iron-carbon alloy, iron-boron alloy, iron-cobalt alloy, iron- Phosphorous alloys, iron-nickel-cobalt alloys, iron-aluminum-silicon alloys, and the like can be used. The gap layer 12 is formed of a gap plate or an air gap. When the gap layer 12 is formed from the gap plate, the gap layer 12 may be formed of ceramics such as alumina (Al 2 O 3 ) or zirconia (ZrO 2 ). it can.
ここで、皮膜樹脂体3の弾性率は封止樹脂体4のそれに比して低く設定されており、したがって、相対的に変形性に優れた皮膜樹脂体3にて、リアクトルコア1およびコイル2の全体が包囲された構造となっている。なお、皮膜樹脂体の厚みは、後述する実験結果から1mm以上であることが望ましい。 Here, the elastic modulus of the coating resin body 3 is set to be lower than that of the sealing resin body 4, and therefore the reactor core 1 and the coil 2 are formed by the coating resin body 3 having relatively excellent deformability. The entire structure is enclosed. In addition, as for the thickness of a film resin body, it is desirable that it is 1 mm or more from the experimental result mentioned later.
また、コイル2を構成する導線の外周にはエナメル皮膜等の絶縁皮膜が形成されておらず、コイル2とリアクトルコア1の間には、皮膜樹脂体3が介在することで双方の絶縁が確保されている。 Further, an insulating film such as an enamel film is not formed on the outer periphery of the conducting wire constituting the coil 2, and insulation between the two is ensured by interposing a film resin body 3 between the coil 2 and the reactor core 1. Has been.
皮膜樹脂体3の弾性率を封止樹脂体4のそれに比して相対的に低弾性とするために、双方の素材樹脂を変化させることで、常温時における双方の剛性もしくは変形性を相違させることができる。ここで、皮膜樹脂体3は、たとえば、樹脂の架橋密度を調整しながら、常温でゴム状を呈する樹脂やゲル状を呈する樹脂で、軟質なエポキシ樹脂、ウレタン樹脂、シリコーン樹脂(変成シリコーン樹脂を含む)、オレフィン樹脂などから成形することができる。一方、封止樹脂体4は、常温で比較的硬度の高い樹脂、たとえば、硬質のエポキシ樹脂、BMC(不飽和ポリエステルと炭酸カルシウムとガラス繊維などの混合材からなる樹脂)などから成形することができる。さらに、この封止樹脂体4の成形素材には、これらの樹脂材に鉄や銅、アルミといった導電性フィラーが含有されるのがよい。なお、硬さによって樹脂がゲル状、ゴム状、硬質な固体状という具合にその剛性が変化することに関し、たとえば、硬さの指標となる針入度が10以上の範囲でゲル状、針入度が10未満、もしくは、アスカーC硬度計におけるショアA硬度が100以下の範囲でゴム状、ショアD硬度が50以上の範囲で硬質な固体状と定義付けすることができる。 In order to make the elastic modulus of the coating resin body 3 relatively low in comparison with that of the sealing resin body 4, by changing both raw material resins, both rigidity or deformability at normal temperature is made different. be able to. Here, the film resin body 3 is, for example, a resin that exhibits a rubber shape or a gel shape at room temperature while adjusting the cross-linking density of the resin, and is a soft epoxy resin, urethane resin, silicone resin (modified silicone resin). Including), an olefin resin, and the like. On the other hand, the sealing resin body 4 can be molded from a resin having a relatively high hardness at room temperature, for example, a hard epoxy resin, BMC (resin made of a mixed material such as unsaturated polyester, calcium carbonate, and glass fiber). it can. Further, the molding material of the sealing resin body 4 may contain conductive fillers such as iron, copper, and aluminum in these resin materials. Regarding the fact that the rigidity of the resin changes depending on the hardness, such as gel, rubber, or hard solid, for example, the degree of penetration, which is an index of hardness, is 10 or more, The degree can be defined as rubbery when the degree is less than 10, or Shore A hardness in the Asker C hardness tester is 100 or less, and hard solid when Shore D hardness is 50 or more.
