WO2010058705A1 - Sheet for vacuum molding - Google Patents

Sheet for vacuum molding Download PDF

Info

Publication number
WO2010058705A1
WO2010058705A1 PCT/JP2009/068961 JP2009068961W WO2010058705A1 WO 2010058705 A1 WO2010058705 A1 WO 2010058705A1 JP 2009068961 W JP2009068961 W JP 2009068961W WO 2010058705 A1 WO2010058705 A1 WO 2010058705A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum forming
film
mol
forming sheet
adhesive layer
Prior art date
Application number
PCT/JP2009/068961
Other languages
French (fr)
Japanese (ja)
Inventor
智章 高木
Original Assignee
リケンテクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社 filed Critical リケンテクノス株式会社
Publication of WO2010058705A1 publication Critical patent/WO2010058705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a vacuum forming sheet, and more specifically, there is no air mixing due to back surface unevenness of a three-dimensional coated molded product, and the heat resistant appearance (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours) is excellent. It relates to a vacuum forming sheet with a release material that does not deteriorate the appearance of the sheet when stored for a long period of time, and has excellent heat-resistant adhesiveness (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours) in a three-dimensional coated molded product Is.
  • a decorative laminated sheet made of a soft thermoplastic resin having a design property at the time of molding processing is provided, and the decorative laminated sheet is bonded to the surface of the molded product, thereby providing a coated molded product having a design property.
  • Many methods have been proposed to obtain
  • the decorative laminated sheet is made of a thermoplastic resin that can follow the three-dimensional deformation during thermoforming, so there are no problems such as cracking, tearing or peeling of the coating film during molding, and there is no painting process So work environment and productivity are excellent.
  • Patent Document 4 a decorative layer is provided on one surface of a thermoformable transparent plastic film. On the decorative layer, a softening point is 80 ° C., a loss elastic modulus at 130 ° C. is 10,000 Pa, and a film thickness. Discloses a molded sheet for decorating a molded product, which is provided with an adhesive layer of 20 to 150 ⁇ m.
  • the three-dimensional coated molded product molded using the embossed surface of the molded decorative sheet for molded article of the patent document has a problem that air due to unevenness on the back surface is mixed, and heat resistant appearance There is a problem that it is inferior to (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours).
  • a three-dimensional coated molded article prepared using an adhesive as described in the patent document has a problem that it is inferior in heat-resistant adhesion (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours).
  • Patent Document 5 discloses the manufacture of a vehicle window frame panel in which the surface of an aluminum window frame panel is coated with a synthetic resin sheet having a pressure-sensitive adhesive layer having a mesh-shaped communication groove formed on the surface thereof by vacuum lamination molding.
  • the manufacturing method of the window frame panel for vehicles characterized by consisting of the 4th process which pressurizes this synthetic resin decorative sheet so that it follows is disclosed.
  • the surface of the synthetic resin sheet of the patent document is embossed and stored for a long time with a release material, there is a problem that the appearance deteriorates due to the difference in shrinkage between the synthetic resin sheet and the release material. is there.
  • the three-dimensional coated molded article prepared using the adhesive or pressure-sensitive adhesive described in the patent document has a problem that it is inferior in heat resistant adhesiveness (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours). .
  • the object of the present invention is that there is no air mixing due to the unevenness of the back surface of the three-dimensional coated molded product, it has excellent heat resistant appearance (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours), and is stored for a long time with a release material.
  • An object of the present invention is to provide a sheet for vacuum forming that does not deteriorate the appearance of the sheet and is excellent in heat-resistant adhesiveness (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours) in a three-dimensional coated molded product.
  • the present invention is as follows. 1.
  • a sheet for vacuum forming having an adhesive layer (I) on the lower surface of a surface layer film (A) embossed on the surface layer,
  • the surface layer film (a) is an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), a polyvinyl chloride resin film ( D) or a polycarbonate resin film (E), and the adhesive layer (a) is obtained by blending 1.5 to 2.5 equivalents of polyisocyanate in the following thermoplastic saturated copolymer polyester resin and curing.
  • Thermoplastic saturated copolyester resin an acid component comprising 20 to 40 mol% terephthalic acid, 20 to 40 mol% isophthalic acid and 25 to 50 mol% adipic acid (however, the total of the acid components is 100 mol%); A glycol component composed of 10 to 50 mol% of 1,4-butanediol and 50 to 90 mol% of 1,6-hexanediol (however, the total of the glycol components is 100 mol%). 2. 2. The vacuum forming sheet as described in 1 above, wherein the thermoplastic saturated copolymer polyester resin has a softening temperature of 55 to 85 ° C. 3. 3. 3.
  • the unstretched amorphous polyethylene terephthalate resin film (C) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) 6.
  • the vacuum forming sheet as described in any one of 1 to 5 above, wherein the total is 100 mol%). 7).
  • the unstretched amorphous polyethylene terephthalate resin film (F) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (provided that the glycol component described above) (5) is a sheet for vacuum forming as described in (4) above. 8).
  • the grooves not leading to the side surface are linear, linearly branched, cruciform, circular, elliptical or polygonal, and each shape is intermittent. 10.
  • the grooves that do not lead to the side surface are present at a density of 1 ⁇ 10 to 3.7 ⁇ 10 6 per 1 cm 2.
  • the vacuum forming sheet according to any one of 1 to 10.
  • the plurality of grooves leading to the side surface are arranged in a striped pattern, or each of the adhesive layers separated by the grooves is circular, 12.
  • Vacuum forming method The vacuum forming sheet according to any one of 1 to 13 described above and a laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first side is placed on the laminated base material side by the vacuum forming sheet.
  • the second chamber is hermetically partitioned from each other on the opposite side, the first chamber and the second chamber are decompressed, and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet And the laminated base material are brought into contact with each other, and thereafter, the decompression of the second chamber is released, and the vacuum forming sheet is placed on the outer surface of the laminated base material by the differential pressure between the first chamber and the second chamber.
  • Vacuum forming method that adheres and laminates.
  • a molded product comprising the vacuum molding sheet according to any one of 1 to 14 and a base material made of an ABS resin or an alloy of an ABS resin and a polycarbonate resin, which are laminated by vacuum molding.
  • the type of the surface layer film (a) whose surface layer is embossed is specified, and the composition of the thermoplastic saturated copolymer polyester resin and the amount of polyisocyanate used in the adhesive layer (a) are within a specific range.
  • the composition of the thermoplastic saturated copolymer polyester resin and the amount of polyisocyanate used in the adhesive layer (a) are within a specific range.
  • the vacuum molded product of the vacuum molding sheet of the present invention and a base material made of an ABS resin or an alloy of ABS resin and polycarbonate resin is particularly excellent in adhesion.
  • FIG. 6 is a diagram for explaining the interval and pitch of grooves, and (a) to (c) correspond to the front views of the adhesive layer of FIGS. 2, 4 and 5, respectively. It is a figure explaining a shrinkage rate test. It is sectional drawing of the sheet
  • FIG. 1 is a cross-sectional view for explaining the configuration of the vacuum forming sheet of the present invention.
  • the sheet for vacuum forming 1 of the present invention has an adhesive layer (A) on the lower surface of the surface layer film (A), and a backer between the surface layer film (A) and the adhesive layer (A) as necessary. It has a layer (c).
  • One or more grooves are present on the surface 100 of the adhesive layer (A) opposite to the surface bonded to the surface layer film (A). This groove further has a groove that exists only inside the reverse surface 100 and does not communicate with the side surface of the adhesive layer (a), and a groove that communicates with the reverse surface 100 up to the side surface.
  • the surface layer 101 of the surface layer film (a) is embossed (not shown).
  • the surface layer film (a) in the present invention includes an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), and a polyvinyl chloride resin. It must be a film (D) or a polycarbonate resin film (E). If it is a film other than these, the effects of the present invention cannot be achieved.
  • the acrylic resin film (A) examples include polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, or a film made of a copolymer having a (meth) acrylate unit and a styrene unit or a urethane structure. Can do. Furthermore, a mixed resin of the acrylic resin and the thermoplastic polyurethane resin, a mixed resin of the acrylic resin and acrylic rubber, or the like can be used. In the present invention, the acrylic resin, a mixed resin of an acrylic resin and a thermoplastic polyurethane resin, a mixed resin of an acrylic resin and an acrylic rubber, or the like is formed by, for example, a casting method or a calendar method.
  • an unstretched acrylic resin film can be obtained.
  • the above-mentioned unstretched film may be used as the acrylic resin film, and in the case of a stretchable acrylic resin, stretching obtained by uniaxial or biaxial stretching treatment by a conventionally known method.
  • a film may be used.
  • a biaxially stretched copolymer polyethylene terephthalate film (B) is a resin film obtained by using two or more kinds of acid components and / or glycol components.
  • the dicarboxylic acid component is terephthalic acid.
  • An isophthalic acid copolymerized amorphous polyethylene terephthalate resin having a glycol component of ⁇ 40 mol% and ethylene glycol can be mentioned.
  • isophthalic acid copolymerized amorphous polyethylene terephthalate resin is particularly preferable from the viewpoints of biaxial stretchability, three-dimensional moldability, hairline processability, embossability, and the like.
  • a film forming method such as a known tenter method or a tube method can be applied.
  • the unstretched amorphous polyethylene terephthalate resin film (C) As the unstretched amorphous polyethylene terephthalate resin film (C), at least terephthalic acid is used as an acid component, ethylene glycol is used as a glycol component, and an amorphous polyethylene terephthalate resin obtained by reacting them is obtained by known means.
  • the film-formed one can be mentioned.
  • the unstretched amorphous polyethylene terephthalate resin film (C) is composed of an acid component composed of terephthalic acid, 60 to 90 mol% of ethylene glycol and 10 to 40 mol% of cyclohexanedimethanol.
  • a film of an amorphous polyethylene terephthalate resin composed of a glycol component (however, the total of the glycol components is 100 mol%) is preferable.
  • any film produced from a hard, semi-rigid or soft composition mainly composed of a known vinyl chloride resin can be used.
  • the polycarbonate resin film (E) a dihydric phenol and phosgene are used as raw materials, a polycarbonate resin obtained by an interfacial polycondensation method, or a dihydric phenol and a carbonate precursor such as diphenyl carbonate as raw materials, and a transesterification method.
  • the film of the polycarbonate-type resin obtained by is mentioned.
  • the polycarbonate-based resin a resin obtained by using 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is usually used as a dihydric phenol.
  • flame retardant polycarbonate resin obtained by using a mixture of bisphenol A and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (tetrabromobisphenol A) is used as the dihydric phenol.
  • tetrabromobisphenol A 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane
  • a bisphenol A-based polycarbonate-polyorganosiloxane copolymer can also be used as a polycarbonate-based resin with improved impact resistance and flame retardancy.
  • the thickness of the surface layer film (a) is preferably 25 ⁇ m to 250 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m.
  • Adhesive layer (I) The adhesive layer (a) in the present invention is obtained by blending 1.5 to 2.5 equivalents of polyisocyanate into the following thermoplastic saturated copolymer polyester resin and curing.
  • Thermoplastic saturated copolyester resin an acid component comprising 20 to 40 mol% terephthalic acid, 20 to 40 mol% isophthalic acid and 25 to 50 mol% adipic acid (however, the total of the acid components is 100 mol%);
  • a glycol component composed of 10 to 50 mol% of 1,4-butanediol and 50 to 90 mol% of 1,6-hexanediol (however, the total of the glycol components is 100 mol%).
  • the usage amounts of the other two components are adjusted so that the total amount becomes 100 mol%.
  • the minimum amount of 20 mol% of terephthalic acid is employed, the amount of isophthalic acid and adipic acid used may be adjusted so that the total amount is 100 mol%.
  • thermoplastic saturated copolymer polyester resin is an acid component comprising 25 to 35 mol% terephthalic acid, 25 to 35 mol% isophthalic acid and 30 to 45 mol% adipic acid (however, the total of the acid components is 100 mol%).
  • a glycol component consisting of 20 to 40 mol% 1,4-butanediol and 60 to 80 mol% 1,6-hexanediol (provided that the total of the glycol components is 100 mol%).
  • the adhesive layer (a) in the present invention is obtained by blending 1.5 to 2.5 equivalents of polyisocyanate with the above-mentioned thermoplastic saturated copolymer polyester resin and curing it.
  • Polyisocyanate monomers include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, tolidine diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate ( XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate, 1,3,6-hexamethylenetri Examples thereof include isocyanate and bicycloheptane triisocyanate
  • hexamethylene diisocyanate is preferably used in terms of excellent initial tack, initial adhesion, and heat-resistant adhesion.
  • the equivalent of polyisocyanate as used in the field of this invention can be calculated
  • the amount of polyisocyanate used is more preferably 1.8 to 2.2 equivalents.
  • the softening temperature of the thermoplastic saturated copolyester resin is preferably 55 to 85 ° C.
  • the thermoplastic saturated copolyester resin satisfies this softening temperature range, the vacuum moldability is enhanced and the initial tackiness, initial adhesion, and heat-resistant adhesiveness are all significantly improved.
  • the reason is not clear, but according to the study of the present inventors, when the softening temperature of the thermoplastic saturated copolymer polyester resin is 55 to 85 ° C., the thermoplastic saturated copolymer polyester resin has microcrystalline properties. This is presumably because the adhesive force is improved over time from the beginning, and heat resistant adhesiveness can be secured.
  • the softening temperature is a value measured by JIS K-2531 (ring and ball method). The softening temperature can be adjusted by changing the amounts of the acid component and glycol component used.
  • the thickness of the adhesive layer (a) after curing is preferably 5 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m to 40 ⁇ m.
  • a backer layer (c) can be provided between the surface layer film (a) and the adhesive layer (b). Due to the presence of the backer layer (c), the vacuum formability is increased and this is preferable.
  • the backer layer (c) is not particularly limited, but is preferably an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G) from the viewpoint of vacuum moldability.
  • the unstretched amorphous polyethylene terephthalate resin film (F) includes an acid component composed of terephthalic acid and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) Is preferably 100% by mole).
  • the polyvinyl chloride resin film (G) any film produced from a hard, semi-rigid or soft composition containing a known vinyl chloride resin as a main component can be used.
  • the thickness of the backer layer (c) is preferably 50 ⁇ m to 300 ⁇ m, more preferably 100 ⁇ m to 200 ⁇ m.
  • FIG. 2 is a perspective view of one embodiment of the vacuum forming sheet of the present invention as seen from the reverse surface 100 side. As shown in FIG. 2, the reverse surface 100 has one or more grooves 4.
  • channel 4 exists only in the inner side of the reverse surface 100 of an adhesive bond layer (a), and does not lead to the side surface of an adhesive bond layer (a).
  • the adhesive layer (a) Since the adhesive layer (a) has the groove 4 in the vacuum forming sheet of the present invention, a release material having an emboss is attached thereto so that the adhesive layer (a) has a male surface structure.
  • a release material having an emboss is attached thereto so that the adhesive layer (a) has a male surface structure.
  • the reverse surface 100 further has a groove 5 leading to the side surface of the adhesive layer (A).
  • FIG. 11 is a cross-sectional view of a vacuum forming sheet for explaining the phenomenon of air mixing due to back surface irregularities.
  • seat 1 for vacuum forming of FIG. 11 has an adhesive layer (I) on the lower surface of a surface layer film (A), and a surface layer film (A) and an adhesive layer (I) It is the structure which has a backer layer (c) in between.
  • Emboss E is applied to the surface layer 101 of the surface layer film (a).
  • the vacuum forming sheet 1 is subjected to embossing after laminating the surface layer film (a) and the backer layer (c), and then the adhesive layer (a) is laminated.
  • the vacuum forming sheet 1 having such a configuration is heated by a heater at the time of vacuum forming and is in a semi-molten state, the portion of the adhesive layer (A) corresponding to the lower surface of the emboss E has a thickness as shown in FIG. Since the deformation is performed so as to maintain the balance of the direction, a phenomenon that the concave portion C is formed toward the inner direction of the sheet occurs.
  • the groove in the present invention can be selected in an arbitrary shape, and preferably the cross section thereof is a rectangle (a), a trapezoid (b), a U-shape (c) or a triangle (d) as shown in FIG. , Having a width of 5 to 100 ⁇ m and a depth of 5 to 50 ⁇ m.
  • w represents the width of the groove
  • h represents the depth of the groove.
  • the groove may have various shapes or patterns in the front view of the surface having the groove of the adhesive layer (A). Examples thereof are shown in FIGS. 4 and 5 are front views of the reverse surface 100 of the adhesive layer (A). In FIGS. 4 and 5, black portions are grooves.
  • the groove 4 not leading to the side surface is, for example, a straight line, a straight branch, a cross, a circle, an ellipse, or a polygon (triangle, square, six Each shape may be composed of a plurality of intermittent grooves.
  • the groove 4 has a cross shape.
  • the groove 4 is hexagonal, and in FIG. 5, the groove 4 is circular.
  • FIG. 6 is an example in which the linear groove 4 is constituted by a plurality of intermittent grooves.
  • One or more, preferably many, grooves 4 are present in the adhesive layer (a), more preferably at a density of 1 ⁇ 10 to 3.7 ⁇ 10 6 per cm 2 , more preferably 1 ⁇ 10 6 per cm 2. There are 2 to 3.7 ⁇ 10 5 densities.
  • the groove 5 leading to the side surface is an adhesive layer (a) in which a plurality of grooves 5 are arranged in a striped pattern or separated by the grooves in the front view of the reverse surface 100 of the adhesive layer (a). ) May be arranged to be circular, elliptical or polygonal (triangular, square, hexagonal, etc.).
  • channel 5 is arrange
  • the grooves 5 are arranged so that the adhesive layer (a) delimited by the grooves is hexagonal, arranged in a circular shape in FIG. 5, and arranged in a rectangular shape in FIG. ing.
  • the grooves 4 and 5 may be randomly arranged on the surface of the adhesive layer (a) or may be arranged in a regular pattern.
  • the vacuum forming sheet of the present invention can be prepared, for example, as follows. That is, a thermoplastic saturated copolyester resin is dissolved in an organic solvent such as methyl ethyl ketone, a predetermined amount of a polyisocyanate compound is added thereto to form a paint, and the paint is embossed on the surface layer film (A) It can be prepared by applying the above by a known coating method, bonding a release material having a male surface structure, and curing it. In addition, the coating material is applied to a release material having a male surface structure, the grooves are formed in the adhesive layer (a), and the surface layer film (a) is bonded to the adhesive layer (a).
  • the surface layer film (a) and the backer layer (c) are laminated by, for example, heat lamination or dry lamination, and the paint is provided on the backer layer (c) by the above method.
  • the embossing can be performed using a conventionally known method, for example, a drum heating embosser, a multi-cylinder embosser, or the like.
  • As the embossed pattern from the viewpoint of the effect of the present invention, for example, a conduit grain, a hairline, an abstract pattern, a satin pattern or the like is preferable.
  • You may give an embossing with respect to the laminated body of a surface layer film (a) and a backer layer (c).
  • known additives such as weathering agents, antistatic agents and fillers can be added to the surface layer film (a), the adhesive layer (a) and the backer layer (c) as necessary.
  • the release material has a base film and a polyolefin-based resin-containing layer on one or both sides thereof, and at least one of the polyolefin-based resin-containing layers is embossed on a surface opposite to the surface in contact with the base film. The thing which has is mentioned.
  • Examples of the base film include paper, biaxially oriented polypropylene, polyethylene terephthalate, void-containing polyethylene terephthalate, phthalic acid isomer copolymerized polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyarylate, and polyether ether.
  • Examples of the resin film include ketone, polyethersulfone, polylactic acid, triacetylcellulose, and polycarbonate.
  • Examples of paper types include glassine paper, high-quality paper, and craft paper.
  • the base film preferably has a bending strength by loop stiffness of 0.2 to 1.5 N / 25 mm and a yield point load of 50 to 200 N / 10 mm.
  • a bending strength by loop stiffness of 0.2 to 1.5 N / 25 mm and a yield point load of 50 to 200 N / 10 mm.
  • the base film is preferably paper, biaxially stretched, or contains cavities in the film.
  • Examples of the commercially available products include Emblict S125 manufactured by Unitika, Tetron (trademark) S100 manufactured by Teijin, and Crisper K1212 manufactured by Toyobo (cavity-containing biaxially stretched polyethylene terephthalate).
  • the thickness of the base film is 50 to 150 ⁇ m, preferably 100 to 150 ⁇ m, more preferably 100 to 125 ⁇ m. When it is thinner than 50 ⁇ m, the resulting release material is likely to curl. If it is larger than 150 ⁇ m, it is too thick to be suitable as a release material.
  • the polyolefin-based resin-based resin may be (co) heavy of one or more olefins, for example, one or more olefins selected from ethylene, propylene, butylene, butadiene and the like.
  • olefins selected from ethylene, propylene, butylene, butadiene and the like.
  • examples include ethylene-methacrylic acid copolymer and its ionomer.
  • it is selected from polyethylene resins and polypropylene resins, and specific examples include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and polypropylene (PP).
  • LDPE low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • PP polypropylene
  • the polyolefin resin is LDPE.
  • the polyolefin resin preferably has a Bigat softening point (JIS K 7206) of 80 to 150 ° C.
  • JIS K 7206 Bigat softening point
  • the bigat softening point is less than the lower limit, it is difficult to hold the emboss.
  • the upper limit is exceeded, embossing is difficult.
  • the polyolefin resin preferably has a heat-resistant solvent property.
  • the polyolefin resin is not affected by an organic solvent such as toluene or ethyl acetate under a normal temperature atmosphere, but may be cracked or wrinkled in an environment of 80 ° C. or higher.
  • the polyolefin resin-containing layer may contain a heat stabilizer, a processing aid, and the like as necessary.
  • the polyolefin resin-containing layer needs to have a thickness of 10 ⁇ m or more. Since the thickness of the polyolefin resin layer is not so high, if the thickness is less than 10 ⁇ m, unevenness due to uneven thickness is likely to occur on the surface, and as a result, sufficient surface smoothness of the release material cannot be obtained. Also, a thickness of 10 ⁇ m or more is necessary so that the emboss can have a height that fits the groove. In addition, the release material in which the polyolefin resin-containing layer is embossed is likely to curl the edges. To prevent this, the upper limit of the thickness of the polyolefin resin-containing layer is based on the polyolefin resin-containing layer.
  • the thickness ratio of the above layers is set to 0.3 to 1.
  • the polyolefin resin-containing layer has a thickness of 10 ⁇ m or more and 0.1 to 0.25 times the thickness of the substrate film when the polyolefin resin-containing layer is only on one side of the substrate film.
  • the thickness is 10 ⁇ m or more and 0.1 to 0.25 times the thickness of the base film, and the thickness ratio to each other is 0.5 to 1, more preferably 0. 6 to 1, more preferably 1.
  • the thickness of the base film is 100 to 125 ⁇ m, and the thickness of the polyolefin-based resin-containing layer is 15 to 25 ⁇ m (15 to 25 ⁇ m for each of both surfaces).
  • the release material may have a polyolefin resin layer on one side or both sides of the base film. It is preferable to have a polyolefin-based resin layer on both sides from the viewpoint that curling at the end of the release material can be further suppressed. However, from the viewpoint of cost, it is advantageous to have a polyolefin resin layer only on one side. In this case, curling is prevented by appropriately adjusting the thickness of the base film and the polyolefin resin layer within the above range. be able to.
  • the release material has an emboss on the surface opposite to the surface in which at least one of the polyolefin resin-containing layers is in contact with the base film.
  • the emboss is formed so as to fit into the groove on the surface of the adhesive layer (a). More preferably, the emboss is formed so as to have a male surface structure with respect to the adhesive layer (a), and the release material on which the emboss is formed in this way is advantageous with the vacuum forming sheet of the present invention. Can be combined.
  • the polyolefin resin-containing layer is bonded to one or both sides of the base film, at least one of the polyolefin resin-containing layers is embossed, and then the surface of the polyolefin resin-containing layer is silicone-coated as necessary.
  • It can manufacture by processing with release agents, such as.
  • the laminating can be performed by a method in which a polyolefin-based resin is melt-extruded on a base film and pressure-bonded with a cooling roll, or a method in which a polyolefin-based resin is formed into a film and then pressure-bonded while being heated with a heat generating roll .
  • an anchor coat is previously provided on the surface of the base film in contact with the polyolefin resin-containing layer, or treatment such as corona treatment or plasma treatment is performed. It is preferable to apply. Embossing can be performed by a conventionally known method, for example, by embossing under heating using an engraving roll or an engraving plate.
  • the vacuum forming using the vacuum forming sheet of the present invention is not particularly limited, but is preferably formed by the methods described in Patent Documents 1 to 3, for example. That is, the vacuum forming sheet of the present invention and the laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first chamber on the laminated base material side and the second on the opposite side by the vacuum forming sheet. And the first chamber and the second chamber are depressurized and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet and the laminated base material are brought into contact with each other.
  • FIG. 7 is a diagram for explaining an example of the vacuum forming method.
  • the vacuum forming sheet 10 from which the release material has been removed in the vacuum forming machine and the laminated base material 12 are disposed so as to face each other so that the adhesive layer (a) is in contact with the laminated base material 12.
  • the first sheet 14 on the laminated substrate side and the second chamber 16 on the opposite side are hermetically partitioned by the sheet 10 for use.
  • the first chamber 14 and the second chamber 16 are decompressed by the vacuum pump 18 and the vacuum forming sheet 10 is heated and softened. Heat softening is performed by turning on the heater 20.
  • FIG. 7 is a diagram for explaining an example of the vacuum forming method.
  • the vacuum forming sheet 10 from which the release material has been removed in the vacuum forming machine and the laminated base material 12 are disposed so as to face each other so that the adhesive layer (a) is in contact with the laminated base material 12.
  • the first sheet 14 on the laminated substrate side and the second chamber 16 on the opposite side are her
  • the table 24 in the first chamber 14 is raised by the driving device 22, and the vacuum forming sheet 10 and the laminated base material 12 are brought into contact with each other.
