WO2010057373A1 - 一种绕制光纤线圈用的可分离式骨架及光纤线圈制备方法 - Google Patents

一种绕制光纤线圈用的可分离式骨架及光纤线圈制备方法 Download PDF

Info

Publication number
WO2010057373A1
WO2010057373A1 PCT/CN2009/070368 CN2009070368W WO2010057373A1 WO 2010057373 A1 WO2010057373 A1 WO 2010057373A1 CN 2009070368 W CN2009070368 W CN 2009070368W WO 2010057373 A1 WO2010057373 A1 WO 2010057373A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber optic
skeleton
optic cable
hub
Prior art date
Application number
PCT/CN2009/070368
Other languages
English (en)
French (fr)
Inventor
王巍
李晶
杨清生
王学锋
谭金权
Original Assignee
北京航天时代光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航天时代光电科技有限公司 filed Critical 北京航天时代光电科技有限公司
Priority to US12/747,636 priority Critical patent/US8663731B2/en
Priority to EA201070644A priority patent/EA017366B1/ru
Publication of WO2010057373A1 publication Critical patent/WO2010057373A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details
    • G01C19/722Details of the mechanical construction

Definitions

  • the invention relates to a skeleton for winding a fiber coil and a method for preparing the fiber coil.
  • phase difference between the two beams of light in the opposite direction of the fiber ⁇ L is the length of the fiber ⁇
  • D is the average diameter of the fiber ⁇
  • is the wavelength of the light wave
  • C is the propagation speed of the light wave in the vacuum
  • is the angular velocity sensitive to the fiber optic gyroscope.
  • the phase difference ⁇ % between the two beams transmitted in the opposite direction of the fiber optic cable is proportional to the product LD of the length and the average diameter of the fiber turns, so that in addition to increasing the diameter of the fiber bundle skeleton, the high-precision fiber optic gyroscope A relatively long fiber is also used to wrap the fiber optic cable.
  • the non-reciprocal phase difference between the two beams in the opposite direction of the fiber coil caused by the rotation is one of the main sources of error of the fiber optic gyroscope.
  • the probability of this non-reciprocal phase difference is greater, and the non-reciprocal phase difference is caused by factors such as thermal expansion of the fiber strand skeleton in the temperature environment and uneven thermal field.
  • This non-reciprocal phase difference problem It must be overcome through process improvement.
  • the integral result of equation (4) is zero, and the phase difference introduced by the temperature disturbance is zero.
  • the stress-induced refractive index change is the same as the temperature-induced refractive index change. If the two-segment fibers with a point symmetry in the meandering pass undergo the same stress change, the phase difference introduced by the stress perturbation is also zero.
  • the main problems with the above scheme are: In actual cases, due to the imperfection of the winding (such as the incomplete symmetry of the winding, the intersection of each layer of fiber in the fiber strand), the imperfection of the curing process (glue The thickness is not uniform, the thermal equilibrium time of the fiber is long, the temperature gradient is nonlinear, etc.), the two-segment fiber that is symmetric with respect to the midpoint of the coil is unlikely to experience the same temperature field, because the dipping of the fiber in the curing process does not force the fiber in the fiber strand. Evenly, the thermal expansion and contraction of the skeleton exerts stress on the optical fiber, etc., and the fiber optic coil does not experience the same stress field.
  • the fiber optic cable In the environment of temperature and mechanical vibration, the fiber optic cable cannot meet the precision requirements of the high-precision fiber optic gyroscope. It is also necessary to further improve the design on the basis of the existing ones. Improve the performance of the fiber optic cable and improve the accuracy of the fiber optic gyroscope.
  • the domestic patent publication number CN 101275835A the invention name "de-skeleton winding ring fixture for the fiber optic gyro without the upper fiber ring"
  • the application removes the flanges on both sides of the skeleton by means of a jig , the upper part of the fiber optic cable is not bounded by the upper edge, and is in a free state.
  • the application is complicated to implement by means of a jig, and the hub in the skeleton is not separated from the turns, and the stress generated by the hub on the radial direction of the fiber strand cannot be eliminated.
  • the technical problem of the present invention is to overcome the deficiencies of the prior art, and provide a separable skeleton for winding a fiber optic cable and a fiber strand preparation method using the skeleton to improve the temperature characteristics of the fiber strand and Vibration characteristics.
  • a detachable skeleton for winding a fiber optic cable comprising: a hub and two flanges, respectively detachably mounted at two ends of the hub, wherein the hub is provided with A detachable structure in which the hub is separated from the fiber bobbin wound thereon.
  • the detachable structure is formed with a boss on at least one end surface of the hub and a hole provided on the flange to cooperate with the boss.
  • the hub is formed by splicing at least two cylinders whose inner and outer cylinder faces are curved surfaces, and the easy-to-remove structure is an axial through gap formed between at least one of the two cylinder faces at the joint of the cylinder body and a filling member that coincides with the gap.
  • the detachable structure further includes a boss machined at one end of the hub or at the end of the filling member, and the flange is provided with a hole or groove that cooperates with the boss.
  • the method for preparing a fiber optic cable of the present invention comprises the following steps:
  • step (2) After the step (2) is completed, the following steps are also performed:
  • step (4) After the step (4) is completed, the following steps are also performed:
  • the fiber strand is subjected to stress release by a small amount of vibration.
  • the vibration level is controlled at 2 ⁇ 6g, and the time is controlled at 30 ⁇ 60 minutes.
  • the thickness of the hot melt in the step (1) is 0.5 to 1 mm.
  • the winding process in the step (2) is: determining the tension applied to the first layer according to the number of layers of the fiber strand and the outer diameter of the skeleton, and linearly decreasing layer by layer during the winding process The tension of the fiber is wound until it is around the entire line.
  • is the maximum allowable tension of the fiber, ⁇ is usually less than 30g;
  • E is the elastic modulus of the optical fiber
  • D is the inner diameter of the skeleton.
  • the layer-by-layer linear reduction of the tension of the fiber is decremented by X satisfying / « + 2 ⁇ ;
  • n is the number of layers of the winding layer
  • the pressure in the step (2) in which the curing gel is immersed under vacuum pressure is controlled to be between 0.5 and 2 MPa.
  • the impregnation step (2) employed in curing adhesive hardness of less than 25 degrees, thermal expansion coefficient of less than 510-4.
  • the heat-curing substance is added to the curing glue to quickly achieve thermal equilibrium in the temperature environment.
  • the speed of the centrifuge is controlled at 500 ⁇ 2000 rpm, and the time is controlled for 2-5 minutes.
  • the curing in the step (3) is carried out by heating or at room temperature or by ultraviolet light.
  • the temperature of the heating in the step (4) is not more than 60.
  • the separable skeleton of the present invention is easy to separate.
  • the method for preparing the optical fiber strand of the present invention adopts the separable skeleton of the present invention, and applies a layer of hot sol on the surface of the skeleton before winding the wire, thereby reducing the difficulty of removing the fiber strand from the skeleton, and reducing The probability of accidental damage to the fiber optic cable and other stresses introduced during the skeleton process is reduced.
  • the invention adopts a method for impregnating the curing glue under vacuum pressure, so that the inner and outer layers of the fiber strand can be uniformly dipped, which is beneficial to realize the temperature field symmetry of the fiber strand and can significantly improve the vibration characteristics of the fiber strand.
  • the resulting skeleton-free fiber optic cable eliminates the thermal expansion and contraction of the fiber strand skeleton and the force of the fiber coil caused by other deformations, and the temperature characteristics of the fiber strand can be significantly improved.
  • the method of the invention adopts the method of centrifuge squeezing after the completion of impregnation of the optical fiber strands, so that the colloidal adhesion of the optical fiber strands can be more uniform, thereby improving the performance of the light ray enthalpy.
  • the coil winding method of the present invention controls the stress of the entire coil by reducing the tension layer by layer, so that the distribution stress of the fiber strand is small, and the stress matching in the coil is improved under the working temperature condition.
  • the present invention is applied to the method of applying the heat insulating glue to the innermost layer and the outermost layer of the optical fiber coil, so that the optical fiber strand is less affected by the temperature field, and the problem of long-term stability of the high-precision fiber optic gyroscope is solved.
  • the invention adopts a method of adding silver powder or other heat conductive material to the curing glue, so that the fiber strand can quickly reach the heat balance in the temperature field, and the non-reciprocal error caused by the temperature gradient is reduced.
  • the present invention uses a skeleton-free fiber optic cable to form a high-precision fiber optic gyroscope, and employs a process of uniformly bonding the colloid to the fiber optic cable in the dipping process, thereby improving the temperature stability and vibration of the high-precision fiber optic gyroscope.
  • the characteristics and the precision are obviously improved; the separation technology is adopted in the design and the detachment of the skeleton, the preparation efficiency of the fiber strands is improved, the damage to the fiber strands and other adverse effects are reduced; the invention also accelerates the fiber strands.
  • the method of heat balance and isolation of the wire ⁇ by the external temperature field improves the stabilization time of the high-precision fiber optic gyroscope.
  • Figure 1 is a schematic diagram of temperature or stress disturbance in a fiber optic cable
  • 2 is a schematic structural view of a preferred embodiment of a detachable skeleton for winding a fiber optic cable according to the present invention; wherein 2a is a main view and 2b is a half-sectional view;
  • 3 is a schematic structural view of another preferred embodiment of a separable skeleton for winding a fiber optic cable according to the present invention; wherein 3a is a main view and 3b is a half-sectional view;
  • Figure 4 is a perspective view of a skeleton of a third preferred embodiment of the separable skeleton for winding an optical fiber strand according to the present invention
  • Figure 5 is an exploded perspective view of Figure 4.
  • Figure 6 is a partial view of Figure 4; wherein 6a is a main view and 6b is a half-section top view.
  • FIG. 2 is a schematic structural view of two preferred embodiments of the separable skeleton for winding an optical fiber strand according to the present invention, each comprising a hub 1 and two flanges 2, two flanges 2
  • Each of the two ends of the hub 1 is detachably mounted by a screw 4, and the hub 1 is provided with a detachable structure for separating the hub from the optical fiber bobbin wound thereon, and the detachable structure can be processed on one end surface of the hub 1.
  • the processing boss 6 can be used in the manner of FIG. 2, that is, at the center of the end face of the hub 1, or in the manner of FIG.
  • the boss 6 is matched with the corresponding hole on the flange 2.
  • the flange 2 is separated from the hub 1, a portion of the boss 1 that is not covered by the optical fiber is left on the hub 1, and the hub 1 is separated from the optical fiber yoke by dragging the boss 6, that is, the boss 6 is convenient for the hub 1 Remove from the fiber optic cable.
  • the connection between the flange 2 and the hub 1 can be mechanically fixed or glued.
  • the utility model comprises a wheel hub 1, two flanges 2 and a detachable structure, and the hub 1 is formed by splicing at least two cylinders whose inner and outer cylinder faces are curved surfaces, and is easy to disassemble.
  • the structure comprises an axial through gap formed between at least one of the two cylindrical faces of the column joint, a filling member that matches the gap, a boss that is machined at one end of the hub or the end of the filling member, and is disposed on the flange There are holes or slots that cooperate with the boss.
  • the hub 1 is composed of two symmetrical semi-cylindrical joints, and the two semi-cylindrical joints are machined with wedge-shaped grooves 5 and internal unloading gaps 7, wedge-shaped
  • the groove 5 and the inner unloading gap 7 constitute an axially penetrating gap as described above, and the inner unloading gap 7 is disposed adjacent to the inner ring of the semi-cylindrical shape, and the wedge-shaped groove 5 is disposed adjacent to the outer ring of the semi-cylindrical body, and the two are in the radial direction, but The circumferential length of the wedge groove 5 is larger than the inner relief gap 7.
  • a wedge block 3 is formed which is matched with the wedge groove 5; a wedge 6 is formed on the wedge block 3, and a groove matching the boss 6 is arranged on the flange 2, and the two flanges 2 are respectively mounted on the hub 1 at both ends, forming the skeleton.
  • the flange 2 and the hub 1 of the skeleton can be connected by mechanical fixing (using screws 4) or by means of glue.
  • the detachable skeleton is assembled into the assembly of Fig. 4. After the optical fiber is wound and solidified, the flange 2 is first removed, and the wedge block 3 is taken out in the axial direction.
  • the outer circle of the wedge block 3 and the outer cylindrical surface of the hub 1 are combined and processed to ensure a high cylindricity.
  • the wedge block 3 is designed in a dovetail shape to prevent the wedge block 3 from being swayed in the radial direction, and the slot on the flange is axially restricted to the wedge block 3.
  • the easy-disassembled structure of the hub 1 is designed to have an axial through gap, so that the hub 1 is composed of a plurality of cylinders, and each cylinder is fixed on the flange. When the flange is removed, the cylinders are easily moved to the gap. Close to the door, easy to remove the hub 1.
  • the hub 1 is composed of two semi-cylindrical bodies, and a gap formed by the inner disengagement gap 7 and the wedge-shaped groove 5 is left between the two semi-cylindrical bodies.
  • the wedge-shaped block 3 is mounted on the wedge-shaped groove 5, so that the inner unloading gap 7 passes outside.
  • the wedge block 3 is supported to avoid the influence of the gap on the fiber winding. After the fiber strand is solidified, the wedge block 3 above the inner unloading gap 7 can be taken out, and the two half cylinders constituting the hub 1 are naturally contracted inward, so that the separation of the fiber strand and the skeleton can be more easily realized.
  • the wedge-shaped groove 5 can also be disposed on the hub 1 at the portion of the hub 1 that has an internal relief gap adjacent to the outer ring.
  • Example 1 The design of the separable skeleton in Example 1 can be carried out by referring to the following process: First, according to the basic principle of the Sagnac meter: Formula
  • is the phase difference between the two beams of light in the opposite direction of the fiber
  • L is the length of the fiber ⁇
  • D is the average diameter of the fiber ⁇
  • is the wavelength of the light wave
  • C is the propagation of the light wave in vacuum Speed Degree
  • is the angular velocity sensitive to the fiber optic gyroscope. That is, the phase difference between the two beams of the optical fiber turns in the opposite direction is proportional to the product of the length L of the fiber turns and the average diameter D. According to the specific accuracy requirements of the fiber optic gyroscope, the fiber length L and the average of the fiber turns are determined.
  • the following is a detailed description of the preparation method of the optical fiber strand of the present invention in combination with the above three structures, as follows:
  • the surface of the skeleton described in the embodiment 1 or the embodiment 2 or the embodiment 3 is coated with a layer of hot melt of about 1 mm;
  • the optical fiber is wound into the skeleton according to the quadrupole symmetry method, and the optical fiber of 2 m length is left at both ends of the coil and is formed into a circle of about cD30 mm, and the 2 m long optical fiber is well protected, and the root is fixed on the skeleton.
  • 2m fiber dipping outside the fiber optic cable In order to avoid 2m fiber dipping outside the fiber optic cable.
  • the wound fiber optic cable is placed in a vacuum pressure device, and after vacuuming, the solidified glue mixed with silver powder or other heat conductive material is injected into the vacuum pressure device, the hardness of the cured rubber is less than 25 degrees and the thermal expansion coefficient is less than 5 ⁇ . 10- 4 .
  • the pressure is controlled between 0.5 and 2 MPa.
  • the fiber ⁇ is taken out, the fiber ⁇ is fixed on a specific tool, installed on the centrifuge, and the centrifuge is set.
  • the rotation speed is 500 ⁇ 2000r/min, start the centrifuge to carry out the silicone glue, remove the fiber optic cable after 2 ⁇ 5 minutes, and cure according to the curing requirements of the glue used.
  • the vibration is also applied to the fiber line of the order of 2 ⁇ 6g. ⁇ Stress release, time control is 30 ⁇ 60 minutes, then put the fiber optic cable in the thermostat, set the temperature of the incubator to 40 ⁇ 60 °C, after the thermostat reaches the set temperature for 2 minutes, the fiber optic cable is removed from the skeleton Remove the upper surface, clean the surface of the fiber optic cable, and then apply the heat-insulating adhesive to the innermost layer and the outermost layer of the wire. After the heat-insulating adhesive is cured, the entire fiber-free fiber strand without skeleton is prepared.
  • winding turns described above can be carried out by a conventional quadrupole symmetry method or by the following method:
  • the winding tension of the first layer of fiber is set.
  • the outer diameter of the supporting fiber is cp F
  • the number of layers of the winding is n
  • the maximum tension allowed by the fiber is Y
  • the winding tension F of the first layer is controlled.
  • the fiber tension is a factor that directly determines the fiber stress, assuming each layer of light
  • the coefficient of decrement of the fiber tension is x, then X satisfies: ⁇ + 2 ⁇ .
  • the principle is to control the winding tension of the uppermost fiber to be no less than 2g. If the tension is less than 2g, the fiber will not be able to be wound, and the cross-coupling between the fibers will also bring additional stress to the fiber ,, if the X value is less than 1 g, then you can change the decrement unit from one layer to one quad, and so on.
  • the ⁇ value is less than 30g.
  • the fiber optic cable is applied to the fiber optic gyroscope tool for testing.
  • Table 1 shows the temperature test data of the fiber optic cable of different processes applied to the fiber optic gyroscope. As shown in Table 1, the absolute value of the zero mean measured by the process of the present invention is Both the value and the standard deviation are much smaller than the corresponding parameter values in the conventional process.
  • Table 2 shows the vibration test data of the fiber optic gyroscope. The fiber optic gyroscope is mounted on the vibrating table for random vibration. The zero mean value and the standard deviation are the smaller the change in the vibration and before and after the vibration.
  • the variation of the standard deviation of the vibration 1.23 of the process of the present invention with the standard deviation before vibration of 0.24 and the standard deviation after vibration of 0.25 are 0.99 and 0.98, respectively, while the standard deviation of the vibration of the ordinary process is 2.25 and before the vibration.
  • the standard deviation of 0.42 and the post-vibration standard deviation of 0.46 are 1.83 and 1.79, respectively, and the process of the present invention is significantly smaller than the standard deviation obtained by the conventional process. Therefore, it can be clearly seen from the table that the performance of the optical fiber strands using the process of the present invention is significantly better than that of the conventional fiber strands.

Description

一种绕制光纤线圈用的可分离式骨架及光纤线圈制备方法 技术领域
本发明涉及一种绕制光纤线圈用的骨架及光纤线圈的制备方法。
背景技术
近年来, 国内光纤陀螺发展迅速, 中低精度光纤陀螺基本实现工程化, 在 多个领域得到成功应用, 高精度光纤陀螺的研制也开展得如火如茶, 但总体来 说距离国外的水平还有很大差距。 根据光纤陀螺的基本工作原理:
其中, 为光纤线圏中相向传输的两束光之间的相位差, L为光纤线圏的 长度, D为光纤线圏的平均直径, λ为光波波长, C为光波在真空中的传播速 度, Ω为光纤陀螺所敏感的角速度。 光纤线圏中相向传输的两束光之间的相位 差 Δ%与光纤线圏的长度和平均直径的乘积 LD成正比,因而高精度光纤陀螺中 除采用加大光纤线圏骨架的直径外,还会采用相对较长的光纤来绕制光纤线圏, 而非旋转引起的光纤线圏中相向传输的两束光之间的非互易相位差是光纤陀螺 的主要误差源之一, 光纤越长这种非互易相位差产生的几率就越大, 而且光纤 线圏骨架在温度环境下热膨胀以及热场不均匀等因素都会造成这种非互易相位 差, 这种非互易相位差问题必须通过工艺改进来克服。 在高精度光纤陀螺中, 如何减小高低温情况下骨架对光纤线圏的影响, 光纤线圏如何达到快速的热平 衡, 如何减小外界环境对光纤线圏的影响都非常重要, 高精度光纤陀螺在国内 还没有取得突破性进展的主要原因之一就是光纤线圈的技术还没有完全解决。
为解决高精度光纤陀螺用光纤线圏的技术问题, 各研制单位大多采用四极 对称绕法绕制光纤线圏, 然后对光纤线圏进行固化, 对光纤线圏进行固化是为 了提高线圏的振动特性, 提高光纤陀螺多次通电的重复性, 四极对称绕法的目 的是使光纤线圏相对于中点对称的两段光纤经历相同的温度场, 从而减小由于 温度引起的非互易相位差。 光纤线圏内部的温度场与光纤的空间位置和时间相 关, 温度场影响光纤的折射率和线膨胀系数等物理参数。 以温度导致的折射率 变^^为例:
考虑图 1所示的光纤线圏中温度或应力扰动示意图中长度为 L的光纤线圏 上, 距离光纤一端为 z的一小段光纤 δζ上存在一个温度扰动 (图中 Μ代表长 度中点;), 该扰动引入的非互易相位差可以表示为:
dn / _ dn dT /
dt dT dt (3) 式中, λ为光波波长, dn/dT为光纤折射率对温度的变化率, dT/dt为 δζ 处温度的时间变化率, η为光纤折射率, C为真空中的光速。 从(2 ) 式中可以 看出, 受温度扰动的 ί元距离光纤中点越远, 引入的非互易相位差越大。 在线 圏的全长范围内积分, 得到温度扰动引入的总相位差为:
如果相对线圏中点对称的两段光纤经历了相同的温度变化, 则(4 )式的积 分结果为零, 温度扰动引入的相位差为零。 应力导致的折射率变化同温度引起 的折射率变化的原理是一样的, 如果相对线圏中点对称的两段光纤经历了相同 的应力变化, 应力扰动引入的相位差也为零。
采用上述方案的主要问题在于: 在实际情况下, 由于绕制的不理想性 (如 绕制的不完全对称、光纤线圏中有每层光纤的交叉现象)、固化工艺的不完善 (胶 的厚度不均匀、 光纤的热平衡时间长、 温度梯度非线性等)导致相对线圈中点 对称的两段光纤不可能经历完全相同的温度场, 由于固化工艺中浸胶使光纤线 圏中光纤受力不均匀, 骨架热胀冷缩对光纤施加应力等, 光纤线圏也不会经历 完全相同的应力场, 在温度和力学振动的环境下, 光纤线圏还不能达到高精度 光纤陀螺的精度要求, 因此还必须在现有的基础上进一步改进设计、 ?丈善工艺, 提高光纤线圏的性能, 进而提高光纤陀螺的精度。
目前, 国外关于光纤线圏绕制方法的专利和文章, 均只是描述了一种四极 对称的绕制方法, 没有公开无骨架光纤线圏的制备方法。
关于骨架方面的 4艮道, 国内专利公开号 CN 101275835A, 发明名称 "用 于光纤陀螺无上沿光纤环的脱骨架绕环夹具",该申请通过夹具的形式将骨架两 侧的法兰取下, 使光纤线圏的上部无上沿约束, 呈自由状态。 但是该申请采用 夹具的方式实现起来比较复杂, 并且骨架中的轮毂与线圏没有分离, 不能消除 轮毂对光纤线圏径向产生的应力。
发明内容
本发明的技术解决问题是: 克服现有技术的不足, 提供一种绕制光纤线圏 用的可分离式骨架及利用该骨架实现的光纤线圏制备方法, 以提高光纤线圏的 温度特性和振动特性。
本发明的技术方案如下:
一种绕制光纤线圏用的可分离式骨架, 其特征在于包括: 一个轮毂和两个 法兰, 两个法兰分别可拆卸地安装在轮毂两端, 所述轮毂上设置有使所述轮毂 与其上绕制的光纤线圏分离的易拆结构。
所述易拆结构为所述轮毂至少一个端面上加工有凸台及所述法兰上设置的 与所述凸台相配合的孔, 当将法兰与轮毂分离后, 通过拖动该凸台将轮毂与光 纤线圏分离。
所述轮毂由内、 外柱面为弧面的至少两个柱体拼接而成, 所述易拆结构为 柱体拼接处至少一处的相对两柱面之间形成的轴向贯通的间隙和与所述间隙相 吻合的填充部件。
所述易拆结构还包括在所述轮毂一端或所述填充部件端头上加工的凸台, 所述法兰上设置有与所述凸台相配合的孔或槽。
本发明光纤线圏制备方法, 包括下列步骤:
( 1 )在上述骨架的表面涂覆一层热溶胶;
( 2 )绕制线圏, 将绕制的光纤线圏置于真空压力装置中, 并在真空压力状 态下进行固化胶浸渍; (3) 固化光纤线圏;
(4)对固化后的光纤线圏进行加热, 取下骨架。
所述步驟(2) 完成后还执行下述步骤:
( 2 ) '将浸渍完成后的光纤线圏置于离心机上进行甩胶。
所述步骤(4) 完成后还执行下述步骤:
(4) '在光纤线圏的最内层和最外层均涂覆隔热胶。
所述步骤(3) 固化后还采用小量级的振动对光纤线圏进行应力释放。 所述的振动量级控制在 2 ~ 6g, 时间控制在 30 ~ 60分钟。
所述步骤(1 ) 中的热溶胶的厚度为 0.5~1mm。
所述步骤(2) 中的绕制线圏过程为: 根据光纤线圏的层数及骨架的外径, 确定绕制第一层所釆用的张力, 绕制的过程中逐层线性减小绕纤的张力, 直至 绕完整个线圏。
所述的绕制第一层所采用的张力
其中, (?!^为光纤的外径;
Υ为光纤允许的最大张力, Υ通常小于 30g;
E为光纤的弹性模量;
D为骨架的内径。
所述的逐层线性减小绕纤的张力的递减系数为 X满足/ « + 2< ;
其中, n为线圏绕制层数;
「 为第一层的绕纤张力。
所述步猓( 2 )中的在真空压力状态下进行固化胶浸渍时的压力控制在 0.5 ~ 2Mpa之间。
所述步骤(2) 中的浸渍所采用固化胶的硬度低于 25度、 热胀系数低于 5 10- 4
所述的固化胶中加入导热物质,使光纤线圏在温度环境内快速达到热平衡。 所述离心机的转速控制在 500~2000转 /分钟, 时间控制在 2 ~ 5分钟。 所述步骤(3 ) 中的固化采用加热或常温放置或紫外光照射的方法。
所述的步骤( 4 ) 中加热的温度不超过 60 。
本发明与现有技术相比有益效果为:
( 1 ) 本发明可分离式骨架, 结构筒单易于分离。
( 2 )本发明的光纤线圏制备方法, 采用本发明的可分离式骨架, 绕制线圏 前在骨架表面涂覆一层热溶胶, 降低了光纤线圏从骨架上取下的难度, 减小了 光纤线圏受到意外损伤和取骨架过程中引入其它应力的概率。 本发明采用真空 压力状态下进行固化胶浸渍的方法,使得光纤线圏的内外各层都能够均匀浸胶, 有利于实现光纤线圏的温度场对称, 并可显著改善光纤线圏的振动特性。 最后 得到的无骨架光纤线圏, 消除了光纤线圏骨架的热胀冷缩及其它变形导致的光 纤线圈的受力, 光纤线圏的温度特性可明显提高。
( 3 )本发明在光纤线圏浸渍完成后采用离心机甩胶的方法, 能够使得光纤 线圏的胶体附着更加均匀, 从而提高光线线圏的性能。
( 4 )本发明线圈绕制方法并通过逐层减小张力的方式, 控制整个线圈的应 力, 使光纤线圏的分布应力较小, 改善工作温度条件下线圏中的应力匹配。
( 5 )本发明釆用在光纤线圈的最内层和最外层涂覆隔热胶的方法,使光纤 线圏受温度场的影响减小, 解决高精度光纤陀螺的稳定时间长的问题。
( 6 )本发明采用在固化胶中添加银粉或其它导热物质的方法, 可以使光纤 线圏在温度场中快速达到热平衡, 减小由于温度梯度存在导致的非互易误差。
总之, 本发明釆用无骨架光纤线圏来构成高精度光纤陀螺, 并在浸胶工艺 上采用了一种使胶体均匀附着光纤线圏的工艺, 提高了高精度光纤陀螺的温度 稳定性和振动特性, 精度明显提高; 在骨架的设计和脱离上采用一定的分离技 术, 提高了光纤线圏的制备效率, 减小了对光纤线圏的损伤和其它不利影响; 本发明还通过加快光纤线圏的热平衡和隔绝线圏受外温度场影响的方法, 改善 了高精度光纤陀螺的稳定时间。 附图说明
图 1为光纤线圏中温度或应力扰动示意图;
图 2为本发明绕制光纤线圏用的可分离式骨架的一种优选实施例的结构示 意图; 其中, 2a为主视图, 2b为半剖仰视图;
图 3为本发明绕制光纤线圏用的可分离式骨架的另一种优选实施例的结构 示意图; 其中, 3a为主视图, 3b为半剖仰视图;
图 4为本发明绕制光纤线圏用的可分离式骨架的第三种优选实施例的骨架 立体图;
图 5为图 4的分解示意图;
图 6为图 4的分视图; 其中, 6a为主视图, 6b为半剖俯视图。
具体实施方式
实施例 1和 2
如图 2、 3所示,分别为本发明绕制光纤线圏用的可分离式骨架的两种优选 实施例的结构示意图, 均包括一个轮毂 1和两个法兰 2, 两个法兰 2通过螺钉 4分别可拆卸地安装在轮毂 1 两端, 轮毂 1上设置有使该轮毂与其上绕制的光 纤线圏分离的易拆结构, 该易拆结构可以为轮毂 1 的一个端面上加工的凸台 6 及法兰 2上设置的与凸台 6相配合的孔。 加工凸台 6可以釆用图 2的方式, 即 加工在轮毂 1端面中心处, 也可以采用图 3的方式, 即加工在轮毂 1端面的边 缘, 该凸台 6与法兰 2上相应孔配合, 当将法兰 2与轮毂 1分离后, 轮毂 1上 留有未被光纤覆盖的部分一凸台 6, 通过拖动该凸台 6将轮毂 1与光纤线圏分 离, 即凸台 6便于轮毂 1从光纤线圏上取下。 法兰 2和轮毂 1的连接方式可以 采用机械固联或是胶联的方式。
实施例 3
如图 4、 5、 6所示, 分别为本发明绕制光纤线圏用的可分离式骨架的第三 种优选实施例的骨架立体图、 分解示意图和分视图。 包括一个轮毂 1、 两个法 兰 2和易拆结构, 轮毂 1 由内、 外柱面为弧面的至少两个柱体拼接而成, 易拆 结构包括柱体拼接处至少一处的相对两柱面之间形成的轴向贯通的间隙、 与间 隙相吻合的填充部件、 在轮毂一端或填充部件端头上加工的凸台, 法兰上设置 有与该凸台相配合的孔或槽。 本实施例中取两个内、 外柱面均为弧面的柱体, 即轮毂 1 由两个对称的半圓柱构成, 两个半圆柱接合处加工有楔形槽 5和内卸 间隙 7, 楔形槽 5和内卸间隙 7构成前面所述的轴向贯通的间隙, 内卸间隙 7 靠近半圓柱的内环设置, 楔形槽 5靠近半圓柱的外环设置, 两者在径向方向相 通, 但楔形槽 5的周向长度大于内卸间隙 7。 另外设置有与楔形槽 5相吻合的 楔形块 3; 楔形块 3上加工有凸台 6, 在法兰 2上相应设置与该凸台 6相配合 的槽, 两个法兰 2分别安装在轮毂 1两端, 组成所述骨架。 骨架中法兰 2和轮 毂 1 的连接方式可以采用机械固联(采用螺钉 4 )或是胶联的方式。 绕环前先 将可分离式骨架组装成图 4的组件, 光纤绕制完毕固化后, 首先拆掉法兰 2, 并沿轴向取出楔形块 3。楔形块 3外圓与轮毂 1外圓柱面采用组合加工的方法, 保证有较高的圆柱度。 且楔形块 3设计成燕尾形状, 可以防止楔形块 3沿径向 窜动, 法兰上的开槽对楔形块 3轴向限位。 将轮毂 1的易拆结构设计成具有轴 向贯通的间隙, 使轮毂 1 由多个柱体组成, 各柱体都固定在法兰上, 当取下法 兰后, 各柱体很容易向间隙处靠拢, 便于取下轮毂 1。 本实施例由两个半圓柱 体构成轮毂 1, 两半圓柱体之间留有内卸间隙 7和楔形槽 5构成的间隙, 楔形 块 3安装在楔形槽 5上, 使内卸间隙 7外通过楔形块 3支撑, 避免了存在间隙 对光纤绕制的影响。 当光纤线圏固化后 , 可以取出内卸间隙 7上方的楔形块 3 , 则构成轮毂 1 的两半圆柱体自然向内收缩, 可以更容易实现光纤线圏与骨架的 分离。楔形槽 5还可以设置在轮毂 1上^ *有内卸间隙的其他靠近外圆环的部位。
实施例 1 3中的可分离式骨架的设计可以参照下面的过程进行: 首先要依据 Sagnac千涉仪的基本原理: 公式
其中, Δ 为光纤线圏中相向传输的两束光之间的相位差, L为光纤线圏的 长度, D为光纤线圏的平均直径, λ为光波波长, C为光波在真空中的传播速 度, Ω为光纤陀螺所敏感的角速度。 即光纤线圏中相向传输的两束光之间的相 位差 与光纤线圏的长度 L和平均直径 D的乘积成正比, 根据光纤陀螺具体 的精度要求, 确定光纤长度 L和光纤线圏的平均直径 D的乘积 LD的值; 然后 根据要求的线圏窗口比 η的值进行仿真, 确定参数 L、 D、 B、 D1 5 B为骨架 的宽度, 口 为骨架的直径, 其中 n B/ -D^
下面结合上述三种结构, 详细介绍本发明光纤线圏制备方法, 具体如下: 在实施例 1或实施例 2或实施例 3所述的骨架表面涂覆一层 1 mm左右的 热溶胶; 待胶固化后, 按照四极对称的方法将光纤绕制到骨架上, 线圈两端各 留出 2m长度的光纤并打成约 cD30mm的圓圈, 将这 2m长的光纤保护好, 根 部固定在骨架上, 以免光纤线圏外的 2m光纤浸胶。 将绕制的光纤线圏置入真 空压力装置中, 抽真空后将混合有银粉或其它导热物质的固化胶注入真空压力 装置中, 该固化胶的硬度低于 25度、 热胀系数小于 5 χ 10-4。 给真空压力装置 注入空气或其它气体以增加压力, 压力控制在 0.5 ~ 2MPa之间, 30分钟后取 出光纤线圏, 将光纤线圏固定在特定的工装上, 安装在离心机上, 设置离心机 的转速为 500 ~ 2000r/min, 启动离心机进行甩胶, 2 ~ 5分钟后取下光纤线圏, 按照所采用胶的固化要求进行固化, 固化后还采用 2 ~ 6g量级的振动对光纤线 圏进行应力释放, 时间控制在 30 ~ 60 分钟, 再将光纤线圏置于温箱, 设置温 箱温度为 40 ~ 60°C, 温箱到达设定温度 2分钟后, 将光纤线圏从骨架上取下, 清理光纤线圏的表面, 然后在线圏的最内层和最外层均涂覆隔热胶, 待隔热胶 固化后, 整个无骨架的光纤线圏制备完毕。
上面所述的绕制线圏可以采用传统的四极对称的方法, 也可以采用下述方 法:
首先设定第一层光纤的绕纤张力, 支设光纤的外径为 cpF, 线圏绕制层数为 n , 光纤允许的最大张力为 Y , 则第一层的绕纤张力 F 控制在小于
Y-^^— - 9.8 - 103 , 因为光纤所受到的应力为绕纤张力和弯曲应力之和, 在
Ό + φ¥ 4
骨架尺寸确定的情况下, 绕纤张力就是直接决定光纤应力的因素, 假设每层光 纤张力的递减系数为 x, 则 X满足: ^ + 2 < 。 该原则是为控制最上层光纤的绕 制张力不小于 2g, 如果张力小于 2g, 光纤将无法绕齐, 光纤之间的交叉耦合 同样会给光纤线圏带来额外的应力, 如果 X值小于 1 g, 则可以将递减单位由一 层变为一个四极子, 依次类推。 通常情况下, 丫值小于 30g。
将光纤线圏应用于光纤陀螺工装上进行测试, 表 1 为不同工艺的光纤线圏 应用于光纤陀螺后的温度测试数据, 从表 1 中看出, 本发明工艺测得的零位均 值的绝对值和标准偏差均比普通工艺中相应的参数值小得多。 表 2为光纤陀螺 的振动测试数据, 将光纤陀螺安装于振动台上进行随机振动, 其零位均值和标 准偏差都是振动中与振动前和振动后的变化越小越好。 例如, 从表 2中看出, 本发明工艺的振中标准偏差 1.23与振前标准偏差 0.24和振后标准偏差 0.25的 变化分别为 0.99和 0.98 ,而普通工艺的振中标准偏差 2.25与振前标准偏差 0.42 和振后标准偏差 0.46的变化分别为 1.83和 1.79, 本发明工艺比普通工艺得到 的标准偏差的变化明显小得多。 故从表中可以明显看出采用本发明工艺的光纤 线圏性能明显优于普通工艺的光纤线圏。
不同工艺的光纤线圏应用于光纤陀螺后的温度测试数据
本发明未详细说明部分属于本领域技术人员公知常识。

Claims

权利要求书
1、 一种绕制光纤线圏用的可分离式骨架, 其特征在于包括: 一个轮毂和两 个法兰, 两个法兰分别可拆卸地安装在轮毂两端, 所述轮毂上设置有使所述轮 毂与其上绕制的光纤线圏分离的易拆结构。
2、根据权利要求 1所述的绕制光纤线圏用的可分离式骨架, 其特征在于所 述易拆结构为所述轮毂至少一个端面上加工的凸台及所述法兰上设置的与所述 凸台相配合的孔, 当将法兰与轮毂分离后, 通过拖动该凸台将轮毂与光纤线圏 分离。
3、根据权利要求 1所述的绕制光纤线圈用的可分离式骨架, 其特征在于所 述轮毂由内、 外柱面为弧面的至少两个柱体拼接而成, 所述易拆结构为柱体拼 接处至少一处的相对两柱面之间形成的轴向贯通的间隙和与所述间隙相吻合的 填充部件。
4、 根据权利要求 3所述的绕制光纤线圏用的可分离式骨架, 其特征在于, 所述易拆结构还包括在所述轮毂一端或所述填充部件端头上加工的凸台, 所述 法兰上设置有与所述凸台相配合的孔或槽。
5、 采用权利要求 1 至 4之一所述的可分离式骨架实现的光纤线圏制备方 法, 其特征在于包括下列步骤:
( 1 )在所述骨架表面涂覆一层热溶胶;
( 2 )绕制线圏, 将绕制的光纤线圏置于真空压力装置中, 并在真空压力状 态下进行固化胶浸渍;
( 3 ) 固化光纤线圏;
( 4 )对固化后的光纤线圏进行加热, 取下骨架。
6、 根据权利要求 5所述的光纤线圏制备方法, 其特征在于: 所述步骤(2 ) 完成后还执行下述步骤:
( 2 ) '将浸渍完成后的光纤线圏置于离心机上进行甩胶。
7、 根据权利要求 5所述的光纤线圏制备方法, 其特征在于: 所述步骤(4 ) 完成后还执行下述步骤:
( 4 ) '在光纤线圏的最内层和最外层均涂覆隔热胶。
8、 根据权利要求 5所述的光纤线圏制备方法, 其特征在于: 所述步骤(3 ) 固化后还采用小量级的振动对光纤线圏进行应力释放。
9、 根据权利要求 8所述的光纤线圏制备方法, 其特征在于: 所述的振动量 级控制在 2 ~ 6g, 时间控制在 30 ~ 60分钟。
10、 根据权利要求 5至 9之一所述的光纤线圏制备方法, 其特征在于: 所 述步骤(1 ) 中的热溶胶的厚度为 0.5 ~ 1 mm。
11、 根据权利要求 5至 9之一所述的光纤线圏制备方法, 其特征在于: 所 述步骤(2 ) 中的绕制线圏过程为: 根据光纤线圏的层数及骨架的外径, 确定绕 制第一层所采用的张力, 绕制的过程中逐层线性减小绕纤的张力, 直至绕完整 个线圏。
12、 根据权利要求 11 所述的光纤线圏制备方法, 其特征在于: 所述的绕 制第一层所采用的张力
Fi < Y— ^ϋ .9·8 .103
Ό + φ 4
其中, (?!^为光纤的外径;
Υ为光纤允许的最大张力, Υ通常小于 30g;
E为光纤的弹性模量;
D为骨架的内径。
13、 根据权利要求 11 所述的光纤线圏制备方法, 其特征在于: 所述的逐 层线性减小绕纤的张力的递减系数为 X满足《χ + 2 < ;
其中, n为线圏绕制层数;
「 为第一层的绕纤张力。
14、 根据权利要求 5至 9之一所述的光纤线圏制备方法, 其特征在于: 所 述步骤( 2 )中的在真空压力状态下进行固化胶浸渍时的压力控制在 0.5 ~ 2Mpa 之间。
15、 根据权利要求 5至 9之一所述的光纤线圈制备方法, 其特征在于: 所 述步骤(2 ) 中的浸渍所采用固化胶的硬度低于 25度、 热胀系数低于 5 χ 10-4
16、 根据权利要求 6所述的光纤线圈制备方法, 其特征在于: 所述离心机 的转速控制在 500~2000转 /分钟, 时间控制在 2 ~ 5分钟。
PCT/CN2009/070368 2008-11-19 2009-02-06 一种绕制光纤线圈用的可分离式骨架及光纤线圈制备方法 WO2010057373A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/747,636 US8663731B2 (en) 2008-11-19 2009-02-06 Detachable framework used for winding optical fiber coil and a method of producing optical fiber coil
EA201070644A EA017366B1 (ru) 2008-11-19 2009-02-06 Отделяемый каркас, используемый для намотки оптоволоконных катушек, и способ изготовления оптоволоконных катушек

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102268673A CN101551249B (zh) 2008-11-19 2008-11-19 一种可分离式骨架及利用该骨架实现的光纤线圈制备方法
CN200810226867.3 2008-11-19

Publications (1)

Publication Number Publication Date
WO2010057373A1 true WO2010057373A1 (zh) 2010-05-27

Family

ID=41155619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070368 WO2010057373A1 (zh) 2008-11-19 2009-02-06 一种绕制光纤线圈用的可分离式骨架及光纤线圈制备方法

Country Status (4)

Country Link
US (1) US8663731B2 (zh)
CN (1) CN101551249B (zh)
EA (1) EA017366B1 (zh)
WO (1) WO2010057373A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114360841A (zh) * 2021-11-30 2022-04-15 核工业西南物理研究院 一种可拆卸的大电流板式环向场磁体线圈
CN115077568A (zh) * 2022-08-23 2022-09-20 中国船舶重工集团公司第七0七研究所 光纤线圈固化方法及其后处理稳定方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435210B (zh) * 2011-09-23 2015-03-25 武汉长盈通光电技术有限公司 用于制备光纤陀螺光纤环圈的可分离式脱模骨架
CN102564412B (zh) * 2011-12-20 2014-05-14 东南大学 光纤陀螺无骨架光学感应环的光纤固化方法
CN102564413B (zh) * 2012-01-04 2015-12-02 武汉长盈通光电技术有限公司 一种光纤环圈骨架及其绕法
CN102589574B (zh) * 2012-02-14 2014-12-03 北京航空航天大学 一种适用于中高精度光纤惯组的光纤环封装结构
CN102749078B (zh) * 2012-07-19 2015-05-20 浙江大学 光纤陀螺用脱骨光纤环的绕制夹具与绕制方法
CN102980569B (zh) * 2012-12-07 2016-08-03 河北汉光重工有限责任公司 一种用于光纤陀螺光纤环的绕环、脱环夹具
CN104251709B (zh) * 2013-06-28 2017-04-19 北京自动化控制设备研究所 一种可释放内部缠绕应力的光纤传感环圈制备方法
CN103674069A (zh) * 2013-12-20 2014-03-26 河北汉光重工有限责任公司 一种无骨架光纤环的制作方法
CN103884353B (zh) * 2014-03-18 2016-06-29 北京航天时代光电科技有限公司 一种用于拆卸可拆卸骨架工装的拆卸装置和方法
CN103884354B (zh) * 2014-03-18 2016-06-01 北京航天时代光电科技有限公司 一种可变槽宽骨架工装及利用该工装的光纤环成型方法
CN103900612B (zh) * 2014-03-28 2016-05-18 中航捷锐(北京)光电技术有限公司 一种针对光纤陀螺敏感光纤环的冷光一体固化装置和方法
CN104176565B (zh) * 2014-08-13 2018-01-26 贵州凯宏汇达冷却系统有限公司 一种用于埋弧焊丝层绕机的多功能埋弧焊丝层绕装置
CN104316040B (zh) * 2014-09-19 2017-06-06 北京航天时代光电科技有限公司 一种基于光子晶体光纤的新型光纤陀螺干涉光路
CN106154010B (zh) * 2015-03-30 2019-01-01 北京自动化控制设备研究所 一种无骨架光纤电流传感环圈及其制作方法
CN106546783B (zh) * 2015-09-17 2019-09-17 北京自动化控制设备研究所 一种无骨架保偏光纤延迟环的制备方法
RU2610224C1 (ru) * 2015-10-07 2017-02-08 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Гидроакустический волоконно-оптический датчик давления
CN105509727A (zh) * 2016-01-19 2016-04-20 中国电子科技集团公司第二十三研究所 一种无骨架光纤环绕制夹具及绕制方法
CN105571616B (zh) * 2016-01-27 2018-02-13 西安航天精密机电研究所 一种无骨架光纤环脱模骨架的脱模方法
CN105928502A (zh) * 2016-06-22 2016-09-07 陕西宝成航空仪表有限责任公司 一种用于光纤陀螺的组合式光纤环骨架
CN105910597A (zh) * 2016-06-22 2016-08-31 陕西宝成航空仪表有限责任公司 一种用于光纤陀螺的组合式光纤环骨架
CN106644032B (zh) * 2016-11-17 2020-04-10 北京航天控制仪器研究所 一种提高光纤水听器一致性的光纤绕制方法及模具
CN106813804A (zh) * 2017-01-21 2017-06-09 张家港市欧微自动化研发有限公司 一种微波光子温度传感系统的制作方法
CN107101650B (zh) * 2017-06-05 2020-06-16 北京菲波森思科技有限公司 一种光纤环制作方法
CN107576324A (zh) * 2017-09-29 2018-01-12 湖南航天机电设备与特种材料研究所 一种光纤环绕制方法、光纤传感装置及光纤陀螺
US11047688B2 (en) 2017-10-13 2021-06-29 Northrop Grumman Systems Corporation Flange-bonded loopback for fiber-optic gyroscope (FOG)
CN108667242B (zh) * 2018-07-16 2023-12-29 杨厚成 一种无骨架直线电机线圈及其制作模具、制作方法
CN109186580A (zh) * 2018-07-25 2019-01-11 中国航空工业集团公司西安飞行自动控制研究所 一种光纤环内各层光纤应力分布的控制方法
CN109405849B (zh) * 2018-10-18 2021-01-26 武汉长盈通光电技术股份有限公司 一种光纤环粘环方法
CN109737947B (zh) * 2019-02-20 2023-01-03 哈尔滨工程大学 一种四环设计光纤陀螺用光纤环制备方法
US11079230B2 (en) 2019-05-10 2021-08-03 Northrop Grumman Systems Corporation Fiber-optic gyroscope (FOG) assembly
CN110817594B (zh) * 2019-11-06 2021-05-11 江西行田电产有限公司 一种电线卷绕装置
CN112113555B (zh) * 2019-12-03 2022-05-17 江苏法尔胜光电科技有限公司 一种光纤环绕环机的辅助排纤机构
CN110926505B (zh) * 2019-12-25 2023-02-21 重庆华渝电气集团有限公司 一种提升光纤环应力分布对称性的光纤环绕制方法
CN112414439B (zh) * 2020-11-12 2022-04-22 北京交通大学 一种实时检测高温超导线圈失超信号的骨架结构
CN113124848B (zh) * 2021-03-23 2022-09-16 西安航天精密机电研究所 一种提升光纤环温度性能的粘接装置及粘接方法
CN115166922B (zh) * 2022-09-06 2022-11-18 中国船舶重工集团公司第七0七研究所 一种方便拆装光纤环圈及其制造方法
CN116045955A (zh) * 2023-03-31 2023-05-02 中国船舶集团有限公司第七〇七研究所 基于中介层的减小升温膨胀应力的光纤环圈和光纤陀螺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215559A (ja) * 1992-02-07 1993-08-24 Japan Aviation Electron Ind Ltd 光ファイバコイル
US5371593A (en) * 1992-08-31 1994-12-06 Litton Systems, Inc. Sensor coil for low bias fiber optic gyroscope
JPH08122529A (ja) * 1994-10-20 1996-05-17 Japan Aviation Electron Ind Ltd 光ファイバコイル装置
JP2002054931A (ja) * 1994-09-16 2002-02-20 Japan Aviation Electronics Industry Ltd 光ファイバセンサコイルの製造方法
CN1514205A (zh) * 2002-12-10 2004-07-21 ����ʯ��ѧԺ 以四极方式缠绕用于光纤陀螺的光纤传感器线圈的设备及方法
CN101275835A (zh) * 2008-05-15 2008-10-01 北京航空航天大学 用于光纤陀螺无上沿光纤环的脱骨架绕环夹具
CN101403616A (zh) * 2008-11-13 2009-04-08 哈尔滨工程大学 光纤陀螺脱骨架光纤环拆卸装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388363A (en) * 1979-02-26 1983-06-14 W. R. Grace & Co. Compressible printing element containing thermosol lamina
US4793708A (en) * 1987-03-27 1988-12-27 Litton Systems Canada Limited Fiber optic sensing coil
US5841932A (en) * 1996-06-21 1998-11-24 Honeywell Inc. Optical fiber coil and method of winding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215559A (ja) * 1992-02-07 1993-08-24 Japan Aviation Electron Ind Ltd 光ファイバコイル
US5371593A (en) * 1992-08-31 1994-12-06 Litton Systems, Inc. Sensor coil for low bias fiber optic gyroscope
JP2002054931A (ja) * 1994-09-16 2002-02-20 Japan Aviation Electronics Industry Ltd 光ファイバセンサコイルの製造方法
JPH08122529A (ja) * 1994-10-20 1996-05-17 Japan Aviation Electron Ind Ltd 光ファイバコイル装置
CN1514205A (zh) * 2002-12-10 2004-07-21 ����ʯ��ѧԺ 以四极方式缠绕用于光纤陀螺的光纤传感器线圈的设备及方法
CN101275835A (zh) * 2008-05-15 2008-10-01 北京航空航天大学 用于光纤陀螺无上沿光纤环的脱骨架绕环夹具
CN101403616A (zh) * 2008-11-13 2009-04-08 哈尔滨工程大学 光纤陀螺脱骨架光纤环拆卸装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114360841A (zh) * 2021-11-30 2022-04-15 核工业西南物理研究院 一种可拆卸的大电流板式环向场磁体线圈
CN115077568A (zh) * 2022-08-23 2022-09-20 中国船舶重工集团公司第七0七研究所 光纤线圈固化方法及其后处理稳定方法

Also Published As

Publication number Publication date
CN101551249A (zh) 2009-10-07
EA017366B1 (ru) 2012-11-30
CN101551249B (zh) 2011-04-27
EA201070644A1 (ru) 2010-12-30
US8663731B2 (en) 2014-03-04
US20100260930A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
WO2010057373A1 (zh) 一种绕制光纤线圈用的可分离式骨架及光纤线圈制备方法
CN103884353B (zh) 一种用于拆卸可拆卸骨架工装的拆卸装置和方法
EP0402459B1 (en) Fiber optic canister having orthotropic controlled thermal expansion bobbin and a method for producing the canister
US4753497A (en) Directional coupler for coupling single-polarization optical fibers
CN104251710A (zh) 一种抑制光纤陀螺温度漂移的传感环圈制备方法
CN108088466B (zh) 一种光纤环精密化绕制方法
US9541400B2 (en) Fiber optic gyroscope sensing coil and method of fabricating the same
CN104251709B (zh) 一种可释放内部缠绕应力的光纤传感环圈制备方法
CN114993282B (zh) 光纤陀螺的环圈尾纤补偿方法和纤长补偿器
US9453979B2 (en) Multi-core optical fiber tape
CN104713541A (zh) 一种减小光纤陀螺热致Shupe效应的光纤环绕制方法
CN108168576A (zh) 一种用于光纤陀螺环圈尾纤对称盘绕方法
WO2018050106A1 (zh) 一种防开裂熊猫型保偏光纤
US5170459A (en) Optical fiber attachment structure and method
JPH10185585A (ja) 巻線間応力解放を行う埋め込みジャイロ・センサ
CN112504259B (zh) 一种具有双向温度抑制作用的光纤环绕制方法
CN207992500U (zh) 类矩形熊猫型保偏光纤
WO2005031260A2 (en) Fiber optic sensing coil with isotropic properties
CN101706279B (zh) 以方形截面预制光纤绕制成的光纤陀螺线圈
JP6018688B2 (ja) 光ファイバ、及び光ファイバを製造する方法
CN203405208U (zh) 一种抑制光纤陀螺温度漂移的传感环圈制备装置
JPH04303806A (ja) 光ファイバカプラの補強方法
CN206862368U (zh) 具有热防护结构的光纤环
JPH0750216B2 (ja) 偏波保持光フアイバの固定方法
JPH01279210A (ja) 偏波保持光ファイバ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12747636

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 201070644

Country of ref document: EA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (02.09.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09827122

Country of ref document: EP

Kind code of ref document: A1