図示するリアクトル10によれば、コイル2とリアクトルコア1の間において、絶縁性に優れた皮膜樹脂体3が介在することから、封止樹脂体4成形用の樹脂に導電性フィラーを含有することが可能となり、その放熱性能が格段に向上する。さらには、リアクトルコア1と比較的硬質な封止樹脂体4の間に、相対的に低弾性(したがって、低剛性で高変形性能を有する)な皮膜樹脂体3が介在することにより、リアクトルコア1駆動時の振動をこの皮膜樹脂体3にて効果的に吸収することができ、この皮膜樹脂体3にて該振動を低減できるとともに、これに起因して騒音の低減をも図ることができる。この振動低減により、最外周の封止樹脂体4には、従来構造のリアクトルのような比較的大きな振動が伝達されることが無くなり、したがって、硬質な封止樹脂体4が該振動によって亀裂を生じるといった課題も生じ難くなる。 According to the reactor 10 shown in the figure, since the coating resin body 3 having excellent insulating properties is interposed between the coil 2 and the reactor core 1, the resin for molding the sealing resin body 4 contains a conductive filler. And the heat dissipation performance is greatly improved. Further, the reactor resin 1 is interposed between the reactor resin 1 and the relatively hard sealing resin body 4 so that the film resin body 3 having relatively low elasticity (and therefore low rigidity and high deformation performance) is interposed. The film resin body 3 can effectively absorb the vibration at the time of one drive, and the film resin body 3 can reduce the vibration and also can reduce noise due to this. . Due to this vibration reduction, the outermost sealing resin body 4 is not transmitted with a relatively large vibration like a reactor having a conventional structure. Therefore, the hard sealing resin body 4 is cracked by the vibration. Problems such as occurrence are less likely to occur.
次に、図示するリアクトル10の製造方法を概説する。 Next, a method for manufacturing the illustrated reactor 10 will be outlined.
まず、2つのU型コア11,11と、該U型コア11,11間に介装されたギャップ層12と、からなる、リアクトルコア1の外周に、該リアクトルコア1の周面と隙間Gをもって、かつ、ボビンレスの姿勢でコイルを配設してなる第1の中間体を形成する(第1の工程)。ここで、リアクトルコア1とコイル2の間の一部に、後工程で成形される皮膜樹脂体3と同素材のスペーサを介在させることにより、コイル2とリアクトルコア1の間に所定の隙間Gが形成された不図示の第1の中間体を製造することができる。 First, the outer surface of the reactor core 1 and the gap G are formed on the outer periphery of the reactor core 1 including the two U-shaped cores 11 and 11 and the gap layer 12 interposed between the U-shaped cores 11 and 11. And forming a first intermediate body in which the coil is disposed in a bobbin-less posture (first step). Here, a predetermined gap G is formed between the coil 2 and the reactor core 1 by interposing a spacer made of the same material as the coating resin body 3 to be molded in a later process in a part between the reactor core 1 and the coil 2. A first intermediate (not shown) in which is formed can be manufactured.
次いで、リアクトルコア1の外周およびコイル2の外周と、リアクトルコア1とコイル2の間の隙間Gに皮膜樹脂体3を形成して第2の中間体を形成する(第2の工程)。ここで、皮膜樹脂体3成形用の樹脂を不図示の容器内に収容しておき、第1の中間体を浸漬させ、取り出して乾燥させるステップを1回以上(たとえば3回程度繰り返して)おこなうことにより、所定厚の皮膜樹脂体3を有する不図示の第2の中間体を製造することができる。 Subsequently, the coating resin body 3 is formed in the outer periphery of the reactor core 1 and the outer periphery of the coil 2 and the gap G between the reactor core 1 and the coil 2 to form a second intermediate body (second step). Here, the resin for forming the coating resin body 3 is accommodated in a container (not shown), and the step of immersing the first intermediate body, taking it out and drying it is performed one or more times (for example, by repeating about three times). Thereby, the 2nd intermediate body not shown which has the membrane | film | coat resin body 3 of predetermined thickness can be manufactured.
次いで、皮膜樹脂体3が外周に形成された第2の中間体の周縁に型をセットし、この型と第2の中間体の間に封止樹脂体用の樹脂を注入し、その硬化を待って、図1,2で示すリアクトル10が製造される(第3の工程)。なお、この工程では、封止樹脂体用の樹脂材に鉄などの導電性フィラーを混合した材料を使用して、封止樹脂体を形成するのが望ましい。 Next, a mold is set on the periphery of the second intermediate body on which the coating resin body 3 is formed on the outer periphery, a sealing resin body resin is injected between the mold and the second intermediate body, and the curing is performed. After waiting, the reactor 10 shown in FIGS. 1 and 2 is manufactured (third step). In this step, it is desirable to form the sealing resin body using a material obtained by mixing a conductive filler such as iron with a resin material for the sealing resin body.
この製造方法からも明らかなように、コイル2を形成する導線周りの絶縁皮膜が廃され、ボビンや絶縁紙などもコイル2とリアクトルコア1の間に介在せず、その代わりに、たとえば1mm以上の厚みの皮膜樹脂体3がそれらの外周やそれらの間に介在することから、導線外周の絶縁皮膜形成工程と、ボビンや絶縁紙等の製造工程の双方を省略することができる。したがって、皮膜樹脂体形成工程を要するものの、全体工程の工数を低減することが可能となり、工程短縮を図ることが可能となる。 As is apparent from this manufacturing method, the insulating coating around the conductor forming the coil 2 is eliminated, and no bobbin or insulating paper is interposed between the coil 2 and the reactor core 1; Since the coating resin body 3 having a thickness of 1 is interposed between the outer periphery and the outer periphery thereof, it is possible to omit both the insulating film forming step on the outer periphery of the conductive wire and the manufacturing process of the bobbin, insulating paper and the like. Therefore, although the coating resin body forming process is required, the man-hours of the entire process can be reduced, and the process can be shortened.
[皮膜樹脂体の弾性率、および、皮膜樹脂体の厚み変化させた場合の、振動低減値と騒音低減値を測定した実験とその結果]
本発明者等は、皮膜樹脂体の弾性率を変化させて図1,2で示すようなリアクトルを複数製作し、それぞれのリアクトルの振動低減値と騒音低減値を測定した。
[Experiment and results of measurement of vibration reduction value and noise reduction value when the elastic modulus of the coating resin body and the thickness of the coating resin body were changed]
The inventors changed the elastic modulus of the coating resin body, manufactured a plurality of reactors as shown in FIGS. 1 and 2, and measured the vibration reduction value and noise reduction value of each reactor.
この実験において、製作されるリアクトルの封止樹脂体は、ともに曲げ弾性率が15GPaとなるBMCから成形した。一方、弾性率の異なる皮膜樹脂体に関し、以下の表1で示すように弾性率が100kPa~10MPaの範囲にある4つのリアクトルを実施例1~4とし、弾性率が100kPa未満のリアクトルを比較例1~3とし、弾性率が10MPaを超えるリアクトルを比較例4~6(ただし、比較例6は皮膜樹脂体なし)として、それぞれのリアクトルの振動低減値と騒音低減値を示している。ここで、実施例1~4、および比較例1~5の各皮膜樹脂体成形用の樹脂素材は以下のようである。 In this experiment, the reactor sealing resin body to be manufactured was molded from BMC having a flexural modulus of 15 GPa. On the other hand, regarding the coating resin bodies having different elastic moduli, as shown in Table 1 below, four reactors having an elastic modulus in the range of 100 kPa to 10 MPa are referred to as Examples 1 to 4, and a reactor having an elastic modulus of less than 100 kPa is a comparative example. Reactors having an elastic modulus of 1 to 3 and an elastic modulus exceeding 10 MPa are shown as Comparative Examples 4 to 6 (however, Comparative Example 6 has no coating resin body), and the vibration reduction value and noise reduction value of each reactor are shown. Here, the resin materials for molding the respective film resin bodies of Examples 1 to 4 and Comparative Examples 1 to 5 are as follows.
実施例1はシリコーンゲル(いわゆるタフゲル)、実施例2はウレタン樹脂、実施例3はゴム系のシリコーン樹脂、実施例4はオレフィン系樹脂、比較例1~3はシリコーンゲル、比較例4はポリアミド樹脂、比較例5はPPS樹脂をそれぞれ使用して、それぞれの弾性率を変化させている。 Example 1 is a silicone gel (so-called tough gel), Example 2 is a urethane resin, Example 3 is a rubber silicone resin, Example 4 is an olefin resin, Comparative Examples 1 to 3 are silicone gels, and Comparative Example 4 is a polyamide Resin and Comparative Example 5 use PPS resin, respectively, and change their elastic modulus.
