WO2010057260A1 - Method for treating or preventing a pancreatic dysfunction - Google Patents
Method for treating or preventing a pancreatic dysfunction Download PDFInfo
- Publication number
- WO2010057260A1 WO2010057260A1 PCT/AU2009/001511 AU2009001511W WO2010057260A1 WO 2010057260 A1 WO2010057260 A1 WO 2010057260A1 AU 2009001511 W AU2009001511 W AU 2009001511W WO 2010057260 A1 WO2010057260 A1 WO 2010057260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- pancreatic
- stro
- subject
- soluble factors
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 105
- 230000004064 dysfunction Effects 0.000 title claims abstract description 82
- 210000000496 pancreas Anatomy 0.000 claims abstract description 73
- 230000004203 pancreatic function Effects 0.000 claims abstract description 31
- 230000006870 function Effects 0.000 claims abstract description 17
- 230000002124 endocrine Effects 0.000 claims abstract description 5
- 210000004027 cell Anatomy 0.000 claims description 488
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 168
- 206010012601 diabetes mellitus Diseases 0.000 claims description 97
- 229940125396 insulin Drugs 0.000 claims description 86
- 102000004877 Insulin Human genes 0.000 claims description 83
- 108090001061 Insulin Proteins 0.000 claims description 83
- 230000001965 increasing effect Effects 0.000 claims description 76
- 239000000203 mixture Substances 0.000 claims description 59
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 58
- 239000008103 glucose Substances 0.000 claims description 57
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 claims description 54
- 238000011282 treatment Methods 0.000 claims description 51
- 210000004369 blood Anatomy 0.000 claims description 46
- 239000008280 blood Substances 0.000 claims description 46
- 210000004153 islets of langerhan Anatomy 0.000 claims description 42
- 230000014509 gene expression Effects 0.000 claims description 41
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 claims description 34
- 229960004666 glucagon Drugs 0.000 claims description 32
- 102000051325 Glucagon Human genes 0.000 claims description 28
- 108060003199 Glucagon Proteins 0.000 claims description 28
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 230000002829 reductive effect Effects 0.000 claims description 25
- 210000002966 serum Anatomy 0.000 claims description 25
- 230000001939 inductive effect Effects 0.000 claims description 20
- 239000004382 Amylase Substances 0.000 claims description 18
- 102000013142 Amylases Human genes 0.000 claims description 18
- 108010065511 Amylases Proteins 0.000 claims description 18
- 235000019418 amylase Nutrition 0.000 claims description 18
- 208000020450 carbohydrate metabolism disease Diseases 0.000 claims description 18
- 208000017745 inborn carbohydrate metabolic disease Diseases 0.000 claims description 18
- 201000001421 hyperglycemia Diseases 0.000 claims description 17
- 102100025683 Alkaline phosphatase, tissue-nonspecific isozyme Human genes 0.000 claims description 16
- 101000574445 Homo sapiens Alkaline phosphatase, tissue-nonspecific isozyme Proteins 0.000 claims description 16
- 230000008929 regeneration Effects 0.000 claims description 16
- 238000011069 regeneration method Methods 0.000 claims description 16
- 210000002571 pancreatic alpha cell Anatomy 0.000 claims description 15
- 230000001737 promoting effect Effects 0.000 claims description 15
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 12
- 208000035475 disorder Diseases 0.000 claims description 10
- 108050006759 Pancreatic lipases Proteins 0.000 claims description 9
- 102000019280 Pancreatic lipases Human genes 0.000 claims description 9
- 102000005157 Somatostatin Human genes 0.000 claims description 9
- 108010056088 Somatostatin Proteins 0.000 claims description 9
- 230000002183 duodenal effect Effects 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 9
- 229940116369 pancreatic lipase Drugs 0.000 claims description 9
- 230000003248 secreting effect Effects 0.000 claims description 9
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 claims description 9
- 229960000553 somatostatin Drugs 0.000 claims description 9
- 210000000130 stem cell Anatomy 0.000 claims description 9
- 102000005367 Carboxypeptidases Human genes 0.000 claims description 8
- 108010006303 Carboxypeptidases Proteins 0.000 claims description 8
- 108010038061 Chymotrypsinogen Proteins 0.000 claims description 8
- 208000013016 Hypoglycemia Diseases 0.000 claims description 8
- 108010067372 Pancreatic elastase Proteins 0.000 claims description 8
- 102000016387 Pancreatic elastase Human genes 0.000 claims description 8
- 102000018690 Trypsinogen Human genes 0.000 claims description 8
- 108010027252 Trypsinogen Proteins 0.000 claims description 8
- 230000033115 angiogenesis Effects 0.000 claims description 8
- 230000027746 artery morphogenesis Effects 0.000 claims description 8
- 206010028980 Neoplasm Diseases 0.000 claims description 7
- 210000004204 blood vessel Anatomy 0.000 claims description 7
- 230000002218 hypoglycaemic effect Effects 0.000 claims description 7
- 235000015097 nutrients Nutrition 0.000 claims description 7
- 230000004069 differentiation Effects 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- HFDKKNHCYWNNNQ-YOGANYHLSA-N 75976-10-2 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)N)C(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 HFDKKNHCYWNNNQ-YOGANYHLSA-N 0.000 claims description 4
- 102000018886 Pancreatic Polypeptide Human genes 0.000 claims description 4
- 101000983124 Sus scrofa Pancreatic prohormone precursor Proteins 0.000 claims description 4
- 230000001594 aberrant effect Effects 0.000 claims description 4
- 210000005167 vascular cell Anatomy 0.000 claims description 4
- 206010025476 Malabsorption Diseases 0.000 claims description 3
- 208000004155 Malabsorption Syndromes Diseases 0.000 claims description 3
- 206010033645 Pancreatitis Diseases 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 claims description 3
- 208000023275 Autoimmune disease Diseases 0.000 claims description 2
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 2
- 206010060821 Necrolytic Migratory Erythema Diseases 0.000 claims description 2
- 208000035467 Pancreatic insufficiency Diseases 0.000 claims description 2
- 201000008629 Zollinger-Ellison syndrome Diseases 0.000 claims description 2
- 150000001413 amino acids Chemical class 0.000 claims description 2
- 201000011510 cancer Diseases 0.000 claims description 2
- 201000000052 gastrinoma Diseases 0.000 claims description 2
- 201000001474 proteinuria Diseases 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 abstract description 5
- 241000699670 Mus sp. Species 0.000 description 62
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 53
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 49
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 46
- 229960001052 streptozocin Drugs 0.000 description 46
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 38
- 239000006228 supernatant Substances 0.000 description 34
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 33
- 230000000694 effects Effects 0.000 description 32
- 241001465754 Metazoa Species 0.000 description 31
- 238000001361 intraarterial administration Methods 0.000 description 27
- 238000002560 therapeutic procedure Methods 0.000 description 24
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 23
- 241000699666 Mus <mouse, genus> Species 0.000 description 23
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- 239000013598 vector Substances 0.000 description 22
- 239000003981 vehicle Substances 0.000 description 21
- 241000282414 Homo sapiens Species 0.000 description 19
- 108090000623 proteins and genes Proteins 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 description 18
- 102100040918 Pro-glucagon Human genes 0.000 description 18
- 238000002659 cell therapy Methods 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 18
- 230000009467 reduction Effects 0.000 description 18
- 239000003550 marker Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 14
- 230000001225 therapeutic effect Effects 0.000 description 14
- 150000001720 carbohydrates Chemical class 0.000 description 13
- 235000014633 carbohydrates Nutrition 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 150000007523 nucleic acids Chemical class 0.000 description 13
- 108090000765 processed proteins & peptides Proteins 0.000 description 13
- 238000000692 Student's t-test Methods 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 229940088597 hormone Drugs 0.000 description 11
- 239000005556 hormone Substances 0.000 description 11
- 210000004923 pancreatic tissue Anatomy 0.000 description 11
- 208000024891 symptom Diseases 0.000 description 10
- 239000000427 antigen Substances 0.000 description 9
- 108091007433 antigens Proteins 0.000 description 9
- 102000036639 antigens Human genes 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 210000004088 microvessel Anatomy 0.000 description 8
- 230000002459 sustained effect Effects 0.000 description 8
- 108010085238 Actins Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 101000930822 Giardia intestinalis Dipeptidyl-peptidase 4 Proteins 0.000 description 7
- 206010022489 Insulin Resistance Diseases 0.000 description 7
- 108091023040 Transcription factor Proteins 0.000 description 7
- 102000040945 Transcription factor Human genes 0.000 description 7
- 210000001185 bone marrow Anatomy 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 238000012258 culturing Methods 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 210000002216 heart Anatomy 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 7
- 238000003752 polymerase chain reaction Methods 0.000 description 7
- 201000009104 prediabetes syndrome Diseases 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 102000007469 Actins Human genes 0.000 description 6
- 241000283707 Capra Species 0.000 description 6
- 208000002705 Glucose Intolerance Diseases 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 230000003914 insulin secretion Effects 0.000 description 6
- 230000028327 secretion Effects 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 5
- 102100025304 Integrin beta-1 Human genes 0.000 description 5
- 208000007976 Ketosis Diseases 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical group P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 230000007368 endocrine function Effects 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 238000001415 gene therapy Methods 0.000 description 5
- 210000005240 left ventricle Anatomy 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 230000004060 metabolic process Effects 0.000 description 5
- 210000001819 pancreatic juice Anatomy 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 239000013603 viral vector Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- -1 3G5 Proteins 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- XNCOSPRUTUOJCJ-UHFFFAOYSA-N Biguanide Chemical compound NC(N)=NC(N)=N XNCOSPRUTUOJCJ-UHFFFAOYSA-N 0.000 description 4
- 229940123208 Biguanide Drugs 0.000 description 4
- 206010023379 Ketoacidosis Diseases 0.000 description 4
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 229940123464 Thiazolidinedione Drugs 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 230000006727 cell loss Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 102000038379 digestive enzymes Human genes 0.000 description 4
- 108091007734 digestive enzymes Proteins 0.000 description 4
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 238000011321 prophylaxis Methods 0.000 description 4
- 210000000813 small intestine Anatomy 0.000 description 4
- 210000002460 smooth muscle Anatomy 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 3
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 3
- 241000271566 Aves Species 0.000 description 3
- 241000700199 Cavia porcellus Species 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 102000058058 Glucose Transporter Type 2 Human genes 0.000 description 3
- 108091006299 SLC2A2 Proteins 0.000 description 3
- 229940100389 Sulfonylurea Drugs 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 210000001789 adipocyte Anatomy 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 230000000735 allogeneic effect Effects 0.000 description 3
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 230000006472 autoimmune response Effects 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 210000003890 endocrine cell Anatomy 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000004153 glucose metabolism Effects 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 210000002837 heart atrium Anatomy 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 210000003041 ligament Anatomy 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 229940044601 receptor agonist Drugs 0.000 description 3
- 239000000018 receptor agonist Substances 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- MFFMDFFZMYYVKS-SECBINFHSA-N sitagliptin Chemical compound C([C@H](CC(=O)N1CC=2N(C(=NN=2)C(F)(F)F)CC1)N)C1=CC(F)=C(F)C=C1F MFFMDFFZMYYVKS-SECBINFHSA-N 0.000 description 3
- 210000002027 skeletal muscle Anatomy 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 210000002536 stromal cell Anatomy 0.000 description 3
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IGAZHQIYONOHQN-UHFFFAOYSA-N Alexa Fluor 555 Chemical compound C=12C=CC(=N)C(S(O)(=O)=O)=C2OC2=C(S(O)(=O)=O)C(N)=CC=C2C=1C1=CC=C(C(O)=O)C=C1C(O)=O IGAZHQIYONOHQN-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 229940124213 Dipeptidyl peptidase 4 (DPP IV) inhibitor Drugs 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 108010004460 Gastric Inhibitory Polypeptide Proteins 0.000 description 2
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 2
- 108010044091 Globulins Proteins 0.000 description 2
- 102000006395 Globulins Human genes 0.000 description 2
- 229920002527 Glycogen Polymers 0.000 description 2
- 102100034154 Guanine nucleotide-binding protein G(i) subunit alpha-2 Human genes 0.000 description 2
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 101000994378 Homo sapiens Integrin alpha-3 Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 206010060378 Hyperinsulinaemia Diseases 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102100032819 Integrin alpha-3 Human genes 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000283953 Lagomorpha Species 0.000 description 2
- 241000283986 Lepus Species 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 208000035180 MODY Diseases 0.000 description 2
- 208000002720 Malnutrition Diseases 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 101100519293 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pdx-1 gene Proteins 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 102000002808 Pituitary adenylate cyclase-activating polypeptide Human genes 0.000 description 2
- 108010004684 Pituitary adenylate cyclase-activating polypeptide Proteins 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 229920001710 Polyorthoester Polymers 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000004019 antithrombin Substances 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 210000000702 aorta abdominal Anatomy 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 210000002798 bone marrow cell Anatomy 0.000 description 2
- 210000002434 celiac artery Anatomy 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 210000001968 dental pulp cell Anatomy 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 210000002249 digestive system Anatomy 0.000 description 2
- 239000003603 dipeptidyl peptidase IV inhibitor Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000003020 exocrine pancreas Anatomy 0.000 description 2
- 230000004438 eyesight Effects 0.000 description 2
- 210000001105 femoral artery Anatomy 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 208000004104 gestational diabetes Diseases 0.000 description 2
- 208000018914 glucose metabolism disease Diseases 0.000 description 2
- 238000007446 glucose tolerance test Methods 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 229940096919 glycogen Drugs 0.000 description 2
- 210000003780 hair follicle Anatomy 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 230000013632 homeostatic process Effects 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 2
- 230000003345 hyperglycaemic effect Effects 0.000 description 2
- 230000003451 hyperinsulinaemic effect Effects 0.000 description 2
- 201000008980 hyperinsulinism Diseases 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000012528 insulin ELISA Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 229940090473 januvia Drugs 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 201000006370 kidney failure Diseases 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229940040461 lipase Drugs 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000001071 malnutrition Effects 0.000 description 2
- 235000000824 malnutrition Nutrition 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 201000006950 maturity-onset diabetes of the young Diseases 0.000 description 2
- 239000013028 medium composition Substances 0.000 description 2
- 210000001363 mesenteric artery superior Anatomy 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 230000002981 neuropathic effect Effects 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 208000015380 nutritional deficiency disease Diseases 0.000 description 2
- 210000004248 oligodendroglia Anatomy 0.000 description 2
- 238000007410 oral glucose tolerance test Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000015031 pancreas development Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 208000033808 peripheral neuropathy Diseases 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000022558 protein metabolic process Effects 0.000 description 2
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229960002930 sirolimus Drugs 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 210000002563 splenic artery Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- WZUVPPKBWHMQCE-XJKSGUPXSA-N (+)-haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-XJKSGUPXSA-N 0.000 description 1
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- IOHPVZBSOKLVMN-UHFFFAOYSA-N 2-(2-phenylethyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1CCC1=CC=CC=C1 IOHPVZBSOKLVMN-UHFFFAOYSA-N 0.000 description 1
- VNDNKFJKUBLYQB-UHFFFAOYSA-N 2-(4-amino-6-chloro-5-oxohexyl)guanidine Chemical compound ClCC(=O)C(N)CCCN=C(N)N VNDNKFJKUBLYQB-UHFFFAOYSA-N 0.000 description 1
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 208000010444 Acidosis Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 206010061666 Autonomic neuropathy Diseases 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 241000157302 Bison bison athabascae Species 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 108010084313 CD58 Antigens Proteins 0.000 description 1
- 241000252983 Caecum Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 240000000467 Carum carvi Species 0.000 description 1
- 235000005747 Carum carvi Nutrition 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102100025841 Cholecystokinin Human genes 0.000 description 1
- 101800001982 Cholecystokinin Proteins 0.000 description 1
- 208000000668 Chronic Pancreatitis Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 108010067722 Dipeptidyl Peptidase 4 Proteins 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 238000011510 Elispot assay Methods 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 206010072104 Fructose intolerance Diseases 0.000 description 1
- 208000027472 Galactosemias Diseases 0.000 description 1
- 206010017711 Gangrene Diseases 0.000 description 1
- 241000699694 Gerbillinae Species 0.000 description 1
- 229940122904 Glucagon receptor antagonist Drugs 0.000 description 1
- 206010018404 Glucagonoma Diseases 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Natural products C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 1
- 206010019878 Hereditary fructose intolerance Diseases 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 1
- 101001078158 Homo sapiens Integrin alpha-1 Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 101000994375 Homo sapiens Integrin alpha-4 Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 1
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010070070 Hypoinsulinaemia Diseases 0.000 description 1
- 108010035620 INGAP peptide Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 102000003746 Insulin Receptor Human genes 0.000 description 1
- 229940122355 Insulin sensitizer Drugs 0.000 description 1
- 206010048662 Insulin sparing effect Diseases 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 102100025323 Integrin alpha-1 Human genes 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- 102100032818 Integrin alpha-4 Human genes 0.000 description 1
- 108010072255 Integrin alpha3beta1 Proteins 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 102100032999 Integrin beta-3 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 108010092694 L-Selectin Proteins 0.000 description 1
- 102100033467 L-selectin Human genes 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 208000006136 Leigh Disease Diseases 0.000 description 1
- 208000017507 Leigh syndrome Diseases 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027417 Metabolic acidosis Diseases 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 208000008955 Mucolipidoses Diseases 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 241000283955 Ochotonidae Species 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 102100023472 P-selectin Human genes 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 229940126033 PPAR agonist Drugs 0.000 description 1
- 102000023984 PPAR alpha Human genes 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 206010033647 Pancreatitis acute Diseases 0.000 description 1
- 206010033649 Pancreatitis chronic Diseases 0.000 description 1
- 108010067035 Pancrelipase Proteins 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 102000014743 Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Human genes 0.000 description 1
- 108010064032 Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Proteins 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 241000288935 Platyrrhini Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 208000004880 Polyuria Diseases 0.000 description 1
- 208000001280 Prediabetic State Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 102000014128 RANK Ligand Human genes 0.000 description 1
- 108010025832 RANK Ligand Proteins 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 102100037505 Secretin Human genes 0.000 description 1
- 108010086019 Secretin Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000713311 Simian immunodeficiency virus Species 0.000 description 1
- 229940123518 Sodium/glucose cotransporter 2 inhibitor Drugs 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000283975 Sylvilagus Species 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- 102100027188 Thyroid peroxidase Human genes 0.000 description 1
- 101710113649 Thyroid peroxidase Proteins 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 102000013814 Wnt Human genes 0.000 description 1
- 108050003627 Wnt Proteins 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 201000003229 acute pancreatitis Diseases 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940124359 agent for type 1 diabetes Drugs 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 201000008333 alpha-mannosidosis Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000000648 angioblast Anatomy 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000781 anti-lymphocytic effect Effects 0.000 description 1
- 230000003579 anti-obesity Effects 0.000 description 1
- 230000000702 anti-platelet effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 239000003529 anticholesteremic agent Substances 0.000 description 1
- 229940127226 anticholesterol agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 210000003403 autonomic nervous system Anatomy 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229960004669 basiliximab Drugs 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 201000006486 beta-mannosidosis Diseases 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 150000005693 branched-chain amino acids Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229940046731 calcineurin inhibitors Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 210000004534 cecum Anatomy 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229940107137 cholecystokinin Drugs 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 210000004913 chyme Anatomy 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000003021 clonogenic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 239000002619 cytotoxin Substances 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 229960002806 daclizumab Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000010217 densitometric analysis Methods 0.000 description 1
- 210000003074 dental pulp Anatomy 0.000 description 1
- 210000004268 dentin Anatomy 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 1
- 229960002768 dipyridamole Drugs 0.000 description 1
- 229940125542 dual agonist Drugs 0.000 description 1
- 210000001755 duct epithelial cell Anatomy 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 210000003372 endocrine gland Anatomy 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 201000007089 exocrine pancreatic insufficiency Diseases 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003117 fluorescence-linked immunosorbent assay Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000007421 fluorometric assay Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 201000008049 fucosidosis Diseases 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 108010036598 gastric inhibitory polypeptide receptor Proteins 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 230000004110 gluconeogenesis Effects 0.000 description 1
- 230000009229 glucose formation Effects 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 208000007345 glycogen storage disease Diseases 0.000 description 1
- 230000004121 glycogenesis Effects 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 210000000442 hair follicle cell Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 239000002628 heparin derivative Substances 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000000774 hypoallergenic effect Effects 0.000 description 1
- 230000035860 hypoinsulinemia Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- MGXWVYUBJRZYPE-YUGYIWNOSA-N incretin Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=C(O)C=C1 MGXWVYUBJRZYPE-YUGYIWNOSA-N 0.000 description 1
- 239000000859 incretin Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 230000004140 ketosis Effects 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 208000006443 lactic acidosis Diseases 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 229940124302 mTOR inhibitor Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 201000007769 mucolipidosis Diseases 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 1
- 229960004866 mycophenolate mofetil Drugs 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 210000004416 odontoblast Anatomy 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 1
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 210000000277 pancreatic duct Anatomy 0.000 description 1
- 230000009996 pancreatic endocrine effect Effects 0.000 description 1
- 230000010003 pancreatic endocrine function Effects 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229960004439 pemirolast Drugs 0.000 description 1
- HIANJWSAHKJQTH-UHFFFAOYSA-N pemirolast Chemical compound CC1=CC=CN(C2=O)C1=NC=C2C=1N=NNN=1 HIANJWSAHKJQTH-UHFFFAOYSA-N 0.000 description 1
- 210000003668 pericyte Anatomy 0.000 description 1
- 210000003460 periosteum Anatomy 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 239000002307 peroxisome proliferator activated receptor agonist Substances 0.000 description 1
- 108091008725 peroxisome proliferator-activated receptors alpha Proteins 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 206010036067 polydipsia Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960003912 probucol Drugs 0.000 description 1
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002089 prostaglandin antagonist Substances 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 230000009719 regenerative response Effects 0.000 description 1
- 230000010656 regulation of insulin secretion Effects 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 210000000844 retinal pigment epithelial cell Anatomy 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229960002101 secretin Drugs 0.000 description 1
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 229960004034 sitagliptin Drugs 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 210000002325 somatostatin-secreting cell Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- MDKGKXOCJGEUJW-UHFFFAOYSA-N suprofen Chemical compound C1=CC(C(C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-UHFFFAOYSA-N 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- XYKWNRUXCOIMFZ-UHFFFAOYSA-N tepoxalin Chemical compound C1=CC(OC)=CC=C1N1C(C=2C=CC(Cl)=CC=2)=CC(CCC(=O)N(C)O)=N1 XYKWNRUXCOIMFZ-UHFFFAOYSA-N 0.000 description 1
- 229950009638 tepoxalin Drugs 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 150000001467 thiazolidinediones Chemical class 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 230000008427 tissue turnover Effects 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 229960005342 tranilast Drugs 0.000 description 1
- NZHGWWWHIYHZNX-CSKARUKUSA-N tranilast Chemical compound C1=C(OC)C(OC)=CC=C1\C=C\C(=O)NC1=CC=CC=C1C(O)=O NZHGWWWHIYHZNX-CSKARUKUSA-N 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/54—Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
- A61K35/545—Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/37—Digestive system
- A61K35/39—Pancreas; Islets of Langerhans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0676—Pancreatic cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/66—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/575—Hormones
- G01N2333/62—Insulins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/04—Endocrine or metabolic disorders
- G01N2800/042—Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
Definitions
- the present invention relates to a method for improving pancreatic function in a subject in need thereof.
- the method may be used for treating and/or preventing and/or delaying the onset or progression of a disorder resulting from or associated with pancreatic dysfunction, e.g., resulting from abnormal endocrine or exocrine function of the pancreas.
- the pancreas is a multifunctional gland organ in the digestive and endocrine system of vertebrates. It is both an endocrine gland (producing several hormones including insulin, glucagon, and somatostatin), and an exocrine gland (secreting pancreatic juice containing digestive enzymes that pass to the small intestine). The enzymes in the pancreatic juice help in the further breakdown of the carbohydrates, protein, and fat in the chyme.
- the part of the pancreas with endocrine function is made up of numerous cell clusters called islets of Langerhans.
- the islets There are four main cell types in the islets classified by their secretion: ⁇ cells secrete glucagon, ⁇ cells secrete insulin, ⁇ cells secrete somatostatin, and PP cells secrete pancreatic polypeptide.
- the islets are a compact collection of endocrine cells arranged in clusters and cords and also contain a network of capillaries.
- the capillaries of the islets are lined by layers of endocrine cells in direct contact with vessels, and most endocrine cells are in direct contact with blood vessels, by either cytoplasmic processes or by direct apposition.
- the exocrine pancreas In contrast to the endocrine pancreas, which secretes hormones into the blood, the exocrine pancreas produces digestive enzymes (e.g., trypsinogen, chymotrypsinogen, elastase, carboxypeptidase, pancreatic lipase, and amylase) and an alkaline fluid, and secretes these into the small intestine through a system of exocrine ducts in response to the small intestine hormones secretin and cholecystokinin.
- Digestive enzymes are produced and secreted by acinar cells of the exocrine pancreas. Specific cells that line the pancreatic ducts, called centroacinar cells, secrete a bicarbonate- and salt-rich solution into the small intestine.
- Pancreatic dysfunction can lead to overproduction or underproduction of hormones and/or enzymes produced by the pancreas.
- Conditions associated with or caused by pancreatic dysfunction include diabetes mellitus, acute or chronic pancreatitis, pancreatic enzyme deficiency or pancreatic tumor.
- DM Diabetes Mellitus
- DM is a diagnostic term for a group of disorders characterized by abnormal carbohydrate (e.g., glucose) homeostasis or metabolism resulting in elevated blood sugar. These disorders comprise several interrelated metabolic, vascular, and neuropathic components.
- Various components of DM are caused by endocrine and/or exocrine functions of the pancreas.
- the metabolic component generally characterized by hyperglycemia, comprises alterations in carbohydrate, fat and protein metabolism caused by absent or markedly reduced secretion of hormones, particularly insulin (i.e., endocrine function) and/or ineffective insulin action.
- insulin i.e., endocrine function
- the pancreas produces various enzymes that are involved in digestion of food.
- pancreas produces amylase and in DM may secrete insufficient levels of this enzyme to digest carbohydrate leading to exocrine pancreatic insufficiency, malnutrition and weight loss. Accordingly, both the endocrine and exocrine functions of the pancreas contribute to the metabolic components of DM.
- the vascular component of DM comprises abnormalities in the blood vessels leading to cardiovascular, retinal and renal complications. Abnormalities in the peripheral and autonomic nervous systems are also components of DM.
- DM is generally caused by a reduction in the amount or circulating insulin and/or a reduction in the responsiveness of cells in a subject to insulin.
- Insulin is essential in the metabolism of carbohydrates, fat, and protein. Insulin reduces blood glucose levels by allowing glucose to enter muscle cells and fat cells and by stimulating the conversion of glucose to glycogen (glyco genesis) as a carbohydrate store. Insulin also inhibits the release of stored glucose from liver glycogen (glycogenosis) and slows the breakdown of fat to triglycerides, free fatty acids, and ketones. Additionally, insulin slows the breakdown of protein for glucose production (gluconeogenesis). Insulin is produced and secreted by ⁇ cells in the islets of Langerhans of the pancreas.
- Type I diabetes also referred to as insulin- dependent diabetes mellitus or IDDM
- Type II also referred to as non-insulin- dependent diabetes mellitus or NIDDM
- gestational diabetes or pre-diabetes (or impaired glucose metabolism).
- IDDM insulin- dependent diabetes mellitus
- NIDDM non-insulin- dependent diabetes mellitus
- type I diabetes The overall incidence of type I diabetes is approximately 15 cases per 100,000 individuals in the US alone. Approximately, 5 to 15 per cent of all cases of diabetes are type I diabetes cases in the US, with physicians diagnosing about 10,000 new cases every year. Internationally, the incidence of type I diabetes varies from about 0.61 cases per 100,000 individuals in China to about 34.5 cases per 100,000 in Sardinia, and more than 40 cases per 100,000 in Finland. Many countries also report that the incidence rate of type I diabetes has doubled over the last 20 years.
- the acute clinical onset of type I diabetes is characterized by symptoms, such as hyperglycemia, polyuria, polydipsia, weight loss, or blurred vision, alone or in combination, followed days or weeks later by ketoacidosis.
- symptoms such as hyperglycemia, polyuria, polydipsia, weight loss, or blurred vision, alone or in combination, followed days or weeks later by ketoacidosis.
- the acute onset of the disease is considered to be preceded by a long, asymptomatic preclinical period, during which the insulin-secreting ⁇ -cells are progressively destroyed by the subject's immune system.
- the pancreas normally contains 1 to 1.5 million islets; and approximately 80 percent of islet cells are insulin-producing ⁇ -cells.
- the symptoms of clinical diabetes appear when fewer than 10 percent of those ⁇ -cells remain.
- pancreatic ⁇ -cells The mismatch between insulin supply and demand caused by the loss of pancreatic ⁇ -cells leads to abnormal glucose, lipid and protein metabolism. Insulin deficiency may lead to hyperglycemia and hyperglycemic dehydration, elevated levels of free fatty acids, elevated serum ketone levels, increased levels of triglycerides, increased levels of very low density lipoproteins (VLDLs), increased levels of branched chain amino acids, a decrease in protein synthesis, and ketoacidosis.
- a subject with type I diabetes is likely to suffer from any one or more of a variety of vascular and neurologic complications.
- type I diabetes patients are two times more likely than non-diabetics to have a heart attack; they are five times more likely to suffer from gangrene; seventeen times more likely to have complete renal failure, and twenty- five times more likely to lose their eyesight.
- type I diabetes is treated by administration of exogenous insulin, exercise and dietary management. These forms of therapy do not correct the damage to the pancreas (i.e., replace the destroyed ⁇ -islet cells), but rather replace growth factors produced by the ⁇ -islet cells or attempt to avoid the requirement for these factors.
- insulin therapy Most subjects suffering from type I diabetes require some form of insulin therapy. At this time, such therapy generally requires the subject monitoring blood glucose and/or insulin levels and injecting recombinant or purified insulin when required. New forms of insulin are also being developed to enable nasal or oral administration. However, this form of therapy requires continual monitoring by the subject and insulin administration at least once a day for the life of the subject. Should the subject neglect to administer insulin or administer too much insulin there is a risk of the development of, for example, hyperglycemia, hypoglycemia or ketoacidosis.
- Additional compounds currently used for the treatment of type I diabetes include for example, sulfonylurea, biguanide, ⁇ -glucosidase inhibitor or thiazolidinedione.
- sulfonylurea causes hypoglycemia and hyperinsulinemia
- biguanide causes lactic acidosis
- ⁇ -glucosidase inhibitor causes gastro-intestinal side-effects
- thiazolidinedione has a long-onset of action, is associated with weight gain and requires frequent liver function testing.
- Glucagon- like peptide- 1 has also been identified as a possible therapeutic for diabetes.
- This peptide induces expression of pancreatic and duodenal homeobox factor- 1 (PDX-I), a transcription factor that plays a significant role in pancreas development, beta cell differentiation and maintenance of beta-cell function (Babu et al, MoI Endocrinol. 20:3133-3145, 2006).
- PDX-I pancreatic and duodenal homeobox factor- 1
- PDX-I pancreatic and duodenal homeobox factor- 1
- PDX-I is involved in inducing the expression of glucose sensing and metabolism, such as GLUT2, glucokinase and insulin.
- GLP-I has been suggested as a potential therapeutic because it may induce pancreatic beta cell expansion in a subject, in addition to stimulating insulin expression (Buteau, Diabetes and Metabolism, 34: S73-S77, 2008).
- use of clinically available agents that increase intracellular availability of GLP-I such as orally active dipeptidyl peptidase-4 (DPPIV) inhibitors or injectable GLP-I analogs, has been limited to the treatment of mild forms of type II diabetes. The relatively short half- life of these agents, their need for frequent administration, and their relative lack of potency in cases of severe beta cell loss have precluded their use as insulin-sparing agents for type 1 diabetes or other insulin-dependent patients.
- DPPIV dipeptidyl peptidase-4
- GLP-I analogs have short half life and require high-dose daily administration.
- Other therapeutic options include pancreatic islet of Langerhans transplantation, which has been shown to reduce insulin dependency (Shapiro et al., New Eng. J. Med., 343: 230-238, 2000).
- pancreatic islet of Langerhans transplantation which has been shown to reduce insulin dependency (Shapiro et al., New Eng. J. Med., 343: 230-238, 2000).
- the application of this treatment is restricted by the very limited availability of primary human islets from donors, which must have a beating heart to ensure cell survival during transplantation (Burns et al., J. Endocrinology, 103: 437-443, 2004).
- Stem cells e.g., embryonic stem (ES) cells have also been proposed as a suitable source for the production of therapeutically relevant amounts of insulin-producing cells.
- insulin secreting ⁇ -cells have not been produced from stem cells, let alone at the level required, estimated at 2-4x10 9 ⁇ -cells per transplantation.
- Such cell- based therapies must also overcome such difficulties as the proliferative capacity of the replacement cells must be tightly controlled to ensure that they do not expand to a point that they cause hyperinsulinemia or hypoglycaemia, and the transplanted cells must avoid destruction by a recipient's immune system.
- any remaining ES cells must be removed to avoid the risk of teratoma formation.
- Type II diabetes accounts for approximately 90-95% of diabetes cases and kills about 193,000 people per annum in USA alone. Type II diabetes is the seventh leading cause of all deaths. In Western societies, Type II diabetes currently affects 6% of the adult population with world-wide frequency expected to grow by 6% per annum. Notwithstanding that there are certain inheritable traits that may predispose particular individuals to developing Type II diabetes, the major cause of the current increase in incidence of the disease is the increased sedentary life-style, diet and obesity now prevalent in developed countries. Type II diabetes is now internationally recognized as one of the major threats to human health.
- Type II diabetes develops when muscle, fat and liver cells fail to respond normally to insulin. This failure to respond (called insulin resistance) may be due to reduced numbers of insulin receptors on these cells, or a dysfunction of signaling pathways within the cells, or both.
- the ⁇ -cells initially compensate for this insulin resistance by increasing their insulin output. Over time, these cells become unable to produce sufficient insulin to maintain normal glucose levels, indicating progression to Type II diabetes (Kahn et al, Am. J. Med. 108: 2S-8S). , 2000) Treatment of Type II Diabetes
- Januvia increases blood levels of incretin hormones, which can increase insulin secretion, reduce glucagon secretion and have other less well characterized effects.
- Januvia and other dipeptidyl peptidase IV inhibitors may also influence the tissue levels of other hormones and peptides, and the long-term consequences of this broader effect have not been fully investigated.
- this compound does not address problems associated with insulin resistance.
- GLP-I As with type I diabetes, GLP-I has been suggested as a potential therapeutic for type II diabetes as a result of its ability to induce insulin secretion, induce beta cell expansion and restore glucose tolerance in glucose-resistant beta cells.
- GLP-I and analogs thereof are very limited in their therapeutic potential as a result of their very short half life.
- the inventors sought to determine the effect of a specific subset of mesenchymal precursor cells (MPCs) on the development and/or progression of pancreatic dysfunction.
- MPCs mesenchymal precursor cells
- the inventors made use of a recognized model in which pancreatic dysfunction is induced by administering streptozotocin (STZ) to a mouse. This compound induces inflammation and immune cell infiltration of the pancreatic islets ultimately resulting in cell death and pancreatic dysfunction.
- STZ causes dysfunction in both the endocrine functions of the pancreas (e.g., reducing insulin production) and the exocrine functions of the pancreas (e.g., reducing amylase production).
- This model is also an accepted model of a glucose metabolism disorder, e.g., Type I diabetes or Type II diabetes.
- a glucose metabolism disorder e.g., Type I diabetes or Type II diabetes.
- the inventors have demonstrated that administration of STRO-I + cells to STZ treated mice increases serum insulin levels and reduces blood glucose levels compared to STZ treated mice that have not received STRO-I + cells.
- the inventors also demonstrated that STRO-I + cells induced or increase the number of PDX-I expressing cells in the pancreas and/or increase the number of pancreatic beta cells and/or islets in a subject (e.g., promote pancreatic beta cell regeneration).
- STRO-I + cells restore the ratio of pancreatic beta cells to pancreatic alpha cells by increasing beta cell numbers and/or reducing alpha cell numbers.
- treatment with STRO-I + cells induces blood vessel formation in the pancreas of a subject.
- STRO-I + cells and/or progeny cells thereof and/or factors secreted therefrom induce or promote pancreatic regeneration and/or improve pancreatic function.
- the STRO-I + cells or progeny cell thereof or a factor derived therefrom are capable or treating and/or preventing and/or reducing the toxic effects of STZ of the pancreas.
- the STRO-I + cells or progeny cells thereof or one or more factors derived therefrom are capable of treating or preventing or delaying the onset of or reducing the severity of pancreatic dysfunction and/or improving pancreatic function and/or inducing regeneration of pancreas or cells thereof and/or improving glucose metabolism (e.g., by increasing circulating insulin levels).
- the inventors' findings provide the basis for methods for treating and/or preventing and/or delaying the onset of and/or delaying the progression of pancreatic dysfunction, such as diabetes.
- the present invention provides a method for improving pancreatic function in a subject in need thereof, the method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the present invention additionally or alternatively provides a method for promoting or inducing pancreatic regeneration in a subject (e.g., in a subject suffering from pancreatic dysfunction), said method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the method induces or promotes production of new beta cells and/or micro vessels in a pancreas.
- the present invention additionally or alternatively provides a method for inducing or promoting regeneration of pancreatic beta cells and/or pancreatic islets, the method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the present invention additionally or alternatively provides a method for reducing blood glucose levels and/or increasing blood/serum insulin levels in a subject, the method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the present invention additionally or alternatively provides a method for increasing the number of pancreatic beta cells and/or for increasing the number of pancreatic beta cells relative to pancreatic alpha cells and/or for reducing the number of pancreatic alpha cells and/or for increasing the number of pancreatic islets in a subject, the method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the present invention additionally or alternatively provides a method for increasing pancreatic and duodenal homeobox factor- 1 (PDX-I) expression and/or for increasing the number of PDX-I expressing cells in a pancreas of a subject, the method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- PDX-I pancreatic and duodenal homeobox factor- 1
- the present invention additionally or alternatively provides a method for inducing or promoting arterio genesis or angiogenesis in the pancreas of a subject, the method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the present invention additionally or alternatively provides a method for increasing the number of pancreatic beta cell precursors or inducing or promoting proliferation of pancreatic beta cell precursors in a subject, the method comprising administering to the subject STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- a subject suffers from pancreatic dysfunction.
- the pancreatic dysfunction is associated with or results from dysfunction of the endocrine function of the pancreas and/or the exocrine function of the pancreas.
- the pancreatic dysfunction results in or is associated with reduced pancreatic function, e.g., reduced pancreatic endocrine function or reduced pancreatic exocrine function.
- pancreatic dysfunction is associated with or causes a carbohydrate metabolism disorder.
- a carbohydrate metabolism disorder can be cause by pancreatic endocrine and/or exocrine dysfunction.
- the carbohydrate metabolism disorder is caused by reduced insulin production by the pancreas.
- the carbohydrate metabolism disorder is caused by increased glucagon levels (e.g., increased numbers of alpha cells and/or increased glucagon expression and/or production and/or secretion).
- the carbohydrate metabolism disorder is caused by reduced amylase production by the pancreas.
- a carbohydrate metabolism disorder (or pancreatic dysfunction) need not be solely characterized by pancreatic function.
- a carbohydrate metabolism disorder may also be characterized by insulin resistance and/or by a vascular component and/or by a neuropathic component.
- the pancreatic dysfunction is diabetes mellitus, e.g., type I diabetes mellitus or type II diabetes mellitus.
- the method of the present invention comprises administering an effective amount or a therapeutically or prophylactically effective amount of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the method comprises administering an amount of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom sufficient to induce insulin production in a subject, preferably to induce insulin production for at least about 1 week or 2 weeks or 3 weeks or 4 weeks.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered directly into the bloodstream of a subject, however other sites of administration are not excluded.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered systemically.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered intravenously, intra-arterially, into an aorta, into an atrium or ventricle of the heart or into a blood vessel connected to a pancreas, e.g., an abdominal aorta, a superior mesenteric artery, a pancreaticoduodenal artery or a splenic artery.
- a pancreas e.g., an abdominal aorta, a superior mesenteric artery, a pancreaticoduodenal artery or a splenic artery.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered intra-arterially, e.g., into a femoral artery or into a celiac artery, e.g., using a catheter.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered to the pancreas or a part thereof of a subject.
- the STRO-I + cells administered to the subject are STRO-l b ⁇ , and/or express tissue non-specific alkaline phosphatase (TNAP). Additional populations of STRO-I + cells characterized by specific cell surface markers or combinations thereof are described herein.
- progeny cells and/or soluble factors may also be derived from cells expressing STRO-I or that are STRO- l b ⁇ and/or expressing TNAP. Such progeny cells may also express STRO-I or be STRO- l b ⁇ and/or express TNAP.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered following diagnosis of the disorder, e.g., using standard methods known in the art.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered prior to clinical diagnosis of the disorder, e.g., when the subject suffers from impaired glucose tolerance and/or impaired fasting glycemia and/or in the case of Type I diabetes prior to or concomitant with an autoimmune response such as indicated by expansion of a population of T cells and/or B cells and/or by the production of autoantibodies (e.g., expansion of cytotoxic T cells against pancreatic ⁇ -islet cells and/or autoantibodies against one or more pancreatic ⁇ - islet cell markers in the onset or progression of type 1 diabetes).
- autoantibodies e.g., expansion of cytotoxic T cells against pancreatic ⁇ -islet cells and/or autoantibodies against one or more pancreatic ⁇ - islet cell markers in the onset or progression of type 1 diabetes.
- a method as described herein according to any example additionally comprises monitoring or detecting onset and/or progression of pancreatic dysfunction and/or blood glucose levels and/or blood/serum insulin levels and/or the number of beta cells and/or the number of alpha cells and/or the number of pancreatic islets and/or the number of PDX-I expressing cells and/or the amount of PDX-I expression and/or the number of blood vessels.
- the method additionally comprises glucose tolerance testing and/or by fasting glycemia testing and/or by measuring levels of a hormone or enzyme produced by the pancreas and/or obtaining a sample of a pancreas to determine the number of beta cells and/or the number of alpha cells and/or the number of pancreatic islets and/or the number of PDX-I expressing cells and/or the amount of PDX-I expression and/or the number of blood vessels.
- Such monitoring may indicate that a subsequent administration of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom is required or desirable.
- a method as described herein according to any example shall not be considered to be limited to a single administration of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the present invention explicitly encompasses multiple administrations either to the same or different sites or through the same or different routes.
- the present invention also contemplates a single administration of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered in the form of a composition, e.g., a composition comprising said STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom and a carrier and/or excipient.
- a composition comprising said STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom and a carrier and/or excipient.
- Suitable carriers and/or excipients will be apparent to the skilled artisan and/or described herein.
- Such a composition may comprise additional factors useful for treating or preventing a carbohydrate metabolism disorder, e.g., insulin or amylase and/or a peptide or polypeptide associated with normal pancreatic function e.g., cholycystokinin octapeptide or somatostatin or glucagon or trypsinogen or chymotrypsinogen or elastase or carboxypeptidase or pancreatic lipase.
- a carbohydrate metabolism disorder e.g., insulin or amylase and/or a peptide or polypeptide associated with normal pancreatic function e.g., cholycystokinin octapeptide or somatostatin or glucagon or trypsinogen or chymotrypsinogen or elastase or carboxypeptidase or pancreatic lipase.
- a STRO-I + cell or progeny cell thereof may be genetically-modified to express and, preferably secrete, such an additional factor, e.g., insulin or amylase and/or a peptide or polypeptide associated with normal pancreatic function e.g., cholycystokinin octapeptide or somatostatin or glucagon or trypsinogen or chymotrypsinogen or elastase or carboxypeptidase or pancreatic lipase.
- an additional factor e.g., insulin or amylase and/or a peptide or polypeptide associated with normal pancreatic function e.g., cholycystokinin octapeptide or somatostatin or glucagon or trypsinogen or chymotrypsinogen or elastase or carboxypeptidase or pancreatic lipase.
- the present invention also provides for use of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom or a composition comprising same for: (i) treatment of pancreatic dysfunction; and/or (ii) improving pancreatic function; and/or
- pancreatic beta cells and/or pancreatic islets inducing or promoting regeneration of pancreatic beta cells and/or pancreatic islets
- pancreatic beta cells reducing blood glucose levels and/or increasing blood/serum insulin levels
- pancreatic beta cells increasing the number of pancreatic beta cells and/or for increasing the number of pancreatic beta cells relative to pancreatic alpha cells and/or for reducing the number of pancreatic alpha cells and/or for increasing the number of pancreatic islets
- PDX-I pancreatic and duodenal homeobox factor- 1
- the present invention also provides for use of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom in the manufacture of a medicament for: (i) treatment of pancreatic dysfunction; and/or (ii) improving pancreatic function; and/or (iii) inducing or promoting regeneration of pancreatic beta cells and/or pancreatic islets; and/or
- pancreatic beta cells reducing blood glucose levels and/or increasing blood/serum insulin levels
- pancreatic beta cells increasing the number of pancreatic beta cells and/or for increasing the number of pancreatic beta cells relative to pancreatic alpha cells and/or for reducing the number of pancreatic alpha cells and/or for increasing the number of pancreatic islets
- PDX-I pancreatic and duodenal homeobox factor- 1
- the present invention is applicable to a wide range of animals.
- the subject is a mammal such as a human, dog, cat, horse, cow, or sheep, preferably, the subject is a human.
- the subject is a human.
- the subject is a non-human mammal.
- Figure 1 is a graphical representation depicting the effects of STRO-I + cells on blood glucose levels (BGL) in STZ-induced diabetic NOD/scid mice.
- Blood glucose levels were determined in diabetic mice who were injected at day 10 post-STZ therapy (arrows) with STRO- 1+ cells in the left ventricle (CM) or with vehicle (CV).
- Blood glucose values are mean glucose (mM) +/-SE. Student's t-test was performed with significance at p ⁇ 0.05.
- FIG 2 is a graphical representation showing the effects of STRO-I + cells on blood glucose levels (BGL) in STZ-induced diabetic NOD/scid mice at 7, 14 and 21 days after treatment compared with baseline at day 10 post-STZ treatment.
- Blood glucose levels were determined in diabetic mice injected in the left ventricle with vehicle (CV) or with STRO-I + cells (CM). Results are expressed as % change in BGL relative to the start of cell therapy on day 10. Student's t-test was performed with significance at p ⁇ 0.05.
- Figure 3 is a graphical representation showing the effect of STRO-I + cells on insulin levels in STZ-induced diabetic NOD/scid mice 21 days after cell therapy dose.
- FIG. 4A is a graphical representation showing the effect of intra-arterial
- Figure 4B is a copy of a micrograph (20Ox) showing mouse anti-smooth muscle actin IgG2a-FITC stained micro-vessels of varying diameters in pancreatic tissue of mice treated with STRO-I cells.
- Figure 5A is a graphical representation showing the effect of intra-arterial STRO-I + cells on the pancreatic mRNA profile in STZ-induced diabetic NOD/scid mice 21 days after cell therapy dose.
- RNA was extracted from pancreatic tissue of the vehicle (CV) and STRO-I therapy (CM) groups, reverse-transcribed and PCR amplified for the transcription factors relevant for beta-cell regeneration: Mafa, Ngn3, Pdx-1.
- Total RNA content was normalised with respect to the house-keeping gene beta-actin.
- Figure 5 B is a graphical representation showing the effect of intra-arterial STRO-I + cells on PDX-I positive cells in STZ-induced diabetic NOD/scid mice 21 days after cell therapy dose.
- Figure 5C is a copy of a series of micrographs (40Ox) showing antigen-retrieved formalin-fixed paraffin embedded sections that were stained with mouse anti-PDX- l(IgG2b) and detected with goat anti-mouse IgG2b-Alexa 555 conjugate.
- Figure 6A is a graphical representation showing the effect of intra-arterial STRO-I + cells on pancreatic islet characteristics in STZ-induced diabetic NOD/scid mice after 21 days of cell therapy.
- H&E stained pancreatic tissues were analyzed for islet density, which was normalized with respect to examined sectional area.
- Figure 7A is a graphical representation showing the effect of intra-arterial STRO-I + cells on islet characteristics in STZ-induced diabetic NOD/scid mice after 21 days of cell therapy.
- Figure 7B is a copy of a series of micrographs (20Ox) showing antigen-retrieved formalin-fixed paraffin embedded sections that were stained with guinea pig anti- insulin and detected with anti-guinea-pig IgG-Rhodamine conjugate. Treatment groups are indicated at the base of each photomicrograph.
- Figure 7C is a graphical representation showing the effect of intra-arterial STRO-I + cells on islet characteristics in STZ-induced diabetic NOD/scid mice after 21 days of cell therapy.
- Anti-glucagon stained pancreatic tissues were analyzed for glucagon positive cells per mm 2 of islet area.
- Figure 7D is a copy of a series of micrographs (20Ox) showing antigen-retrieved formalin-fixed paraffin embedded sections that were stained with mouse anti-glucagon and detected with goat anti-mouse IgG-FITC conjugate. Treatment groups are indicated at the base of each photomicrograph.
- Figure 7E is a graphical representation showing the number of intra-islet beta cells as a proportion of total alpha + beta cells.
- the data displayed was calculated from the numbers of insulin-positive cells/mm 2 of islet area and the numbers of glucagon- positive cells/mm of islet area.
- composition of matter, group of steps or group of compositions of matter shall be taken to encompass one and a plurality (i.e. one or more) of those steps, compositions of matter, groups of steps or group of compositions of matter.
- each embodiment or example described herein is to be applied mutatis mutandis to each and every other embodiment unless specifically stated otherwise.
- each embodiment or example described herein directed to treating and/or preventing and/or delaying the onset of and/or delaying the progression of pancreatic dysfunction in a subject is to be applied mutatis mutandis to methods for improving pancreatic function and/or for inducing or promoting pancreatic regeneration as if those embodiments were explicitly recited herein.
- Each embodiment described herein in respect of treatment of pancreatic dysfunction shall be taken to apply mutatis mutandis to the treatment of a carbohydrate metabolism disorder as if those embodiments were explicitly recited herein.
- pancreatic dysfunction shall be taken to apply mutatis mutandis to the treatment of diabetes mellitus, e.g., type I diabetes mellitus or type II diabetes mellitus as if those embodiments were explicitly recited herein.
- the present invention is performed without undue experimentation using, unless otherwise indicated, conventional techniques of molecular biology, microbiology, virology, recombinant DNA technology, peptide synthesis in solution, solid phase peptide synthesis, and immunology.
- conventional techniques of molecular biology, microbiology, virology, recombinant DNA technology, peptide synthesis in solution, solid phase peptide synthesis, and immunology are described, for example, in Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Second Edition (1989), whole of VoIs I, II, and DI; DNA Cloning: A Practical Approach, VoIs. I and II (D. N. Glover, ed., 1985), IRL Press, Oxford, whole of text; Oligonucleotide Synthesis: A Practical Approach (M. J.
- the term "derived from” shall be taken to indicate that a specified integer may be obtained from a particular source albeit not necessarily directly from that source.
- this term shall be taken to mean one or more factors, e.g., proteins, peptides, carbohydrates, etc, produced during in vitro culturing of STRO-I + cells and/or progeny cells thereof.
- the term “improving pancreatic function” shall be taken to mean one or more functions of a pancreas in a subject is enhanced compared to that same function in a subject that has not been treated according to the present invention (preferably, in the subject prior to treatment).
- pancreatic dysfunction shall be taken to mean any condition in which one or more of the functions of a pancreas in a subject is/are different to the same function in a normal and/or healthy individual.
- pancreatic dysfunction encompasses conditions in which an endocrine function and/or an exocrine function of a pancreas in a subject is/are enhanced or reduced compared to a normal and/or healthy individual.
- pancreatic dysfunction may be characterized by, associated with or caused by aberrant (i.e., increased or reduced) levels of insulin, glucagon, somatostatin, pancreatic polypeptide, trypsinogen, chymotrypsinogen, elastase, carboxypeptidase, pancreatic lipase or amylase.
- treating pancreatic dysfunction encompasses normalizing a function of the pancreas (e.g., treating a subject such that one or more functions of the pancreas that are abnormal are reduced or enhanced such that they are more similar to the same function in a normal and/or healthy individual).
- such treatment may result in increased insulin levels and/or increased numbers of pancreatic beta cells and/or pancreatic islets in a subject having aberrantly reduced levels of insulin and/or beta cells and/or islets.
- Such treatment may equally reduce aberrantly increased glucagon levels, e.g., in the case of a glucagon secreting tumor of the pancreas, e.g., by reducing the number of glucagon secreting alpha cells and/or by reducing glucagon expression, production and/or secretion.
- the meaning of the term "preventing or delaying pancreatic dysfunction" will be apparent to the skilled artisan based on the foregoing.
- Pancreatic dysfunction may be associated with or cause a condition resulting in malabsorption of nutrients, e.g., carbohydrate, lipid or protein, e.g., as a result of a reduced level of a digestive enzyme produced by the pancreas, e.g., lipase or amylase and/or by reduced production of pancreatic juice.
- a condition resulting in malabsorption of nutrients, e.g., carbohydrate, lipid or protein, e.g., as a result of a reduced level of a digestive enzyme produced by the pancreas, e.g., lipase or amylase and/or by reduced production of pancreatic juice.
- Such conditions include pancreatitis, pancreatic insufficiency, acquired autoimmune deficiency syndrome, cancer, cystic fibrosis or Zollinger Ellison syndrome.
- the condition is caused by or associated with reduced amylase or lipase produced by the pancreas.
- Pancreatic dysfunction may also be associated with or causative of a condition associated with aberrant use or metabolism of nutrients by a subject, e.g., resulting in hyperglycemia or hypoglycemia, reduced serum amino acid levels, proteinuria, necrolytic migratory erythema.
- Such conditions include carbohydrate metabolism disorders, e.g., diabetes mellitus.
- Other conditions include, for example, tumors (e.g., glucagon secreting tumors, which can cause hyperglycemia).
- Exemplary tumors include glucagonomas.
- the term "carbohydrate metabolism disorder” shall be taken to mean any disorder in which a subject is unable to or has a reduced ability to break down or metabolize or to take up or use one or more forms of carbohydrate, generally leading to increased levels of that/those carbohydrate(s) in the blood stream of the subject.
- the carbohydrate metabolism disorder is associated with or caused by reduced production by the pancreas of a hormone involved in breaking down a carbohydrate, e.g., production of amylase. More preferably, the carbohydrate metabolism disorder is associated with or caused by reduced production by the pancreas of a hormone involved in uptake of a carbohydrate, e.g., production of insulin.
- Exemplary carbohydrate metabolism disorders include Type I diabetes mellitus, Type II diabetes mellitus, idiopathic Type I diabetes (Type Ib), early-onset Type II diabetes (EOD), youth-onset atypical diabetes (YOAD), maturity onset diabetes of the young (MODY), malnutrition-related diabetes, gestational diabetes, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose, metabolic acidosis, ketosis, syndrome X, hyperglycemia, hypoinsulinemia, insulin resistance, alpha mannosidosis, beta mannosidosis, fructose intolerance, fucosidosis, galactosemia, Leigh disease, mucolipidosis, mucopolysaccharidoses or a complication of any one or more of the preceding.
- the carbohydrate metabolism disorder is diabetes, for example, Type I diabetes or Type II diabetes.
- a subject suffering from diabetes has a clinically accepted marker of diabetes, such as:
- Oral glucose tolerance test (OGTT) value of greater than or equal to 11.lnmol/L or 200 mg/dl measured at a two-hour interval. The OGTT is given over a two or three-hour time span.
- the term "effective amount” shall be taken to mean a sufficient quantity of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom to improve pancreatic function in a subject to which the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered compared to their pancreatic function prior to administration and/or compared to a subject to which the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are not administered.
- an effective amount of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom may reduce basal or resting glucose levels (glycemia) and/or improve glucose tolerance and/or increase blood insulin levels and/or increase levels of glucagon, somatostatin, pancreatic polypeptide, trypsinogen, chymotrypsinogen, elastase, carboxypeptidase, pancreatic lipase or amylase in serum or in the pancreas or in the digestive system.
- An effective amount of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom may also increase blood supply to a pancreas or a region thereof, e.g., by increasing the vasculature around or within a pancreas or a region thereof.
- the skilled artisan will be aware that such an amount will vary depending on, for example, the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom and/or the particular subject and/or the type or severity of the pancreatic dysfunction.
- this term is not to be construed to limit the invention to a specific quantity, e.g., weight or number of cells or soluble factors, rather the present invention encompasses any amount of the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom sufficient to improve pancreatic function in a subject.
- Methods for detecting pancreatic function and/or for determining the amount of STRO- I + cells and/or progeny cells thereof and/or soluble factors derived therefrom sufficient to improve pancreatic function will be apparent to the skilled artisan and/or described herein. An effective amount need not necessarily treat or prevent pancreatic dysfunction.
- the term "therapeutically effective amount” shall be taken to mean a sufficient quantity of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom to reduce or inhibit one or more symptoms of a clinical condition associated with or caused by pancreatic dysfunction to a level that is below that observed and accepted as clinically diagnostic of that condition.
- a therapeutically effective amount of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom may reduce glucose tolerance in a subject from a level observed in a diabetic subject to a level observed in a presymptomatic subject (e.g., suffering from impaired glucose tolerance or impaired resting glycemia) or in a normal or healthy subject.
- prophylactically effective amount shall be taken to mean a sufficient quantity of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom to prevent or inhibit the onset of one or more detectable symptoms of a clinical condition associated with or caused by pancreatic dysfunction.
- a prophylactically effective amount of STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom may prevent glucose tolerance in a subject becoming impaired to such a degree that the subject is clinically diagnosed with diabetes.
- the term “treat” or “treatment” or “treating” shall be understood to mean administering a therapeutically effective amount of soluble factors and/or cells and reducing or inhibiting at least one symptom of a clinical condition associated with or caused by pancreatic dysfunction.
- the term “prevent” or “preventing” or “prevention” shall be taken to mean administering a prophylactically effective amount of soluble factors and/or cells and stopping or hindering the development of at least one symptom of a clinical condition associated with or caused by pancreatic dysfunction.
- pancreatic dysfunction By “delaying progression of pancreatic dysfunction” is meant that a treatment reduces the severity of pancreatic dysfunction in a subject. Such a reduction in severity may be, for example, prevention of one or more complications of pancreatic dysfunction, such as, for example, nutrient malabsorption, hypoglycemia, hyperglycemia, ketoacidosis, retinopathy, cataracts, hypertension, renal failure, coronary artery disease, peripheral vascular disease, neuropathy (e.g., peripheral neuropathy or autonomic neuropathy) or increased risk of infection.
- nutrient malabsorption hypoglycemia, hyperglycemia, ketoacidosis, retinopathy, cataracts, hypertension, renal failure, coronary artery disease, peripheral vascular disease, neuropathy (e.g., peripheral neuropathy or autonomic neuropathy) or increased risk of infection.
- neuropathy e.g., peripheral neuropathy or autonomic neuropathy
- a reduction in severity of pancreatic dysfunction is characterized by a reduction in the requirement for therapeutic treatment (e.g., insulin administration) or the regularity of therapeutic treatment of a subject compared to a subject that has not received treatment using the method of the invention.
- therapeutic treatment e.g., insulin administration
- regularity of therapeutic treatment of a subject compared to a subject that has not received treatment using the method of the invention e.g., insulin administration
- "reducing pancreatic dysfunction progression" is a delay in the onset of one or more detectable symptoms of pancreatic dysfunction compared to a diabetic subject that has not received treatment with a compound that reduces pancreatic dysfunction progression.
- soluble factors shall be taken to mean any molecule, e.g., protein, peptide, glycoprotein, glycopeptide, lipoprotein, lipopeptide, carbohydrate, etc. produced by STRO-I + cells and/or progeny thereof that are water soluble. Such soluble factors may be intracellular and/or secreted by a cell. Such soluble factors may be a complex mixture (e.g., supernatant) and/or a fraction thereof and/or may be a purified factor. In one example of the present invention soluble factors are or are contained within supernatant. Accordingly, any example herein directed to administration of one or more soluble factors shall be taken to apply mutatis mutandis to the administration of supernatant.
- the term "supernatant" refers to the non-cellular material produced following the in vitro culturing of mesenchymal precursor cells, and/or progeny cells thereof, in a suitable medium, preferably liquid medium.
- the supernatant is produced by culturing the cells in the medium under suitable conditions and time, followed by removing the cellular material by a process such as centrifugation.
- the supernatant may or may not have been subjected to further purification steps before administration.
- the supernatant comprises less than 10 5 , more preferably less than 10 4 , more preferably less than 10 3 and even more preferably no live cells.
- normal or healthy individual shall be taken to mean a subject that does not suffer from pancreatic dysfunction as assessed by any method known in the art and/or described herein.
- STRO-I + cells are cells found in bone marrow, blood, dental pulp cells, adipose tissue, skin, spleen, pancreas, brain, kidney, liver, heart, retina, brain, hair follicles, intestine, lung, lymph node, thymus, bone, ligament, tendon, skeletal muscle, dermis, and periosteum; and are capable of differentiating into germ lines such as mesoderm and/or endoderm and/or ectoderm.
- the STRO-I + cells are multipotential cells which are capable of differentiating into a large number of cell types including, but not limited to, adipose, osseous, cartilaginous, elastic, muscular, and fibrous connective tissues.
- the specific lineage-commitment and differentiation pathway which these cells enter depends upon various influences from mechanical influences and/or endogenous bioactive factors, such as growth factors, cytokines, and/or local microenvironmental conditions established by host tissues.
- STRO-I + multipotential cells are thus non- hematopoietic progenitor cells which divide to yield daughter cells that are either stem cells or are precursor cells which in time will irreversibly differentiate to yield a phenotypic cell.
- the STRO-I + cells are enriched from a sample obtained from a subject, e.g., a subject to be treated or a related subject or an unrelated subject (whether of the same species or different).
- a subject e.g., a subject to be treated or a related subject or an unrelated subject (whether of the same species or different).
- the terms 'enriched', 'enrichment' or variations thereof are used herein to describe a population of cells in which the proportion of one particular cell type or the proportion of a number of particular cell types is increased when compared with the untreated population.
- the cells used in the present invention express one or more markers individually or collectively selected from the group consisting of TNAP + , VCAM-I + , THY-I + , STRO-2 + , CD45 + , CD146 + , 3G5 + or any combination thereof.
- markers individually or collectively selected from the group consisting of TNAP + , VCAM-I + , THY-I + , STRO-2 + , CD45 + , CD146 + , 3G5 + or any combination thereof.
- the invention encompasses any number or combination of the recited markers or groups of peptides, and that, notwithstanding that such numbers or combinations of markers or groups of markers may not be specifically listed herein the accompanying claims may define such combinations or sub- combinations separately and divisibly from any other combination of markers or groups of markers.
- the STRO-I + cells are STRO-l b ⁇ ght (syn. STRO-l b ⁇ ).
- the STRO-I + cells are STRO-l b ⁇ ght (syn. STRO-l b ⁇ ).
- the STRO-I + cells are STRO-l b ⁇ ght (syn. STRO-l b ⁇ ).
- the accompanying claims may define such combinations or sub- combinations separately and divisibly from any other combination of markers or groups of markers.
- STRO- l b ⁇ ght cells are additionally one or more Of TNAP + , VCAM-I + , THY-I + ' STRO- 2 + and/or CD 146 + .
- the mesenchymal precursor cells are perivascular mesenchymal precursor cells as defined in WO 2004/85630.
- a cell that is referred to as being "positive” for a given marker it may express either a low (Io or dim) or a high (bright, bri) level of that marker depending on the degree to which the marker is present on the cell surface, where the terms relate to intensity of fluorescence or other marker used in the sorting process of the cells.
- Io or dim or dull
- bri will be understood in the context of the marker used on a particular cell population being sorted.
- a cell that is referred to as being "negative" for a given marker is not necessarily completely absent from that cell.
- the marker is expressed at a relatively very low level by that cell, and that it generates a very low signal when detectably labeled or is undetectable above background levels.
- the term "bright”, when used herein, refers to a marker on a cell surface that generates a relatively high signal when detectably labeled. Whilst not wishing to be limited by theory, it is proposed that "bright" cells express more of the target marker protein (for example the antigen recognized by STRO-I) than other cells in the sample.
- STRO- l b ⁇ cells produce a greater fluorescent signal, when labeled with a FITC -conjugated STRO-I antibody as determined by fluorescence activated cell sorting (FACS) analysis, than non-bright cells (STRO- l dull/dim ).
- FACS fluorescence activated cell sorting
- "bright" cells constitute at least about 0.1% of the most brightly labeled bone marrow mononuclear cells contained in the starting sample.
- "bright" cells constitute at least about 0.1%, at least about 0.5%, at least about 1%, at least about 1.5%, or at least about 2%, of the most brightly labeled bone marrow mononuclear cells contained in the starting sample.
- STRO-l b ⁇ ght cells have 2 log magnitude higher expression of STRO-I surface expression relative to "background", namely cells that are STRO-I " .
- STRO- l dim and/or S TRO-l intermediate cells have less than 2 log magnitude higher expression of STRO-I surface expression, typically about 1 log or less than "background”.
- TNAP is intended to encompass all iso forms of tissue non-specific alkaline phosphatase.
- the term encompasses the liver isoform (LAP), the bone isoform (BAP) and the kidney isoform (KAP).
- the TNAP is BAP.
- TNAP as used herein refers to a molecule which can bind the STRO-3 antibody produced by the hybridoma cell line deposited with ATCC on 19 December 2005 under the provisions of the Budapest Treaty under deposit accession number PTA-7282.
- the STRO-I + cells are capable of giving rise to clonogenic CFU-F.
- a significant proportion of the STRO-I + multipotential cells are capable of differentiation into at least two different germ lines.
- the lineages to which the multipotential cells may be committed include bone precursor cells; hepatocyte progenitors, which are multipotent for bile duct epithelial cells and hepatocytes; neural restricted cells, which can generate glial cell precursors that progress to oligodendrocytes and astrocytes; neuronal precursors that progress to neurons; precursors for cardiac muscle and cardiomyocytes, glucose- responsive insulin secreting pancreatic beta cell lines.
- lineages include, but are not limited to, odontoblasts, dentin-producing cells and chondrocytes, and precursor cells of the following: retinal pigment epithelial cells, fibroblasts, skin cells such as keratinocytes, dendritic cells, hair follicle cells, renal duct epithelial cells, smooth and skeletal muscle cells, testicular progenitors, vascular endothelial cells, tendon, ligament, cartilage, adipocyte, fibroblast, marrow stroma, cardiac muscle, smooth muscle, skeletal muscle, pericyte, vascular, epithelial, glial, neuronal, astrocyte and oligodendrocyte cells.
- the STRO-I + cells are not capable of giving rise, upon culturing, to hematopoietic cells.
- the cells are taken from the subject to be treated, cultured in vitro using standard techniques and used to obtain supernatant or soluble factors or expanded cells for administration to the subject as an autologous or allogeneic composition.
- cells of one or more of the established human cell lines are used.
- cells of a non-human animal or if the patient is not a human, from another species are used.
- the present invention also contemplates use of supernatant or soluble factors obtained or derived from STRO-I + cells and/or progeny cells thereof (the latter also being referred to as expanded cells) which are produced from in vitro culture.
- Expanded cells of the invention may a have a wide variety of phenotypes depending on the culture conditions (including the number and/or type of stimulatory factors in the culture medium), the number of passages and the like.
- the progeny cells are obtained after about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, or about 10 passages from the parental population.
- the progeny cells may be obtained after any number of passages from the parental population.
- the progeny cells may be obtained by culturing in any suitable medium.
- Media may be solid, liquid, gaseous or a mixture of phases and materials.
- Media include liquid growth media as well as liquid media that do not sustain cell growth.
- Media also include gelatinous media such as agar, agarose, gelatin and collagen matrices.
- Exemplary gaseous media include the gaseous phase that cells growing on a petri dish or other solid or semisolid support are exposed to.
- the term “medium” also refers to material that is intended for use in a cell culture, even if it has not yet been contacted with cells.
- a nutrient rich liquid prepared for bacterial culture is a medium.
- a powder mixture that when mixed with water or other liquid becomes suitable for cell culture may be termed a "powdered medium".
- progeny cells useful for the methods of the invention are obtained by isolating TNAP + STRO-I + cells from bone marrow using magnetic beads labeled with the STRO-3 antibody, and then culture expanding the isolated cells (see Gronthos et al. Blood 85: 929-940, 1995 for an example of suitable culturing conditions).
- expanded cells (progeny) preferably, at least after 5 passages
- an expended cell population used to obtain supernatant or soluble factors, or cells per se comprises cells wherein at least 25%, more preferably at least 50%, of the cells are CC9+.
- an expanded cell population used to obtain supernatant or soluble factors, or cells per se comprises cells wherein at least 40%, more preferably at least 45%, of the cells are STRO-I + .
- markers collectively or individually selected from the group consisting of LFA-3, THY-I, VCAM-I, ICAM-I, PECAM-I, P-selectin, L-selectin, 3G5, CD49a/CD49b/CD
- the progeny cells are Multipotential Expanded STRO-I + Multipotential cells Progeny (MEMPs) as defined and/or described in WO 2006/032092.
- MEMPs Multipotential Expanded STRO-I + Multipotential cells Progeny
- Methods for preparing enriched populations of STRO-I + multipotential cells from which progeny may be derived are described in WO 01/04268 and WO 2004/085630.
- STRO-I + multipotential cells will rarely be present as an absolutely pure preparation and will generally be present with other cells that are tissue specific committed cells (TSCCs).
- TSCCs tissue specific committed cells
- WO 01/04268 refers to harvesting such cells from bone marrow at purity levels of about 0.1% to 90%.
- the population comprising MPCs from which progeny are derived may be directly harvested from a tissue source, or alternatively it may be a population that has already been expanded ex vivo.
- the progeny may be obtained from a harvested, unexpanded, population of substantially purified STRO-I + multipotential cells, comprising at least about 0.1, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80 or 95% of total cells of the population in which they are present.
- This level may be achieved, for example, by selecting for cells that are positive for at least one marker individually or collectively selected from the group consisting of TNAP, STRO-l b ⁇ ght , 3G5 + , VCAM-I, THY-I, CD146 and STRO- 2.
- MEMPS can be distinguished from freshly harvested STRO-I + multipotential cells in that they are positive for the marker STRO-l b ⁇ and negative for the marker Alkaline phosphatase (ALP). In contrast, freshly isolated STRO-I + multipotential cells are positive for both STRO-l b ⁇ and ALP. In a preferred example of the present invention, at least 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of the administered cells have the phenotype STRO-l b ⁇ , ALP " . In a further preferred example the MEMPS are positive for one or more of the markers Ki67, CD44 and/or CD49c/CD29, VLA-3, ⁇ 3 ⁇ l. In yet a further preferred example the MEMPs do not exhibit TERT activity and/or are negative for the marker CD 18.
- the STRO-I + cell starting population may be derived from any one or more tissue types set out in WO 01/04268 or WO 2004/085630, namely bone marrow, dental pulp cells, adipose tissue and skin, or perhaps more broadly from adipose tissue, teeth, dental pulp, skin, liver, kidney, heart, retina, brain, hair follicles, intestine, lung, spleen, lymph node, thymus, pancreas, bone, ligament, bone marrow, tendon and skeletal muscle.
- tissue types set out in WO 01/04268 or WO 2004/085630, namely bone marrow, dental pulp cells, adipose tissue and skin, or perhaps more broadly from adipose tissue, teeth, dental pulp, skin, liver, kidney, heart, retina, brain, hair follicles, intestine, lung, spleen, lymph node, thymus, pancreas, bone, ligament, bone marrow, tendon and
- separation of cells carrying any given cell surface marker can be effected by a number of different methods, however, preferred methods rely upon binding a binding agent (e.g., an antibody or antigen binding fragment thereof) to the marker concerned followed by a separation of those that exhibit binding, being either high level binding, or low level binding or no binding.
- a binding agent e.g., an antibody or antigen binding fragment thereof
- the most convenient binding agents are antibodies or antibody- based molecules, preferably being monoclonal antibodies or based on monoclonal antibodies because of the specificity of these latter agents.
- Antibodies can be used for both steps, however other agents might also be used, thus ligands for these markers may also be employed to enrich for cells carrying them, or lacking them.
- the antibodies or ligands may be attached to a solid support to allow for a crude separation.
- the separation techniques preferably maximize the retention of viability of the fraction to be collected.
- Various techniques of different efficacy may be employed to obtain relatively crude separations. The particular technique employed will depend upon efficiency of separation, associated cytotoxicity, ease and speed of performance, and necessity for sophisticated equipment and/or technical skill.
- Procedures for separation may include, but are not limited to, magnetic separation, using antibody- coated magnetic beads, affinity chromatography and "panning" with antibody attached to a solid matrix.
- Techniques providing accurate separation include but are not limited to FACS. Methods for performing FACS will be apparent to the skilled artisan.
- Antibodies against each of the markers described herein are commercially available (e.g., monoclonal antibodies against STRO-I are commercially available from R&D Systems, USA), available from ATCC or other depositary organization and/or can be produced using art recognized techniques.
- the method for isolating STRO-I + cells comprises a first step being a solid phase sorting step utilizing for example magnetic activated cell sorting (MACS) recognizing high level expression of STRO-I.
- a second sorting step can then follow, should that be desired, to result in a higher level of precursor cell expression as described in patent specification WO 01/14268. This second sorting step might involve the use of two or more markers.
- the method obtaining STRO-I + cells might also include the harvesting of a source of the cells before the first enrichment step using known techniques.
- tissue will be surgically removed.
- Cells comprising the source tissue will then be separated into a so called single cells suspension. This separation may be achieved by physical and or enzymatic means.
- a suitable STRO-I + cell population may be cultured or expanded by any suitable means to obtain MEMPs.
- the cells are taken from the subject to be treated, cultured in vitro using standard techniques and used to obtain supernatant or soluble factors or expanded cells for administration to the subject as an autologous or allogeneic composition.
- cells of one or more of the established human cell lines are used to obtain the supernatant or soluble factors.
- cells of a non-human animal or if the patient is not a human, from another species are used to obtain supernatant or soluble factors.
- the invention can be practised using cells from any non-human animal species, including but not limited to non-human primate cells, ungulate, canine, feline, lagomorph, rodent, avian, and fish cells.
- Primate cells with which the invention may be performed include but are not limited to cells of chimpanzees, baboons, cynomolgus monkeys, and any other New or Old World monkeys.
- Ungulate cells with which the invention may be performed include but are not limited to cells of bovines, porcines, ovines, caprines, equines, buffalo and bison.
- Rodent cells with which the invention may be performed include but are not limited to mouse, rat, guinea pig, hamster and gerbil cells.
- lagomorph species with which the invention may be performed examples include domesticated rabbits, jack rabbits, hares, cottontails, snowshoe rabbits, and pikas.
- Chickens (Gallus gallus) are an example of an avian species with which the invention may be performed.
- Cells useful for the methods of the invention may be stored before use, or before obtaining the supernatant or soluble factors.
- Methods and protocols for preserving and storing of eukaryotic cells, and in particular mammalian cells, are known in the art (cf, for example, Pollard, J. W. and Walker, J. M. (1997) Basic Cell Culture Protocols,
- any method maintaining the biological activity of the isolated stem cells such as mesenchymal stem/progenitor cells, or progeny thereof, may be utilized in connection with the present invention.
- the cells are maintained and stored by using cryo-preservation.
- the STRO-I + cells and/or progeny cells thereof are genetically modified, e.g., to express and/or secrete a protein of interest, e.g., a protein providing a therapeutic and/or prophylactic benefit, e.g., insulin, glucagon, somatostatin, trypsinogen, chymotrypsinogen, elastase, carboxypeptidase, pancreatic lipase or amylase or a polypeptide associated with or causative of enhanced angiogenesis or a polypeptide associated with differentiation of a cell into a pancreatic cell or a vascular cell.
- a protein of interest e.g., a protein providing a therapeutic and/or prophylactic benefit, e.g., insulin, glucagon, somatostatin, trypsinogen, chymotrypsinogen, elastase, carboxypeptidase, pancreatic lipase or amylase or a poly
- a nucleic acid that is to be expressed in a cell is operably-linked to a promoter for inducing expression in the cell.
- the nucleic acid is linked to a promoter operable in a variety of cells of a subject, such as, for example, a viral promoter, e.g., a CMV promoter (e.g., a CMV-IE promoter) or a SV-40 promoter. Additional suitable promoters are known in the art and shall be taken to apply mutatis mutandis to the present example of the invention.
- the nucleic acid is provided in the form of an expression construct.
- expression construct refers to a nucleic acid that has the ability to confer expression on a nucleic acid (e.g. a reporter gene and/or a counter- selectable reporter gene) to which it is operably connected, in a cell.
- a nucleic acid e.g. a reporter gene and/or a counter- selectable reporter gene
- an expression construct may comprise or be a plasmid, bacteriophage, phagemid, cosmid, virus sub-genomic or genomic fragment, or other nucleic acid capable of maintaining and/or replicating heterologous DNA in an expressible format.
- each of the components of the expression construct is amplified from a suitable template nucleic acid using, for example, PCR and subsequently cloned into a suitable expression construct, such as for example, a plasmid or a phagemid.
- an expression vector suitable for the method of the present invention in a mammalian cell is, for example, a vector of the pcDNA vector suite supplied by Invitrogen, a vector of the pCI vector suite (Promega), a vector of the pCMV vector suite (Clontech), a pM vector (Clontech), a pSI vector (Promega), a VP 16 vector (Clontech) or a vector of the pcDNA vector suite (Invitrogen).
- a vector of the pcDNA vector suite supplied by Invitrogen a vector of the pCI vector suite (Promega), a vector of the pCMV vector suite (Clontech), a pM vector (Clontech), a pSI vector (Promega), a VP 16 vector (Clontech) or a vector of the pcDNA vector suite (Invitrogen).
- the skilled artisan will be aware of additional vectors and sources of such vectors, such
- Means for introducing the isolated nucleic acid molecule or a gene construct comprising same into a cell for expression are known to those skilled in the art. The technique used for a given organism depends on the known successful techniques. Means for introducing recombinant DNA into cells include microinjection, transfection mediated by DEAE-dextran, transfection mediated by liposomes such as by using lipofectamine (Gibco, MD, USA) and/or cellfectin (Gibco, MD, USA), PEG-mediated DNA uptake, electroporation and microparticle bombardment such as by using DNA- coated tungsten or gold particles (Agracetus Inc., WI, USA) amongst others.
- an expression construct of the invention is a viral vector.
- Suitable viral vectors are known in the art and commercially available.
- Conventional viral-based systems for the delivery of a nucleic acid and integration of that nucleic acid into a host cell genome include, for example, a retroviral vector, a lentiviral vector or an adeno- associated viral vector.
- an adenoviral vector is useful for introducing a nucleic acid that remains episomal into a host cell.
- Viral vectors are an efficient and versatile method of gene transfer in target cells and tissues. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
- a retroviral vector generally comprises cis-acting long terminal repeats (LTRs) with packaging capacity for up to 6-10 kb of foreign sequence.
- LTRs long terminal repeats
- the minimum cis-acting LTRs are sufficient for replication and packaging of a vector, which is then used to integrate the expression construct into the target cell to provide long term expression.
- Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), simian immunodeficiency virus (SrV), human immunodeficiency virus (HIV), and combinations thereof (see, e.g., Buchscher et al, J Virol 56:2731-2739 (1992); Johann et al, J.
- AAV vectors can be readily constructed using techniques known in the art. See, e.g., U.S. Pat. Nos. 5,173,414 and 5,139,941; International Publication Nos. WO 92/01070 and WO 93/03769; Lebkowski et al Molec. Cell Biol 5:3988-3996, 1988; Vincent et al. (1990) Vaccines 90 (Cold Spring Harbor Laboratory Press);Carter Current Opinion in Biotechnology 5:533-539, 1992; Muzyczka. Current Topics in Microbiol, and Immunol.
- Additional viral vectors useful for delivering an expression construct of the invention include, for example, those derived from the pox family of viruses, such as vaccinia virus and avian poxvirus or an alphavirus or a conjugate virus vector (e.g. that described in Fisher-Hoch et al, Proc. Natl Acad. Sci. USA 56:317-321, 1989).
- cells or soluble factors are administered to a test subject, e.g., a test animal for a time and under conditions sufficient to provide a therapeutic/prophylactic benefit and resting or basal or fasting glucose levels assessed and/or a glucose tolerance test performed.
- test subject e.g., a test animal
- basal or fasting glucose levels are assessed following fasting, e.g., for about 8 to about 14 hours.
- a subject fasts for about 8 to about 14 hours and then consumes glucose (e.g., about 1.75 grams of glucose per kilogram of body weight) and the level of blood glucose assessed after about 2 to 3 hours.
- glucose e.g., about 1.75 grams of glucose per kilogram of body weight
- fasting plasma glucose should be below 6.1 mmol/1 (100 mg/dl).
- Fasting levels between 6.1 and 7.0 mmol/1 (100 and 126 mg/dl) are borderline ("impaired fasting glycaemia"), and fasting levels repeatedly at or above 7.0 mmol/1 (126 mg/dl) are diagnostic of diabetes.
- the 2 hour glucose level should be below 7.8 mmol/1 (140 mg/dl). Levels between this and 11.1 mmol/1 (200 mg/dl) indicate impaired glucose tolerance.
- Glucose levels above 11.1 mmol/1 (200 mg/dl) at 2 hours confirms a diagnostic of diabetes.
- the test subject suffers from pancreatic dysfunction.
- the test subject is a non-obese diabetic (NOD) mouse (a model of Type I diabetes) or a mouse or rat to which streptozotocin has been administered (models of Type I and/or Type II diabetes; see L ⁇ kic et al, Developmental Immunol. 6: 119-128, 1998 and Arulmozhi et al, Indian J. Pharmacol, 36: 217-221, 2004), Goto Kakizaki (GK) rat (model of Type II diabetes), New Zealand Obese (NZO) mouse (model of Type II diabetes).
- GK Goto Kakizaki
- NZO New Zealand Obese
- Other models of Type I and/or Type II diabetes are described in, for example, Rees and Alcolado, Diabet. Med. 22:359-70, 2005.
- insulin levels are assessed in the circulation of a test subject, e.g., using an enzyme-linked or fluorescence-linked immunosorbent assay.
- Cells and/or soluble factors that increase insulin levels in the circulation of a test subject are considered likely to treat or prevent or delay the onset or progression of pancreatic dysfunction.
- Kits and assays for determining serum glucagon or somatostatin levels are known in the art and/or commercially available, e.g., from Immuno-Biological Laboratories, Inc or Millipore Corporation.
- a serum level of amylase is determined using a colorimetric assay, e.g., as described in Caraway, Am. J. Clin. Pathol, 32: 97-99, 1959 or a fluorometric assay, e.g., as described in Rinderknecht and Marbach, Clin. Chem. Acta., 29: 107-110, 1972.
- Factors or cells that maintain serum amylase levels to normal levels e.g., 21-101 U/L
- Amylase levels may also be determined in sections of pancreas or in pancreatic juice, e.g., obtained by peroral duodenal intubation.
- samples also provide samples for measuring levels of trypsinogen, chymotrypsinogen, elastase, carboxypeptidase, pancreatic lipase.
- Connon et al, Digestive Diseases and Sciences, 23: 472-475, 1978 describe an assay for determining pancreatic lipase levels in pancreatic juice.
- the assays described in the previous paragraphs are also suitable for ongoing monitoring of a subject receiving a treatment as described herein according to any example.
- the present invention also provides a method for identifying or isolating a cell or a soluble factor for the treatment of pancreatic dysfunction, said method comprising:
- pancreatic function of the subject at (i) comparing the pancreatic function of the subject at (i) to the pancreatic function of a control subject suffering from pancreatic dysfunction to which the cell or soluble factor has not been administered, wherein improved pancreatic function in the test subject compared to the control subject indicates that the cell or soluble factor treats pancreatic dysfunction.
- the present invention also provides a method for identifying or isolating a cell or a soluble factor for the prevention or delay of pancreatic dysfunction, said method comprising:
- pancreatic function of the subject at (i) comparing the pancreatic function of the subject at (i) to the pancreatic function of a control subject suffering from pancreatic dysfunction to which the cell or soluble factor has not been administered, wherein improved pancreatic function in the test subject compared to the control subject indicates that the cell or soluble factor prevents or delays the onset of pancreatic dysfunction.
- the cell may be any cell described herein according to any example.
- Cellular Compositions are described herein according to any example.
- STRO-I + cells and/or progeny cells thereof are administered in the form of a composition.
- a composition comprises a pharmaceutically acceptable carrier and/or excipient.
- carrier and/or excipient refer to compositions of matter that are conventionally used in the art to facilitate the storage, administration, and/or the biological activity of an active compound (see, e.g., Remington's Pharmaceutical Sciences, 16th Ed., Mac Publishing Company (1980).
- a carrier may also reduce any undesirable side effects of the active compound.
- a suitable carrier is, for example, stable, e.g., incapable of reacting with other ingredients in the carrier. In one example, the carrier does not produce significant local or systemic adverse effect in recipients at the dosages and concentrations employed for treatment.
- Suitable carriers for this invention include those conventionally used, e.g., water, saline, aqueous dextrose, lactose, Ringer's solution, a buffered solution, hyaluronan and glycols are preferred liquid carriers, particularly (when isotonic) for solutions.
- Suitable pharmaceutical carriers and excipients include starch, cellulose, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, glycerol, propylene glycol, water, ethanol, and the like.
- a carrier is a media composition, e.g., in which a cell is grown or suspended. Preferably, such a media composition does not induce any adverse effects in a subject to whom it is administered.
- the carrier or excipient does not adversely affect the viability of a cell and/or the ability of a cell to reduce, prevent or delay pancreatic dysfunction.
- the carrier or excipient provides a buffering activity to maintain the cells and/or soluble factors at a suitable pH to thereby exert a biological activity, e.g., the carrier or excipient is phosphate buffered saline (PBS).
- PBS represents an attractive carrier or excipient because it interacts with cells and factors minimally and permits rapid release of the cells and factors, in such a case, the composition of the invention may be produced as a liquid for direct application to the blood stream or into a tissue or a region surrounding or adjacent to a tissue, e.g., by injection.
- STRO-I + cells and/or progeny cells thereof can also be incorporated or embedded within scaffolds that are recipient-compatible and which degrade into products that are not harmful to the recipient. These scaffolds provide support and protection for cells that are to be transplanted into the recipient subjects. Natural and/or synthetic biodegradable scaffolds are examples of such scaffolds. A variety of different scaffolds may be used successfully in the practice of the invention. Preferred scaffolds include, but are not limited to biological, degradable scaffolds. Natural biodegradable scaffolds include collagen, fibronectin, and laminin scaffolds. Suitable synthetic material for a cell transplantation scaffold should be able to support extensive cell growth and cell function. Such scaffolds may also be resorbable.
- Suitable scaffolds include polyglycolic acid scaffolds, e.g., as described by Vacanti, et al. J. Ped. Surg. 23:3-9 1988; Cima, et al. Biotechnol. Bioeng. 38:145 1991; Vacanti, et al. Plast. Reconstr. Surg. 88:753-9 1991; or synthetic polymers such as polyanhydrides, polyorthoesters, and polylactic acid.
- the cells may be administered in a gel scaffold (such as
- the cellular compositions useful for the present invention may be administered alone or as admixtures with other cells.
- Cells that may be administered in conjunction with the compositions of the present invention include, but are not limited to, other multipotent or pluripotent cells or stem cells, or bone marrow cells.
- the cells of different types may be admixed with a composition of the invention immediately or shortly prior to administration, or they may be co-cultured together for a period of time prior to administration.
- the composition comprises an effective amount or a therapeutically or prophylactically effective amount of cells.
- the composition comprises about IxIO 5 STRO-I + cells/kg to about IxIO 7 STRO-I + cells/kg or about IxIO 6 STRO- I + cells/kg to about 5x10 6 STRO-I + cells/kg.
- the exact amount of cells to be administered is dependent upon a variety of factors, including the age, weight, and sex of the patient, and the extent and severity of the pancreatic dysfunction.
- cells are contained within a chamber that does not permit the cells to exit into a subject's circulation, however that permits factors secreted by the cells to enter the circulation.
- soluble factors may be administered to a subject by permitting the cells to secrete the factors into the subject's circulation.
- a chamber may equally be implanted at a site in a subject to increase local levels of the soluble factors, e.g., implanted in or near a pancreas.
- the invention it may not be necessary or desirable to immunosuppress a patient prior to initiation of therapy with cellular compositions. Accordingly, transplantation with allogeneic, or even xenogeneic, STRO-I + cells or progeny thereof may be tolerated in some instances. However, in other instances it may be desirable or appropriate to pharmacologically immunosuppress a patient prior to initiating cell therapy. This may be accomplished through the use of systemic or local immunosuppressive agents, or it may be accomplished by delivering the cells in an encapsulated device. The cells may be encapsulated in a capsule that is permeable to nutrients and oxygen required by the cell and therapeutic factors the cell is yet impermeable to immune humoral factors and cells.
- the encapsulant is hypoallergenic, is easily and stably situated in a target tissue, and provides added protection to the implanted structure.
- hypoallergenic is easily and stably situated in a target tissue, and provides added protection to the implanted structure.
- the cells may be genetically modified to reduce their immunogenicity.
- STRO-I + cell-derived and/or progeny cell-derived supernatant or soluble factors are administered in the form of a composition, e.g., comprising a suitable carrier and/or excipient.
- a suitable carrier and/or excipient e.g., a suitable carrier and/or excipient.
- the carrier or excipient does not adversely affect the biological effect of the soluble factors or supernatant.
- the composition comprises a composition of matter to stabilize a soluble factor or a component of supernatant, e.g., a protease inhibitor.
- a protease inhibitor is not included in an amount sufficient to have an adverse effect on a subject.
- compositions comprising STRO-I + cell-derived and/or progeny cell-derived supernatant or soluble factors may be prepared as appropriate liquid suspensions, e.g., in culture medium or in a stable carrier or a buffer solution, e.g., phosphate buffered saline. Suitable carriers are described herein above.
- suspensions comprising STRO-I + cell-derived and/or progeny cell-derived supernatant or soluble factors are oily suspensions for injection.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil; or synthetic fatty acid esters, such as ethyl oleate or triglycerides; or liposomes.
- Suspensions to be used for injection may also contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- Sterile injectable solutions can be prepared by incorporating the supernatant or soluble factors in the required amount in an appropriate solvent with one or a combination of ingredients described above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the supernatant or soluble factors into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the supernatant or soluble factors may be formulated with one or more additional compounds that enhance its solubility.
- additional compounds that enhance its solubility.
- Other exemplary carriers or excipients are described, for example, in Hardman, et al. (2001) Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N. Y.; Gennaro (2000) Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, N. Y.; Avis, et al. (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications, Marcel Dekker, NY; Lieberman, et al.
- compositions typically should be sterile and stable under the conditions of manufacture and storage.
- the composition can be formulated as a solution, microemulsion, liposome, or other ordered structure.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
- the soluble factors may be administered in a time release formulation, for example in a composition which includes a slow release polymer.
- the active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, polylactic acid and polylactic, polyglycolic copolymers (PLG). Many methods for the preparation of such formulations are patented or generally known to those skilled in the art.
- the supernatant or soluble factors may be administered in combination with an appropriate matrix, for instance, to provide slow release of the soluble factors.
- the STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof may be administered with other beneficial drugs or biological molecules (growth factors, trophic factors).
- beneficial drugs or biological molecules growth factors, trophic factors
- they may be administered together in a single pharmaceutical composition, or in separate pharmaceutical compositions, simultaneously or sequentially with the other agents (either before or after administration of the other agents).
- Bioactive factors which may be co-administered include anti-apoptotic agents (e.g., EPO, EPO mimetibody, TPO, IGF-I and IGF-II, HGF, caspase inhibitors); anti-inflammatory agents (e.g., p38 MAPK inhibitors, TGF -beta inhibitors, statins, IL-6 and IL-I inhibitors, PEMIROLAST, TRANILAST, REMICADE, SIROLIMUS, and NSAIDs (non-steroidal antiinflammatory drugs; e.g., TEPOXALIN, TOLMETIN, SUPROFEN); immunosupressive/immunomodulatory agents (e.g., calcineurin inhibitors, such as cyclosporine, tacrolimus; mTOR inhibitors (e.g., SIROLIMUS, EVEROLIMUS); anti- proliferatives (e.g., azathioprine, mycophenolate mofetil); cortic
- a composition as described herein according to any example comprises an additional factor for the treatment or prophylaxis of a pancreatic dysfunction.
- the composition comprises a biguanide, a thiazolidinedione, a sulfonylurea, a benzoic acid derivative, an alpha-glucosidase inhibitor, a SGLT2 inhibitor, and INGAP peptide, a dipeptidyl peptidase-IV inhibitor, an insulin sensitizers (e.g., a PPAR agonist or a biguanide), insulin, an insulin mimetic, a glucagon receptor antagonist, a GLP-I, a GLP-I mimetic, a GLP-I receptor agonists; GIP, a GIP mimetic, a GIP receptor agonist, PACAP, a PACAP mimetics, a PACAP receptor 3 agonist; a cholesterol lowering agent (e.g., HMG-CoA reductas
- a composition as described herein according to any example additionally comprises a factor that induces or enhances differentiation of a progenitor cell into a pancreatic cell.
- exemplary factors include, Wnt, epidermal growth factor, fibroblast growth factor or TGF ⁇ .
- a composition as described herein according to any example additionally comprises a factor that induces or enhances differentiation of a progenitor cell into a vascular cell.
- Exemplary factors include, vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF; e.g., PDGF-BB), and FGF.
- a composition as described herein according to any example additionally comprises a tissue specific committed cell (TSCC).
- TSCC tissue specific committed cell
- International Patent Application No. PCT/AU2005/001445 demonstrates that administration of a TSCC and a STRO-I + cells can lead to enhanced proliferation of the TSCC.
- the TSCC is a pancreatic cell, e.g., a ⁇ cell or a mixture of pancreatic cells, e.g., an islet of Langerhans. Administration of such a composition to a subject may lead to increased production of, for example, ⁇ cells islets of Langerhans
- the TSCC is a vascular cell. Administration of such a composition to a subject may lead to increased production of vasculature, e.g., in a pancreas, e.g., leading to increased nutrients being delivered to the pancreas.
- the present invention also provides medical devices for use or when used in a method as described herein according to any example.
- the present invention provides a syringe or catheter or other suitable delivery device comprising STRO-I + cells and/or progeny cells thereof and/or soluble factors therefrom and/or a composition of the invention.
- the syringe or catheter is packaged with instructions for use in a method as described herein according to any example.
- the present invention provides an implant comprising STRO-I + cells and/or progeny cells thereof and/or soluble factors therefrom and/or a composition of the invention.
- the implant is packaged with instructions for use in a method as described herein according to any example.
- Suitable implants may be formed with a scaffold, e.g., as described herein above and STRO-I + cells and/or progeny cells thereof and/or soluble factors therefrom.
- the STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof may be surgically implanted, injected, delivered (e.g., by way of a catheter or syringe), or otherwise administered directly or indirectly to the site in need of repair or augmentation, e.g., a pancreas or into the blood system of a subject.
- the STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof is delivered to the blood stream of a subject.
- the STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof are delivered parenterally.
- Exemplary routes of parenteral administration include, but are not limited to, intraperitoneal, intraventricular, intracerebroventricular, intrathecal.
- the STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof are delivered intra-arterially, into an aorta, into an atrium or ventricle of the heart or into a blood vessel connected to a pancreas, e.g., an abdominal aorta, a superior mesenteric artery, a pancreaticoduodenal artery or a splenic artery.
- STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof are administered to a femoral artery or a celiac artery.
- cells are administered to the left atrium or ventricle to avoid complications that may arise from rapid delivery of cells to the lungs.
- the STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof are injected into the site of delivery, e.g., using a syringe or through a catheter or a central line.
- an administration regimen for a therapeutic formulation depends on several factors, including the serum or tissue turnover rate of the entity, the level of symptoms, and the immunogenicity of the entity.
- an administration regimen maximizes the amount of therapeutic compound delivered to the patient consistent with an acceptable level of side effects. Accordingly, the amount of formulation delivered depends in part on the particular entity and the severity of the condition being treated.
- STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof are delivered as a single bolus dose.
- STRO-I + cell-derived supernatant or soluble factors, STRO-I + cells or progeny thereof are administered by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week.
- a preferred dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects.
- a total weekly dose depends on the type and activity of the compound being used. Determination of the appropriate dose is made by a clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects.
- Important diagnostic measures include those of symptoms of diabetes.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered following diagnosis of the disorder, e.g., using standard methods known in the art and/or described herein, e.g., glucose tolerance.
- the STRO-I + cells and/or progeny cells thereof and/or soluble factors derived therefrom are administered prior to clinical diagnosis of the disorder, e.g., when the subject suffers from impaired glucose tolerance and/or impaired fasting glycemia and/or in the case of Type I diabetes prior to or concomitant with an autoimmune response such as indicated by expansion of a population of T cells and/or B cells and/or by the production of autoantibodies (e.g., expansion of cytotoxic T cells against pancreatic ⁇ -islet cells and/or autoantibodies against one or more pancreatic ⁇ -islet cell markers in the onset or progression of type 1 diabetes).
- autoantibodies e.g., expansion of cytotoxic T cells against pancreatic ⁇ -islet cells and/or autoantibodies against one or more pancreatic ⁇ -islet cell markers in the onset or progression of type 1 diabetes.
- the detection of an auto- antibody against an antigen derived from or on the surface of a pancreatic ⁇ -cell is indicative of an immune response against said cell by a subject.
- One such assay detects islet cell antibodies in the serum of a subject. This assay comprises contacting a section of a pancreas comprising an islet cell with serum from a test subject. Immunoglobulin in the serum from the subject that is capable of binding to a pancreatic ⁇ -islet cell is then detected using a secondary labeled antibody that binds to human immunoglobulin.
- a suitable method for detecting islet cell antibodies using a fluorescent marker is described, for example, in Bottazzo et al, Lancet 2: 1279-83, 1974.
- an assay is used to detect an auto-antibody that binds to a specific antigen in a subject.
- Brooking et al. (Clin Chim Acta 331 :55-59, 2003) describe an ELISA based assay for the detection of auto-antibodies against GAD65.
- the described assay uses a low concentration of the GAD antigen on a microtitre plate to capture the auto-antibodies in a sample.
- Biotinylated GAD in the fluid phase is added and is captured by the second binding site of the autoantibody, and it is the biotinylated GAD65 that is detected to produce a non-isotopic detectable signal.
- Nagata et al, Ann. New York Acad. Sci 1037: 10-15, 2004 describe an ELISPOT assay useful for detecting the presence of auto-antibodies against insulin, IA-2 and GAD65.
- a sample of pancreas e.g., a biopsy
- beta cells e.g., cells expressing insulin
- alpha cells e.g., beta insulin
- telomeres e.g., cells expressing glucagon
- islets and/or PDX-I expressing cells e.g., using immunohistochemisty, immunofluorescence or a nucleic acid amplification assay, e.g., polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- NOD/scid mice Male immunodeficient NOD/scid mice (NOD.CB17-Prkdc scld /J; Animal Research Centre, Perth, Australia) at 7-8 weeks of age were injected intraperitoneally (i.p.) with 35 mg/kg of the beta-cell toxin, Streptozotocin (STZ; Sigma- Al drich, St. Louis, MO) daily on days 1-4 after a 4-h morning fast. STZ was dissolved in sodium citrate buffer, pH 4.5, and injected within 15 min of preparation. The mice were maintained under sterile conditions.
- Immunomagnetically selected human STRO-I + stromal cells from banked bone marrow cells were culture expanded essentially as described by Gronthos and Zannetino ⁇ Methods MoI Biol. 449:45-51, 2008) and obtained from Angioblast Systems, USA. Passage 4, STRO-I + stromal cells cryopreserved in ProFreezeTM-CDM (Lonza, USA) were thawed and 2.5 x 10 6 cells were constituted in 200 ⁇ l of vehicle per mouse for immediate injection.
- NOD/scid mice were either injected with a single dose of cells through the chest wall into the left ventricle (arterial route) of anaesthetized mice.
- Control mice were injected with 200 ⁇ l of vehicle (ProFreezeTM-CDM containing 7.5% DMSO and alpha-MEM) through the arterial or venous routes.
- Blood glucose was assayed in tail-vein blood with a glucometer (Optimum XceedTM Diabetes Monitoring System; Abbott Diagnostics, Victoria, Australia) after a 4-h morning fast. Blood insulin was assayed on blood obtained by intracardiac puncture of anesthetized mice before they were killed on day 32 by using a mouse- specific ELISA kit (Ultrasensitive Mouse Insulin ELISA Mercodia, Uppsala, Sweden).
- FFPE pancreas formalin-fixed paraffin embedded
- each antigen retrieved 5 ⁇ m FFPE section stained with anti-insulin, glucagon or PDX-I antibody were counted for total number of positively stained cells and normalized to the respective measured total sectional area or total islet area.
- the distribution of pancreatic microvessels of varying diameters were counted and measured by image analysis and normalized to their respective sectional area examined. All images were analyzed at objective magnifications of 20-4Ox.
- RNA samples from the pancreases of experimental groups were extracted in
- Trizol reagent from a total of 100 mm sections from each frozen tissue.
- the Trizol tissue extracts were purified for RNA using illustra RNAspin Mini RNA Isolation Kit
- RNA samples were PCR amplified using primers to murine genes for MafA, Ngn3, and Pdx-1 using Tth Plus DNA polymerase (Roche Applied Science) under amplification conditions specified Table 1.
- the beta-actin gene was used to normalize target gene expression. PCR products were quantified by densitometric analysis of bands visualized under UV-illumination using Kodak ID 3.5 software.
- Hyperglycaemia was induced in NOD/scid mice by four daily intraperitoneal injections of STZ 35 mg/kg/day.
- Animals were considered to develop hyperglycemia if they had a BGL at day 10 of the study (i.e. 5 days after completion of the STZ course) that was greater than 3SD above the mean glucose level in untreated mice.
- Mice which did not achieve hyperglycemia according to this criterion were subsequently excluded from all analyses.
- Figure 1 shows that a single intra-arterial injection of STRO-I + cells induced early reduction in BGL in diabetic mice in comparison to intra-arterial injection of the vehicle alone. Reduction in BGL was evident as early as day 17, was maximal at day
- mice receiving a single intra-arterial injection of STRO-I + cells demonstrated a persistent reduction in mean BGL relative to the level at day 10 baseline throughout the entire three weeks of follow-up. As shown in Figure 2, this group of animals had mean BGL below pre-therapy levels throughout the entire study period, while media-treated controls demonstrated progressively increased BGL levels.
- the group receiving an intra-arterial injection of STRO-I + cells at day 10 post STZ treatment demonstrated mean BGL reductions of -11%, -14%, and -4% relative to baseline BGL at days 7, 14, and 21, respectively.
- the control group receiving intra-arterial media alone demonstrated mean BGL increases of +8%, +20%, and +17% relative to baseline BGL at days 7, 4, and 21, respectively.
- Single Intra-Arterial Injection of STRO-I Cells Results in Increased Pancreatic Microvessel Density in Diabetic NOD/scid Mice
- Pancreatic tissues were stained with a directly conjugated monoclonal antibody (mAb) against smooth muscle actin protein to determine whether or not STRO-I + cell therapy induces arteriogenesis in the damaged pancreas. After immunostaining, the entire section was scanned and the total number of microvessels were counted and normalized to the total sectional area. Vessel numbers were counted and categorized based on size into 3 distinct vessel diameters of ⁇ 20 ⁇ m, 20-100 ⁇ m and >100 ⁇ m.
- mAb monoclonal antibody
- therapy with STRO-I + cells induces a small caliber arteriolar response within the damaged pancreas.
- islet sections from healthy non-diabetic NOD/scid mice, diabetic NOD/scid mice treated with control media, and diabetic NOD/scid mice treated with intra-arterial STRO-I + cells were immunohistochemically examined using anti-PDX-1 mAb.
- Anti-mouse insulin mAb staining was used to quantify numbers of beta cells within islets in pancreatic sections of healthy non-diabetic NOD/scid mice, diabetic NOD/scid mice treated with control media, and diabetic NOD/scid mice treated intra- arterially with STRO-I + cells.
- Anti-glucagon mAb staining was used to quantify numbers of alpha cells within islets in pancreatic sections of healthy non-diabetic NOD/scid mice, diabetic NOD/scid mice treated with control media, and diabetic NOD/scid mice treated intra-arterially with STRO-I + cells.
- GLP-I glucagon-like peptide- 1
- GLP-I analogs which are either long-acting receptor agonists or resistant to degradation by the natural antagonist of GLP-I, dipeptidyl peptidase IV (DPPIV), and (2) orally-active DPPIV antagonists which result in increased endogenous GLP-I activity.
- DPPIV dipeptidyl peptidase IV
- DPPIV antagonists are unable to reverse established diabetes in STZ-treated mice despite increasing endogenous GLP-I levels (Kim et al., Diabetes 50:1562-1570, 2001), and are only able to improve hyperglycemia in the setting of sustained administration concomitant with low-dose STZ and partial beta cell loss (Mu et al., Diabetes 55: 1695-1704, 2006).
- GLP-I agonists are only effective when given prior to or concomitantly with STZ and require sustained administration (Tourrell et al., Diabetes 50:1562-1570, 2001; Li et al., J Biol Chem 278:471-478, 2003; Gezginci-Oktayoglu and Bolkent, Biochem Cell Biol 57:641-651, 2009). Together, these data suggest that DPPIV inhibitors and GLP-I analogs are only effective for facilitating beta cell regeneration when significant beta cell mass still exists.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Virology (AREA)
- Endocrinology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Obesity (AREA)
- Reproductive Health (AREA)
Abstract
Description
Claims
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/129,180 US8894972B2 (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
JP2011536703A JP5891034B2 (en) | 2008-11-20 | 2009-11-19 | Treatment or prevention of pancreatic dysfunction |
KR1020117012519A KR101832497B1 (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
CA2744228A CA2744228C (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
KR1020187004814A KR102011609B1 (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
DK09827049.9T DK2350266T3 (en) | 2008-11-20 | 2009-11-19 | METHOD OF TREATMENT OR PREVENTION OF PANCREATIVE DYSFUNCTION |
ES09827049.9T ES2550795T3 (en) | 2008-11-20 | 2009-11-19 | Method to treat or prevent pancreatic dysfunction |
CN200980155054.2A CN102307992B (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
EP09827049.9A EP2350266B1 (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
AU2009317874A AU2009317874B2 (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
US14/535,827 US9480713B2 (en) | 2008-11-20 | 2014-11-07 | Method for treating diabetic renal failure or syndrome X |
US15/336,234 US9968640B2 (en) | 2008-11-20 | 2016-10-27 | Method for treating or preventing a pancreatic dysfunction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19979608P | 2008-11-20 | 2008-11-20 | |
US61/199,796 | 2008-11-20 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/129,180 A-371-Of-International US8894972B2 (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
US14/535,827 Continuation US9480713B2 (en) | 2008-11-20 | 2014-11-07 | Method for treating diabetic renal failure or syndrome X |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010057260A1 true WO2010057260A1 (en) | 2010-05-27 |
Family
ID=42197754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2009/001511 WO2010057260A1 (en) | 2008-11-20 | 2009-11-19 | Method for treating or preventing a pancreatic dysfunction |
Country Status (11)
Country | Link |
---|---|
US (3) | US8894972B2 (en) |
EP (2) | EP3002329B1 (en) |
JP (6) | JP5891034B2 (en) |
KR (2) | KR102011609B1 (en) |
CN (3) | CN104546912B (en) |
AU (1) | AU2009317874B2 (en) |
CA (1) | CA2744228C (en) |
DK (1) | DK2350266T3 (en) |
ES (2) | ES2651503T3 (en) |
HK (2) | HK1197186A1 (en) |
WO (1) | WO2010057260A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012000065A1 (en) * | 2010-07-02 | 2012-01-05 | Angioblast Systems, Inc. | Treatment of t-cell mediated immune disorders |
CN103619342A (en) * | 2011-05-19 | 2014-03-05 | 麦瑟布莱斯特公司 | Methods for treating obesity and/or metabolic syndrome |
JP2014516974A (en) * | 2011-06-03 | 2014-07-17 | メゾブラスト,インコーポレーテッド | Methods for treating or preventing neurological diseases |
JP2014520760A (en) * | 2011-07-04 | 2014-08-25 | メゾブラスト,インコーポレーテッド | Methods for preventing or treating rheumatic diseases |
WO2018005551A1 (en) * | 2016-06-27 | 2018-01-04 | President And Fellows Of Harvard College | Compounds useful to treat metabolic disorders |
US10472609B2 (en) | 2011-07-06 | 2019-11-12 | Cell Therapy Limited | Progenitor cells of mesodermal lineage |
US10882901B2 (en) | 2009-03-05 | 2021-01-05 | President And Fellows Of Harvard College | Methods of treating diabetes by an adipocyte protein 2 specific antibody |
US11014979B2 (en) | 2015-04-30 | 2021-05-25 | President And Fellows Of Harvard College | Anti-AP2 antibodies and antigen binding agents to treat metabolic disorders |
US11345748B2 (en) | 2017-06-09 | 2022-05-31 | President And Fellows Of Harvard College | Method of treating idiopathic pulmonary fibrosis and kidney fibrosis |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3002329B1 (en) * | 2008-11-20 | 2017-08-16 | Mesoblast, Inc. | Method for treating or preventing a pancreatic dysfunction |
CN104098682B (en) * | 2013-04-03 | 2018-01-02 | 苏州偲聚生物材料有限公司 | Polypeptide, the detection device comprising the polypeptide and detection kit |
EP3556850A1 (en) * | 2012-12-12 | 2019-10-23 | Mesoblast, Inc. | Treatment of diseases of endothelial dysfunction and inflammation |
US20140314872A1 (en) * | 2013-04-22 | 2014-10-23 | Hans Klingemann | Methods of Use of Culture Supernatant Obtained from Mesenchymal Stem Cells from Dogs and Cats for Treatment of Organ Dysfunction |
CN104714021B (en) * | 2013-12-12 | 2016-05-25 | 张曼 | Urine factor albumen merges the application in coronary heart disease at diabetes B |
CN110959579A (en) * | 2019-11-14 | 2020-04-07 | 顾隽 | Construction method and application of patient-derived lymphoma immunodeficiency mouse transplantation tumor model |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992001070A1 (en) | 1990-07-09 | 1992-01-23 | The United States Of America, As Represented By The Secretary, U.S. Department Of Commerce | High efficiency packaging of mutant adeno-associated virus using amber suppressions |
US5139941A (en) | 1985-10-31 | 1992-08-18 | University Of Florida Research Foundation, Inc. | AAV transduction vectors |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
WO1993003769A1 (en) | 1991-08-20 | 1993-03-04 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTEMENT OF HEALTH AND HUMAN SERVICES | Adenovirus mediated transfer of genes to the gastrointestinal tract |
WO2001004268A1 (en) | 1999-07-07 | 2001-01-18 | Medvet Science Pty Ltd | Mesenchymal precursor cell |
WO2001014268A1 (en) | 1999-08-21 | 2001-03-01 | Schott Glas | Skull pot for melting or refining inorganic substances, especially glasses and glass ceramics |
WO2004085630A1 (en) | 2003-03-28 | 2004-10-07 | Angioblast Systems Incorporated | Perivascular mesenchymal precursor cells |
WO2006032092A1 (en) | 2004-09-24 | 2006-03-30 | Angioblast Systems, Inc. | Multipotential expanded mesenchymal precursor cell progeny (memp) and uses thereof |
US9405700B2 (en) | 2010-11-04 | 2016-08-02 | Sonics, Inc. | Methods and apparatus for virtualization in an integrated circuit |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003262628A1 (en) * | 2002-08-14 | 2004-03-03 | University Of Florida | Bone marrow cell differentiation |
KR100821128B1 (en) * | 2003-11-04 | 2008-04-14 | 가부시키가이샤 바이오마스타 | Method and system for preparing stem cells from fat tissue |
EP2399991B1 (en) * | 2005-04-12 | 2017-09-27 | Mesoblast, Inc. | Isolation of adult multipotential cells by tissue non-specific alkaline phosphatase |
GB0514785D0 (en) * | 2005-07-19 | 2005-08-24 | Innovia Films Ltd | Sealed ream wrap package and films suitable for forming such packages |
AU2007243221A1 (en) * | 2006-04-28 | 2007-11-08 | Tulane University Health Sciences Center | Methods for treating diabetes |
WO2008094689A2 (en) * | 2007-02-01 | 2008-08-07 | Nephrogen, Llc | Potentiation of stem cell homing and treatment of organ dysfunction or organ failure |
EP3002329B1 (en) | 2008-11-20 | 2017-08-16 | Mesoblast, Inc. | Method for treating or preventing a pancreatic dysfunction |
-
2009
- 2009-11-19 EP EP15178550.8A patent/EP3002329B1/en active Active
- 2009-11-19 EP EP09827049.9A patent/EP2350266B1/en active Active
- 2009-11-19 KR KR1020187004814A patent/KR102011609B1/en active IP Right Grant
- 2009-11-19 CN CN201410727242.0A patent/CN104546912B/en active Active
- 2009-11-19 CA CA2744228A patent/CA2744228C/en active Active
- 2009-11-19 AU AU2009317874A patent/AU2009317874B2/en active Active
- 2009-11-19 ES ES15178550.8T patent/ES2651503T3/en active Active
- 2009-11-19 ES ES09827049.9T patent/ES2550795T3/en active Active
- 2009-11-19 CN CN200980155054.2A patent/CN102307992B/en active Active
- 2009-11-19 JP JP2011536703A patent/JP5891034B2/en active Active
- 2009-11-19 US US13/129,180 patent/US8894972B2/en active Active
- 2009-11-19 WO PCT/AU2009/001511 patent/WO2010057260A1/en active Application Filing
- 2009-11-19 DK DK09827049.9T patent/DK2350266T3/en active
- 2009-11-19 CN CN201310652234.XA patent/CN103800370B/en active Active
- 2009-11-19 KR KR1020117012519A patent/KR101832497B1/en active IP Right Grant
-
2014
- 2014-10-27 HK HK14110752A patent/HK1197186A1/en unknown
- 2014-11-07 US US14/535,827 patent/US9480713B2/en active Active
-
2015
- 2015-06-02 JP JP2015111995A patent/JP6499016B2/en active Active
-
2016
- 2016-10-05 HK HK16111604.7A patent/HK1223396A1/en unknown
- 2016-10-27 US US15/336,234 patent/US9968640B2/en active Active
-
2017
- 2017-06-07 JP JP2017112578A patent/JP2017214384A/en not_active Withdrawn
-
2019
- 2019-09-06 JP JP2019162845A patent/JP7051770B2/en active Active
-
2021
- 2021-10-29 JP JP2021177234A patent/JP2022031662A/en not_active Withdrawn
-
2023
- 2023-05-26 JP JP2023086994A patent/JP2023116536A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139941A (en) | 1985-10-31 | 1992-08-18 | University Of Florida Research Foundation, Inc. | AAV transduction vectors |
WO1992001070A1 (en) | 1990-07-09 | 1992-01-23 | The United States Of America, As Represented By The Secretary, U.S. Department Of Commerce | High efficiency packaging of mutant adeno-associated virus using amber suppressions |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
WO1993003769A1 (en) | 1991-08-20 | 1993-03-04 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTEMENT OF HEALTH AND HUMAN SERVICES | Adenovirus mediated transfer of genes to the gastrointestinal tract |
WO2001004268A1 (en) | 1999-07-07 | 2001-01-18 | Medvet Science Pty Ltd | Mesenchymal precursor cell |
WO2001014268A1 (en) | 1999-08-21 | 2001-03-01 | Schott Glas | Skull pot for melting or refining inorganic substances, especially glasses and glass ceramics |
WO2004085630A1 (en) | 2003-03-28 | 2004-10-07 | Angioblast Systems Incorporated | Perivascular mesenchymal precursor cells |
WO2006032092A1 (en) | 2004-09-24 | 2006-03-30 | Angioblast Systems, Inc. | Multipotential expanded mesenchymal precursor cell progeny (memp) and uses thereof |
US9405700B2 (en) | 2010-11-04 | 2016-08-02 | Sonics, Inc. | Methods and apparatus for virtualization in an integrated circuit |
Non-Patent Citations (77)
Title |
---|
"Animal Cell Culture: Practical Approach", 2000 |
"DNA Cloning: A Practical Approach", vol. I, II, 1985, IRL PRESS |
"Handbook of Experimental Immunology", vol. I-IV, 1986, BLACKWELL SCIENTIFIC PUBLICATIONS |
"Immobilized Cells and Enzymes: A Practical Approach", 1986, IRL PRESS |
"Nucleic Acid Hybridization: A Practical Approach", 1985, IRL PRESS |
"Oligonucleotide Synthesis: A Practical Approach", 1984, IRL PRESS |
"Pharmaceutical Dosage Forms: Disperse Systems", 1990, MARCEL DEKKER |
"Pharmaceutical Dosage Forms: Parenteral Medications", 1993, MARCEL DEKKER |
"Pharmaceutical Dosage Forms: Tablets", 1990, MARCEL DEKKER |
"Remington's Pharmaceutical Sciences", 1980, MAC PUBLISHING COMPANY |
"Synthese von Peptiden in Houben-Weyls Metoden der Organischen Chemie", vol. 15, 1974, THIEME |
ARULMOZHI ET AL., INDIAN J. PHARMACOL., vol. 36, 2004, pages 217 - 221 |
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1987, WILEY INTERSCIENCE |
BABU ET AL., MOL ENDOCRINOL., vol. 20, 2006, pages 3133 - 3145 |
BARANY, G.; MERRIFIELD, R.B.: "The Peptides", vol. 2, 1979, ACADEMIC PRESS, pages: 1 - 284 |
BODANSZKY, M., INT. J. PEPTIDE PROTEIN RES., vol. 25, 1985, pages 449 - 474 |
BODANSZKY, M.: "Principles of Peptide Synthesis", 1984, SPRINGER-VERLAG |
BODANSZKY, M.; BODANSZKY, A.: "The Practice of Peptide Synthesis", 1984, SPRINGER-VERLAG |
BOTTAZZO ET AL., LANCET, vol. 2, 1974, pages 1279 - 83 |
BROOKING ET AL., CLIN CHIM ACTA, vol. 331, 2003, pages 55 - 59 |
BUCHSCHER ET AL., J VIROL., vol. 56, 1992, pages 2731 - 2739 |
BURNS ET AL., J. ENDOCRINOLOGY, vol. 103, 2004, pages 437 - 443 |
BURNS ET AL., PROC. NATL. ACAD. SCI USA, vol. 90, 1993, pages 8033 - 8037 |
BUTEAU, DIABETES AND METABOLISM, vol. 34, 2008, pages S73 - S77 |
CARAWAY, AM. J. CLIN. PATHOL., vol. 32, 1959, pages 97 - 99 |
CARTER, CURRENT OPINION IN BIOTECHNOLOGY, vol. 5, 1992, pages 533 - 539 |
CIMA ET AL., BIOTECHNOL. BIOENG., vol. 38, 1991, pages 145 |
CONNON ET AL., DIGESTIVE DISEASES AND SCIENCES, vol. 23, 1978, pages 472 - 475 |
EZQUER, F. E. ET AL.: "Systemic Administration of Multipotent Mesenchymal Stromal Cells Reverts Hyperglycemia and Prevents Nephropathy in Type 1 Diabetic Mice", BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION., vol. 14, no. 6, June 2008 (2008-06-01), pages 631 - 640, XP022668419 * |
FISHER-HOCH ET AL., PROC. NATL ACAD. SCI. USA, vol. 56, 1989, pages 317 - 321 |
FRESHNEY, R. 1.: "Culture of Animal Cells", 2000, WILEY-LISS |
GENNARO: "Remington: The Science and Practice of Pharmacy", 2000, LIPPINCOTT, WILLIAMS, AND WILKINS |
GEZGINCI-OKTAYOGLU; BOLKENT, BIOCHEM CELL BIOL, vol. 87, 2009, pages 641 - 651 |
GRONTHOS ET AL., BLOOD, vol. 85, 1995, pages 929 - 940 |
GRONTHOS, S. ET AL.: "'Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow", JOURNAL OF CELL SCIENCE., vol. 116, 2003, pages 1827 - 1835, XP009083626 * |
GRONTHOS; ZANNETINO, METHODS MOL BIOL., vol. 449, 2008, pages 45 - 57 |
HARDMAN ET AL.: "Goodman and Gilman's The Pharmacological Basis of Therapeutics", 2001, MCGRAW-HILL |
J.F. RAMALHO ORTIGAO: "The Chemistry of Peptide Synthesis", KNOWLEDGE DATABASE OF ACCESS TO VIRTUAL LABORATORY WEBSITE (INTERACTIVA, GERMANY |
JOHANN ET AL., J. VIROL., vol. 65, 1992, pages 1635 - 1640 |
KAHN ET AL., AM. J. MED., vol. 108, 2000, pages 2S - 8S |
KIM ET AL., DIABETES, vol. 50, 2001, pages 1562 - 1570 |
KOLF, C. M. ET AL.: "Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation", ARTHRITIS RESEARCH & THERAPY., vol. 9, no. 1, 2007, pages 204 - 211, XP008146968 * |
KOTIN, HUMAN GENE THERAPY, vol. 5, 1994, pages 793 - 801 |
LEBKOWSKI ET AL., MOLEC. CELL. BIOL., vol. 5, 1988, pages 3988 - 3996 |
LEE, R. H. ET AL.: "'Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE OF THE UNITED STATES OF AMERICA., vol. 103, no. 46, 2006, pages 17438 - 17443, XP002459835 * |
LI ET AL., J BIOL CHEM, vol. 278, 2003, pages 471 - 478 |
LIU ET AL., MOL THER, vol. 15, 2007, pages 86 - 93 |
LIU, M. ET AL.: "Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy", JOURNAL OF CELLULAR AND MOLECULAR MEDICINE., vol. 12, no. 4, August 2008 (2008-08-01), pages 1155 - 1168, XP002541175 * |
LÚKIC ET AL., DEVELOPMENTAL IMMUNOL., vol. 6, 1998, pages 119 - 128 |
MERRIFIELD, R.B., J. AM. CHEM. SOC., vol. 85, 1963, pages 2149 - 2154 |
MILLER ET AL., J. VIROL., vol. 65, 1991, pages 2220 - 2224 |
MILLER, A. D, HUMAN GENE THERAPY, vol. 7, 1990, pages 5 - 14 |
MILLER; ROSMAN, BIOTECHNIQUES, vol. 7, 1989, pages 980 - 990 |
MU ET AL., DIABETES, vol. 55, 2006, pages 1695 - 1704 |
MUZYCZKA, CURRENT TOPICS IN MICROBIOL, AND IMMUNOL., vol. 158, 1992, pages 97 - 129 |
NAGATA ET AL., ANN. NEW YORK ACAD. SCI, vol. 1037, 2004, pages 10 - 15 |
OH, S-H. ET AL.: "Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes", LABORATORY INVESTIGATION., vol. 84, 2004, pages 607 - 617, XP008146969 * |
PERBAL, B.: "Methods In Enzymology", 1984, ACADEMIC PRESS, INC., article "A Practical Guide to Molecular Cloning" |
POLLARD, J. W.; WALKER, J. M.: "Basic Cell Culture Protocols", 1997, HUMANA PRESS |
REES; ALCOLADO, DIABET. MED., vol. 22, 2005, pages 359 - 70 |
RINDERKNECHT; MARBACH, CLIN. CHEM. ACTA, vol. 29, 1972, pages 107 - 110 |
SAKAKIBARA, D.; TEICHMAN, J.; LIEN, E.; FENICHEL, R.L., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 73, 1976, pages 336 - 342 |
SAMBROOK ET AL.: "Molecular Cloning: Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORIES |
SAMBROOK; FRITSCH; MANIATIS: "Molecular Cloning: A Laboratory Manual", vol. I, II, 1989, COLD SPRING HARBOR LABORATORIES |
SCARPA ET AL., VIROLOGY, vol. 75, 1991, pages 849 - 852 |
SHAPIRO ET AL., NEW ENG. J. MED., vol. 343, 2000, pages 230 - 238 |
SHELLING; SMITH, GENE THERAPY, vol. 7, 1994, pages 165 - 169 |
SOMMERFELT ET AL., VIROL., vol. 76, 1990, pages 58 - 59 |
TOURRELL ET AL., DIABETES, vol. 50, 2001, pages 1562 - 1570 |
VACANTI ET AL., J. PED. SURG., vol. 23, 1988, pages 3 - 9 |
VACANTI ET AL., PLAST. RECONSTR. SURG., vol. 88, 1991, pages 753 - 9 |
VINCENT ET AL.: "Vaccines", 1990, COLD SPRING HARBOR LABORATORY PRESS, pages: 90 |
WANG ET AL., DIABETES, vol. 47, 1998, pages 50 - 6 |
WEINER; KOTKOSKIE: "Excipient Toxicity and Safety", 2000, MARCEL DEKKER, INC |
WILSON ET AL., J. VIROL., vol. 63, 1989, pages 274 - 2318 |
ZHOU ET AL., J EXP. MED., vol. 179, 1994, pages 1867 - 1875 |
ZHOU ET AL., NATURE, vol. 455, 2008, pages 627 - 632 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10882901B2 (en) | 2009-03-05 | 2021-01-05 | President And Fellows Of Harvard College | Methods of treating diabetes by an adipocyte protein 2 specific antibody |
AU2011274255B2 (en) * | 2010-07-02 | 2016-05-05 | Mesoblast, Inc. | Treatment of T-cell mediated immune disorders |
EP2593115A1 (en) * | 2010-07-02 | 2013-05-22 | Mesoblast, Inc. | Treatment of t-cell mediated immune disorders |
JP2013530992A (en) * | 2010-07-02 | 2013-08-01 | メゾブラスト,インコーポレーテッド | Treatment for T-cell immune deficiency |
EP2593115A4 (en) * | 2010-07-02 | 2013-12-04 | Mesoblast Inc | Treatment of t-cell mediated immune disorders |
US10849932B2 (en) | 2010-07-02 | 2020-12-01 | Mesoblast, Inc. | Method of treating graft versus host disease |
US10105394B2 (en) | 2010-07-02 | 2018-10-23 | Mesoblast, Inc. | Method of treating graft versus host disease |
JP2018039845A (en) * | 2010-07-02 | 2018-03-15 | メゾブラスト,インコーポレーテッド | Method for treatment of t-cell mediated immune disorders |
WO2012000065A1 (en) * | 2010-07-02 | 2012-01-05 | Angioblast Systems, Inc. | Treatment of t-cell mediated immune disorders |
CN107638428A (en) * | 2011-05-19 | 2018-01-30 | 麦瑟布莱斯特公司 | Method for treating obesity and/or metabolic syndrome |
US10159696B2 (en) | 2011-05-19 | 2018-12-25 | Mesoblast, Inc. | Methods for treating obesity and/or metabolic syndrome |
CN103619342A (en) * | 2011-05-19 | 2014-03-05 | 麦瑟布莱斯特公司 | Methods for treating obesity and/or metabolic syndrome |
US9388385B2 (en) | 2011-05-19 | 2016-07-12 | Mesoblast, Inc. | Methods for treating obesity and/or metabolic syndrome |
EP2709634A1 (en) * | 2011-05-19 | 2014-03-26 | Mesoblast, Inc. | Methods for treating obesity and/or metabolic syndrome |
EP2709634A4 (en) * | 2011-05-19 | 2014-12-17 | Mesoblast Inc | Methods for treating obesity and/or metabolic syndrome |
KR101967492B1 (en) * | 2011-05-19 | 2019-04-09 | 메소블라스트, 아이엔씨. | Methods for treating obesity and/or metabolic syndrome |
JP2014513701A (en) * | 2011-05-19 | 2014-06-05 | メゾブラスト,インコーポレーテッド | Methods for treating obesity and / or metabolic syndrome |
AU2016247132B2 (en) * | 2011-05-19 | 2018-07-12 | Mesoblast, Inc. | Methods for treating obesity and/or metabolic syndrome |
KR20140053909A (en) * | 2011-05-19 | 2014-05-08 | 메소블라스트, 아이엔씨. | Methods for treating obesity and/or metabolic syndrome |
JP2014516974A (en) * | 2011-06-03 | 2014-07-17 | メゾブラスト,インコーポレーテッド | Methods for treating or preventing neurological diseases |
US10206951B2 (en) | 2011-06-03 | 2019-02-19 | Mesoblast, Inc. | Methods of treating multiple sclerosis using STRO-1+ and TNAP+ multipotential cells |
JP2018016639A (en) * | 2011-07-04 | 2018-02-01 | メゾブラスト,インコーポレーテッド | Methods of treating or preventing rheumatic disease |
JP2014520760A (en) * | 2011-07-04 | 2014-08-25 | メゾブラスト,インコーポレーテッド | Methods for preventing or treating rheumatic diseases |
US10472609B2 (en) | 2011-07-06 | 2019-11-12 | Cell Therapy Limited | Progenitor cells of mesodermal lineage |
US10829739B2 (en) | 2011-07-06 | 2020-11-10 | Cell Therapy Limited | Progenitor cells of mesodermal lineage |
US11873513B2 (en) | 2011-07-06 | 2024-01-16 | Cell Therapy Limited | Progenitor cells of mesodermal lineage |
US11014979B2 (en) | 2015-04-30 | 2021-05-25 | President And Fellows Of Harvard College | Anti-AP2 antibodies and antigen binding agents to treat metabolic disorders |
WO2018005551A1 (en) * | 2016-06-27 | 2018-01-04 | President And Fellows Of Harvard College | Compounds useful to treat metabolic disorders |
US11345748B2 (en) | 2017-06-09 | 2022-05-31 | President And Fellows Of Harvard College | Method of treating idiopathic pulmonary fibrosis and kidney fibrosis |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9968640B2 (en) | Method for treating or preventing a pancreatic dysfunction | |
AU2018247196A1 (en) | Methods for treating obesity and/or metabolic syndrome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980155054.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09827049 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009317874 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2744228 Country of ref document: CA Ref document number: 2011536703 Country of ref document: JP Ref document number: 2009827049 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117012519 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2009317874 Country of ref document: AU Date of ref document: 20091119 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13129180 Country of ref document: US |