WO2010058943A2 - Method and apparatus for transmitting reference signals in radio communication system - Google Patents

Method and apparatus for transmitting reference signals in radio communication system Download PDF

Info

Publication number
WO2010058943A2
WO2010058943A2 PCT/KR2009/006774 KR2009006774W WO2010058943A2 WO 2010058943 A2 WO2010058943 A2 WO 2010058943A2 KR 2009006774 W KR2009006774 W KR 2009006774W WO 2010058943 A2 WO2010058943 A2 WO 2010058943A2
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
data
symbols
beacon
symbol
Prior art date
Application number
PCT/KR2009/006774
Other languages
French (fr)
Korean (ko)
Other versions
WO2010058943A3 (en
Inventor
한승희
정재훈
권영현
고현수
노민석
이문일
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090041273A external-priority patent/KR20100058398A/en
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Publication of WO2010058943A2 publication Critical patent/WO2010058943A2/en
Publication of WO2010058943A3 publication Critical patent/WO2010058943A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a reference signal in a wireless communication system.
  • the next generation multimedia wireless communication system which is being actively researched recently, requires a system capable of processing and transmitting various information such as video, wireless data, etc., out of an initial voice-oriented service.
  • the purpose of a wireless communication system is to enable a large number of users to communicate reliably regardless of location and mobility.
  • a wireless channel is a Doppler due to path loss, noise, fading due to multipath, intersymbol interference (ISI), or mobility of UE.
  • ISI intersymbol interference
  • There are non-ideal characteristics such as the Doppler effect.
  • Various techniques have been developed to overcome the non-ideal characteristics of the wireless channel and to improve the reliability of the wireless communication.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available radio resources.
  • radio resources include time, frequency, code, transmit power, and the like.
  • multiple access systems include time division multiple access (TDMA) systems, code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • SC-FDMA may have almost the same complexity as OFDMA, but may have a low peak-to-average power ratio (PAPR) or cubic metric (CM).
  • PAPR peak-to-average power ratio
  • CM cubic metric
  • SC-FDMA is a 3rd Generation Partnership Project (3GPP) TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E- UTRA); physical channels and modulation (Release 8) ", is adopted for uplink transmission in 3GPP long term evolution (LTE).
  • 3GPP 3rd Generation Partnership Project
  • Channel estimation refers to a process of restoring a transmission signal by compensating for a distortion of a signal caused by a sudden environmental change due to fading.
  • a reference signal known to both the transmitter and the receiver is required.
  • the reference signal refers to a signal that is known to both the transmitter and the receiver used for channel estimation for demodulating data, and is also called a pilot.
  • the reference signal overhead may be defined as the ratio of the number of subcarriers transmitting the reference signal to the total number of subcarriers.
  • the reference signal overhead is large, the channel estimation performance gain may be increased, but there is a problem in that the amount of data transmission is reduced. Reduced data throughput results in link throughput loss. Accordingly, there is a need to provide a method and apparatus for optimally transmitting a reference signal in consideration of a trade-off between channel estimation performance and link throughput loss.
  • An object of the present invention is to provide a method and apparatus for transmitting a reference signal in a wireless communication system.
  • a reference signal transmission method performed by a terminal in a wireless communication system.
  • the method includes generating orthogonal frequency division multiplexing (OFDM) symbols for data and reference signal elements and transmitting the OFDM symbols to a base station.
  • OFDM orthogonal frequency division multiplexing
  • a terminal including a radio frequency (RF) unit for transmitting a radio signal and a data processor connected to the RF unit to generate an OFDM symbol for data and reference signal elements, and transmit the OFDM symbol. do.
  • RF radio frequency
  • a method and apparatus for transmitting a reference signal for improving channel estimation performance in a wireless communication system are provided.
  • overall system performance can be improved.
  • 1 illustrates a wireless communication system
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • 3 shows an example of a resource grid for one uplink slot in 3GPP LTE.
  • FIG. 5 is a flowchart illustrating an example of a data transmission method.
  • FIG. 6 illustrates an example of a radio resource in which data is transmitted in the case of a normal cyclic prefix (CP).
  • CP normal cyclic prefix
  • FIG. 7 illustrates an example of a radio resource for transmitting data in the case of an extended CP.
  • FIG. 8 is a block diagram illustrating an example of a transmitter structure.
  • FIG. 9 is a block diagram illustrating an example of a structure of a data processor.
  • FIG. 10 illustrates an example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
  • FIG 11 shows another example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
  • FIG. 12 is a block diagram illustrating another example of a data processing unit structure.
  • FIG. 13 is a block diagram illustrating still another example of a data processing unit structure.
  • FIG. 14 is a block diagram illustrating another example of a data processing unit structure.
  • 15 is a block diagram illustrating an example of a reference signal processing unit.
  • FIG. 16 illustrates a first example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
  • FIG. 17 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
  • FIG. 18 illustrates a first example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP.
  • FIG. 19 illustrates a third example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
  • FIG. 20 illustrates a fourth example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
  • 21 illustrates a fifth example of a radio resource with a beacon reference signal inserted in the case of a normal CP.
  • FIG. 22 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP.
  • FIG. 23 illustrates a third example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP.
  • FIG. 24 illustrates a fourth example of a radio resource with a beacon reference signal inserted in the case of an extended CP.
  • 25 shows an example of symbols input to a DFT unit in which a beacon reference signal element is inserted.
  • 26 shows an example of a beacon reference signal element inserted by a subcarrier mapper.
  • FIG. 27 shows a first example of a radio resource with a beacon reference signal inserted.
  • FIG. 30 is a flowchart illustrating an example of a method for inserting a beacon reference signal.
  • 31 is a flowchart illustrating an example of a method of performing HARQ using a beacon reference signal.
  • 32 is a flowchart illustrating a method of transmitting a reference signal according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented by a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • 3GPP LTE Advanced
  • 1 illustrates a wireless communication system
  • the wireless communication system 10 includes at least one base station 11 (BS).
  • Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem and a handheld device.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • downlink means communication from the base station to the terminal
  • uplink means communication from the terminal to the base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • the wireless communication system may be any one of a multiple input multiple output (MIMO) system, a multiple input single output (MIS) system, a single input single output (SISO) system, and a single input multiple output (SIMO) system.
  • MIMO multiple input multiple output
  • MIS multiple input single output
  • SISO single input single output
  • SIMO single input multiple output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • the transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • the receive antenna means a physical or logical antenna used to receive one signal or stream.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered from 0 to 19 slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be referred to as a scheduling unit for data transmission.
  • one radio frame may have a length of 10 ms
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • 3 is an exemplary diagram illustrating a resource grid for one uplink slot in 3GPP LTE.
  • an uplink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and includes N UL resource blocks (RBs) in a frequency domain. do.
  • the OFDM symbol is for representing one symbol period, and may be referred to as an SC-FDMA symbol, an OFDMA symbol, or a symbol period according to a system.
  • the RB includes a plurality of subcarriers in the frequency domain in resource allocation units.
  • the number N UL of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell. Each element on the resource grid is called a resource element.
  • an exemplary resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of subcarriers and the OFDM symbols in the resource block is equal to this. It is not limited. The number of OFDM symbols or the number of subcarriers included in the resource block may be variously changed. The number of OFDM symbols may change depending on the length of a cyclic prefix (CP). For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP.
  • CP cyclic prefix
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • an uplink subframe may be divided into a control region to which a physical uplink control channel (PUCCH) carrying uplink control information is allocated and a data region to which a physical uplink shared channel (PUSCH) carrying uplink data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary.
  • the UE may obtain a frequency diversity gain.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / negative acknowledgment (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an SR radio resource allocation request (SR). scheduling request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK negative acknowledgment
  • CQI channel quality indicator
  • SR radio resource allocation request
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include a CQI, a precoding matrix indicator (PMI), an HARQ ACK / NACK, a rank indicator (RI), and the like.
  • the uplink data may consist of control information only.
  • FIG. 5 is a flowchart illustrating an example of a data transmission method.
  • the base station BS transmits an uplink grant to the terminal UE (S110).
  • the terminal transmits uplink data using the uplink grant to the base station (S120).
  • the uplink grant may be transmitted on a physical downlink control channel (PDCCH), and the uplink data may be transmitted on a PUSCH.
  • the relationship between the subframe in which the PDCCH is transmitted and the subframe in which the PUSCH is transmitted may be previously defined between the base station and the terminal. For example, in a frequency division duplex (FDD) system, if a PDCCH is transmitted through subframe n, a PUSCH may be transmitted through subframe n + 4.
  • FDD frequency division duplex
  • the uplink grant is downlink control information for uplink data scheduling.
  • the uplink grant includes a resource allocation field.
  • the uplink grant includes a hopping flag indicating whether frequency hopping is performed, a flag distinguishing an uplink grant from other downlink control information, and a transmission format field indicating a transmission format for uplink data.
  • a new data indicator (NDI) indicating whether the uplink grant is for new uplink data transmission or retransmission of uplink data, and a transmit power control (TPC) command for uplink power control
  • the field may further include a CS field indicating a cyclic shift (CS) of a demodulation reference signal (DM RS), a CQI request indicator indicating a CQI request, and the like.
  • the resource allocation field indicates a radio resource for uplink data transmission.
  • the radio resource may be a time-frequency resource.
  • the radio resource allocated by the resource allocation field in 3GPP LTE is a resource block.
  • the UE may know the location of the resource block, the number of resource blocks, etc. in the subframe allocated to uplink data transmission using the resource allocation field.
  • the resource blocks allocated by the UE in each of the first slot and the second slot in the subframe are the same in the frequency domain.
  • the resource blocks allocated by the UE in each of the first slot and the second slot in the subframe may be different in the frequency domain.
  • Radio resource scheduling methods include dynamic scheduling, persistent scheduling, and semi-persistent scheduling (SPS). If the radio resource scheduling scheme is a continuous scheduling scheme or a semi-persistent scheduling scheme, the terminal may transmit uplink data without receiving an uplink grant.
  • SPS semi-persistent scheduling
  • FIG. 6 illustrates an example of a radio resource for transmitting data in the case of a normal CP.
  • a subframe includes a first slot and a second slot.
  • Each of the first slot and the second slot includes 7 OFDM symbols.
  • 14 OFDM symbols in a subframe are symbol indexed from 0 to 13.
  • Reference signals are transmitted over OFDM symbols having symbol indices of 3 and 10. Data is transmitted through the remaining OFDM symbols except for the OFDM symbol on which the reference signal is transmitted.
  • the reference signal is a signal known to both the transmitter and the receiver used for channel estimation for demodulating data.
  • FIG. 7 illustrates an example of a radio resource for transmitting data in the case of an extended CP.
  • a subframe includes a first slot and a second slot.
  • Each of the first slot and the second slot includes 6 OFDM symbols.
  • 12 OFDM symbols in a subframe are indexed from 0 to 11 symbols.
  • the reference signal is transmitted through an OFDM symbol having symbol indexes 2 and 8. Data is transmitted through the remaining OFDM symbols except for the OFDM symbol on which the reference signal is transmitted.
  • an OFDM symbol for data transmission is referred to as a data symbol
  • an OFDM symbol for reference signal transmission is referred to as a reference signal symbol.
  • FIG. 6 there are 12 data symbols and 2 reference signal symbols in one subframe.
  • FIG. 7 there are 10 data symbols and 2 reference signal symbols in one subframe.
  • a sounding reference signal may be transmitted through an OFDM symbol in a subframe.
  • a sounding reference signal may be transmitted through the last OFDM symbol in the subframe.
  • the sounding reference signal is a reference signal transmitted by the terminal to the base station for uplink scheduling.
  • the base station estimates an uplink channel based on the received sounding reference signal and uses the estimated uplink channel for uplink scheduling.
  • the reference signal may mean not only a demodulation reference signal for data demodulation but also a sounding reference signal.
  • the transmitter may be part of the terminal or the base station.
  • the transmitter 100 includes a data processor 110, a reference signal processor 120, and a radio frequency (RF) unit 130.
  • the RF unit 130 is connected to the data processor 110 and the reference signal processor 120.
  • the data processor 110 processes the data to generate a baseband signal for the data.
  • the reference signal processor 120 generates and processes a reference signal to generate a baseband signal for the reference signal.
  • the RF unit 130 converts a baseband signal (a baseband signal for data and / or a baseband signal for a reference signal) into a radio signal and transmits the radio signal.
  • the baseband signal may be upconverted to a carrier frequency, which is a center frequency of the cell, and then converted to a wireless signal.
  • FIG. 9 is a block diagram illustrating an example of a structure of a data processor.
  • the data processor may be included in the transmitter.
  • the data processor 110 includes a discrete fourier transform (DFT) unit 111, a subcarrier mapper 112, an inverse fast fourier transform (IFFT) unit 113, and a CP insertion unit 114. .
  • the data processor 110 may further include a channel coding unit (not shown) and a modulator (not shown).
  • the channel coding unit performs channel coding on information bits to generate coded bits.
  • the information bits may be referred to as data transmitted from a transmitter.
  • the modulator maps the encoded bit into a symbol representing a location on a signal constellation to produce modulated symbols.
  • the modulation scheme is not limited and may be m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM).
  • the modulated symbols are input to the DFT unit 111.
  • the DFT unit 111 outputs complex-valued symbols by performing a DFT on the input symbols. For example, when Ntx symbols are input, the DFT size is Ntx (Ntx is a natural number).
  • the subcarrier mapper 112 maps the complex symbols to each subcarrier in the frequency domain. Complex symbols may be mapped to resource elements corresponding to resource blocks allocated for data transmission.
  • the IFFT unit 113 performs an IFFT on the input symbol and outputs a baseband signal for data which is a time domain signal. When an IFFT size N FFT d, N FFT may be determined by the channel bandwidth (channel bandwidth) (N FFT is a natural number).
  • the CP inserter 114 copies a part of the rear part of the baseband signal for data and inserts it in front of the baseband signal for data. By interpolating CP, Inter Symbol Interference (ISI) and Inter Carrier Interference (ICI) are prevented, so that orthogonality can be maintained even in a multipath channel.
  • ISI Inter Symbol Interference
  • ICI Inter Carrier Interference
  • SC-FDMA a transmission scheme in which IFFT is performed after DFT spreading
  • SC-FDMA may also be referred to as FTTS-OFDM (DFT spread-OFDM).
  • FTTS-OFDM DFT spread-OFDM
  • PAPR peak-to-average power ratio
  • CM cubic metric
  • transmission power efficiency may be increased in a terminal with limited power consumption. Accordingly, user throughpupt may be high.
  • FIG. 10 illustrates an example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
  • the subcarrier mapper maps complex symbols output from the DFT unit to consecutive subcarriers in the frequency domain. '0' is inserted into a subcarrier to which complex symbols are not mapped. This is called localized mapping.
  • 3GPP LTE a centralized mapping scheme is used.
  • FIG 11 shows another example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
  • the subcarrier mapper inserts L-1 '0's between two consecutive complex symbols output from the DFT unit (L is a natural number). That is, the complex symbols output from the DFT unit are mapped to subcarriers distributed at equal intervals in the frequency domain. This is called distributed mapping.
  • the subcarrier mapper uses a centralized mapping scheme as shown in FIG. 10 or a distributed mapping scheme as shown in FIG. 11, a single carrier characteristic is maintained.
  • FIG. 12 is a block diagram illustrating another example of a data processing unit structure.
  • the data processor may be included in the transmitter.
  • the data processor 210 includes a DFT unit 211, a subcarrier mapper 212, an IFFT unit 213, and a CP inserter 214.
  • N is a natural number
  • N subblocks may be represented by subblock # 1, subblock # 2, ..., subblock #N.
  • the subcarrier mapper 212 distributes N subblocks in the frequency domain and maps the subcarriers to subcarriers. NULL may be inserted between every two consecutive subblocks. Complex symbols in one subblock may be mapped to consecutive subcarriers in the frequency domain. That is, the centralized mapping scheme may be used in one subblock.
  • the data processor of FIG. 12 may be used for both a single carrier transmitter or a multi-carrier transmitter.
  • a single carrier transmitter is a transmitter with one carrier
  • a multicarrier transmitter is a transmitter with multiple carriers.
  • all N subblocks correspond to one carrier.
  • one subcarrier may correspond to each subblock among N subblocks.
  • a plurality of subblocks among N subblocks may correspond to one carrier.
  • a time domain signal is generated through one IFFT unit. Accordingly, in order for the data processor of FIG. 12 to be used in a multicarrier transmitter, subcarrier spacing between adjacent carriers must be aligned in a continuous carrier allocation situation.
  • FIG. 13 is a block diagram illustrating still another example of a data processing unit structure.
  • the data processor may be included in the multi-carrier transmitter.
  • the data processor 310 may include a DFT unit 311, a subcarrier mapper 312, a plurality of IFFT units 313-1, 313-2,..., 313 -N and a CP insertion unit ( 214), where N is a natural number.
  • IFFT is performed separately for each subblock among the N subblocks.
  • the nth baseband signal is multiplied by an nth carrier f n signal to generate an nth radio signal.
  • a CP is inserted by the CP inserting unit 214.
  • the data processor of FIG. 13 may be used in a non-contiguous carrier allocation situation in which carriers allocated by the transmitter are not adjacent to each other.
  • a method in which symbols output from the DFT unit are divided into a plurality of subblocks and processed is referred to as a clustered SC-FDMA.
  • FIG. 14 is a block diagram illustrating another example of a data processing unit structure.
  • the data processor may be included in the multi-carrier transmitter.
  • the data processor 410 includes a code block divider 411, a chunk divider 412, a plurality of channel coding units 413-1,.
  • a plurality of IFFT units 417-1,..., 417 -N and a CP insertion unit 418 (N is a natural number).
  • N may be the number of multicarriers used by the multicarrier transmitter.
  • the code block dividing unit 411 divides the transport block into a plurality of code blocks.
  • the chunk divider 412 divides the code block into a plurality of chunks.
  • the code block may be referred to as data transmitted from the multicarrier transmitter, and the chunk may be referred to as a piece of data transmitted through one carrier of the multicarrier.
  • the data processor 410 performs a DFT in chunk units.
  • the data processor 410 may be used both in a discontinuous carrier allocation situation or in a continuous carrier allocation situation.
  • a transmission scheme in which DFT is performed in chunks as shown in FIG. 14 is referred to as chunk specific DFTS-OFDM or N ⁇ SC-FDMA.
  • the OFDM symbol refers to a symbol to which OFDMA, SC-FDMA, clustered DFTS-OFDM, or chunk-specific DFTS-OFDM transmission scheme is applied.
  • the reference signal processor may be included in the transmitter.
  • the reference signal processor 120 includes a reference signal sequence generator 121, a subcarrier mapper 122, an IFFT unit 123, and a CP insertion unit 124.
  • the reference signal sequence generator 121 generates a reference signal sequence composed of complex elements.
  • the subcarrier mapper 122 maps the complex elements constituting the reference signal sequence to each subcarrier. Complex elements are mapped to subcarriers of a demodulation reference signal symbol in a subframe (see FIGS. 6 and 7).
  • a centralized mapping scheme is used, but the subcarrier mapping scheme is not limited to the centralized mapping scheme.
  • the subcarrier mapping scheme may be a distributed mapping scheme, an interleaved mapping scheme, a block level interleaved mapping scheme, a random allocation mapping scheme, or the like.
  • the IFFT 123 performs an IFFT on an input symbol and outputs a baseband signal for a reference signal which is a time domain signal.
  • the CP inserting unit 124 copies a part of the rear part of the baseband signal for the reference signal and inserts it before the baseband signal for the reference signal.
  • the subcarrier mapper, the IFFT unit, and the CP inserter included in the reference signal processor may be the same as the subcarrier mapper, the IFFT unit, and the CP inserter included in the data processor.
  • the reference signal processor and the data processor may share the subcarrier mapper, the IFFT unit, and the CP inserter through a switching operation over time.
  • the reference signal sequence may use a PSK-based computer generated sequence.
  • PSKs include binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK).
  • the reference signal sequence may use a constant amplitude zero auto-correlation (CAZAC) sequence.
  • CAZAC sequences are ZC-based sequences, ZC sequences with cyclic extensions, ZC sequences with truncation, etc. There is this.
  • the reference signal sequence may use a pseudo-random (PN) sequence.
  • PN sequences include m-sequences, computer generated sequences, Gold sequences, and Kasami sequences.
  • the reference signal sequence may use a cyclically shifted sequence.
  • the cyclically shifted sequence may be generated by cyclically shifting a base sequence by a specific cyclic shift amount.
  • Various kinds of sequences can be used as the base sequence.
  • a well-known sequence such as a PN sequence or a ZC sequence can be used as the base sequence.
  • a computer generated CAZAC sequence may be used.
  • the base sequence may be generated in different ways depending on the length of the base sequence.
  • the basic sequence may be represented by r u, v (n). Where u ⁇ ⁇ 0,1, ..., 29 ⁇ is a sequence group number, v is a base sequence number in the group, and n is an element index, 0 ⁇ n ⁇ M -1, M is the length of the base sequence.
  • the length M of the basic sequence may be equal to the number of subcarriers included in one demodulation reference signal symbol in a subframe. For example, if one resource block includes 12 subcarriers and three resource blocks are allocated for data transmission, the length M of the base sequence is 36.
  • x q is a ZC sequence whose root index is q and N is the length of x q . That is, the basic sequence r u, v (n) has a form in which x q is cyclically expanded.
  • the length M of the base sequence may be 36 or more.
  • the ZC sequence x q (m) having the raw index q may be defined as in the following equation.
  • N is the length of x q (m) and m is 0 ⁇ m ⁇ N ⁇ 1.
  • N may be the largest prime number among natural numbers smaller than the length M of the base sequence.
  • q is a natural number less than or equal to N, and q and N are relatively prime. If N is a prime number, the number of raw indexes q is N-1.
  • the raw index q can be expressed as the following equation.
  • one resource block includes 12 subcarriers
  • the length M of the base sequence is 12 or 24
  • a CAZAC sequence generated through a computer may be used as the base sequence. If the length M of the base sequence is 12 or 24, each group contains only one base sequence, so the base sequence number v in the group is zero.
  • b (n) may be defined as shown in the following table.
  • b (n) can be defined as shown in the following table.
  • the base sequence r u, v (n) may vary depending on the sequence group number u and the base sequence number v.
  • the sequence group number u and the base sequence number v in the group may each change semi-statically or slot by slot.
  • group hopping When the sequence group number u changes from slot to slot is called group hopping, and the basic sequence number v in the group changes from slot to slot is called sequence hopping.
  • Each of group hopping and sequence hopping may be set by a higher layer of a physical layer.
  • the upper layer may be RRC (Radio Resource Control) which plays a role of controlling radio resources between the terminal and the network.
  • RRC Radio Resource Control
  • the sequence group number u may be determined as in the following equation.
  • f gh (n s) is a group of hopping patterns and, n s is a slot number within a radio frame, f ss is a sequence shift pattern. At this time, there are 17 different hopping patterns and 30 different sequence shift patterns.
  • the group hopping pattern f gh (n s ) is zero.
  • the group hopping pattern f gh (n s ) can be expressed by the following equation.
  • c (n) is a PN sequence.
  • c (n) may be defined by a gold sequence of length-31. The following equation shows an example of the sequence c (n).
  • N C 1600
  • x 1 (i) is the first m-sequence
  • x 2 (i) is the second m-sequence.
  • the second m-sequence may be initialized according to a cell identity for every radio frame. The following equation is an example of initialization of the second m-sequence.
  • N cell_ID is a cell ID
  • the sequence shift pattern f ss may be expressed as in the following equation.
  • d ⁇ ⁇ 0, 1, ..., 29 ⁇ is a group assignment parameter.
  • the group assignment parameter d may be set by a higher layer such as RRC.
  • the group assignment parameter may be a common parameter common to all terminals in the cell.
  • sequence hopping may be performed in which the basic sequence number v in the group changes from slot to slot. If sequence hopping is not performed, the base sequence number v in the group may be fixed to zero.
  • the basic sequence number v in the group can be expressed as the following equation.
  • c (n) may be the same as Equation 7 as the PN sequence.
  • the second m-sequence may be initialized according to a cell ID and a sequence shift pattern f ss for every radio frame. The following equation is an example of initialization of the second m-sequence.
  • the cyclically shifted sequence r u, v (n, Ics) may be generated by circularly shifting the basic sequence r u, v (n) as shown in the following equation.
  • 2 ⁇ Ics / 12 is a CS amount
  • Ics is a CS index indicating a CS amount (0 ⁇ Ics ⁇ 12, and Ics is an integer).
  • the CS index Ics may be determined according to a cell-specific CS parameter, a UE-specific CS parameter, and a hopping CS parameter.
  • the cell specific CS parameter has a different value for each cell but is common to all terminals in the cell.
  • the UE-specific CS parameter may have a different value for each UE in a cell.
  • the hopping CS parameter may have a different value for each slot.
  • the CS index may change from slot to slot.
  • the change in the CS amount by changing the CS index for each slot is called CS level slot level hopping.
  • the CS index Ics may be expressed as the following equation.
  • Ia is determined by a cell specific CS parameter
  • Ib is a terminal specific CS parameter
  • I (n s ) is a hopping CS parameter.
  • the cell specific CS parameter may be set by a higher layer such as RRC.
  • the following table shows examples of Ia determined by cell specific CS parameters.
  • the UE-specific CS parameter Ib may be indicated by the CS field of the uplink grant. If the radio resource scheduling method for the data transmission is the continuous scheduling method or the ringless scheduling method, when there is no uplink grant corresponding to the data transmission, the terminal specific CS parameter Ib may be zero.
  • the following table shows an example of the UE-specific CS parameter Ib determined by the CS field.
  • the hopping CS parameter I (n s ) can be expressed by the following equation.
  • c (n) is a PN sequence and N symb is the number of OFDM symbols included in a slot.
  • the PN sequence c (n) may be as shown in Equation 7.
  • the second m-sequence may be initialized according to a cell ID and a sequence shift pattern f ss for every radio frame. The initialization of the second m-sequence may be as in Equation (11).
  • the reference signal sequence consisting of the generated complex elements is mapped to subcarriers of the reference signal symbol in the subframe.
  • the reference signal should be allocated in consideration of coherent time in the time domain and in consideration of coherent bandwidth in the frequency domain.
  • Coherent time is inversely proportional to Doppler spread.
  • the coherent time may be used to determine whether the channel is a time selective channel or a time flat channel.
  • the wireless communication environment becomes a time selective channel.
  • the terminal moves at a speed of 100 km / h (kilometers per hour) or more, it may be referred to as high speed.
  • more reference signals are used in the time domain to improve channel estimation performance.
  • Coherent bandwidth is inversely proportional to delay spread.
  • the coherent bandwidth may be used to determine whether the channel is a frequency selective channel or a frequency flat channel. For example, in the case of a frequency selective channel, channel estimation performance can be improved when a reference signal is used a lot in the frequency domain.
  • the reference signal structure (see FIGS. 6 and 7) for uplink in 3GPP LTE has a low reference signal overhead in the time domain.
  • channel estimation performance may be degraded in a time selective channel.
  • degradation of channel estimation performance is a more sensitive problem in MIMO systems.
  • the reference signal overhead is simply increased in the time domain, the channel estimation performance gain may be increased, but there is a problem in that the amount of data transmission is reduced. Reduced data throughput results in link throughput loss. Therefore, there is a need for a method of optimally allocating a reference signal in consideration of a trade-off between channel estimation performance and link throughput loss.
  • a radio resource to which data is transmitted includes a plurality of OFDM symbols in a time domain and a plurality of subcarriers in a frequency domain.
  • a reference signal is transmitted through an OFDM symbol of a fixed position among radio resources.
  • a reference signal additionally inserted into a time domain or a frequency domain in a radio resource is referred to as a beacon reference signal.
  • the content related to the reference signal described so far may be applied to the beacon reference signal.
  • a value corresponding to a beacon reference signal transmitted through one resource element is referred to as a beacon RS element.
  • the beacon reference signal element may be a value before input to the DFT unit or a complex value output from the DFT unit.
  • a method of inserting a beacon reference signal will be described based on the radio resource structure of FIGS. 6 and 7.
  • a case in which a sounding reference signal is transmitted through an OFDM symbol in a subframe may be omitted.
  • the beacon reference signal insertion method described below may be applied as it is.
  • the case in which a sounding reference signal is transmitted through an OFDM symbol in a subframe may be illustrated. Even when a sounding reference signal is not transmitted through the OFDM symbol, data is inserted. The method can be applied as it is.
  • the beacon reference signal may be inserted into at least one or more OFDM symbols in the subframe.
  • a beacon reference signal is inserted into one OFDM symbol and two OFDM symbols in a subframe will be described as an example.
  • the beacon reference signal may be inserted into one OFDM symbol in a subframe.
  • FIG. 16 illustrates a first example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
  • the beacon reference signal is inserted into an OFDM symbol having a symbol index of 6 in a subframe.
  • FIG. 17 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
  • the beacon reference signal is inserted into an OFDM symbol having a symbol index of 7 in a subframe.
  • the beacon reference signal is inserted into an OFDM symbol having a symbol index of 5 in a subframe.
  • beacon reference signal structures are only examples of beacon reference signal structures, and do not limit the position of an OFDM symbol into which a beacon reference signal is inserted in a subframe.
  • the position of the OFDM symbol into which the beacon reference signal is inserted in the subframe may be changed.
  • the positions of the OFDM symbols in which the beacon reference signals are inserted in the subframes may be the same for the plurality of subframes.
  • the position of the OFDM symbol in which the beacon reference signal is inserted in the subframe may be the same during the radio frame. If the positions of the OFDM symbols into which the beacon reference signals are inserted in the subframes during the plurality of subframes or radio frames are the same, equal intervals between the beacon reference signals may be maintained.
  • the beacon reference signal may be inserted into 2 OFDM symbols in a subframe.
  • FIG. 19 illustrates a third example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
  • the beacon reference signal is inserted into an OFDM symbol having a symbol index of 0 and 13 in a subframe.
  • the beacon reference signal is inserted into an OFDM symbol having 0 and 6 symbol indices in a subframe.
  • the sounding reference signal is transmitted through an OFDM symbol having a symbol index of 13.
  • the 21 illustrates a fifth example of a radio resource with a beacon reference signal inserted in the case of a normal CP.
  • the beacon reference signal is inserted into an OFDM symbol having a symbol index of 0 and 7 in a subframe.
  • the sounding reference signal is transmitted through an OFDM symbol having a symbol index of 13.
  • FIG. 22 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP.
  • the beacon reference signal is inserted into an OFDM symbol with symbol indexes 5 and 11 in the subframe.
  • the beacon reference signal is inserted into an OFDM symbol having 4 and 6 symbol indices in a subframe.
  • the sounding reference signal is transmitted through an OFDM symbol having a symbol index of 11.
  • the beacon reference signal is inserted into an OFDM symbol having a symbol index of 5 and 10 in a subframe.
  • the sounding reference signal is transmitted through an OFDM symbol having a symbol index of 11.
  • the beacon reference signal may be inserted in the time domain or in the frequency domain.
  • the symbols input to the DFT are symbols in the time domain. Accordingly, the beacon reference signal may be inserted into the symbols input to the DFT unit.
  • the DFT unit 25 shows an example of symbols input to a DFT unit in which a beacon reference signal element is inserted.
  • the DFT unit may be included in the data processing unit of the transmitter.
  • M symbols z (0), z (1), ..., z (M-1) are input to the DFT unit.
  • M may be the number of subcarriers included in the frequency domain by a radio resource allocated for data transmission.
  • M may be 12 ⁇ N.
  • a beacon reference signal element is inserted into one symbol z (m) of the M symbols.
  • the beacon reference signal element may be located in the middle of the M symbols.
  • the following equation shows an example of the position of a symbol into which the beacon reference signal element is inserted.
  • Punching or rate matching may be used to insert the beacon reference signal element among the M symbols input to the DFT unit.
  • the following table shows an example of insertion of a reference signal element for each case of puncturing and rate matching.
  • d (n) is a data element corresponding to a symbol input to the DFT unit
  • b (k) is a beacon reference signal element inserted in z (m).
  • the data element d (m) corresponding to the position where the beacon reference signal element is inserted is punctured, and the beacon reference signal element is inserted.
  • rate matching data elements are mapped to symbols except for the positions where the beacon reference signal elements are inserted.
  • the DFT unit outputs complex symbols by performing a DFT on the input M symbols, and the subcarrier mapper maps the complex symbols to each subcarrier in the frequency domain.
  • the IFFT unit performs an IFFT on the input symbol and outputs a time domain signal.
  • the time domain signal carries a data and a beacon reference signal.
  • FIG. 25 illustrates an example of inserting one beacon reference signal element among symbols input to the DFT unit, but this does not limit the number of inserted beacon reference signal elements.
  • the reference signal density means the degree to which the beacon reference signal element is inserted.
  • the reference signal density may be defined as the ratio of the inserted beacon reference signal elements to the number of symbols input to the DFT unit.
  • the following table shows an example in which beacon reference signal elements are inserted at equal intervals according to the reference signal density RSD. This takes into account the random process of the channel.
  • 'b' is a beacon reference signal element, and a data element is inserted into the blank.
  • the beacon reference signal element may be inserted in z (3) and z (7).
  • the following table shows an example in which beacon reference signal elements are randomly inserted according to a reference signal density (RSD).
  • RSS reference signal density
  • the beacon reference signal may be inserted at any position as well as the cases shown in Tables 6 and 7.
  • beacon reference signal elements When there are two or more beacon reference signal elements inserted into symbols input to the DFT unit, the following cases may be used between the beacon reference signal elements.
  • (1) and (3) each case can be variously combined.
  • beacon reference signal elements are separated and (3) beacon reference signal elements are located in the middle.
  • beacon reference signal elements are separated and (4) beacon reference signal elements are positioned at both ends.
  • beacon reference signal elements are adjacent and (3) beacon reference signal elements are located in the middle.
  • beacon reference signal elements are adjacent and (4) beacon reference signal elements are positioned at both ends.
  • the complex symbols output from the DFT unit are symbols in the frequency domain. Accordingly, the subcarrier mapper may insert a beacon reference signal when the symbols of the frequency domain are mapped to the subcarriers.
  • the subcarrier mapper may be included in the data processor of the transmitter.
  • M beacon reference signal elements and data elements are mapped to resource elements Z (0), Z (1), ..., Z (M-1) by the subcarrier mapper.
  • Z (0), Z (1), ..., Z (M-1) are included in the radio resource allocated for data transmission.
  • M may be the number of subcarriers included in the frequency domain by a radio resource allocated for data transmission.
  • M may be 12 ⁇ N.
  • a beacon reference signal element is inserted into one resource element Z (m) of the M resource elements.
  • the beacon reference signal element may be located in the middle of the M resource elements.
  • the position of the resource element into which the beacon reference signal element is inserted may be as shown in Equation 15.
  • Perforation or rate matching may be used to insert the beacon reference signal element among the M resource elements.
  • the following table shows an example of insertion of a reference signal element for each case of puncturing and rate matching.
  • D (n) is a complex symbol output from the DFT unit
  • B (k) is a beacon reference signal element inserted in Z (m).
  • M complex symbols are output from D (0) to D (M-1) from the DFT unit.
  • the DFT size is M.
  • D (m) of the M complex symbols is punctured, and a beacon reference signal element B (k) is inserted.
  • M-1 complex symbols are output from D (0) to D (M-2) from the DFT unit.
  • the DFT size is M-1.
  • M-1 complex symbols are sequentially mapped to resource elements except for Z (m). 0 is inserted into the resource element except for the radio resource allocated for data transmission.
  • FIG. 26 illustrates an example of inserting one beacon reference signal element in the frequency domain of one OFDM symbol, but this does not limit the number of inserted beacon reference signal elements.
  • beacon reference signal elements inserted among resource elements For convenience of description, the number of resource elements is 12. This is a case where one resource block includes 12 subcarriers and one resource block is allocated for data transmission.
  • the reference signal density may be a ratio of inserted beacon reference signal elements to the number of subcarriers included in the frequency domain by radio resources allocated for data transmission.
  • the following table shows an example in which a beacon reference signal element is inserted according to a reference signal density (RSD).
  • RSS reference signal density
  • a beacon reference signal may be inserted into two or more OFDM symbols.
  • the method of inserting a beacon reference signal into the time domain or the frequency domain described so far may be combined like the time axis at the OFDM symbol level.
  • beacon reference signal is inserted into a frequency domain in all OFDM symbols in a subframe.
  • one resource block includes 12 subcarriers and one resource block is allocated for data transmission.
  • the location of the time domain and the location of the frequency domain where the beacon reference signal is inserted may be fixed.
  • 27 and 28 show examples of a case where a position where a beacon reference signal is inserted is fixed.
  • FIG. 27 shows a first example of a radio resource with a beacon reference signal inserted.
  • one beacon reference signal element is inserted in every OFDM symbol except for an OFDM symbol in which a reference signal is transmitted in a subframe.
  • the positions in the frequency domain of the beacon reference signal elements are the same.
  • the reference signal density is 1/12.
  • the reference signal density is 1/2.
  • the position of the time domain where the beacon reference signal is inserted and the position of the frequency domain may be varied.
  • the position where the beacon reference signal is inserted into the radio resource may be a predetermined position or a random position.
  • An example of an insertion position of a predetermined beacon reference signal is a staggered position.
  • 29 shows a third example of a radio resource with a beacon reference signal inserted. This is an example of the case where the insertion position of the beacon reference signal is staggered.
  • the reference signal density is 1/12.
  • the beacon reference signal may be inserted into the radio resource in various patterns according to the reference signal density.
  • the beacon reference signal may be inserted into the plurality of resource blocks according to the reference signal density.
  • the radio resource to which data is transmitted may be a contiguous resource block or a non-contiguous resource block in the frequency domain. In the case of a discontinuous resource block, a beacon reference signal may be inserted according to the reference signal density for each separated resource block.
  • the radio resource for transmitting data may be one or more resource block clusters. In this case, clustered SC-FDMA, N ⁇ SC-FDMA, OFDMA, or the like may be used for the multiple access scheme.
  • the resource block cluster may be one or more resource blocks to which one subblock is mapped. The number of resource blocks included in the resource block cluster may be the same or different for each resource block cluster.
  • a beacon reference signal may be inserted for each resource block cluster or the entire resource block cluster according to the reference signal density.
  • the beacon reference signal may be a common RS or a dedicated RS.
  • the common reference signal may be the same cell-common reference signal to all terminals in a cell or may be different cell-specific reference signals for each cell or cell ID. If the beacon reference signal is a common reference signal, the beacon reference signal may be inserted according to the reference signal density for the entire transmission bandwidth. In the case of the common reference signal, the common reference signal is always transmitted by the number of transmit antennas regardless of the number of streams.
  • the common reference signal has an independent reference signal for each transmit antenna. That is, common reference signals having orthogonality or low correlation with each other are transmitted for each transmit antenna.
  • the dedicated RS is a UE-specific RS that may be different for each UE or UE group in a cell.
  • the beacon reference signal may be inserted according to the reference signal density in a radio resource allocated by the terminal for data transmission.
  • a dedicated reference signal as many dedicated reference signals as the number of streams are transmitted.
  • the beacon reference signal may or may not be precoded.
  • FIG. 30 is a flowchart illustrating an example of a method for inserting a beacon reference signal.
  • the transmitter determines whether to insert a beacon reference signal (S210). If the beacon reference signal insertion is determined, the transmitter determines the reference signal density (S220). The transmitter inserts a beacon reference signal into a radio resource through which data is transmitted according to the reference signal density (S230).
  • the base station may indicate whether the beacon reference signal is inserted and / or the reference signal density to the terminal.
  • whether the beacon reference signal is inserted and / or the reference signal density may be set by an upper layer such as RRC.
  • RRC Radio Resource Control
  • whether the beacon reference signal is inserted and / or the reference signal density may be common to all terminals in a cell or may be set differently for each terminal.
  • whether the beacon reference signal is inserted and / or the reference signal density may be predetermined in advance through a protocol between the base station and the terminal.
  • whether to insert a beacon reference signal implicitly and / or a reference signal density may be set in association with a communication environment.
  • the beacon reference signal is inserted and / or the reference signal density may be set according to a channel environment, a transmission antenna technique, and the like. For example, a beacon reference signal is inserted in a high speed Doppler environment and a beacon reference signal is not inserted in a low speed environment. Alternatively, the reference signal density of the beacon reference signal may be increased in a high speed environment, and the reference signal density of the beacon reference signal may be decreased in a low speed environment. As another example, in the case of a transmission antenna technique in which channel estimation performance is sensitive, a beacon reference signal is inserted or a reference signal density is increased.
  • An example of a transmission antenna technique in which channel estimation performance is sensitive is a spatial multiplexing technique among multiple input multiple output (MIMO) techniques.
  • MIMO multiple input multiple output
  • a beacon reference signal is not inserted or a reference signal density is reduced.
  • Examples of a transmission antenna technique in which channel estimation performance is not sensitive include a single antenna transmission technique and a transparent transmission diversity technique.
  • 31 is a flowchart illustrating an example of a method of performing HARQ using a beacon reference signal.
  • the base station BS transmits an uplink grant to the terminal UE (S310).
  • the terminal transmits data to the base station through a radio resource indicated by the uplink grant (S320).
  • the base station transmits a NACK for the data to the terminal (S330).
  • the terminal retransmits data to the base station (S340).
  • the base station may transmit an uplink grant for data retransmission to the terminal.
  • the base station transmits a NACK to the terminal (S350).
  • the terminal retransmits data to the base station (S360).
  • the base station transmits a NACK to the terminal (S370).
  • the terminal retransmits data to the base station (S380).
  • the terminal may insert the beacon reference signal in case of data retransmission.
  • the reference signal density may increase with the number of retransmissions.
  • the traffic itself may be low, resulting in high error rate or poor channel estimation performance.
  • the receiver may combine the previously received data with the retransmitted data to obtain a signal-to-noise ratio (SNR) gain and to obtain reliability of data communication.
  • SNR signal-to-noise ratio
  • the SRN for channel estimation performance at the receiver may be fixed at every retransmission. Therefore, by inserting a beacon reference signal during retransmission, it is possible to improve the channel estimation performance in the receiver. Through this, it is possible to improve traffic performance and obtain reliability of data communication.
  • 32 is a flowchart illustrating a method of transmitting a reference signal according to an embodiment of the present invention.
  • the terminal generates OFDM symbols for data and beacon reference signal elements (S410).
  • the terminal transmits the generated OFDM symbol to the base station (S420).
  • OFDM symbols for the data and beacon reference signal elements may be generated in two ways.
  • the UE outputs complex symbols by performing a DFT on symbols consisting of modulation symbols and beacon reference signal elements for data, maps the complex symbols to subcarriers allocated for data transmission, and performs IFFT to perform OFDM You can create a symbol.
  • the terminal outputs a plurality of complex symbols by performing a DFT on the modulation symbol for the data, maps the plurality of complex symbols and beacon reference signal elements to subcarriers allocated for data transmission, and performs an IFFT to perform an OFDM symbol Can be generated.
  • At least one beacon reference signal may be inserted in the time domain or the frequency domain.
  • the insertion of the beacon reference signal may be a method of puncturing data corresponding to the position where the beacon reference signal is to be inserted.
  • a method of not mapping data to a position to insert a beacon reference signal may be used.
  • a complex symbol corresponding to a subcarrier to which a beacon reference signal element is mapped may be punctured, or a plurality of complex symbols may be mapped to subcarriers other than the subcarrier to which the beacon reference signal element is mapped.
  • the ratio of data and the beacon reference signal element may be determined according to a reference signal density.
  • the reference signal density may be determined according to a channel environment, a transmission antenna technique, or the number of times of retransmission of data.
  • a beacon reference signal may be inserted by detecting a channel change caused by the Doppler effect.
  • the reference signal density of the beacon reference signal may be adaptively changed according to the channel environment or the error rate.
  • a processor such as a microprocessor, a controller, a microcontroller, an application specific integrated circuit (ASIC), or the like according to software or program code coded to perform the function.
  • ASIC application specific integrated circuit