なお、この実験においては、リアクトル温度が60℃に調整されている試験体に80Aの電流をそのコイルに通電して振動を励起させている。また、各リアクトルはそれぞれ、床上にゴム支承を介して載置された試験版上に固定し、この試験版上に加速度ピックを設置して各リアクトル駆動時の振動を測定するとともに、リアクトルの中央位置であってその上方に所定の離間を置いて集音マイクを設置し、リアクトル駆動時の騒音を測定した。そして、皮膜樹脂体のない従来構造のリアクトルに対応する比較例4の測定された振動値および騒音値に対する、各実施例および比較例の振動低減値と騒音低減値を求めた。 In this experiment, a current of 80 A is passed through a coil of a test body whose reactor temperature is adjusted to 60 ° C. to excite vibration. In addition, each reactor is fixed on a test plate placed on the floor via a rubber support, and an acceleration pick is installed on the test plate to measure the vibration when each reactor is driven. A sound collecting microphone was installed at a predetermined distance above the position, and the noise during driving of the reactor was measured. And the vibration reduction value and noise reduction value of each Example and the comparative example with respect to the measured vibration value and noise value of the comparative example 4 corresponding to the reactor of the conventional structure without a film resin body were calculated | required.
各実施例および比較例の弾性率と、振動低減値と騒音低減値を以下の表1と図3に示している。なお、図中のX1~X4は実施例1~4にそれぞれ対応しており、Y1~Y6は比較例1~6にそれぞれ対応している。
Figure JPOXMLDOC01-appb-T000001
The elastic modulus, vibration reduction value, and noise reduction value of each example and comparative example are shown in the following Table 1 and FIG. In the figure, X1 to X4 correspond to Examples 1 to 4, respectively, and Y1 to Y6 correspond to Comparative Examples 1 to 6, respectively.
Figure JPOXMLDOC01-appb-T000001
表1および図3より、弾性率が100kPa(実施例1)を下回り、あるいは、10MPaを上回ると、振動低減値、騒音低減値ともに急激に低下することが実証され、したがって、弾性率が100kPaと10MPaの範囲の皮膜樹脂体を有するリアクトルとするのが望ましいということが特定された。なお、比較例1は、最も弾性率が低い皮膜樹脂体を有するものであるが、比較例1では皮膜樹脂体が柔らかすぎてしまい、その成形時に変形し易いために所望の厚みを確保し難いことが特定されており、実際の試験体においても、所望厚を確保できていない部位が存在していたことから、これが振動低減効果が得られていないことの一要因であると考えられる。 From Table 1 and FIG. 3, when the elastic modulus is less than 100 kPa (Example 1) or exceeds 10 MPa, it is demonstrated that both the vibration reduction value and the noise reduction value rapidly decrease, and thus the elastic modulus is 100 kPa. It was specified that a reactor having a coating resin body in the range of 10 MPa is desirable. In addition, although the comparative example 1 has a film resin body with the lowest elastic modulus, in the comparative example 1, the film resin body is too soft and easily deformed at the time of molding, so that it is difficult to secure a desired thickness. This is considered to be one factor that the vibration reduction effect is not obtained because there is a portion where the desired thickness cannot be ensured even in the actual specimen.
本発明者等はさらに、皮膜樹脂体の厚みを変化させて複数のリアクトルを製作し、それぞれのリアクトルの振動低減値と騒音低減値を求める実験をおこなった。 The inventors further manufactured a plurality of reactors by changing the thickness of the coating resin body, and conducted an experiment for obtaining the vibration reduction value and the noise reduction value of each reactor.