  • the reduced pressure in the second chamber 16 is released, and the vacuum forming sheet is adhered and laminated on the outer surface of the laminated base material by the differential pressure between the first chamber 14 and the second chamber 16 to obtain a molded product.
  • the vacuum molding machine is opened by the driving device 26, and the molded product is taken out.
  • the laminated substrate is preferably an ABS resin or a substrate made of an alloy of ABS resin and polycarbonate resin in terms of adhesion.
  • the said base material can be obtained by injection molding etc., for example.
  • the ratio of both is, for example, 2: 8 to 7: 3 as ABS resin: polycarbonate resin (mass ratio).
  • the vacuum forming of the vacuum forming sheet and the laminated base material of the present invention is not limited to the above method.
  • Example 1 Synthesis of Thermoplastic Saturated Copolyester Resin
  • the acid component is terephthalic acid, isophthalic acid, adipic acid, and 1,4-butanediol as the glycol component so that the resulting resin has the resin composition (1) shown in Table 1 below.
  • 1,6-Hexanediol was blended in an appropriate amount and heated in the presence of a catalyst (tetrabutyl titanate) to synthesize a thermoplastic saturated copolymer polyester resin (hereinafter sometimes simply referred to as copolymer polyester resin).
  • the above five monomer compositions in the thermoplastic saturated copolyester resin were confirmed by NMR. NMR confirmation was also performed in the following examples and comparative examples.
  • thermoplastic saturated copolymer polyester resin obtained above was dissolved in a solvent (methyl ethyl ketone) to obtain a paint having a solid content of 30% by mass.
  • a solvent methyl ethyl ketone
  • Two equivalents of polyisocyanate (1) manufactured by Nippon Polyurethane, “Coronate HX” (hexamethylene diisocyanate), solid content 100%
  • PET-G (1) manufactured by Riken Technos Co., Ltd., product names “SET470, FZ25871”, unstretched amorphous polyethylene terephthalate resin film, acid component comprising terephthalic acid, and ethylene glycol It was composed of a glycol component consisting of 70 mol% and cyclohexane dimethanol 30 mol% (thickness 150 ⁇ m).
  • Lamination of the surface layer film (a) and the backer layer (c) was performed by thermal lamination.
  • embossing was performed with respect to the laminated body of the said surface layer film (a) and a backer layer (c).
  • an embossing machine composed of a metal engraving roll having a temperature of 140 ° C. and a pressure roll coated with semi-hard rubber is installed between a heating drum having a temperature of 140 ° C. and a cooling drum, and embossing is performed, whereby the surface film ) Was embossed with a conduit wood grain pattern.
  • a cross-shaped groove 4 that does not lead to the side surface (the cross-section is U-shaped with a width of 20 ⁇ m and a depth of 10 ⁇ m, and the cross-shaped vertical and horizontal lengths) of intervals 500 [mu] m (density sculpture at a) 250 [mu] m is: a female embossing press plates subjected in 1 cm 2 per 4.0 ⁇ 10 2 pieces), 20 seconds at 140 ° C., to pressurize the laminated film of the following Thus, the embossed shape was transferred to the laminated film to obtain a release material A having a male surface shape.
  • Laminated film LDPE melted on one side of a high-quality paper having a basis weight of 110 g / m 2 was extruded, and the LDPE was rolled with a roll so as to have a thickness of 20 ⁇ m and bonded together. The embossed shape was transferred to the surface of the LDPE layer of this laminated film.
  • the release layer A was coated with a knife coater so that the adhesive layer (A) forming coating material had a thickness after curing of 20 ⁇ m. Subsequently, the application surface of the paint and the backer layer (c) were bonded together to obtain a vacuum forming sheet with a release material.
  • the interval means the distance between the gravity center points of two adjacent grooves 4 in the front view of the reverse surface 100 of the adhesive (A).
  • the darkly filled portion is a groove.
  • the pitch means the shortest distance between the center points of the widths of two adjacent grooves 5 as shown in FIG.
  • Vacuum forming Vacuum forming was performed by the vacuum forming method shown in FIGS. Table 2 shows the surface temperature (molding temperature) of the surface layer film (a) at the time of molding. Further, as the laminated substrate, a substrate made of an alloy of ABS resin and polycarbonate resin and being a molded product obtained by injection molding was used. In the alloy, the ratio of both is 3: 7 as ABS resin: polycarbonate resin (mass ratio).
  • Vacuum forming property NGF-0912 type manufactured by Fuse Vacuum Co., Ltd.
  • the vacuum forming property was evaluated under the surface temperature film forming temperature conditions described in the tables of Examples and Comparative Examples.
  • Double-circle The followable
  • The followability to the substrate shape is good, but the end wrapping property is poor.
  • delta The followable
  • X The sheet is torn and cannot be sufficiently molded.
  • Initial tackiness The initial tackiness was evaluated based on the feeling when the finger was pressed firmly against the cured adhesive layer surface and then peeled off. ⁇ : There is a sticky feeling. ⁇ : Feels somewhat sticky. ⁇ : No stickiness.
  • Initial adhesion Initial adhesion was evaluated by forcibly peeling the sheet immediately after vacuum forming.
  • X The sheet is not stretched and peeled without sufficient peeling resistance.
  • Heat resistant adhesion 50 ° C. ⁇ 400 hours: After the vacuum molded product was left in a gear oven set at 50 ° C. for 400 hours, peeling of the edge was confirmed and the sheet was forcibly peeled to evaluate the heat resistant adhesion.
  • Double-circle There is no peeling of an edge part and a sheet material breaks by forced peeling.
  • There is no peeling at the edge, and peeling is performed while the sheet is stretched by forced peeling.
  • Slight peeling at the edge is observed, and the sheet is not stretched by forced peeling, but is peeled while maintaining some peeling resistance.
  • X The peeling of the edge is clearly recognized, or the sheet is peeled off without sufficient peeling resistance by forced peeling.
  • Heat resistant adhesiveness 80 ° C. ⁇ 400 hours: After the vacuum molded product was left in a gear oven set at 80 ° C. for 400 hours, peeling of the end portion was confirmed and the sheet was forcibly peeled to evaluate the heat resistant adhesion.
  • Double-circle There is no peeling of an edge part and a sheet material breaks by forced peeling.
  • There is no peeling at the edge, and peeling is performed while the sheet is stretched by forced peeling.
  • Slight peeling at the edge is observed, and the sheet is not stretched by forced peeling, but is peeled while maintaining some peeling resistance.
  • X The peeling of the edge is clearly recognized, or the sheet is peeled off without sufficient peeling resistance by forced peeling.
  • Air mixing due to unevenness on the back surface NGF-0912 type manufactured by Fuse Vacuum Co., Ltd.
  • vacuum forming was performed at the forming temperature conditions of the surface layer film described in the table of Examples and Comparative Examples, and the sheet was removed from the substrate. Forced peeling was performed and the peeled surface was visually observed and evaluated.
  • the evaluation criteria are as follows. A: The trace of air mixing is not seen at all on the peeling surface on the substrate side, and the gloss has disappeared uniformly. ⁇ : No trace of air mixing is seen on the peeling surface on the base material side, but a slight shading is seen along the embossed shape.
  • Heat-resistant appearance 50 ° C. ⁇ 400 hours: The vacuum molded product was evaluated by observing the appearance after leaving it in a gear oven set at 50 ° C. for 400 hours. The evaluation criteria are as follows. A: There is no crusty skin due to swelling or rough surface. ⁇ : There is no bulge, but there is slight skin damage due to rough surface. ⁇ : Slightly crumpled or rough skin due to rough surface is observed. ⁇ : Obvious skin due to blistering and rough surface is observed.
  • Heat-resistant appearance 80 ° C. ⁇ 400 hours: The vacuum molded product was evaluated by observing the appearance after leaving it in a gear oven set at 80 ° C. for 400 hours. The evaluation criteria are as follows. A: There is no crusty skin due to swelling or rough surface. ⁇ : There is no bulge, but there is slight skin damage due to rough surface. ⁇ : Slightly crumpled or rough skin due to rough surface is observed. ⁇ : Obvious skin due to blistering and rough surface is observed.
  • Shrinkage test Performed based on JIS K 7133 “Plastics-Films and Sheets—Measurement of Heated Dimensional Change”.
  • a vacuum forming sheet with a release material is cut out to a size of 250 mm ⁇ 250 mm.
  • two vertical and horizontal straight lines are drawn at the center of each surface of the cut-out vacuum forming sheet on the surface film (A) side and the release material side, and the two straight lines are drawn.
  • a test line is prepared by drawing a marked line (4 lines) at a position 100 mm away from the crossing line.
  • the average value of the distance between the vertical and horizontal marked lines of the surface layer film (a) is L f
  • the average value of the distance between the vertical and horizontal marked lines of the release material is L s .
  • L x0 Distance between marked lines before storage (mm)
  • Appearance of vacuum forming sheet with release material during long-term storage The sheet for vacuum forming with a release material was rolled and wound for 3 months at room temperature, then taken out and evaluated by visually observing the unwinding appearance of the sheet.
  • the evaluation criteria are as follows. ⁇ : Tarmi and wrinkles are not observed on the sheet. X: Tarmi and wrinkles are observed on the sheet.
  • Example 2 In Example 1, PVC (1) (manufactured by Riken Technos Co., Ltd., product name “S12040, FC13477”, polyvinyl chloride resin, thickness 150 ⁇ m) was used as the backer layer (c) at the molding temperature shown in Table 2. Example 1 was repeated except that vacuum forming was performed. The results are shown in Table 2.
  • Example 3 In Example 1, copolymerized PET (1) (Teijin DuPont Films, Teflex FT, terephthalic acid as an acid component, naphthalenedicarboxylic acid, ethylene glycol as a glycol component, as a surface layer film (a) Example 1 was repeated except that a biaxially stretched copolymer polyethylene terephthalate resin film (thickness 50 ⁇ m) was used and vacuum molding was performed at the molding temperature shown in Table 2. The results are shown in Table 2.
  • Example 4 In Example 1, as the surface layer film (a), PC (1) (product name: Asahi Glass, trade name: Lexan film 8010, 112 clear, polycarbonate film, thickness: 100 ⁇ m) was used, and an ABS resin was used as the laminated substrate. Example 1 was repeated except that vacuum molding was performed at the molding temperature shown in FIG. The results are shown in Table 2.
  • PC (1) product name: Asahi Glass, trade name: Lexan film 8010, 112 clear, polycarbonate film, thickness: 100 ⁇ m
  • Example 1 was repeated except that vacuum molding was performed at the molding temperature shown in FIG. The results are shown in Table 2.
  • Example 5 In Example 1, as the surface layer film (a), PET-G (2) (manufactured by Riken Technos Co., Ltd., trade name SET241 FZ025, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, and ethylene It was composed of a glycol component consisting of 70 mol% of glycol and 30 mol% of cyclohexanedimethanol (thickness: 100 ⁇ m), and ABS resin was used as a laminate substrate, and vacuum forming was performed at the molding temperatures shown in Table 2. Example 1 was repeated except that. The results are shown in Table 2.
  • Example 1 Example 1 was repeated except that the surface layer film (a), the laminated base material, and the molding temperature were changed as shown in Table 3 or 4 without providing the backer layer (c). The results are shown in Table 4.
  • Example 8 and 9 the embossing applied to the surface layer of the surface layer film (a) was changed to a hairline and a satin pattern, respectively.
  • acrylic (2) is manufactured by Sumitomo Chemical Co., Ltd., trade name: Technoloy S001, acrylic resin film, and thickness: 125 ⁇ m.
  • PET-G (3) is manufactured by Riken Technos Co., Ltd., trade name SET329 FZ93266, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, 70 mol% of ethylene glycol and 30 mol of cyclohexanedimethanol % Glycol component, and has a thickness of 150 ⁇ m.
  • PVC (2) is manufactured by Riken Technos Co., Ltd., trade name S12138 FC25847, a polyvinyl chloride resin film, and a thickness of 150 ⁇ m.
  • PC (2) is manufactured by Asahi Glass, trade name Lexan film FR765 black, polycarbonate resin film, thickness 180 ⁇ m.
  • Example 10 Engraving the groove 5 (cross section is 30 ⁇ m wide and 15 ⁇ m deep U-shaped) leading to the side surface at a pitch of 500 ⁇ m so that the part delimited by the groove is a hexagon (see FIG. 4) Furthermore, the hexagonal portion delimited by the groove is a hexagonal groove 4 that does not lead to the side surface (the cross section is a U-shape with a width of 30 ⁇ m and a depth of 15 ⁇ m, and the length of one side of the hexagon is 144 ⁇ m) interval 500 [mu] m (density carvings in a): the female embossing press plates subjected in 1 cm 4.6 ⁇ 10 2 per 2), 20 seconds at 140 ° C., pressurized to the stacking film used in example 1 Thus, the embossed shape was transferred to the laminated film to obtain a release material B having a male surface shape. Using this release material, a vacuum forming sheet with a release material was obtained in the same manner as in Example 1, and each
  • Example 11 Engraving the groove 5 (cross section is 20 ⁇ m wide and 10 ⁇ m deep U-shaped) leading to the side surface at a pitch of 300 ⁇ m so that the portion delimited by the groove is triangular, and further delimited by the groove 300 mm (density) of triangular sculptures that are not connected to the side surfaces (the cross section is U-shaped with a width of 20 ⁇ m and a depth of 10 ⁇ m, and the length of one side of the triangle is 100 ⁇ m).
  • the embossed press plate of a female mold applied at 1.1 ⁇ 10 3 per cm 2 ) is pressed against the laminated film used in Example 1 at 140 ° C.
  • a release material C having a male surface shape was obtained.
  • a vacuum forming sheet with a release material was obtained in the same manner as in Example 1, and each evaluation was performed. Table 6 shows molding temperatures and results.
  • Example 12 Engraving a groove 5 (cross section is U-shaped with a width of 50 ⁇ m and a depth of 20 ⁇ m) leading to the side surface at a pitch of 700 ⁇ m so that the portion delimited by the groove is circular (see FIG. 5),
  • the circular portion defined by the groove is spaced by a circular groove 4 that does not lead to the side surface (the cross section is U-shaped with a width of 50 ⁇ m and a depth of 20 ⁇ m, and the circular diameter is 350 ⁇ m).
  • Example 10 Example 10 was repeated except that the structure of the surface layer film (a) and the backer layer (c) and the molding temperature were changed as shown in Table 5 or 6. The results are shown in Table 6.
  • Example 15-18 Example 1 was repeated except that the resin structures (2) to (5) shown in Table 7 were employed instead of the resin structure (1). Molding temperatures and results are shown in Table 8.
  • Example 19-21 Example 1, Example 1 was repeated except that the amount or type of polyisocyanate was changed as shown in Table 7 or 9. Molding temperatures and results are shown in Tables 8 and 10.
  • polyisocyanate (2) is Nippon Polyurethane Co., Ltd. product name Coronate L, Compound name Tolylene diisocyanate.
  • Example 22 In Example 1, Example 1 was repeated except that A-PET (1) was used as the backer layer (c). Molding temperatures and results are shown in Table 10.
  • A-PET (1) is a product name A-PET sheet general type, compound name, unstretched polyethylene terephthalate sheet, 150 ⁇ m in thickness, manufactured by Teijin Chemicals.
  • Example 23 In Example 7, Example 7 was repeated except that A-PET (2) was used as the surface layer film (a). Molding temperatures and results are shown in Table 10.
  • A-PET (2) is Teijin Chemicals, trade name A-PET sheet black, compound name unstretched polyethylene terephthalate sheet, thickness 150 ⁇ m.
  • Example 24 In Example 1, Example 1 was repeated except that the laminated base material was changed to polypropylene (PP). Molding temperatures and results are shown in Table 10.
  • PP polypropylene
  • Example 1 biaxial PET (1) (trade name: Emblet S50, biaxially stretched polyethylene terephthalate film, thickness: 50 ⁇ m, manufactured by Unitika Co., Ltd.) was used as the surface layer film (a).
  • Example 1 was repeated except that the changes were made as shown in FIG. The results are shown in Table 12.
  • Example 2 In Example 1, without providing a backer layer (C), a PBT (1) (polybutylene terephthalate resin [trade name Toraycon 1200S, manufactured by Toray Industries, Inc.] is mounted as a surface layer film (A) with a 600 mm wide T-die. Using a 40 mm extruder (made by Ikegai Co., Ltd.), embossed pattern 200 mesh, temperature conditions were cylinder temperature 270 ° C., die temperature 270 ° C., film forming speed 10 m / min. Example 1 was repeated except that the molding temperature was changed as shown in Table 12. The results are shown in Table 12.
  • Example 1 Example 1 was repeated except that the resin structures (6) to (10) shown in Tables 13 and 15 were employed instead of the resin structure (1). Molding temperatures and results are shown in Tables 14 and 16.
  • Example 13-14 Example 1 was repeated except that the amount of polyisocyanate was changed as shown in Table 15. Molding temperatures and results are shown in Table 16.
  • Example 1 Comparative Example 15 In Example 1, Example 1 was repeated except that the adhesive layer (I) was changed to the pressure-sensitive adhesive (1) and the groove 4 was not provided in the release material. The results are shown in Table 16.
  • the pressure-sensitive adhesive (1) is a trade name “Liquidyne AR-2037” manufactured by Big Technos Co., Ltd., paint composition: acrylate copolymer.
  • Example 1 specifies the kind of surface layer film (a), sets the composition of the thermoplastic saturated copolymer polyester resin and the amount of polyisocyanate used in the adhesive layer (a) within a specific range, and Since a predetermined groove is formed on the specific surface of the adhesive layer (a), air mixing due to the back surface unevenness of the three-dimensional coated molded product does not occur, and heat resistant appearance (50 ° C. ⁇ 400 hours, 80 ° C. ⁇ 400 hours) Excellent. Furthermore, since the difference in shrinkage between the surface layer film (a) and the release material is also small, the appearance of the sheet does not deteriorate when stored for a long time with the release material.
  • the initial tackiness and initial adhesion are excellent, and by providing a backer layer (c), the vacuum moldability can be improved, and the heat-resistant adhesiveness in a three-dimensional coated molded product (50 ° C. ⁇ 400 hours) , 80 ° C. ⁇ 400 hours) can be provided. Further, it has been proved that the vacuum molded product of the vacuum molding sheet of the present invention and a base material made of an alloy of ABS resin and polycarbonate resin is particularly excellent in adhesion.
  • Example 2 was an example in which the backer layer was PVC (1), and showed the same performance as Example 1.
  • Example 3 was an example in which the surface layer film (a) was copolymerized PET (1), and showed the same performance as Example 1.
  • Example 4 is an example in which the surface layer film (A) is PC (1) and the laminated base material is ABS, and shows the same performance as Example 1.
  • Example 5 was an example in which the surface layer film (a) was PET-G (2) and the laminated base material was ABS, and showed the same performance as Example 1.
  • Example 6 is an example in which the surface layer film (a) is acrylic (2) and the backer layer (c) is not provided, and the same as in Example 1 except that the vacuum formability is ⁇ evaluation. Showed performance.
  • -Example 7 is an example in which the surface layer film (a) was PET-G (3) and the backer layer (c) was not provided. Except that the vacuum formability was evaluated as ⁇ , Similar performance was demonstrated.
  • Example 8 is an example in which the surface layer film (a) is PVC (2), the backer layer (c) is not provided, the laminated base material is ABS, and the embossed pattern is a hairline.
  • a performance similar to that of Example 1 was shown except that it was an evaluation.
  • -Example 9 is an example in which the surface layer film (a) is PC (2), the backer layer (c) is not provided, and the embossed pattern is satin-finished. Exhibited the same performance as in Example 1.
  • Example 10 was an example in which the type of release material was B, and showed the same performance as Example 1.
  • Example 11 was an example in which the type of release material was C, and showed the same performance as Example 1.
  • Example 12 was an example in which the type of release material was D, and showed the same performance as Example 1.
  • Example 13 was an example in which the surface layer film (a) was PET-G (2) and the type of release material was B, and showed the same performance as Example 1.
  • Example 14 is an example in which the surface layer film (a) is made of PET-G (3), the backer layer (c) is not provided, and the type of the release material is B, and the vacuum formability is evaluated as good. Except for this, the same performance as in Example 1 was exhibited.
  • -Example 15 was the example which made the copolyester resin the resin structure (2), and showed the same performance as Example 1.
  • Example 16 is the example which made the copolymer polyester resin the resin structure (3), and heat-resistant adhesiveness (50 degreeC x 400 hours) and heat-resistant external appearance property (50 degreeC x 400 hours) are (circle) evaluation, heat-resistant adhesiveness ( 80 ° C. ⁇ 400 hours) and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • Example 17 is an example in which the copolymerized polyester resin has a resin configuration (4), and the initial tackiness and initial adhesion are ⁇ evaluated, heat resistant adhesiveness (50 ° C. ⁇ 400 hours), heat resistant adhesiveness (80 ° C. ⁇ 400 hours), heat-resistant appearance (50 ° C.
  • Example 18 was the example which made the copolyester resin the resin structure (5), and showed the same performance as Example 1.
  • Example 19 is an example in which the amount of polyisocyanate (1) added was 1.7 equivalents, with heat resistance adhesion (50 ° C. ⁇ 400 hours) and heat appearance appearance (50 ° C. ⁇ 400 hours) evaluated as good, heat resistance Adhesiveness (80 ° C. ⁇ 400 hours) and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • Example 20 is an example in which the amount of polyisocyanate (1) added was 2.3 equivalents, and the initial tackiness and initial adhesion were evaluated as ⁇ , heat-resistant adhesiveness (50 ° C. ⁇ 400 hours), heat-resistant appearance ( 50 ° C. ⁇ 400 hours) was evaluated as “Good”, heat resistant adhesiveness (80 ° C. ⁇ 400 hours), and heat resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • Example 21 is an example which uses polyisocyanate (2), initial tack property, heat-resistant adhesiveness (50 degreeC x 400 hours), heat-resistant adhesiveness (80 degreeC x 400 hours), heat-resistant appearance (50 degreeC x 400) Time) and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • -Example 22 is an example in which A-PET (1) is used for the backer layer, and the vacuum formability is evaluated as ⁇ , heat-resistant adhesiveness (50 ° C x 400 hours), and heat-resistant appearance (50 ° C x 400 hours). O Evaluation, heat-resistant adhesiveness (80 ° C.
  • Example 23 is an example in which A-PET (2) was used for the surface layer film (a) and the backer layer (c) was not provided, and the vacuum formability was evaluated as ⁇ , heat-resistant adhesiveness (50 ° C. ⁇ 400 hours) ), Heat-resistant appearance (50 ° C. ⁇ 400 hours) was evaluated as ⁇ , heat-resistant adhesiveness (80 ° C. ⁇ 400 hours), and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • Example 24 is an example in which PP is used for the laminated base material.
  • the initial adhesiveness is evaluated as ⁇
  • the heat-resistant adhesiveness 50 ° C. ⁇ 400 hours
  • the heat-resistant appearance 50 ° C. ⁇ 400 hours
  • Adhesiveness 80 ° C. ⁇ 400 hours
  • heat-resistant appearance 80 ° C. ⁇ 400 hours
  • -Comparative Example 1 is an example in which the surface layer film (a) is biaxial PET (1), and is outside the scope of the present invention, so vacuum formability, initial adhesion, and heat resistant adhesiveness (50 ° C x 400 hours) The heat-resistant adhesiveness (80 ° C. ⁇ 400 hours), the heat-resistant appearance (50 ° C. ⁇ 400 hours), and the heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as x.
  • Comparative Example 2 is an example in which the surface layer film (a) is PBT (1) and the backer layer (c) is not provided, and is outside the scope of the present invention. Therefore, vacuum formability, initial adhesion, heat-resistant adhesion Evaluation (50 ° C.
  • Comparative Example 3 is an example in which the type of release material is E (not having grooves 4 and 5), and is outside the scope of the present invention, so drag line, heat resistant appearance (50 ° C. ⁇ 400 hours), Heat-resistant appearance (80 ° C. ⁇ 400 hours), productivity (simplification of process), appearance of sheet with release material during long-term storage ⁇ evaluation, difference in shrinkage after 1 week, 80 ° C., normal temperature, 3 The difference in shrinkage after months was large and the evaluation was inferior.
  • E not having grooves 4 and 5
  • Comparative Example 4 is an example in which the type of release material is F (not having grooves 5), and is outside the scope of the present invention, so air mixing due to unevenness on the back surface, heat resistant appearance (50 ° C. ⁇ 400 hours), The heat appearance (80 ° C. ⁇ 400 hours) was evaluated as x.
  • Comparative Example 5 is an example in which the surface layer film (a) is PET-G (3), the backer layer (c) is not provided, and the type of release material is G (no groove 5). Therefore, the air contamination due to the unevenness on the back surface, the heat resistant appearance (50 ° C. ⁇ 400 hours), and the heat resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as x.
  • Comparative Example 6 is an example in which the type of release material is H (without the groove 4), and is outside the scope of the present invention, so it is a drag line, heat resistant appearance (50 ° C. ⁇ 400 hours), heat resistant appearance (80 ° C. ⁇ 400 hours), productivity (simplification of process) is ⁇ evaluation, appearance of sheet with release material during long-term storage is X evaluation, difference in shrinkage after 1 week, 80 ° C., normal temperature, 3 The difference in shrinkage after months was large and the evaluation was inferior.
  • Comparative Example 7 is an example in which the type of release material is I (without the groove 4), and is outside the scope of the present invention. Therefore, drag line, heat resistant appearance (50 ° C. ⁇ 400 hours), heat resistant appearance (80 ° C.
  • Comparative Example 8 is an example in which a copolymerized polyester resin is used as the resin composition (6), and is outside the scope of the present invention. Therefore, heat resistant adhesiveness (50 ° C. ⁇ 400 hours), heat resistant adhesiveness (80 ° C. ⁇ 400 hours) ), Heat-resistant appearance (50 ° C. ⁇ 400 hours) and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as x.
  • Comparative Example 9 is an example in which a copolymerized polyester resin is used as the resin composition (7), and is outside the scope of the present invention. Therefore, initial tackiness and initial adhesion are evaluated as x evaluation, heat resistant adhesiveness (50 ° C. ⁇ 400 hours) ), Heat-resistant adhesiveness (80 ° C. ⁇ 400 hours), heat-resistant appearance (50 ° C. ⁇ 400 hours), and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as ⁇ .
  • Comparative Example 10 is an example in which a copolymerized polyester resin is used as the resin configuration (8), and is outside the scope of the present invention. ), Heat-resistant appearance (50 ° C. ⁇ 400 hours) and heat-resistant appearance (80 ° C.
  • Comparative Example 11 is an example in which the copolymerized polyester resin has a resin configuration (9), and is outside the scope of the present invention, and therefore, the initial tackiness and initial adhesion were evaluated as x.
  • Comparative Example 12 is an example in which the copolymerized polyester resin has a resin configuration (10), and is outside the scope of the present invention. Therefore, heat resistant adhesiveness (50 ° C. ⁇ 400 hours), heat resistant adhesiveness (80 ° C. ⁇ 400 hours) ), Heat-resistant appearance (50 ° C. ⁇ 400 hours) and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as x.
  • Comparative Example 13 is an example in which the amount of polyisocyanate (1) added is 1 equivalent, and is outside the scope of the present invention, so heat resistant adhesiveness (50 ° C. ⁇ 400 hours), heat resistant appearance (50 ° C. ⁇ 400) Time) was evaluated as ⁇ , heat-resistant adhesiveness (80 ° C. ⁇ 400 hours), and heat-resistant appearance (80 ° C. ⁇ 400 hours) were evaluated as ⁇ .
  • Comparative Example 14 is an example in which the amount of polyisocyanate (1) added is 3 equivalents, and is outside the scope of the present invention. Therefore, the initial tackiness is evaluated as x, the initial adhesion is evaluated as ⁇ , and the heat resistant adhesion (50 (° C.
  • Comparative Example 15 is an example in which the pressure-sensitive adhesive (1) is used for the adhesive layer (A) and the type of the release material is H (no groove 4), and is outside the scope of the present invention.
  • Line, productivity (simplification of process) ⁇ evaluation, heat resistant adhesiveness (50 ° C x 400 hours), heat resistant adhesiveness (80 ° C x 400 hours), heat resistant appearance (50 ° C x 400 hours), heat resistant appearance (80 ° C. ⁇ 400 hours), evaluation of the appearance of the sheet with a release material during long-term storage, evaluation at 80 ° C., difference in shrinkage after 1 week, room temperature, difference in shrinkage after 3 months is large and inferior Became.
  • the vacuum forming sheet of the present invention is useful for obtaining three-dimensional coated molded products for automobile interior use, home appliance use, and the like.