Abstract

The present invention provides a method and an apparatus for transmitting reference signals in a radio communication system. Said method comprises the steps of generating orthogonal frequency division multiplexing (OFDM) symbols for data and reference signal elements, and transmitting said OFDM symbols to a base station. The present invention provides an effective method for transmitting reference signals in a radio communication system.

Description

무선 통신 시스템에서 참조신호 전송 방법 및 장치Method and apparatus for transmitting reference signal in wireless communication system
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 참조신호 전송 방법 및 장치에 관한 것이다. The present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a reference signal in a wireless communication system.
최근 활발하게 연구되고 있는 차세대 멀티미디어 무선 통신 시스템은 초기의 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 정보를 처리하여 전송할 수 있는 시스템이 요구되고 있다. 무선 통신 시스템의 목적은 다수의 사용자가 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다. 그런데, 무선 채널(wireless channel)은 경로 손실(path loss), 잡음(noise), 다중 경로(multipath)에 의한 페이딩(fading) 현상, 심벌 간 간섭(Intersymbol Interference, ISI) 또는 단말의 이동성으로 인한 도플러 효과(Doppler effect) 등의 비이상적인 특성이 있다. 무선 채널의 비이상적 특성을 극복하고, 무선 통신의 신뢰도(reliability)를 높이기 위해 다양한 기술이 개발되고 있다.The next generation multimedia wireless communication system, which is being actively researched recently, requires a system capable of processing and transmitting various information such as video, wireless data, etc., out of an initial voice-oriented service. The purpose of a wireless communication system is to enable a large number of users to communicate reliably regardless of location and mobility. However, a wireless channel is a Doppler due to path loss, noise, fading due to multipath, intersymbol interference (ISI), or mobility of UE. There are non-ideal characteristics such as the Doppler effect. Various techniques have been developed to overcome the non-ideal characteristics of the wireless channel and to improve the reliability of the wireless communication.
일반적으로 무선 통신 시스템은 가용한 무선 자원을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 무선 자원의 예로는 시간, 주파수, 코드, 전송 파워 등이 있다. 다중 접속 시스템의 예들로는 TDMA(time division multiple access) 시스템, CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available radio resources. Examples of radio resources include time, frequency, code, transmit power, and the like. Examples of multiple access systems include time division multiple access (TDMA) systems, code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
SC-FDMA는 OFDMA와 거의 동일한 복잡성을 가지면서도, PAPR(peak-to-average power ratio) 또는 CM(cubic metric)이 낮아질 수 있다. PAPR이 낮으면 전송기는 전력 증폭기(power amplifier)의 비선형(non-linear) 왜곡 구간을 피해 효율적으로 데이터를 전송할 수 있다. 낮은 PAPR은 전송 파워 효율 측면에서 단말에게 유익하므로, SC-FDMA는 3GPP(3rd Generation Partnership Project) TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)"의 5절에 나타난 바와 같이 3GPP LTE(long term evolution)에서 상향링크 전송에 채택되고 있다. SC-FDMA may have almost the same complexity as OFDMA, but may have a low peak-to-average power ratio (PAPR) or cubic metric (CM). When the PAPR is low, the transmitter can efficiently transmit data avoiding the non-linear distortion interval of the power amplifier. Since low PAPR is beneficial to the UE in terms of transmission power efficiency, SC-FDMA is a 3rd Generation Partnership Project (3GPP) TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E- UTRA); physical channels and modulation (Release 8) ", is adopted for uplink transmission in 3GPP long term evolution (LTE).
무선 통신 시스템에서는 데이터의 송/수신, 시스템 동기 획득, 채널정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 채널 추정은 페이딩으로 인한 급격한 환경변화에 의하여 생기는 신호의 왜곡을 보상하여 전송 신호를 복원하는 과정을 말한다. 일반적으로 채널 추정을 위하여는 전송기와 수신기가 모두 알고 있는 참조신호(reference signal, RS)가 필요하다. 참조신호란 데이터를 복조하기 위한 채널 추정을 위해 사용되는 전송기와 수신기 모두가 알고 있는 신호를 말하며, 파일럿(pilot)이라고도 한다. In a wireless communication system, it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like. Channel estimation refers to a process of restoring a transmission signal by compensating for a distortion of a signal caused by a sudden environmental change due to fading. In general, for channel estimation, a reference signal (RS) known to both the transmitter and the receiver is required. The reference signal refers to a signal that is known to both the transmitter and the receiver used for channel estimation for demodulating data, and is also called a pilot.
참조신호 오버헤드를 증가시키면 채널 추정 성능을 높일 수 있다. 참조신호 오버헤드는 전체 부반송파의 수에 대한 참조신호를 전송하는 부반송파의 수의 비로 정의할 수 있다. 그런데, 참조신호 오버헤드가 큰 경우, 채널 추정 성능 이득이 높아질 수 있으나, 데이터의 전송량이 감소되는 문제가 있다. 데이터 전송량 감소는 링크 처리율 손실(link throughput loss)을 초래한다. 따라서, 채널 추정 성능과 링크 처리율 손실 간에 트레이드오프(trade-off)를 고려하여 최적으로 참조신호를 전송하는 방법 및 장치를 제공할 필요가 있다.Increasing the reference signal overhead can improve channel estimation performance. The reference signal overhead may be defined as the ratio of the number of subcarriers transmitting the reference signal to the total number of subcarriers. However, when the reference signal overhead is large, the channel estimation performance gain may be increased, but there is a problem in that the amount of data transmission is reduced. Reduced data throughput results in link throughput loss. Accordingly, there is a need to provide a method and apparatus for optimally transmitting a reference signal in consideration of a trade-off between channel estimation performance and link throughput loss.
본 발명이 이루고자 하는 기술적 과제는 무선 통신 시스템에서 참조신호 전송 방법 및 장치를 제공하는 데 있다.An object of the present invention is to provide a method and apparatus for transmitting a reference signal in a wireless communication system.
일 양태에서, 무선 통신 시스템에서 단말에 의해 수행되는 참조신호 전송 방법을 제공한다. 상기 방법은 데이터 및 참조신호 요소에 대한 OFDM(orthogonal frequency division multiplexing) 심벌을 생성하는 단계 및 상기 OFDM 심벌을 기지국으로 전송하는 단계를 포함한다. In one aspect, there is provided a reference signal transmission method performed by a terminal in a wireless communication system. The method includes generating orthogonal frequency division multiplexing (OFDM) symbols for data and reference signal elements and transmitting the OFDM symbols to a base station.
다른 양태에서, 무선 신호를 전송하는 RF(radio frequency)부 및 상기 RF부와 연결되어, 데이터 및 참조신호 요소에 대한 OFDM 심벌을 생성하고, 상기 OFDM 심벌을 전송하는 데이터 처리부를 포함하는 단말을 제공한다.In another aspect, there is provided a terminal including a radio frequency (RF) unit for transmitting a radio signal and a data processor connected to the RF unit to generate an OFDM symbol for data and reference signal elements, and transmit the OFDM symbol. do.
무선 통신 시스템에서 채널 추정 성능을 높일 수 있는 참조신호 전송 방법 및 장치를 제공한다. 따라서, 전체 시스템 성능을 향상시킬 수 있다. Provided are a method and apparatus for transmitting a reference signal for improving channel estimation performance in a wireless communication system. Thus, overall system performance can be improved.
도 1은 무선 통신 시스템을 나타낸다. 1 illustrates a wireless communication system.
도 2는 3GPP(3rd Generation Partnership Project) LTE(long term evolution)에서 무선 프레임의 구조를 나타낸다. 2 illustrates a structure of a radio frame in a 3rd generation partnership project (3GPP) long term evolution (LTE).
도 3은 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드를 나타낸 예시도이다. 3 shows an example of a resource grid for one uplink slot in 3GPP LTE.
도 4는 3GPP LTE에서 상향링크 서브프레임의 구조의 예를 나타낸다. 4 shows an example of a structure of an uplink subframe in 3GPP LTE.
도 5는 데이터 전송 방법의 예를 나타낸 흐름도이다. 5 is a flowchart illustrating an example of a data transmission method.
도 6은 노멀 CP(Cyclic Prefix)의 경우, 데이터가 전송되는 무선 자원의 일 예를 나타낸다. 6 illustrates an example of a radio resource in which data is transmitted in the case of a normal cyclic prefix (CP).
도 7은 확장된 CP의 경우, 데이터가 전송되는 무선 자원의 일 예를 나타낸다. 7 illustrates an example of a radio resource for transmitting data in the case of an extended CP.
도 8은 전송기 구조의 일 예를 나타낸 블록도이다. 8 is a block diagram illustrating an example of a transmitter structure.
도 9는 데이터 처리부 구조의 일 예를 나타낸 블록도이다. 9 is a block diagram illustrating an example of a structure of a data processor.
도 10은 부반송파 맵퍼가 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑하는 방식의 일 예를 나타낸다. 10 illustrates an example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
도 11은 부반송파 맵퍼가 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑하는 방식의 다른 예를 나타낸다. 11 shows another example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
도 12는 데이터 처리부 구조의 다른 예를 나타낸 블록도이다. 12 is a block diagram illustrating another example of a data processing unit structure.
도 13은 데이터 처리부 구조의 또 다른 예를 나타낸 블록도이다. 13 is a block diagram illustrating still another example of a data processing unit structure.
도 14는 데이터 처리부 구조의 또 다른 예를 나타낸 블록도이다.14 is a block diagram illustrating another example of a data processing unit structure.
도 15는 참조신호 처리부의 예를 나타내는 블록도이다. 15 is a block diagram illustrating an example of a reference signal processing unit.
도 16은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 1 예를 나타낸다. 16 illustrates a first example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
도 17은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 2 예를 나타낸다. 17 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
도 18은 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 1 예를 나타낸다. 18 illustrates a first example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP.
도 19는 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 3 예를 나타낸다. 19 illustrates a third example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
도 20은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 4 예를 나타낸다. 20 illustrates a fourth example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP.
도 21은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 5 예를 나타낸다. 21 illustrates a fifth example of a radio resource with a beacon reference signal inserted in the case of a normal CP.
도 22는 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 2 예를 나타낸다. 22 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP.
도 23은 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 3 예를 나타낸다. 23 illustrates a third example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP.
도 24는 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 4 예를 나타낸다. 24 illustrates a fourth example of a radio resource with a beacon reference signal inserted in the case of an extended CP.
도 25는 비컨 참조신호 요소가 삽입된 DFT부에 입력되는 심벌들의 예를 나타낸다. 25 shows an example of symbols input to a DFT unit in which a beacon reference signal element is inserted.
도 26은 부반송파 맵퍼에 의해 삽입된 비컨 참조신호 요소의 예를 나타낸다. 26 shows an example of a beacon reference signal element inserted by a subcarrier mapper.
도 27은 비컨 참조신호가 삽입된 무선 자원의 제 1 예를 나타낸다. 27 shows a first example of a radio resource with a beacon reference signal inserted.
도 28은 비컨 참조신호가 삽입된 무선 자원의 제 2 예를 나타낸다. 28 shows a second example of a radio resource with a beacon reference signal inserted.
도 30은 비컨 참조신호 삽입 방법의 예를 나타낸 순서도이다. 30 is a flowchart illustrating an example of a method for inserting a beacon reference signal.
도 31은 비컨 참조신호를 이용한 HARQ 수행 방법의 예를 나타낸 흐름도이다. 31 is a flowchart illustrating an example of a method of performing HARQ using a beacon reference signal.
도 32는 본 발명의 실시예에 따른 참조신호 전송 방법을 나타낸 흐름도이다.32 is a flowchart illustrating a method of transmitting a reference signal according to an embodiment of the present invention.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 다중 접속 방식(multiple access scheme)에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used for various multiple access schemes. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented by a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA). UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. LTE-A (Advanced) is the evolution of 3GPP LTE.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. For clarity, the following description focuses on 3GPP LTE / LTE-A, but the technical spirit of the present invention is not limited thereto.
도 1은 무선 통신 시스템을 나타낸다. 1 illustrates a wireless communication system.
도 1을 참조하면, 무선 통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.Referring to FIG. 1, the wireless communication system 10 includes at least one base station 11 (BS). Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c. The cell can in turn be divided into a number of regions (called sectors). The user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem and a handheld device. The base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
이하에서 하향링크(downlink, DL)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink, UL)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 전송기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 전송기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다. Hereinafter, downlink (DL) means communication from the base station to the terminal, and uplink (UL) means communication from the terminal to the base station. In downlink, a transmitter may be part of a base station, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal, and a receiver may be part of a base station.
무선 통신 시스템은 MIMO(multiple input multiple output) 시스템, MISO(multiple input single output) 시스템, SISO(single input single output) 시스템 및 SIMO(single input multiple output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. The wireless communication system may be any one of a multiple input multiple output (MIMO) system, a multiple input single output (MIS) system, a single input single output (SISO) system, and a single input multiple output (SIMO) system. The MIMO system uses a plurality of transmit antennas and a plurality of receive antennas. The MISO system uses multiple transmit antennas and one receive antenna. The SISO system uses one transmit antenna and one receive antenna. The SIMO system uses one transmit antenna and multiple receive antennas.
이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다. Hereinafter, the transmit antenna means a physical or logical antenna used to transmit one signal or stream, and the receive antenna means a physical or logical antenna used to receive one signal or stream.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다. 2 shows a structure of a radio frame in 3GPP LTE.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. Referring to FIG. 2, a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered from 0 to 19 slots. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다. The structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
도 3은 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.3 is an exemplary diagram illustrating a resource grid for one uplink slot in 3GPP LTE.
도 3을 참조하면, 상향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역(frequency domain)에서 NUL 자원블록(Resource Block, RB)을 포함한다. OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 시스템에 따라 SC-FDMA 심벌, OFDMA 심벌 또는 심벌 구간이라고 할 수 있다. 자원블록은 자원 할당 단위로 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯에 포함되는 자원블록의 수 NUL은 셀에서 설정되는 상향링크 전송 대역폭(bandwidth)에 종속한다. 자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 한다. Referring to FIG. 3, an uplink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and includes N UL resource blocks (RBs) in a frequency domain. do. The OFDM symbol is for representing one symbol period, and may be referred to as an SC-FDMA symbol, an OFDMA symbol, or a symbol period according to a system. The RB includes a plurality of subcarriers in the frequency domain in resource allocation units. The number N UL of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell. Each element on the resource grid is called a resource element.
여기서, 하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 부반송파의 수와 OFDM 심벌의 수는 이에 제한되는 것은 아니다. 자원블록이 포함하는 OFDM 심벌의 수 또는 부반송파의 수는 다양하게 변경될 수 있다. OFDM 심벌의 수는 사이클릭 프리픽스(Cyclic Prefix, 이하 CP)의 길이에 따라 변경될 수 있다. 예를 들어, 노멀(normal) CP의 경우 OFDM 심벌의 수는 7이고, 확장된(extended) CP의 경우 OFDM 심벌의 수는 6이다. Here, an exemplary resource block includes 7 × 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of subcarriers and the OFDM symbols in the resource block is equal to this. It is not limited. The number of OFDM symbols or the number of subcarriers included in the resource block may be variously changed. The number of OFDM symbols may change depending on the length of a cyclic prefix (CP). For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP.
도 3의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다. In 3GPP LTE of FIG. 3, a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
도 4는 3GPP LTE에서 상향링크 서브프레임의 구조의 예를 나타낸다. 4 shows an example of a structure of an uplink subframe in 3GPP LTE.
도 4를 참조하면, 상향링크 서브프레임은 상향링크 제어정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역과 상향링크 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터 영역으로 나눌 수 있다. 3GPP LTE(Release 8)에서는 단일 반송파 특성(single carrier property)을 유지하기 위해, 하나의 단말에게 할당되는 자원블록들은 주파수 영역에서 연속된다. 하나의 단말은 PUCCH와 PUSCH를 동시에 전송할 수 없다. LTE-A(Release 10)에서는 PUCCH와 PUSCH의 동시 전송(concurrent transmission)이 고려 중에 있다. Referring to FIG. 4, an uplink subframe may be divided into a control region to which a physical uplink control channel (PUCCH) carrying uplink control information is allocated and a data region to which a physical uplink shared channel (PUSCH) carrying uplink data is allocated. have. In 3GPP LTE (Release 8), in order to maintain a single carrier property, resource blocks allocated to one UE are contiguous in the frequency domain. One UE cannot transmit a PUCCH and a PUSCH at the same time. In LTE-A (Release 10), simultaneous transmission of PUCCH and PUSCH is under consideration.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 단말이 상향링크 제어정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득이 얻어질 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다. PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot. The frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. By transmitting uplink control information through different subcarriers over time, the UE may obtain a frequency diversity gain. m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(negative acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다. The uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / negative acknowledgment (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an SR radio resource allocation request (SR). scheduling request).
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(precoding matrix indicator), HARQ ACK/NACK, RI(rank indicator) 등이 있을 수 있다. 아니면, 상향링크 데이터는 제어정보만으로 구성될 수도 있다. PUSCH is mapped to an uplink shared channel (UL-SCH) which is a transport channel. The uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI. The transport block may be user information. Alternatively, the uplink data may be multiplexed data. The multiplexed data may be a multiplexed transport block and control information for the UL-SCH. For example, control information multiplexed with data may include a CQI, a precoding matrix indicator (PMI), an HARQ ACK / NACK, a rank indicator (RI), and the like. Or, the uplink data may consist of control information only.
이하, 데이터 전송 방법에 대해 상술한다. 이하의 내용은 단말이 기지국에게 전송하는 상향링크 데이터를 기준으로 설명되나, 기지국이 단말에게 전송하는 하향링크 데이터에도 그대로 적용 가능하다.Hereinafter, a data transmission method is explained in full detail. The following description will be described based on uplink data transmitted by the terminal to the base station, but can also be applied to downlink data transmitted by the base station to the terminal.
도 5는 데이터 전송 방법의 예를 나타낸 흐름도이다. 5 is a flowchart illustrating an example of a data transmission method.
도 5를 참조하면, 기지국(BS)은 단말(UE)에게 상향링크 그랜트(uplink grant)를 전송한다(S110). 단말은 기지국에게 상향링크 그랜트를 이용하여 상향링크 데이터를 전송한다(S120). 상향링크 그랜트는 PDCCH(Physical Downlink Control Channel) 상으로 전송될 수 있고, 상향링크 데이터는 PUSCH 상으로 전송될 수 있다. PDCCH가 전송되는 서브프레임과 PUSCH가 전송되는 서브프레임의 관계는 기지국과 단말 사이에 미리 정해 놓을 수 있다. 예를 들어, FDD(Frequency Division Duplex) 시스템에서, PDCCH가 n번 서브프레임을 통해 전송되면, PUSCH는 n+4번 서브프레임을 통해 전송될 수 있다. Referring to FIG. 5, the base station BS transmits an uplink grant to the terminal UE (S110). The terminal transmits uplink data using the uplink grant to the base station (S120). The uplink grant may be transmitted on a physical downlink control channel (PDCCH), and the uplink data may be transmitted on a PUSCH. The relationship between the subframe in which the PDCCH is transmitted and the subframe in which the PUSCH is transmitted may be previously defined between the base station and the terminal. For example, in a frequency division duplex (FDD) system, if a PDCCH is transmitted through subframe n, a PUSCH may be transmitted through subframe n + 4.