上記実験と同様に、製作されるリアクトルの封止樹脂体は、ともに曲げ弾性率が15GPaとなるBMCから成形し、皮膜樹脂は、その弾性率が、上記する100kPa~10MPaの範囲にある3MPaであって、その厚みを0~2mmの範囲で変化させてリアクトルを製作した。実験結果を図4に示している。 Similar to the above experiment, both the reactor sealing resin bodies to be manufactured were molded from BMC having a flexural modulus of 15 GPa, and the coating resin had an elastic modulus of 3 MPa in the range of 100 kPa to 10 MPa as described above. Therefore, the reactor was manufactured by changing the thickness in the range of 0 to 2 mm. The experimental results are shown in FIG.
図4において、X5は皮膜樹脂体の厚みが1mmの実施例を、X6は厚みが1.5mmの実施例を、X7は厚みが2mmの実施例を、Y5は厚みが0.7mmの比較例を、Y6は厚みが0.2mmの比較例を、Y7は厚みが0mm(皮膜樹脂体なし)の比較例をそれぞれ示している。 In FIG. 4, X5 is an example in which the thickness of the coating resin body is 1 mm, X6 is an example in which the thickness is 1.5 mm, X7 is an example in which the thickness is 2 mm, and Y5 is a comparative example in which the thickness is 0.7 mm. Y6 represents a comparative example having a thickness of 0.2 mm, and Y7 represents a comparative example having a thickness of 0 mm (no coating resin body).
図4の結果より、皮膜樹脂体の厚み:1mmが変曲点となっており、1mmを下回ると、振動低減値、騒音低減値ともに急激に低下することが実証された。したがって、少なくとも1mm以上の厚みの皮膜樹脂体を適用するのが望ましいことが実証された。 From the result of FIG. 4, it was demonstrated that the thickness of the coating resin body is 1 mm and the inflection point. When the thickness is less than 1 mm, both the vibration reduction value and the noise reduction value rapidly decrease. Therefore, it was demonstrated that it is desirable to apply a film resin body having a thickness of at least 1 mm or more.
[リアクトルの放熱性能に関する実験とその結果]
本発明者等はさらに、図1,2で示すようなリアクトルであって、封止樹脂用の樹脂としてBMCのみを使用したもの(熱伝導率:λ=1W/mK)と、BMCにPPS(ポリフェニレンサルファイド(カーボン系)のフィラーであり、λ=10W/mK)を含有したものと、BMCにLCP(液晶ポリマ(カーボン系)のフィラーであり、λ=23W/mK)を含有したものと、をそれぞれ用いて封止樹脂体を成形し、かつ、ともに、弾性率が3MPa、厚みが1mmの皮膜樹脂体を有するリアクトルをそれぞれ製作し、コイル上面に熱電対を設置して温度を測定した。
[Experiment and results on heat dissipation performance of reactor]
The present inventors further have a reactor as shown in FIGS. 1 and 2 using only BMC as a resin for a sealing resin (thermal conductivity: λ = 1 W / mK), and PPS ( Polyphenylene sulfide (carbon-based) filler containing λ = 10 W / mK) and BMC containing LCP (liquid crystal polymer (carbon-based) filler, λ = 23 W / mK), Each was used to mold a sealing resin body, and both reactors having a film resin body with an elastic modulus of 3 MPa and a thickness of 1 mm were manufactured, and a thermocouple was installed on the upper surface of the coil to measure the temperature.
BMCのみからなる封止樹脂体を有するリアクトルにおける上記熱電対の測定温度に対して、BMCにPPSを含有した材料から成形された封止樹脂体を有するリアクトル、および、BMCにLCPを含有した材料から成形された封止樹脂体を有するリアクトルそれぞれの温度低減値を求めた。 A reactor having a sealing resin body molded from a material containing PPS in BMC and a material containing LCP in BMC with respect to the measurement temperature of the thermocouple in the reactor having a sealing resin body made only of BMC The temperature reduction value of each reactor having a sealing resin body molded from the above was determined.
その結果、PPSを含有した材料からなる封止樹脂体を有するリアクトルは21℃の温度低下、LCPを含有した材料からなる封止樹脂体を有するリアクトルは39℃の温度低下がそれぞれ得られ、ともに高い温度低減効果、すなわち、高い放熱効果が得られることが実証された。 As a result, a reactor having a sealing resin body made of a material containing PPS has a temperature drop of 21 ° C., and a reactor having a sealing resin body made of a material containing LCP has a temperature drop of 39 ° C., both It has been demonstrated that a high temperature reduction effect, that is, a high heat dissipation effect can be obtained.