Abstract

Disclosed is a sheet for vacuum molding (1) having excellent heat-resistant appearance, which prevents air inclusion in a three-dimensional coated molded article caused by recesses and projections in the back surface. The sheet for vacuum molding (1) has an adhesive layer (ii) on the lower surface of a surface layer film (i) which has an embossed surface layer. The surface layer film (i) is composed, for example, of an acrylic resin film (A), and the adhesive layer (ii) is obtained by blending 1.5-2.5 equivalent weights of a polyisocyanate into a specific thermoplastic saturated copolymer polyester resin and curing the resulting blend. The adhesive layer (ii) has one or more grooves in a surface (100), which is the surface on the reverse side of the surface that is in contact with the surface layer film (i), and the grooves include those ranging within the surface (100) and not reaching the lateral surface of the adhesive layer, and those extended in the surface (100) and reaching the lateral surface of the adhesive layer.

Description

真空成型用シートVacuum forming sheet
 本発明は、真空成型用シートに関するものであり、詳しくは、三次元被覆成型品の裏面凹凸によるエアー混入がなく、耐熱外観性(50℃×400時間、80℃×400時間)に優れ、また剥離材付きで長期に保存したときシートの外観性の低下がなく、さらに三次元被覆成型品での耐熱接着性(50℃×400時間、80℃×400時間)に優れた真空成型用シートに関するものである。 The present invention relates to a vacuum forming sheet, and more specifically, there is no air mixing due to back surface unevenness of a three-dimensional coated molded product, and the heat resistant appearance (50 ° C. × 400 hours, 80 ° C. × 400 hours) is excellent. It relates to a vacuum forming sheet with a release material that does not deteriorate the appearance of the sheet when stored for a long period of time, and has excellent heat-resistant adhesiveness (50 ° C. × 400 hours, 80 ° C. × 400 hours) in a three-dimensional coated molded product Is.
 従来、装飾用途の自動車内外装部品、家電用部品、建材用部品などは、射出成型、真空成型やインモールド成型等の成型加工を施した後、成型品表面をスプレー塗装などで塗料を塗布し、乾燥・加熱硬化させ、成型品の表面保護や着色、装飾等の意匠性を付与する。しかし、この様な塗装は、揮発性有機溶剤の排出に対する作業環境の問題や、成型品ごとの塗布、乾燥、加熱硬化等の作業工程と生産設備が必要となり、生産性が低い問題がある。 Conventionally, automotive interior / exterior parts, home appliance parts, building material parts, etc. for decorative purposes have been subjected to molding such as injection molding, vacuum molding and in-mold molding, and then the surface of the molded product is applied by spray coating or the like. , Dried and heat-cured to impart design properties such as surface protection, coloring and decoration of the molded product. However, such a coating has a problem of low productivity because it requires a work environment problem with respect to the discharge of the volatile organic solvent and a work process and production equipment such as coating, drying, and heat curing for each molded product.
 これに対して、近年、成型加工時に意匠性を有する軟質な熱可塑性樹脂からなる加飾用積層シートを供し、成型品表面に該加飾用積層シートを貼り合わせ、意匠性を有する被覆成型品を得る方法が数多く提案されている。加飾用積層シートは熱成型時の立体変形に追従できるような熱可塑性樹脂で構成されているので、成型時の塗膜の割れや破れ、剥離を生じるなどの問題はなく、塗装工程がないので作業環境や生産性に優れる。 On the other hand, in recent years, a decorative laminated sheet made of a soft thermoplastic resin having a design property at the time of molding processing is provided, and the decorative laminated sheet is bonded to the surface of the molded product, thereby providing a coated molded product having a design property. Many methods have been proposed to obtain The decorative laminated sheet is made of a thermoplastic resin that can follow the three-dimensional deformation during thermoforming, so there are no problems such as cracking, tearing or peeling of the coating film during molding, and there is no painting process So work environment and productivity are excellent.
 真空成型法を採用して上記の被覆成型品を得る方法としては、例えば下記の特許文献1~3に開示されている。 As a method of obtaining the above-mentioned coated molded product by employing the vacuum molding method, for example, the following patent documents 1 to 3 are disclosed.
 また、特許文献4には、熱成形可能な透明なプラスチックフィルムの一面に装飾層を設け、該装飾層上に、軟化点が80℃で、130℃における損失弾性率が10,000Paで膜厚が20~150μmの接着剤層を設けたことを特徴とする成形品加飾用成形シートが開示されている。
 しかしながら、該特許文献の成形品加飾用成形シートの表面にエンボス加工を施したものを用いて成型した三次元被覆成型品には、裏面凹凸によるエアーが混入するという問題があり、耐熱外観性(50℃×400時間、80℃×400時間)に劣るという問題がある。さらに該特許文献に記載したような接着剤を使用して作成した三次元被覆成型品は、耐熱接着性(50℃×400時間、80℃×400時間)に劣るという問題がある。
In Patent Document 4, a decorative layer is provided on one surface of a thermoformable transparent plastic film. On the decorative layer, a softening point is 80 ° C., a loss elastic modulus at 130 ° C. is 10,000 Pa, and a film thickness. Discloses a molded sheet for decorating a molded product, which is provided with an adhesive layer of 20 to 150 μm.
However, the three-dimensional coated molded product molded using the embossed surface of the molded decorative sheet for molded article of the patent document has a problem that air due to unevenness on the back surface is mixed, and heat resistant appearance There is a problem that it is inferior to (50 ° C. × 400 hours, 80 ° C. × 400 hours). Furthermore, a three-dimensional coated molded article prepared using an adhesive as described in the patent document has a problem that it is inferior in heat-resistant adhesion (50 ° C. × 400 hours, 80 ° C. × 400 hours).
 また、特許文献5には、表面にメッシュ状の連通溝を形成してなる粘着剤層を有する合成樹脂シートを真空ラミネート成形によりアルミニウム製窓枠パネルの表面に被覆する車両用窓枠パネルの製造方法であって、第一の成形室と第二の成形室とを有する真空成形機の両方の成形室を略真空状態にする第1工程、加熱により該合成樹脂製化粧シートを軟化させる第2工程、第ニの成形室内に配置されたアルミニウム製窓枠パネルに軟化した該合成樹脂製化粧シートを被せる第3工程、第一の成形室内の気圧を上昇させ該アルミニウム製窓枠パネルの形状に沿うよう該合成樹脂製化粧シートを加圧する第4工程からなることを特徴とする車両用窓枠パネルの製造方法が開示されている。
 しかしながら、該特許文献の合成樹脂シートの表面にエンボス加工を施したものを剥離材付きで長期に保存したとき、合成樹脂シートと剥離材の収縮率の違いにより、外観性が低下するという問題がある。さらに、該特許文献に記載したような接着剤または粘着剤を使用して作成した三次元被覆成型品は、耐熱接着性(50℃×400時間、80℃×400時間)に劣るという問題がある。また該特許文献の合成樹脂シートの表面にエンボス加工を施したものを用いて成型した三次元被覆成型品の裏面凹凸によるエアー混入にも改善の余地があった。
Patent Document 5 discloses the manufacture of a vehicle window frame panel in which the surface of an aluminum window frame panel is coated with a synthetic resin sheet having a pressure-sensitive adhesive layer having a mesh-shaped communication groove formed on the surface thereof by vacuum lamination molding. A first step of placing both molding chambers of a vacuum molding machine having a first molding chamber and a second molding chamber into a substantially vacuum state, and secondly softening the synthetic resin decorative sheet by heating. Process, third step of covering the softened synthetic resin decorative sheet on the aluminum window frame panel disposed in the second molding chamber, increasing the pressure in the first molding chamber to the shape of the aluminum window frame panel The manufacturing method of the window frame panel for vehicles characterized by consisting of the 4th process which pressurizes this synthetic resin decorative sheet so that it follows is disclosed.
However, when the surface of the synthetic resin sheet of the patent document is embossed and stored for a long time with a release material, there is a problem that the appearance deteriorates due to the difference in shrinkage between the synthetic resin sheet and the release material. is there. Furthermore, the three-dimensional coated molded article prepared using the adhesive or pressure-sensitive adhesive described in the patent document has a problem that it is inferior in heat resistant adhesiveness (50 ° C. × 400 hours, 80 ° C. × 400 hours). . In addition, there is room for improvement in air mixing caused by unevenness on the back surface of a three-dimensional coated molded product molded using an embossed surface of the synthetic resin sheet of the patent document.
特公昭56-45768号公報Japanese Patent Publication No. 56-45768 特許第3016518号公報Japanese Patent No. 3016518 特許第3733564号公報Japanese Patent No. 3733564 特開2007-70518号公報JP 2007-70518 A 特開2004-237510号公報JP 2004-237510 A
 したがって本発明の目的は、三次元被覆成型品の裏面凹凸によるエアー混入がなく、耐熱外観性(50℃×400時間、80℃×400時間)に優れ、また剥離材付きで長期に保存したときシートの外観性の低下がなく、さらに三次元被覆成型品での耐熱接着性(50℃×400時間、80℃×400時間)に優れた真空成型用シートを提供することにある。 Therefore, the object of the present invention is that there is no air mixing due to the unevenness of the back surface of the three-dimensional coated molded product, it has excellent heat resistant appearance (50 ° C. × 400 hours, 80 ° C. × 400 hours), and is stored for a long time with a release material. An object of the present invention is to provide a sheet for vacuum forming that does not deteriorate the appearance of the sheet and is excellent in heat-resistant adhesiveness (50 ° C. × 400 hours, 80 ° C. × 400 hours) in a three-dimensional coated molded product.
 本発明は、以下の通りである。
 1.表層にエンボス加工を施した表層フィルム(ア)の下面に接着剤層(イ)を有する真空成型用シートであって、
 前記表層フィルム(ア)が、アクリル系樹脂フィルム(A)、二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)、ポリ塩化ビニル系樹脂フィルム(D)またはポリカーボネート系樹脂フィルム(E)であり、かつ
 前記接着剤層(イ)が、下記の熱可塑性飽和共重合ポリエステル樹脂にポリイソシアネート1.5~2.5当量を配合し硬化したものであり、かつ前記表層フィルム(ア)に接着している面とは逆の面に1以上の溝を有し、該溝は、該接着剤層(イ)の該逆の面の内側のみに存在して該接着剤層(イ)の側面まで通じてはいない溝、および該逆の面において側面まで通じている溝を有することを特徴とする真空成型用シート。
 熱可塑性飽和共重合ポリエステル樹脂:テレフタル酸20~40モル%、イソフタル酸20~40モル%およびアジピン酸25~50モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール10~50モル%および1,6-ヘキサンジオール50~90モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。
 2.前記熱可塑性飽和共重合ポリエステル樹脂の軟化温度が、55~85℃であることを特徴とする前記1に記載の真空成型用シート。
 3.前記表層フィルム(ア)と前記接着剤層(イ)との間にバッカー層(ウ)を有することを特徴とする前記1または2に記載の真空成型用シート。
 4.前記バッカー層(ウ)が、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)またはポリ塩化ビニル系樹脂フィルム(G)であることを特徴とする前記3に記載の真空成型用シート。
 5.前記ポリイソシアネートが、ヘキサメチレンジイソシアネートからなるポリイソシアネートであることを特徴とする前記1~4のいずれかに記載の真空成型用シート。
 6.前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする前記1~5のいずれかに記載の真空成型用シート。
 7.前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする前記4に記載の真空成型用シート。
 8.前記エンボス加工の柄が、導管木目、ヘアライン、抽象柄または梨地であることを特徴とする前記1~7のいずれかに記載の真空成型用シート。
 9.前記溝が、幅5~100μmおよび深さ5~50μmを有する前記1に記載の真空成型用シート。
 10.前記接着剤層(イ)の該逆の面の正面図において、該側面まで通じていない溝が直線形、直線分岐形、十字形、円形、楕円形または多角形であり、各形状は断続的な複数の溝で形成されていてもよい、前記1または前記9に記載の真空成型用シート。
 11.前記接着剤層(イ)の該逆の面の正面図において、該側面まで通じていない溝が1cm2当たり1×10~3.7×106個の密度で存在する、前記1または前記9~10のいずれかに記載の真空成型用シート。
 12.前記接着剤層(イ)の該逆の面の正面図において、該側面まで通じている複数の溝が、縞状に配置されており、または該溝によって区切られる粘着材層の各々が円形、楕円形もしくは多角形であるように配置されている、前記1または前記9~11のいずれかに記載の真空成型用シート。
 13.多角形が三角形、四角形または六角形である前記10または前記12に記載の真空成型用シート。
 14.下記の真空成型方法により真空成型を行なうために用いられる、前記1~13のいずれかに記載の真空成型用シート。
 真空成型方法:前記1~13のいずれかに記載の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法。
 15.前記1~14のいずれかに記載の真空成型用シートと、ABS樹脂、または、ABS樹脂およびポリカーボネート樹脂のアロイからなる基材とを真空成型により積層せしめてなることを特徴とする成型品。
The present invention is as follows.
1. A sheet for vacuum forming having an adhesive layer (I) on the lower surface of a surface layer film (A) embossed on the surface layer,
The surface layer film (a) is an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), a polyvinyl chloride resin film ( D) or a polycarbonate resin film (E), and the adhesive layer (a) is obtained by blending 1.5 to 2.5 equivalents of polyisocyanate in the following thermoplastic saturated copolymer polyester resin and curing. And has one or more grooves on the surface opposite to the surface bonded to the surface film (a), and the grooves are present only on the inner side of the opposite surface of the adhesive layer (a). And a groove that does not communicate with the side surface of the adhesive layer (a) and a groove that communicates with the side surface on the opposite surface.
Thermoplastic saturated copolyester resin: an acid component comprising 20 to 40 mol% terephthalic acid, 20 to 40 mol% isophthalic acid and 25 to 50 mol% adipic acid (however, the total of the acid components is 100 mol%); A glycol component composed of 10 to 50 mol% of 1,4-butanediol and 50 to 90 mol% of 1,6-hexanediol (however, the total of the glycol components is 100 mol%).
2. 2. The vacuum forming sheet as described in 1 above, wherein the thermoplastic saturated copolymer polyester resin has a softening temperature of 55 to 85 ° C.
3. 3. The vacuum forming sheet as described in 1 or 2 above, wherein a backer layer (c) is provided between the surface layer film (a) and the adhesive layer (a).
4). 4. The vacuum forming sheet as described in 3 above, wherein the backer layer (c) is an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G).
5). 5. The vacuum forming sheet as described in any one of 1 to 4 above, wherein the polyisocyanate is a polyisocyanate composed of hexamethylene diisocyanate.
6). The unstretched amorphous polyethylene terephthalate resin film (C) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) 6. The vacuum forming sheet as described in any one of 1 to 5 above, wherein the total is 100 mol%).
7). The unstretched amorphous polyethylene terephthalate resin film (F) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (provided that the glycol component described above) (5) is a sheet for vacuum forming as described in (4) above.
8). 8. The vacuum forming sheet according to any one of 1 to 7 above, wherein the embossed pattern is a conduit grain, a hairline, an abstract pattern, or a satin texture.
9. 2. The vacuum forming sheet according to 1 above, wherein the groove has a width of 5 to 100 μm and a depth of 5 to 50 μm.
10. In the front view of the opposite surface of the adhesive layer (a), the grooves not leading to the side surface are linear, linearly branched, cruciform, circular, elliptical or polygonal, and each shape is intermittent. 10. The sheet for vacuum forming as described in 1 or 9 above, which may be formed by a plurality of grooves.
11. In the front view of the opposite surface of the adhesive layer (a), the grooves that do not lead to the side surface are present at a density of 1 × 10 to 3.7 × 10 6 per 1 cm 2. The vacuum forming sheet according to any one of 1 to 10.
12 In the front view of the opposite surface of the adhesive layer (a), the plurality of grooves leading to the side surface are arranged in a striped pattern, or each of the adhesive layers separated by the grooves is circular, 12. The vacuum forming sheet according to any one of 1 or 9 to 11, which is arranged so as to be elliptical or polygonal.
13. 13. The vacuum forming sheet according to 10 or 12, wherein the polygon is a triangle, a quadrangle, or a hexagon.
14 14. The vacuum forming sheet as described in any one of 1 to 13 above, which is used for vacuum forming by the following vacuum forming method.
Vacuum forming method: The vacuum forming sheet according to any one of 1 to 13 described above and a laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first side is placed on the laminated base material side by the vacuum forming sheet. The second chamber is hermetically partitioned from each other on the opposite side, the first chamber and the second chamber are decompressed, and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet And the laminated base material are brought into contact with each other, and thereafter, the decompression of the second chamber is released, and the vacuum forming sheet is placed on the outer surface of the laminated base material by the differential pressure between the first chamber and the second chamber. Vacuum forming method that adheres and laminates.
15. 15. A molded product comprising the vacuum molding sheet according to any one of 1 to 14 and a base material made of an ABS resin or an alloy of an ABS resin and a polycarbonate resin, which are laminated by vacuum molding.
 本発明では、表層にエンボス加工を施した表層フィルム(ア)の種類を特定するとともに、接着剤層(イ)における熱可塑性飽和共重合ポリエステル樹脂の組成とポリイソシアネートの使用量とを特定の範囲に設定し、なおかつ接着剤層(イ)の特定面に所定の溝を形成したので、三次元被覆成型品の裏面凹凸によるエアー混入がなく、耐熱外観性(50℃×400時間、80℃×400時間)に優れ、また剥離材付きで長期に保存したときシートの外観性の低下がなく、さらに三次元被覆成型品での耐熱接着性(50℃×400時間、80℃×400時間)に優れた真空成型用シートを提供することができる。また、本発明の真空成型用シートと、ABS樹脂、または、ABS樹脂およびポリカーボネート樹脂のアロイからなる基材との真空成型品は、特に密着性に優れる。 In the present invention, the type of the surface layer film (a) whose surface layer is embossed is specified, and the composition of the thermoplastic saturated copolymer polyester resin and the amount of polyisocyanate used in the adhesive layer (a) are within a specific range. In addition, since a predetermined groove was formed on the specific surface of the adhesive layer (a), there was no air mixing due to the back surface unevenness of the three-dimensional coated molded product, and heat resistant appearance (50 ° C. × 400 hours, 80 ° C. × 400 hours), and when it is stored for a long time with a release material, the appearance of the sheet does not deteriorate, and the heat-resistant adhesiveness (50 ° C. × 400 hours, 80 ° C. × 400 hours) in a three-dimensional coated molded product An excellent vacuum forming sheet can be provided. Moreover, the vacuum molded product of the vacuum molding sheet of the present invention and a base material made of an ABS resin or an alloy of ABS resin and polycarbonate resin is particularly excellent in adhesion.
本発明の真空成型用シートの構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the sheet | seat for vacuum forming of this invention. 逆の面側から見た本発明の真空成型用シートの一実施形態の斜視図である。It is a perspective view of one embodiment of the sheet for vacuum forming of the present invention seen from the reverse side. 本発明の粘着シートの溝の一部を拡大した見取り図であり、(a)は溝の断面形状が長方形であり、(b)は溝の断面形状が台形であり、(c)は溝の断面形状がU字型であり、(d)は溝の断面形状が三角形である場合を示す。wは幅を、hは深さを示す。It is the sketch which expanded a part of groove | channel of the adhesive sheet of this invention, (a) is the cross-sectional shape of a groove | channel, (b) is the cross-sectional shape of a groove | channel, and (c) is a cross-section of a groove | channel. The shape is U-shaped, and (d) shows the case where the cross-sectional shape of the groove is a triangle. w indicates the width and h indicates the depth. 本発明の真空成型用シートの接着剤層の一部を拡大した正面図である。It is the front view which expanded a part of adhesive bond layer of the sheet | seat for vacuum forming of this invention. 本発明の真空成型用シートの接着剤層の一部を拡大した正面図である。It is the front view which expanded a part of adhesive bond layer of the sheet | seat for vacuum forming of this invention. 本発明の真空成型用シートの接着剤層の一部を拡大した正面図である。It is the front view which expanded a part of adhesive bond layer of the sheet | seat for vacuum forming of this invention. 本発明の真空成型用シートに好適に適用される真空成型方法の一例を説明するための図である。It is a figure for demonstrating an example of the vacuum forming method applied suitably for the sheet | seat for vacuum forming of this invention. 本発明の真空成型用シートに好適に適用される真空成型方法の一例を説明するための図である。It is a figure for demonstrating an example of the vacuum forming method applied suitably for the sheet | seat for vacuum forming of this invention. 溝の間隔およびピッチを説明する図であり、(a)~(c)は夫々、図2、4および5の接着剤層の正面図に対応する。FIG. 6 is a diagram for explaining the interval and pitch of grooves, and (a) to (c) correspond to the front views of the adhesive layer of FIGS. 2, 4 and 5, respectively. 収縮率試験を説明する図である。It is a figure explaining a shrinkage rate test. 裏面凹凸によるエアー混入の現象を説明するための、真空成型用シートの断面図である。It is sectional drawing of the sheet | seat for vacuum forming for demonstrating the phenomenon of air mixing by back surface unevenness | corrugation.
 以下、本発明をさらに詳しく説明する。図1は、本発明の真空成型用シートの構成を説明するための断面図である。本発明の真空成型用シート1は、表層フィルム(ア)の下面に接着剤層(イ)を有し、必要に応じて、表層フィルム(ア)と接着剤層(イ)との間にバッカー層(ウ)を有する。接着剤層(イ)の表層フィルム(ア)に接着している面とは逆の面100には、図示しない1以上の溝が存在している。この溝は、逆の面100の内側のみに存在して接着剤層(イ)の側面まで通じてはいない溝、および逆の面100において側面まで通じている溝をさらに有する。また、表層フィルム(ア)の表層101には図示しないエンボス加工が施されている。 Hereinafter, the present invention will be described in more detail. FIG. 1 is a cross-sectional view for explaining the configuration of the vacuum forming sheet of the present invention. The sheet for vacuum forming 1 of the present invention has an adhesive layer (A) on the lower surface of the surface layer film (A), and a backer between the surface layer film (A) and the adhesive layer (A) as necessary. It has a layer (c). One or more grooves (not shown) are present on the surface 100 of the adhesive layer (A) opposite to the surface bonded to the surface layer film (A). This groove further has a groove that exists only inside the reverse surface 100 and does not communicate with the side surface of the adhesive layer (a), and a groove that communicates with the reverse surface 100 up to the side surface. The surface layer 101 of the surface layer film (a) is embossed (not shown).
表層フィルム(ア)
 本発明における表層フィルム(ア)は、アクリル系樹脂フィルム(A)、二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)、ポリ塩化ビニル系樹脂フィルム(D)またはポリカーボネート系樹脂フィルム(E)である必要がある。これら以外のフィルムであると、本発明の効果を奏することができない。
Surface film (A)
The surface layer film (a) in the present invention includes an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), and a polyvinyl chloride resin. It must be a film (D) or a polycarbonate resin film (E). If it is a film other than these, the effects of the present invention cannot be achieved.
 アクリル系樹脂フィルム(A)としては、例えばポリメチルメタクリレート、ポリエチルメタクリレート、ポリブチルメタクリレート、ポリアクリロニトリル、あるいは(メタ)アクリレート単位とスチレン単位やウレタン構造を有する共重合体などからなるフィルムを挙げることができる。さらには、前記のアクリル系樹脂と熱可塑性ポリウレタン樹脂との混合樹脂、あるいは前記のアクリル系樹脂とアクリルゴムとの混合樹脂などを用いることもできる。本発明においては、前記のアクリル系樹脂、アクリル系樹脂と熱可塑性ポリウレタン樹脂との混合樹脂、アクリル系樹脂とアクリルゴムとの混合樹脂などを、例えばキャスティング法やカレンダー法などにより製膜することにより、無延伸アクリル系樹脂フィルムを得ることができる。本発明においては、アクリル系樹脂フィルムとして、前記の無延伸フィルムを用いてもよいし、延伸可能なアクリル系樹脂の場合は、従来公知の方法で一軸または二軸延伸処理して得られた延伸フィルムを用いてもよい。 Examples of the acrylic resin film (A) include polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, or a film made of a copolymer having a (meth) acrylate unit and a styrene unit or a urethane structure. Can do. Furthermore, a mixed resin of the acrylic resin and the thermoplastic polyurethane resin, a mixed resin of the acrylic resin and acrylic rubber, or the like can be used. In the present invention, the acrylic resin, a mixed resin of an acrylic resin and a thermoplastic polyurethane resin, a mixed resin of an acrylic resin and an acrylic rubber, or the like is formed by, for example, a casting method or a calendar method. An unstretched acrylic resin film can be obtained. In the present invention, the above-mentioned unstretched film may be used as the acrylic resin film, and in the case of a stretchable acrylic resin, stretching obtained by uniaxial or biaxial stretching treatment by a conventionally known method. A film may be used.
 二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)とは、酸成分および/またはグリコール成分を2種類以上使用して得られる樹脂のフィルムであり、その例としては、ジカルボン酸成分がテレフタル酸であり、グリコール成分がエチレングリコール60~90モル%とネオペンチルグリコール10~40モル%であるネオペンチルグリコール共重合非晶性ポリエチレンテレフタレート系樹脂、ジカルボン酸成分がテレフタル酸60~98モル%とイソフタル酸2~40モル%であり、グリコール成分がエチレングリコールであるイソフタル酸共重合非晶性ポリエチレンテレフタレート系樹脂などを挙げることができる。
 これらの中では、二軸延伸性、三次元成型性、ヘアライン加工性、エンボス加工性などの観点から、特にイソフタル酸共重合非晶性ポリエチレンテレフタレート系樹脂が好適である。
 二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)を得るには、公知のテンター法およびチューブ法などの製膜法を適用できる。
A biaxially stretched copolymer polyethylene terephthalate film (B) is a resin film obtained by using two or more kinds of acid components and / or glycol components. For example, the dicarboxylic acid component is terephthalic acid. A neopentyl glycol copolymerized amorphous polyethylene terephthalate resin having a glycol component of 60 to 90 mol% of ethylene glycol and 10 to 40 mol% of neopentyl glycol, and a dicarboxylic acid component of 60 to 98 mol% of terephthalic acid and isophthalic acid 2 An isophthalic acid copolymerized amorphous polyethylene terephthalate resin having a glycol component of ˜40 mol% and ethylene glycol can be mentioned.
Among these, isophthalic acid copolymerized amorphous polyethylene terephthalate resin is particularly preferable from the viewpoints of biaxial stretchability, three-dimensional moldability, hairline processability, embossability, and the like.
In order to obtain the biaxially stretched copolymer polyethylene terephthalate film (B), a film forming method such as a known tenter method or a tube method can be applied.
 未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)としては、少なくとも酸成分としてテレフタル酸、グリコール成分としてエチレングリコールを用い、これらを反応させて得られる非晶性ポリエチレンテレフタレート系樹脂を公知の手段により製膜したものが挙げられる。
 中でも、本発明の効果の点から、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)は、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成された非晶性ポリエチレンテレフタレート系樹脂のフィルムが好ましい。
As the unstretched amorphous polyethylene terephthalate resin film (C), at least terephthalic acid is used as an acid component, ethylene glycol is used as a glycol component, and an amorphous polyethylene terephthalate resin obtained by reacting them is obtained by known means. The film-formed one can be mentioned.
Among these, from the viewpoint of the effect of the present invention, the unstretched amorphous polyethylene terephthalate resin film (C) is composed of an acid component composed of terephthalic acid, 60 to 90 mol% of ethylene glycol and 10 to 40 mol% of cyclohexanedimethanol. A film of an amorphous polyethylene terephthalate resin composed of a glycol component (however, the total of the glycol components is 100 mol%) is preferable.
 ポリ塩化ビニル系樹脂フィルム(D)としては、公知の塩化ビニル系樹脂を主成分とする硬質、半硬質、または軟質の組成物から製造されたフィルムをいずれも使用することができる。 As the polyvinyl chloride resin film (D), any film produced from a hard, semi-rigid or soft composition mainly composed of a known vinyl chloride resin can be used.
 ポリカーボネート系樹脂フィルム(E)としては、二価フェノールとホスゲンを原料とし、界面重縮合法により得られるポリカーボネート系樹脂、あるいは二価フェノールとジフェニルカーボネートなどのカーボネート前駆体とを原料とし、エステル交換法により得られるポリカーボネート系樹脂のフィルムが挙げられる。
 このポリカーボネート系樹脂としては、通常二価フェノールとして、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)を用いて得られる樹脂が使用される。また、二価フェノールとして、ビスフェノールAと2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン(テトラブロモビスフェノールA)との混合物を用いて得られる難燃性ポリカーボネート系樹脂を使用することもできる。さらに、耐衝撃性および難燃性を向上させたポリカーボネート系樹脂として、ビスフェノールA系ポリカーボネート-ポリオルガノシロキサン共重合体を使用することもできる。
As the polycarbonate resin film (E), a dihydric phenol and phosgene are used as raw materials, a polycarbonate resin obtained by an interfacial polycondensation method, or a dihydric phenol and a carbonate precursor such as diphenyl carbonate as raw materials, and a transesterification method. The film of the polycarbonate-type resin obtained by is mentioned.
As the polycarbonate-based resin, a resin obtained by using 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is usually used as a dihydric phenol. In addition, flame retardant polycarbonate resin obtained by using a mixture of bisphenol A and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (tetrabromobisphenol A) is used as the dihydric phenol. You can also Furthermore, a bisphenol A-based polycarbonate-polyorganosiloxane copolymer can also be used as a polycarbonate-based resin with improved impact resistance and flame retardancy.
 表層フィルム(ア)の厚さは、25μm~250μmが好ましく、50μm~150μmがさらに好ましい。 The thickness of the surface layer film (a) is preferably 25 μm to 250 μm, more preferably 50 μm to 150 μm.
接着剤層(イ)
 本発明における接着剤層(イ)は、下記の熱可塑性飽和共重合ポリエステル樹脂に、ポリイソシアネート1.5~2.5当量を配合し硬化したものである。
 熱可塑性飽和共重合ポリエステル樹脂:テレフタル酸20~40モル%、イソフタル酸20~40モル%およびアジピン酸25~50モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール10~50モル%および1,6-ヘキサンジオール50~90モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。
 なお、酸成分において、一つの成分の最少量または最大量を設定した場合は、他の二つの成分の使用量を調整し、合計で100モル%になるようにする。例えば、テレフタル酸の最少量の20モル%を採用した場合は、イソフタル酸およびアジピン酸の使用量を調整し、合計で100モル%になるようにすればよい。
Adhesive layer (I)
The adhesive layer (a) in the present invention is obtained by blending 1.5 to 2.5 equivalents of polyisocyanate into the following thermoplastic saturated copolymer polyester resin and curing.
Thermoplastic saturated copolyester resin: an acid component comprising 20 to 40 mol% terephthalic acid, 20 to 40 mol% isophthalic acid and 25 to 50 mol% adipic acid (however, the total of the acid components is 100 mol%); A glycol component composed of 10 to 50 mol% of 1,4-butanediol and 50 to 90 mol% of 1,6-hexanediol (however, the total of the glycol components is 100 mol%).
In addition, in the acid component, when the minimum amount or the maximum amount of one component is set, the usage amounts of the other two components are adjusted so that the total amount becomes 100 mol%. For example, when the minimum amount of 20 mol% of terephthalic acid is employed, the amount of isophthalic acid and adipic acid used may be adjusted so that the total amount is 100 mol%.
 上記の酸成分のいずれか一つでも上記割合の範囲から外れてしまうと、本発明の効果を奏することができない。 If any one of the above acid components falls outside the above range, the effects of the present invention cannot be achieved.
 さらに好ましい熱可塑性飽和共重合ポリエステル樹脂は、テレフタル酸25~35モル%、イソフタル酸25~35モル%およびアジピン酸30~45モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール20~40モル%および1,6-ヘキサンジオール60~80モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。 A more preferable thermoplastic saturated copolymer polyester resin is an acid component comprising 25 to 35 mol% terephthalic acid, 25 to 35 mol% isophthalic acid and 30 to 45 mol% adipic acid (however, the total of the acid components is 100 mol%). ) And a glycol component consisting of 20 to 40 mol% 1,4-butanediol and 60 to 80 mol% 1,6-hexanediol (provided that the total of the glycol components is 100 mol%).
 本発明における接着剤層(イ)は、上記の熱可塑性飽和共重合ポリエステル樹脂に、ポリイソシアネート1.5~2.5当量を配合し硬化したものである。
 ポリイソシアネートのモノマーとしては、トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート等が挙げられる。中でも、初期タック性、初期密着性、耐熱接着性が優れるという点で、ヘキサメチレンジイソシアネートが好ましく用いられる。
 なお本発明でいうポリイソシアネートの当量は、ポリイソシアネート中のNCO%と、熱可塑性飽和共重合ポリエステル樹脂の水酸基価(KOHmg/g)から計算によって求めることができる。
 本発明において、ポリイソシアネートの使用量は、1.8~2.2当量がさらに好ましい。
The adhesive layer (a) in the present invention is obtained by blending 1.5 to 2.5 equivalents of polyisocyanate with the above-mentioned thermoplastic saturated copolymer polyester resin and curing it.
Polyisocyanate monomers include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, tolidine diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate ( XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate, 1,3,6-hexamethylenetri Examples thereof include isocyanate and bicycloheptane triisocyanate. Among these, hexamethylene diisocyanate is preferably used in terms of excellent initial tack, initial adhesion, and heat-resistant adhesion.
In addition, the equivalent of polyisocyanate as used in the field of this invention can be calculated | required by calculation from NCO% in polyisocyanate and the hydroxyl value (KOHmg / g) of a thermoplastic saturated copolyester resin.
In the present invention, the amount of polyisocyanate used is more preferably 1.8 to 2.2 equivalents.
 また、熱可塑性飽和共重合ポリエステル樹脂の軟化温度は、55~85℃であることが好ましい。熱可塑性飽和共重合ポリエステル樹脂が、この軟化温度範囲を満たすことにより、真空成型性が高まるとともに、初期タック性、初期密着性、耐熱接着性がいずれも顕著に向上する。その理由は定かではないが、本発明者の検討によれば、熱可塑性飽和共重合ポリエステル樹脂の軟化温度が55~85℃であると、熱可塑性飽和共重合ポリエステル樹脂が微結晶性を有し、これにより経時で初期よりも接着力が向上していき、耐熱接着性も確保できることになるからであると推測される。なお、軟化温度はJIS K-2531(環球法)により測定された値である。また、軟化温度は、酸成分およびグリコール成分の使用量を変更することにより調整することができる。 The softening temperature of the thermoplastic saturated copolyester resin is preferably 55 to 85 ° C. When the thermoplastic saturated copolyester resin satisfies this softening temperature range, the vacuum moldability is enhanced and the initial tackiness, initial adhesion, and heat-resistant adhesiveness are all significantly improved. The reason is not clear, but according to the study of the present inventors, when the softening temperature of the thermoplastic saturated copolymer polyester resin is 55 to 85 ° C., the thermoplastic saturated copolymer polyester resin has microcrystalline properties. This is presumably because the adhesive force is improved over time from the beginning, and heat resistant adhesiveness can be secured. The softening temperature is a value measured by JIS K-2531 (ring and ball method). The softening temperature can be adjusted by changing the amounts of the acid component and glycol component used.
 接着剤層(イ)の硬化後の厚さは、5μm~50μmが好ましく、10μm~40μmがさらに好ましい。 The thickness of the adhesive layer (a) after curing is preferably 5 μm to 50 μm, and more preferably 10 μm to 40 μm.
 また本発明では、表層フィルム(ア)と前記接着剤層(イ)との間にバッカー層(ウ)を設けることができる。バッカー層(ウ)の存在により、真空成型性が高まり好ましいものとなる。 In the present invention, a backer layer (c) can be provided between the surface layer film (a) and the adhesive layer (b). Due to the presence of the backer layer (c), the vacuum formability is increased and this is preferable.
 バッカー層(ウ)としては、特に制限されないが、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)またはポリ塩化ビニル系樹脂フィルム(G)であることが、真空成型性の観点から好ましい。 The backer layer (c) is not particularly limited, but is preferably an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G) from the viewpoint of vacuum moldability.
 未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)としては、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されるフィルムが好ましい。
 また、ポリ塩化ビニル系樹脂フィルム(G)としては、公知の塩化ビニル系樹脂を主成分とする硬質、半硬質、または軟質の組成物から製造されたフィルムをいずれも使用することができる。
The unstretched amorphous polyethylene terephthalate resin film (F) includes an acid component composed of terephthalic acid and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) Is preferably 100% by mole).
In addition, as the polyvinyl chloride resin film (G), any film produced from a hard, semi-rigid or soft composition containing a known vinyl chloride resin as a main component can be used.
 バッカー層(ウ)の厚さは、50μm~300μmが好ましく、100μm~200μmがさらに好ましい。 The thickness of the backer layer (c) is preferably 50 μm to 300 μm, more preferably 100 μm to 200 μm.
 次に、接着剤層(イ)の逆の面100に設けられる溝について説明する。
 図2は、逆の面100側から見た本発明の真空成型用シートの一実施形態の斜視図である。
 図2に示すように、逆の面100には、1以上の溝4を有する。ここで、溝4は、接着剤層(イ)の逆の面100の内側のみに存在して接着剤層(イ)の側面まで通じてはいない。
Next, the groove | channel provided in the reverse surface 100 of an adhesive bond layer (I) is demonstrated.
FIG. 2 is a perspective view of one embodiment of the vacuum forming sheet of the present invention as seen from the reverse surface 100 side.
As shown in FIG. 2, the reverse surface 100 has one or more grooves 4. Here, the groove | channel 4 exists only in the inner side of the reverse surface 100 of an adhesive bond layer (a), and does not lead to the side surface of an adhesive bond layer (a).
 本発明の真空成型用シートは、接着剤層(イ)が溝4を有する故に、これに、接着剤層(イ)に対して雄型の表面構造を有するようにエンボスを有する剥離材を付けて長期間保存したとき、表層フィルム(ア)と剥離材との間で収縮率の差が無い。これは、剥離材(図示していない)を真空成型用シートに付けることにより、溝4が剥離材の雄型の表面構造によって固定されて(これを「アンカー効果」という)真空成型用シートの収縮が抑えられるからである。 Since the adhesive layer (a) has the groove 4 in the vacuum forming sheet of the present invention, a release material having an emboss is attached thereto so that the adhesive layer (a) has a male surface structure. When stored for a long time, there is no difference in shrinkage between the surface film (A) and the release material. This is because the release material (not shown) is attached to the vacuum forming sheet so that the groove 4 is fixed by the male surface structure of the release material (this is called “anchor effect”). This is because shrinkage can be suppressed.
 また、図3に示すように、逆の面100は、接着剤層(イ)の側面まで通じている溝5をさらに有している。 Moreover, as shown in FIG. 3, the reverse surface 100 further has a groove 5 leading to the side surface of the adhesive layer (A).
 溝4と溝5の両方を有することにより、三次元被覆成型品の裏面凹凸によるエアー混入の発生を防止し、耐熱外観性を向上させることができる。
 ここで、上記の「裏面凹凸によるエアー混入」について、図11を参照しながら説明する。図11は、裏面凹凸によるエアー混入の現象を説明するための、真空成型用シートの断面図である。図11の真空成型用シート1は、(a)に示すように、表層フィルム(ア)の下面に接着剤層(イ)を有し、表層フィルム(ア)と接着剤層(イ)との間にバッカー層(ウ)を有する構成である。表層フィルム(ア)の表層101には、エンボスEが施されている。真空成型用シート1は、表層フィルム(ア)とバッカー層(ウ)を積層した後にエンボス加工に施され、その後、接着剤層(イ)が積層されている。このような構成の真空成型用シート1は、真空成型時ヒータにより加熱され半溶融状態となると、(b)に示すように、エンボスEの下面に相当する接着剤層(イ)の部分が厚み方向の平衡を保つように変形するため、シートの内部方向に向かって凹部Cを形成するという現象が生じる。この状態のままで積層基材200上に真空成型用シート1を真空成型により密着積層させると、(c)に示すように、上記凹部Cが原因となり、接着剤層(イ)の裏面にエアーAが混入した状態になる。得られた真空成型品は、耐熱外観性の試験を行なうと、(d)に示すように、エアーAの影響で表層フィルム(ア)の表層に膨らみBが生じ、外観性が著しく損なわれる。
 本発明では、溝4と溝5の両方を有することにより、上記「裏面凹凸によるエアー混入」を防止することができる。なお、溝4と溝5の一方だけを接着剤層(イ)に形成した場合は、理由は定かではないが、上記効果が奏されない。
By having both the groove | channel 4 and the groove | channel 5, generation | occurrence | production of the air by the back surface unevenness | corrugation of a three-dimensional coating molded product can be prevented, and heat-resistant external appearance property can be improved.
Here, the above-described “air mixing due to unevenness on the back surface” will be described with reference to FIG. FIG. 11 is a cross-sectional view of a vacuum forming sheet for explaining the phenomenon of air mixing due to back surface irregularities. As shown to (a), the sheet | seat 1 for vacuum forming of FIG. 11 has an adhesive layer (I) on the lower surface of a surface layer film (A), and a surface layer film (A) and an adhesive layer (I) It is the structure which has a backer layer (c) in between. Emboss E is applied to the surface layer 101 of the surface layer film (a). The vacuum forming sheet 1 is subjected to embossing after laminating the surface layer film (a) and the backer layer (c), and then the adhesive layer (a) is laminated. When the vacuum forming sheet 1 having such a configuration is heated by a heater at the time of vacuum forming and is in a semi-molten state, the portion of the adhesive layer (A) corresponding to the lower surface of the emboss E has a thickness as shown in FIG. Since the deformation is performed so as to maintain the balance of the direction, a phenomenon that the concave portion C is formed toward the inner direction of the sheet occurs. When the vacuum forming sheet 1 is stuck and laminated on the laminated base material 200 by vacuum forming in this state, as shown in (c), the concave portion C causes the air on the back surface of the adhesive layer (A). A is mixed. When the obtained vacuum molded product is subjected to a heat resistant appearance test, as shown in (d), the surface layer of the surface layer film (A) swells B due to the influence of air A, and the appearance is remarkably impaired.
In the present invention, by having both the groove 4 and the groove 5, it is possible to prevent the “air mixing due to the unevenness of the back surface”. In addition, when only one of the groove | channel 4 and the groove | channel 5 is formed in an adhesive bond layer (I), although the reason is not certain, the said effect is not show | played.
 本発明における溝は任意の形状を選択でき、好ましくは、その断面が、図3に示されるように、長方形(a)、台形(b)、U字型(c)または三角形(d)であり、幅5~100μmおよび深さ5~50μmを有する。図3において、wは溝の幅を示し、hは溝の深さを示す。 The groove in the present invention can be selected in an arbitrary shape, and preferably the cross section thereof is a rectangle (a), a trapezoid (b), a U-shape (c) or a triangle (d) as shown in FIG. , Having a width of 5 to 100 μm and a depth of 5 to 50 μm. In FIG. 3, w represents the width of the groove, and h represents the depth of the groove.
 また、溝は、接着剤層(イ)の溝を有する面の正面図において、様々な形状またはパターンを有し得る。その例を図4および5に示す。図4および5は、接着剤層(イ)の逆の面100の正面図であり、図4および5において、黒く塗った部分が溝である。 Further, the groove may have various shapes or patterns in the front view of the surface having the groove of the adhesive layer (A). Examples thereof are shown in FIGS. 4 and 5 are front views of the reverse surface 100 of the adhesive layer (A). In FIGS. 4 and 5, black portions are grooves.
 側面まで通じていない溝4は、接着剤層(イ)の逆の面100の正面図において、例えば、直線形、直線分岐形、十字形、円形、楕円形または多角形(三角形、四角形、六角形など)であり、各形状は断続的な複数の溝で構成されていてもよい。上述した図2では、溝4が十字形である。図4では、溝4が六角形であり、図5では、溝4が円形である。図6は、直線形の溝4が、断続的な複数の溝で構成されている例である。 In the front view of the reverse surface 100 of the adhesive layer (a), the groove 4 not leading to the side surface is, for example, a straight line, a straight branch, a cross, a circle, an ellipse, or a polygon (triangle, square, six Each shape may be composed of a plurality of intermittent grooves. In FIG. 2 described above, the groove 4 has a cross shape. In FIG. 4, the groove 4 is hexagonal, and in FIG. 5, the groove 4 is circular. FIG. 6 is an example in which the linear groove 4 is constituted by a plurality of intermittent grooves.
 溝4は、接着剤層(イ)に1以上、好ましくは多数存在し、より好ましくは1cm2当たり1×10~3.7×106個の密度で、さらに好ましくは1cm2当たり1×102~3.7×105個の密度の存在する。 One or more, preferably many, grooves 4 are present in the adhesive layer (a), more preferably at a density of 1 × 10 to 3.7 × 10 6 per cm 2 , more preferably 1 × 10 6 per cm 2. There are 2 to 3.7 × 10 5 densities.
 また、側面まで通じている溝5は、接着剤層(イ)の逆の面100の正面図において、複数の溝5が、縞状に配置され、または該溝によって区切られる接着剤層(イ)の各々が円形、楕円形もしくは多角形(三角形、四角形、六角形など)であるように配置され得る。図2では、溝5が格子状に配置されており、該溝によって区切られる接着剤層(イ)の各々が四角形である。図4では、溝5が、該溝によって区切られる接着剤層(イ)が六角形であるように配置され、図5では円形になるように配置され、図6では四角形になるように配置されている。 In addition, the groove 5 leading to the side surface is an adhesive layer (a) in which a plurality of grooves 5 are arranged in a striped pattern or separated by the grooves in the front view of the reverse surface 100 of the adhesive layer (a). ) May be arranged to be circular, elliptical or polygonal (triangular, square, hexagonal, etc.). In FIG. 2, the groove | channel 5 is arrange | positioned at the grid | lattice form, and each of the adhesive bond layer (I) demarcated by this groove | channel is a square. In FIG. 4, the grooves 5 are arranged so that the adhesive layer (a) delimited by the grooves is hexagonal, arranged in a circular shape in FIG. 5, and arranged in a rectangular shape in FIG. ing.
 溝4および5は、接着剤層(イ)の表面にランダムに配置されてもよく、規則的なパターンで配置されてもよい。 The grooves 4 and 5 may be randomly arranged on the surface of the adhesive layer (a) or may be arranged in a regular pattern.
 本発明の真空成型用シートは、例えば次のようにして調製することができる。すなわち、熱可塑性飽和共重合ポリエステル樹脂をメチルエチルケトンのような有機溶剤に溶解させ、そこに所定量のポリイソシアネート化合物を加え、塗料とし、該塗料を、表層にエンボス加工を施した表層フィルム(ア)上に公知のコーティング法により塗布し、雄型の表面構造を備えた剥離材を貼り合わせ、硬化させることにより調製することができる。また、雄型の表面構造を備えた剥離材に上記塗料を塗布して接着剤層(イ)に溝を刻み、この接着剤層(イ)に表層フィルム(ア)を貼り合わせることにより製造することもできる。
 バッカー層(ウ)を設ける場合は、表層フィルム(ア)とバッカー層(ウ)とを例えば熱ラミネートあるいはドライラミネートによって積層させ、このバッカー層(ウ)上に、上記塗料を上記方法により設けることができる。
 前記エンボス加工は、従来公知の方法、例えばドラム加熱型エンボッサー、マルチシリンダー形エンボッサーなどを用いて行うことができる。エンボス加工の柄としては、本発明の効果の点から、例えば、導管木目、ヘアライン、抽象柄、梨地柄等が好ましい。エンボス加工は、表層フィルム(ア)とバッカー層(ウ)の積層体に対して施してもよい。
 なお、表層フィルム(ア)、接着剤層(イ)、バッカー層(ウ)には、必要に応じて耐候剤、帯電防止剤、充填剤等の公知の添加剤を添加できることは勿論である。
The vacuum forming sheet of the present invention can be prepared, for example, as follows. That is, a thermoplastic saturated copolyester resin is dissolved in an organic solvent such as methyl ethyl ketone, a predetermined amount of a polyisocyanate compound is added thereto to form a paint, and the paint is embossed on the surface layer film (A) It can be prepared by applying the above by a known coating method, bonding a release material having a male surface structure, and curing it. In addition, the coating material is applied to a release material having a male surface structure, the grooves are formed in the adhesive layer (a), and the surface layer film (a) is bonded to the adhesive layer (a). You can also
When the backer layer (c) is provided, the surface layer film (a) and the backer layer (c) are laminated by, for example, heat lamination or dry lamination, and the paint is provided on the backer layer (c) by the above method. Can do.
The embossing can be performed using a conventionally known method, for example, a drum heating embosser, a multi-cylinder embosser, or the like. As the embossed pattern, from the viewpoint of the effect of the present invention, for example, a conduit grain, a hairline, an abstract pattern, a satin pattern or the like is preferable. You may give an embossing with respect to the laminated body of a surface layer film (a) and a backer layer (c).
Needless to say, known additives such as weathering agents, antistatic agents and fillers can be added to the surface layer film (a), the adhesive layer (a) and the backer layer (c) as necessary.
 次に、上記の剥離材を説明する。剥離材は、基材フィルムおよびその片面または両面にあるポリオレフィン系樹脂含有層を有し、該ポリオレフィン系樹脂含有層の少なくとも1が、該基材フィルムと接している面とは逆の面にエンボスを有するものが挙げられる。 Next, the release material will be described. The release material has a base film and a polyolefin-based resin-containing layer on one or both sides thereof, and at least one of the polyolefin-based resin-containing layers is embossed on a surface opposite to the surface in contact with the base film. The thing which has is mentioned.
 基材フィルムとしては、紙や、二軸延伸ポリプロピレン、ポリエチレンテレフタレート、空洞含有ポリエチレンテレフタレート、フタル酸異性体共重合ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリアリレート、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリ乳酸、トリアセチルセルロース、ポリカーボネート等の樹脂フィルムが挙げられる。紙の種類としては、グラシン紙、上質紙、クラフト紙等が挙げられる。 Examples of the base film include paper, biaxially oriented polypropylene, polyethylene terephthalate, void-containing polyethylene terephthalate, phthalic acid isomer copolymerized polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyarylate, and polyether ether. Examples of the resin film include ketone, polyethersulfone, polylactic acid, triacetylcellulose, and polycarbonate. Examples of paper types include glassine paper, high-quality paper, and craft paper.
 上記基材フィルムは、好ましくは、ループステフネスによる曲げ強さが0.2~1.5N/25mmであり、降伏点荷重が50~200N/10mmである。上記値が下限未満であると、得られる剥離材の端部にカールを生じ易く、取扱い性に劣る。上限を超えると、硬すぎて剥離材としての使用にあまり適しない。 The base film preferably has a bending strength by loop stiffness of 0.2 to 1.5 N / 25 mm and a yield point load of 50 to 200 N / 10 mm. When the above value is less than the lower limit, curling tends to occur at the end of the obtained release material, and the handleability is poor. When the upper limit is exceeded, it is too hard to be used as a release material.
 上記基材フィルムは、好ましくは、紙や、二軸延伸されたものや、フィルム中に空洞を含有するものである。その市販品として、ユニチカ製のエンブレットS125、テイジン製のテトロン(商標)S100、東洋紡績製のクリスパーK1212(空洞含有二軸延伸ポリエチレンテレフタレート)を挙げることができる。 The base film is preferably paper, biaxially stretched, or contains cavities in the film. Examples of the commercially available products include Emblict S125 manufactured by Unitika, Tetron (trademark) S100 manufactured by Teijin, and Crisper K1212 manufactured by Toyobo (cavity-containing biaxially stretched polyethylene terephthalate).
 基材フィルムの厚さは、50~150μm、好ましくは100~150μm、さらに好ましくは100~125μmである。50μmよりも薄いと、得られる剥離材においてカールを生じ易くなる。150μmより大きいと、厚すぎて剥離材として不適である。 The thickness of the base film is 50 to 150 μm, preferably 100 to 150 μm, more preferably 100 to 125 μm. When it is thinner than 50 μm, the resulting release material is likely to curl. If it is larger than 150 μm, it is too thick to be suitable as a release material.
 基材フィルムの片面または両面に設けられるポリオレフィン系樹脂含有層において、ポリオレフィン系樹脂としては、1以上のオレフィン、例えばエチレン、プロピレン、ブチレン、ブタジエン等から選択される1以上のオレフィンの(共)重合体が挙げられ、ただし、エチレン-メタクリル酸共重合体およびそのアイオノマーを除く。好ましくは、ポリエチレン系樹脂およびポリプロピレン系樹脂から選択され、具体的には、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)が挙げられる。特に好ましくは、ポリオレフィン系樹脂がLDPEである。 In the polyolefin-based resin-containing layer provided on one or both surfaces of the base film, the polyolefin-based resin may be (co) heavy of one or more olefins, for example, one or more olefins selected from ethylene, propylene, butylene, butadiene and the like. Examples include ethylene-methacrylic acid copolymer and its ionomer. Preferably, it is selected from polyethylene resins and polypropylene resins, and specific examples include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and polypropylene (PP). Particularly preferably, the polyolefin resin is LDPE.
 上記ポリオレフィン系樹脂は、好ましくは、ビガット軟化点(JIS K 7206)が80~150℃である。ビガット軟化点が下限未満の場合、エンボスの保持が困難である。上限を超えると、エンボス加工が困難である。 The polyolefin resin preferably has a Bigat softening point (JIS K 7206) of 80 to 150 ° C. When the bigat softening point is less than the lower limit, it is difficult to hold the emboss. When the upper limit is exceeded, embossing is difficult.
 また、上記ポリオレフィン系樹脂は、好ましくは耐熱溶剤性を有する。上記ポリオレフィン系樹脂は、常温雰囲気下ではトルエンや酢酸エチル等の有機溶媒に冒されないが、80℃以上の環境ではひび割れやシワが生じることがある。 Further, the polyolefin resin preferably has a heat-resistant solvent property. The polyolefin resin is not affected by an organic solvent such as toluene or ethyl acetate under a normal temperature atmosphere, but may be cracked or wrinkled in an environment of 80 ° C. or higher.
 上記ポリオレフィン系樹脂含有層は、必要に応じて熱安定剤、加工助剤等を含み得る。 The polyolefin resin-containing layer may contain a heat stabilizer, a processing aid, and the like as necessary.
 ポリオレフィン系樹脂含有層は、10μm以上の厚さが必要である。ポリオレフィン系樹脂の層は、厚み精度があまり高くないので、10μm未満では表面に厚みムラによる凹凸を生じ易く、その結果、剥離材の十分な表面平滑性が得られない。また、エンボスが、上記溝に適合する高さを有することができるようにするためにも、10μm以上の厚さが必要である。また、ポリオレフィン系樹脂含有層にエンボス加工が施された剥離材は端部がカールし易くなるが、これを防ぐために、ポリオレフィン系樹脂含有層の厚さの上限が、ポリオレフィン系樹脂含有層が基材フィルムの片面のみにある場合には、基材フィルムの厚さの0.3倍であり、両面にある場合には、上記層の各々において基材フィルムの厚さの0.5倍である。また、ポリオレフィン系樹脂含有層が基材フィルムの両面にある場合には、上記層の互いの厚み比が0.3~1であるようにする。好ましくは、ポリオレフィン系樹脂含有層の厚さが、ポリオレフィン系樹脂含有層が基材フィルムの片面のみにある場合には、10μm以上でかつ基材フィルムの厚さの0.1~0.25倍であり、両面にある場合には、各々10μm以上でかつ基材フィルムの厚さの0.1~0.25倍であり、かつ互いの厚み比が0.5~1、より好ましくは0.6~1、さらに好ましくは1である。本発明の好ましい剥離材では、基材フィルムの厚さが100~125μmであり、ポリオレフィン系樹脂含有層の厚さが15~25μm(両面にある場合には各々15~25μm)である。 The polyolefin resin-containing layer needs to have a thickness of 10 μm or more. Since the thickness of the polyolefin resin layer is not so high, if the thickness is less than 10 μm, unevenness due to uneven thickness is likely to occur on the surface, and as a result, sufficient surface smoothness of the release material cannot be obtained. Also, a thickness of 10 μm or more is necessary so that the emboss can have a height that fits the groove. In addition, the release material in which the polyolefin resin-containing layer is embossed is likely to curl the edges. To prevent this, the upper limit of the thickness of the polyolefin resin-containing layer is based on the polyolefin resin-containing layer. When it is only on one side of the material film, it is 0.3 times the thickness of the base film, and when it is on both sides, it is 0.5 times the thickness of the base film in each of the above layers. . When the polyolefin-based resin-containing layers are on both sides of the base film, the thickness ratio of the above layers is set to 0.3 to 1. Preferably, the polyolefin resin-containing layer has a thickness of 10 μm or more and 0.1 to 0.25 times the thickness of the substrate film when the polyolefin resin-containing layer is only on one side of the substrate film. In the case of being on both sides, the thickness is 10 μm or more and 0.1 to 0.25 times the thickness of the base film, and the thickness ratio to each other is 0.5 to 1, more preferably 0. 6 to 1, more preferably 1. In a preferable release material of the present invention, the thickness of the base film is 100 to 125 μm, and the thickness of the polyolefin-based resin-containing layer is 15 to 25 μm (15 to 25 μm for each of both surfaces).
 剥離材は、上記したように、基材フィルムの片面または両面にポリオレフィン系樹脂層を有し得る。両面にポリオレフィン系樹脂層を有する方が、剥離材の端部でのカールの発生をより抑えることができる点で好ましい。しかし、コストの点からは片面のみにポリオレフィン系樹脂層を有する方が有利であり、この場合、基材フィルムとポリオレフィン系樹脂層の厚みを上記範囲内で適宜調節することによりカールの発生を防ぐことができる。 As described above, the release material may have a polyolefin resin layer on one side or both sides of the base film. It is preferable to have a polyolefin-based resin layer on both sides from the viewpoint that curling at the end of the release material can be further suppressed. However, from the viewpoint of cost, it is advantageous to have a polyolefin resin layer only on one side. In this case, curling is prevented by appropriately adjusting the thickness of the base film and the polyolefin resin layer within the above range. be able to.
 剥離材は、ポリオレフィン系樹脂含有層の少なくとも1が、基材フィルムと接している面とは逆の面にエンボスを有する。好ましくは、該エンボスは、接着剤層(イ)の表面の溝に適合するように形成される。より好ましくは、上記エンボスは、接着剤層(イ)に対して雄型の表面構造を有するように形成され、この様にエンボスが形成された剥離材は、本発明の真空成型用シートと有利に組み合わせることができる。 The release material has an emboss on the surface opposite to the surface in which at least one of the polyolefin resin-containing layers is in contact with the base film. Preferably, the emboss is formed so as to fit into the groove on the surface of the adhesive layer (a). More preferably, the emboss is formed so as to have a male surface structure with respect to the adhesive layer (a), and the release material on which the emboss is formed in this way is advantageous with the vacuum forming sheet of the present invention. Can be combined.
 剥離材は、ポリオレフィン系樹脂含有層を基材フィルムの片面または両面に貼り合わせ、ポリオレフィン系樹脂含有層の少なくとも1にエンボス加工を施し、次いで必要に応じて、ポリオレフィン系樹脂含有層の表面をシリコーンなどの剥離剤で処理することにより製造することができる。上記貼り合わせは、基材フィルムの上にポリオレフィン系樹脂を溶融押出し、冷却ロールで圧着する方法によって、あるいは、ポリオレフィン系樹脂をフィルム状にした後、発熱ロールで熱しながら圧着する方法によって行われ得る。このとき、基材フィルムとポリオレフィン系樹脂含有層との接着性を向上させるため、基材フィルムのポリオレフィン系樹脂含有層と接する面に予めアンカーコートを設けたり、コロナ処理、プラズマ処理等の処理を施すのが好ましい。エンボス加工は、従来から知られている方法により、例えば彫刻ロールまたは彫刻板を用いて加熱下に型押しすることにより行うことができる。 For the release material, the polyolefin resin-containing layer is bonded to one or both sides of the base film, at least one of the polyolefin resin-containing layers is embossed, and then the surface of the polyolefin resin-containing layer is silicone-coated as necessary. It can manufacture by processing with release agents, such as. The laminating can be performed by a method in which a polyolefin-based resin is melt-extruded on a base film and pressure-bonded with a cooling roll, or a method in which a polyolefin-based resin is formed into a film and then pressure-bonded while being heated with a heat generating roll . At this time, in order to improve the adhesion between the base film and the polyolefin resin-containing layer, an anchor coat is previously provided on the surface of the base film in contact with the polyolefin resin-containing layer, or treatment such as corona treatment or plasma treatment is performed. It is preferable to apply. Embossing can be performed by a conventionally known method, for example, by embossing under heating using an engraving roll or an engraving plate.
 本発明の真空成型用シートを用いた真空成型は、特にその方法を制限するものではないが、例えば上記特許文献1~3に記載の方法によって成型するのが好ましい。すなわち、本発明の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法である。当該方法は公知であるので、以下、簡単に説明する。 The vacuum forming using the vacuum forming sheet of the present invention is not particularly limited, but is preferably formed by the methods described in Patent Documents 1 to 3, for example. That is, the vacuum forming sheet of the present invention and the laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first chamber on the laminated base material side and the second on the opposite side by the vacuum forming sheet. And the first chamber and the second chamber are depressurized and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet and the laminated base material are brought into contact with each other. Then, the vacuum forming method of releasing the decompression of the second chamber and then laminating the vacuum forming sheet on the outer surface of the laminated substrate by the differential pressure between the first chamber and the second chamber. . Since this method is known, it will be briefly described below.
 図7は、上記真空成型方法の一例を説明するための図である。
 図7に示すように、真空成型機内で剥離材を取り外した真空成型用シート10と積層基材12とを、接着剤層(イ)が積層基材12と接するように対向配置し、真空成型用シート10により積層基材側に第一の室14を、反対側に第二の室16を互いに気密に区画する。続いて、第一の室14および第二の室16を真空ポンプ18により減圧し、かつ、真空成型用シート10を加熱軟化させる。加熱軟化は、ヒータ20を点灯することにより行なう。
 次に図8に示すように、駆動装置22によって第一の室14内のテーブル24を上昇させ、真空成型用シート10と積層基材12とを接触させる。次に、第二の室16の減圧を解除して第一の室14と第二の室16の差圧により前記真空成型用シートを積層基材の外表面に密着積層し、成型品を得る。その後、駆動装置26によって真空成型機を開放し、成型品を取り出す。
FIG. 7 is a diagram for explaining an example of the vacuum forming method.
As shown in FIG. 7, the vacuum forming sheet 10 from which the release material has been removed in the vacuum forming machine and the laminated base material 12 are disposed so as to face each other so that the adhesive layer (a) is in contact with the laminated base material 12. The first sheet 14 on the laminated substrate side and the second chamber 16 on the opposite side are hermetically partitioned by the sheet 10 for use. Subsequently, the first chamber 14 and the second chamber 16 are decompressed by the vacuum pump 18 and the vacuum forming sheet 10 is heated and softened. Heat softening is performed by turning on the heater 20.
Next, as shown in FIG. 8, the table 24 in the first chamber 14 is raised by the driving device 22, and the vacuum forming sheet 10 and the laminated base material 12 are brought into contact with each other. Next, the reduced pressure in the second chamber 16 is released, and the vacuum forming sheet is adhered and laminated on the outer surface of the laminated base material by the differential pressure between the first chamber 14 and the second chamber 16 to obtain a molded product. . Thereafter, the vacuum molding machine is opened by the driving device 26, and the molded product is taken out.
 上記積層基材としては、本発明では、ABS樹脂、または、ABS樹脂およびポリカーボネート樹脂のアロイからなる基材が、密着性の点で好ましい。当該基材は、例えば射出成型等により得ることができる。なお、前記アロイにおいて、両者の割合は、ABS樹脂:ポリカーボネート樹脂(質量比)として、例えば2:8~7:3である。なお、本発明の真空成型用シートと積層基材との真空成型は、上記方法に限定されるものではない。 In the present invention, the laminated substrate is preferably an ABS resin or a substrate made of an alloy of ABS resin and polycarbonate resin in terms of adhesion. The said base material can be obtained by injection molding etc., for example. In the alloy, the ratio of both is, for example, 2: 8 to 7: 3 as ABS resin: polycarbonate resin (mass ratio). In addition, the vacuum forming of the vacuum forming sheet and the laminated base material of the present invention is not limited to the above method.
 以下、実施例および比較例により本発明をさらに説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to these examples.
実施例1
熱可塑性飽和共重合ポリエステル樹脂の合成
 得られる樹脂が下記表1の樹脂構成(1)を有するように、酸成分として、テレフタル酸、イソフタル酸、アジピン酸、グリコール成分として、1,4-ブタンジオール、1,6-ヘキサンジオールを適当量配合し、触媒(テトラブチルチタネート)の存在下、加熱し、熱可塑性飽和共重合ポリエステル樹脂(以下、単に共重合ポリエステル樹脂ということがある)を合成した。なお、熱可塑性飽和共重合ポリエステル樹脂における上記5種のモノマー組成は、NMRにより確認した。NMRの確認は、以下の実施例および比較例でも行った。
Example 1
Synthesis of Thermoplastic Saturated Copolyester Resin As the acid component is terephthalic acid, isophthalic acid, adipic acid, and 1,4-butanediol as the glycol component so that the resulting resin has the resin composition (1) shown in Table 1 below. 1,6-Hexanediol was blended in an appropriate amount and heated in the presence of a catalyst (tetrabutyl titanate) to synthesize a thermoplastic saturated copolymer polyester resin (hereinafter sometimes simply referred to as copolymer polyester resin). The above five monomer compositions in the thermoplastic saturated copolyester resin were confirmed by NMR. NMR confirmation was also performed in the following examples and comparative examples.
接着剤層(イ)形成用塗料の調製
 上記で得られた熱可塑性飽和共重合ポリエステル樹脂を溶剤(メチルエチルケトン)に溶解し、固形分30質量%の塗料とした。この塗料にポリイソシアネート(1)(日本ポリウレタン製、「コロネートHX」(ヘキサメチレンジイソシアネート)、固形分100%)を2当量加え、接着剤層(イ)形成用塗料とした。
Preparation of paint for forming adhesive layer (ii) The thermoplastic saturated copolymer polyester resin obtained above was dissolved in a solvent (methyl ethyl ketone) to obtain a paint having a solid content of 30% by mass. Two equivalents of polyisocyanate (1) (manufactured by Nippon Polyurethane, “Coronate HX” (hexamethylene diisocyanate), solid content 100%) was added to this coating material to form an adhesive layer (A) coating material.
真空成型用シートの調製
 表層フィルム(ア)として、アクリル樹脂フィルム(1)(住友化学工業(株)製、「テクノロイS001」、ポリメタクリル酸メチル、厚さ75μm、引張弾性率1300MPa、鉛筆硬度 H)を用いた。
 またバッカー層(ウ)として、PET-G(1)(リケンテクノス(株)製、製品名「SET470、FZ25871」、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム、テレフタル酸からなる酸成分と、エチレングリコール70モル%およびシクロヘキサンジメタノール30モル%からなるグリコール成分とから構成される。厚さ150μm)を用いた。
 表層フィルム(ア)とバッカー層(ウ)との積層は、熱ラミネートにより行なった。
 また、エンボス加工は、上記表層フィルム(ア)とバッカー層(ウ)との積層体に対して行なった。すなわち、温度140℃の加熱ドラムと冷却ドラムの中間に温度140℃の金属製彫刻ロールと半硬質ゴムで被覆した加圧ロールからなるエンボス機を設置しエンボス加工を行うことにより、表層フィルム(ア)の表層に導管木目模様のエンボス加工を施した。
Preparation of vacuum forming sheet Acrylic resin film (1) (manufactured by Sumitomo Chemical Co., Ltd., “Technoloy S001”, polymethyl methacrylate, thickness 75 μm, tensile modulus 1300 MPa, pencil hardness H as surface layer film (a) ) Was used.
Also, as the backer layer (c), PET-G (1) (manufactured by Riken Technos Co., Ltd., product names “SET470, FZ25871”, unstretched amorphous polyethylene terephthalate resin film, acid component comprising terephthalic acid, and ethylene glycol It was composed of a glycol component consisting of 70 mol% and cyclohexane dimethanol 30 mol% (thickness 150 μm).
Lamination of the surface layer film (a) and the backer layer (c) was performed by thermal lamination.
Moreover, embossing was performed with respect to the laminated body of the said surface layer film (a) and a backer layer (c). That is, an embossing machine composed of a metal engraving roll having a temperature of 140 ° C. and a pressure roll coated with semi-hard rubber is installed between a heating drum having a temperature of 140 ° C. and a cooling drum, and embossing is performed, whereby the surface film ) Was embossed with a conduit wood grain pattern.
 側面まで通じている溝5(断面は幅20μm、深さ10μmのU字型である)の彫刻をピッチ500μmで、上記溝によって区切られる部分が四角形になるように格子状に施し(図2を参照)、さらに、上記溝によって区切られる四角形の部分に、十字形の、側面まで通じていない溝4(断面は幅20μm、深さ10μmのU字型であり、十字形の縦および横の長さは250μmである)の彫刻を間隔500μm(密度:1cm2当り4.0×102個)で施した雌型のエンボスプレス板を、140℃で20秒間、下記の積層フィルムに対して加圧することにより、積層フィルムにエンボス形状を転写して、雄型の表面形状を持つ剥離材Aを得た。
 積層フィルム:坪量110g/m2の上質紙の片面に溶融したLDPEを押出し、LDPEを厚み20μmとなる様にロールで圧延し貼り合わせた。この積層フィルムのLDPE層の表面に、上記エンボス形状を転写させた。
Engraving of a groove 5 (cross section is 20 μm wide and 10 μm deep U-shaped) leading to the side surface is applied in a lattice shape with a pitch of 500 μm so that the portion delimited by the groove is square (see FIG. 2). In addition, in the quadrangular portion delimited by the groove, a cross-shaped groove 4 that does not lead to the side surface (the cross-section is U-shaped with a width of 20 μm and a depth of 10 μm, and the cross-shaped vertical and horizontal lengths) of intervals 500 [mu] m (density sculpture at a) 250 [mu] m is: a female embossing press plates subjected in 1 cm 2 per 4.0 × 10 2 pieces), 20 seconds at 140 ° C., to pressurize the laminated film of the following Thus, the embossed shape was transferred to the laminated film to obtain a release material A having a male surface shape.
Laminated film: LDPE melted on one side of a high-quality paper having a basis weight of 110 g / m 2 was extruded, and the LDPE was rolled with a roll so as to have a thickness of 20 μm and bonded together. The embossed shape was transferred to the surface of the LDPE layer of this laminated film.
 次に、上記接着剤層(イ)形成用塗料を、硬化後の厚さが20μmとなるように、剥離材Aにナイフコーターによりコーティングした。続いて、該塗料の塗布面と、上記バッカー層(ウ)とを貼り合わせることにより、剥離材付きの真空成型用シートを得た。
 ここで、間隔とは、図9に示すように、接着剤(イ)の逆の面100の正面図において、隣り合う2つの溝4の重心点間の距離を意味する。図9では、濃く塗りつぶされた部分が溝である。またピッチとは、図9に示すように、隣り合う2つの溝5の幅の中心点間の最短距離を意味する。
Next, the release layer A was coated with a knife coater so that the adhesive layer (A) forming coating material had a thickness after curing of 20 μm. Subsequently, the application surface of the paint and the backer layer (c) were bonded together to obtain a vacuum forming sheet with a release material.
Here, as shown in FIG. 9, the interval means the distance between the gravity center points of two adjacent grooves 4 in the front view of the reverse surface 100 of the adhesive (A). In FIG. 9, the darkly filled portion is a groove. The pitch means the shortest distance between the center points of the widths of two adjacent grooves 5 as shown in FIG.
真空成型
 図7~8に示した真空成型法により、真空成型を行なった。成型時の表層フィルム(ア)の表面温度(成型温度)を表2に示した。また、積層基材としては、ABS樹脂およびポリカーボネート樹脂のアロイからなり、射出成型により得られた成型品である基材を用いた。アロイにおいて、両者の割合は、ABS樹脂:ポリカーボネート樹脂(質量比)として、3:7である。
Vacuum forming Vacuum forming was performed by the vacuum forming method shown in FIGS. Table 2 shows the surface temperature (molding temperature) of the surface layer film (a) at the time of molding. Further, as the laminated substrate, a substrate made of an alloy of ABS resin and polycarbonate resin and being a molded product obtained by injection molding was used. In the alloy, the ratio of both is 3: 7 as ABS resin: polycarbonate resin (mass ratio).
評価
 以下の評価を行なった。
 真空成型性:布施真空(株)製 NGF-0912型 両面真空成形機により、実施例、比較例の表に記載した表層フィルムの成型温度条件にて、真空成型性を評価した。
 ◎: 基材形状への追従性が良好で、端部巻き込み性も良好である。
 ○: 基材形状への追従性は良好であるが、端部巻き込み性が甘い。
 △: 基材形状への追従性および端部巻き込み性が甘く、浮きが見られる場合がある。
 ×: シートの破れが発生し、十分に成型ができない。
Evaluation The following evaluation was performed.
Vacuum forming property: NGF-0912 type manufactured by Fuse Vacuum Co., Ltd. The vacuum forming property was evaluated under the surface temperature film forming temperature conditions described in the tables of Examples and Comparative Examples.
(Double-circle): The followable | trackability to a base-material shape is favorable and an edge part winding property is also favorable.
◯: The followability to the substrate shape is good, but the end wrapping property is poor.
(Triangle | delta): The followable | trackability to a base-material shape and edge part winding property are sweet, and a float may be seen.
X: The sheet is torn and cannot be sufficiently molded.
 初期タック性:硬化後の接着層面に指を強く押し当ててから剥離する際の感覚により、初期タック性を評価した。
 ○: べたつき感がある。
 △: 多少のべたつきを感じる。
 ×: 全くべたつきがない。
Initial tackiness: The initial tackiness was evaluated based on the feeling when the finger was pressed firmly against the cured adhesive layer surface and then peeled off.
○: There is a sticky feeling.
Δ: Feels somewhat sticky.
×: No stickiness.
 初期密着性:真空成型直後にシートの強制剥離を行うことにより、初期密着性を評価した。
 ◎: シート材破となる。
 ○: シートが伸ばされながら剥離する。
 △: シートが伸ばされずに多少の剥離抵抗を保ちながら剥離する。
 ×: シートが伸ばされずに十分な剥離抵抗がないまま剥離する。
Initial adhesion: Initial adhesion was evaluated by forcibly peeling the sheet immediately after vacuum forming.
A: Sheet material breaks.
○: The sheet is peeled while being stretched.
(Triangle | delta): It peels, maintaining some peeling resistance, without a sheet | seat being extended.
X: The sheet is not stretched and peeled without sufficient peeling resistance.
 耐熱接着性(50℃×400時間):
 真空成型品を50℃に設定したギアオーブン中に400時間放置した後、端部の剥離の確認を行い、かつ、シートの強制剥離を行うことにより、耐熱接着性を評価した。
 ◎: 端部の剥離もなく、かつ、強制剥離でシート材破となる。
 ○: 端部の剥離もなく、かつ、強制剥離でシートが伸ばされながら剥離する。
 △: わずかに端部の剥離が認められ、かつ、強制剥離でシートが伸ばされずに多少の剥離抵抗を保ちながら剥離する。
 ×: 明らかに端部の剥離が認められる、または、強制剥離でシートが十分な剥離抵抗がないまま剥離する。
Heat resistant adhesion (50 ° C. × 400 hours):
After the vacuum molded product was left in a gear oven set at 50 ° C. for 400 hours, peeling of the edge was confirmed and the sheet was forcibly peeled to evaluate the heat resistant adhesion.
(Double-circle): There is no peeling of an edge part and a sheet material breaks by forced peeling.
◯: There is no peeling at the edge, and peeling is performed while the sheet is stretched by forced peeling.
Δ: Slight peeling at the edge is observed, and the sheet is not stretched by forced peeling, but is peeled while maintaining some peeling resistance.
X: The peeling of the edge is clearly recognized, or the sheet is peeled off without sufficient peeling resistance by forced peeling.
 耐熱接着性(80℃×400時間):
 真空成型品を80℃に設定したギアオーブン中に400時間放置した後、端部の剥離の確認を行い、かつ、シートの強制剥離を行うことにより、耐熱接着性を評価した。
 ◎: 端部の剥離もなく、かつ、強制剥離でシート材破となる。
 ○: 端部の剥離もなく、かつ、強制剥離でシートが伸ばされながら剥離する。
 △: わずかに端部の剥離が認められ、かつ、強制剥離でシートが伸ばされずに多少の剥離抵抗を保ちながら剥離する。
 ×: 明らかに端部の剥離が認められる、または、強制剥離でシートが十分な剥離抵抗がないまま剥離する。
Heat resistant adhesiveness (80 ° C. × 400 hours):
After the vacuum molded product was left in a gear oven set at 80 ° C. for 400 hours, peeling of the end portion was confirmed and the sheet was forcibly peeled to evaluate the heat resistant adhesion.
(Double-circle): There is no peeling of an edge part and a sheet material breaks by forced peeling.
◯: There is no peeling at the edge, and peeling is performed while the sheet is stretched by forced peeling.
Δ: Slight peeling at the edge is observed, and the sheet is not stretched by forced peeling, but is peeled while maintaining some peeling resistance.
X: The peeling of the edge is clearly recognized, or the sheet is peeled off without sufficient peeling resistance by forced peeling.
 裏面凹凸によるエアー混入:布施真空(株)製 NGF-0912型 両面真空成形機により、実施例、比較例の表に記載した表層フィルムの成型温度条件にて真空成型を行い、シートを基材から強制剥離を行い剥離面を目視にて観察して評価した。評価基準は以下の通りである。
 ◎: 基材側の剥離面にエアー混入跡が全く見られず均一にツヤが消えている。
 ○: 基材側の剥離面にエアー混入跡が全く見られないが、わずかにエンボス形状に沿ってツヤの濃淡が見られる。
 △: 基材側の剥離面にまばらにシート表面のエンボス形状に沿ったエアー混入跡が見られる。
 ×: 基材側の剥離面に明らかにシート表面のエンボス形状に沿ったエアー混入跡が見られる。
 ※エアー混入跡:接着剤層と基材が密着した部分の基材側の剥離面はツヤが消えた状態となる。一方、接着剤層と基材の間にエアーが混入するとその部分だけ基材素地が露出するため目視観察でエアー混入跡として識別できる。
Air mixing due to unevenness on the back surface: NGF-0912 type manufactured by Fuse Vacuum Co., Ltd. Using a double-sided vacuum forming machine, vacuum forming was performed at the forming temperature conditions of the surface layer film described in the table of Examples and Comparative Examples, and the sheet was removed from the substrate. Forced peeling was performed and the peeled surface was visually observed and evaluated. The evaluation criteria are as follows.
A: The trace of air mixing is not seen at all on the peeling surface on the substrate side, and the gloss has disappeared uniformly.
○: No trace of air mixing is seen on the peeling surface on the base material side, but a slight shading is seen along the embossed shape.
(Triangle | delta): The air mixing trace along the embossed shape of the sheet | seat surface is sparsely seen on the peeling surface at the side of a base material.
X: The air mixing trace along the embossed shape of the sheet | seat surface is clearly seen in the peeling surface at the side of a base material.
* Traces of air contamination: The peeling surface on the substrate side where the adhesive layer and the substrate are in close contact with each other is in a state where the gloss has disappeared. On the other hand, when air is mixed between the adhesive layer and the base material, the base material substrate is exposed only in that portion, so that it can be identified as an air mixed trace by visual observation.
 耐熱外観性(50℃×400時間):真空成型品を50℃に設定したギアオーブン中に400時間放置した後、外観を観察することにより評価した。評価基準は以下の通りである。
 ◎: フクレや面の荒れによるユズ肌が存在しない。
 ○: フクレは存在しないがわずかに面の荒れによるユズ肌が認められる。
 △: わずかにフクレや面の荒れによるユズ肌が認められる。
 ×: 明らかにフクレや面の荒れによるユズ肌が認められる。
Heat-resistant appearance (50 ° C. × 400 hours): The vacuum molded product was evaluated by observing the appearance after leaving it in a gear oven set at 50 ° C. for 400 hours. The evaluation criteria are as follows.
A: There is no crusty skin due to swelling or rough surface.
○: There is no bulge, but there is slight skin damage due to rough surface.
Δ: Slightly crumpled or rough skin due to rough surface is observed.
×: Obvious skin due to blistering and rough surface is observed.
 耐熱外観性(80℃×400時間):真空成型品を80℃に設定したギアオーブン中に400時間放置した後、外観を観察することにより評価した。評価基準は以下の通りである。
 ◎: フクレや面の荒れによるユズ肌が存在しない。
 ○: フクレは存在しないがわずかに面の荒れによるユズ肌が認められる。
 △: わずかにフクレや面の荒れによるユズ肌が認められる。
 ×: 明らかにフクレや面の荒れによるユズ肌が認められる。
Heat-resistant appearance (80 ° C. × 400 hours): The vacuum molded product was evaluated by observing the appearance after leaving it in a gear oven set at 80 ° C. for 400 hours. The evaluation criteria are as follows.
A: There is no crusty skin due to swelling or rough surface.
○: There is no bulge, but there is slight skin damage due to rough surface.
Δ: Slightly crumpled or rough skin due to rough surface is observed.
×: Obvious skin due to blistering and rough surface is observed.
 収縮率試験:JIS K 7133「プラスチック-フィルム及びシート-加熱寸法変化測定方法」に基づき行う。まず、剥離材付き真空成型用シートを250mm×250mmの寸法に切り抜く。次に、切り抜いた真空成型用シートの表層フィルム(ア)側および剥離材側の表面の各々の中心部に、図10に示すように、縦横2本の直線を引き、その2本の直線上の交線部から100mm離れた位置に標線(4本)を引いて、試験片を調製する。
 試験片の表層フィルム(ア)表面および剥離材表面の各々について、縦横夫々の直線上の2つの標線間の距離を0.5mmの単位まで測定できる目盛り定規にて計測し、表層フィルム(ア)の縦横の標線間距離の平均値をLf0、剥離材の縦横の標線間距離の平均値をLs0とする。続いて常温にて1週間、80℃にて1週間、および常温にて3ヶ月間、保管し、それぞれの保管後、さらに常温にて1時間放置した後に上記と同様に標線間の距離を計測し、表層フィルム(ア)の縦横の標線間距離の平均値をLf、剥離材の縦横の標線間距離の平均値をLsとする。表層フィルム(ア)の収縮率ΔLf、および剥離材の収縮率ΔLsを下記式(1)により計算する。さらに、剥離材の収縮率ΔLsから樹脂フィルムの収縮率ΔLfを引き算し、収縮率の差ΔL=ΔLs-ΔLfを求める。
 ΔLx=(Lx-Lx0)/Lx0×100 ・・・(1)
 Lx0:保管前の標線間距離(mm)
 Lx:保管後の標線間距離(mm)
 (ただし、x=fまたはs)
Shrinkage test: Performed based on JIS K 7133 “Plastics-Films and Sheets—Measurement of Heated Dimensional Change”. First, a vacuum forming sheet with a release material is cut out to a size of 250 mm × 250 mm. Next, as shown in FIG. 10, two vertical and horizontal straight lines are drawn at the center of each surface of the cut-out vacuum forming sheet on the surface film (A) side and the release material side, and the two straight lines are drawn. A test line is prepared by drawing a marked line (4 lines) at a position 100 mm away from the crossing line.
For each of the surface film (a) surface and release material surface of the test piece, measure the distance between the two marked lines on the vertical and horizontal straight lines with a scale ruler that can measure to a unit of 0.5 mm. The average value of the distance between the vertical and horizontal marked lines is L f0 , and the average value of the distance between the marked lines of the release material is L s0 . Subsequently, store at room temperature for 1 week, at 80 ° C for 1 week, and at room temperature for 3 months. After each storage and after leaving at room temperature for 1 hour, the distance between the marked lines is the same as above. The average value of the distance between the vertical and horizontal marked lines of the surface layer film (a) is L f , and the average value of the distance between the vertical and horizontal marked lines of the release material is L s . The shrinkage rate ΔL f of the surface layer film (a) and the shrinkage rate ΔL s of the release material are calculated by the following formula (1). Further, the shrinkage rate ΔL f of the resin film is subtracted from the shrinkage rate ΔL s of the release material to obtain a shrinkage rate difference ΔL = ΔL s −ΔL f .
ΔL x = (L x −L x0 ) / L x0 × 100 (1)
L x0 : Distance between marked lines before storage (mm)
L x : Distance between marked lines after storage (mm)
(However, x = f or s)
 長期保存時の剥離材付き真空成型用シートの外観性:
 剥離材付き真空成型用シートをロール状巻きで、3ヶ月間、常温で保管した後、取り出し、シートの巻き出しの外観を目視で観察することにより評価した。評価基準は以下の通りである。
 ○:シートにタルミ、シワが認められない。
 ×:シートにタルミ、シワが認められる。
Appearance of vacuum forming sheet with release material during long-term storage:
The sheet for vacuum forming with a release material was rolled and wound for 3 months at room temperature, then taken out and evaluated by visually observing the unwinding appearance of the sheet. The evaluation criteria are as follows.
○: Tarmi and wrinkles are not observed on the sheet.
X: Tarmi and wrinkles are observed on the sheet.
 結果を表2に示す。 The results are shown in Table 2.
実施例2
 実施例1において、バッカー層(ウ)として、PVC(1)(リケンテクノス(株)製、製品名「S12040、FC13477」、ポリ塩化ビニル樹脂、厚さ150μm)を用い、表2に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表2に示す。
Example 2
In Example 1, PVC (1) (manufactured by Riken Technos Co., Ltd., product name “S12040, FC13477”, polyvinyl chloride resin, thickness 150 μm) was used as the backer layer (c) at the molding temperature shown in Table 2. Example 1 was repeated except that vacuum forming was performed. The results are shown in Table 2.
実施例3
 実施例1において、表層フィルム(ア)として、共重合PET(1)(帝人デュポンフィルム(株)製、テフレックスFT、酸成分として、テレフタル酸、およびナフタレンジカルボン酸、グリコール成分としてエチレングリコールからなる二軸延伸共重合ポリエチレンテレフタレート系樹脂フィルム、厚さ50μm)を用い、表2に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表2に示す。
Example 3
In Example 1, copolymerized PET (1) (Teijin DuPont Films, Teflex FT, terephthalic acid as an acid component, naphthalenedicarboxylic acid, ethylene glycol as a glycol component, as a surface layer film (a) Example 1 was repeated except that a biaxially stretched copolymer polyethylene terephthalate resin film (thickness 50 μm) was used and vacuum molding was performed at the molding temperature shown in Table 2. The results are shown in Table 2.
実施例4
 実施例1において、表層フィルム(ア)として、PC(1)(旭硝子製、商品名 レキサンフィルム8010、112クリア、ポリカーボネートフィルム、厚さ100μm)を用い、かつ積層基材としてABS樹脂を用い、表2に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表2に示す。
Example 4
In Example 1, as the surface layer film (a), PC (1) (product name: Asahi Glass, trade name: Lexan film 8010, 112 clear, polycarbonate film, thickness: 100 μm) was used, and an ABS resin was used as the laminated substrate. Example 1 was repeated except that vacuum molding was performed at the molding temperature shown in FIG. The results are shown in Table 2.
実施例5
 実施例1において、表層フィルム(ア)として、PET-G(2)(リケンテクノス(株)製、商品名 SET241 FZ025、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム、テレフタル酸からなる酸成分と、エチレングリコール70モル%およびシクロヘキサンジメタノール30モル%からなるグリコール成分とから構成される。厚さ100μm)を用い、かつ積層基材としてABS樹脂を用い、表2に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表2に示す。
Example 5
In Example 1, as the surface layer film (a), PET-G (2) (manufactured by Riken Technos Co., Ltd., trade name SET241 FZ025, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, and ethylene It was composed of a glycol component consisting of 70 mol% of glycol and 30 mol% of cyclohexanedimethanol (thickness: 100 μm), and ABS resin was used as a laminate substrate, and vacuum forming was performed at the molding temperatures shown in Table 2. Example 1 was repeated except that. The results are shown in Table 2.
実施例6~9
 実施例1において、バッカー層(ウ)を設けずに、表層フィルム(ア)、積層基材、成型温度を表3または4に示す様に変更したこと以外は、実施例1を繰り返した。結果を表4に示す。なお、実施例8および9は、表層フィルム(ア)の表層に施されるエンボス加工を、ヘアラインおよび梨地柄にそれぞれ変更した。
 なお表3において、アクリル(2)とは、住友化学工業(株)製、商品名 テクノロイ S001、アクリル樹脂フィルム、厚さ125μmである。
 PET-G(3)とは、リケンテクノス(株)製、商品名 SET329 FZ93266、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム、テレフタル酸からなる酸成分と、エチレングリコール70モル%およびシクロヘキサンジメタノール30モル%からなるグリコール成分とから構成され、厚さ150μmである。
 PVC(2)とは、リケンテクノス(株)製、商品名 S12138 FC25847、ポリ塩化ビニル樹脂フィルム、厚さ150μmである。
 PC(2)とは、旭硝子製、商品名 レキサンフィルムFR765 黒、ポリカーボネート樹脂フィルム、厚さ180μmである。
Examples 6-9
In Example 1, Example 1 was repeated except that the surface layer film (a), the laminated base material, and the molding temperature were changed as shown in Table 3 or 4 without providing the backer layer (c). The results are shown in Table 4. In Examples 8 and 9, the embossing applied to the surface layer of the surface layer film (a) was changed to a hairline and a satin pattern, respectively.
In Table 3, acrylic (2) is manufactured by Sumitomo Chemical Co., Ltd., trade name: Technoloy S001, acrylic resin film, and thickness: 125 μm.
PET-G (3) is manufactured by Riken Technos Co., Ltd., trade name SET329 FZ93266, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, 70 mol% of ethylene glycol and 30 mol of cyclohexanedimethanol % Glycol component, and has a thickness of 150 μm.
PVC (2) is manufactured by Riken Technos Co., Ltd., trade name S12138 FC25847, a polyvinyl chloride resin film, and a thickness of 150 μm.
PC (2) is manufactured by Asahi Glass, trade name Lexan film FR765 black, polycarbonate resin film, thickness 180 μm.
実施例10
 側面まで通じている溝5(断面は幅30μm、深さ15μmのU字型である)の彫刻をピッチ500μmで、上記溝によって区切られる部分が六角形になるように施し(図4を参照)、さらに、上記溝によって区切られる六角形の部分に、六角形の、側面まで通じていない溝4(断面は幅30μm、深さ15μmのU字型であり、六角形の一辺の長さは144μmである)の彫刻を間隔500μm(密度:1cm2当たり4.6×102個)で施した雌型のエンボスプレス板を、140℃で20秒間、実施例1で用いた積層フィルムに対して加圧することにより、積層フィルムにエンボス形状を転写して、雄型の表面形状を持つ剥離材Bを得た。この剥離材を用い、実施例1と同様にして剥離材付きの真空成型用シートを得、各評価を行った。成型温度および結果を表6に示す。
Example 10
Engraving the groove 5 (cross section is 30 μm wide and 15 μm deep U-shaped) leading to the side surface at a pitch of 500 μm so that the part delimited by the groove is a hexagon (see FIG. 4) Furthermore, the hexagonal portion delimited by the groove is a hexagonal groove 4 that does not lead to the side surface (the cross section is a U-shape with a width of 30 μm and a depth of 15 μm, and the length of one side of the hexagon is 144 μm) interval 500 [mu] m (density carvings in a): the female embossing press plates subjected in 1 cm 4.6 × 10 2 per 2), 20 seconds at 140 ° C., pressurized to the stacking film used in example 1 Thus, the embossed shape was transferred to the laminated film to obtain a release material B having a male surface shape. Using this release material, a vacuum forming sheet with a release material was obtained in the same manner as in Example 1, and each evaluation was performed. Table 6 shows molding temperatures and results.
実施例11
 側面まで通じている溝5(断面は幅20μm、深さ10μmのU字型である)の彫刻をピッチ300μmで、上記溝によって区切られる部分が三角形になるように施し、さらに、上記溝によって区切られる三角形の部分に、三角形の、側面まで通じていない溝4(断面は幅20μm、深さ10μmのU字型であり、三角形の一辺の長さは100μmである)の彫刻を間隔300μm(密度:1cm2当たり1.1×103個)で施した雌型のエンボスプレス板を、140℃で20秒間、実施例1で用いた積層フィルムに対して加圧することにより、積層フィルムにエンボス形状を転写して、雄型の表面形状を持つ剥離材Cを得た。この剥離材を用い、実施例1と同様にして剥離材付きの真空成型用シートを得、各評価を行った。成型温度および結果を表6に示す。
Example 11
Engraving the groove 5 (cross section is 20 μm wide and 10 μm deep U-shaped) leading to the side surface at a pitch of 300 μm so that the portion delimited by the groove is triangular, and further delimited by the groove 300 mm (density) of triangular sculptures that are not connected to the side surfaces (the cross section is U-shaped with a width of 20 μm and a depth of 10 μm, and the length of one side of the triangle is 100 μm). : The embossed press plate of a female mold applied at 1.1 × 10 3 per cm 2 ) is pressed against the laminated film used in Example 1 at 140 ° C. for 20 seconds to transfer the embossed shape to the laminated film Thus, a release material C having a male surface shape was obtained. Using this release material, a vacuum forming sheet with a release material was obtained in the same manner as in Example 1, and each evaluation was performed. Table 6 shows molding temperatures and results.
実施例12
 側面まで通じている溝5(断面は幅50μm、深さ20μmのU字型である)の彫刻をピッチ700μmで、上記溝によって区切られる部分が円形になるように施し(図5を参照)、さらに、上記溝によって区切られる円形の部分に、円形の、側面まで通じていない溝4(断面は幅50μm、深さ20μmのU字型であり、円形の直径は350μmである)の彫刻を間隔700μm(密度:1cm2当たり2.4×102個)で施した雌型のエンボスプレス板を、140℃で20秒間、実施例1で用いた積層フィルムに対して加圧することにより、積層フィルムにエンボス形状を転写して、雄型の表面形状を持つ剥離材Dを得た。この剥離材を用い、実施例1と同様にして剥離材付きの真空成型用シートを得、各評価を行った。成型温度および結果を表6に示す。
Example 12
Engraving a groove 5 (cross section is U-shaped with a width of 50 μm and a depth of 20 μm) leading to the side surface at a pitch of 700 μm so that the portion delimited by the groove is circular (see FIG. 5), In addition, the circular portion defined by the groove is spaced by a circular groove 4 that does not lead to the side surface (the cross section is U-shaped with a width of 50 μm and a depth of 20 μm, and the circular diameter is 350 μm). 700 .mu.m: the female embossing press plates subjected by (density 1 cm 2.4 × 10 2 per 2), 20 seconds at 140 ° C., by pressurizing the laminated film used in example 1, embossing the laminated film The shape was transferred to obtain a release material D having a male surface shape. Using this release material, a vacuum forming sheet with a release material was obtained in the same manner as in Example 1, and each evaluation was performed. Table 6 shows molding temperatures and results.
実施例13~14
 実施例10において、表層フィルム(ア)、バッカー層(ウ)の構成、成型温度を表5または6に示すように変更したこと以外は、実施例10を繰り返した。結果を表6に示す。
Examples 13-14
In Example 10, Example 10 was repeated except that the structure of the surface layer film (a) and the backer layer (c) and the molding temperature were changed as shown in Table 5 or 6. The results are shown in Table 6.
実施例15~18
 実施例1において、樹脂構成(1)の替わりに、表7に示す樹脂構成(2)~(5)を採用したこと以外は、実施例1を繰り返した。成型温度および結果を表8に示す。
Examples 15-18
In Example 1, Example 1 was repeated except that the resin structures (2) to (5) shown in Table 7 were employed instead of the resin structure (1). Molding temperatures and results are shown in Table 8.
実施例19~21
 実施例1において、ポリイソシアネートの量または種類を、表7または9に示すように変更したこと以外は、実施例1を繰り返した。成型温度および結果を表8、10に示す。
 なお、ポリイソシアネート(2)とは、日本ポリウレタン(株)製、商品名 コロネートL、化合物名トリレンジイソシアネートである。
Examples 19-21
In Example 1, Example 1 was repeated except that the amount or type of polyisocyanate was changed as shown in Table 7 or 9. Molding temperatures and results are shown in Tables 8 and 10.
In addition, polyisocyanate (2) is Nippon Polyurethane Co., Ltd. product name Coronate L, Compound name Tolylene diisocyanate.
実施例22
 実施例1において、バッカー層(ウ)として、A-PET(1)を用いたこと以外は、実施例1を繰り返した。成型温度および結果を表10に示す。
 なお、A-PET(1)とは、帝人化成製、商品名 A-PETシート 一般タイプ、化合物名 無延伸ポリエチレンテレフタレートシート、厚さ150μmである。
Example 22
In Example 1, Example 1 was repeated except that A-PET (1) was used as the backer layer (c). Molding temperatures and results are shown in Table 10.
A-PET (1) is a product name A-PET sheet general type, compound name, unstretched polyethylene terephthalate sheet, 150 μm in thickness, manufactured by Teijin Chemicals.
実施例23
 実施例7において、表層フィルム(ア)としてA-PET(2)を用いたこと以外は、実施例7を繰り返した。成型温度および結果を表10に示す。
 なお、A-PET(2)とは、帝人化成製、商品名A-PETシート 黒、化合物名 無延伸ポリエチレンテレフタレートシート、厚さ150μmである。
Example 23
In Example 7, Example 7 was repeated except that A-PET (2) was used as the surface layer film (a). Molding temperatures and results are shown in Table 10.
A-PET (2) is Teijin Chemicals, trade name A-PET sheet black, compound name unstretched polyethylene terephthalate sheet, thickness 150 μm.
実施例24
 実施例1において、積層基材をポリプロピレン(PP)に変更したこと以外は、実施例1を繰り返した。成型温度および結果を表10に示す。
Example 24
In Example 1, Example 1 was repeated except that the laminated base material was changed to polypropylene (PP). Molding temperatures and results are shown in Table 10.
比較例1
 実施例1において、表層フィルム(ア)として二軸PET(1)(ユニチカ(株)製、商品名 エンブレットS50、二軸延伸ポリエチレンテレフタレートフィルム、厚さ50μm)を使用し、成型温度を表12に示すように変更したこと以外は、実施例1を繰り返した。結果を表12に示す。
Comparative Example 1
In Example 1, biaxial PET (1) (trade name: Emblet S50, biaxially stretched polyethylene terephthalate film, thickness: 50 μm, manufactured by Unitika Co., Ltd.) was used as the surface layer film (a). Example 1 was repeated except that the changes were made as shown in FIG. The results are shown in Table 12.
比較例2
 実施例1において、バッカー層(ウ)を設けずに、表層フィルム(ア)としてPBT(1)(ポリブチレンテレフタレート樹脂〔東レ(株)製、商品名 トレコン1200S〕を600mm幅のTダイを装着した40mm押出機〔(株)池貝製〕で、エンボスパターン200メッシュ、温度条件はシリンダー温度270℃、ダイス温度270℃、製膜速度10m/minで厚さ100μmに製膜した)を使用し、成型温度を表12に示すように変更したこと以外は、実施例1を繰り返した。結果を表12に示す。
Comparative Example 2
In Example 1, without providing a backer layer (C), a PBT (1) (polybutylene terephthalate resin [trade name Toraycon 1200S, manufactured by Toray Industries, Inc.] is mounted as a surface layer film (A) with a 600 mm wide T-die. Using a 40 mm extruder (made by Ikegai Co., Ltd.), embossed pattern 200 mesh, temperature conditions were cylinder temperature 270 ° C., die temperature 270 ° C., film forming speed 10 m / min. Example 1 was repeated except that the molding temperature was changed as shown in Table 12. The results are shown in Table 12.
比較例3
 剥離材に溝4、溝5を設けなかったこと以外は、実施例1を繰り返した。成型温度および結果を表12に示す。
Comparative Example 3
Example 1 was repeated except that the release material was not provided with grooves 4 and 5. Molding temperatures and results are shown in Table 12.
比較例4
 剥離材に溝5を設けなかったこと以外は、実施例1を繰り返した。成型温度および結果を表12に示す。
Comparative Example 4
Example 1 was repeated except that the release material was not provided with the groove 5. Molding temperatures and results are shown in Table 12.
比較例5
 剥離材に溝5を設けなかったこと以外は、実施例14を繰り返した。成型温度および結果を表12に示す。
Comparative Example 5
Example 14 was repeated except that the release material was not provided with the groove 5. Molding temperatures and results are shown in Table 12.
比較例6
 剥離材に溝4を設けなかったこと以外は、実施例1を繰り返した。成型温度および結果を表14に示す。
Comparative Example 6
Example 1 was repeated except that the release material was not provided with the grooves 4. Molding temperatures and results are shown in Table 14.
比較例7
 剥離材に溝4を設けなかったこと以外は、実施例14を繰り返した。成型温度および結果を表14に示す。
Comparative Example 7
Example 14 was repeated except that the release material was not provided with the groove 4. Molding temperatures and results are shown in Table 14.
比較例8~12
 実施例1において、樹脂構成(1)の替わりに、表13、15に示す樹脂構成(6)~(10)を採用したこと以外は、実施例1を繰り返した。成型温度および結果を表14、16に示す。
Comparative Examples 8-12
In Example 1, Example 1 was repeated except that the resin structures (6) to (10) shown in Tables 13 and 15 were employed instead of the resin structure (1). Molding temperatures and results are shown in Tables 14 and 16.
比較例13~14
 実施例1において、ポリイソシアネートの量を、表15に示すように変更したこと以外は、実施例1を繰り返した。成型温度および結果を表16に示す。
Comparative Examples 13-14
In Example 1, Example 1 was repeated except that the amount of polyisocyanate was changed as shown in Table 15. Molding temperatures and results are shown in Table 16.
比較例15
 実施例1において、接着剤層(イ)を、粘着剤(1)に変更し、剥離材に溝4を設けなかったこと以外は、実施例1を繰り返した。結果を表16に示す。
 なお、粘着剤(1)とは、ビックテクノス(株)製、商品名 リキダイン AR-2037、塗料組成:アクリル酸エステル共重合体である。
Comparative Example 15
In Example 1, Example 1 was repeated except that the adhesive layer (I) was changed to the pressure-sensitive adhesive (1) and the groove 4 was not provided in the release material. The results are shown in Table 16.
The pressure-sensitive adhesive (1) is a trade name “Liquidyne AR-2037” manufactured by Big Technos Co., Ltd., paint composition: acrylate copolymer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表1~16の結果から、以下の事項が導き出される。
・実施例1は、表層フィルム(ア)の種類を特定するとともに、接着剤層(イ)における熱可塑性飽和共重合ポリエステル樹脂の組成とポリイソシアネートの使用量とを特定の範囲に設定し、なおかつ接着剤層(イ)の特定面に所定の溝を形成したので、三次元被覆成型品の裏面凹凸によるエアー混入が発生せず、耐熱外観性(50℃×400時間、80℃×400時間)に優れる。さらに、表層フィルム(ア)と剥離材との収縮率の差も小さいため、剥離材付きで長期に保存したときシートの外観性の低下がない。また、初期タック性、初期密着性にも優れるとともに、バッカー層(ウ)を設けたことにより、真空成型性を高めることができ、三次元被覆成型品での耐熱接着性(50℃×400時間、80℃×400時間)に優れた真空成型用シートを提供することができる。また、本発明の真空成型用シートと、ABS樹脂およびポリカーボネート樹脂のアロイからなる基材との真空成型品は、特に密着性に優れることが証明された。
・実施例2は、バッカー層をPVC(1)にした例で、実施例1と同様の性能を示した。
・実施例3は、表層フィルム(ア)を共重合PET(1)にした例で、実施例1と同様の性能を示した。
・実施例4は、表層フィルム(ア)をPC(1)にし、積層基材をABSにした例で、実施例1と同様の性能を示した。
・実施例5は、表層フィルム(ア)をPET-G(2)にし、積層基材をABSにした例で、実施例1と同様の性能を示した。
・実施例6は、表層フィルム(ア)をアクリル(2)にして、バッカー層(ウ)を設けなかった例で、真空成型性が○評価であったこと以外は、実施例1と同様の性能を示した。
・実施例7は、表層フィルム(ア)をPET-G(3)にして、バッカー層(ウ)を設けなかった例で、真空成型性が○評価であったこと以外は、実施例1と同様の性能を示した。
・実施例8は、表層フィルム(ア)をPVC(2)にして、バッカー層(ウ)を設けず、積層基材をABSにし、エンボス加工の柄をヘアラインにした例で、真空成型性が○評価であったこと以外は、実施例1と同様の性能を示した。
・実施例9は、表層フィルム(ア)をPC(2)にして、バッカー層(ウ)を設けず、エンボス加工の柄を梨地にした例で、真空成型性が○評価であったこと以外は、実施例1と同様の性能を示した。
・実施例10は、剥離材の種類をBにした例で、実施例1と同様の性能を示した。
・実施例11は、剥離材の種類をCにした例で、実施例1と同様の性能を示した。
・実施例12は、剥離材の種類をDにした例で、実施例1と同様の性能を示した。
・実施例13は、表層フィルム(ア)をPET-G(2)にし、剥離材の種類をBにした例で、実施例1と同様の性能を示した。
・実施例14は、表層フィルム(ア)をPET-G(3)にして、バッカー層(ウ)を設けず、剥離材の種類をBにした例で、真空成型性が○評価であったこと以外は、実施例1と同様の性能を示した。
・実施例15は、共重合ポリエステル樹脂を樹脂構成(2)にした例で、実施例1と同様の性能を示した。
・実施例16は、共重合ポリエステル樹脂を樹脂構成(3)にした例で、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が○評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例17は、共重合ポリエステル樹脂を樹脂構成(4)にした例で、初期タック性、初期密着性が△評価、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例18は、共重合ポリエステル樹脂を樹脂構成(5)にした例で、実施例1と同様の性能を示した。
・実施例19は、ポリイソシアネート(1)の添加量を1.7当量にした例で、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が○評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例20は、ポリイソシアネート(1)の添加量を2.3当量にした例で、初期タック性、初期密着性が△評価、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が○評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例21はポリイソシアネート(2)を使用した例で、初期タック性、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例22は、バッカー層にA-PET(1)を使用した例で、真空成型性が△評価、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が○評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例23は、表層フィルム(ア)にA-PET(2)を使用し、バッカー層(ウ)を設けなかった例で、真空成型性が△評価、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が○評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例24は、積層基材にPPを使用した例で、初期密着性が△評価、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が○評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。それ以外は実施例1と同様の性能を示した。
From the results in Tables 1 to 16, the following matters are derived.
-Example 1 specifies the kind of surface layer film (a), sets the composition of the thermoplastic saturated copolymer polyester resin and the amount of polyisocyanate used in the adhesive layer (a) within a specific range, and Since a predetermined groove is formed on the specific surface of the adhesive layer (a), air mixing due to the back surface unevenness of the three-dimensional coated molded product does not occur, and heat resistant appearance (50 ° C. × 400 hours, 80 ° C. × 400 hours) Excellent. Furthermore, since the difference in shrinkage between the surface layer film (a) and the release material is also small, the appearance of the sheet does not deteriorate when stored for a long time with the release material. In addition, the initial tackiness and initial adhesion are excellent, and by providing a backer layer (c), the vacuum moldability can be improved, and the heat-resistant adhesiveness in a three-dimensional coated molded product (50 ° C. × 400 hours) , 80 ° C. × 400 hours) can be provided. Further, it has been proved that the vacuum molded product of the vacuum molding sheet of the present invention and a base material made of an alloy of ABS resin and polycarbonate resin is particularly excellent in adhesion.
Example 2 was an example in which the backer layer was PVC (1), and showed the same performance as Example 1.
Example 3 was an example in which the surface layer film (a) was copolymerized PET (1), and showed the same performance as Example 1.
Example 4 is an example in which the surface layer film (A) is PC (1) and the laminated base material is ABS, and shows the same performance as Example 1.
Example 5 was an example in which the surface layer film (a) was PET-G (2) and the laminated base material was ABS, and showed the same performance as Example 1.
Example 6 is an example in which the surface layer film (a) is acrylic (2) and the backer layer (c) is not provided, and the same as in Example 1 except that the vacuum formability is ◯ evaluation. Showed performance.
-Example 7 is an example in which the surface layer film (a) was PET-G (3) and the backer layer (c) was not provided. Except that the vacuum formability was evaluated as ○, Similar performance was demonstrated.
-Example 8 is an example in which the surface layer film (a) is PVC (2), the backer layer (c) is not provided, the laminated base material is ABS, and the embossed pattern is a hairline. A performance similar to that of Example 1 was shown except that it was an evaluation.
-Example 9 is an example in which the surface layer film (a) is PC (2), the backer layer (c) is not provided, and the embossed pattern is satin-finished. Exhibited the same performance as in Example 1.
Example 10 was an example in which the type of release material was B, and showed the same performance as Example 1.
Example 11 was an example in which the type of release material was C, and showed the same performance as Example 1.
Example 12 was an example in which the type of release material was D, and showed the same performance as Example 1.
Example 13 was an example in which the surface layer film (a) was PET-G (2) and the type of release material was B, and showed the same performance as Example 1.
Example 14 is an example in which the surface layer film (a) is made of PET-G (3), the backer layer (c) is not provided, and the type of the release material is B, and the vacuum formability is evaluated as good. Except for this, the same performance as in Example 1 was exhibited.
-Example 15 was the example which made the copolyester resin the resin structure (2), and showed the same performance as Example 1.
-Example 16 is the example which made the copolymer polyester resin the resin structure (3), and heat-resistant adhesiveness (50 degreeC x 400 hours) and heat-resistant external appearance property (50 degreeC x 400 hours) are (circle) evaluation, heat-resistant adhesiveness ( 80 ° C. × 400 hours) and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
Example 17 is an example in which the copolymerized polyester resin has a resin configuration (4), and the initial tackiness and initial adhesion are Δ evaluated, heat resistant adhesiveness (50 ° C. × 400 hours), heat resistant adhesiveness (80 ° C. × 400 hours), heat-resistant appearance (50 ° C. × 400 hours), and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as ○. Otherwise, the same performance as in Example 1 was exhibited.
-Example 18 was the example which made the copolyester resin the resin structure (5), and showed the same performance as Example 1.
Example 19 is an example in which the amount of polyisocyanate (1) added was 1.7 equivalents, with heat resistance adhesion (50 ° C. × 400 hours) and heat appearance appearance (50 ° C. × 400 hours) evaluated as good, heat resistance Adhesiveness (80 ° C. × 400 hours) and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
Example 20 is an example in which the amount of polyisocyanate (1) added was 2.3 equivalents, and the initial tackiness and initial adhesion were evaluated as Δ, heat-resistant adhesiveness (50 ° C. × 400 hours), heat-resistant appearance ( 50 ° C. × 400 hours) was evaluated as “Good”, heat resistant adhesiveness (80 ° C. × 400 hours), and heat resistant appearance (80 ° C. × 400 hours) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
-Example 21 is an example which uses polyisocyanate (2), initial tack property, heat-resistant adhesiveness (50 degreeC x 400 hours), heat-resistant adhesiveness (80 degreeC x 400 hours), heat-resistant appearance (50 degreeC x 400) Time) and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
-Example 22 is an example in which A-PET (1) is used for the backer layer, and the vacuum formability is evaluated as Δ, heat-resistant adhesiveness (50 ° C x 400 hours), and heat-resistant appearance (50 ° C x 400 hours). O Evaluation, heat-resistant adhesiveness (80 ° C. × 400 hours), heat-resistant appearance (80 ° C. × 400 hours) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
Example 23 is an example in which A-PET (2) was used for the surface layer film (a) and the backer layer (c) was not provided, and the vacuum formability was evaluated as Δ, heat-resistant adhesiveness (50 ° C. × 400 hours) ), Heat-resistant appearance (50 ° C. × 400 hours) was evaluated as ◯, heat-resistant adhesiveness (80 ° C. × 400 hours), and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
Example 24 is an example in which PP is used for the laminated base material. The initial adhesiveness is evaluated as Δ, the heat-resistant adhesiveness (50 ° C. × 400 hours), and the heat-resistant appearance (50 ° C. × 400 hours) are evaluated as ○. Adhesiveness (80 ° C. × 400 hours) and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
・比較例1は、表層フィルム(ア)を二軸PET(1)にした例で、本発明の範囲外であるため、真空成型性、初期密着性、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例2は、表層フィルム(ア)をPBT(1)にして、バッカー層(ウ)を設けなかった例で、本発明の範囲外であるため、真空成型性、初期密着性、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例3は、剥離材の種類をEにした例(溝4、溝5を有しない)で、本発明の範囲外であるため、ドラグライン、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)、生産性(工程の簡略化)、長期保存時の剥離材付きシートの外観性が×評価、80℃、1週間後の収縮率の差、常温、3ヶ月後の収縮率の差が大きく、劣る評価になった。
・比較例4は、剥離材の種類をFにした例(溝5を有しない)で、本発明の範囲外であるため、裏面凹凸によるエアー混入、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例5は、表層フィルム(ア)をPET-G(3)にして、バッカー層(ウ)を設けず、剥離材の種類をGにした例(溝5を有しない)で、本発明の範囲外であるため、裏面凹凸によるエアー混入、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例6は、剥離材の種類をHにした例(溝4を有しない)で、本発明の範囲外であるため、ドラグライン、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)、生産性(工程の簡略化)が△評価、長期保存時の剥離材付きシートの外観性が×評価、80℃、1週間後の収縮率の差、常温、3ヶ月後の収縮率の差が大きく、劣る評価になった。
・比較例7は、剥離材の種類をIにした例(溝4を有しない)で、本発明の範囲外であるため、ドラグライン、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)、生産性(工程の簡略化)が△評価、長期保存時の剥離材付きシートの外観性が×評価、80℃、1週間後の収縮率の差、常温、3ヶ月後の収縮率の差が大きく、劣る評価になった。
・比較例8は、共重合ポリエステル樹脂を樹脂構成(6)にした例で、本発明の範囲外であるため、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例9は、共重合ポリエステル樹脂を樹脂構成(7)にした例で、本発明の範囲外であるため、初期タック性、初期密着性が×評価、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が△評価になった。
・比較例10は、共重合ポリエステル樹脂を樹脂構成(8)にした例で、本発明の範囲外であるため、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例11は、共重合ポリエステル樹脂を樹脂構成(9)にした例で、本発明の範囲外であるため、初期タック性、初期密着性が×評価になった。
・比較例12は、共重合ポリエステル樹脂を樹脂構成(10)にした例で、本発明の範囲外であるため、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例13は、ポリイソシアネート(1)の添加量を1当量にした例で、本発明の範囲外であるため、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が△評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例14は、ポリイソシアネート(1)の添加量を3当量にした例で、本発明の範囲外であるため、初期タック性が×評価、初期密着性が△評価、耐熱接着性(50℃×400時間)、耐熱外観性(50℃×400時間)が△評価、耐熱接着性(80℃×400時間)、耐熱外観性(80℃×400時間)が×評価になった。
・比較例15は、接着剤層(イ)に粘着剤(1)を使用し、剥離材の種類をHにした例(溝4を有しない)で、本発明の範囲外であるため、ドラグライン、生産性(工程の簡略化)が△評価、耐熱接着性(50℃×400時間)、耐熱接着性(80℃×400時間)、耐熱外観性(50℃×400時間)、耐熱外観性(80℃×400時間)、長期保存時の剥離材付きシートの外観性が×評価、80℃、1週間後の収縮率の差、常温、3ヶ月後の収縮率の差が大きく、劣る評価になった。
-Comparative Example 1 is an example in which the surface layer film (a) is biaxial PET (1), and is outside the scope of the present invention, so vacuum formability, initial adhesion, and heat resistant adhesiveness (50 ° C x 400 hours) The heat-resistant adhesiveness (80 ° C. × 400 hours), the heat-resistant appearance (50 ° C. × 400 hours), and the heat-resistant appearance (80 ° C. × 400 hours) were evaluated as x.
Comparative Example 2 is an example in which the surface layer film (a) is PBT (1) and the backer layer (c) is not provided, and is outside the scope of the present invention. Therefore, vacuum formability, initial adhesion, heat-resistant adhesion Evaluation (50 ° C. × 400 hours), heat-resistant adhesiveness (80 ° C. × 400 hours), heat-resistant appearance (50 ° C. × 400 hours), and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as x.
Comparative Example 3 is an example in which the type of release material is E (not having grooves 4 and 5), and is outside the scope of the present invention, so drag line, heat resistant appearance (50 ° C. × 400 hours), Heat-resistant appearance (80 ° C. × 400 hours), productivity (simplification of process), appearance of sheet with release material during long-term storage × evaluation, difference in shrinkage after 1 week, 80 ° C., normal temperature, 3 The difference in shrinkage after months was large and the evaluation was inferior.
Comparative Example 4 is an example in which the type of release material is F (not having grooves 5), and is outside the scope of the present invention, so air mixing due to unevenness on the back surface, heat resistant appearance (50 ° C. × 400 hours), The heat appearance (80 ° C. × 400 hours) was evaluated as x.
Comparative Example 5 is an example in which the surface layer film (a) is PET-G (3), the backer layer (c) is not provided, and the type of release material is G (no groove 5). Therefore, the air contamination due to the unevenness on the back surface, the heat resistant appearance (50 ° C. × 400 hours), and the heat resistant appearance (80 ° C. × 400 hours) were evaluated as x.
Comparative Example 6 is an example in which the type of release material is H (without the groove 4), and is outside the scope of the present invention, so it is a drag line, heat resistant appearance (50 ° C. × 400 hours), heat resistant appearance (80 ° C. × 400 hours), productivity (simplification of process) is Δ evaluation, appearance of sheet with release material during long-term storage is X evaluation, difference in shrinkage after 1 week, 80 ° C., normal temperature, 3 The difference in shrinkage after months was large and the evaluation was inferior.
Comparative Example 7 is an example in which the type of release material is I (without the groove 4), and is outside the scope of the present invention. Therefore, drag line, heat resistant appearance (50 ° C. × 400 hours), heat resistant appearance (80 ° C. × 400 hours), productivity (simplification of process) is Δ evaluation, appearance of sheet with release material during long-term storage is X evaluation, difference in shrinkage after 1 week, 80 ° C., normal temperature, 3 The difference in shrinkage after months was large and the evaluation was inferior.
Comparative Example 8 is an example in which a copolymerized polyester resin is used as the resin composition (6), and is outside the scope of the present invention. Therefore, heat resistant adhesiveness (50 ° C. × 400 hours), heat resistant adhesiveness (80 ° C. × 400 hours) ), Heat-resistant appearance (50 ° C. × 400 hours) and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as x.
Comparative Example 9 is an example in which a copolymerized polyester resin is used as the resin composition (7), and is outside the scope of the present invention. Therefore, initial tackiness and initial adhesion are evaluated as x evaluation, heat resistant adhesiveness (50 ° C. × 400 hours) ), Heat-resistant adhesiveness (80 ° C. × 400 hours), heat-resistant appearance (50 ° C. × 400 hours), and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as Δ.
Comparative Example 10 is an example in which a copolymerized polyester resin is used as the resin configuration (8), and is outside the scope of the present invention. ), Heat-resistant appearance (50 ° C. × 400 hours) and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as x.
Comparative Example 11 is an example in which the copolymerized polyester resin has a resin configuration (9), and is outside the scope of the present invention, and therefore, the initial tackiness and initial adhesion were evaluated as x.
Comparative Example 12 is an example in which the copolymerized polyester resin has a resin configuration (10), and is outside the scope of the present invention. Therefore, heat resistant adhesiveness (50 ° C. × 400 hours), heat resistant adhesiveness (80 ° C. × 400 hours) ), Heat-resistant appearance (50 ° C. × 400 hours) and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as x.
Comparative Example 13 is an example in which the amount of polyisocyanate (1) added is 1 equivalent, and is outside the scope of the present invention, so heat resistant adhesiveness (50 ° C. × 400 hours), heat resistant appearance (50 ° C. × 400) Time) was evaluated as Δ, heat-resistant adhesiveness (80 ° C. × 400 hours), and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as ×.
Comparative Example 14 is an example in which the amount of polyisocyanate (1) added is 3 equivalents, and is outside the scope of the present invention. Therefore, the initial tackiness is evaluated as x, the initial adhesion is evaluated as Δ, and the heat resistant adhesion (50 (° C. × 400 hours), heat-resistant appearance (50 ° C. × 400 hours) were evaluated as Δ, heat-resistant adhesiveness (80 ° C. × 400 hours), and heat-resistant appearance (80 ° C. × 400 hours) were evaluated as ×.
Comparative Example 15 is an example in which the pressure-sensitive adhesive (1) is used for the adhesive layer (A) and the type of the release material is H (no groove 4), and is outside the scope of the present invention. Line, productivity (simplification of process) △ evaluation, heat resistant adhesiveness (50 ° C x 400 hours), heat resistant adhesiveness (80 ° C x 400 hours), heat resistant appearance (50 ° C x 400 hours), heat resistant appearance (80 ° C. × 400 hours), evaluation of the appearance of the sheet with a release material during long-term storage, evaluation at 80 ° C., difference in shrinkage after 1 week, room temperature, difference in shrinkage after 3 months is large and inferior Became.
 本発明の真空成型用シートは、自動車内装用途、家電製品用途等の三次元被覆成型品を得るのに有用である。 The vacuum forming sheet of the present invention is useful for obtaining three-dimensional coated molded products for automobile interior use, home appliance use, and the like.
 1 真空成型用シート
 4 溝
 5 溝
 ア 表層フィルム
 イ 接着剤層
 ウ バッカー層
 10 真空成型用シート
 12 積層基材
 14 第一の室
 16 第二の室
 18 真空ポンプ
 20 ヒータ
 22,26 駆動装置
 24 テーブル
 100 逆の面
 200 積層基材
DESCRIPTION OF SYMBOLS 1 Vacuum forming sheet 4 Groove 5 Groove A Surface layer film B Adhesive layer C Backer layer 10 Vacuum forming sheet 12 Laminated substrate 14 First chamber 16 Second chamber 18 Vacuum pump 20 Heater 22, 26 Drive device 24 Table 100 Reverse surface 200 Laminated substrate

Claims (15)

  1.  表層にエンボス加工を施した表層フィルム(ア)の下面に接着剤層(イ)を有する真空成型用シートであって、
     前記表層フィルム(ア)が、アクリル系樹脂フィルム(A)、二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)、ポリ塩化ビニル系樹脂フィルム(D)またはポリカーボネート系樹脂フィルム(E)であり、かつ
     前記接着剤層(イ)が、下記の熱可塑性飽和共重合ポリエステル樹脂にポリイソシアネート1.5~2.5当量を配合し硬化したものであり、かつ前記表層フィルム(ア)に接着している面とは逆の面に1以上の溝を有し、該溝は、該接着剤層(イ)の該逆の面の内側のみに存在して該接着剤層(イ)の側面まで通じてはいない溝、および該逆の面において側面まで通じている溝を有することを特徴とする真空成型用シート。
     熱可塑性飽和共重合ポリエステル樹脂:テレフタル酸20~40モル%、イソフタル酸20~40モル%およびアジピン酸25~50モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール10~50モル%および1,6-ヘキサンジオール50~90モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。
    A sheet for vacuum forming having an adhesive layer (I) on the lower surface of a surface layer film (A) embossed on the surface layer,
    The surface layer film (a) is an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), a polyvinyl chloride resin film ( D) or a polycarbonate resin film (E), and the adhesive layer (a) is obtained by blending 1.5 to 2.5 equivalents of polyisocyanate in the following thermoplastic saturated copolymer polyester resin and curing. And has one or more grooves on the surface opposite to the surface bonded to the surface film (a), and the grooves are present only on the inner side of the opposite surface of the adhesive layer (a). And a groove that does not communicate with the side surface of the adhesive layer (a) and a groove that communicates with the side surface on the opposite surface.
    Thermoplastic saturated copolyester resin: an acid component comprising 20 to 40 mol% terephthalic acid, 20 to 40 mol% isophthalic acid and 25 to 50 mol% adipic acid (however, the total of the acid components is 100 mol%); A glycol component composed of 10 to 50 mol% of 1,4-butanediol and 50 to 90 mol% of 1,6-hexanediol (however, the total of the glycol components is 100 mol%).
  2.  前記熱可塑性飽和共重合ポリエステル樹脂の軟化温度が、55~85℃であることを特徴とする請求項1に記載の真空成型用シート。 The vacuum forming sheet according to claim 1, wherein the thermoplastic saturated copolymer polyester resin has a softening temperature of 55 to 85 ° C.
  3.  前記表層フィルム(ア)と前記接着剤層(イ)との間にバッカー層(ウ)を有することを特徴とする請求項1または2に記載の真空成型用シート。 3. The vacuum forming sheet according to claim 1, further comprising a backer layer (c) between the surface layer film (a) and the adhesive layer (a).
  4.  前記バッカー層(ウ)が、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)またはポリ塩化ビニル系樹脂フィルム(G)であることを特徴とする請求項3に記載の真空成型用シート。 The sheet for vacuum forming according to claim 3, wherein the backer layer (c) is an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G).
  5.  前記ポリイソシアネートが、ヘキサメチレンジイソシアネートからなるポリイソシアネートであることを特徴とする請求項1~4のいずれかに記載の真空成型用シート。 The vacuum forming sheet according to any one of claims 1 to 4, wherein the polyisocyanate is a polyisocyanate composed of hexamethylene diisocyanate.
  6.  前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする請求項1~5のいずれかに記載の真空成型用シート。 The unstretched amorphous polyethylene terephthalate resin film (C) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) The vacuum forming sheet according to any one of claims 1 to 5, wherein the total is 100 mol%.
  7.  前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする請求項4に記載の真空成型用シート。 The unstretched amorphous polyethylene terephthalate resin film (F) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (provided that the glycol component described above) The sheet for vacuum forming according to claim 4, wherein the total is 100 mol%.
  8.  前記エンボス加工の柄が、導管木目、ヘアライン、抽象柄または梨地であることを特徴とする請求項1~7のいずれかに記載の真空成型用シート。 The vacuum forming sheet according to any one of claims 1 to 7, wherein the embossed pattern is a conduit grain, a hairline, an abstract pattern or a satin.
  9.  前記溝が、幅5~100μmおよび深さ5~50μmを有する請求項1に記載の真空成型用シート。 2. The vacuum forming sheet according to claim 1, wherein the groove has a width of 5 to 100 μm and a depth of 5 to 50 μm.
  10.  前記接着剤層(イ)の該逆の面の正面図において、該側面まで通じていない溝が直線形、直線分岐形、十字形、円形、楕円形または多角形であり、各形状は断続的な複数の溝で形成されていてもよい、請求項1または請求項9に記載の真空成型用シート。 In the front view of the opposite surface of the adhesive layer (a), the grooves not leading to the side surface are linear, linearly branched, cruciform, circular, elliptical or polygonal, and each shape is intermittent. The vacuum forming sheet according to claim 1, which may be formed of a plurality of grooves.
  11.  前記接着剤層(イ)の該逆の面の正面図において、該側面まで通じていない溝が1cm2当たり1×10~3.7×106個の密度で存在する、請求項1または請求項9~10のいずれかに記載の真空成型用シート。 In the front view of the opposite surface of the adhesive layer (a), grooves that do not lead to the side surface are present at a density of 1 × 10 to 3.7 × 10 6 per cm 2. Item 11. The vacuum forming sheet according to any one of Items 9 to 10.
  12.  前記接着剤層(イ)の該逆の面の正面図において、該側面まで通じている複数の溝が、縞状に配置されており、または該溝によって区切られる粘着材層の各々が円形、楕円形もしくは多角形であるように配置されている、請求項1または請求項9~11のいずれかに記載の真空成型用シート。 In the front view of the opposite surface of the adhesive layer (a), the plurality of grooves leading to the side surface are arranged in a striped pattern, or each of the adhesive layers separated by the grooves is circular, The vacuum forming sheet according to any one of claims 1 to 9 or 11, wherein the vacuum forming sheet is arranged so as to be elliptical or polygonal.
  13.  多角形が三角形、四角形または六角形である請求項10または請求項12に記載の真空成型用シート。 The vacuum forming sheet according to claim 10 or 12, wherein the polygon is a triangle, a quadrangle, or a hexagon.
  14.  下記の真空成型方法により真空成型を行なうために用いられる、請求項1~13のいずれかに記載の真空成型用シート。
     真空成型方法:請求項1~13のいずれかに記載の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法。
    The vacuum forming sheet according to any one of claims 1 to 13, which is used for vacuum forming by the following vacuum forming method.
    Vacuum forming method: The vacuum forming sheet according to any one of claims 1 to 13 and a laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the vacuum forming sheet is disposed on the side of the laminated base material. One chamber, the second chamber on the opposite side are hermetically separated from each other, the first chamber and the second chamber are depressurized, and the vacuum forming sheet is heated and softened, and then the vacuum forming The sheet is brought into contact with the laminated base material, and then the decompression of the second chamber is released, and the vacuum forming sheet is removed from the laminated base material by the differential pressure between the first chamber and the second chamber. Vacuum forming method that adheres and laminates to the surface.
  15.  請求項1~14のいずれかに記載の真空成型用シートと、ABS樹脂、または、ABS樹脂およびポリカーボネート樹脂のアロイからなる基材とを真空成型により積層せしめてなることを特徴とする成型品。 15. A molded product comprising the vacuum forming sheet according to claim 1 and a base material made of an ABS resin or an alloy of an ABS resin and a polycarbonate resin, laminated by vacuum molding.
PCT/JP2009/068961 2008-11-18 2009-11-06 Sheet for vacuum molding WO2010058705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-294193 2008-11-18
JP2008294193A JP5286042B2 (en) 2008-11-18 2008-11-18 Vacuum forming sheet

Publications (1)

Publication Number Publication Date
WO2010058705A1 true WO2010058705A1 (en) 2010-05-27

Family

ID=42198145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068961 WO2010058705A1 (en) 2008-11-18 2009-11-06 Sheet for vacuum molding

Country Status (2)

Country Link
JP (1) JP5286042B2 (en)
WO (1) WO2010058705A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016258A (en) * 2009-07-07 2011-01-27 Riken Technos Corp Sheet for vacuum laminate molding
EP3098327A1 (en) * 2015-05-29 2016-11-30 Chaei Hsin Enterprise Co., Ltd. Method of synthesizing functional leather
EP3281786A4 (en) * 2015-04-08 2018-12-05 Daihatsu Motor Co., Ltd. Decorative sheet, molding sheet and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641306B2 (en) * 2010-09-08 2014-12-17 Dic株式会社 Method for producing decorative molded body
JP5933940B2 (en) * 2011-07-28 2016-06-15 スリーエム イノベイティブ プロパティズ カンパニー LAMINATED SHEET, COMPONENT HAVING LAMINATED SHEET AND MANUFACTURING METHOD
JP5949181B2 (en) * 2012-06-04 2016-07-06 大日本印刷株式会社 Laminated sheet, decorative resin molded product, decorative resin molded product manufacturing method, and decorative sheet manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148371A (en) * 1991-09-30 1993-06-15 Sekisui Chem Co Ltd Production of automotive composite panel, and water-base adhesive used therefor
JP2000230166A (en) * 1999-02-08 2000-08-22 Sekisui Chem Co Ltd Polyurethane-based adhesive, and production of coating material for decorative sheet using the same
JP2005335151A (en) * 2004-05-26 2005-12-08 Toppan Printing Co Ltd Metallically sheeny decorative sheet and decorative material
JP2006095837A (en) * 2004-09-29 2006-04-13 Dainippon Printing Co Ltd Embossment-synchronized film, its production method, and laminate with the film laminated
JP2007106001A (en) * 2005-10-13 2007-04-26 Riken Technos Corp Decorative sheet having adhesive layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110634B2 (en) * 1972-06-01 1976-04-05
JP2959674B2 (en) * 1997-01-17 1999-10-06 東洋紡績株式会社 Polyester resin laminated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148371A (en) * 1991-09-30 1993-06-15 Sekisui Chem Co Ltd Production of automotive composite panel, and water-base adhesive used therefor
JP2000230166A (en) * 1999-02-08 2000-08-22 Sekisui Chem Co Ltd Polyurethane-based adhesive, and production of coating material for decorative sheet using the same
JP2005335151A (en) * 2004-05-26 2005-12-08 Toppan Printing Co Ltd Metallically sheeny decorative sheet and decorative material
JP2006095837A (en) * 2004-09-29 2006-04-13 Dainippon Printing Co Ltd Embossment-synchronized film, its production method, and laminate with the film laminated
JP2007106001A (en) * 2005-10-13 2007-04-26 Riken Technos Corp Decorative sheet having adhesive layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016258A (en) * 2009-07-07 2011-01-27 Riken Technos Corp Sheet for vacuum laminate molding
EP3281786A4 (en) * 2015-04-08 2018-12-05 Daihatsu Motor Co., Ltd. Decorative sheet, molding sheet and method for producing same
US10744700B2 (en) 2015-04-08 2020-08-18 Daihatsu Motor Co., Ltd. Decorative sheet, and molded sheet and producing method thereof
EP3098327A1 (en) * 2015-05-29 2016-11-30 Chaei Hsin Enterprise Co., Ltd. Method of synthesizing functional leather

Also Published As

Publication number Publication date
JP2010120208A (en) 2010-06-03
JP5286042B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US8114504B2 (en) Polyester laminated film and transfer foil
JP5286042B2 (en) Vacuum forming sheet
JP6957853B2 (en) Decorative sheet
WO2010122826A1 (en) Sheet for vacuum molding
JP5286043B2 (en) Vacuum forming sheet
JP4823853B2 (en) Metallic sheet and metallic decorative material using the same
JP4318789B2 (en) Decorative sheet
JP5060102B2 (en) Metallic sheet and metallic decorative material using the same
JP5286023B2 (en) Vacuum forming sheet
JPH11129426A (en) Decorative sheet
JP4522538B2 (en) Decorative sheet and method for producing the same
JP5140262B2 (en) Metallic sheet and metallic decorative material using the same
KR100923414B1 (en) Method for manufacturing hologram sheet
JP5590746B2 (en) Metallic sheet and metallic decorative material using the same
JP5002240B2 (en) Metallic sheet and metallic decorative material using the same
JP5284203B2 (en) Vacuum laminating sheet
JP3641946B2 (en) Decorative sheet
JP4329277B2 (en) Decorative sheet
JP4918933B2 (en) Decorative sheet
JP5249803B2 (en) Laminated sheet for resin-coated metal plate, laminated sheet-coated metal plate, unit bath member, building interior member, steel furniture member, and method for producing laminated sheet for resin-coated metal plate
JPH11207916A (en) Decorative sheet
JP2006103176A (en) Laminate film for transfer foil and transfer foil using it
JP2020142433A (en) Surface treatment method for resin molded product
JP2009101672A (en) Decorative sheet having embossed recess inside
JP2004106411A (en) Decorative sheet for ornamentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827486

Country of ref document: EP

Kind code of ref document: A1