상향링크 그랜트는 상향링크 데이터 스케줄링을 위한 하향링크 제어정보이다. 상향링크 그랜트는 자원 할당 필드(resource allocation field)를 포함한다. 상향링크 그랜트는 주파수 홉핑(frequency hopping)이 수행되는지 여부를 지시하는 홉핑 플래그, 상향링크 그랜트와 다른 하향링크 제어정보를 구별하는 플래그(flag), 상향링크 데이터에 대한 전송 포맷을 지시하는 전송 포맷 필드, 상향링크 그랜트가 새로운 상향링크 데이터 전송을 위한 것인지, 상향링크 데이터의 재전송을 위한 것인지 여부를 지시하는 새 데이터 지시자(new data indicator, NDI), 상향링크 전력 제어를 위한 TPC(Transmit Power Control) 명령 필드, 복조 참조신호(demodulation reference signal, DM RS)의 CS(cyclic shift)를 지시하는 CS 필드 및 CQI 요청 여부를 지시하는 CQI 요청 지시자(CQI request indicator) 등을 더 포함할 수 있다. The uplink grant is downlink control information for uplink data scheduling. The uplink grant includes a resource allocation field. The uplink grant includes a hopping flag indicating whether frequency hopping is performed, a flag distinguishing an uplink grant from other downlink control information, and a transmission format field indicating a transmission format for uplink data. A new data indicator (NDI) indicating whether the uplink grant is for new uplink data transmission or retransmission of uplink data, and a transmit power control (TPC) command for uplink power control The field may further include a CS field indicating a cyclic shift (CS) of a demodulation reference signal (DM RS), a CQI request indicator indicating a CQI request, and the like.
자원 할당 필드는 상향링크 데이터 전송을 위한 무선 자원을 지시한다. 무선 자원은 시간-주파수 자원일 수 있다. 3GPP LTE에서 자원 할당 필드가 할당하는 무선 자원은 자원블록이다. 단말은 자원 할당 필드를 이용하여 상향링크 데이터 전송에 할당된 서브프레임 내 자원블록의 위치, 자원블록의 개수 등을 알 수 있다. The resource allocation field indicates a radio resource for uplink data transmission. The radio resource may be a time-frequency resource. The radio resource allocated by the resource allocation field in 3GPP LTE is a resource block. The UE may know the location of the resource block, the number of resource blocks, etc. in the subframe allocated to uplink data transmission using the resource allocation field.
홉핑 플래그가 주파수 홉핑을 지시하지 않는 경우, 단말이 서브프레임 내 제1 슬롯 및 제2 슬롯 각각에서 할당받는 자원블록은 주파수 영역에서 동일하다. 홉핑 플래그가 주파수 홉핑을 지시하는 경우, 단말이 서브프레임 내 제1 슬롯 및 제2 슬롯 각각에서 할당받는 자원블록은 주파수 영역에서 서로 다를 수 있다. If the hopping flag does not indicate frequency hopping, the resource blocks allocated by the UE in each of the first slot and the second slot in the subframe are the same in the frequency domain. When the hopping flag indicates frequency hopping, the resource blocks allocated by the UE in each of the first slot and the second slot in the subframe may be different in the frequency domain.
무선 자원 스케줄링(radio resource scheduling) 방식으로는 동적 스케줄링(dynamic scheduling) 방식, 지속적 스케줄링(persistent scheduling) 방식, 반지속적 스케줄링(semi-persistent scheduling, SPS) 방식 등이 있다. 무선 자원 스케줄링 방식이 지속적 스케줄링 방식 또는 반지속적 스케줄링 방식인 경우, 단말은 상향링크 그랜트 수신 없이도 상향링크 데이터를 전송할 수 있다. Radio resource scheduling methods include dynamic scheduling, persistent scheduling, and semi-persistent scheduling (SPS). If the radio resource scheduling scheme is a continuous scheduling scheme or a semi-persistent scheduling scheme, the terminal may transmit uplink data without receiving an uplink grant.
도 6은 노멀 CP의 경우, 데이터가 전송되는 무선 자원의 일 예를 나타낸다. 6 illustrates an example of a radio resource for transmitting data in the case of a normal CP.
도 6을 참조하면, 서브프레임은 제1 슬롯과 제2 슬롯을 포함한다. 제1 슬롯과 제2 슬롯 각각은 7 OFDM 심벌을 포함한다. 서브프레임 내 14 OFDM 심벌은 0부터 13까지 심벌 인덱스가 매겨진다. 심벌 인덱스가 3 및 10인 OFDM 심벌을 통해 참조신호가 전송된다. 참조신호가 전송되는 OFDM 심벌을 제외한 나머지 OFDM 심벌을 통해 데이터가 전송된다. 참조신호란 데이터를 복조하기 위한 채널 추정을 위해 사용되는 전송기와 수신기 모두가 알고 있는 신호를 말한다. Referring to FIG. 6, a subframe includes a first slot and a second slot. Each of the first slot and the second slot includes 7 OFDM symbols. 14 OFDM symbols in a subframe are symbol indexed from 0 to 13. Reference signals are transmitted over OFDM symbols having symbol indices of 3 and 10. Data is transmitted through the remaining OFDM symbols except for the OFDM symbol on which the reference signal is transmitted. The reference signal is a signal known to both the transmitter and the receiver used for channel estimation for demodulating data.
도 7은 확장된 CP의 경우, 데이터가 전송되는 무선 자원의 일 예를 나타낸다. 7 illustrates an example of a radio resource for transmitting data in the case of an extended CP.
도 7을 참조하면, 서브프레임은 제1 슬롯과 제2 슬롯을 포함한다. 제1 슬롯과 제2 슬롯 각각은 6 OFDM 심벌을 포함한다. 서브프레임 내 12 OFDM 심벌은 0부터 11까지 심벌 인덱스가 매겨진다. 심벌 인덱스가 2 및 8인 OFDM 심벌을 통해 참조신호가 전송된다. 참조신호가 전송되는 OFDM 심벌을 제외한 나머지 OFDM 심벌을 통해 데이터가 전송된다. Referring to FIG. 7, a subframe includes a first slot and a second slot. Each of the first slot and the second slot includes 6 OFDM symbols. 12 OFDM symbols in a subframe are indexed from 0 to 11 symbols. The reference signal is transmitted through an OFDM symbol having symbol indexes 2 and 8. Data is transmitted through the remaining OFDM symbols except for the OFDM symbol on which the reference signal is transmitted.
이하, 데이터 전송을 위한 OFDM 심벌은 데이터 심벌, 참조신호 전송을 위한 OFDM 심벌은 참조신호 심벌이라 한다. 도 6에서는 하나의 서브프레임 내 12개의 데이터 심벌과 2개의 참조신호 심벌이 있다. 도 7에서는 하나의 서브프레임 내 10개의 데이터 심벌과 2개의 참조신호 심벌이 있다. Hereinafter, an OFDM symbol for data transmission is referred to as a data symbol, and an OFDM symbol for reference signal transmission is referred to as a reference signal symbol. In FIG. 6, there are 12 data symbols and 2 reference signal symbols in one subframe. In FIG. 7, there are 10 data symbols and 2 reference signal symbols in one subframe.
도 6 및 7에 나타내지 않았으나, 서브프레임 내 OFDM 심벌을 통해 사운딩 참조신호(sounding reference signal, SRS)가 전송될 수도 있다. 예를 들어, 서브프레임 내 마지막 OFDM 심벌을 통해 사운딩 참조신호가 전송될 수 있다. 사운딩 참조신호는 상향링크 스케줄링을 위해 단말이 기지국으로 전송하는 참조신호이다. 기지국은 수신된 사운딩 참조신호를 통해 상향링크 채널을 추정하고, 추정된 상향링크 채널을 상향링크 스케줄링에 이용한다. 이하, 참조신호는 데이터 복조를 위한 복조 참조신호뿐 아니라, 사운딩 참조신호를 의미할 수 있다.Although not shown in FIGS. 6 and 7, a sounding reference signal (SRS) may be transmitted through an OFDM symbol in a subframe. For example, a sounding reference signal may be transmitted through the last OFDM symbol in the subframe. The sounding reference signal is a reference signal transmitted by the terminal to the base station for uplink scheduling. The base station estimates an uplink channel based on the received sounding reference signal and uses the estimated uplink channel for uplink scheduling. Hereinafter, the reference signal may mean not only a demodulation reference signal for data demodulation but also a sounding reference signal.
도 8은 전송기 구조의 일 예를 나타낸 블록도이다. 여기서, 전송기는 단말 또는 기지국의 일부분일 수 있다. 8 is a block diagram illustrating an example of a transmitter structure. Here, the transmitter may be part of the terminal or the base station.
도 8을 참조하면, 전송기(100)는 데이터 처리부(110), 참조신호 처리부(120) 및 RF(radio frequency)부(130)를 포함한다. RF부(130)는 데이터 처리부(110) 및 참조신호 처리부(120)와 연결된다. 데이터 처리부(110)는 데이터를 처리하여 데이터를 위한 베이스밴드 신호(baseband signal)를 생성한다. 참조신호 처리부(120)는 참조신호를 생성하고 처리하여, 참조신호를 위한 베이스밴드 신호를 생성한다. RF부(130)는 베이스밴드 신호(데이터를 위한 베이스밴드 신호 및/또는 참조신호를 위한 베이스밴드 신호)를 무선 신호(radio signal)로 변환하고, 상기 무선 신호를 전송한다. 이때, 베이스밴드 신호는 셀의 중심 주파수(center frequency)인 반송파 주파수(carrier frequency)로 업컨버젼(upconversion)되어 무선 신호로 변환될 수 있다. Referring to FIG. 8, the transmitter 100 includes a data processor 110, a reference signal processor 120, and a radio frequency (RF) unit 130. The RF unit 130 is connected to the data processor 110 and the reference signal processor 120. The data processor 110 processes the data to generate a baseband signal for the data. The reference signal processor 120 generates and processes a reference signal to generate a baseband signal for the reference signal. The RF unit 130 converts a baseband signal (a baseband signal for data and / or a baseband signal for a reference signal) into a radio signal and transmits the radio signal. In this case, the baseband signal may be upconverted to a carrier frequency, which is a center frequency of the cell, and then converted to a wireless signal.
도 9는 데이터 처리부 구조의 일 예를 나타낸 블록도이다. 여기서, 데이터 처리부는 전송기에 포함될 수 있다. 9 is a block diagram illustrating an example of a structure of a data processor. Here, the data processor may be included in the transmitter.
도 9를 참조하면, 데이터 처리부(110)는 DFT(Discrete Fourier Transform)부(111), 부반송파 맵퍼(112), IFFT(Inverse Fast Fourier Transform)부(113) 및 CP 삽입부(114)를 포함한다. 데이터 처리부(110)는 채널 코딩부(미도시) 및 변조기(미도시)를 더 포함할 수 있다. 채널 코딩부는 정보 비트들(information bits)에 채널 코딩을 수행하여 부호화된 비트(coded bit)를 생성한다. 상기 정보 비트들은 전송기로부터 전송되는 데이터라 할 수 있다. 변조기는 부호화된 비트를 신호 성상(signal constellation) 상의 위치를 표현하는 심벌로 맵핑하여 변조된 심벌들을 생성한다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation)일 수 있다. 변조된 심벌들은 DFT부(111)에 입력된다.Referring to FIG. 9, the data processor 110 includes a discrete fourier transform (DFT) unit 111, a subcarrier mapper 112, an inverse fast fourier transform (IFFT) unit 113, and a CP insertion unit 114. . The data processor 110 may further include a channel coding unit (not shown) and a modulator (not shown). The channel coding unit performs channel coding on information bits to generate coded bits. The information bits may be referred to as data transmitted from a transmitter. The modulator maps the encoded bit into a symbol representing a location on a signal constellation to produce modulated symbols. The modulation scheme is not limited and may be m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM). The modulated symbols are input to the DFT unit 111.
DFT부(111)는 입력되는 심벌들에 DFT를 수행하여 복소수 심벌들(complex-valued symbol)을 출력한다. 예를 들어, Ntx 심벌들이 입력되면, DFT 크기(size)는 Ntx이다(Ntx는 자연수). The DFT unit 111 outputs complex-valued symbols by performing a DFT on the input symbols. For example, when Ntx symbols are input, the DFT size is Ntx (Ntx is a natural number).
부반송파 맵퍼(112)는 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑시킨다. 복소수 심벌들은 데이터 전송을 위해 할당된 자원블록에 대응하는 자원요소들에 맵핑될 수 있다. IFFT부(113)는 입력되는 심벌에 대해 IFFT를 수행하여 시간 영역 신호인 데이터를 위한 베이스밴드 신호를 출력한다. IFFT 크기를 NFFT라 할때, NFFT는 채널 대역폭(channel bandwidth)에 의해 결정될 수 있다(NFFT는 자연수). CP 삽입부(114)는 데이터를 위한 베이스밴드 신호의 뒷부분 일부를 복사하여 데이터를 위한 베이스밴드 신호 앞에 삽입한다. CP 삽입을 통해 ISI(Inter Symbol Interference), ICI(Inter Carrier Interference)가 방지되어 다중 경로 채널에서도 직교성이 유지될 수 있다. The subcarrier mapper 112 maps the complex symbols to each subcarrier in the frequency domain. Complex symbols may be mapped to resource elements corresponding to resource blocks allocated for data transmission. The IFFT unit 113 performs an IFFT on the input symbol and outputs a baseband signal for data which is a time domain signal. When an IFFT size N FFT d, N FFT may be determined by the channel bandwidth (channel bandwidth) (N FFT is a natural number). The CP inserter 114 copies a part of the rear part of the baseband signal for data and inserts it in front of the baseband signal for data. By interpolating CP, Inter Symbol Interference (ISI) and Inter Carrier Interference (ICI) are prevented, so that orthogonality can be maintained even in a multipath channel.
이와 같이, DFT 확산(spreading) 후 IFFT가 수행되는 전송 방식을 SC-FDMA라 한다. SC-FDMA는 DFTS-OFDM(DFT spread-OFDM)이라고도 할 수 있다. SC-FDMA에서는 PAPR(peak-to-average power ratio) 또는 CM(cubic metric)이 낮아질 수 있다. SC-FDMA 전송 방식을 이용하는 경우, 전력 소모가 제한된 단말에서 전송전력 효율이 높아질 수 있다. 이에 따라, 사용자 수율(user throughpupt)이 높아질 수 있다. As such, a transmission scheme in which IFFT is performed after DFT spreading is called SC-FDMA. SC-FDMA may also be referred to as FTTS-OFDM (DFT spread-OFDM). In SC-FDMA, a peak-to-average power ratio (PAPR) or a cubic metric (CM) may be lowered. In the case of using the SC-FDMA transmission scheme, transmission power efficiency may be increased in a terminal with limited power consumption. Accordingly, user throughpupt may be high.
도 10은 부반송파 맵퍼가 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑하는 방식의 일 예를 나타낸다. 10 illustrates an example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
도 10을 참조하면, 부반송파 맵퍼는 DFT부로부터 출력된 복소수 심벌들을 주파수 영역에서 연속된 부반송파들에 맵핑한다. 복소수 심벌들이 맵핑되지 않는 부반송파에는 '0'이 삽입된다. 이를 집중된 맵핑(localized mapping)이라 한다. 3GPP LTE에서는 집중된 맵핑 방식이 사용된다. Referring to FIG. 10, the subcarrier mapper maps complex symbols output from the DFT unit to consecutive subcarriers in the frequency domain. '0' is inserted into a subcarrier to which complex symbols are not mapped. This is called localized mapping. In 3GPP LTE, a centralized mapping scheme is used.
도 11은 부반송파 맵퍼가 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑하는 방식의 다른 예를 나타낸다. 11 shows another example of a method in which the subcarrier mapper maps complex symbols to each subcarrier in the frequency domain.
도 11을 참조하면, 부반송파 맵퍼는 DFT부로부터 출력된 연속된 2개의 복소수 심벌들 사이마다 L-1개의 '0'을 삽입한다(L은 자연수). 즉, DFT부로부터 출력된 복소수 심벌들은 주파수 영역에서 등간격으로 분산된 부반송파들에 맵핑된다. 이를 분산된 맵핑(distributed mapping)이라 한다. Referring to FIG. 11, the subcarrier mapper inserts L-1 '0's between two consecutive complex symbols output from the DFT unit (L is a natural number). That is, the complex symbols output from the DFT unit are mapped to subcarriers distributed at equal intervals in the frequency domain. This is called distributed mapping.
부반송파 맵퍼가 도 10과 같이 집중된 맵핑 방식 또는 도 11과 같이 분산된 맵핑 방식을 사용하는 경우, 단일 반송파 특성이 유지된다. When the subcarrier mapper uses a centralized mapping scheme as shown in FIG. 10 or a distributed mapping scheme as shown in FIG. 11, a single carrier characteristic is maintained.
도 12는 데이터 처리부 구조의 다른 예를 나타낸 블록도이다. 여기서, 데이터 처리부는 전송기에 포함될 수 있다. 12 is a block diagram illustrating another example of a data processing unit structure. Here, the data processor may be included in the transmitter.
도 12를 참조하면, 데이터 처리부(210)는 DFT부(211), 부반송파 맵퍼(212), IFFT부(213) 및 CP 삽입부(214)를 포함한다. Referring to FIG. 12, the data processor 210 includes a DFT unit 211, a subcarrier mapper 212, an IFFT unit 213, and a CP inserter 214.
DFT부(211)로부터 출력되는 복소수 심벌들은 N개의 서브블록으로 나눈다(N은 자연수). 여기서, N개의 서브블록은 서브블록#1, 서브블록#2, ..., 서브블록#N으로 나타낼 수 있다. 부반송파 맵퍼(212)는 N개의 서브블록들을 주파수 영역에서 분산시켜 부반송파들에 맵핑한다. 연속된 2개의 서브블록들 사이마다 NULL이 삽입될 수 있다. 하나의 서브블록 내 복소수 심벌들은 주파수 영역에서 연속된 부반송파에 맵핑될 수 있다. 즉, 하나의 서브블록 내에서는 집중된 맵핑 방식이 사용될 수 있다. The complex symbols output from the DFT unit 211 are divided into N subblocks (N is a natural number). Herein, N subblocks may be represented by subblock # 1, subblock # 2, ..., subblock #N. The subcarrier mapper 212 distributes N subblocks in the frequency domain and maps the subcarriers to subcarriers. NULL may be inserted between every two consecutive subblocks. Complex symbols in one subblock may be mapped to consecutive subcarriers in the frequency domain. That is, the centralized mapping scheme may be used in one subblock.
도 12의 데이터 처리부는 단일 반송파(single carrier) 전송기 또는 다중 반송파(multi-carrier) 전송기에 모두 사용될 수 있다. 단일 반송파 전송기는 반송파가 하나인 전송기이고, 다중 반송파 전송기는 반송파가 복수인 전송기이다. 단일 반송파 전송기에 사용되는 경우, N개의 서브블록들이 모두 하나의 반송파에 대응된다. 다중 반송파 전송기에 사용되는 경우, N개의 서브블록들 중 각각의 서브블록마다 하나의 반송파에 대응될 수 있다. 또는, 다중 반송파 전송기에 사용되는 경우에도, N개의 서브블록들 중 복수의 서브블록들은 하나의 반송파에 대응될 수도 있다. The data processor of FIG. 12 may be used for both a single carrier transmitter or a multi-carrier transmitter. A single carrier transmitter is a transmitter with one carrier, and a multicarrier transmitter is a transmitter with multiple carriers. When used in a single carrier transmitter, all N subblocks correspond to one carrier. When used in a multi-carrier transmitter, one subcarrier may correspond to each subblock among N subblocks. Alternatively, even when used in a multi-carrier transmitter, a plurality of subblocks among N subblocks may correspond to one carrier.
그런데, 도 12의 데이터 처리부에서는 하나의 IFFT부를 통해 시간 영역 신호가 생성된다. 따라서, 도 12의 데이터 처리부가 다중 반송파 전송기에 사용되기 위해서는 연속된 반송파 할당(contiguous carrier allocation) 상황에서 인접한 반송파 간 부반송파 간격이 정렬(alignment)되어야 한다.In the data processor of FIG. 12, a time domain signal is generated through one IFFT unit. Accordingly, in order for the data processor of FIG. 12 to be used in a multicarrier transmitter, subcarrier spacing between adjacent carriers must be aligned in a continuous carrier allocation situation.
도 13은 데이터 처리부 구조의 또 다른 예를 나타낸 블록도이다. 여기서, 데이터 처리부는 다중 반송파 전송기에 포함될 수 있다. 13 is a block diagram illustrating still another example of a data processing unit structure. Here, the data processor may be included in the multi-carrier transmitter.
도 13을 참조하면, 데이터 처리부(310)는 DFT부(311), 부반송파 맵퍼(312), 복수의 IFFT부(313-1, 313-2, ...,313-N) 및 CP 삽입부(214)를 포함한다(N은 자연수). N개의 서브블록들 중 각각의 서브블록마다 개별적으로 IFFT가 수행된다. 제n IFFT부(313-n)는 서브블록#n에 IFFT를 수행하여 제n 베이스밴드 신호를 출력한다(n=1,2,..,N). 제n베이스밴드 신호에는 제n 반송파(fn) 신호가 곱해져 제n 무선 신호가 생성된다. N개의 서브블록들로부터 생성된 N개의 무선 신호들은 더해진 후, CP 삽입부(214)에 의해 CP가 삽입된다. Referring to FIG. 13, the data processor 310 may include a DFT unit 311, a subcarrier mapper 312, a plurality of IFFT units 313-1, 313-2,..., 313 -N and a CP insertion unit ( 214), where N is a natural number. IFFT is performed separately for each subblock among the N subblocks. The nth IFFT unit 313-n performs an IFFT on subblock #n and outputs an nth baseband signal (n = 1, 2,..., N). The nth baseband signal is multiplied by an nth carrier f n signal to generate an nth radio signal. After the N radio signals generated from the N subblocks are added, a CP is inserted by the CP inserting unit 214.
도 13의 데이터 처리부는 전송기가 할당받은 반송파들이 인접하지 않는 불연속된 반송파 할당(non-contiguous carrier allocation) 상황에서 사용될 수 있다. The data processor of FIG. 13 may be used in a non-contiguous carrier allocation situation in which carriers allocated by the transmitter are not adjacent to each other.
도 12 및 13과 같이 DFT부로부터 출력되는 심벌들이 복수의 서브블록으로 나누어 처리되는 방식을 클러스터된(clustered) SC-FDMA라 한다. 12 and 13, a method in which symbols output from the DFT unit are divided into a plurality of subblocks and processed is referred to as a clustered SC-FDMA.
도 14는 데이터 처리부 구조의 또 다른 예를 나타낸 블록도이다. 여기서, 데이터 처리부는 다중 반송파 전송기에 포함될 수 있다. 14 is a block diagram illustrating another example of a data processing unit structure. Here, the data processor may be included in the multi-carrier transmitter.
도 14를 참조하면, 데이터 처리부(410)는 코드 블록 분할부(411), 청크(chunk) 분할부(412), 복수의 채널 코딩부(413-1,...,413-N), 복수의 변조기(414-1,...,414-N), 복수의 DFT부(415-1,...,415-N), 복수의 부반송파 맵퍼(416-1,...,416-N), 복수의 IFFT부(417-1,...,417-N) 및 CP 삽입부(418)를 포함한다(N은 자연수). 여기서, N은 다중 반송파 전송기가 사용하는 다중 반송파의 개수일 수 있다. Referring to FIG. 14, the data processor 410 includes a code block divider 411, a chunk divider 412, a plurality of channel coding units 413-1,. Modulators 414-1, ..., 414-N, a plurality of DFT units 415-1, ..., 415-N, a plurality of subcarrier mappers 416-1, ..., 416-N ), A plurality of IFFT units 417-1,..., 417 -N and a CP insertion unit 418 (N is a natural number). Here, N may be the number of multicarriers used by the multicarrier transmitter.
코드 블록 분할부(411)는 전송 블록을 복수의 코드 블록으로 분할한다. 청크 분할부(412)는 코드 블록을 복수의 청크로 분할한다. 여기서, 코드 블록은 다중 반송파 전송기로부터 전송되는 데이터라 할 수 있고, 청크는 다중 반송파 중 하나의 반송파를 통해 전송되는 데이터 조각이라 할 수 있다. 데이터 처리부(410)는 청크 단위로 DFT를 수행한다. 데이터 처리부(410)는 불연속된 반송파 할당 상황 또는 연속된 반송파 할당 상황에서 모두 사용될 수 있다. 도 14와 같이 청크 단위로 DFT가 수행되는 전송 방식을 청크 특정(chunk specific) DFTS-OFDM 또는 N×SC-FDMA라 한다. The code block dividing unit 411 divides the transport block into a plurality of code blocks. The chunk divider 412 divides the code block into a plurality of chunks. Here, the code block may be referred to as data transmitted from the multicarrier transmitter, and the chunk may be referred to as a piece of data transmitted through one carrier of the multicarrier. The data processor 410 performs a DFT in chunk units. The data processor 410 may be used both in a discontinuous carrier allocation situation or in a continuous carrier allocation situation. A transmission scheme in which DFT is performed in chunks as shown in FIG. 14 is referred to as chunk specific DFTS-OFDM or N × SC-FDMA.
이하, OFDM 심벌은 OFDMA, SC-FDMA, 클러스터된 DFTS-OFDM 또는 청크 특정 DFTS-OFDM 전송 방식 등이 적용되는 심벌을 의미한다. Hereinafter, the OFDM symbol refers to a symbol to which OFDMA, SC-FDMA, clustered DFTS-OFDM, or chunk-specific DFTS-OFDM transmission scheme is applied.
도 15는 참조신호 처리부의 예를 나타내는 블록도이다. 여기서, 참조신호 처리부는 전송기에 포함될 수 있다. 15 is a block diagram illustrating an example of a reference signal processing unit. Here, the reference signal processor may be included in the transmitter.
도 15를 참조하면, 참조신호 처리부(120)는 참조신호 시퀀스 생성기(121), 부반송파 맵퍼(122), IFFT부(123) 및 CP 삽입부(124)를 포함한다. Referring to FIG. 15, the reference signal processor 120 includes a reference signal sequence generator 121, a subcarrier mapper 122, an IFFT unit 123, and a CP insertion unit 124.
참조신호 시퀀스 생성기(121)는 복소수 요소들로 구성된 참조신호 시퀀스를 생성한다. 부반송파 맵퍼(122)는 참조신호 시퀀스를 구성하는 복소수 요소들을 각 부반송파에 맵핑한다. 복소수 요소들은 서브프레임 내 복조 참조신호 심벌의 부반송파들에 맵핑된다(도 6 및 7 참조). 3GPP LTE에서는 집중된 맵핑 방식이 사용되나, 부반송파 맵핑 방식이 집중된 맵핑 방식에 제한되는 것은 아니다. 부반송파 맵핑 방식에는 분산된 맵핑 방식, 인터리브드(interleaved) 맵핑 방식, 블록 레벨 인터리브드 맵핑 방식, 랜덤 할당 맵핑 방식 등이 사용될 수도 있다. The reference signal sequence generator 121 generates a reference signal sequence composed of complex elements. The subcarrier mapper 122 maps the complex elements constituting the reference signal sequence to each subcarrier. Complex elements are mapped to subcarriers of a demodulation reference signal symbol in a subframe (see FIGS. 6 and 7). In 3GPP LTE, a centralized mapping scheme is used, but the subcarrier mapping scheme is not limited to the centralized mapping scheme. The subcarrier mapping scheme may be a distributed mapping scheme, an interleaved mapping scheme, a block level interleaved mapping scheme, a random allocation mapping scheme, or the like.
IFFT(123)는 입력되는 심벌에 대해 IFFT를 수행하여 시간 영역 신호인 참조신호를 위한 베이스밴드 신호를 출력한다. CP 삽입부(124)는 참조신호를 위한 베이스밴드 신호의 뒷부분 일부를 복사하여 참조신호를 위한 베이스밴드 신호 앞에 삽입한다. The IFFT 123 performs an IFFT on an input symbol and outputs a baseband signal for a reference signal which is a time domain signal. The CP inserting unit 124 copies a part of the rear part of the baseband signal for the reference signal and inserts it before the baseband signal for the reference signal.
참조신호 처리부가 포함하는 부반송파 맵퍼, IFFT부 및 CP 삽입부는 데이터 처리부가 포함하는 부반송파 맵퍼, IFFT부 및 CP 삽입부와 동일할 수 있다. 참조신호 처리부와 데이터 처리부는 시간에 따른 스위칭 동작을 통해 부반송파 맵퍼, IFFT부 및 CP 삽입부를 공유할 수 있다. The subcarrier mapper, the IFFT unit, and the CP inserter included in the reference signal processor may be the same as the subcarrier mapper, the IFFT unit, and the CP inserter included in the data processor. The reference signal processor and the data processor may share the subcarrier mapper, the IFFT unit, and the CP inserter through a switching operation over time.
이하, 참조신호 시퀀스에 대해 상술한다. Hereinafter, the reference signal sequence will be described in detail.
참조신호 시퀀스는 특별한 제한없이, 임의의 시퀀스가 사용될 수 있다. 참조신호 시퀀스는 PSK(Phase Shift Keying) 기반의 컴퓨터를 통해 생성된 시퀀스(PSK-based computer generated sequence)를 사용할 수 있다. PSK의 예로는 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying) 등이 있다. 또는, 참조신호 시퀀스는 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스를 사용할 수 있다. CAZAC 시퀀스의 예로는 ZC(Zadoff-Chu) 기반 시퀀스(ZC-based sequence), 순환 확장(cyclic extension)된 ZC 시퀀스(ZC sequence with cyclic extension), 절단(truncation) ZC 시퀀스(ZC sequence with truncation) 등이 있다. 또는, 참조신호 시퀀스는 PN(pseudo-random) 시퀀스를 사용할 수 있다. PN 시퀀스의 예로는 m-시퀀스, 컴퓨터를 통해 생성된 시퀀스, 골드(Gold) 시퀀스, 카사미(Kasami) 시퀀스 등이 있다. 또, 참조신호 시퀀스는 순환 쉬프트된 시퀀스(cyclically shifted sequence)를 이용할 수 있다. As the reference signal sequence, any sequence may be used without particular limitation. The reference signal sequence may use a PSK-based computer generated sequence. Examples of PSKs include binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). Alternatively, the reference signal sequence may use a constant amplitude zero auto-correlation (CAZAC) sequence. Examples of CAZAC sequences are ZC-based sequences, ZC sequences with cyclic extensions, ZC sequences with truncation, etc. There is this. Alternatively, the reference signal sequence may use a pseudo-random (PN) sequence. Examples of PN sequences include m-sequences, computer generated sequences, Gold sequences, and Kasami sequences. In addition, the reference signal sequence may use a cyclically shifted sequence.
이하, 참조신호 시퀀스로 순환 쉬프트 시퀀스를 이용하는 경우를 상술한다. 순환 쉬프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 쉬프트시켜 생성할 수 있다. 다양한 종류의 시퀀스가 기본 시퀀스로 사용될 수 있다. 예를 들어, PN 시퀀스, ZC 시퀀스와 같은 잘 알려진 시퀀스를 기본 시퀀스로 사용할 수 있다. 또는, 컴퓨터를 통해 생성된 CAZAC 시퀀스를 사용할 수 있다. 또는, 기본 시퀀스의 길이에 따라 다른 방법으로 기본 시퀀스가 생성될 수 있다. Hereinafter, the case where the cyclic shift sequence is used as the reference signal sequence will be described in detail. The cyclically shifted sequence may be generated by cyclically shifting a base sequence by a specific cyclic shift amount. Various kinds of sequences can be used as the base sequence. For example, a well-known sequence such as a PN sequence or a ZC sequence can be used as the base sequence. Alternatively, a computer generated CAZAC sequence may be used. Alternatively, the base sequence may be generated in different ways depending on the length of the base sequence.
기본 시퀀스는 ru,v(n)으로 나타낼 수 있다. 여기서, u ∈ {0,1,...,29}는 시퀀스 그룹 번호(sequence group number)이고, v는 그룹 내 기본 시퀀스 번호(base sequence number)이고, n은 요소 인덱스로 0≤n≤M-1, M은 기본 시퀀스의 길이이다. 기본 시퀀스의 길이 M은 서브프레임 내 하나의 복조 참조신호 심벌이 포함하는 부반송파 개수와 동일할 수 있다. 예를 들어, 하나의 자원블록이 12 부반송파를 포함하고, 데이터 전송을 위해 3개의 자원블록을 할당받은 경우, 기본 시퀀스의 길이 M은 36이 된다. The basic sequence may be represented by r u, v (n). Where u ∈ {0,1, ..., 29} is a sequence group number, v is a base sequence number in the group, and n is an element index, 0≤n≤M -1, M is the length of the base sequence. The length M of the basic sequence may be equal to the number of subcarriers included in one demodulation reference signal symbol in a subframe. For example, if one resource block includes 12 subcarriers and three resource blocks are allocated for data transmission, the length M of the base sequence is 36.
다음 수학식은 기본 시퀀스 ru,v(n)의 일 예를 나타낸다. The following equation shows an example of the basic sequence r u, v (n).
수학식 1
Figure PCTKR2009006774-appb-M000001
Equation 1
Figure PCTKR2009006774-appb-M000001
여기서, xq는 원시 인덱스(root index)가 q인 ZC 시퀀스이고, N은 xq의 길이이다. 즉, 기본 시퀀스 ru,v(n)은 xq가 순환 확장된 형태이다. 하나의 자원블록이 12 부반송파를 포함한다고 할 때, 기본 시퀀스의 길이 M은 36 이상일 수 있다. Where x q is a ZC sequence whose root index is q and N is the length of x q . That is, the basic sequence r u, v (n) has a form in which x q is cyclically expanded. When one resource block includes 12 subcarriers, the length M of the base sequence may be 36 or more.
원시 인덱스가 q인 ZC 시퀀스 xq(m)은 다음 수학식과 같이 정의될 수 있다.The ZC sequence x q (m) having the raw index q may be defined as in the following equation.
수학식 2
Figure PCTKR2009006774-appb-M000002
Equation 2
Figure PCTKR2009006774-appb-M000002
Figure PCTKR2009006774-appb-I000001
Figure PCTKR2009006774-appb-I000001
여기서, N은 xq(m)의 길이이고, m은 0≤m≤N-1이다. N은 기본 시퀀스의 길이 M보다 작은 자연수 중 가장 큰 소수(prime number)일 수 있다. q는 N 이하의 자연수이고, q와 N은 서로소(relatively prime)이다. N이 소수(prime number)라면, 원시 인덱스 q의 개수는 N-1이 된다. Where N is the length of x q (m) and m is 0 ≦ m ≦ N−1. N may be the largest prime number among natural numbers smaller than the length M of the base sequence. q is a natural number less than or equal to N, and q and N are relatively prime. If N is a prime number, the number of raw indexes q is N-1.
원시 인덱스 q는 다음 수학식과 같이 나타낼 수 있다. The raw index q can be expressed as the following equation.
수학식 3
Figure PCTKR2009006774-appb-M000003
Equation 3
Figure PCTKR2009006774-appb-M000003
Figure PCTKR2009006774-appb-I000002
Figure PCTKR2009006774-appb-I000002
하나의 자원블록이 12 부반송파를 포함한다고 할 때, 기본 시퀀스의 길이 M이 12 또는 24인 경우에는 컴퓨터를 통해 생성되는 CAZAC 시퀀스가 기본 시퀀스로 사용될 수 있다. 기본 시퀀스의 길이 M이 12 또는 24인 경우, 각 그룹은 하나의 기본 시퀀스만을 포함하므로 그룹 내 기본 시퀀스 번호 v는 0이다. When one resource block includes 12 subcarriers, when the length M of the base sequence is 12 or 24, a CAZAC sequence generated through a computer may be used as the base sequence. If the length M of the base sequence is 12 or 24, each group contains only one base sequence, so the base sequence number v in the group is zero.
기본 시퀀스의 길이 M이 12 또는 24인 경우, 기본 시퀀스 ru,v(n)의 예는 다음 수학식과 같이 나타낼 수 있다. When the length M of the base sequence is 12 or 24, an example of the base sequence r u, v (n) may be expressed by the following equation.
수학식 4
Figure PCTKR2009006774-appb-M000004
Equation 4
Figure PCTKR2009006774-appb-M000004
그룹 번호 u에 따라 다른 기본 시퀀스가 정의된다. Different base sequences are defined according to the group number u.
M=12일 때, b(n)은 다음 표와 같이 정의될 수 있다.When M = 12, b (n) may be defined as shown in the following table.
표 1
Figure PCTKR2009006774-appb-T000001
Table 1
Figure PCTKR2009006774-appb-T000001
M=24일 때, b(n)은 다음 표와 같이 정의될 수 있다.When M = 24, b (n) can be defined as shown in the following table.
표 2
Figure PCTKR2009006774-appb-T000002
TABLE 2
Figure PCTKR2009006774-appb-T000002
기본 시퀀스 ru,v(n)는 시퀀스 그룹 번호 u 및 기본 시퀀스 번호 v에 따라 달라질 수 있다. 시퀀스 그룹 번호 u 및 그룹 내 기본 시퀀스 번호 v는 각각 반정적(semi-static)으로 변하거나, 슬롯마다 변할 수 있다. 시퀀스 그룹 번호 u가 슬롯마다 변하는 것을 그룹 홉핑(group hopping)이라 하고, 그룹 내 기본 시퀀스 번호 v가 슬롯마다 변하는 것을 시퀀스 홉핑(sequece hopping)이라 한다. 그룹 홉핑 여부 및 시퀀스 홉핑 여부 각각은 물리 계층(physical layer)의 상위 계층(higher layer)에 의해 설정될 수 있다. 예를 들어, 상위 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행하는 RRC(Radio Resource Control)일 수 있다. The base sequence r u, v (n) may vary depending on the sequence group number u and the base sequence number v. The sequence group number u and the base sequence number v in the group may each change semi-statically or slot by slot. When the sequence group number u changes from slot to slot is called group hopping, and the basic sequence number v in the group changes from slot to slot is called sequence hopping. Each of group hopping and sequence hopping may be set by a higher layer of a physical layer. For example, the upper layer may be RRC (Radio Resource Control) which plays a role of controlling radio resources between the terminal and the network.
시퀀스 그룹 번호 u는 다음 수학식과 같이 결정될 수 있다. The sequence group number u may be determined as in the following equation.
수학식 5
Figure PCTKR2009006774-appb-M000005
Equation 5
Figure PCTKR2009006774-appb-M000005
여기서, fgh(ns)는 그룹 홉핑 패턴이고, ns는 무선 프레임 내 슬롯 번호이고, fss는 시퀀스 쉬프트 패턴이다. 이때, 17개의 다른 홉핑 패턴과 30개의 다른 시퀀스 쉬프트 패턴이 존재한다. Here, f gh (n s) is a group of hopping patterns and, n s is a slot number within a radio frame, f ss is a sequence shift pattern. At this time, there are 17 different hopping patterns and 30 different sequence shift patterns.
그룹 홉핑이 설정되지 않은 경우, 그룹 홉핑 패턴 fgh(ns)는 0이다. 그룹 홉핑이 설정된 경우, 그룹 홉핑 패턴 fgh(ns)는 다음 수학식과 같이 나타낼 수 있다. If group hopping is not set, the group hopping pattern f gh (n s ) is zero. When group hopping is set, the group hopping pattern f gh (n s ) can be expressed by the following equation.
수학식 6
Figure PCTKR2009006774-appb-M000006
Equation 6
Figure PCTKR2009006774-appb-M000006
여기서, c(n)은 PN 시퀀스이다. c(n)은 길이-31의 골드 시퀀스에 의해 정의될 수 있다. 다음 수학식은 시퀀스 c(n)의 예를 나타낸다. Where c (n) is a PN sequence. c (n) may be defined by a gold sequence of length-31. The following equation shows an example of the sequence c (n).
수학식 7
Figure PCTKR2009006774-appb-M000007
Equation 7
Figure PCTKR2009006774-appb-M000007
여기서, NC=1600이고, x1(i)은 제1 m-시퀀스이고, x2(i)는 제2 m-시퀀스이다. 예를 들어, 제1 m-시퀀스는 매 무선 프레임마다 x1(0)=1, x1(n)=0(n=1,2,...,30)으로 초기화(initialization)될 수 있다. 또, 제2 m-시퀀스는 매 무선 프레임마다 셀 ID(identity)에 따라 초기화(initialization)될 수 있다. 다음 수학식은 제2 m-시퀀스의 초기화의 예이다.Wherein N C = 1600, x 1 (i) is the first m-sequence and x 2 (i) is the second m-sequence. For example, the first m-sequence may be initialized to x 1 (0) = 1, x 1 (n) = 0 (n = 1, 2, ..., 30) every radio frame. . In addition, the second m-sequence may be initialized according to a cell identity for every radio frame. The following equation is an example of initialization of the second m-sequence.
수학식 8
Figure PCTKR2009006774-appb-M000008
Equation 8
Figure PCTKR2009006774-appb-M000008
여기서, Ncell_ID는 셀 ID이다. Here, N cell_ID is a cell ID.
시퀀스 쉬프트 패턴 fss는 다음 수학식과 같이 나타낼 수 있다. The sequence shift pattern f ss may be expressed as in the following equation.
수학식 9
Figure PCTKR2009006774-appb-M000009
Equation 9
Figure PCTKR2009006774-appb-M000009
여기서, d ∈ {0,1,...,29}는 그룹 할당 파라미터이다. 그룹 할당 파라미터 d는 RRC와 같은 상위 계층에 의해 설정될 수 있다. 그룹 할당 파라미터는 셀 내 모든 단말에 공통되는 공용(common) 파라미터일 수 있다. Here, d ∈ {0, 1, ..., 29} is a group assignment parameter. The group assignment parameter d may be set by a higher layer such as RRC. The group assignment parameter may be a common parameter common to all terminals in the cell.
다음, 그룹 내 기본 시퀀스 번호 v에 대해 설명한다. 하나의 자원블록이 12 부반송파를 포함한다고 할 때, 기본 시퀀스의 길이 M이 72 미만인 경우, 각 그룹은 하나의 기본 시퀀스(v=0)만을 포함한다. 이 경우, 시퀀스 홉핑이 적용되지 않는다. Next, the basic sequence number v in the group will be described. When one resource block includes 12 subcarriers, when the length M of the base sequence is less than 72, each group includes only one base sequence (v = 0). In this case, sequence hopping is not applied.
하나의 자원블록이 12 부반송파를 포함한다고 할 때, 기본 시퀀스의 길이 M이 72 이상인 경우, 각 그룹은 2 기본 시퀀스(v=0,1)들을 포함한다. 이 경우, 그룹 홉핑이 설정되지 않고 시퀀스 홉핑이 설정된 경우, 그룹 내 기본 시퀀스 번호 v가 슬롯마다 변하는 시퀀스 홉핑이 수행될 수 있다. 시퀀스 홉핑이 수행되지 않는 경우, 그룹 내 기본 시퀀스 번호 v는 0으로 고정될 수 있다. When one resource block includes 12 subcarriers, when the length M of the base sequence is 72 or more, each group includes 2 base sequences (v = 0, 1). In this case, when group hopping is not set and sequence hopping is set, sequence hopping may be performed in which the basic sequence number v in the group changes from slot to slot. If sequence hopping is not performed, the base sequence number v in the group may be fixed to zero.
시퀀스 홉핑이 수행될 때, 그룹 내 기본 시퀀스 번호 v는 다음 수학식과 같이 나타낼 수 있다. When sequence hopping is performed, the basic sequence number v in the group can be expressed as the following equation.
수학식 10
Figure PCTKR2009006774-appb-M000010
Equation 10
Figure PCTKR2009006774-appb-M000010
여기서, c(n)은 PN 시퀀스로 수학식 7과 같을 수 있다. 예를 들어, 제1 m-시퀀스는 매 무선 프레임마다 x1(0)=1, x1(n)=0(n=1,2,...,30)으로 초기화(initialization)될 수 있다. 또, 제2 m-시퀀스는 매 무선 프레임마다 셀 ID(identity) 및 시퀀스 쉬프트 패턴 fss에 따라 초기화(initialization)될 수 있다. 다음 수학식은 제2 m-시퀀스의 초기화의 예이다.Here, c (n) may be the same as Equation 7 as the PN sequence. For example, the first m-sequence may be initialized to x 1 (0) = 1, x 1 (n) = 0 (n = 1, 2, ..., 30) every radio frame. . In addition, the second m-sequence may be initialized according to a cell ID and a sequence shift pattern f ss for every radio frame. The following equation is an example of initialization of the second m-sequence.
수학식 11
Figure PCTKR2009006774-appb-M000011
Equation 11
Figure PCTKR2009006774-appb-M000011
기본 시퀀스 ru,v(n)을 다음 수학식과 같이 순환 쉬프트시켜 순환 쉬프트된 시퀀스 ru,v(n, Ics)을 생성할 수 있다. The cyclically shifted sequence r u, v (n, Ics) may be generated by circularly shifting the basic sequence r u, v (n) as shown in the following equation.
수학식 12
Figure PCTKR2009006774-appb-M000012
Equation 12
Figure PCTKR2009006774-appb-M000012
여기서, 2πIcs/12는 CS 양이고, Ics는 CS 양을 나타내는 CS 인덱스이다(0≤Ics<12, Ics는 정수). Here, 2πIcs / 12 is a CS amount, and Ics is a CS index indicating a CS amount (0 ≦ Ics <12, and Ics is an integer).
CS 인덱스 Ics는 셀 특정(cell-specific) CS 파라미터, 단말 특정(UE-specific) CS 파라미터 및 홉핑 CS 파라미터에 따라 결정될 수 있다. 셀 특정 CS 파라미터는 셀 마다 다른 값을 가지나 셀 내 모든 단말에 공통된다. 단말 특정 CS 파라미터는 셀 내 단말마다 다른 값을 갖을 수 있다. 홉핑 CS 파라미터는 슬롯마다 다른 값을 갖을 수 있다. 따라서, CS 인덱스는 슬롯마다 변할 수 있다. CS 인덱스가 슬롯마다 변하여 CS 양이 변하는 것을 CS 양의 슬롯 레벨 홉핑이라 한다. The CS index Ics may be determined according to a cell-specific CS parameter, a UE-specific CS parameter, and a hopping CS parameter. The cell specific CS parameter has a different value for each cell but is common to all terminals in the cell. The UE-specific CS parameter may have a different value for each UE in a cell. The hopping CS parameter may have a different value for each slot. Thus, the CS index may change from slot to slot. The change in the CS amount by changing the CS index for each slot is called CS level slot level hopping.
CS 인덱스 Ics는 다음 수학식과 같이 나타낼 수 있다. The CS index Ics may be expressed as the following equation.
수학식 13
Figure PCTKR2009006774-appb-M000013
Equation 13
Figure PCTKR2009006774-appb-M000013
여기서, Ia는 셀 특정 CS 파라미터에 의해 결정되고, Ib는 단말 특정 CS 파라미터이고, I(ns)는 홉핑 CS 파라미터이다. Here, Ia is determined by a cell specific CS parameter, Ib is a terminal specific CS parameter, and I (n s ) is a hopping CS parameter.
셀 특정 CS 파라미터는 RRC와 같은 상위 계층에 의해 설정될 수 있다. 다음 표는 셀 특정 CS 파라미터에 의해 결정되는 Ia의 예를 나타낸다. The cell specific CS parameter may be set by a higher layer such as RRC. The following table shows examples of Ia determined by cell specific CS parameters.
표 3
Figure PCTKR2009006774-appb-T000003
TABLE 3
Figure PCTKR2009006774-appb-T000003
단말 특정 CS 파라미터 Ib는 상향링크 그랜트의 CS 필드에 의해 지시될 수 있다. 만일, 데이터 전송을 위한 무선 자원 스케줄링 방식이 지속적 스케줄링 방식 또는 반지속적 스케줄링 방식인 경우, 데이터 전송에 대응하는 상향링크 그랜트가 없는 경우, 단말 특정 CS 파라미터 Ib는 0으로 할 수 있다. The UE-specific CS parameter Ib may be indicated by the CS field of the uplink grant. If the radio resource scheduling method for the data transmission is the continuous scheduling method or the ringless scheduling method, when there is no uplink grant corresponding to the data transmission, the terminal specific CS parameter Ib may be zero.
다음 표는 CS 필드에 의해 결정되는 단말 특정 CS 파라미터 Ib의 예를 나타낸다. The following table shows an example of the UE-specific CS parameter Ib determined by the CS field.
표 4
Figure PCTKR2009006774-appb-T000004
Table 4
Figure PCTKR2009006774-appb-T000004
홉핑 CS 파라미터 I(ns)는 다음 수학식과 같이 나타낼 수 있따. The hopping CS parameter I (n s ) can be expressed by the following equation.
수학식 14
Figure PCTKR2009006774-appb-M000014
Equation 14
Figure PCTKR2009006774-appb-M000014
여기서, c(n)은 PN 시퀀스이고, Nsymb은 슬롯이 포함하는 OFDM 심벌의 개수이다. PN 시퀀스 c(n)은 수학식 7과 같을 수 있다. 예를 들어, 제1 m-시퀀스는 매 무선 프레임마다 x1(0)=1, x1(n)=0(n=1,2,...,30)으로 초기화(initialization)될 수 있다. 또, 제2 m-시퀀스는 매 무선 프레임마다 셀 ID(identity) 및 시퀀스 쉬프트 패턴 fss에 따라 초기화(initialization)될 수 있다. 제2 m-시퀀스의 초기화는 수학식 11과 같을 수 있다. Here, c (n) is a PN sequence and N symb is the number of OFDM symbols included in a slot. The PN sequence c (n) may be as shown in Equation 7. For example, the first m-sequence may be initialized to x 1 (0) = 1, x 1 (n) = 0 (n = 1, 2, ..., 30) every radio frame. . In addition, the second m-sequence may be initialized according to a cell ID and a sequence shift pattern f ss for every radio frame. The initialization of the second m-sequence may be as in Equation (11).
이와 같이, 생성된 복소수 요소들로 구성된 참조신호 시퀀스는 서브프레임 내 참조신호 심벌의 부반송파들에 맵핑된다. As such, the reference signal sequence consisting of the generated complex elements is mapped to subcarriers of the reference signal symbol in the subframe.
채널 추정 성능이 좋아야 무선 통신의 신뢰도(reliability)를 높일 수 있다. 참조신호는 시간 영역으로 코히어런트 타임(coherent time)을 고려하고, 주파수 영역으로는 코히어런트 대역폭(coherent bandwidth)을 고려하여 할당되어야 한다. 코히어런트 타임은 도플러 확산(Doppler spread)에 반비례한다. 코히어런트 타임을 이용하여 채널이 시간 선택적 채널(time selective channel)인지, 시간 플랫 채널(time flat channel)인지 판단할 수 있다. 일반적으로, 단말이 고속으로 이동하는 경우, 무선 통신 환경은 시간 선택적 채널이 된다. 예를 들어, 단말이 100 km/h(kilometers per hour) 이상의 속도로 이동하는 경우, 고속이라 할 수 있다. 시간 선택적 채널의 경우, 시간 영역으로 참조신호가 더 많이 사용되는 것이 채널 추정 성능을 향상시킬 수 있다. 코히어런트 대역폭은 지연 확산(delay spread)에 반비례한다. 코히어런트 대역폭을 이용하여 채널이 주파수 선택적 채널(frequency selective channel)인지, 주파수 플랫 채널(frequency flat channel)인지 판단할 수 있다. 예를 들어, 주파수 선택적 채널의 경우, 주파수 영역으로 참조신호가 많이 사용되어야 채널 추정 성능을 향상시킬 수 있다. Good channel estimation performance can increase the reliability of wireless communication. The reference signal should be allocated in consideration of coherent time in the time domain and in consideration of coherent bandwidth in the frequency domain. Coherent time is inversely proportional to Doppler spread. The coherent time may be used to determine whether the channel is a time selective channel or a time flat channel. In general, when the terminal moves at a high speed, the wireless communication environment becomes a time selective channel. For example, when the terminal moves at a speed of 100 km / h (kilometers per hour) or more, it may be referred to as high speed. In the case of a time-selective channel, more reference signals are used in the time domain to improve channel estimation performance. Coherent bandwidth is inversely proportional to delay spread. The coherent bandwidth may be used to determine whether the channel is a frequency selective channel or a frequency flat channel. For example, in the case of a frequency selective channel, channel estimation performance can be improved when a reference signal is used a lot in the frequency domain.
그런데, 3GPP LTE에서의 상향링크를 위한 참조신호 구조(도 6 및 도 7 참조)는 시간 영역에서 참조신호 오버헤드가 낮다. 따라서, 시간 선택적 채널에서 채널 추정 성능이 열화될 수 있다. 또한, 채널 추정 성능의 열화는 MIMO 시스템에서 더욱 민감한 문제이다. 특히, 공간 다중화(spatial multiplexing) 기법(scheme)으로 데이터를 전송하는 경우, 채널 추정 성능 열화는 심각한 문제가 될 수 있다. 그러나, 단순히 시간 영역에서 참조신호 오버헤드를 증가시킬 경우 채널 추정 성능 이득이 높아질 수 있으나, 데이터의 전송량이 감소되는 문제가 있다. 데이터 전송량 감소는 링크 처리율 손실(link throughput loss)을 초래한다. 따라서, 채널 추정 성능과 링크 처리율 손실 간에 트레이드오프(trade-off)를 고려하여 최적으로 참조신호를 할당하는 방법이 필요하다.However, the reference signal structure (see FIGS. 6 and 7) for uplink in 3GPP LTE has a low reference signal overhead in the time domain. Thus, channel estimation performance may be degraded in a time selective channel. In addition, degradation of channel estimation performance is a more sensitive problem in MIMO systems. In particular, when data is transmitted through a spatial multiplexing scheme, degradation of channel estimation performance can be a serious problem. However, if the reference signal overhead is simply increased in the time domain, the channel estimation performance gain may be increased, but there is a problem in that the amount of data transmission is reduced. Reduced data throughput results in link throughput loss. Therefore, there is a need for a method of optimally allocating a reference signal in consideration of a trade-off between channel estimation performance and link throughput loss.
이하, 데이터가 전송되는 무선 자원은 시간 영역에서 복수의 OFDM 심벌을 포함하고, 주파수 영역에서 복수의 부반송파를 포함하는 것으로 가정한다. 그리고, 무선 자원 중 고정된 위치의 OFDM 심벌을 통해서 참조신호가 전송된다. 이하, 채널 추정 성능을 높이기 위해, 무선 자원에서 시간 영역 또는 주파수 영역으로 추가적으로 삽입되는 참조신호를 비컨(beacon) 참조신호라고 한다. 비컨 참조신호에는 지금까지 설명된 참조신호와 관련된 내용이 모두 적용될 수 있다. 이하, 하나의 자원요소를 통해 전송되는 비컨 참조신호에 대응되는 값을 비컨 참조신호 요소(beacon RS element)라 한다. 비컨 참조신호 요소는 DFT부에 입력되기 전 값이거나, DFT부로부터 출력된 복소수 값일 수 있다.Hereinafter, it is assumed that a radio resource to which data is transmitted includes a plurality of OFDM symbols in a time domain and a plurality of subcarriers in a frequency domain. A reference signal is transmitted through an OFDM symbol of a fixed position among radio resources. Hereinafter, in order to increase channel estimation performance, a reference signal additionally inserted into a time domain or a frequency domain in a radio resource is referred to as a beacon reference signal. The content related to the reference signal described so far may be applied to the beacon reference signal. Hereinafter, a value corresponding to a beacon reference signal transmitted through one resource element is referred to as a beacon RS element. The beacon reference signal element may be a value before input to the DFT unit or a complex value output from the DFT unit.
이하, 도 6 및 도 7의 무선 자원 구조를 기본으로 하여 비컨 참조신호 삽입 방법을 설명한다. 설명의 편의를 위해 서브프레임 내 OFDM 심벌을 통해 사운딩 참조신호가 전송되는 경우를 생략할 수 있으나, 사운딩 참조신호가 전송되는 경우에도 이하에서 설명되는 비컨 참조신호 삽입 방법이 그대로 적용될 수 있다. 또는, 서브프레임 내 OFDM 심벌을 통해 사운딩 참조신호가 전송되는 경우를 도시할 수 있으나, 상기 OFDM 심벌을 통해 사운딩 참조신호가 전송되지 않고 데이터가 전송되는 경우에도 이하에서 설명되는 비컨 참조신호 삽입 방법이 그대로 적용될 수 있다.Hereinafter, a method of inserting a beacon reference signal will be described based on the radio resource structure of FIGS. 6 and 7. For convenience of description, a case in which a sounding reference signal is transmitted through an OFDM symbol in a subframe may be omitted. However, even when a sounding reference signal is transmitted, the beacon reference signal insertion method described below may be applied as it is. Alternatively, the case in which a sounding reference signal is transmitted through an OFDM symbol in a subframe may be illustrated. Even when a sounding reference signal is not transmitted through the OFDM symbol, data is inserted. The method can be applied as it is.
또, 설명의 편의를 위해 서브프레임 내 제1 슬롯과 제2 슬롯에서 주파수 홉핑이 수행되지 않는다고 가정한다. 그러나, 서브프레임 내 제1 슬롯과 제2 슬롯에서 주파수 홉핑이 수행되는 경우에도 이하에서 설명되는 비컨 참조신호 삽입 방법이 그대로 적용될 수 있다. 다만, 주파수 홉핑이 수행되는 경우, 각 슬롯에 삽입된 참조신호 간에 내삽법(interpolation)을 통한 채널 추정은 불가능하다. In addition, for convenience of description, it is assumed that frequency hopping is not performed in the first slot and the second slot in the subframe. However, even when frequency hopping is performed in the first slot and the second slot in the subframe, the beacon reference signal insertion method described below may be applied as it is. However, when frequency hopping is performed, channel estimation through interpolation between reference signals inserted into respective slots is impossible.
비컨 참조신호는 서브프레임 내 적어도 하나 이상의 OFDM 심벌에 삽입될 수 있다. 이하, 비컨 참조신호가 서브프레임 내 하나의 OFDM 심벌에 삽입되는 경우와 2개의 OFDM 심벌에 삽입되는 경우를 예로 설명한다. The beacon reference signal may be inserted into at least one or more OFDM symbols in the subframe. Hereinafter, a case in which a beacon reference signal is inserted into one OFDM symbol and two OFDM symbols in a subframe will be described as an example.
첫째, 비컨 참조신호는 서브프레임 내 하나의 OFDM 심벌에 삽입될 수 있다. First, the beacon reference signal may be inserted into one OFDM symbol in a subframe.
도 16은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 1 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 6인 OFDM 심벌에 삽입된다.16 illustrates a first example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP. The beacon reference signal is inserted into an OFDM symbol having a symbol index of 6 in a subframe.
도 17은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 2 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 7인 OFDM 심벌에 삽입된다.17 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP. The beacon reference signal is inserted into an OFDM symbol having a symbol index of 7 in a subframe.
도 18은 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 1 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 5인 OFDM 심벌에 삽입된다. 18 illustrates a first example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP. The beacon reference signal is inserted into an OFDM symbol having a symbol index of 5 in a subframe.
도 16 내지 18은 비컨 참조신호 구조의 예시일 뿐, 서브프레임 내 비컨 참조신호가 삽입되는 OFDM 심벌의 위치를 제한하는 것은 아니다. 서브프레임마다 서브프레임 내 비컨 참조신호가 삽입되는 OFDM 심벌의 위치가 변경될 수 있다. 또는, 복수의 서브프레임 동안은 서브프레임 내 비컨 참조신호가 삽입되는 OFDM 심벌의 위치가 동일할 수 있다. 또는, 무선 프레임 동안 서브프레임 내 비컨 참조신호가 삽입되는 OFDM 심벌의 위치가 동일할 수 있다. 복수의 서브프레임 또는 무선 프레임 동안 서브프레임 내 비컨 참조신호가 삽입되는 OFDM 심벌의 위치가 동일한 경우, 비컨 참조신호 간 등간격이 유지될 수 있다. 16 to 18 are only examples of beacon reference signal structures, and do not limit the position of an OFDM symbol into which a beacon reference signal is inserted in a subframe. For each subframe, the position of the OFDM symbol into which the beacon reference signal is inserted in the subframe may be changed. Alternatively, the positions of the OFDM symbols in which the beacon reference signals are inserted in the subframes may be the same for the plurality of subframes. Alternatively, the position of the OFDM symbol in which the beacon reference signal is inserted in the subframe may be the same during the radio frame. If the positions of the OFDM symbols into which the beacon reference signals are inserted in the subframes during the plurality of subframes or radio frames are the same, equal intervals between the beacon reference signals may be maintained.
둘째, 비컨 참조신호는 서브프레임 내 2 OFDM 심벌에 삽입될 수 있다. Second, the beacon reference signal may be inserted into 2 OFDM symbols in a subframe.
도 19는 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 3 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 0 및 13인 OFDM 심벌에 삽입된다.19 illustrates a third example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP. The beacon reference signal is inserted into an OFDM symbol having a symbol index of 0 and 13 in a subframe.
도 20은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 4 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 0 및 6인 OFDM 심벌에 삽입된다. 심벌 인덱스가 13인 OFDM 심벌을 통해서는 사운딩 참조신호가 전송된다. 20 illustrates a fourth example of a radio resource in which a beacon reference signal is inserted in the case of a normal CP. The beacon reference signal is inserted into an OFDM symbol having 0 and 6 symbol indices in a subframe. The sounding reference signal is transmitted through an OFDM symbol having a symbol index of 13.
도 21은 노멀 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 5 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 0 및 7인 OFDM 심벌에 삽입된다. 심벌 인덱스가 13인 OFDM 심벌을 통해서는 사운딩 참조신호가 전송된다. 21 illustrates a fifth example of a radio resource with a beacon reference signal inserted in the case of a normal CP. The beacon reference signal is inserted into an OFDM symbol having a symbol index of 0 and 7 in a subframe. The sounding reference signal is transmitted through an OFDM symbol having a symbol index of 13.
도 22는 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 2 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 5 및 11인 OFDM 심벌에 삽입된다.22 illustrates a second example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP. The beacon reference signal is inserted into an OFDM symbol with symbol indexes 5 and 11 in the subframe.
도 23은 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 3 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 4 및 6인 OFDM 심벌에 삽입된다. 심벌 인덱스가 11인 OFDM 심벌을 통해서는 사운딩 참조신호가 전송된다. 23 illustrates a third example of a radio resource in which a beacon reference signal is inserted in the case of an extended CP. The beacon reference signal is inserted into an OFDM symbol having 4 and 6 symbol indices in a subframe. The sounding reference signal is transmitted through an OFDM symbol having a symbol index of 11.
도 24는 확장된 CP의 경우, 비컨 참조신호가 삽입된 무선 자원의 제 4 예를 나타낸다. 비컨 참조신호는 서브프레임 내 심벌 인덱스가 5 및 10인 OFDM 심벌에 삽입된다. 심벌 인덱스가 11인 OFDM 심벌을 통해서는 사운딩 참조신호가 전송된다. 24 illustrates a fourth example of a radio resource with a beacon reference signal inserted in the case of an extended CP. The beacon reference signal is inserted into an OFDM symbol having a symbol index of 5 and 10 in a subframe. The sounding reference signal is transmitted through an OFDM symbol having a symbol index of 11.
이제, 무선 자원에 비컨 참조신호의 삽입 방법을 구체적으로 설명한다. 비컨 참조신호는 시간 영역에서 삽입되거나, 주파수 영역에서 삽입될 수 있다. Now, a method of inserting a beacon reference signal into a radio resource will be described in detail. The beacon reference signal may be inserted in the time domain or in the frequency domain.
먼저, 시간 영역에서의 비컨 참조신호 삽입 방법을 설명한다. DFT에 입력되는 심벌들은 시간 영역의 심벌들이다. 따라서, DFT부에 입력되는 심벌들에 비컨 참조신호를 삽입할 수 있다. First, a method of inserting a beacon reference signal in the time domain will be described. The symbols input to the DFT are symbols in the time domain. Accordingly, the beacon reference signal may be inserted into the symbols input to the DFT unit.
도 25는 비컨 참조신호 요소가 삽입된 DFT부에 입력되는 심벌들의 예를 나타낸다. 여기서, DFT부는 전송기의 데이터 처리부에 포함될 수 있다. 25 shows an example of symbols input to a DFT unit in which a beacon reference signal element is inserted. Here, the DFT unit may be included in the data processing unit of the transmitter.
도 25를 참조하면, DFT부에 M개의 심벌들(z(0), z(1),..., z(M-1))이 입력된다. 여기서, M은 데이터 전송을 위해 할당받은 무선 자원이 주파수 영역에서 포함하는 부반송파의 개수일 수 있다. 예를 들어, 하나의 자원블록이 12 부반송파를 포함하고, 데이터 전송을 위해 N개의 자원블록을 할당받은 경우, M은 12×N일 수 있다. M개의 심벌들 중 하나의 심벌(z(m))에 비컨 참조신호 요소가 삽입된다. 비컨 참조신호 요소는 M개의 심벌들 중 가운데에 위치시킬 수 있다. Referring to FIG. 25, M symbols z (0), z (1), ..., z (M-1) are input to the DFT unit. Here, M may be the number of subcarriers included in the frequency domain by a radio resource allocated for data transmission. For example, when one resource block includes 12 subcarriers and N resource blocks are allocated for data transmission, M may be 12 × N. A beacon reference signal element is inserted into one symbol z (m) of the M symbols. The beacon reference signal element may be located in the middle of the M symbols.
다음 수학식은 비컨 참조신호 요소가 삽입되는 심벌의 위치의 예를 나타낸다.The following equation shows an example of the position of a symbol into which the beacon reference signal element is inserted.
수학식 15
Figure PCTKR2009006774-appb-M000015
Equation 15
Figure PCTKR2009006774-appb-M000015
DFT부에 입력되는 M개의 심벌들 중 비컨 참조신호 요소의 삽입에는 천공(puncturing) 또는 레이트 매칭(rate matching)이 이용될 수 있다. Punching or rate matching may be used to insert the beacon reference signal element among the M symbols input to the DFT unit.
다음 표는 천공 및 레이트 매칭 각각의 경우에 대한 참조신호 요소의 삽입의 예를 나타낸다.The following table shows an example of insertion of a reference signal element for each case of puncturing and rate matching.
표 5
Figure PCTKR2009006774-appb-T000005
Table 5
Figure PCTKR2009006774-appb-T000005
여기서, d(n)은 DFT부에 입력되는 심벌에 대응하는 데이터 요소이고, b(k)는 z(m)에 삽입되는 비컨 참조신호 요소이다. 천공의 경우, 비컨 참조신호 요소가 삽입되는 위치에 대응하는 데이터 요소(d(m))가 천공되고, 비컨 참조신호 요소가 삽입된다. 레이트 매칭의 경우, 비컨 참조신호 요소가 삽입되는 위치를 제외한 심벌에 데이터 요소를 맵핑한다. Here, d (n) is a data element corresponding to a symbol input to the DFT unit, and b (k) is a beacon reference signal element inserted in z (m). In the case of puncturing, the data element d (m) corresponding to the position where the beacon reference signal element is inserted is punctured, and the beacon reference signal element is inserted. In the case of rate matching, data elements are mapped to symbols except for the positions where the beacon reference signal elements are inserted.
DFT부는 입력되는 M개의 심벌들에 DFT를 수행하여 복소수 심벌들을 출력하고, 부반송파 맵퍼는 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑시킨다. IFFT부는 입력되는 심벌에 대해 IFFT를 수행하여 시간 영역 신호를 출력한다. 상기 시간 영역 신호는 데이터 및 비컨 참조신호를 나른다. The DFT unit outputs complex symbols by performing a DFT on the input M symbols, and the subcarrier mapper maps the complex symbols to each subcarrier in the frequency domain. The IFFT unit performs an IFFT on the input symbol and outputs a time domain signal. The time domain signal carries a data and a beacon reference signal.
도 25에서는 DFT부에 입력되는 심벌들 중 하나의 비컨 참조신호 요소를 삽입하는 경우의 예를 도시한 것이나, 이는 삽입되는 비컨 참조신호 요소의 개수를 제한하는 것은 아니다. FIG. 25 illustrates an example of inserting one beacon reference signal element among symbols input to the DFT unit, but this does not limit the number of inserted beacon reference signal elements.
이하, DFT부에 입력되는 심벌들 중에 삽입되는 비컨 참조신호 요소의 다양한 예를 설명한다. 설명의 편의를 위해, DFT부에 입력되는 심벌의 개수는 12로 한다. 이는 하나의 자원블록이 12 부반송파를 포함하고, 데이터 전송을 위해 1개의 자원블록을 할당받은 경우라 할 수 있다. 이하, 참조신호 밀도(RS density, RSD)는 비컨 참조신호 요소가 삽입되는 정도를 의미한다. 참조신호 밀도는 DFT부에 입력되는 심벌의 개수에 대한 삽입되는 비컨 참조신호 요소의 비로 정의할 수 있다.Hereinafter, various examples of beacon reference signal elements inserted among symbols input to the DFT unit will be described. For convenience of description, the number of symbols input to the DFT unit is 12. This is a case where one resource block includes 12 subcarriers and one resource block is allocated for data transmission. Hereinafter, the reference signal density (RS density, RSD) means the degree to which the beacon reference signal element is inserted. The reference signal density may be defined as the ratio of the inserted beacon reference signal elements to the number of symbols input to the DFT unit.
다음 표는 참조신호 밀도(RSD)에 따라 비컨 참조신호 요소가 등간격으로 삽입되는 경우의 예를 나타낸다. 이는 채널의 랜덤 프로세스(random process)가 고려된 것이다. The following table shows an example in which beacon reference signal elements are inserted at equal intervals according to the reference signal density RSD. This takes into account the random process of the channel.
표 6
Figure PCTKR2009006774-appb-T000006
Table 6
Figure PCTKR2009006774-appb-T000006
여기서, 'b'는 비컨 참조신호 요소이고, 빈칸에는 데이터 요소가 삽입된다. 예를 들어, 참조신호 밀도가 2/12인 경우, 비컨 참조신호 요소는 z(3) 및 z(7)에 삽입될 수 있다. Here, 'b' is a beacon reference signal element, and a data element is inserted into the blank. For example, when the reference signal density is 2/12, the beacon reference signal element may be inserted in z (3) and z (7).
다음 표는 참조신호 밀도(RSD)에 따라 비컨 참조신호 요소가 랜덤하게 삽입되는 경우의 예를 나타낸다. The following table shows an example in which beacon reference signal elements are randomly inserted according to a reference signal density (RSD).
표 7
Figure PCTKR2009006774-appb-T000007
TABLE 7
Figure PCTKR2009006774-appb-T000007
다만, 이는 비컨 참조신호 요소 삽입의 예시일뿐, 비컨 참조신호 요소가 삽입되는 위치를 제한하는 것은 아니다. However, this is only an example of inserting a beacon reference signal element, and does not limit the position at which the beacon reference signal element is inserted.
비컨 참조신호는 표 6 및 7에서 나태난 경우뿐 아니라, 임의의 위치에 삽입될 수 있다. 또, 비컨 참조신호는 DFT부에 입력되는 심벌들 모두에 삽입될 수 있다(RSD=1). The beacon reference signal may be inserted at any position as well as the cases shown in Tables 6 and 7. In addition, the beacon reference signal may be inserted into all of the symbols input to the DFT unit (RSD = 1).
DFT부에 입력되는 심벌들에 삽입되는 비컨 참조신호 요소가 2개 이상인 경우, 비컨 참조신호 요소들 사이는 다음과 같은 경우가 가능하다. (1) 비컨 참조신호 요소들이 떨어져 있는 경우, (2) 비컨 참조신호 요소들이 인접한 경우, (3) 비컨 참조신호 요소들이 중간에 위치한 경우, (4) 비컨 참조신호 요소들이 양 끝에 위치한 경우. 또, (1)과 (3)의 경우의 조합과 같이, 각 경우를 다양하게 조합할 수 있다. When there are two or more beacon reference signal elements inserted into symbols input to the DFT unit, the following cases may be used between the beacon reference signal elements. (1) beacon reference signal elements are apart, (2) beacon reference signal elements are adjacent, (3) beacon reference signal elements are located in the middle, and (4) beacon reference signal elements are located at both ends. As in the case of (1) and (3), each case can be variously combined.
다음 표는 (1) 비컨 참조신호 요소들이 떨어져 있는 경우 및 (3) 비컨 참조신호 요소들이 중간에 위치한 경우의 예를 나타낸다. The following table shows an example in which (1) beacon reference signal elements are separated and (3) beacon reference signal elements are located in the middle.
표 8
Figure PCTKR2009006774-appb-T000008
Table 8
Figure PCTKR2009006774-appb-T000008
다음 표는 (1) 비컨 참조신호 요소들이 떨어져 있는 경우 및 (4) 비컨 참조신호 요소들이 양 끝에 위치한 경우의 예를 나타낸다. The following table shows an example in which (1) beacon reference signal elements are separated and (4) beacon reference signal elements are positioned at both ends.
표 9
Figure PCTKR2009006774-appb-T000009
Table 9
Figure PCTKR2009006774-appb-T000009
다음 표는 (2) 비컨 참조신호 요소들이 인접한 경우 및 (3) 비컨 참조신호 요소들이 중간에 위치한 경우의 예를 나타낸다. The following table shows an example where (2) beacon reference signal elements are adjacent and (3) beacon reference signal elements are located in the middle.
표 10
Figure PCTKR2009006774-appb-T000010
Table 10
Figure PCTKR2009006774-appb-T000010
다음 표는 (2) 비컨 참조신호 요소들이 인접한 경우 및 (4) 비컨 참조신호 요소들이 양 끝에 위치한 경우의 예를 나타낸다. The following table shows an example in which (2) beacon reference signal elements are adjacent and (4) beacon reference signal elements are positioned at both ends.
표 11
Figure PCTKR2009006774-appb-T000011
Table 11
Figure PCTKR2009006774-appb-T000011
이제, 주파수 영역에서의 비컨 참조신호 삽입 방법을 설명한다. DFT부로부터 출력되는 복소수 심벌들은 주파수 영역의 심벌들이다. 따라서, 부반송파 맵퍼가 주파수 영역의 심벌들을 부반송파에 맵핑 시 비컨 참조신호를 삽입할 수 있다. Now, a method of inserting a beacon reference signal in the frequency domain will be described. The complex symbols output from the DFT unit are symbols in the frequency domain. Accordingly, the subcarrier mapper may insert a beacon reference signal when the symbols of the frequency domain are mapped to the subcarriers.
도 26은 부반송파 맵퍼에 의해 삽입된 비컨 참조신호 요소의 예를 나타낸다. 여기서, 부반송파 맵퍼는 전송기의 데이터 처리부에 포함될 수 있다. 26 shows an example of a beacon reference signal element inserted by a subcarrier mapper. Here, the subcarrier mapper may be included in the data processor of the transmitter.
도 26을 참조하면, 부반송파 맵퍼에 의해 M개의 비컨 참조신호 요소 및 데이터 요소들이 자원요소들(Z(0), Z(1),..., Z(M-1))에 맵핑된다. Z(0), Z(1),..., Z(M-1)는 데이터 전송을 위해 할당받은 무선 자원에 포함된다. 여기서, M은 데이터 전송을 위해 할당받은 무선 자원이 주파수 영역에서 포함하는 부반송파의 개수일 수 있다. 예를 들어, 하나의 자원블록이 12 부반송파를 포함하고, 데이터 전송을 위해 N개의 자원블록을 할당받은 경우, M은 12×N일 수 있다. M개의 자원요소들 중 하나의 자원요소(Z(m))에 비컨 참조신호 요소가 삽입된다. 비컨 참조신호 요소는 M개의 자원요소들 중 가운데에 위치시킬 수 있다. 비컨 참조신호 요소가 삽입되는 자원요소의 위치는 수학식 15와 같을 수 있다. Referring to FIG. 26, M beacon reference signal elements and data elements are mapped to resource elements Z (0), Z (1), ..., Z (M-1) by the subcarrier mapper. Z (0), Z (1), ..., Z (M-1) are included in the radio resource allocated for data transmission. Here, M may be the number of subcarriers included in the frequency domain by a radio resource allocated for data transmission. For example, when one resource block includes 12 subcarriers and N resource blocks are allocated for data transmission, M may be 12 × N. A beacon reference signal element is inserted into one resource element Z (m) of the M resource elements. The beacon reference signal element may be located in the middle of the M resource elements. The position of the resource element into which the beacon reference signal element is inserted may be as shown in Equation 15.
M개의 자원요소들 중 비컨 참조신호 요소의 삽입에는 천공 또는 레이트 매칭이 이용될 수 있다. Perforation or rate matching may be used to insert the beacon reference signal element among the M resource elements.
다음 표는 천공 및 레이트 매칭 각각의 경우에 대한 참조신호 요소의 삽입의 예를 나타낸다.The following table shows an example of insertion of a reference signal element for each case of puncturing and rate matching.
표 12
Figure PCTKR2009006774-appb-T000012
Table 12
Figure PCTKR2009006774-appb-T000012
여기서, D(n)은 DFT부로부터 출력되는 복소수 심벌이고, B(k)는 Z(m)에 삽입되는 비컨 참조신호 요소이다. 천공의 경우, DFT부로부터 D(0)부터 D(M-1)까지 M개의 복소수 심벌들이 출력된다. 이 경우, DFT 사이즈는 M이다. 상기 M개의 복소수 심벌들 중 D(m)이 천공되고, 비컨 참조신호 요소(B(k))가 삽입된다. 레이트 매칭의 경우, DFT부로부터 D(0)부터 D(M-2)까지 M-1개의 복소수 심벌들이 출력된다. 이 경우, DFT 사이즈는 M-1이다. M-1개의 복소수 심벌들은 Z(m)을 제외한 자원요소에 차례로 맵핑된다. 데이터 전송을 위해 할당받은 무선 자원을 제외한 자원요소에는 0이 삽입된다. Here, D (n) is a complex symbol output from the DFT unit, and B (k) is a beacon reference signal element inserted in Z (m). In the case of puncturing, M complex symbols are output from D (0) to D (M-1) from the DFT unit. In this case, the DFT size is M. D (m) of the M complex symbols is punctured, and a beacon reference signal element B (k) is inserted. In the case of rate matching, M-1 complex symbols are output from D (0) to D (M-2) from the DFT unit. In this case, the DFT size is M-1. M-1 complex symbols are sequentially mapped to resource elements except for Z (m). 0 is inserted into the resource element except for the radio resource allocated for data transmission.
도 26에서는 하나의 OFDM 심벌의 주파수 영역에서 하나의 비컨 참조신호 요소를 삽입하는 경우의 예를 도시한 것이나, 이는 삽입되는 비컨 참조신호 요소의 개수를 제한하는 것은 아니다. FIG. 26 illustrates an example of inserting one beacon reference signal element in the frequency domain of one OFDM symbol, but this does not limit the number of inserted beacon reference signal elements.
이하, 자원요소들 중에 삽입되는 비컨 참조신호 요소의 다양한 예를 설명한다. 설명의 편의를 위해, 자원요소의 개수는 12로 한다. 이는 하나의 자원블록이 12 부반송파를 포함하고, 데이터 전송을 위해 1개의 자원블록을 할당받은 경우라 할 수 있다. 참조신호 밀도는 데이터 전송을 위해 할당되는 무선 자원이 주파수 영역에서 포함하는 부반송파의 개수에 대한 삽입되는 비컨 참조신호 요소의 비라 할 수 있다. Hereinafter, various examples of beacon reference signal elements inserted among resource elements will be described. For convenience of description, the number of resource elements is 12. This is a case where one resource block includes 12 subcarriers and one resource block is allocated for data transmission. The reference signal density may be a ratio of inserted beacon reference signal elements to the number of subcarriers included in the frequency domain by radio resources allocated for data transmission.
다음 표는 참조신호 밀도(RSD)에 따라 비컨 참조신호 요소가 삽입되는 경우의 예를 나타낸다. The following table shows an example in which a beacon reference signal element is inserted according to a reference signal density (RSD).
표 13
Figure PCTKR2009006774-appb-T000013
Table 13
Figure PCTKR2009006774-appb-T000013
또, 비컨 참조신호 요소는 자원요소들 모두에 삽입될 수 있다(RSD=1). In addition, the beacon reference signal element may be inserted in all of the resource elements (RSD = 1).
지금까지 1 OFDM 심벌에서 시간 영역 또는 주파수 영역으로 비컨 참조신호가 삽입되는 방법을 설명하였다. 2 이상의 OFDM 심벌에 비컨 참조신호가 삽입될 수 있다. 이 경우, 지금까지 설명한 시간 영역 또는 주파수 영역으로 비컨 참조신호 삽입 방법은 OFDM 심벌 레벨에서 시간 축과 같이 결합될 수 있다. So far, a method of inserting a beacon reference signal into a time domain or a frequency domain in 1 OFDM symbol has been described. A beacon reference signal may be inserted into two or more OFDM symbols. In this case, the method of inserting a beacon reference signal into the time domain or the frequency domain described so far may be combined like the time axis at the OFDM symbol level.
이하, 서브프레임 내 모든 OFDM 심벌에 주파수 영역으로 비컨 참조신호를 삽입하는 경우를 설명한다. 설명의 편의를 위해, 하나의 자원블록이 12 부반송파를 포함하고, 데이터 전송을 위해 1개의 자원블록을 할당받은 경우를 가정한다. Hereinafter, a case in which a beacon reference signal is inserted into a frequency domain in all OFDM symbols in a subframe will be described. For convenience of description, it is assumed that one resource block includes 12 subcarriers and one resource block is allocated for data transmission.
비컨 참조신호가 삽입되는 시간 영역의 위치 및 주파수 영역의 위치는 고정될 수 있다. 도 27 및 28은 비컨 참조신호가 삽입되는 위치가 고정되는 경우의 예이다.The location of the time domain and the location of the frequency domain where the beacon reference signal is inserted may be fixed. 27 and 28 show examples of a case where a position where a beacon reference signal is inserted is fixed.
도 27은 비컨 참조신호가 삽입된 무선 자원의 제 1 예를 나타낸다. 27 shows a first example of a radio resource with a beacon reference signal inserted.
도 27을 참조하면, 서브프레임 내 참조신호가 전송되는 OFDM 심벌을 제외한 모든 OFDM 심벌마다 하나의 비컨 참조신호 요소가 삽입된다. 비컨 참조신호 요소들의 주파수 영역에서의 위치는 동일하다. 참조신호 밀도는 1/12이다. Referring to FIG. 27, one beacon reference signal element is inserted in every OFDM symbol except for an OFDM symbol in which a reference signal is transmitted in a subframe. The positions in the frequency domain of the beacon reference signal elements are the same. The reference signal density is 1/12.
도 28은 비컨 참조신호가 삽입된 무선 자원의 제 2 예를 나타낸다. 참조신호 밀도는 1/2이다. 28 shows a second example of a radio resource with a beacon reference signal inserted. The reference signal density is 1/2.
비컨 참조신호가 삽입되는 시간 영역의 위치 및 주파수 영역의 위치가 가변될 수도 있다. 이때, 비컨 참조신호가 무선 자원에 삽입되는 위치는 미리 결정된 위치이거나, 랜덤한 위치일 수 있다. 미리 결정된 비컨 참조신호의 삽입 위치의 예로 스태거된(staggered) 위치가 있다. The position of the time domain where the beacon reference signal is inserted and the position of the frequency domain may be varied. In this case, the position where the beacon reference signal is inserted into the radio resource may be a predetermined position or a random position. An example of an insertion position of a predetermined beacon reference signal is a staggered position.
도 29는 비컨 참조신호가 삽입된 무선 자원의 제 3 예를 나타낸다. 이는 비컨 참조신호의 삽입 위치가 스태거된 경우의 예이다. 참조신호 밀도는 1/12이다. 29 shows a third example of a radio resource with a beacon reference signal inserted. This is an example of the case where the insertion position of the beacon reference signal is staggered. The reference signal density is 1/12.
이외에도 참조신호 밀도에 따라 다양한 패턴으로 비컨 참조신호가 무선 자원에 삽입될 수 있다. In addition, the beacon reference signal may be inserted into the radio resource in various patterns according to the reference signal density.
지금까지 1개의 자원블록에 비컨 참조신호를 삽입하는 방법에 대해 설명하였으나, 참조신호 밀도에 따라 복수의 자원블록에 비컨 참조신호가 삽입될 수 있다. 데이터가 전송되는 무선 자원은 주파수 영역에서 연속된 자원블록이거나, 불연속적인(non-contiguous) 자원블록일 수 있다. 불연속적인 자원블록의 경우, 분리된(separated) 자원블록별로 참조신호 밀도에 따라 비컨 참조신호가 삽입될 수 있다. 또는, 데이터가 전송되는 무선 자원은 하나 이상의 자원블록 클러스터일 수 있다. 이 경우, 다중 접속 방식은 클러스터된 SC-FDMA, N×SC-FDMA, OFDMA 등이 사용될 수 있다. 자원블록 클러스터는 하나의 서브블록이 맵핑되는 하나 이상의 자원블록일 수 있다. 자원블록 클러스터가 포함하는 자원블록의 개수는 자원블록 클러스터별로 동일하거나 다를 수 있다. 자원블록 클러스터별 또는 자원블록 클러스터 전체에 대해 참조신호 밀도에 따라 비컨 참조신호가 삽입될 수 있다. Although the method of inserting the beacon reference signal into one resource block has been described so far, the beacon reference signal may be inserted into the plurality of resource blocks according to the reference signal density. The radio resource to which data is transmitted may be a contiguous resource block or a non-contiguous resource block in the frequency domain. In the case of a discontinuous resource block, a beacon reference signal may be inserted according to the reference signal density for each separated resource block. Alternatively, the radio resource for transmitting data may be one or more resource block clusters. In this case, clustered SC-FDMA, N × SC-FDMA, OFDMA, or the like may be used for the multiple access scheme. The resource block cluster may be one or more resource blocks to which one subblock is mapped. The number of resource blocks included in the resource block cluster may be the same or different for each resource block cluster. A beacon reference signal may be inserted for each resource block cluster or the entire resource block cluster according to the reference signal density.
비컨 참조신호는 공용 참조신호(common RS)이거나, 전용 참조신호(dedicated RS)일 수 있다. The beacon reference signal may be a common RS or a dedicated RS.
공용 참조신호는 셀 내 모든 단말에게 동일한 셀 공통(cell-common) 참조신호이거나 셀별 또는 셀 ID별로 서로 다른 셀 특정(cell-specific) 참조신호일 수 있다. 비컨 참조신호가 공용 참조신호인 경우, 전체 전송 대역폭에 대해 참조신호 밀도에 따라 비컨 참조신호가 삽입될 수 있다. 공용 참조신호의 경우, 스트림의 개수에 상관없이 항상 전송 안테나의 개수만큼 공용 참조신호가 전송된다. 공용 참조신호는 전송 안테나마다 독립적인 참조신호를 갖는다. 즉, 전송 안테나마다 서로 직교 하거나, 서로 상관도(correlation)가 낮은 공용 참조신호가 전송된다. The common reference signal may be the same cell-common reference signal to all terminals in a cell or may be different cell-specific reference signals for each cell or cell ID. If the beacon reference signal is a common reference signal, the beacon reference signal may be inserted according to the reference signal density for the entire transmission bandwidth. In the case of the common reference signal, the common reference signal is always transmitted by the number of transmit antennas regardless of the number of streams. The common reference signal has an independent reference signal for each transmit antenna. That is, common reference signals having orthogonality or low correlation with each other are transmitted for each transmit antenna.
전용 참조신호는 셀 내 단말 또는 단말 그룹마다 서로 다를 수 있는 단말 특정(UE-specific) 참조신호이다. 비컨 참조신호가 전용 참조신호인 경우, 단말이 데이터 전송을 위해 할당받은 무선 자원에서 참조신호 밀도에 따라 비컨 참조신호가 삽입될 수 있다. 전용 참조신호의 경우, 스트림의 개수만큼의 전용 참조신호가 전송된다. 비컨 참조신호는 프리코딩될 수도 있고, 프리코딩되지 않을 수도 있다. The dedicated RS is a UE-specific RS that may be different for each UE or UE group in a cell. When the beacon reference signal is a dedicated reference signal, the beacon reference signal may be inserted according to the reference signal density in a radio resource allocated by the terminal for data transmission. In the case of a dedicated reference signal, as many dedicated reference signals as the number of streams are transmitted. The beacon reference signal may or may not be precoded.
도 30은 비컨 참조신호 삽입 방법의 예를 나타낸 순서도이다. 30 is a flowchart illustrating an example of a method for inserting a beacon reference signal.
도 30을 참조하면, 전송기는 비컨 참조신호 삽입 여부를 결정한다(S210). 비컨 참조신호 삽입이 결정된 경우, 전송기는 참조신호 밀도를 결정한다(S220). 전송기는 참조신호 밀도에 따라 데이터가 전송되는 무선 자원에 비컨 참조신호를 삽입한다(S230).Referring to FIG. 30, the transmitter determines whether to insert a beacon reference signal (S210). If the beacon reference signal insertion is determined, the transmitter determines the reference signal density (S220). The transmitter inserts a beacon reference signal into a radio resource through which data is transmitted according to the reference signal density (S230).
비컨 참조신호 삽입 여부 및/또는 참조신호 밀도는 명시적으로(explicitly) 설정될 수 있다. 예를 들어, 전송기가 단말의 일부분인 경우, 기지국이 단말에게 비컨 참조신호 삽입 여부 및/또는 참조신호 밀도를 지시할 수 있다. 이때, 비컨 참조신호 삽입 여부 및/또는 참조신호 밀도는 RRC와 같은 상위 계층에 의해 설정될 수 있다. 비컨 참조신호 삽입 여부 및/또는 참조신호 밀도는 셀 내 모든 단말에게 공통되거나, 단말마다 다르게 설정될 수 있다. 또는, 비컨 참조신호 삽입 여부 및/또는 참조신호 밀도는 기지국과 단말 사이의 규약을 통해 사전에 미리 결정될 수도 있다. 아니면, 통신 환경과 연계하여 내재적으로(implicitly) 비컨 참조신호 삽입 여부 및/또는 참조신호 밀도가 설정될 수도 있다. Whether the beacon reference signal is inserted and / or the reference signal density may be explicitly set. For example, when the transmitter is part of the terminal, the base station may indicate whether the beacon reference signal is inserted and / or the reference signal density to the terminal. In this case, whether the beacon reference signal is inserted and / or the reference signal density may be set by an upper layer such as RRC. Whether the beacon reference signal is inserted and / or the reference signal density may be common to all terminals in a cell or may be set differently for each terminal. Alternatively, whether the beacon reference signal is inserted and / or the reference signal density may be predetermined in advance through a protocol between the base station and the terminal. Alternatively, whether to insert a beacon reference signal implicitly and / or a reference signal density may be set in association with a communication environment.
비컨 참조신호 삽입 여부 및/또는 참조신호 밀도는 채널 환경, 전송 안테나 기법 등에 따라 설정될 수 있다. 예를 들어, 높은 도플러 환경인 고속 환경에서는 비컨 참조신호를 삽입하고, 저속 환경에서는 비컨 참조신호를 삽입하지 않는다. 또는, 고속 환경에서는 비컨 참조신호의 참조신호 밀도를 증가시키고, 저속 환경에서는 비컨 참조신호의 참조신호 밀도를 감소시킬 수 있다. 다른 예로, 채널 추정 성능이 민감한 전송 안테나 기법의 경우, 비컨 참조신호를 삽입하거나, 참조신호 밀도를 증가시킨다. 채널 추정 성능이 민감한 전송 안테나 기법의 예로는 MIMO(multiple input multiple output) 기법 중 공간 다중화(spatial multiplexing) 기법이 있다. 채널 추정 성능이 민감하지 않은 전송 안테나 기법의 경우, 비컨 참조신호를 삽입하지 않거나, 참조신호 밀도를 감소시킨다. 채널 추정 성능이 민감하지 않은 전송 안테나 기법의 예로는 싱글 안테나(single antenna) 전송 기법, 트랜스패어런트(transparent) 전송 다이버시티(transmit diversity) 기법 등이 있다. Whether the beacon reference signal is inserted and / or the reference signal density may be set according to a channel environment, a transmission antenna technique, and the like. For example, a beacon reference signal is inserted in a high speed Doppler environment and a beacon reference signal is not inserted in a low speed environment. Alternatively, the reference signal density of the beacon reference signal may be increased in a high speed environment, and the reference signal density of the beacon reference signal may be decreased in a low speed environment. As another example, in the case of a transmission antenna technique in which channel estimation performance is sensitive, a beacon reference signal is inserted or a reference signal density is increased. An example of a transmission antenna technique in which channel estimation performance is sensitive is a spatial multiplexing technique among multiple input multiple output (MIMO) techniques. In the case of a transmission antenna technique in which channel estimation performance is not sensitive, a beacon reference signal is not inserted or a reference signal density is reduced. Examples of a transmission antenna technique in which channel estimation performance is not sensitive include a single antenna transmission technique and a transparent transmission diversity technique.
도 31은 비컨 참조신호를 이용한 HARQ 수행 방법의 예를 나타낸 흐름도이다. 31 is a flowchart illustrating an example of a method of performing HARQ using a beacon reference signal.
도 31을 참조하면, 기지국(BS)은 단말(UE)에게 상향링크 그랜트를 전송한다(S310). 단말은 상향링크 그랜트가 지시하는 무선 자원을 통해 기지국에게 데이터를 전송한다(S320). 이때, 참조신호 밀도는 0(RSD=0)으로, 무선 자원에 비컨 참조신호가 삽입되지 않는다. 기지국은 데이터에 대한 수신에 실패한 것으로 가정한다. 기지국은 단말에게 데이터에 대한 NACK을 전송한다(S330). 단말은 기지국에게 데이터를 재전송한다(S340). 데이터 재전송을 위해, 기지국은 단말에게 데이터 재전송을 위한 상향링크 그랜트를 전송할 수 있다. 이때, 참조신호 밀도는 1/12(RSD=1/12)로, 무선 자원에 비컨 참조신호를 삽입한다. 기지국은 단말에게 NACK을 전송한다(S350). 단말은 기지국에게 데이터를 재전송한다(S360). 이때, 참조신호 밀도는 2/12(RSD=2/12)로, 무선 자원에 비컨 참조신호를 삽입한다. 기지국은 단말에게 NACK을 전송한다(S370). 단말은 기지국에게 데이터를 재전송한다(S380). 이때, 참조신호 밀도는 3/12(RSD=3/12)으로, 무선 자원에 비컨 참조신호를 삽입한다. 즉, 데이터의 초기 전송 시에는 비컨 참조신호를 삽입하지 않고, 데이터의 재전송 횟수가 증가함에 따라 참조신호 밀도를 증가시킨다. Referring to FIG. 31, the base station BS transmits an uplink grant to the terminal UE (S310). The terminal transmits data to the base station through a radio resource indicated by the uplink grant (S320). At this time, the reference signal density is 0 (RSD = 0), and the beacon reference signal is not inserted into the radio resource. It is assumed that the base station has failed to receive data. The base station transmits a NACK for the data to the terminal (S330). The terminal retransmits data to the base station (S340). For data retransmission, the base station may transmit an uplink grant for data retransmission to the terminal. At this time, the reference signal density is 1/12 (RSD = 1/12), and a beacon reference signal is inserted into a radio resource. The base station transmits a NACK to the terminal (S350). The terminal retransmits data to the base station (S360). At this time, the reference signal density is 2/12 (RSD = 2/12), and a beacon reference signal is inserted into a radio resource. The base station transmits a NACK to the terminal (S370). The terminal retransmits data to the base station (S380). At this time, the reference signal density is 3/12 (RSD = 3/12), and a beacon reference signal is inserted into a radio resource. That is, the initial transmission of data does not insert a beacon reference signal, but increases the reference signal density as the number of retransmissions of data increases.
이와 같이, 단말은 데이터 재전송의 경우에 비컨 참조신호를 삽입할 수 있다. 또, 데이터 재전송 횟수가 증가할 때마다 참조신호 밀도를 재전송 횟수에 따라 증가시킬 수 있다. As such, the terminal may insert the beacon reference signal in case of data retransmission. In addition, each time the number of data retransmissions increases, the reference signal density may increase with the number of retransmissions.
수신기에서 데이터의 수신이 실패하는 환경은 트래픽(traffic) 자체가 낮아 에러(error) 발생률이 높거나, 채널 추정 성능이 좋지 않을 수 있다. 데이터를 재전송하는 경우, 수신기는 이전에 수신된 데이터와 재전송된 데이터를 결합(combining)하여 SNR(signal-to-noise ratio) 이득을 얻고, 데이터 통신의 신뢰도를 획득할 수 있다. 반면, 참조신호 구조가 고정된 경우, 매 재전송 시마다 수신기에서 채널 추정 성능에 대한 SRN은 고정될 수 있다. 따라서, 재전송 시 비컨 참조신호를 삽입하여, 수신기에서의 채널 추정 성능을 높일 수 있다. 이를 통해, 트래픽 성능을 개선시키고, 데이터 통신의 신뢰도를 획득할 수 있다.In an environment in which reception of data from the receiver fails, the traffic itself may be low, resulting in high error rate or poor channel estimation performance. When retransmitting data, the receiver may combine the previously received data with the retransmitted data to obtain a signal-to-noise ratio (SNR) gain and to obtain reliability of data communication. On the other hand, when the RS structure is fixed, the SRN for channel estimation performance at the receiver may be fixed at every retransmission. Therefore, by inserting a beacon reference signal during retransmission, it is possible to improve the channel estimation performance in the receiver. Through this, it is possible to improve traffic performance and obtain reliability of data communication.
도 32는 본 발명의 실시예에 따른 참조신호 전송 방법을 나타낸 흐름도이다.32 is a flowchart illustrating a method of transmitting a reference signal according to an embodiment of the present invention.
도 32를 참조하면, 단말은 데이터 및 비컨 참조신호 요소에 대한 OFDM 심벌을 생성한다(S410). 단말은 기지국으로 생성된 OFDM 심벌을 전송한다(S420). Referring to FIG. 32, the terminal generates OFDM symbols for data and beacon reference signal elements (S410). The terminal transmits the generated OFDM symbol to the base station (S420).
데이터 및 비컨 참조신호 요소에 대한 OFDM 심벌은 다음 두 가지 방법으로 생성될 수 있다. 첫째, 단말은 데이터에 대한 변조 심벌 및 비컨 참조신호 요소로 구성된 심벌들에 DFT를 수행하여 복소수 심벌들을 출력하고, 상기 복소수 심벌들을 데이터 전송을 위해 할당된 부반송파들에 맵핑하고, IFFT를 수행하여 OFDM 심벌을 생성할 수 있다. 둘째, 단말은 데이터에 대한 변조 심벌에 DFT를 수행하여 복수의 복소수 심벌을 출력하고, 복수의 복소수 심벌 및 비컨 참조신호 요소를 데이터 전송을 위해 할당된 부반송파들에 맵핑하고, IFFT를 수행하여 OFDM 심벌을 생성할 수 있다. OFDM symbols for the data and beacon reference signal elements may be generated in two ways. First, the UE outputs complex symbols by performing a DFT on symbols consisting of modulation symbols and beacon reference signal elements for data, maps the complex symbols to subcarriers allocated for data transmission, and performs IFFT to perform OFDM You can create a symbol. Second, the terminal outputs a plurality of complex symbols by performing a DFT on the modulation symbol for the data, maps the plurality of complex symbols and beacon reference signal elements to subcarriers allocated for data transmission, and performs an IFFT to perform an OFDM symbol Can be generated.
이와 같이, 비컨 참조신호는 시간 영역 또는 주파수 영역 상에서 적어도 하나 이상 삽입될 수 있다. 이때, 비컨 참조신호의 삽입은 비컨 참조신호가 삽입될 위치에 대응하는 데이터를 천공하는 방법이 이용될 수 있다. 또는, 비컨 참조신호를 삽입할 위치에는 데이터를 맵핑하지 않는 방법을 이용할 수 잇다. 구체적으로, 비컨 참조신호 요소가 맵핑되는 부반송파에 대응하는 복소수 심벌은 천공되거나, 비컨 참조신호 요소가 맵핑되는 부반송파를 제외한 부반송파들에 복수의 복소수 심벌이 맵핑될 수 있다. As such, at least one beacon reference signal may be inserted in the time domain or the frequency domain. In this case, the insertion of the beacon reference signal may be a method of puncturing data corresponding to the position where the beacon reference signal is to be inserted. Alternatively, a method of not mapping data to a position to insert a beacon reference signal may be used. In detail, a complex symbol corresponding to a subcarrier to which a beacon reference signal element is mapped may be punctured, or a plurality of complex symbols may be mapped to subcarriers other than the subcarrier to which the beacon reference signal element is mapped.
데이터 및 상기 비컨 참조신호 요소의 비율은 참조신호 밀도에 따라 결정될 수 있다. 참조신호 밀도는 채널 환경, 전송 안테나 기법 또는 데이터의 재전송 횟수에 따라 결정될 수 있다. The ratio of data and the beacon reference signal element may be determined according to a reference signal density. The reference signal density may be determined according to a channel environment, a transmission antenna technique, or the number of times of retransmission of data.
이와 같이, 무선 통신 시스템에서 채널 추정 성능을 높일 수 있는 참조신호 전송 방법을 제공한다. 도플러 효과에 의한 채널 변화를 탐지(tracking)하여 비컨 참조신호가 삽입될 수 있다. 또, 채널 환경이나 에러율에 따라 적응적으로 비컨 참조신호의 참조신호 밀도가 변할 수 있다. 이를 통해, 채널 추정 성능을 높일 수 있고, 무선 통신의 신뢰도를 높일 수 있다. 따라서, 전체 시스템 성능을 향상시킬 수 있다. As such, a method of transmitting a reference signal capable of improving channel estimation performance in a wireless communication system is provided. A beacon reference signal may be inserted by detecting a channel change caused by the Doppler effect. In addition, the reference signal density of the beacon reference signal may be adaptively changed according to the channel environment or the error rate. Through this, channel estimation performance can be improved and reliability of wireless communication can be improved. Thus, overall system performance can be improved.
지금까지 상향링크 데이터 전송을 기준으로 설명하였으나, 지금까지 설명한 내용은 하향링크 데이터 전송에도 그대로 적용될 수 있다.So far, the description has been made based on uplink data transmission, but the above description may be applied to downlink data transmission as it is.
상술한 모든 기능은 상기 기능을 수행하도록 코딩된 소프트웨어나 프로그램 코드 등에 따른 마이크로프로세서, 제어기, 마이크로제어기, ASIC(Application Specific Integrated Circuit) 등과 같은 프로세서에 의해 수행될 수 있다. 상기 코드의 설계, 개발 및 구현은 본 발명의 설명에 기초하여 당업자에게 자명하다고 할 것이다.All of the above functions may be performed by a processor such as a microprocessor, a controller, a microcontroller, an application specific integrated circuit (ASIC), or the like according to software or program code coded to perform the function. The design, development and implementation of the code will be apparent to those skilled in the art based on the description of the present invention.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.Although the present invention has been described above with reference to the embodiments, it will be apparent to those skilled in the art that the present invention may be modified and changed in various ways without departing from the spirit and scope of the present invention. I can understand. Therefore, the present invention is not limited to the above-described embodiment, and the present invention will include all embodiments within the scope of the following claims.

Claims (12)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 참조신호 전송 방법에 있어서,A reference signal transmission method performed by a terminal in a wireless communication system,
    데이터 및 참조신호 요소에 대한 OFDM(orthogonal frequency division multiplexing) 심벌을 생성하는 단계; 및 Generating orthogonal frequency division multiplexing (OFDM) symbols for data and reference signal elements; And
    상기 OFDM 심벌을 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법. Transmitting the OFDM symbol to a base station.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 OFDM 심벌을 생성하는 단계는Generating the OFDM symbol
    상기 데이터에 대한 변조 심벌 및 상기 참조신호 요소로 구성된 심벌들에 DFT(Discrete Fourier Transform)를 수행하여 복소수 심벌들을 출력하는 단계; 및Outputting complex symbols by performing a Discrete Fourier Transform (DFT) on symbols consisting of the modulation symbol for the data and the reference signal element; And
    상기 복소수 심벌들을 데이터 전송을 위해 할당된 부반송파들에 맵핑하고, IFFT(Inverse Fast Fourier Transform)를 수행하여 상기 OFDM 심벌을 생성하는 단계를 포함하는 것을 특징으로 하는 방법. Mapping the complex symbols to subcarriers allocated for data transmission, and performing an Inverse Fast Fourier Transform (IFFT) to generate the OFDM symbol.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 OFDM 심벌을 생성하는 단계는Generating the OFDM symbol
    상기 데이터에 대한 변조 심벌에 DFT를 수행하여 복수의 복소수 심벌을 출력하는 단계; 및Outputting a plurality of complex symbols by performing a DFT on the modulation symbols for the data; And
    상기 복수의 복소수 심벌 및 상기 참조신호 요소를 데이터 전송을 위해 할당된 부반송파들에 맵핑하고, IFFT를 수행하여 상기 OFDM 심벌을 생성하는 단계를 포함하는 것을 특징으로 하는 방법. Mapping the plurality of complex symbols and the reference signal element to subcarriers allocated for data transmission, and performing an IFFT to generate the OFDM symbol.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 참조신호 요소가 맵핑되는 부반송파에 대응하는 복소수 심벌은 천공되는 것을 특징으로 하는 방법.The complex symbol corresponding to the subcarrier to which the reference signal element is mapped is punctured.
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 부반송파들 중 상기 참조신호 요소가 맵핑되는 부반송파를 제외한 부반송파들에 상기 복수의 복소수 심벌이 맵핑되는 것을 특징으로 하는 방법.And the plurality of complex symbols are mapped to subcarriers other than the subcarrier to which the reference signal element is mapped among the subcarriers.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 데이터 및 상기 참조신호 요소의 비율은 참조신호 밀도에 따라 결정되는 것을 특징으로 방법.The ratio of the data and the reference signal element is determined according to a reference signal density.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 참조신호 밀도는 채널 환경에 따라 결정되는 것을 특징으로 하는 방법.The reference signal density is determined according to the channel environment.
  8. 제 6 항에 있어서, The method of claim 6,
    상기 참조신호 밀도는 전송 안테나 기법에 따라 결정되는 것을 특징으로 하는 방법. The reference signal density is determined according to the transmit antenna technique.
  9. 제 6 항에 있어서, The method of claim 6,
    상기 참조신호 밀도는 상기 데이터의 재전송 횟수에 따라 결정되는 것을 특징으로 하는 방법. The reference signal density is determined according to the number of retransmission of the data.
  10. 무선 신호를 전송하는 RF(radio frequency)부; 및RF (radio frequency) unit for transmitting a radio signal; And
    상기 RF부와 연결되어, Connected to the RF unit,
    데이터 및 참조신호 요소에 대한 OFDM 심벌을 생성하고, Generate OFDM symbols for data and reference signal elements,
    상기 OFDM 심벌을 전송하는 데이터 처리부를 포함하는 것을 특징으로 하는 단말. And a data processor for transmitting the OFDM symbol.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 데이터 처리부는The data processing unit
    상기 데이터에 대한 변조 심벌 및 상기 참조신호 요소로 구성된 심벌들에 DFT를 수행하여 복소수 심벌들을 출력하는 DFT부; 및A DFT unit outputting complex symbols by performing a DFT on the symbols consisting of the modulation symbol for the data and the reference signal element; And
    상기 복소수 심벌들을 데이터 전송을 위해 할당된 부반송파들에 맵핑하고, IFFT를 수행하여 상기 OFDM 심벌을 생성하는 IFFT부를 포함하는 것을 특징으로 하는 단말. And an IFFT unit for mapping the complex symbols to subcarriers allocated for data transmission, and performing the IFFT to generate the OFDM symbol.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 데이터 처리부는The data processing unit
    상기 데이터에 대한 변조 심벌에 DFT를 수행하여 복소수 심벌을 출력하는 DFT부; 및A DFT unit performing a DFT on the modulation symbol for the data and outputting a complex symbol; And
    상기 복소수 심벌 및 상기 참조신호 요소를 데이터 전송을 위해 할당된 부반송파들에 맵핑하고, IFFT를 수행하여 상기 OFDM 심벌을 생성하는 IFFT부를 포함하는 것을 특징으로 하는 단말. And an IFFT unit for mapping the complex symbol and the reference signal element to subcarriers allocated for data transmission, and performing the IFFT to generate the OFDM symbol.
PCT/KR2009/006774 2008-11-24 2009-11-18 Method and apparatus for transmitting reference signals in radio communication system WO2010058943A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11723808P 2008-11-24 2008-11-24
US61/117,238 2008-11-24
KR1020090041273A KR20100058398A (en) 2008-11-24 2009-05-12 Method of transmitting reference signal in wireless communication system
KR10-2009-0041273 2009-05-12

Publications (2)

Publication Number Publication Date
WO2010058943A2 true WO2010058943A2 (en) 2010-05-27
WO2010058943A3 WO2010058943A3 (en) 2010-08-05

Family

ID=42198647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006774 WO2010058943A2 (en) 2008-11-24 2009-11-18 Method and apparatus for transmitting reference signals in radio communication system

Country Status (1)

Country Link
WO (1) WO2010058943A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110081106A (en) * 2010-01-07 2011-07-13 엘지전자 주식회사 Method and apparatus of generating reference singal sequence in wireless communication system
WO2012005444A1 (en) * 2010-07-09 2012-01-12 Lg Electronics Inc. Method and apparatus for transmitting uplink reference signal in a multi-antenna wireless communication system
CN110447212A (en) * 2017-03-22 2019-11-12 Idac控股公司 Method, apparatus, system, framework and the interface of channel state information reference signals for Next-Generation Wireless Communication Systems
JP2019533320A (en) * 2016-09-05 2019-11-14 オッポ広東移動通信有限公司 Reference signal transmission method, network device, and terminal device
RU2803194C1 (en) * 2022-11-30 2023-09-11 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Ордена Жукова Академия Вооруженных Сил Российской Федерации" Device for receiving and transmitting phase shift keying signals in a command radio control link using ofdm technology, designed to operate in an economy mode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094778A (en) * 2002-06-07 2003-12-18 삼성전자주식회사 OFDM Transmitter having OFDM signal that inserting pilot and a method inserting pilot signal thereof
KR20050018296A (en) * 2003-08-16 2005-02-23 삼성전자주식회사 Apparatus and method for transmitting/receiving pilot in an orthogonal frequency division multiplexing communication system
KR20050099163A (en) * 2004-04-09 2005-10-13 삼성전자주식회사 Apparatus for transmitting/receiving pilot code pattern for distinguish base station in communication system using orthogonal frequency division multiplexing scheme and method thereof
JP2007089167A (en) * 2005-09-19 2007-04-05 Ntt Docomo Inc Method of channel estimation in orthogonal frequency division multiplexing system and channel estimator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094778A (en) * 2002-06-07 2003-12-18 삼성전자주식회사 OFDM Transmitter having OFDM signal that inserting pilot and a method inserting pilot signal thereof
KR20050018296A (en) * 2003-08-16 2005-02-23 삼성전자주식회사 Apparatus and method for transmitting/receiving pilot in an orthogonal frequency division multiplexing communication system
KR20050099163A (en) * 2004-04-09 2005-10-13 삼성전자주식회사 Apparatus for transmitting/receiving pilot code pattern for distinguish base station in communication system using orthogonal frequency division multiplexing scheme and method thereof
JP2007089167A (en) * 2005-09-19 2007-04-05 Ntt Docomo Inc Method of channel estimation in orthogonal frequency division multiplexing system and channel estimator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843466B2 (en) 2010-01-07 2017-12-12 Lg Electronics Inc. Method and apparatus for generating an uplink reference signal sequence in a wireless communication system
US9584275B2 (en) 2010-01-07 2017-02-28 Lg Electronics Inc. Method and apparatus for generating an uplink reference signal sequence in a wireless communication system
KR20110081106A (en) * 2010-01-07 2011-07-13 엘지전자 주식회사 Method and apparatus of generating reference singal sequence in wireless communication system
KR101689039B1 (en) 2010-01-07 2017-01-03 엘지전자 주식회사 Method and apparatus of generating reference singal sequence in wireless communication system
US9673950B2 (en) 2010-07-09 2017-06-06 Lg Electronics Inc. Method and apparatus for transmitting uplink reference signal in a multi-antenna wireless communication system
US9312999B2 (en) 2010-07-09 2016-04-12 Lg Electronics Inc. Method and apparatus for transmitting uplink reference signal in a multi-antenna wireless communication system
WO2012005444A1 (en) * 2010-07-09 2012-01-12 Lg Electronics Inc. Method and apparatus for transmitting uplink reference signal in a multi-antenna wireless communication system
US9118445B2 (en) 2010-07-09 2015-08-25 Lg Electronics Inc. Method and apparatus for transmitting uplink reference signal in a multi-antenna wireless communication system
TWI452862B (en) * 2010-07-09 2014-09-11 Lg Electronics Inc Method and apparatus for transmitting uplink reference signal in a multi-antenna wireless communication system
US8699436B2 (en) 2010-07-09 2014-04-15 Lg Electronics Inc. Method and apparatus for transmitting uplink reference signal in a multi-antenna wireless communication system
JP2019533320A (en) * 2016-09-05 2019-11-14 オッポ広東移動通信有限公司 Reference signal transmission method, network device, and terminal device
CN110447212A (en) * 2017-03-22 2019-11-12 Idac控股公司 Method, apparatus, system, framework and the interface of channel state information reference signals for Next-Generation Wireless Communication Systems
US11671301B2 (en) 2017-03-22 2023-06-06 Interdigital Patent Holdings, Inc. Methods, apparatus, systems, architectures and interfaces for channel state information reference signal for next generation wireless communication systems
CN110447212B (en) * 2017-03-22 2023-10-03 交互数字专利控股公司 Method and apparatus for reference signal of next generation wireless communication system
RU2803194C1 (en) * 2022-11-30 2023-09-11 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Ордена Жукова Академия Вооруженных Сил Российской Федерации" Device for receiving and transmitting phase shift keying signals in a command radio control link using ofdm technology, designed to operate in an economy mode

Also Published As

Publication number Publication date
WO2010058943A3 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2010047512A2 (en) Signal transmission method and device in wireless communication system
WO2010018980A2 (en) Method and apparatus for the transmission of a control signal in a radio communication system
WO2010018977A2 (en) Method and apparatus of transmitting information in wireless communication system
WO2018128453A1 (en) Method of transmitting reference signal for channel state change measurement and apparatus therefor
WO2010016729A2 (en) Method and apparatus for transmitting signal in wireless communication system
WO2016064218A2 (en) Method for transmitting uplink channel and demodulation reference signal by mtc device
WO2010087645A2 (en) Method and apparatus for receiving and transmitting signals in wireless communication system
WO2010056068A9 (en) Method and apparatus for signal transmission in wireless communication system
WO2011043598A2 (en) Method and apparatus for uplink transmission in a multi-antenna system
WO2017026814A1 (en) Method and user equipment for performing uplink transmission
WO2010018979A2 (en) Method and apparatus for information transmission in a radio communication system
WO2010056078A2 (en) Method and apparatus for information transmission in wireless communication system
WO2010090415A2 (en) Apparatus and method for transmitting signal in wireless communication system
WO2011019228A2 (en) Method and apparatus for transmitting downlink reference signal in wireless communication system that supports multiple antennas
WO2016167614A1 (en) Symbol-mapping method and radio device for decreasing papr
WO2016099057A1 (en) Method and mtc device for transmitting dmrs for uplink data demodulation
WO2018199584A1 (en) Method for receiving phase tracking reference signal by terminal in wireless communication system, and device supporting same
WO2012005516A2 (en) Method and apparatus for transmitting control information in a wireless communication system
WO2011122837A2 (en) Method and system for uplink acknowledgement signaling in carrier-aggregated wireless communication systems
WO2011068385A2 (en) Method and apparatus for efficient contention-based transmission in a wireless communication system
WO2010013963A2 (en) Method and apparatus of transmitting control information in wireless communication system
WO2018026181A1 (en) Method for transmitting and receiving signal by terminal and base station in wireless communication system and device supporting same
WO2010082756A2 (en) Method and apparatus of transmitting sounding reference signal in multiple antenna system
WO2017183894A1 (en) Method and apparatus for signal detection in a wireless communication system
WO2010056069A2 (en) Method and apparatus for data transmission using a plurality of resources in a multiple antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827708

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827708

Country of ref document: EP

Kind code of ref document: A2