上記する本発明のリアクトルによれば、リアクトルコアと封止樹脂体の間に、相対的に低弾性率を有する皮膜樹脂体が介在することで、高い振動低減効果および騒音低減効果が得られ、したがって、封止樹脂体でのクラックの発生も効果的に抑止することができる。さらには、コイルとリアクトルコアの間の絶縁が皮膜樹脂体にて十分に確保されていることから、導電性フィラーを含有した樹脂材料から封止樹脂体を成形できることができ、結果として、放熱性能を格段に向上させることができる。この高品質で高性能なリアクトルは、搭載機器に高性能化が要求される近時のハイブリッド車や電気自動車等への適用に最適である。 According to the reactor of the present invention described above, a film resin body having a relatively low elastic modulus is interposed between the reactor core and the sealing resin body, thereby obtaining a high vibration reduction effect and a noise reduction effect. Therefore, the generation of cracks in the sealing resin body can be effectively suppressed. Furthermore, since the insulation between the coil and the reactor core is sufficiently secured by the coating resin body, the sealing resin body can be molded from a resin material containing a conductive filler, resulting in heat dissipation performance. Can be significantly improved. This high-quality, high-performance reactor is optimal for application to recent hybrid vehicles, electric vehicles, and the like that require higher performance in the on-board equipment.
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

Claims (10)

  1. 少なくとも、2つの平面視がU型のU型コアと、該U型コア間に介装されたギャップ層と、からなる、リアクトルコアと、
     リアクトルコアの外周において該リアクトルコアの周面と隙間をもって、かつ、ボビンレスの姿勢で形成されるコイルと、
     リアクトルコアの外周およびコイルの外周と、リアクトルコアとコイルの間の前記隙間と、に形成された皮膜樹脂体と、
     前記皮膜樹脂体の外周に形成された封止樹脂体と、からなり、
     前記皮膜樹脂体が前記封止樹脂体に比して相対的に低い弾性率を有している、リアクトル。
    A reactor core comprising at least two U-shaped cores in a plan view and a gap layer interposed between the U-shaped cores;
    A coil formed in a bobbin-less posture with a clearance from the peripheral surface of the reactor core on the outer periphery of the reactor core;
    A coating resin body formed on the outer periphery of the reactor core and the outer periphery of the coil, and the gap between the reactor core and the coil,
    A sealing resin body formed on the outer periphery of the coating resin body,
    A reactor in which the coating resin body has a relatively low elastic modulus as compared with the sealing resin body.
  2.  前記皮膜樹脂体の弾性率が、100kPa~10MPaの範囲である、請求項1に記載のリアクトル。 The reactor according to claim 1, wherein the elastic modulus of the coating resin body is in a range of 100 kPa to 10 MPa.
  3.  前記皮膜樹脂体の厚みが1mm以上となっている、請求項1または2に記載のリアクトル。 The reactor according to claim 1 or 2, wherein the thickness of the coating resin body is 1 mm or more.
  4.  前記封止樹脂体が、樹脂材と、導電性フィラーと、の混合材料から成形されるものである、請求項1~3のいずれかに記載のリアクトル。 The reactor according to any one of claims 1 to 3, wherein the sealing resin body is formed from a mixed material of a resin material and a conductive filler.
  5. 少なくとも、2つの平面視がU型のU型コアと、該U型コア間に介装されたギャップ層と、からなる、リアクトルコアの外周に、該リアクトルコアの周面と隙間をもって、かつ、ボビンレスの姿勢でコイルを配設してなる第1の中間体を形成する第1の工程と、
     リアクトルコアの外周およびコイルの外周と、リアクトルコアとコイルの間の前記隙間に皮膜樹脂体を形成して第2の中間体を形成する第2の工程と、
    前記皮膜樹脂体の外周に、該皮膜樹脂体よりも高い弾性率を有する封止樹脂体を形成してリアクトルを製造する第3の工程と、からなる、リアクトルの製造方法。
    At least two planar views each having a U-shaped core and a gap layer interposed between the U-shaped cores, the outer periphery of the reactor core having a clearance from the peripheral surface of the reactor core, and A first step of forming a first intermediate formed by disposing a coil in a bobbin-less posture;
    A second step of forming a second intermediate body by forming a coating resin body in the outer periphery of the reactor core and the outer periphery of the coil and in the gap between the reactor core and the coil;
    A reactor manufacturing method comprising: a third step of manufacturing a reactor by forming a sealing resin body having an elastic modulus higher than that of the coating resin body on the outer periphery of the coating resin body.
  6. 前記第1の工程では、リアクトルコアとコイルの間の一部に、前記皮膜樹脂体と同素材のスペーサを介在させて前記第1の中間体を形成する、請求項5に記載のリアクトルの製造方法。 The reactor production according to claim 5, wherein in the first step, the first intermediate body is formed by interposing a spacer made of the same material as that of the coating resin body in a part between the reactor core and the coil. Method.
  7. 前記第2の工程では、皮膜樹脂体成形用の樹脂が収容された容器内に前記第1の中間体を浸漬させ、取り出して乾燥させるステップを1回以上おこなうことで前記第2の中間体を形成する、請求項5または6に記載のリアクトルの製造方法。 In the second step, the step of immersing the first intermediate in a container in which a resin for forming a resin film body is accommodated, taking it out and drying it is performed one or more times to thereby remove the second intermediate. The manufacturing method of the reactor of Claim 5 or 6 formed.
  8. 前記第3の工程では、樹脂材に導電性フィラーが混合された材料で封止樹脂体を形成する、請求項5~7のいずれかに記載のリアクトルの製造方法。 The method for manufacturing a reactor according to any one of claims 5 to 7, wherein, in the third step, the sealing resin body is formed of a material in which a conductive filler is mixed with a resin material.
  9.  前記皮膜樹脂体の弾性率が、100kPa~10MPaの範囲である、請求項5~8のいずれかに記載のリアクトルの製造方法。 The method for manufacturing a reactor according to any one of claims 5 to 8, wherein an elastic modulus of the coating resin body is in a range of 100 kPa to 10 MPa.
  10. 前記皮膜樹脂体の厚みが1mm以上となっている、請求項5~9のいずれかに記載のリアクトルの製造方法。 The method for manufacturing a reactor according to any one of claims 5 to 9, wherein the thickness of the coating resin body is 1 mm or more.
PCT/JP2008/072290 2008-12-09 2008-12-09 Reactor and method for manufacturing the same WO2010067414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072290 WO2010067414A1 (en) 2008-12-09 2008-12-09 Reactor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072290 WO2010067414A1 (en) 2008-12-09 2008-12-09 Reactor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010067414A1 true WO2010067414A1 (en) 2010-06-17

Family

ID=42242425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072290 WO2010067414A1 (en) 2008-12-09 2008-12-09 Reactor and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2010067414A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455951A1 (en) * 2010-10-22 2012-05-23 Kabushiki Kaisha Toyota Jidoshokki Induction device
JP2014022602A (en) * 2012-07-19 2014-02-03 Diamond Electric Mfg Co Ltd Ignition coil for internal combustion engine
JP2015536045A (en) * 2012-09-27 2015-12-17 ルノー エス.ア.エス. Inductive device to limit acoustic vibration
JP2016152368A (en) * 2015-02-18 2016-08-22 株式会社オートネットワーク技術研究所 Reactor
JP2016219591A (en) * 2015-05-20 2016-12-22 アルプス・グリーンデバイス株式会社 Reactor device, and electric and electronic device
EP3422374A1 (en) * 2017-06-27 2019-01-02 Yazaki Corporation Noise filter and noise reduction unit
FR3089367A1 (en) * 2018-12-04 2020-06-05 Thales AC / DC CONVERTER
JP7374002B2 (en) 2020-01-17 2023-11-06 三菱電機株式会社 Electromagnetic coil device and switch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123525U (en) * 1985-01-19 1986-08-04
JPH03291904A (en) * 1990-04-09 1991-12-24 Murata Mfg Co Ltd Inductance element and its manufacture
JPH0453109A (en) * 1990-06-18 1992-02-20 Toshiba Corp Resin-molded coil
JPH1167519A (en) * 1997-08-19 1999-03-09 Taiyo Yuden Co Ltd Wire wound electronic component
JP2004273994A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Coil component
JP2007027185A (en) * 2005-07-12 2007-02-01 Denso Corp Coil-sealing resin-forming reactor and its manufacturing method
JP2008153299A (en) * 2006-12-14 2008-07-03 Sumida Corporation Sealing coil component and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123525U (en) * 1985-01-19 1986-08-04
JPH03291904A (en) * 1990-04-09 1991-12-24 Murata Mfg Co Ltd Inductance element and its manufacture
JPH0453109A (en) * 1990-06-18 1992-02-20 Toshiba Corp Resin-molded coil
JPH1167519A (en) * 1997-08-19 1999-03-09 Taiyo Yuden Co Ltd Wire wound electronic component
JP2004273994A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Coil component
JP2007027185A (en) * 2005-07-12 2007-02-01 Denso Corp Coil-sealing resin-forming reactor and its manufacturing method
JP2008153299A (en) * 2006-12-14 2008-07-03 Sumida Corporation Sealing coil component and manufacturing method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455951A1 (en) * 2010-10-22 2012-05-23 Kabushiki Kaisha Toyota Jidoshokki Induction device
JP2014022602A (en) * 2012-07-19 2014-02-03 Diamond Electric Mfg Co Ltd Ignition coil for internal combustion engine
JP2015536045A (en) * 2012-09-27 2015-12-17 ルノー エス.ア.エス. Inductive device to limit acoustic vibration
CN107210118A (en) * 2015-02-18 2017-09-26 株式会社自动网络技术研究所 Reactor
WO2016132867A1 (en) * 2015-02-18 2016-08-25 株式会社オートネットワーク技術研究所 Reactor
JP2016152368A (en) * 2015-02-18 2016-08-22 株式会社オートネットワーク技術研究所 Reactor
CN107210118B (en) * 2015-02-18 2020-10-13 株式会社自动网络技术研究所 Electric reactor
JP2016219591A (en) * 2015-05-20 2016-12-22 アルプス・グリーンデバイス株式会社 Reactor device, and electric and electronic device
EP3422374A1 (en) * 2017-06-27 2019-01-02 Yazaki Corporation Noise filter and noise reduction unit
US10395818B2 (en) 2017-06-27 2019-08-27 Yazaki Corporation Noise filter and noise reduction unit
FR3089367A1 (en) * 2018-12-04 2020-06-05 Thales AC / DC CONVERTER
EP3664109A1 (en) * 2018-12-04 2020-06-10 Thales Ac / dc converter
US11114233B2 (en) 2018-12-04 2021-09-07 Thales AC/DC converter
JP7374002B2 (en) 2020-01-17 2023-11-06 三菱電機株式会社 Electromagnetic coil device and switch

Similar Documents

Publication Publication Date Title
WO2010067414A1 (en) Reactor and method for manufacturing the same
JP5429694B2 (en) Reactor and converter
JP2010232421A (en) Reactor
WO2017018237A1 (en) Reactor and method for manufacturing reactor
US10283255B2 (en) Reactor
JP5556887B2 (en) Stator structure and stator manufacturing method
JP4888324B2 (en) Reactor manufacturing method
WO2017204227A1 (en) Reactor and method for producing reactor
JP6327501B2 (en) Reactor
JP2008028290A (en) Reactor device and assembly method thereof
JP2016201509A (en) Reactor and reactor manufacturing method
JP2007215334A (en) Stator for motor, and motor
JP2009094328A (en) Reactor
JP2011086801A (en) Reactor, and method of manufacturing the same
JP5246601B2 (en) Reactor
JP5234517B2 (en) Reactor, reactor manufacturing method, and converter
JP2013179259A (en) Reactor, converter and power conversion device, and core material for reactor
KR102264347B1 (en) Reactor and method of manufacturing the same
JP5333798B2 (en) Coil molded body and reactor, and converter
US11908613B2 (en) Reactor
JP2010200492A (en) Insulator, stator and motor
JP6666478B2 (en) Inductive component, component system, and method of manufacturing inductive component and / or component system
JP2018139332A (en) Reactor and manufacturing method therefor
JP2012023083A (en) Reactor device
WO2019171940A1 (en) Reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP