WO2010055875A1 - Guide wire for insertion in living body lumen - Google Patents

Guide wire for insertion in living body lumen Download PDF

Info

Publication number
WO2010055875A1
WO2010055875A1 PCT/JP2009/069254 JP2009069254W WO2010055875A1 WO 2010055875 A1 WO2010055875 A1 WO 2010055875A1 JP 2009069254 W JP2009069254 W JP 2009069254W WO 2010055875 A1 WO2010055875 A1 WO 2010055875A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
distal end
living body
guide wire
tip
Prior art date
Application number
PCT/JP2009/069254
Other languages
French (fr)
Japanese (ja)
Inventor
定夫 尾股
Original Assignee
学校法人 日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 日本大学 filed Critical 学校法人 日本大学
Publication of WO2010055875A1 publication Critical patent/WO2010055875A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2212Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having a closed distal end, e.g. a loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2215Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having an open distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • A61M2025/09183Guide wires having specific characteristics at the distal tip having tools at the distal tip

Definitions

  • the present invention relates to a guide tube for inserting a living body tube portion, and more particularly, to a guide wire for inserting a living body tube portion that is inserted into an axial through hole of a catheter and is movable and rotatable in the axial direction.
  • a blood clot or plaque or the like is present in a blood vessel in a living body, blood vessel stenosis occurs. Therefore, in order to dilate the blood vessel, a balloon or a stent is placed through a catheter.
  • Patent Document 1 discloses a filter element that is mounted on a filter carrier for feeding through a patient's vasculature and has an inlet end and an outlet end, and can be folded as an embolus prevention device.
  • the filter element has one or more inlet openings whose inlet end is sized to allow blood and embolic material to enter the filter body, the outlet end of which allows blood to pass, but preferably within the filter body. It has a plurality of outlet openings that are sized to trap any material.
  • a drawer device which is a catheter or pod, engages the filament, slides on the filter to fold the filter element, and the filter element is rotatably mounted on the filter carrier.
  • a blood vessel that becomes narrowed by a thrombus or the like can be expanded.
  • a thin blood vessel of 1 mm or less such as a cerebral blood vessel
  • these can be treated using a catheter. It is almost impossible to insert.
  • it is possible to capture an embolic substance in a blood vessel and, depending on the case, to draw it out and discharge it, but in order to add a complicated filter structure, it can be applied to a thin blood vessel.
  • a guide wire for inserting a biological tube includes a root portion to which a rotation mechanism is connected, a main body portion that is inserted into an axial through hole of a catheter, is movable in the axial direction, and can be rotated around an axis.
  • the guide wire is made of a shape memory alloy material imparted with super elasticity.
  • the distal end portion is divided into a plurality of elongated portions at the end portion of the main body portion by a plurality of slits having end portions on both sides.
  • the distal end portion is divided into a plurality of elongated portions at the end portion of the main body portion by a plurality of cuts having an end portion on the root side and opening the distal end side. It is preferable.
  • the tip portion is provided with uneven portions at a plurality of cut portions.
  • the distal end portion has coupling means for integrally coupling the divided portions at the distal end side of the plurality of divided portions divided by the cuts.
  • the root portion and the main body portion originally have the same outer diameter before being divided, and the distal end portion has a predetermined axial length.
  • a portion having a length not exceeding half of the circumferential length of the sphere in contact with the inner diameter of the target biological tube portion is divided into a plurality of elongated portions by slitting along the axial direction or cutting by a cut along the axial direction. It is preferable.
  • the guide tube for inserting a biological tube has a sheet-like thin film attached over the entire circumference along the circumferential direction in a part of the longitudinal direction of the tip, When the distal end portion expands into an envelope contour shape, the distal end portion expands into an envelope contour shape.
  • the distal end portion When the distal end portion is housed in the axial through hole of the catheter, the distal end portion is folded together with the distal end portion so as to be axially penetrated through the catheter. It is preferable to be housed in
  • the sheet-like thin film is preferably a mesh-like thin film having an opening in a mesh shape.
  • the sheet-like thin film is preferably made of a shape memory alloy material imparted with superelasticity.
  • the main body portion has a tubular shape including an axial center hole, and the distal end portion is free to the distal end side among a plurality of elongated divided portions. At least one divided portion having an end, the non-expanded divided portion not provided with superelasticity so as to expand into an envelope contour shape when the distal end protrudes from the distal end of the catheter, and A heater part that is inserted into the axial center hole of the main body part, and heat-deforms the free end on the front end side of the non-expanded divided part to have a predetermined shape by heating the front end part. It is preferable to provide a part.
  • the guide tube for inserting a living body tube portion is divided into a plurality of elongated portions along the axial direction at a predetermined axial length portion at the end of the body portion inserted into the axial through hole of the catheter.
  • tip part protrudes from the front-end
  • segmentation parts each expand in the direction perpendicular
  • the tip is plastically deformed into a predetermined envelope contour shape so that it does not exceed the elastic limit even if it is inserted into the catheter and deformed, it can be used as a free shape when protruding from the tip of the catheter.
  • the thickness passing through the axial through hole of the catheter is the same for the main body portion and the distal end portion.
  • the outer diameter of the catheter depends on the outer shape of the catheter that passes through the catheter. However, if only one guide wire is passed, the outer diameter of the catheter itself can be 1 mm or less.
  • the guide wire for inserting a living body tube is made of a shape memory alloy material to which super elasticity is imparted. Since shape memory alloys with superelasticity still remain at the elastic limit even when subjected to large deformations, they do not exceed the elastic limit even if they are inserted into the catheter and greatly deformed.
  • the contour shape can be formed by fairly large plastic deformation. Therefore, since the envelope contour shape for entwining the thrombus can be increased, the ability to remove the thrombus can be enhanced.
  • the tip portion protrudes from the tip of the catheter, a plurality of elongated divided portions are perpendicular to the axial direction. Since the envelope contour shape is formed in a predetermined direction to form a predetermined envelope contour shape, it can be applied to a thinner living body tube portion as compared with the prior art. Further, since the envelope contour shape of the tip portion can be rotated around the axis, an occlusive substance such as a thrombus can be entangled and captured in this envelope contour shape.
  • the distal end portion is divided into a plurality of elongated portions by a plurality of slits having end portions on both sides at the end portion of the main body portion. That is, a living body tube insertion guide wire can be obtained only by performing a process of making a slit in the distal end portion of the guide wire.
  • the distal end portion is divided into a plurality of elongated portions at the end portion of the main body portion by a plurality of cuts having end portions on the root side and opened on the distal end side.
  • a guide wire for inserting a living body tube can be obtained more easily than the process of inserting a slit.
  • the tip portion is provided with uneven portions at a plurality of cut portions. This makes it easier to entangle and capture occlusive substances such as thrombus.
  • the distal end portion has coupling means for integrally coupling the divided portions on the distal end side of the plurality of divided portions divided by the cuts.
  • the base portion and the main body portion originally have an outer diameter of the same thickness before being divided, and a sphere in contact with the inner diameter of the target living body tube portion at the distal end portion
  • a portion having a length not exceeding half of the circumferential length is divided into a plurality of elongated portions by cutting with slits along the axial direction or cuts along the axial direction.
  • a sheet-like thin film is attached to a part of the distal end in the longitudinal direction along the entire circumference.
  • the sheet-like thin film expands together with the distal end portion into an envelope contour shape when the distal end portion expands into an envelope contour shape, and folds together with the distal end portion when the distal end portion is housed in the axial through hole of the catheter. And stored in the axial through hole of the catheter.
  • occlusion substance of a biological tube part can be capture
  • the sheet-like thin film is a mesh-like thin film having an opening in a mesh shape. Capture can be performed efficiently.
  • the sheet-like thin film is made of a shape memory alloy material to which superelasticity is imparted, so that it is easy to specify the size when expanding.
  • the main body portion has a tubular shape including an axial center hole, into which a heater portion is inserted. Then, at least one of the divided portions of the distal end portion is heated by the heater portion, so that the free end on the distal end side is thermally deformed so as to have a predetermined shape.
  • a tip-shaped divided portion that efficiently captures the occlusive substance of the biological tube portion can be obtained, so that the occlusive substance of the biological tube portion is further efficiently captured. be able to.
  • a nickel-titanium alloy will be described as a shape memory material to which a superelastic metal is applied.
  • a nickel-titanium alloy is 5 to 10 times that of a normal metal by heat treatment.
  • Any metal can be used as long as it has the elastic range and has superelastic characteristics that can return to its original shape even when a large deformation is applied.
  • it may be an alloy based on a nickel-titanium alloy and optionally added with copper, cobalt, chromium, iron or the like, or may be a nickel-aluminum alloy or the like.
  • FIG. 1 is a diagram for explaining the configuration and operation of a guide wire 20 for inserting a biological tube.
  • the catheter 10 and the blood vessel 4 as the living tube portion into which these are inserted are shown.
  • the blood vessel 4 is shown to have a blocking substance 8 attached to the tube wall of the tube portion 6 through which blood passes, and that portion being narrowed.
  • a representative example of the occlusive substance is an athenome segment formed in the carotid artery. Since the blood vessel 4 is constricted by these occluding substances and the blood flow is stopped in some cases is called a thrombus, the occluding substance is also a thrombotic substance.
  • the catheter 10 is passed from the outside into the blood vessel 4 and inserted to the affected area, where the balloon is expanded using the inner catheter or guide wire, or the stent is expanded.
  • the balloon or stent cannot be carried to the affected area by the catheter 10 in a thin blood vessel, the thrombus substance is dissolved with a drug or the like.
  • the guide wire 20 for inserting the living body tube portion is simply referred to as the guide wire 20.
  • the entire instrument that encloses an elongate wire or the like in an elongate tube and passes the inside of the blood vessel 4 as a whole is sometimes called a catheter.
  • the outer tube is made of an outer catheter or an outer catheter.
  • the elongate wires stored in the through holes are distinguished from each other as inner catheters. Therefore, the catheter 10 of FIG. 1 can also be called an outer catheter and the guide wire 20 can be called an inner catheter.
  • the catheter 10 is a tube having a function of passing the guide wire 20.
  • a catheter 10 a general one selected for medical use and having a thin outer diameter can be used.
  • the outer diameter is preferably about 2 mm or less, preferably about 1 mm or less, and about 0.80 mm which is a standard inch type.
  • the inner diameter has such a dimension that the guide wire 20 can be smoothly introduced while having a sufficient tube thickness and a gap that can be moved in the axial direction can be secured.
  • the inner diameter is preferably 0.46 mm.
  • the catheter 10 a nylon tube in which a stainless mesh is embedded can be used.
  • the guide wire 20 includes a root portion 22, a main body portion 24, and an expanded distal end portion 30 shown as an expanded state in FIG. 1.
  • the expanded distal end portion 30 is in an expanded state when protruding from the distal end of the catheter 10, but is originally a material having the same thickness as the main body portion 24.
  • the guide wire 20 is an elongated bar that is originally composed of a single material having the same thickness.
  • the outer diameter is preferably about 1 mm or less, preferably 0.5 mm or less, for example, about 0.43 mm to 0.25 mm, which is a standard numerical value for an inch system.
  • shape memory alloy material As shape memory alloy material, it has superelasticity by heat treatment in a deformed state, and has an elastic range of 5 to 10 times that of normal metal when returned to room temperature. However, a material that can return to its original shape when the deformation force is removed is used. As such a metal material, a nickel-titanium alloy can be used.
  • the nickel-titanium alloy can have a shape recovery temperature of room temperature or lower, and can be, for example, about 500 ° C. for about 30 minutes as a heat treatment for imparting superelasticity.
  • the root mechanism 22 of the guide wire 20 is connected to the rotation mechanism 12.
  • the rotation mechanism 12 is a mechanism that rotates the guide wire 20 around an axis, and can be configured with a small motor, a drive circuit, and the like. In some cases, a handle mechanism can be provided so that an operator who performs an operation of inserting the catheter 10 and the guide wire 20 into the living body can easily rotate manually.
  • the total length of the guide wire 20 is set to be sufficiently longer than the total length of the catheter 10 so that the root portion 22 of the guide wire 20 does not enter the inside of the catheter 10.
  • FIG. 2 is a diagram for explaining a state in which the distal end portion of the guide wire 20 is housed in the catheter 10 and a state of change when protruding from the distal end of the catheter 10.
  • the catheter 10 and the guide wire 20 for example, when the inner diameter of the catheter 10 is 0.46 mm and the outer diameter of the guide wire 20 is 0.43 mm, the catheter 10 is located at the body portion 24 of the guide wire 20. The gap between the inner diameter of the guide wire 20 and the outer diameter of the guide wire 20 is 0.03 mm.
  • the guide wire 20 can move in the axial direction relative to the inside of the catheter 10, and can be rotated around the axis by the rotation mechanism 12.
  • FIG. 2 is a view showing a state in which the distal end portion of the guide wire 20 is accommodated in the catheter 10, and here, the distal end portion in which the outer diameter is regulated by the inner wall of the catheter 10 and folded. 28 is shown.
  • the folded distal end portion 28 is the shape of the expanded distal end portion 30 described with reference to FIG. 1 when superelasticity is applied, but the shape of the superelasticity is applied by the inner wall of the catheter 10. A large deformation is applied so that the outer diameter is regulated. Therefore, the folded distal end portion 28 applies a force to be expanded to the inner wall of the catheter 10.
  • the lower view of FIG. 2 is compared with the upper view, and the distal end portion of the guide wire 20 protrudes from the distal end portion of the catheter 10 by moving the catheter 10 in the direction of the white arrow, and is superelastic. It is a figure which shows a mode that it returns to the shape at the time of becoming and becomes the expansion front-end
  • the shape of the expanded distal end portion 30 shown in the lower diagram of FIG. 2 is the state in which the deformation is applied when heat treatment is applied to the distal end portion of the guide wire 20 to apply superelasticity.
  • Shape That is, in the step of applying superelasticity, an appropriate deformation jig is used so that the distal end portion of the guide wire 20 has a predetermined envelope contour shape. The heat treatment is performed.
  • a metal sphere having an appropriate outer diameter can be used as the deformation jig for forming the envelope contour shape.
  • the outer diameter of the envelope contour shape can be appropriately determined according to the inner diameter of the blood vessel 4 when the guide wire 20 is inserted and expanded.
  • the outer diameter of the catheter 10 is 0.8 mm
  • the inner diameter of the blood vessel 4 is about 1 mm
  • the outer diameter of the envelope contour shape can also be about 1 mm.
  • the function of the widening tip portion 30 having the envelope contour shape is to entangle the occluding substance 8, and at this time, it is preferable to rotate the guide wire 20 around the axis.
  • the outer diameter of the envelope contour shape does not have to be so large.
  • FIG. 3 is a view showing a state of the guide wire 20 prepared before the step of applying superelasticity.
  • the guide wire 20 is an elongated rod originally composed of a single material having the same thickness.
  • the guide wire 20 is a nickel-titanium alloy thin wire having an outer diameter of 0.43 mm. is there.
  • the distal end portion of the guide wire 20 is a distal end portion 26 with a slit provided with a plurality of slits 32. That is, in the above example, a plurality of slits having end portions on both sides are carved by processing at the distal end portion of a thin wire having an outer diameter of 0.43 mm and are divided into a plurality of elongated portions.
  • two elongated slits 32 are cut along the axial direction at the distal end of the guide wire 20 so as to be orthogonal to each other in a plane perpendicular to the axis.
  • the process of cutting the slit 32 can be performed by laser processing or the like. This processing is performed in an atmosphere at room temperature or the like on a nickel-titanium alloy fine wire as a raw material. In this way, the super-elastic processing is performed on the guide wire 20 having the slit-attached tip portion 26 provided with the plurality of slits 32.
  • the manufacturing method of the guide wire 20 is performed through the following steps.
  • a thin line of shape memory material having an outer diameter corresponding to the inner diameter of the target catheter 10 is prepared (thin line preparation step).
  • a nickel-titanium alloy fine wire having an outer diameter of 0.43 mm is prepared.
  • the length is sufficiently longer than the entire length of the catheter 10.
  • a plurality of slits are processed at a predetermined slit length at the tip of the thin wire (slit processing step). Thereby, the guide wire 20 which has the front-end
  • two slits 32 perpendicular to each other in a plane perpendicular to the axial direction are formed by laser processing or the like.
  • the slit length is half of the circumferential length of the sphere in contact with the inner diameter of the target blood vessel 4. Since the distal end portion 26 with the slit is divided into four elongated portions whose both ends are connected to each other, the distal end portion 26 with the slit is formed into an arbitrary shape by utilizing the flexibility of the four elongated portions. It can be.
  • a process of giving superelasticity is performed on the guide wire 20 having the tip portion 26 with a slit (superelasticity applying step).
  • the four divided portions of the tip portion 26 with the slit are opened, and a metal sphere is disposed therein as a jig, and is held in the envelope contour shape.
  • tip part of the guide wire 20 is performed in the state hold
  • heating is performed at about 500 ° C. for 30 minutes. After heating, return to room temperature and remove the metal bulb.
  • the guide wire 20 having the expanded distal end portion 30 whose distal end portion has an envelope contour shape is obtained. Since the envelope contour portion has superelasticity, it has an elasticity range 5 to 10 times that in a state where superelasticity is not applied. Therefore, when an external force is applied to the outer shape of the envelope contour shape and plastic deformation does not occur even in a flat state and the external force is removed, the outer shape of the original envelope contour shape is restored.
  • the rotation mechanism 12 is connected to the root thereof. This completes the preparation of the guide wire 20.
  • the prepared guide wire 20 is inserted into and stored in the axial through hole of the catheter 10 separately prepared (accommodating step in the catheter). At this time, the distal end portion of the guide wire 20 becomes the folded distal end portion 28 as described with reference to the upper side of FIG. The folded tip 28 is inserted to the vicinity of the tip of the catheter 10.
  • the catheter 10 storing the guide wire 20 is inserted into the blood vessel 4 of the target living body (insertion step).
  • a marker (not shown) is attached to the distal end portion of the catheter 10, and the position of the distal end of the catheter 10 in the blood vessel 4 of the living body can be observed on a monitor or the like using, for example, X-rays.
  • the base part of the catheter 10 is operated, the front-end
  • the catheter 10 When the distal end portion of the catheter 10 reaches a desired site, the catheter 10 is moved to the front side while the position of the guide wire 20 is left as it is, as described in the lower diagram of FIG. As a result, the folded distal end portion 28 of the guide wire 20 protrudes from the distal end of the catheter 10, and a plurality of elongated divided portions are expanded by the slits 32 in the direction perpendicular to the axial direction. A shape is formed to become the expanded tip 30 (expanding step).
  • the guide wire 20 is rotated around the axis by the rotating mechanism 12 or moved back and forth in the axial direction by the operation on the hand side, and the occluding substance 8 is entangled in the envelope contour shape and removed from the vessel wall or inside of the blood vessel 4.
  • Yes occlusion substance capture step.
  • the distal end portion entangled with the occlusive substance 8 is stored in the catheter 10 again by returning the catheter 10 to the original position or pulling the guide wire 20 further forward.
  • the catheter 10 containing the guide wire 20 passes through the blood vessel 4 again, is pulled out, and is returned to the outside of the living body, whereby the occluding substance 8 can be carried out of the living body (discharge process).
  • a plurality of slits 32 are formed at the distal end portion of the guide wire 20, but a shape effective for entanglement of the occluding substance 8 may be obtained by other methods.
  • 4 to 6 are views showing examples of guide wires having different tip end shapes.
  • the guide wire 40 shown in FIG. 4 is provided with a plurality of cuts at the end portion of the main body portion 24 that have end portions on the root side and open at the tip end side, thereby forming a tip portion 42 that is divided into a plurality of elongated portions.
  • the tip end sides of the plurality of divided parts are integrally coupled.
  • the distal end portion 42 of the guide wire 40 can be formed into a plurality of elongated divided portions by a simple cutting process without using slit processing, and the distal end side thereof is integrated by, for example, a thin wire binding member 44, thereby It can be made into the same shape as what gave the slit process. Giving super-elasticity to the envelope contour shape can be realized by a process similar to that described with reference to FIGS.
  • the distal end portion of the main body portion 24 of the guide wire 40 is provided with a cut over an appropriate length, and the length of the cut at the distal end portion is adjusted later so as to correspond to the size of the desired envelope contour shape. Just cut it.
  • the guide wire 50 shown in FIG. 5 is provided with a cut 54 at the end of the main body 24 to form a plurality of elongated tip portions 52, and the tip side is integrated. They are not tied together and remain separated from each other.
  • FIG. 5 shows the outer shape after imparting superelasticity.
  • a spherical or elliptical sphere jig is used, as in the case described in relation to FIG. 2 and FIG. Since the tip portions of the plurality of divided parts are separated from each other, it is preferable to use another jig that presses each of the divided parts against the outer surface of the jig.
  • the shape of the tip portion to which superelasticity is imparted is an envelope contour shape that opens on the tip side, and it is expected that the occluding substance 8 can be easily taken from the opening.
  • the guide wire 60 shown in FIG. 6 is a diagram showing an example in which a process for attaching a locking shape is added to the tip portion 62 divided into a plurality of parts when the cut described in FIGS. 4 and 5 is made.
  • FIG. 6 shows a state before applying superelasticity, that is, a state in which a cut 66 is made in the material thin line and a process of applying the locking portion 64 is performed. The step of imparting superelasticity is performed thereafter.
  • the tip side may be bound as shown in FIG. 4, or the tip side may be left open as shown in FIG.
  • the locking portion 64 is for preventing the occluding substance 8 entangled at the tip portion divided into long and narrow portions from being peeled again and keeping it tangled. Therefore, it is preferable to have a concavo-convex shape such as a bowl-shaped one or a surface roughened like a bowl surface.
  • the guide tube for inserting a living body tube is described as being made of a shape memory alloy material to which superelasticity is imparted, but it may be a normal fine metal wire that cannot impart superelasticity. Even in this case, if the tip portion is plastically deformed to a predetermined envelope contour shape so that it does not exceed the elastic limit even if it is inserted into the catheter and deformed, the free shape can be obtained when protruding from the tip of the catheter. It is possible to return to the original envelope contour shape.
  • a general steel fine wire is preliminarily processed into an envelope contour shape so as to have an outer shape larger than the inner diameter of the catheter, if it is within the inner diameter of the catheter, the inner diameter is within the elastic limit range. Although it is deformed, when it protrudes from the distal end of the catheter, it returns to the original enveloped contour shape.
  • it is a normal thin metal wire, although it is a small external shape compared with the case where super elasticity is given, it can be expanded to an envelope outline shape when it protrudes from the tip of a catheter.
  • the locking portion 64 is provided on the divided distal end portion 62.
  • a locking portion may be provided for each element divided at the tip end portion 26.
  • Such a locking part can be formed by performing an appropriate uneven
  • the tip portion 22 and the main body portion 24 originally have the same outer diameter before being divided, and the tip portion is As a predetermined axial length, a portion having a length not exceeding half of the circumferential length of the sphere in contact with the inner diameter of the target biological tube portion is caused by a slit notch along the axial direction or a cut along the axial direction. Divided into multiple strips by cutting.
  • the slit nicks or cuts made on the front end of the main body 24 are performed with a slit width and a cut width sufficient to separate the front end into a plurality of pieces.
  • a slit width and a cut width of about several tens of ⁇ m are sufficient.
  • narrower slit width and cut width can be used. Therefore, even if the slit width and the slit width are provided to divide the tip portion, the divided portions are aligned with almost no gap, and the overall outer diameter is the outer diameter of the original root portion 22 and the main body portion 24. And no different. This is also shown in the enlarged view of FIG.
  • the sectional shape of each divided portion is a quarter circle with a radius of 0.215 mm
  • the length of the slit 32 in the axial direction is less than 1.57 mm which is a half of the circumferential length of a sphere having a diameter of 1 mm
  • the slit width is several tens of ⁇ m.
  • FIG. 7 is a diagram illustrating a state in which the thin film 70 is attached to the distal end portion 26 of the guide wire 20 having the configuration described in FIG.
  • the upper diagram shows a state in which the thin film 70 is attached to the guide wire 20 prepared before superelasticity is applied, and the lower diagram shows the state of the expanded tip 30 having an envelope contour shape.
  • FIG. 7 is a diagram illustrating a state in which the thin film 70 is attached to the distal end portion 26 of the guide wire 20 having the configuration described in FIG.
  • the upper diagram shows a state in which the thin film 70 is attached to the guide wire 20 prepared before superelasticity is applied
  • the lower diagram shows the state of the expanded tip 30 having an envelope contour shape.
  • the thin film 70 is a thin film having a sheet shape and a plurality of openings 72.
  • the thin film 70 can be made of a thin film material having appropriate elasticity and biocompatibility.
  • the plurality of openings 72 can also be configured by making a plurality of holes in the sheet, and use a net-like thin film formed by knitting fine lines into a mesh shape. it can.
  • a biocompatible plastic film having appropriate holes As the former example, it is possible to use a biocompatible plastic film having appropriate holes as the opening 72.
  • a nickel-titanium alloy fine wire knitted into a sheet shape and a stitch formed as an opening 72 can be used. In this case, it is possible to use a superelastic material like the guide wire 20.
  • the thin film 70 is attached to a part of the distal end portion 26 along the circumferential direction so as to partially cover the entire length of the slit 32 extending in the longitudinal direction at the distal end portion 26.
  • Partially covering the entire length of the slit 32 is that when the guide wire 20 is pulled in the direction of the arrow to capture the occlusive material as shown in the lower view of FIG. This is to drive in. Therefore, about 1/2 of the entire length of the slit 32 is covered from the most distal side of the guide wire 20 in the longitudinal direction of the slit 32 so as to form an umbrella shape that opens upstream with respect to the direction in which the guide wire 20 is captured and collected. It is preferable to do so.
  • the thin film 70 expands into an envelope contour shape together with the expanded distal end portion 30, and the distal end portion is accommodated in the axial through hole of the catheter 10. Sometimes it is folded together with the distal end portion 26 and stored in the axial through hole of the catheter 10. That is, the thin film 70 is in close contact with the shape of the distal end portion of the guide wire 20 in any state.
  • the sheet-like thin film 70 having a plurality of openings 72 is attached to a part of the distal end portion 26 of the guide wire 20, when the expanded distal end portion 30 having the expanded distal end portion 30 is obtained, It becomes an umbrella shape opened upstream of the blood flow, and the occluding substance can be effectively captured while passing the blood flow through the opening 72 opened in the umbrella-shaped film surface.
  • the guide wire 20 is a solid thin wire so that it can be applied to a blood vessel having an inner diameter of about 1 mm.
  • a tubular guide wire should be used. Can do.
  • a thin control material that controls the shape of the tip can be passed through the tube.
  • FIGS. 8 to 10 are diagrams illustrating an example in which the shape control of the distal end portion 86 of the guide wire 80 is performed through the ultrafine heater portion 140 through the guide wire 80 having a tubular shape.
  • FIG. 8 is a view showing a state of the guide wire 80 prepared before the step of superelasticity.
  • vertical to a longitudinal direction are shown.
  • the root portion 82 is connected to the rotation mechanism 12 in the same manner as the configuration described in FIG.
  • the main body portion 84 has a tubular shape including an axial center hole 88, and the distal end portion 86 is elongated into a plurality of divided portions by slit notching.
  • at least one of the plurality of divided portions has a free end on the distal end side, and expands to have an envelope contour shape when the distal end portion protrudes from the distal end of the catheter 10. It is a non-expanded divided part to which no elasticity is given.
  • the distal end portion 86 is formed with six elongated divided portions 90, 91, 92, 93, 100, 102 by slit notching by laser processing or the like.
  • the four divided portions 90, 91, 92, and 94 are divided portions having end portions on both sides in the same manner as described with reference to FIG. 3, and as described above, for example, an appropriate metal Using a spherical jig, super-elasticity that gives an envelope contour shape is imparted.
  • the remaining two divided portions 100 and 102 have end portions on one side, but are free ends on the other side.
  • the split portions 100 and 102 are not given superelasticity.
  • the conditions for the overall length of the slit, the slit width, and the like are the same as those described in relation to FIG.
  • FIG. 9 is a view showing a state in which the distal end portion of the guide wire 80 prepared as shown in FIG. As described with reference to FIG. 8, the four divided portions 90, 91, 92, and 93 are subjected to superelastic processing to become an envelope contour shape. As shown in the figure, the expanded divided portions 120, 121, 122, 123 are formed. On the other hand, since the remaining two divided portions 100 and 102 are not subjected to superelastic processing, they remain in a free end shape. Even in this state, when the guide wire 80 is rotated around the axis by the rotation mechanism 12, the occluding substance in the blood vessel can be captured by the expanded distal end portion 109 having the envelope contour shape.
  • the ultrathin heater part 140 is passed through the axial center hole 88 of the guide wire 80, and the two divided parts 100 and 102 that are not superelastically processed are heated by the heating part 142 at the tip.
  • FIG. 10 shows a mode that control which makes a shape the predetermined shape defined beforehand is performed. This makes it possible to capture the occluding substance more effectively than the state of FIG.
  • FIG. 10 in order to show a state in which the two divided portions 100 and 102 become bent divided portions 130 and 132 whose tip shapes have been changed by heating, respective states when they differ from each other by 90 degrees in the angle around the axial direction. It is shown.
  • the axial direction is taken as the Z axis, and the directions of the X axis and the Y axis, which are two axes perpendicular to the Z direction, are shown in FIG.
  • the extra-fine heater unit 140 needs to supply heating energy to the heating unit 142 at the tip while ensuring insulation between the guide wire 80 and the heater.
  • the two divided portions 100 and 102 that are not subjected to superelastic processing are heated according to the magnitude of the electric power, and heating is performed. Since the portion closer to the portion 142 extends more and the portion farther away has less extension, the tip portion has a bend and forms a kind of ridge shape.
  • the shape of the bend can be controlled by the magnitude of electric power controlled by the ultrafine heater unit 140. For example, it is possible to precisely control the shape of the bend by supplying electric power in pulses.
  • the two divided portions 100 and 102 that are not subjected to the superelastic treatment become the bent divided portions 130 and 132 by heating control.
  • the guide wire 80 is rotated around the axis by the rotation mechanism 12 in this state, the ridge-like shape of the distal end portions of the bent divided portions 130 and 132 together with the expanded distal end portion 109 having the envelope contour shape causes An occlusive substance can be effectively captured.
  • the guide tube for inserting a living body tube according to the present invention can be used as a guide wire for inserting into a thin blood vessel and capturing an occlusive substance such as a thrombus.

Abstract

A guide wire (20) is provided with a root section to which a rotation mechanism is connected, a body section (24) inserted in an axial through-hole in a catheter (10) and adapted to be able to move axially and to rotate circumferentially, a tip section (28) which is formed by axially dividing a portion of an end of the body section (24), said portion having a predetermined axial length, into elongated portions by slits.  The guide wire (20) consists of a super elastic shape memory alloy material.  When the tip section (28) is caused to project from the tip of the catheter (10), the elongated divided portions are expanded in the direction perpendicular to the axis direction to become an expanded tip section (30) forming a predetermined envelope outline shape.

Description

生体管部挿入用ガイドワイヤGuide wire for insertion of living body tube
 本発明は、生体管部挿入用ガイドワイヤに係り、特に、カテーテルの軸方向貫通穴中に挿入されて軸方向に移動自在で回転可能な生体管部挿入用ガイドワイヤに関する。 The present invention relates to a guide tube for inserting a living body tube portion, and more particularly, to a guide wire for inserting a living body tube portion that is inserted into an axial through hole of a catheter and is movable and rotatable in the axial direction.
 生体の血管中に血栓やプラーク等があると血管狭窄が生じるので、血管を拡張させるためにカテーテルを介してバルーンやステントの留置等が行われる。 If a blood clot or plaque or the like is present in a blood vessel in a living body, blood vessel stenosis occurs. Therefore, in order to dilate the blood vessel, a balloon or a stent is placed through a catheter.
 また、特許文献1には、塞栓防止器具として、患者の血管系を通して送り込むためのフィルタキャリア上に取り付けられ、入口端及び出口端を有して折畳み可能なフィルタエレメントが開示されている。このフィルタエレメントは、入口端が血液及び塞栓物質がそのフィルタ本体部に入ることを許容するサイズの1又は複数の入口開口を有し、その出口端が血液は通過させるが、フィルタ本体部内に望ましくない物質を捕捉するサイズの複数の出口開口を有する。そして、カテーテル又はポッドである引き出し器具がフィラメントに係合し、フィルタ上を摺動してフィルタエレメントを折畳み、また、フィルタエレメントがフィルタキャリア上に回転自在に取り付けられることが述べられている。 Also, Patent Document 1 discloses a filter element that is mounted on a filter carrier for feeding through a patient's vasculature and has an inlet end and an outlet end, and can be folded as an embolus prevention device. The filter element has one or more inlet openings whose inlet end is sized to allow blood and embolic material to enter the filter body, the outlet end of which allows blood to pass, but preferably within the filter body. It has a plurality of outlet openings that are sized to trap any material. And it is stated that a drawer device, which is a catheter or pod, engages the filament, slides on the filter to fold the filter element, and the filter element is rotatably mounted on the filter carrier.
特表2001-522639号公報JP-T-2001-522639
 従来から知られているバルーン法、ステント法によれば、血栓等によって狭窄となる血管を拡張させることができるが、例えば、脳血管のように1mm以下の細い血管では、カテーテルを用いてこれらを挿入することがほとんど不可能である。また、特許文献1の方法によれば、血管中の塞栓物質を捕捉して場合によっては外部に引き出して排出することが可能であるが、複雑なフィルタ構造を付加するために細い血管における適用に制約がある。 According to the conventionally known balloon method and stent method, a blood vessel that becomes narrowed by a thrombus or the like can be expanded. For example, in a thin blood vessel of 1 mm or less such as a cerebral blood vessel, these can be treated using a catheter. It is almost impossible to insert. Further, according to the method of Patent Document 1, it is possible to capture an embolic substance in a blood vessel and, depending on the case, to draw it out and discharge it, but in order to add a complicated filter structure, it can be applied to a thin blood vessel. There are limitations.
 本発明の目的は、血栓等の治療において、さらに細い生体管部に適用可能な生体管部挿入用ガイドワイヤを提供することである。他の目的は、さらに細い生体管部において、血栓等の閉塞物質を捕捉することを可能とする生体管部挿入用ガイドワイヤを提供することである。 An object of the present invention is to provide a guide wire for inserting a living body tube that can be applied to a thinner living body tube in the treatment of a thrombus and the like. Another object of the present invention is to provide a guide tube for inserting a living body tube portion that can capture an occluding substance such as a thrombus in a thinner living body tube portion.
 本発明に係る生体管部挿入用ガイドワイヤは、回転機構が接続される根元部と、カテーテルの軸方向貫通穴中に挿入され、軸方向に移動自在で軸周りに回転可能な本体部と、本体部の端部において予め定めた軸方向長さの部分が軸方向に沿って複数に細長く分割された先端部と、を有し、先端部がカテーテルの先端から突き出すときに、複数の細長い分割部分が軸方向に垂直な方向にそれぞれ拡開して、予め定めた包絡輪郭形状を形成することを特徴とする。 A guide wire for inserting a biological tube according to the present invention includes a root portion to which a rotation mechanism is connected, a main body portion that is inserted into an axial through hole of a catheter, is movable in the axial direction, and can be rotated around an axis. A portion having a predetermined axial length at an end portion of the main body portion, and a distal end portion that is divided into a plurality of elongated portions along the axial direction. When the distal end portion protrudes from the distal end of the catheter, the plurality of elongated divisions Each of the portions is expanded in a direction perpendicular to the axial direction to form a predetermined envelope contour shape.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、超弾性を付与された形状記憶合金材料で構成されることが好ましい。 Further, in the guide tube for inserting a living body tube according to the present invention, it is preferable that the guide wire is made of a shape memory alloy material imparted with super elasticity.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、先端部は、本体部の端部において、両側に有端部を有する複数のスリットによって複数に細長く分割されることが好ましい。 In the living body tube insertion guide wire according to the present invention, it is preferable that the distal end portion is divided into a plurality of elongated portions at the end portion of the main body portion by a plurality of slits having end portions on both sides.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、先端部は、本体部の端部において、根元側に有端部を有し先端側が開放される複数の切れ目によって複数に細長く分割されることが好ましい。 Further, in the guide tube for inserting a living body tube portion according to the present invention, the distal end portion is divided into a plurality of elongated portions at the end portion of the main body portion by a plurality of cuts having an end portion on the root side and opening the distal end side. It is preferable.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、先端部は、複数の切れ目の部分に凹凸部が設けられることが好ましい。 Moreover, in the guide tube for inserting a living body tube portion according to the present invention, it is preferable that the tip portion is provided with uneven portions at a plurality of cut portions.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、先端部は、切れ目によって分割された複数の分割部分の先端側で各分割部分を一体的に結合する結合手段を有することが好ましい。 Further, in the biological tube insertion guidewire according to the present invention, it is preferable that the distal end portion has coupling means for integrally coupling the divided portions at the distal end side of the plurality of divided portions divided by the cuts.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、根元部と本体部は、分割される前の元々が同じ太さの外径を有し、先端部は、予め定めた軸方向長さとして、対象とする生体管部の内径に接する球の円周長の半分を超えない長さの部分が、軸方向に沿ったスリット刻みまたは軸方向に沿った切れ目による切断によって複数に細長く分割されることが好ましい。 Further, in the living body tube insertion guide wire according to the present invention, the root portion and the main body portion originally have the same outer diameter before being divided, and the distal end portion has a predetermined axial length. As described above, a portion having a length not exceeding half of the circumferential length of the sphere in contact with the inner diameter of the target biological tube portion is divided into a plurality of elongated portions by slitting along the axial direction or cutting by a cut along the axial direction. It is preferable.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、先端部の長手方向の一部に周方向に沿って全周に渡って取り付けられたシート状の薄膜を有し、シート状薄膜は、先端部が包絡輪郭形状に拡開するときには先端部とともに包絡輪郭形状に拡開し、先端部がカテーテルの軸方向貫通穴に収納された状態のときには先端部とともに折り畳まれてカテーテルの軸方向貫通穴に収納されることが好ましい。 Further, in the guide tube for inserting a biological tube according to the present invention, it has a sheet-like thin film attached over the entire circumference along the circumferential direction in a part of the longitudinal direction of the tip, When the distal end portion expands into an envelope contour shape, the distal end portion expands into an envelope contour shape. When the distal end portion is housed in the axial through hole of the catheter, the distal end portion is folded together with the distal end portion so as to be axially penetrated through the catheter. It is preferable to be housed in
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、シート状薄膜は、メッシュ状に開口部を有する網状薄膜であることが好ましい。 Further, in the guide tube for inserting a living tube according to the present invention, the sheet-like thin film is preferably a mesh-like thin film having an opening in a mesh shape.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、シート状薄膜は、超弾性を付与された形状記憶合金材料で構成されることが好ましい。 Also, in the guide tube for inserting a living tube according to the present invention, the sheet-like thin film is preferably made of a shape memory alloy material imparted with superelasticity.
 また、本発明に係る生体管部挿入用ガイドワイヤにおいて、本体部は、軸方向中心穴を含む管状形状を有し、先端部は、細長く分割された複数の分割部分のうち、先端側に自由端を有する少なくとも1つの分割部分であって、先端部がカテーテルの先端から突き出すときに拡開して包絡輪郭形状となるような超弾性が付与されていない非拡開分割部分を含み、さらに、本体部の軸方向中心穴に挿入されるヒータ部であって、先端部を加熱することで非拡開分割部分の先端側の自由端を予め定めた所定の形状となるように熱変形させるヒータ部を備えることが好ましい。 In the living body tube insertion guide wire according to the present invention, the main body portion has a tubular shape including an axial center hole, and the distal end portion is free to the distal end side among a plurality of elongated divided portions. At least one divided portion having an end, the non-expanded divided portion not provided with superelasticity so as to expand into an envelope contour shape when the distal end protrudes from the distal end of the catheter, and A heater part that is inserted into the axial center hole of the main body part, and heat-deforms the free end on the front end side of the non-expanded divided part to have a predetermined shape by heating the front end part. It is preferable to provide a part.
 上記構成により、生体管部挿入用ガイドワイヤは、カテーテルの軸方向貫通穴中に挿入される本体部の端部において予め定めた軸方向長さの部分が軸方向に沿って複数に細長く分割される。そして、先端部がカテーテルの先端から突き出すときに、複数の細長い分割部分が軸方向に垂直な方向にそれぞれ拡開して、予め定めた包絡輪郭形状を形成する。例えば、カテーテルの内部に挿入して変形しても弾性限界を超えない程度に、予め定めた包絡輪郭形状に先端部を塑性変形させておけば、カテーテルの先端から突き出すときに自由形状としてのもとの包絡輪郭形状に戻ることができる。したがって、カテーテルの軸方向貫通穴を通る太さは、本体部と先端部とが同じである。カテーテルの外径はその中を通るものの外形で左右されるが、単に1本のガイドワイヤのみを通すだけであれば、カテーテル自体の外径を1mm以下とすることができる。 With the above configuration, the guide tube for inserting a living body tube portion is divided into a plurality of elongated portions along the axial direction at a predetermined axial length portion at the end of the body portion inserted into the axial through hole of the catheter. The And when a front-end | tip part protrudes from the front-end | tip of a catheter, several elongate division | segmentation parts each expand in the direction perpendicular | vertical to an axial direction, and form a predetermined envelope outline shape. For example, if the tip is plastically deformed into a predetermined envelope contour shape so that it does not exceed the elastic limit even if it is inserted into the catheter and deformed, it can be used as a free shape when protruding from the tip of the catheter. It can return to the envelope outline shape. Accordingly, the thickness passing through the axial through hole of the catheter is the same for the main body portion and the distal end portion. The outer diameter of the catheter depends on the outer shape of the catheter that passes through the catheter. However, if only one guide wire is passed, the outer diameter of the catheter itself can be 1 mm or less.
 また、生体管部挿入用ガイドワイヤは超弾性を付与された形状記憶合金材料で構成される。超弾性が付与された形状記憶合金は、大きな変形を与えてもなお弾性限界に止まるものであるので、カテーテルの内部に挿入して大きく変形させても弾性限界を超えないので、予め定めた包絡輪郭形状をかなり大きな塑性変形によって形成することができる。したがって、血栓を絡ませる包絡輪郭形状を大きくできるので、血栓を除去する能力を高めることができる。 Also, the guide wire for inserting a living body tube is made of a shape memory alloy material to which super elasticity is imparted. Since shape memory alloys with superelasticity still remain at the elastic limit even when subjected to large deformations, they do not exceed the elastic limit even if they are inserted into the catheter and greatly deformed. The contour shape can be formed by fairly large plastic deformation. Therefore, since the envelope contour shape for entwining the thrombus can be increased, the ability to remove the thrombus can be enhanced.
 このように、バルーン、ステント、フィルタエレメント等を用いずに、単に1本のガイドワイヤのみをカテーテル内を通し、先端部がカテーテルの先端から突き出すときに、複数の細長い分割部分が軸方向に垂直な方向にそれぞれ拡開して、予め定めた包絡輪郭形状を形成するので、従来技術に比較して、さらに細い生体管部に適用可能となる。また、先端部の包絡輪郭形状は軸周りに回転可能であるので、この包絡輪郭形状に血栓等の閉塞物質を絡ませて捕捉することができる。 In this way, when only one guide wire is passed through the catheter without using a balloon, a stent, a filter element, etc., and the tip portion protrudes from the tip of the catheter, a plurality of elongated divided portions are perpendicular to the axial direction. Since the envelope contour shape is formed in a predetermined direction to form a predetermined envelope contour shape, it can be applied to a thinner living body tube portion as compared with the prior art. Further, since the envelope contour shape of the tip portion can be rotated around the axis, an occlusive substance such as a thrombus can be entangled and captured in this envelope contour shape.
 また、生体管部挿入用ガイドワイヤにおいて、先端部は、本体部の端部において、両側に有端部を有する複数のスリットによって複数に細長く分割される。すなわち、ガイドワイヤの先端部にスリットを入れる加工を行うのみで、生体管部挿入用ガイドワイヤを得ることができる。 Further, in the guide tube for inserting a living body tube portion, the distal end portion is divided into a plurality of elongated portions by a plurality of slits having end portions on both sides at the end portion of the main body portion. That is, a living body tube insertion guide wire can be obtained only by performing a process of making a slit in the distal end portion of the guide wire.
 また、生体管部挿入用ガイドワイヤにおいて、先端部は、本体部の端部において、根元側に有端部を有し先端側が開放される複数の切れ目によって複数に細長く分割される。スリットを入れる加工に比べ、さらに容易に生体管部挿入用ガイドワイヤを得ることができる。 Further, in the guide tube for inserting a living body tube portion, the distal end portion is divided into a plurality of elongated portions at the end portion of the main body portion by a plurality of cuts having end portions on the root side and opened on the distal end side. A guide wire for inserting a living body tube can be obtained more easily than the process of inserting a slit.
 また、生体管部挿入用ガイドワイヤにおいて、先端部は、複数の切れ目の部分に凹凸部が設けられる。これにより、血栓等の閉塞物質を絡ませて捕捉することがさらに容易になる。 Also, in the guide tube for inserting a living body tube portion, the tip portion is provided with uneven portions at a plurality of cut portions. This makes it easier to entangle and capture occlusive substances such as thrombus.
 また、生体管部挿入用ガイドワイヤにおいて、先端部は、切れ目によって分割された複数の分割部分の先端側で各分割部分を一体的に結合する結合手段を有する。これによって、両端に有端部を有するスリットと同様の外形的機能の生体管部挿入用ガイドワイヤを得ることができる。 Further, in the guide tube for inserting a living body tube portion, the distal end portion has coupling means for integrally coupling the divided portions on the distal end side of the plurality of divided portions divided by the cuts. As a result, a guide wire for inserting a living body tube having the same external function as a slit having end portions at both ends can be obtained.
 また、生体管部挿入用ガイドワイヤにおいて、根元部と本体部は、分割される前の元々が同じ太さの外径を有し、先端部に、対象とする生体管部の内径に接する球の円周長の半分を超えない長さの部分が、軸方向に沿ったスリット刻みまたは軸方向に沿った切れ目による切断によって複数に細長く分割される。これにより、細いワイヤにスリット刻みまたは軸方向に沿った切れ目による切断という簡単な加工で、拡開したときに、対象とする生体管部の内径に接するようなガイドワイヤとすることができるので、より細いガイドワイヤとすることができる。また、これを回転させても、生体管部を損傷することもなく、例えば、生体管部の閉塞物質を捕捉することができる。 Further, in the guide tube for inserting a living body tube portion, the base portion and the main body portion originally have an outer diameter of the same thickness before being divided, and a sphere in contact with the inner diameter of the target living body tube portion at the distal end portion A portion having a length not exceeding half of the circumferential length is divided into a plurality of elongated portions by cutting with slits along the axial direction or cuts along the axial direction. Thereby, since it can be a guide wire that comes into contact with the inner diameter of the target biological tube portion when expanded by a simple process of slitting or cutting along a cut along the axial direction in a thin wire, A thinner guide wire can be obtained. Moreover, even if this is rotated, for example, the occluding substance in the biological tube portion can be captured without damaging the biological tube portion.
 また、生体管部挿入用ガイドワイヤにおいて、先端部の長手方向の一部に周方向に沿って全周に渡ってシート状の薄膜が取り付けられる。そして、このシート状薄膜は、先端部が包絡輪郭形状に拡開するときには先端部とともに包絡輪郭形状に拡開し、先端部がカテーテルの軸方向貫通穴に収納された状態のときには先端部とともに折り畳まれてカテーテルの軸方向貫通穴に収納される。これにより、例えば、生体管部の閉塞物質の捕捉を効率的に行うことができる。 Also, in the guide tube for inserting a living tube, a sheet-like thin film is attached to a part of the distal end in the longitudinal direction along the entire circumference. The sheet-like thin film expands together with the distal end portion into an envelope contour shape when the distal end portion expands into an envelope contour shape, and folds together with the distal end portion when the distal end portion is housed in the axial through hole of the catheter. And stored in the axial through hole of the catheter. Thereby, for example, the obstruction | occlusion substance of a biological tube part can be capture | acquired efficiently.
 また、生体管部挿入用ガイドワイヤにおいて、シート状薄膜は、メッシュ状に開口部を有する網状薄膜であるので、例えば、生体管部を流れる生体液等を通しながら、生体管部の閉塞物質の捕捉を効率的に行うことができる。 Further, in the guide tube for inserting a biological tube, the sheet-like thin film is a mesh-like thin film having an opening in a mesh shape. Capture can be performed efficiently.
 また、生体管部挿入用ガイドワイヤにおいて、シート状薄膜は、超弾性を付与された形状記憶合金材料で構成されるので、拡開するときの大きさの規定が容易となる。 Also, in the guide wire for inserting a living body tube portion, the sheet-like thin film is made of a shape memory alloy material to which superelasticity is imparted, so that it is easy to specify the size when expanding.
 また、生体管部挿入用ガイドワイヤにおいて、本体部は、軸方向中心穴を含む管状形状を有し、この中にヒータ部が挿入される。そして、先端部の分割部分のうち少なくとも1つは、このヒータ部によって加熱されることでその先端側の自由端を予め定めた所定の形状となるように熱変形する。これによって、ヒータ部の加熱によって、例えば、生体管部の閉塞物質の捕捉を効率的に行うような先端形状の分割部分とできるので、一層、生体管部の閉塞物質の捕捉を効率的に行うことができる。 Also, in the guide tube for inserting a living body tube portion, the main body portion has a tubular shape including an axial center hole, into which a heater portion is inserted. Then, at least one of the divided portions of the distal end portion is heated by the heater portion, so that the free end on the distal end side is thermally deformed so as to have a predetermined shape. As a result, by heating the heater portion, for example, a tip-shaped divided portion that efficiently captures the occlusive substance of the biological tube portion can be obtained, so that the occlusive substance of the biological tube portion is further efficiently captured. be able to.
本発明に係る実施の形態における生体管部挿入用ガイドワイヤの構成とその作用を説明する図である。It is a figure explaining the structure of the guide wire for biological tube insertion in embodiment which concerns on this invention, and its effect | action. 本発明に係る実施の形態において、ガイドワイヤの先端部がカテーテルの内部に収納されている状態と、カテーテルの先端から突き出したときの変化の様子を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the mode of the state when the front-end | tip part of a guide wire is accommodated in the inside of a catheter, and the case where it protrudes from the front-end | tip of a catheter. 本発明に係る実施の形態において、超弾性を付す工程の前に準備されるガイドワイヤの様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows the mode of the guide wire prepared before the process of attaching | subjecting superelasticity. 本発明に係る実施の形態において、先端部の形状が異なるガイドワイヤの1つの例を示す図である。In embodiment which concerns on this invention, it is a figure which shows one example of the guide wire from which the shape of a front-end | tip part differs. 本発明に係る実施の形態において、先端部の形状が異なるガイドワイヤの他の例を示す図である。In embodiment which concerns on this invention, it is a figure which shows the other example of the guide wire from which the shape of a front-end | tip part differs. 本発明に係る実施の形態において、先端部の形状が異なるガイドワイヤの別の例を示す図である。In embodiment which concerns on this invention, it is a figure which shows another example of the guide wire from which the shape of a front-end | tip part differs. 本発明に係る実施の形態において、先端部にシート状薄膜を取り付けたガイドワイヤの様子を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the mode of the guide wire which attached the sheet-like thin film to the front-end | tip part. 本発明に係る実施の形態において、管状形状を有するガイドワイヤを用いる例を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the example using the guide wire which has a tubular shape. 図8の構成に超弾性を付し、包絡輪郭形状を有する拡開先端部となる様子を説明する図である。It is a figure explaining a mode that it attaches super elasticity to the structure of FIG. 8, and becomes an expansion | deployment front-end | tip part which has an envelope outline shape. 図9の構成に、極細ヒータ部によって先端部を加熱したときのガイドワイヤの様子を説明する図である。It is a figure explaining the mode of a guide wire when a front-end | tip part is heated with the structure of FIG.
 以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。以下で説明する材料、形状、寸法、先端部の分割数等は例示であって、使用目的に応じ、これらの内容を適宜変更できる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The materials, shapes, dimensions, the number of divisions at the tip, and the like described below are examples, and these contents can be changed as appropriate according to the purpose of use.
 以下において、超弾性金属が付与される形状記憶材料として、ニッケル-チタン合金を説明するが、これは例示であって、これ以外であっても、熱処理により、通常の金属に比べ5~10倍の弾性範囲を有し、大きな変形を加えても元の形状に戻ることができる超弾性特性を付与される金属であればよい。例えば、ニッケル-チタン合金をベースにして、必要により銅、コバルト、クロム、鉄等が添加された合金であってもよく、さらにはニッケル-アルミニウム合金等であってもよい。 In the following, a nickel-titanium alloy will be described as a shape memory material to which a superelastic metal is applied. However, this is only an example, and other than this, it is 5 to 10 times that of a normal metal by heat treatment. Any metal can be used as long as it has the elastic range and has superelastic characteristics that can return to its original shape even when a large deformation is applied. For example, it may be an alloy based on a nickel-titanium alloy and optionally added with copper, cobalt, chromium, iron or the like, or may be a nickel-aluminum alloy or the like.
 以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 In the following, similar elements are denoted by the same reference symbols in all drawings, and redundant description is omitted. In the description in the text, the symbols described before are used as necessary.
 図1は、生体管部挿入用のガイドワイヤ20の構成とその作用を説明する図である。ここでは、生体管部挿入用のガイドワイヤ20の構成要素ではないが、カテーテル10と、これらが挿入される生体管部としての血管4が示されている。血管4は、その中を血液が通る管部6の管壁に閉塞物質8が付着して、その部分が狭窄となっている様子が示されている。閉塞物質の代表は、例えば頚動脈で形成されるアテノーム班の断片等である。これらの閉塞物質によって血管4が狭窄となり、場合によっては血流が止まることは、血栓と呼ばれるので、閉塞物質は血栓物質でもある。 FIG. 1 is a diagram for explaining the configuration and operation of a guide wire 20 for inserting a biological tube. Here, although not a component of the guide wire 20 for inserting the living body tube portion, the catheter 10 and the blood vessel 4 as the living tube portion into which these are inserted are shown. The blood vessel 4 is shown to have a blocking substance 8 attached to the tube wall of the tube portion 6 through which blood passes, and that portion being narrowed. A representative example of the occlusive substance is an athenome segment formed in the carotid artery. Since the blood vessel 4 is constricted by these occluding substances and the blood flow is stopped in some cases is called a thrombus, the occluding substance is also a thrombotic substance.
 血管4に血栓物質が付着して狭窄となると血流の流れが阻害されるので、血管4を拡張することが行われる。そのために、外部から血管4の内部にカテーテル10を通し、患部の部位まで挿入し、そこでインナーカテーテルあるいはガイドワイヤを用いてバルーンを拡開させ、あるいはステントを拡開させる。細い血管で、バルーン、ステントをカテーテル10によって患部まで運べないときには、薬剤等で血栓物質を溶解等させることが行われる。 When the thrombotic substance adheres to the blood vessel 4 and becomes narrowed, the blood flow is inhibited, so that the blood vessel 4 is expanded. For this purpose, the catheter 10 is passed from the outside into the blood vessel 4 and inserted to the affected area, where the balloon is expanded using the inner catheter or guide wire, or the stent is expanded. When the balloon or stent cannot be carried to the affected area by the catheter 10 in a thin blood vessel, the thrombus substance is dissolved with a drug or the like.
 図1に示す生体管部挿入用のガイドワイヤ20は、カテーテル10の軸方向貫通穴中に挿入され、軸方向に移動自在で軸周りに回転可能な細いワイヤである。なお、以後、生体管部挿入用のガイドワイヤ20を、単に、ガイドワイヤ20と呼ぶことにする。このように、細長い管の中に細長いワイヤ等を納めて、一体として血管4の内部を通す器具の全体をカテーテルと呼ぶこともあり、その場合には、外側の管をアウターカテーテル、アウターカテーテルの貫通穴に納められる細長いワイヤをインナーカテーテルとして相互に区別される。したがって、図1のカテーテル10はアウターカテーテル、ガイドワイヤ20をインナーカテーテルと呼ぶこともできる。 1 is a thin wire that is inserted into the axial through hole of the catheter 10 and is movable in the axial direction and rotatable around the axis. Hereinafter, the guide wire 20 for inserting the living body tube portion is simply referred to as the guide wire 20. In this way, the entire instrument that encloses an elongate wire or the like in an elongate tube and passes the inside of the blood vessel 4 as a whole is sometimes called a catheter. In this case, the outer tube is made of an outer catheter or an outer catheter. The elongate wires stored in the through holes are distinguished from each other as inner catheters. Therefore, the catheter 10 of FIG. 1 can also be called an outer catheter and the guide wire 20 can be called an inner catheter.
 カテーテル10は、ここでは、ガイドワイヤ20を通す機能を有するチューブである。かかるカテーテル10としては、医学用として選ばれた一般的なもので細い外径のものを用いることができる。外径としては、約2mm以下、好ましくは約1mm以下、インチ系で標準的な0.80mm程度のものが好ましい。内径は、十分な管肉厚を有しながらガイドワイヤ20を滑らかに導入でき、軸方向に移動自在とできる隙間を確保できる寸法であることが望ましい。例えば、外径を0.80mmとするときは、内径を0.46mmとすることが好ましい。かかるカテーテル10としては、ステンレス網目が埋め込まれたナイロンチューブを用いることができる。 Here, the catheter 10 is a tube having a function of passing the guide wire 20. As such a catheter 10, a general one selected for medical use and having a thin outer diameter can be used. The outer diameter is preferably about 2 mm or less, preferably about 1 mm or less, and about 0.80 mm which is a standard inch type. It is desirable that the inner diameter has such a dimension that the guide wire 20 can be smoothly introduced while having a sufficient tube thickness and a gap that can be moved in the axial direction can be secured. For example, when the outer diameter is 0.80 mm, the inner diameter is preferably 0.46 mm. As the catheter 10, a nylon tube in which a stainless mesh is embedded can be used.
 ガイドワイヤ20は、根元部22と、本体部24と、図1では拡開状態として示される拡開先端部30とを含んで構成される。拡開先端部30は、カテーテル10の先端から突き出すときに拡開状態となるが、元々は本体部24と同じ太さの材料である。つまり、ガイドワイヤ20は、元々が一本の同じ太さの材料から構成される細長い棒材である。 The guide wire 20 includes a root portion 22, a main body portion 24, and an expanded distal end portion 30 shown as an expanded state in FIG. 1. The expanded distal end portion 30 is in an expanded state when protruding from the distal end of the catheter 10, but is originally a material having the same thickness as the main body portion 24. In other words, the guide wire 20 is an elongated bar that is originally composed of a single material having the same thickness.
 かかるガイドワイヤ20としては、医学用に適した形状記憶合金材料で構成される金属棒を用いることができる。外径としては、約1mm以下、好ましくは0.5mm以下、例えば、インチ系で標準的な数値である0.43mmから0.25mm程度のものが好ましい。 As the guide wire 20, a metal rod made of a shape memory alloy material suitable for medical use can be used. The outer diameter is preferably about 1 mm or less, preferably 0.5 mm or less, for example, about 0.43 mm to 0.25 mm, which is a standard numerical value for an inch system.
 形状記憶合金材料としては、変形を加えた状態で熱処理を行うことで超弾性を有し、常温に戻すと通常の金属に比べ5~10倍の弾性範囲を有し、ここで大きな変形を加えてもその変形力を取り去ると元の形状に戻ることができる材料を用いる。かかる金属材料としては、ニッケル-チタン合金を用いることができる。ニッケル-チタン合金は、形状回復温度を室温以下とでき、超弾性付与のための熱処理として例えば、約500℃30分程度とすることができる。 As shape memory alloy material, it has superelasticity by heat treatment in a deformed state, and has an elastic range of 5 to 10 times that of normal metal when returned to room temperature. However, a material that can return to its original shape when the deformation force is removed is used. As such a metal material, a nickel-titanium alloy can be used. The nickel-titanium alloy can have a shape recovery temperature of room temperature or lower, and can be, for example, about 500 ° C. for about 30 minutes as a heat treatment for imparting superelasticity.
 ガイドワイヤ20の根元部22は、回転機構12が接続される。回転機構12は、ガイドワイヤ20を軸周りに回転させる機構で、小型モータと駆動回路等の構成を用いることができる。場合によっては、カテーテル10、ガイドワイヤ20を生体内に挿入する操作を行う操作者が手動で回転しやすいようなハンドル機構とすることもできる。ガイドワイヤ20の根元部22は、カテーテル10の内部に入り込まないように、カテーテル10の全長より、ガイドワイヤ20の全長は十分長く設定される。 The root mechanism 22 of the guide wire 20 is connected to the rotation mechanism 12. The rotation mechanism 12 is a mechanism that rotates the guide wire 20 around an axis, and can be configured with a small motor, a drive circuit, and the like. In some cases, a handle mechanism can be provided so that an operator who performs an operation of inserting the catheter 10 and the guide wire 20 into the living body can easily rotate manually. The total length of the guide wire 20 is set to be sufficiently longer than the total length of the catheter 10 so that the root portion 22 of the guide wire 20 does not enter the inside of the catheter 10.
 図2は、ガイドワイヤ20の先端部がカテーテル10の内部に収納されている状態と、カテーテル10の先端から突き出したときの変化の様子を説明する図である。カテーテル10の寸法と、ガイドワイヤ20の寸法として、例えば、カテーテル10の内径を0.46mm、ガイドワイヤ20の外径を0.43mmとすると、ガイドワイヤ20の本体部24のところでは、カテーテル10の内径とガイドワイヤ20の外径との間の隙間は、0.03mmである。これによって、ガイドワイヤ20はカテーテル10の内部に対し相対的に軸方向移動可能で、回転機構12によって軸周りに回転可能である。 FIG. 2 is a diagram for explaining a state in which the distal end portion of the guide wire 20 is housed in the catheter 10 and a state of change when protruding from the distal end of the catheter 10. As the dimensions of the catheter 10 and the guide wire 20, for example, when the inner diameter of the catheter 10 is 0.46 mm and the outer diameter of the guide wire 20 is 0.43 mm, the catheter 10 is located at the body portion 24 of the guide wire 20. The gap between the inner diameter of the guide wire 20 and the outer diameter of the guide wire 20 is 0.03 mm. Thereby, the guide wire 20 can move in the axial direction relative to the inside of the catheter 10, and can be rotated around the axis by the rotation mechanism 12.
 図2の上側の図は、ガイドワイヤ20の先端部がカテーテル10の内部に収納されている状態を示す図で、ここでは、カテーテル10の内壁に外径が規制され、折畳まれた先端部28が示されている。折畳まれた先端部28とは、超弾性を付されたときの形状が図1で説明した拡開先端部30の形状であるが、その超弾性を付された形状からカテーテル10の内壁によって外径が規制されるように、大きな変形が加えられた状態である。したがって、折畳まれた先端部28は、拡開しようとする力をカテーテル10の内壁に与えていることになる。 2 is a view showing a state in which the distal end portion of the guide wire 20 is accommodated in the catheter 10, and here, the distal end portion in which the outer diameter is regulated by the inner wall of the catheter 10 and folded. 28 is shown. The folded distal end portion 28 is the shape of the expanded distal end portion 30 described with reference to FIG. 1 when superelasticity is applied, but the shape of the superelasticity is applied by the inner wall of the catheter 10. A large deformation is applied so that the outer diameter is regulated. Therefore, the folded distal end portion 28 applies a force to be expanded to the inner wall of the catheter 10.
 図2の下側の図は、上側の図に比べて、カテーテル10を白抜き矢印の方向に移動させることで、ガイドワイヤ20の先端部がカテーテル10の先端部から突き出し、超弾性を付されたときの形状に復帰して拡開先端部30となる様子を示す図である。この状態が血管4の内部で生じるときが図1で説明した状態である。なお、ガイドワイヤ20の位置をそのままとして、カテーテル10のみを白抜き矢印の方向に移動しやすいように、カテーテル10の手前側、つまりガイドワイヤ20の回転機構12が設けられる側に、軸方向移動ハンドルを設けることが好ましい。 The lower view of FIG. 2 is compared with the upper view, and the distal end portion of the guide wire 20 protrudes from the distal end portion of the catheter 10 by moving the catheter 10 in the direction of the white arrow, and is superelastic. It is a figure which shows a mode that it returns to the shape at the time of becoming and becomes the expansion front-end | tip part 30. The time when this state occurs inside the blood vessel 4 is the state described in FIG. It is to be noted that the guide wire 20 is left as it is, so that only the catheter 10 is easily moved in the direction of the white arrow, and the catheter 10 is moved toward the front side, that is, on the side where the rotation mechanism 12 of the guide wire 20 is provided. A handle is preferably provided.
 図2の下側の図で示される拡開先端部30の形状は、ガイドワイヤ20の先端部に変形を加えた状態で熱処理を行って超弾性を付すときの、その変形を加えた状態の形状である。つまり、超弾性を付す工程では、ガイドワイヤ20の先端部を、予め定めた包絡輪郭形状となるように、適当な変形用治具を用い、その状態で、上記の例では、500℃30分の熱処理が行われる。包絡輪郭形状形成用の変形用治具としては、適当な外径を有する金属球等を用いることができる。 The shape of the expanded distal end portion 30 shown in the lower diagram of FIG. 2 is the state in which the deformation is applied when heat treatment is applied to the distal end portion of the guide wire 20 to apply superelasticity. Shape. That is, in the step of applying superelasticity, an appropriate deformation jig is used so that the distal end portion of the guide wire 20 has a predetermined envelope contour shape. The heat treatment is performed. As the deformation jig for forming the envelope contour shape, a metal sphere having an appropriate outer diameter can be used.
 包絡輪郭形状の外径は、ガイドワイヤ20が挿入されて拡開するときの血管4の内径に対応して適宜定めることができる。上記の例で、カテーテル10の外径を0.8mmとするときは、血管4の内径は約1mm程度であるので、包絡輪郭形状の外径も約1mmとすることができる。包絡輪郭形状を有する拡開先端部30の機能は、図1で説明したように、閉塞物質8を絡めて取ることであり、その際にガイドワイヤ20を軸周りに回転させることが好ましいので、血管4の内径に比べ、包絡輪郭形状の外径をあまり大きくしなくてもよい。 The outer diameter of the envelope contour shape can be appropriately determined according to the inner diameter of the blood vessel 4 when the guide wire 20 is inserted and expanded. In the above example, when the outer diameter of the catheter 10 is 0.8 mm, the inner diameter of the blood vessel 4 is about 1 mm, so the outer diameter of the envelope contour shape can also be about 1 mm. As described with reference to FIG. 1, the function of the widening tip portion 30 having the envelope contour shape is to entangle the occluding substance 8, and at this time, it is preferable to rotate the guide wire 20 around the axis. Compared to the inner diameter of the blood vessel 4, the outer diameter of the envelope contour shape does not have to be so large.
 図3は、超弾性を付す工程の前に準備されるガイドワイヤ20の様子を示す図である。このガイドワイヤ20は、上記のように、元々が一本の同じ太さの材料から構成される細長い棒材であり、例えば、上記の例で、外径0.43mmのニッケル-チタン合金細線である。図3に示されるように、このガイドワイヤ20の先端部は、複数のスリット32が設けられたスリット付の先端部26である。つまり、上記の例では、外径0.43mmの細線の先端部において、両側に有端部を有する複数のスリットが加工によって刻まれて、複数に細長く分割される。 FIG. 3 is a view showing a state of the guide wire 20 prepared before the step of applying superelasticity. As described above, the guide wire 20 is an elongated rod originally composed of a single material having the same thickness. For example, in the above example, the guide wire 20 is a nickel-titanium alloy thin wire having an outer diameter of 0.43 mm. is there. As shown in FIG. 3, the distal end portion of the guide wire 20 is a distal end portion 26 with a slit provided with a plurality of slits 32. That is, in the above example, a plurality of slits having end portions on both sides are carved by processing at the distal end portion of a thin wire having an outer diameter of 0.43 mm and are divided into a plurality of elongated portions.
 図3では、ガイドワイヤ20の先端部において、軸方向に沿って細長いスリット32が2本、軸に垂直な面内で互いに直交するように刻まれる。スリット32を刻む加工は、レーザ加工等によって行うことができる。この加工は、原素材となるニッケル-チタン合金細線に対し、常温等の雰囲気で行われる。このようにして、複数のスリット32が設けられたスリット付の先端部26を有するガイドワイヤ20に対し、超弾性を付す加工が行われることになる。 In FIG. 3, two elongated slits 32 are cut along the axial direction at the distal end of the guide wire 20 so as to be orthogonal to each other in a plane perpendicular to the axis. The process of cutting the slit 32 can be performed by laser processing or the like. This processing is performed in an atmosphere at room temperature or the like on a nickel-titanium alloy fine wire as a raw material. In this way, the super-elastic processing is performed on the guide wire 20 having the slit-attached tip portion 26 provided with the plurality of slits 32.
 したがって、ガイドワイヤ20の製造方法は、次のような工程を経て行われる。最初に、目的とするカテーテル10の内径に対応する外径を有する形状記憶材料の細線を準備する(細線準備工程)。上記の例では、外径0.43mmのニッケル-チタン合金細線を準備する。長さは、カテーテル10の全長よりも十分に長いものとする。次に、この細線の先端部に、予め定めたスリット長で、複数のスリットを加工する(スリット加工工程)。これにより、スリット付の先端部26を有するガイドワイヤ20が得られる。 Therefore, the manufacturing method of the guide wire 20 is performed through the following steps. First, a thin line of shape memory material having an outer diameter corresponding to the inner diameter of the target catheter 10 is prepared (thin line preparation step). In the above example, a nickel-titanium alloy fine wire having an outer diameter of 0.43 mm is prepared. The length is sufficiently longer than the entire length of the catheter 10. Next, a plurality of slits are processed at a predetermined slit length at the tip of the thin wire (slit processing step). Thereby, the guide wire 20 which has the front-end | tip part 26 with a slit is obtained.
 図3の例では、軸方向に垂直な面内で互いに直交する2本のスリット32がレーザ加工等で形成される。スリット長は、対象とする血管4の内径に接する球の円周長の半分が目安である。スリット付の先端部26は、両端が互いに接続された4つの細長い部分に分割されることになるので、この4つの細長い部分の柔軟性を利用して、スリット付の先端部26を任意の形状とすることができる。 In the example of FIG. 3, two slits 32 perpendicular to each other in a plane perpendicular to the axial direction are formed by laser processing or the like. As a guide, the slit length is half of the circumferential length of the sphere in contact with the inner diameter of the target blood vessel 4. Since the distal end portion 26 with the slit is divided into four elongated portions whose both ends are connected to each other, the distal end portion 26 with the slit is formed into an arbitrary shape by utilizing the flexibility of the four elongated portions. It can be.
 次に、スリット付の先端部26を有するガイドワイヤ20に対し、超弾性を付す加工が行われる(超弾性付与工程)。上記の例では、スリット付の先端部26の4つに分割された部分を開いて、その内部に治具として金属球を配置し、包絡輪郭形状の外形に保持する。そして、このように包絡輪郭形状の外形に保持した状態で、ガイドワイヤ20の先端部を超弾性付与するための熱処理を行う。上記の例では、約500℃30分加熱する。加熱後常温に戻し、金属球を外す。 Next, a process of giving superelasticity is performed on the guide wire 20 having the tip portion 26 with a slit (superelasticity applying step). In the above example, the four divided portions of the tip portion 26 with the slit are opened, and a metal sphere is disposed therein as a jig, and is held in the envelope contour shape. And the heat processing for super-elastically providing the front-end | tip part of the guide wire 20 is performed in the state hold | maintained in the outer shape of the envelope outline shape in this way. In the above example, heating is performed at about 500 ° C. for 30 minutes. After heating, return to room temperature and remove the metal bulb.
 これによって、先端部が包絡輪郭形状の外形である拡開先端部30を有するガイドワイヤ20が得られる。この包絡輪郭形状の部分は超弾性を有しているので、超弾性付与が行われない状態に比べ5~10倍の弾性範囲を有する。したがって、この包絡輪郭形状の外形に外力を加え、平坦な状態にしても塑性変形をせず、その外力を取り除くと、元の包絡輪郭形状の外形に復帰する。 Thereby, the guide wire 20 having the expanded distal end portion 30 whose distal end portion has an envelope contour shape is obtained. Since the envelope contour portion has superelasticity, it has an elasticity range 5 to 10 times that in a state where superelasticity is not applied. Therefore, when an external force is applied to the outer shape of the envelope contour shape and plastic deformation does not occur even in a flat state and the external force is removed, the outer shape of the original envelope contour shape is restored.
 このようにしてガイドワイヤ20に超弾性が付与された拡開先端部30が形成されると、その根元に回転機構12が接続される。これでガイドワイヤ20の準備は完了する。用意されたガイドワイヤ20は、別途準備されたカテーテル10の軸方向貫通穴に挿入されて収納される(カテーテルへの収納工程)。このときに、ガイドワイヤ20の先端部は、図2の上側の図で説明したように、折畳まれた先端部28となる。折畳まれた先端部28は、カテーテル10の先端部近くまで挿入される。 Thus, when the widened tip portion 30 with superelasticity is formed on the guide wire 20, the rotation mechanism 12 is connected to the root thereof. This completes the preparation of the guide wire 20. The prepared guide wire 20 is inserted into and stored in the axial through hole of the catheter 10 separately prepared (accommodating step in the catheter). At this time, the distal end portion of the guide wire 20 becomes the folded distal end portion 28 as described with reference to the upper side of FIG. The folded tip 28 is inserted to the vicinity of the tip of the catheter 10.
 そして、ガイドワイヤ20が収納されたカテーテル10が、対象生体の血管4に挿入される(挿入工程)。カテーテル10の先端部には図示されていないマーカが取り付けられ、例えば、X線等を用いて、生体の血管4の中のカテーテル10の先端の位置がモニタ等で観察されるようにできる。そして、カテーテル10の根元部を操作し、生体の血管4を通って、例えば閉塞物質8を除去すべき部位に、カテーテル10の先端を到達させる(部位設定工程)。 Then, the catheter 10 storing the guide wire 20 is inserted into the blood vessel 4 of the target living body (insertion step). A marker (not shown) is attached to the distal end portion of the catheter 10, and the position of the distal end of the catheter 10 in the blood vessel 4 of the living body can be observed on a monitor or the like using, for example, X-rays. And the base part of the catheter 10 is operated, the front-end | tip of the catheter 10 is made to reach | attain the site | part which should remove the obstruction | occlusion substance 8 through the blood vessel 4 of a biological body (part setting process).
 所望の部位にカテーテル10の先端部が到達すると、図2の下側の図で説明したように、ガイドワイヤ20の位置をそのままにして、カテーテル10を手前側に移動させる。これによって、ガイドワイヤ20の折畳まれた先端部28がカテーテル10の先端から突き出し、スリット32によって複数の細長い分割部分となっているところが軸方向に垂直な方向にそれぞれ拡開して、包絡輪郭形状を形成して、拡開先端部30となる(拡開工程)。 When the distal end portion of the catheter 10 reaches a desired site, the catheter 10 is moved to the front side while the position of the guide wire 20 is left as it is, as described in the lower diagram of FIG. As a result, the folded distal end portion 28 of the guide wire 20 protrudes from the distal end of the catheter 10, and a plurality of elongated divided portions are expanded by the slits 32 in the direction perpendicular to the axial direction. A shape is formed to become the expanded tip 30 (expanding step).
 そこで、ガイドワイヤ20を回転機構12によって軸周りに回転させ、あるいは手元側の操作によって軸方向に前後させて、閉塞物質8を包絡輪郭形状に絡ませて、血管4の管壁、あるいは内部から除去できる(閉塞物質捕捉工程)。適当な時期に、カテーテル10を元の位置に戻す、あるいはガイドワイヤ20をさらに手前に引く等の操作で、閉塞物質8を絡み付けた先端部は、再びカテーテル10の内部に収納される。この状態で、ガイドワイヤ20を収納したカテーテル10を再び血管4の中を通って、引き出し、生体の外部に戻すことで、閉塞物質8を生体の外部に運び出すことができる(排出工程)。 Therefore, the guide wire 20 is rotated around the axis by the rotating mechanism 12 or moved back and forth in the axial direction by the operation on the hand side, and the occluding substance 8 is entangled in the envelope contour shape and removed from the vessel wall or inside of the blood vessel 4. Yes (occlusion substance capture step). At an appropriate time, the distal end portion entangled with the occlusive substance 8 is stored in the catheter 10 again by returning the catheter 10 to the original position or pulling the guide wire 20 further forward. In this state, the catheter 10 containing the guide wire 20 passes through the blood vessel 4 again, is pulled out, and is returned to the outside of the living body, whereby the occluding substance 8 can be carried out of the living body (discharge process).
 上記では、ガイドワイヤ20の先端部に複数のスリット32を形成するものとして説明したが、これ以外の方法で、閉塞物質8を絡めることに効果的な形状としてもよい。図4から図6は、先端部の形状が異なるガイドワイヤの例を示す図である。 In the above description, a plurality of slits 32 are formed at the distal end portion of the guide wire 20, but a shape effective for entanglement of the occluding substance 8 may be obtained by other methods. 4 to 6 are views showing examples of guide wires having different tip end shapes.
 図4に示すガイドワイヤ40は、本体部24の端部において、根元側に有端部を有し先端側が開放される複数の切れ目を設け、これによって、複数に細長く分割された先端部42とし、その複数の分割部分の先端側を一体的に結合したものである。これによって、スリット加工を用いずに、単なる切断工程で、ガイドワイヤ40の先端部42を複数の細長い分割部分とでき、その先端側を例えば、細線の結束部材44で一体化することで、複数のスリット加工を施したものと同様の形状とできる。包絡輪郭形状に超弾性を付与するのは、図2、図3に関連して説明した内容と同様の工程によって実現できる。 The guide wire 40 shown in FIG. 4 is provided with a plurality of cuts at the end portion of the main body portion 24 that have end portions on the root side and open at the tip end side, thereby forming a tip portion 42 that is divided into a plurality of elongated portions. The tip end sides of the plurality of divided parts are integrally coupled. As a result, the distal end portion 42 of the guide wire 40 can be formed into a plurality of elongated divided portions by a simple cutting process without using slit processing, and the distal end side thereof is integrated by, for example, a thin wire binding member 44, thereby It can be made into the same shape as what gave the slit process. Giving super-elasticity to the envelope contour shape can be realized by a process similar to that described with reference to FIGS.
 この方法によれば、スリット32の長さの管理が不要となる。すなわち、ガイドワイヤ40の本体部24の先端部を適当な長さにわたって切れ目を設け、所望の包絡輪郭形状の外形の大きさに対応するように、先端部の切れ目長さをあとで調整して切断すればよい。 According to this method, management of the length of the slit 32 becomes unnecessary. In other words, the distal end portion of the main body portion 24 of the guide wire 40 is provided with a cut over an appropriate length, and the length of the cut at the distal end portion is adjusted later so as to correspond to the size of the desired envelope contour shape. Just cut it.
 図5に示すガイドワイヤ50は、図4で説明したように、本体部24の端部において、切れ目54を設けて、複数に細長く分割された先端部52を形成し、その先端側を一体化結束しないで、相互に分離したままとするものである。図5は、超弾性を付与した後の外形を示してある。このように先端側が開口する包絡輪郭形状に超弾性を付与するには、図2、図3に関連して説明した内容と同様に、例えば球形、あるいは楕円球形の治具を用い、さらに、細長く複数の分割された部分の先端部が相互に分離しているので、その分割された部分のそれぞれを治具の外表面に押し付けるもう1つの治具を用いるものとすることがよい。 As shown in FIG. 4, the guide wire 50 shown in FIG. 5 is provided with a cut 54 at the end of the main body 24 to form a plurality of elongated tip portions 52, and the tip side is integrated. They are not tied together and remain separated from each other. FIG. 5 shows the outer shape after imparting superelasticity. In order to impart superelasticity to the envelope contour shape that opens at the tip side in this way, for example, a spherical or elliptical sphere jig is used, as in the case described in relation to FIG. 2 and FIG. Since the tip portions of the plurality of divided parts are separated from each other, it is preferable to use another jig that presses each of the divided parts against the outer surface of the jig.
 この方法によれば、超弾性を付与した先端部の形状は、先端側が開口する包絡輪郭形状となるので、この開口から閉塞物質8を取り込みやすくなることが期待される。 According to this method, the shape of the tip portion to which superelasticity is imparted is an envelope contour shape that opens on the tip side, and it is expected that the occluding substance 8 can be easily taken from the opening.
 図6に示すガイドワイヤ60は、図4、図5で説明した切れ目を入れる加工のときに、複数に分割された先端部62に、係止形状を付す加工を入れる例を示す図である。図6は、超弾性を付与する前の形状、つまり、素材細線に切れ目66を入れ、さらに係止部64を付与する加工を行った状態を示している。超弾性を付与する工程は、この後に行われ、その場合には、図4のように先端側を結束してもよく、図5のように先端側を開口したままとしてもよい。 The guide wire 60 shown in FIG. 6 is a diagram showing an example in which a process for attaching a locking shape is added to the tip portion 62 divided into a plurality of parts when the cut described in FIGS. 4 and 5 is made. FIG. 6 shows a state before applying superelasticity, that is, a state in which a cut 66 is made in the material thin line and a process of applying the locking portion 64 is performed. The step of imparting superelasticity is performed thereafter. In this case, the tip side may be bound as shown in FIG. 4, or the tip side may be left open as shown in FIG.
 係止部64は、細長く分割された先端部に絡まった閉塞物質8が再び剥離することを抑制し、絡まったままとするためのものである。したがって、鉤状のもの、あるいは、鑢の表面のように表面を荒らしたもの等のように、凹凸形状とすることがよい。 The locking portion 64 is for preventing the occluding substance 8 entangled at the tip portion divided into long and narrow portions from being peeled again and keeping it tangled. Therefore, it is preferable to have a concavo-convex shape such as a bowl-shaped one or a surface roughened like a bowl surface.
 上記では、生体管部挿入用ガイドワイヤは超弾性を付与された形状記憶合金材料で構成されるものとして説明したが、超弾性を付与することができない通常の金属細線であってもよい。この場合でも、カテーテルの内部に挿入して変形しても弾性限界を超えない程度に、予め定めた包絡輪郭形状に先端部を塑性変形させておけば、カテーテルの先端から突き出すときに自由形状としてのもとの包絡輪郭形状に戻ることができる。 In the above description, the guide tube for inserting a living body tube is described as being made of a shape memory alloy material to which superelasticity is imparted, but it may be a normal fine metal wire that cannot impart superelasticity. Even in this case, if the tip portion is plastically deformed to a predetermined envelope contour shape so that it does not exceed the elastic limit even if it is inserted into the catheter and deformed, the free shape can be obtained when protruding from the tip of the catheter. It is possible to return to the original envelope contour shape.
 例えば、一般的な鋼細線を、カテーテルの内径よりも大き目の外形となるように、予め包絡輪郭形状にクセ付け加工しておけば、カテーテルの内径にあるときはその内径まで弾性限界の範囲で変形しているが、カテーテルの先端から突き出すと、元のクセ付け加工した包絡輪郭形状に戻る。このようにして、普通の金属細線であっても、超弾性が付与された場合に比べると小さい外形ではあるが、カテーテルの先端から突き出すときに包絡輪郭形状に拡開することができる。 For example, if a general steel fine wire is preliminarily processed into an envelope contour shape so as to have an outer shape larger than the inner diameter of the catheter, if it is within the inner diameter of the catheter, the inner diameter is within the elastic limit range. Although it is deformed, when it protrudes from the distal end of the catheter, it returns to the original enveloped contour shape. Thus, even if it is a normal thin metal wire, although it is a small external shape compared with the case where super elasticity is given, it can be expanded to an envelope outline shape when it protrudes from the tip of a catheter.
 上記では、先端部62が複数の切れ目66によって分割された場合に、その分割された先端部62に係止部64を設けるものとして説明したが、図1から図3に説明した構成のように、両側に有端部を有するスリット32によって分割された場合にも、その先端部26において分割されたそれぞれの要素に係止部を設けるものとしてもよい。このような係止部は、拡開先端部30の状態において、分割された各要素に対し、適当な凹凸加工を行うことで形成することができる。 In the above description, when the distal end portion 62 is divided by a plurality of cuts 66, it has been described that the locking portion 64 is provided on the divided distal end portion 62. However, as in the configuration described in FIGS. Even when divided by the slits 32 having end portions on both sides, a locking portion may be provided for each element divided at the tip end portion 26. Such a locking part can be formed by performing an appropriate uneven | corrugated process with respect to each divided | segmented element in the state of the expansion front-end | tip part 30. FIG.
 上記のように、ガイドワイヤ20,40,50,60において、根元部22と本体部24は、分割される前の元々が同じ太さの外径を有しており、また、先端部は、予め定めた軸方向長さとして、対象とする生体管部の内径に接する球の円周長の半分を超えない長さの部分が、軸方向に沿ったスリット刻みまたは軸方向に沿った切れ目による切断によって複数に細長く分割される。ここで、本体部24の先端部に施されるスリット刻みまたは切れ目による切断は、先端部が複数に分離するに足りる程度のスリット幅、切れ目幅で行われる。 As described above, in the guide wires 20, 40, 50, 60, the root portion 22 and the main body portion 24 originally have the same outer diameter before being divided, and the tip portion is As a predetermined axial length, a portion having a length not exceeding half of the circumferential length of the sphere in contact with the inner diameter of the target biological tube portion is caused by a slit notch along the axial direction or a cut along the axial direction. Divided into multiple strips by cutting. Here, the slit nicks or cuts made on the front end of the main body 24 are performed with a slit width and a cut width sufficient to separate the front end into a plurality of pieces.
 上記の例で、1mm以下の外径のガイドワイヤ20,40,50,60の場合では、スリット幅、切れ目幅は、数10μm程度で足りる。0.43mmの外径のガイドワイヤ20,40,50,60の場合ではさらに細いスリット幅、切れ目幅を用いることができる。したがって、このようなスリット幅、切れ目幅を設けて先端部を分割しても、各分割部分はほとんど隙間なく合わせられて、全体の外径は、元々の根元部22、本体部24の外径と変わらない。その様子は、図3における拡大図においても示されている。 In the above example, in the case of guide wires 20, 40, 50, 60 having an outer diameter of 1 mm or less, a slit width and a cut width of about several tens of μm are sufficient. In the case of guide wires 20, 40, 50, and 60 having an outer diameter of 0.43 mm, narrower slit width and cut width can be used. Therefore, even if the slit width and the slit width are provided to divide the tip portion, the divided portions are aligned with almost no gap, and the overall outer diameter is the outer diameter of the original root portion 22 and the main body portion 24. And no different. This is also shown in the enlarged view of FIG.
 上記で述べた寸法の好ましい一例をまとめると、以下の通りである。内径が1mmの血管の血栓捕捉を対象とする場合、カテーテル10の外径が0.8mm、ガイドワイヤ20,40,50,60の根元部22と本体部24の直径が0.43mm、拡開先端部30の包絡輪郭形状の最大径は1mm未満、先端部の分割をスリット32によって4分割するものとして、各分割部分の断面形状は、半径が0.215mmの4分の1円形であり、スリット32の軸方向長さは、直径1mmの球の円周長の1/2である1.57mm未満、スリット幅は数10μmである。 A preferred example of the dimensions described above is summarized as follows. When targeting a thrombus capture of a blood vessel having an inner diameter of 1 mm, the outer diameter of the catheter 10 is 0.8 mm, and the diameter of the root portion 22 and the main body portion 24 of the guide wires 20, 40, 50, 60 is 0.43 mm. Assuming that the maximum diameter of the envelope contour shape of the tip portion 30 is less than 1 mm and the tip portion is divided into four by the slit 32, the sectional shape of each divided portion is a quarter circle with a radius of 0.215 mm, The length of the slit 32 in the axial direction is less than 1.57 mm which is a half of the circumferential length of a sphere having a diameter of 1 mm, and the slit width is several tens of μm.
 上記では、先端部は複数に分割されたままの状態であるが、この先端部に適当な薄膜を被せることで、閉塞物質の捕捉をより効果的に行うことができる。図7は、図3で説明した構成のガイドワイヤ20の先端部26に薄膜フィルム70を取り付けた様子を説明する図である。上側の図は、超弾性を付す前に準備されるガイドワイヤ20に薄膜フィルム70を取り付けた様子を示し、下側の図は、包絡輪郭形状を有する拡開先端部30のときの様子を示す図である。 In the above description, the tip portion remains in a state of being divided into a plurality of portions, but by covering the tip portion with an appropriate thin film, it is possible to capture the occluding substance more effectively. FIG. 7 is a diagram illustrating a state in which the thin film 70 is attached to the distal end portion 26 of the guide wire 20 having the configuration described in FIG. The upper diagram shows a state in which the thin film 70 is attached to the guide wire 20 prepared before superelasticity is applied, and the lower diagram shows the state of the expanded tip 30 having an envelope contour shape. FIG.
 薄膜フィルム70は、シート状で、複数の開口部72を有する薄膜である。薄膜フィルム70は、適当な弾性を有し、生体適合性のある薄膜材料で構成できる。複数の開口部72は、図7で示されるように、シートに複数の孔をあけることで構成することもでき、また、細い線を編んでメッシュ状にした網状薄膜を用いるものとすることができる。前者の例としては、生体適合性のあるプラスチックフィルムに開口部72として適当な孔をあけたものを用いることができる。後者の例としては、ニッケル-チタン合金の細線を編んでシート状とし、編目を開口部72としたものを用いることができる。この場合には、ガイドワイヤ20と同じように超弾性を付したものを用いることができる。 The thin film 70 is a thin film having a sheet shape and a plurality of openings 72. The thin film 70 can be made of a thin film material having appropriate elasticity and biocompatibility. As shown in FIG. 7, the plurality of openings 72 can also be configured by making a plurality of holes in the sheet, and use a net-like thin film formed by knitting fine lines into a mesh shape. it can. As the former example, it is possible to use a biocompatible plastic film having appropriate holes as the opening 72. As an example of the latter, a nickel-titanium alloy fine wire knitted into a sheet shape and a stitch formed as an opening 72 can be used. In this case, it is possible to use a superelastic material like the guide wire 20.
 薄膜フィルム70は、先端部26において長手方向に延びるスリット32の全長を部分的に覆うように、先端部26の一部に周方向に沿って全周に渡って取り付けられる。スリット32の全長を部分的に覆うのは、図7の下側の図に示されるように、ガイドワイヤ20を矢印方向に引いて閉塞物質を捕捉する際に、捕捉物質をちょうど傘の中に追い込むようにするためである。したがって、ガイドワイヤ20を捕捉回収する方向に対し、上流側に開く傘状となるように、スリット32の長手方向について、ガイドワイヤ20の最先端側からスリット32の全長の約1/2を覆うようにすることが好ましい。 The thin film 70 is attached to a part of the distal end portion 26 along the circumferential direction so as to partially cover the entire length of the slit 32 extending in the longitudinal direction at the distal end portion 26. Partially covering the entire length of the slit 32 is that when the guide wire 20 is pulled in the direction of the arrow to capture the occlusive material as shown in the lower view of FIG. This is to drive in. Therefore, about 1/2 of the entire length of the slit 32 is covered from the most distal side of the guide wire 20 in the longitudinal direction of the slit 32 so as to form an umbrella shape that opens upstream with respect to the direction in which the guide wire 20 is captured and collected. It is preferable to do so.
 薄膜フィルム70は、ガイドワイヤ20の先端部が包絡輪郭形状に拡開するときには拡開先端部30とともに包絡輪郭形状に拡開し、先端部がカテーテル10の軸方向貫通穴に収納された状態のときには先端部26とともに折り畳まれてカテーテル10の軸方向貫通穴に収納される。つまり、薄膜フィルム70は、いずれの状態においても、ガイドワイヤ20の先端部の形状に密着していることになる。 When the distal end portion of the guide wire 20 expands into an envelope contour shape, the thin film 70 expands into an envelope contour shape together with the expanded distal end portion 30, and the distal end portion is accommodated in the axial through hole of the catheter 10. Sometimes it is folded together with the distal end portion 26 and stored in the axial through hole of the catheter 10. That is, the thin film 70 is in close contact with the shape of the distal end portion of the guide wire 20 in any state.
 このように、複数の開口部72を有するシート状の薄膜フィルム70をガイドワイヤ20の先端部26の一部に取り付けることで、拡開先端部30を有する拡開先端部30となるときに、血流の上流側に開いた傘状となり、その傘状のフィルム面に開けられた開口部72に血流を通しながら、閉塞物質を効果的に捕捉することができる。 Thus, when the sheet-like thin film 70 having a plurality of openings 72 is attached to a part of the distal end portion 26 of the guide wire 20, when the expanded distal end portion 30 having the expanded distal end portion 30 is obtained, It becomes an umbrella shape opened upstream of the blood flow, and the occluding substance can be effectively captured while passing the blood flow through the opening 72 opened in the umbrella-shaped film surface.
 上記では、内径が1mm程度の血管に適用できるように、ガイドワイヤ20は中実細線であるが、これよりも若干内径の大きな血管に適用する場合には、ガイドワイヤとして管状のものを用いることができる。このように管状のガイドワイヤを用いることができる場合には、その管の中に、先端部の形状を制御する細い制御材を通すことができる。図8から図10は、管状形状を有するガイドワイヤ80に極細ヒータ部140を通して、ガイドワイヤ80の先端部86の形状制御を行う例を説明する図である。 In the above, the guide wire 20 is a solid thin wire so that it can be applied to a blood vessel having an inner diameter of about 1 mm. However, when the guide wire 20 is applied to a blood vessel having a slightly larger inner diameter, a tubular guide wire should be used. Can do. When a tubular guide wire can be used in this way, a thin control material that controls the shape of the tip can be passed through the tube. FIGS. 8 to 10 are diagrams illustrating an example in which the shape control of the distal end portion 86 of the guide wire 80 is performed through the ultrafine heater portion 140 through the guide wire 80 having a tubular shape.
 図8は、超弾性を付す工程の前に準備されるガイドワイヤ80の様子を示す図である。ここでは、長手方向の様子の図と、長手方向に垂直な軸断面の様子の図が示されている。ガイドワイヤ80において、その根元部82は、図1で説明した構成と同様に、回転機構12が接続される。本体部84は、軸方向中心穴88を含む管状形状を有し、先端部86は、スリット刻みによって、複数の分割部分に細長く分割される。ここで、分割された複数の分割部分のうち、少なくとも1つは、先端側に自由端を有し、先端部がカテーテル10の先端から突き出すときに拡開して包絡輪郭形状となるような超弾性が付与されていない非拡開分割部分である。 FIG. 8 is a view showing a state of the guide wire 80 prepared before the step of superelasticity. Here, the figure of the state of a longitudinal direction and the figure of the state of an axial cross section perpendicular | vertical to a longitudinal direction are shown. In the guide wire 80, the root portion 82 is connected to the rotation mechanism 12 in the same manner as the configuration described in FIG. The main body portion 84 has a tubular shape including an axial center hole 88, and the distal end portion 86 is elongated into a plurality of divided portions by slit notching. Here, at least one of the plurality of divided portions has a free end on the distal end side, and expands to have an envelope contour shape when the distal end portion protrudes from the distal end of the catheter 10. It is a non-expanded divided part to which no elasticity is given.
 図8の場合、先端部86は、レーザ加工等によるスリット刻みで6つの細長い分割部分90,91,92,93,100,102が形成されている。このうち、4つの分割部分90,91,92,94は、図3で説明した内容と同様に、両側に有端部を有する分割部分であり、上記で説明したように、例えば、適当な金属球の治具を用いて、包絡輪郭形状となるような超弾性が付与される。残りの2つの分割部分100,102は、一方側に有端部を有するが他方側は自由端である。この分割部分100,102については、超弾性が付与されない。なお、スリットの全長の条件、スリット幅等は、図3に関連して説明した内容と同様であるので、詳細な説明を省略する。 In the case of FIG. 8, the distal end portion 86 is formed with six elongated divided portions 90, 91, 92, 93, 100, 102 by slit notching by laser processing or the like. Of these, the four divided portions 90, 91, 92, and 94 are divided portions having end portions on both sides in the same manner as described with reference to FIG. 3, and as described above, for example, an appropriate metal Using a spherical jig, super-elasticity that gives an envelope contour shape is imparted. The remaining two divided portions 100 and 102 have end portions on one side, but are free ends on the other side. The split portions 100 and 102 are not given superelasticity. The conditions for the overall length of the slit, the slit width, and the like are the same as those described in relation to FIG.
 図9は、図8のように準備されたガイドワイヤ80について超弾性付与処理を行ったものについて、先端部をカテーテル10の先端から突き出したときの様子を示す図である。図8で説明したように、4つの分割部分90,91,92,93には、包絡輪郭形状となる超弾性処理が施されるので、これらは、包絡輪郭形状を有する拡開先端部109を構成するように、拡開分割部分120,121,122,123となる。一方、残りの2つの分割部分100,102には超弾性処理が行われないので、自由端形状のままである。この状態でも、ガイドワイヤ80を回転機構12によって軸周りに回転されると、包絡輪郭形状を有する拡開先端部109によって、血管中の閉塞物質を捕捉することができる。 FIG. 9 is a view showing a state in which the distal end portion of the guide wire 80 prepared as shown in FIG. As described with reference to FIG. 8, the four divided portions 90, 91, 92, and 93 are subjected to superelastic processing to become an envelope contour shape. As shown in the figure, the expanded divided portions 120, 121, 122, 123 are formed. On the other hand, since the remaining two divided portions 100 and 102 are not subjected to superelastic processing, they remain in a free end shape. Even in this state, when the guide wire 80 is rotated around the axis by the rotation mechanism 12, the occluding substance in the blood vessel can be captured by the expanded distal end portion 109 having the envelope contour shape.
 図10は、ガイドワイヤ80の軸方向中心穴88に極細ヒータ部140を通し、その先端の加熱部142によって、超弾性処理が行われていない2つの分割部分100,102を加熱し、その先端形状を予め定めた所定の形状とする制御を行う様子を示す図である。これによって、図9の状態よりもさらに閉塞物質の捕捉を効果的に行うことが可能となる。図10では、2つの分割部分100,102が加熱によってその先端形状を変更された曲がり分割部分130,132となる様子を示すために、軸方向周りの角度で互いに90度異なるときのそれぞれの状態が示されている。その2つの状態を区別できるように、軸方向をZ軸として、これに直交する2つの軸であるX軸とY軸の方向を図10の中に示した。 In FIG. 10, the ultrathin heater part 140 is passed through the axial center hole 88 of the guide wire 80, and the two divided parts 100 and 102 that are not superelastically processed are heated by the heating part 142 at the tip. It is a figure which shows a mode that control which makes a shape the predetermined shape defined beforehand is performed. This makes it possible to capture the occluding substance more effectively than the state of FIG. In FIG. 10, in order to show a state in which the two divided portions 100 and 102 become bent divided portions 130 and 132 whose tip shapes have been changed by heating, respective states when they differ from each other by 90 degrees in the angle around the axial direction. It is shown. In order to distinguish the two states, the axial direction is taken as the Z axis, and the directions of the X axis and the Y axis, which are two axes perpendicular to the Z direction, are shown in FIG.
 極細ヒータ部140は、ガイドワイヤ80との間の絶縁を確保しながら、先端の加熱部142に加熱エネルギを供給する必要がある。例えば、相互に絶縁が施された細線の先端に加熱部142が接続された超小型ヒータを用いることができる。 The extra-fine heater unit 140 needs to supply heating energy to the heating unit 142 at the tip while ensuring insulation between the guide wire 80 and the heater. For example, it is possible to use a microminiature heater in which the heating unit 142 is connected to the ends of fine wires that are insulated from each other.
 図10に示されるように、極細ヒータ部140に制御された電力を供給すると、その電力の大きさに応じて、超弾性処理が行われていない2つの分割部分100,102が加熱され、加熱部142に近い部分の方が多く伸び、遠い部分の方の伸びが少ないので、その先端部が曲がりを有し、一種の鉤形状となる。曲がりの形状は、極細ヒータ部140に制御された電力の大きさによって制御できる。例えば、パルス状に電力を供給することで、精密にその曲がりの形状を制御することが可能である。 As shown in FIG. 10, when controlled electric power is supplied to the ultrafine heater unit 140, the two divided portions 100 and 102 that are not subjected to superelastic processing are heated according to the magnitude of the electric power, and heating is performed. Since the portion closer to the portion 142 extends more and the portion farther away has less extension, the tip portion has a bend and forms a kind of ridge shape. The shape of the bend can be controlled by the magnitude of electric power controlled by the ultrafine heater unit 140. For example, it is possible to precisely control the shape of the bend by supplying electric power in pulses.
 このように、超弾性処理が行われていない2つの分割部分100,102は、加熱制御によって、曲がり分割部分130,132となる。この状態で、ガイドワイヤ80を回転機構12によって軸周りに回転されると、包絡輪郭形状を有する拡開先端部109とともに、曲がり分割部分130,132の先端部の鉤状形状によって、血管中の閉塞物質を効果的に捕捉することができる。 Thus, the two divided portions 100 and 102 that are not subjected to the superelastic treatment become the bent divided portions 130 and 132 by heating control. When the guide wire 80 is rotated around the axis by the rotation mechanism 12 in this state, the ridge-like shape of the distal end portions of the bent divided portions 130 and 132 together with the expanded distal end portion 109 having the envelope contour shape causes An occlusive substance can be effectively captured.
 本発明に係る生体管部挿入用ガイドワイヤは、細い血管内に挿入して血栓等の閉塞物質を捕捉するためのガイドワイヤとして利用できる。 The guide tube for inserting a living body tube according to the present invention can be used as a guide wire for inserting into a thin blood vessel and capturing an occlusive substance such as a thrombus.
 4 血管、6 管部、8 閉塞物質、10 カテーテル、12 回転機構、20,40,50,60,80 ガイドワイヤ、22,82 根元部、24,84 本体部、26,42,52,62,86 先端部、28 折り畳まれた先端部、30,109 拡開先端部、32 スリット、44 結束部材、54,66 切れ目、64 係止部、70 薄膜フィルム、72 開口部、88 軸方向中心穴、90,91,92,93,100,102 分割部分、120,121,122,123 拡開分割部分、130,132 曲がり分割部分、140 極細ヒータ部、142 加熱部。 4, blood vessel, 6 tube part, 8 occlusion substance, 10 catheter, 12 rotation mechanism, 20, 40, 50, 60, 80 guide wire, 22, 82 root part, 24, 84 body part, 26, 42, 52, 62, 86 tip, 28 folded tip, 30,109 widening tip, 32 slit, 44 binding members, 54, 66 cuts, 64 locking part, 70 thin film, 72 opening, 88 axial center hole, 90, 91, 92, 93, 100, 102 division part, 120, 121, 122, 123 expansion division part, 130, 132 bending division part, 140 ultrafine heater part, 142 heating part.

Claims (12)

  1.  回転機構が接続される根元部と、
     カテーテルの軸方向貫通穴中に挿入され、軸方向に移動自在で軸周りに回転可能な本体部と、
     本体部の端部において予め定めた軸方向長さの部分が軸方向に沿って複数に細長く分割された先端部と、
     を有し、
     先端部がカテーテルの先端から突き出すときに、複数の細長い分割部分が軸方向に垂直な方向にそれぞれ拡開して、予め定めた包絡輪郭形状を形成することを特徴とする生体管部挿入用ガイドワイヤ。
    A root part to which the rotation mechanism is connected;
    A body portion that is inserted into the axial through hole of the catheter, is movable in the axial direction, and is rotatable about the axis;
    A tip portion having a predetermined axial length at the end of the main body is elongated into a plurality of portions along the axial direction; and
    Have
    A guide for inserting a living body tube section, wherein when the distal end portion protrudes from the distal end of the catheter, a plurality of elongated divided portions are expanded in a direction perpendicular to the axial direction to form a predetermined envelope contour shape. Wire.
  2.  請求項1に記載の生体管部挿入用ガイドワイヤにおいて、
     超弾性を付与された形状記憶合金材料で構成されることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a biological tube according to claim 1,
    A guide tube for inserting a living body tube, comprising a shape memory alloy material provided with superelasticity.
  3.  請求項1または2に記載の生体管部挿入用ガイドワイヤにおいて、
     先端部は、
     本体部の端部において、両側に有端部を有する複数のスリットによって複数に細長く分割されることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a living body tube according to claim 1 or 2,
    The tip is
    A guide tube for inserting a living body tube portion, characterized in that, at the end portion of the main body portion, it is divided into a plurality of elongated portions by a plurality of slits having end portions on both sides.
  4.  請求項1または2に記載の生体管部挿入用ガイドワイヤにおいて、
     先端部は、
     本体部の端部において、根元側に有端部を有し先端側が開放される複数の切れ目によって複数に細長く分割されることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a living body tube according to claim 1 or 2,
    The tip is
    A living-tube-part-inserting guide wire characterized by being divided into a plurality of elongated portions by a plurality of cuts having an end portion on the base side and an open end side at an end portion of the main body portion.
  5.  請求項4に記載の生体管部挿入用ガイドワイヤにおいて、
     先端部は、
     複数の切れ目の部分に凹凸部が設けられることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a biological tube according to claim 4,
    The tip is
    A guide tube for inserting a living body tube portion, wherein uneven portions are provided at a plurality of cut portions.
  6.  請求項4に記載の生体管部挿入用ガイドワイヤにおいて、
     先端部は、
     切れ目によって分割された複数の分割部分の先端側で各分割部分を一体的に結合する結合手段を有することを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a biological tube according to claim 4,
    The tip is
    A guide tube for inserting a living body tube section, characterized by having coupling means for integrally coupling each divided portion at the distal end side of a plurality of divided portions divided by a cut.
  7.  請求項3に記載の生体管部挿入用ガイドワイヤにおいて、
     先端部は、
     複数の切れ目の部分に凹凸部が設けられることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a living body according to claim 3,
    The tip is
    A guide tube for inserting a living body tube portion, wherein uneven portions are provided at a plurality of cut portions.
  8.  請求項1に記載の生体管部挿入用ガイドワイヤにおいて、
     根元部と本体部は、分割される前の元々が同じ太さの外径を有し、
     先端部は、予め定めた軸方向長さとして、対象とする生体管部の内径に接する球の円周長の半分を超えない長さの部分が、軸方向に沿ったスリット刻みまたは軸方向に沿った切れ目による切断によって複数に細長く分割されることを特徴とする生体管部ガイドワイヤ。
    The guide tube for inserting a biological tube according to claim 1,
    The root part and the main body part have the same outer diameter before being divided,
    The tip portion has a predetermined length in the axial direction, and a portion having a length not exceeding half of the circumferential length of the sphere in contact with the inner diameter of the target biological tube portion is slit in the axial direction or in the axial direction. A living body guide wire characterized by being divided into a plurality of elongated portions by cutting along a cut along the line.
  9.  請求項1に記載の生体管部挿入用ガイドワイヤにおいて、
     先端部の長手方向の一部に周方向に沿って全周に渡って取り付けられたシート状の薄膜を有し、
     シート状薄膜は、先端部が包絡輪郭形状に拡開するときには先端部とともに包絡輪郭形状に拡開し、先端部がカテーテルの軸方向貫通穴に収納された状態のときには先端部とともに折り畳まれてカテーテルの軸方向貫通穴に収納されることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a biological tube according to claim 1,
    Having a sheet-like thin film attached to the entire circumference along the circumferential direction in a part of the longitudinal direction of the tip,
    The sheet-like thin film expands together with the distal end portion into the envelope contour shape when the distal end portion expands into the envelope contour shape, and is folded together with the distal end portion when the distal end portion is housed in the axial through hole of the catheter. A guide wire for inserting a living body tube portion, which is housed in an axial through hole.
  10.  請求項9に記載の生体管部挿入用ガイドワイヤにおいて、
     シート状薄膜は、メッシュ状に開口部を有する網状薄膜であることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a living body according to claim 9,
    A guide tube for inserting a living body tube, wherein the sheet-like thin film is a mesh-like thin film having an opening in a mesh shape.
  11.  請求項9に記載の生体管部挿入用ガイドワイヤにおいて、
     シート状薄膜は、超弾性を付与された形状記憶合金材料で構成されることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a living body according to claim 9,
    A guide tube for inserting a living body tube, wherein the sheet-like thin film is made of a shape memory alloy material to which superelasticity is imparted.
  12.  請求項2に記載の生体管部挿入用ガイドワイヤにおいて、
     本体部は、軸方向中心穴を含む管状形状を有し、
     先端部は、細長く分割された複数の分割部分のうち、先端側に自由端を有する少なくとも1つの分割部分であって、先端部がカテーテルの先端から突き出すときに拡開して包絡輪郭形状となるような超弾性が付与されていない非拡開分割部分を含み、
     さらに、本体部の軸方向中心穴に挿入されるヒータ部であって、先端部を加熱することで非拡開分割部分の先端側の自由端を予め定めた所定の形状となるように熱変形させるヒータ部を備えることを特徴とする生体管部挿入用ガイドワイヤ。
    The guide tube for inserting a biological tube according to claim 2,
    The main body has a tubular shape including an axial center hole,
    The distal end portion is at least one divided portion having a free end on the distal end side among the plurality of elongated divided portions, and expands into an envelope contour shape when the distal end portion protrudes from the distal end of the catheter. Including a non-expanded split part that is not given superelasticity,
    Furthermore, the heater part is inserted into the axial center hole of the main body part, and is thermally deformed so that the free end on the front end side of the non-expanded divided part becomes a predetermined shape by heating the front end part. A guide wire for inserting a living body tube portion, characterized by comprising a heater portion.
PCT/JP2009/069254 2008-11-12 2009-11-12 Guide wire for insertion in living body lumen WO2010055875A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008289640A JP2012024111A (en) 2008-11-12 2008-11-12 Guide wire for insertion in living body vessel part
JP2008-289640 2008-11-12

Publications (1)

Publication Number Publication Date
WO2010055875A1 true WO2010055875A1 (en) 2010-05-20

Family

ID=42170006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069254 WO2010055875A1 (en) 2008-11-12 2009-11-12 Guide wire for insertion in living body lumen

Country Status (2)

Country Link
JP (1) JP2012024111A (en)
WO (1) WO2010055875A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107898487A (en) * 2017-11-28 2018-04-13 郑州大学第附属医院 A kind of universal thrombus with bionical jellyfish convergent-divergent broken takes device
CN113819780A (en) * 2021-09-22 2021-12-21 锘威科技(深圳)有限公司 High-performance ultrathin micro heat pipe for 5G smart phone
CN114469274A (en) * 2022-01-17 2022-05-13 中国人民解放军空军军医大学 Probe for subarachnoid hemorrhage model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021078858A (en) * 2019-11-20 2021-05-27 メディカル・イノベイション株式会社 Guide wire, and molding method and molding apparatus of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183783A1 (en) * 2001-06-04 2002-12-05 Shadduck John H. Guidewire for capturing emboli in endovascular interventions
US20030015206A1 (en) * 2001-07-18 2003-01-23 Roth Noah M. Integral vascular filter system
US20070129753A1 (en) * 2005-12-01 2007-06-07 Chris Quinn Method and apparatus for recapturing an implant from the left atrial appendage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183783A1 (en) * 2001-06-04 2002-12-05 Shadduck John H. Guidewire for capturing emboli in endovascular interventions
US20030015206A1 (en) * 2001-07-18 2003-01-23 Roth Noah M. Integral vascular filter system
US20070129753A1 (en) * 2005-12-01 2007-06-07 Chris Quinn Method and apparatus for recapturing an implant from the left atrial appendage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107898487A (en) * 2017-11-28 2018-04-13 郑州大学第附属医院 A kind of universal thrombus with bionical jellyfish convergent-divergent broken takes device
CN107898487B (en) * 2017-11-28 2023-11-03 郑州大学第一附属医院 General thrombus crushing and taking device with bionic jellyfish shrinkage and expansion functions
CN113819780A (en) * 2021-09-22 2021-12-21 锘威科技(深圳)有限公司 High-performance ultrathin micro heat pipe for 5G smart phone
CN114469274A (en) * 2022-01-17 2022-05-13 中国人民解放军空军军医大学 Probe for subarachnoid hemorrhage model
CN114469274B (en) * 2022-01-17 2023-07-18 中国人民解放军空军军医大学 Subarachnoid hemorrhage model probe

Also Published As

Publication number Publication date
JP2012024111A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP4932822B2 (en) Intravascular filter with centering member
JP5945119B2 (en) Apparatus and method for improved stent deployment
US8273101B2 (en) System and method for delivering and deploying an occluding device within a vessel
EP1656072B1 (en) Ureteral backstop filter and retrieval device
US8257421B2 (en) System and method for delivering and deploying an occluding device within a vessel
EP2217156B1 (en) Tethered coil for treatment of body lumens
US11497895B2 (en) Expandable tip medical devices and methods
US20110160741A1 (en) Medical treatment tool for tubular organ
US20130204281A1 (en) Total occlusion guidewire device
WO2017019900A1 (en) Guide catheter extension device and methods of use for cardiology procedures
JP2008534133A (en) Articulated collection device
JP2004261235A (en) Medical wire device
US9895159B2 (en) Multiwire unit and method for producing the same
JP6608843B2 (en) Medical recovery device
JP2020506029A (en) Apparatus and method for retracting tissue
JP2007325893A (en) Embolus trapping tool
WO2010055875A1 (en) Guide wire for insertion in living body lumen
JP2023169345A (en) Occlusion retrieval device
DE102010021345A1 (en) Occlusions instrument for closing left atrial auricle of patient, has occluder provided with region that is located from central region to retention region for forming actuated connection between nub region of occluder and auricle wall
CN217090812U (en) Delivery guidewire
JP7078376B2 (en) Recovery device
JP2020039504A (en) Stent
JP5470197B2 (en) Embolization capture device
CN108541218B (en) Endoscopic organ manipulation device and method
JP2022106566A (en) Device for capturing substance in lumen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826122

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP