WO2010055671A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2010055671A1
WO2010055671A1 PCT/JP2009/006074 JP2009006074W WO2010055671A1 WO 2010055671 A1 WO2010055671 A1 WO 2010055671A1 JP 2009006074 W JP2009006074 W JP 2009006074W WO 2010055671 A1 WO2010055671 A1 WO 2010055671A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
liquid crystal
guide element
crystal display
display panel
Prior art date
Application number
PCT/JP2009/006074
Other languages
English (en)
French (fr)
Inventor
渡辺寿史
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2009801459360A priority Critical patent/CN102216972A/zh
Priority to EP09825924A priority patent/EP2360662A4/en
Priority to JP2010537703A priority patent/JP5020383B2/ja
Priority to US13/129,428 priority patent/US20110255301A1/en
Priority to BRPI0921298A priority patent/BRPI0921298A2/pt
Priority to RU2011124517/28A priority patent/RU2011124517A/ru
Publication of WO2010055671A1 publication Critical patent/WO2010055671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays

Definitions

  • the present invention relates to a display device, particularly a direct-view display device.
  • the size of the screen depends on the substrate size.
  • the largest glass substrate (mother substrate) used for manufacturing a liquid crystal display device is the eighth generation (2200 mm ⁇ 2400 mm), and a liquid crystal display device having a diagonal of about 100 inches is manufactured using this substrate. ing.
  • Substrate that can be used for mass production is becoming larger and larger, but its speed is slow, and it is difficult to supply a display device of a larger area required for the current market right now.
  • the liquid crystal display device mainly includes a liquid crystal display panel, a backlight device, a circuit for supplying various electric signals to the liquid crystal display device, a power source, and a housing for housing these.
  • the liquid crystal display panel mainly includes a pair of glass substrates and a liquid crystal layer provided therebetween.
  • pixel electrodes are formed in a matrix, for example, and TFTs, bus lines, and drive circuits for supplying signals to these are provided, and the other is a color filter layer.
  • a counter electrode is provided.
  • the liquid crystal display panel has a display area in which a plurality of pixels are arranged and a frame area around the display area. The frame region is provided with a seal portion for sealing and holding the liquid crystal layer, a drive circuit mounting portion for driving the pixels, and the like so that the pair of substrates face each other.
  • Patent Document 1 discloses a configuration that includes an optical fiber face plate that covers the entire surface of the display panel, and performs seamless display by guiding light emitted from the display area to a non-display area using the optical fiber face plate. Has been.
  • Japanese Patent Laid-Open No. 2004-228620 provides a structure in which a fiber optic face plate composite is provided on the entire surface of the display panel, and light emitted from the display region is guided to the non-display region by the fiber optic face plate, thereby performing seamless display. Is disclosed.
  • Patent Document 3 has a light compensation means composed of a large number of inclined thin films and a transparent material filled between the inclined thin films over almost the entire surface of the display panel.
  • the light compensation means guides light to a non-display area. By doing so, a configuration for performing seamless display is disclosed.
  • a configuration using a metal film or a resin (for example, a transparent resin such as acrylic resin or polycarbonate) as the inclined thin film is disclosed.
  • the optical fiber face plate is an aggregate of optical fibers, the larger the area, the more difficult it is to manufacture and the greater the cost.
  • an optical fiber face plate that covers almost the entire surface of the display panel is required, and particularly in a large display device, it is not realistic from the viewpoint of the manufacturing method and cost. .
  • Patent Document 3 uses Patent Compensation Document 1 and Patent Document 1 in that light compensation means including a large number of inclined thin films and a transparent body filled between the inclined thin films is used instead of the optical fiber face plate. Although it is different from the technique of No. 2, it requires an optical compensation means that covers almost the entire surface of the display panel, and has the same problems as the techniques described in Patent Document 1 and Patent Document 2.
  • Patent Document 2 describes that a parallel plate (an optical fiber face plate in which an incident surface and an output surface are parallel) arranged in the display area can be omitted.
  • the parallel plate is omitted, the end face of the block-shaped (cross section is rectangular) optical fiber face plate arranged at the edge of the display area forms a step in the display area, so that the image becomes discontinuous and display The quality is impaired.
  • Patent Document 3 discloses a method for manufacturing a light compensation unit, in which an inclined thin film is installed and fixed on an outer mold at a predetermined angle, and a liquid transparent body is injected and filled between them. Is cured.
  • the gradient thin film needs to be prepared to have a film thickness of a certain degree or more so that it can be self-supported. Decreases, leading to a decrease in luminance of the display device. For example, if the film thickness is 0.5 mm and the pitch of the inclined thin film is 1 mm, the transmittance is 50% (actually, the transmittance is further lowered because there is absorption by the transparent body filled between the inclined thin films). ). In addition, since the pixel pitch is smaller in an actual display device, the pitch of the inclined thin film must be further reduced, and the transmittance is further reduced.
  • the present invention has been made in order to solve the above problems, and is a direct view type in which the frame region of the display panel or the seam when tiling is difficult to see, which is easier to manufacture than the prior art or lower in cost than the prior art.
  • An object of the present invention is to provide a display device.
  • the direct-view display device of the present invention includes at least one display panel having a display area and a frame area formed outside the display area, an incident surface, an exit surface, the entrance surface, and the exit surface. And at least one light guide element having a plurality of light guide parts formed therebetween, wherein the plurality of light guide parts include at least one transparent part, and at least one of the side surfaces of the at least one transparent part.
  • a metal part is provided in the part, and the incident surface of the at least one light guide element is a part of a peripheral display region adjacent to the frame region of the at least one display panel along a first axis.
  • the output surface of the at least one light guide element extends along the first axis in the one of the peripheral display areas. From the front Distance from the incident surface toward the frame region, characterized in that the increase.
  • the at least one light guide element has a laminate in which a plurality of transparent layers and a plurality of metal layers are laminated.
  • the plurality of metal layers include a metal layer having a thickness of 100 nm to 5 ⁇ m.
  • the plurality of metal layers include a metal layer having a thickness of 100 nm to 1 ⁇ m.
  • the at least one transparent portion has a substantially cylindrical shape, and the side surface of the at least one transparent portion is covered with the metal portion.
  • the at least one display panel includes first and second display panels adjacent to each other, and an angle formed by an observer-side surface of the first display panel and an observer-side surface of the second display panel.
  • the side surface of the second display panel overlaps the frame region of the first display panel so that the angle is greater than 0 ° and less than 180 °
  • the at least one light guide element includes first and second light guide elements.
  • the volume of the first light guide element is larger than the volume of the second light guide element.
  • an end portion on the second display panel side of the emission surface of the first light guide element is in contact with an end portion on the first display panel side of the emission surface of the second light guide element. Yes.
  • the emission surface of the first light guide element is parallel to the emission surface of the second light guide element.
  • the first and second light guide elements are triangular prisms.
  • the first and second light guide elements are isosceles triangular prisms.
  • an angle formed by an observer-side surface of the first display panel and an observer-side surface of the second display panel is ⁇
  • the shape of the first and second light guide elements has an apex angle. It is an isosceles triangular prism that is ⁇ / 2.
  • the shape of the emission surface of the first and second light guide elements is a cylindrical curved surface.
  • the display device according to the present invention further includes a backlight device on the side opposite to the observer-side surface of the second display panel, and the side surface of the backlight device on the first display panel side is It is parallel to the observer side surface of the first display panel and overlaps the frame region of the first display panel.
  • a light diffusion layer is provided on the emission surface of the first light guide element or on the emission surface of the second light guide element.
  • the at least one display panel includes at least three display panels, and the at least three display panels are arranged in a ring shape.
  • the present invention it is possible to provide a direct-view type display device that is easier to manufacture than the conventional one or is less expensive than the conventional one, and the frame region of the display panel or the seam when tiling is difficult to see.
  • FIG. 1 It is typical sectional drawing of the liquid crystal display device 100a of embodiment by this invention. It is typical sectional drawing of the edge part of the liquid crystal display device 100a. It is a typical perspective view of liquid crystal display device 100A provided with a plurality of liquid crystal display devices 100a arranged in a line. It is a perspective view which shows typically the structure of the sheet
  • FIG. 1 It is typical sectional drawing of the liquid crystal display device 100A of embodiment by this invention. It is typical sectional drawing of the edge part of the liquid crystal display device 100a. It is a typical perspective view of liquid crystal display device 100A provided with a plurality of liquid crystal display devices 100a arranged in a line. It is
  • FIG. 4 is an enlarged schematic cross-sectional view of a light guide portion of a sheet laminate 80.
  • FIG. It is sectional drawing of a light guide element (sheet laminated body 90) in case the width
  • (A) And (b) is a schematic diagram for demonstrating the manufacturing method of the sheet
  • FIG. It is typical sectional drawing of the liquid crystal display device 200 of embodiment by this invention. It is a typical expanded sectional view of the junction part of liquid crystal display panel 10a, 10b.
  • FIG. 3 is a schematic perspective view of a sheet laminate 40.
  • FIG. (A) And (b) is a schematic diagram for demonstrating the manufacturing method of the sheet
  • FIG. It is a schematic diagram for demonstrating the design of a light guide element. It is typical sectional drawing of other display apparatuses 200 'of embodiment by this invention. It is a typical expanded sectional view of the junction part of liquid crystal display panel 10a ', 10b'. It is typical sectional drawing of the other display apparatus 300 of embodiment by this invention. It is a schematic diagram for demonstrating the method (method 1) of compressing and displaying an image.
  • FIG. 10 is a schematic diagram for explaining still another manufacturing method of the sheet laminate 80.
  • a liquid crystal display device using a liquid crystal display panel as a display panel will be exemplified, but the display panel used in the display device of the present invention is not limited to this.
  • the display panel for example, a PDP display panel, an organic EL display panel, an electrophoretic display panel, or the like can be used.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device 100a according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an end portion of the liquid crystal display device 100a.
  • FIG. 3 is a schematic perspective view of a liquid crystal display device 100A including a plurality of liquid crystal display devices 100a.
  • the liquid crystal display device 100a can be used alone, or a large liquid crystal display device 100A can be obtained by tiling a plurality of liquid crystal display devices 100a as shown in FIG. Tiling can be performed by a known method.
  • the liquid crystal display device 100a is disposed on the viewer side of the liquid crystal display panel 10 and the liquid crystal display panel 10, and faces each other along a first axis J1 (horizontal direction in FIG. 1). Two light guide elements 20 are provided.
  • the liquid crystal display device 100 a is a transmissive type, further includes a backlight device 50, and performs display by modulating light emitted from the backlight device 50 with the liquid crystal display panel 10.
  • the liquid crystal display panel 10 may be any known liquid crystal display panel, for example, a TFT type VA mode liquid crystal display panel.
  • the liquid crystal display panel 10 includes a TFT substrate 12 and a counter substrate 11, and a liquid crystal layer 13 is provided between the TFT substrate 12 and the counter substrate 11.
  • the TFT substrate 12 is provided with TFTs and pixel electrodes
  • the counter substrate 11 is provided with color filters and counter electrodes.
  • the liquid crystal layer 13 is held between the TFT substrate 12 and the counter substrate 11 by the seal portion 14.
  • Optical film portions 15 and 16 are provided on the viewer side of the counter substrate 11 (upper side in FIG. 1) and on the side opposite to the viewer side of the TFT substrate 12 (lower side in FIG. 1), respectively.
  • the optical film parts 15 and 16 include a polarizing plate and a retardation plate provided as necessary.
  • the liquid crystal display panel 10 includes a display area 31 in which a plurality of pixels are arranged, and a frame area 30 outside the display area 31.
  • the frame region 30 includes a region in which the seal portion 14, various wiring terminals, a drive circuit, and the like are provided.
  • the frame region 30 is generally provided with a light shielding film. Therefore, the frame area 30 does not contribute to display.
  • a plurality of pixels are arranged in a matrix having rows and columns.
  • the row direction corresponds to the horizontal direction on the display surface of the liquid crystal display panel 10 (the left-right direction on the paper surface in FIG. 1)
  • the column direction corresponds to the vertical direction on the display surface (the direction perpendicular to the paper surface in FIG. 1).
  • a well-known backlight device 50 can be widely used.
  • a direct type backlight device in which a plurality of cold cathode tubes are arranged in parallel can be used.
  • the backlight device 50 is preferably capable of adjusting the luminance distribution.
  • the light guide element 20 disposed on the viewer side of the liquid crystal display panel 10 includes an incident surface 21 and an output surface 22, and a plurality of light guide units formed between the incident surface 21 and the output surface 22. ing.
  • the plurality of light guide portions include a transparent portion, and a metal portion is provided on at least a part of the side surface of the transparent portion.
  • the incident surface 21 of the light guide element 20 overlaps a part 32 of the peripheral display region adjacent to the frame region 30 of the liquid crystal display panel 10 along the first axis J1, and the surface of the liquid crystal display panel 10 (“display”
  • the exit surface 22 of the light guide element 20 is arranged along the first axis J1 from the part 32 of the peripheral display region toward the frame region 30. The distance from is increased.
  • the first axis J1 is an axis extending in the horizontal direction (extending in parallel with the row direction of the liquid crystal display panel 10), and FIG. 1 is a cross-sectional view along the first axis J1.
  • the cross-sectional shape of the light guide element 20 is a triangle.
  • the overall shape of the light guide element 20 is a triangular prism whose section perpendicular to the longitudinal direction is triangular. This triangular prism is defined by an incident surface 21, an exit surface 22, and a side surface 23.
  • the light guide elements 20 are arranged so that the longitudinal direction is perpendicular to the horizontal direction of the liquid crystal display panel 10 (parallel to the column direction).
  • the light guide element 20 has a plurality of light guide portions.
  • the plurality of light guides have at least one transparent part, and a metal part is provided on at least a part of the side surface of the transparent part.
  • Light incident from the incident surface 21 of the light guide element 20 propagates through the transparent portion and exits from the exit surface 22. At this time, the light incident on the transparent portion propagates in the transparent portion while being reflected by the metal portion provided on the side surface of the transparent portion.
  • the transparent part functions as a light guide part.
  • the metal part of the light guide element 20 does not need to be provided on the entire side surface of the transparent part, and may be provided so that light incident on the transparent part can propagate by metal reflection.
  • FIG. 4 is a perspective view schematically showing a triangular prism-shaped sheet laminate 90 used as the light guide element 20.
  • the sheet laminate 90 is a laminate in which a transparent layer 93 and a metal layer 94 are laminated in parallel to each other.
  • the transparent layer 93 and the metal layer 94 are laminated so as to be parallel to each other in a direction orthogonal to the length direction (light propagation direction).
  • the stacking direction of the transparent layer 93 and the metal layer 94 is a direction perpendicular to the side surface 23 of the light guide element 20.
  • Light incident on the light guide element 20 from the incident surface 21 propagates in the transparent layer 93 parallel to the side surface 23 and is emitted from the emission surface 22 toward the viewer. At this time, the light incident on the transparent layer 93 propagates through the transparent layer 93 while being reflected by the adjacent metal layer 94. Although light enters the incident surface 21 from various angles, the sheet laminate 90 uses metal reflection in the metal layer 94, and therefore can guide all light regardless of the incident angle.
  • the light guide element 20 one having a plurality of light guide parts including a substantially cylindrical transparent part in which at least a part of the side surface is covered with a metal part can be used. At this time, the light incident on the transparent portion propagates in the transparent portion while being reflected by the metal portion provided on the side surface of the transparent portion. That is, each transparent part functions as a light guide part.
  • the cross section of the light guide element 20 at this time is the same as that of the light guide element 20 shown in FIGS. That is, the light guide element 20 is formed so that the length direction of the transparent portion is aligned in parallel with the side surface 23 of the light guide element 20.
  • a sheet laminate 80 in which a plurality of light-transmitting layers are laminated can also be used.
  • the sheet laminate 80 is a laminate in which at least two types of translucent layers having different refractive indexes are laminated.
  • FIG. 5 shows a perspective view of a sheet laminate 80 having two types of light-transmitting layers 83 and 84.
  • the sheet laminate 80 in which a plurality of light transmissive layers are laminated will be described in detail later.
  • the light transmitting layer 83 and the light transmitting layer 84 having a refractive index lower than that of the light transmitting layer 83 are stacked in parallel to each other.
  • the sheet laminate 80 is used as the light guide element 20
  • the light incident on the light guide element 20 from the incident surface 21 propagates in the light-transmitting layer 83 in parallel with the side surface 23 and is observed from the output surface 22 to the observer. It is emitted toward the side. Since the refractive index of the translucent layer 83 is higher than the refractive index of the translucent layer 84, the light incident on the translucent layer 83 is totally reflected at the interface between the translucent layer 83 and the translucent layer 84, so To propagate.
  • Total reflection is a phenomenon in which when light enters a medium having a high refractive index into a medium having a low refractive index, the incident light does not pass through the boundary surface between the two media and is totally reflected. Total reflection occurs when the incident angle is greater than a certain angle. This angle is called the critical angle.
  • the magnitude of the critical angle depends on the ratio of the refractive index of the light transmitting layer 83 and the refractive index of the light transmitting layer 84. Of the light incident on the light transmitting layer 83, only light having an incident angle larger than the critical angle can propagate through the light transmitting layer 83.
  • the reflectivity for light incident at an incident angle greater than the critical angle is 100%, but light having an incident angle equal to or smaller than the critical angle is refracted and exits from the translucent layer 83.
  • the sheet laminate 90 guides incident light using metal reflection in the metal layer 94, all incident light can be propagated regardless of the incident angle.
  • FIG. 6 is a schematic cross-sectional view in which the light guide portion of the sheet laminate 90 is enlarged
  • FIG. 7 is a schematic cross-sectional view in which the light guide portion of the sheet laminate 80 is enlarged.
  • FIG. 6 shows light rays 98 and 99 incident at different incident angles in the transparent layer 93 of the sheet laminate 90.
  • FIG. 7 shows light rays 88 and 89 incident on the sheet laminate 80.
  • the sheet laminate 90 since light is guided using metal reflection, it is possible to guide light rays 98 and 99 incident from various angles (FIG. 6).
  • the sheet laminate 80 although the light ray 88 having an incident angle larger than the critical angle is guided, the light beam 89 having an incident angle smaller than the critical angle passes through the light transmitting layer 84 and enters the adjacent light transmitting layer 83.
  • the light transmitting layer 84 When stray light is formed or an absorption layer is formed in the light transmitting layer 84, the light is absorbed by the absorption layer (FIG. 7).
  • the range of the incident angle that can be propagated is narrower than that in the sheet laminated body 90 using the metal layer.
  • the range of the incident angle that can be propagated depends on the ratio of the refractive index ratio of the light transmitting layer as described above. Materials that increase the refractive index ratio of the light-transmitting layer are limited. Accordingly, there are restrictions on the selection of materials for the light transmissive layer 83 and the light transmissive layer 84.
  • the numerical aperture (NA) in the case of an optical fiber is reduced. That is, the range of incident angles that can be propagated is narrowed. Therefore, it is not preferable to use an acrylic film as the translucent layer 83. Therefore, for example, a polyethylene terephthalate film (PET, refractive index 1.65) is used as the light transmitting layer 83, and an acrylic film (refractive index 1.49) is used as the light transmitting layer 84. Since PET has a lower transmittance than acrylic, the display becomes dark.
  • PET polyethylene terephthalate film
  • the transparent layer 93 only needs to be transparent, and the size of the refractive index is not limited, so the range of materials used for the transparent layer 93 is wide.
  • an acrylic film for example, PMMA
  • a transmittance as high as that of glass can be used. Therefore, when the sheet laminate 90 is used as the light guide element 20, it is possible to display brighter than when the sheet laminate 80 is used.
  • an acrylic film for example, “Acryprene” manufactured by Mitsubishi Rayon Co., Ltd. can be used.
  • the sheet laminate 90 has the advantage that the viewing angle of the display image is wide because the range of incident angles that can be propagated is wider.
  • an optical fiber face plate can be used as the light guide element 20.
  • an optical fiber has a core part called a core and a part called a cladding outside the core. By making the refractive index of the core higher than the refractive index of the cladding, light propagates in the core using total reflection.
  • each optical fiber functions as a light guide. The optical fiber face plate will be described in detail later.
  • the range of incident angles that can be propagated depends on the size of the critical angle, so there are restrictions on the choice of core and cladding materials.
  • the range of selection of the material of the transparent portion is wide, like the sheet laminate 90. Further, since metal reflection is used, all light can be propagated regardless of the incident angle. Accordingly, the viewing angle is widened.
  • the light guide element 20 has a wider range of material selection than the light guide element using the sheet laminate 80 in which the light transmitting layers having different refractive indexes are laminated or the optical fiber face plate. Therefore, a material having a high transmittance can be selected regardless of the refractive index, and a bright display can be achieved. Moreover, since the selection range of the material for the transparent portion is wide, an inexpensive material can be used as the material for the transparent portion. As a material for the transparent portion, an inexpensive material such as acrylic can be used instead of a material having a high refractive index such as generally expensive glass or PET. Therefore, the light guide element 20 can be manufactured at low cost.
  • the liquid crystal display device 100a only includes the light guide element 20 provided so as to overlap the frame region 30 and a part 32 of the peripheral display region adjacent to the frame region 30. Most of the display area 31 excluding the portion 32 does not have a light guide element. Therefore, unlike the conventional display device described in Patent Documents 1 to 3 described above, a light guide element having a large area is not required, and thus there is an advantage that manufacture is easy and cost is low. .
  • the light guide element 20 uses metal reflection, all light can be propagated regardless of the incident angle, and thus has an advantage of wide viewing angle.
  • the light incident on the light guide element 20 from the incident surface 21 propagates in the transparent portion parallel to the side surface 23 and is emitted from the emission surface 22 toward the observer.
  • the incident surface 21 overlaps a part 32 of the peripheral display region of the liquid crystal display panel 10. Therefore, an image formed on a part 32 of the peripheral display region is displayed on the viewer side of the light guide element 20 by the light emitted from the emission surface 22.
  • the emission surface 22 of the light guide element 20 extends to a position that overlaps the frame region 30.
  • the exit surface 22 is not parallel to the entrance surface 21 and is formed so that the distance from the entrance surface 21 increases toward the frame region 30. Accordingly, the display light (image information) incident on the incident surface 21 is enlarged and emitted from the emission surface. As a result, an image is displayed on the viewer side of the frame region 30 of the liquid crystal display panel 10, and the frame region becomes difficult to see.
  • the emission surface 22 of the light guide element 20 may be extended to a position that coincides with the end of the liquid crystal display panel 10. In this case, since the emission surface 22 covers the entire frame region 30, the entire frame region 30 is not visually recognized from the observer side.
  • the light guide element 20 is not limited to the case where the light guide elements 20 are provided for the two frame areas opposed in the horizontal direction, and the light guide elements are also used for the other two frame areas opposed in the vertical direction. 20 may be provided so that the frame region is less visible or not visible on all four sides of the liquid crystal display device 100a. Further, depending on the use of the liquid crystal display device 100a, the light guide element 20 may be provided on only one side or on any two or three sides. Also in this case, the frame region is difficult to see on the side where the light guide element 20 is provided on the viewer side.
  • a large liquid crystal display device 100A shown in FIG. 3 can be obtained by arranging a plurality of liquid crystal display devices 100a in a line.
  • the light guide elements 20 are provided on adjacent sides of the plurality of liquid crystal display devices 100a.
  • the large-sized liquid crystal display device 100A can realize a display in which the joint is difficult to see.
  • a metal having high reflectivity such as aluminum (Al) or silver (Ag) can be used.
  • Al aluminum
  • Ag silver
  • the reflectance of aluminum is about 90%
  • the reflectance of silver is about 98%. Therefore, each time light is reflected by the metal layer 94, a part thereof is absorbed.
  • a reflective film that does not absorb light in principle such as a dielectric multilayer film, can also be used, but this is not preferable because of the high cost of manufacturing the multilayer thin film.
  • the longer the length of the light guide path (the length of the light guide portion in the direction in which the light propagates), the greater the number of reflections, and the greater the light absorption in the metal layer 94.
  • the reflectance at the interface between the light-transmitting layer 83 and the light-transmitting layer 84 is 100%, so that light is not absorbed at the interface even when the length of the light guide is increased.
  • FIG. 8 shows a cross-sectional view of the light guide element 20 when the width of the non-display area (frame area) 30 is small
  • FIG. 9 shows the case where the width of the non-display area 30 is large.
  • the light guide path is short.
  • the width of the non-display area 30 is relatively large, the light guide path is long.
  • the length of the light guide path depends on the width of the non-display area 30.
  • the sheet laminate 90 using the metal layer is more totally reflected.
  • the transmittance is higher than that of the used sheet laminate 80.
  • the width of the non-display area 30 shown in FIG. 9 is relatively large (for example, 5 mm or more)
  • the light guide is long and the number of reflections is large, so the sheet laminate 80 using total reflection is better.
  • the transmittance is high.
  • the transmittance in addition to the length of the light guide, which structure is advantageous depends on the type of material used, the adhesive, the adhesive, and the like.
  • the sheet laminate 90 using the metal layer has a transmittance that varies depending on the length of the light guide, but has a wide range of incident angles that can be propagated and a wide range of material selection for the transparent layer 93, so that the transmittance is high. The material can be selected. Therefore, the sheet laminate 90 using the metal layer is more advantageous than the sheet laminate 80 using total reflection.
  • the liquid crystal display device 100a may further include a translucent cover (cover 26) that covers the display region 31 of the liquid crystal display panel 10 and the emission surfaces 22 of the two light guide elements 20 (FIG. 1 and FIG. 1). 2). At this time, the cover 26 and the light guide element 20 are fixed to the surface of the liquid crystal display panel 10 by a transparent adhesive layer (not shown).
  • the light guide element 20 may be further fixed by a resin layer 25 formed between the side surface 23 and the surface of the liquid crystal display panel 10. Although the resin layer 25 may be omitted, when the resin layer 25 is provided, the light guide element 20 can be more stably fixed.
  • the cover 26 is fixed by the emission surface 22 of the light guide element 20 and an adhesive layer. An adhesive layer between the light guide element 20 and the liquid crystal display panel 10 is not necessarily required, and may be fixed via an air layer therebetween.
  • the light guide element 20, the cover 26, and the resin layer 25 provided on the surface of the liquid crystal display panel 10 on the viewer side may be collectively referred to as a light guide sheet 27.
  • the light guide element 20 and the display surface of the liquid crystal display panel 10 can be protected by providing the cover 26 and the resin layer 25 to form a sheet having a flat surface.
  • the uncomfortable appearance is reduced.
  • the dirt on the surface can be easily wiped off.
  • the cover 26 is, for example, a transparent resin plate (for example, an acrylic resin plate) formed in advance so as to conform to the shape of the display surface of the light guide element 20 and the liquid crystal display panel 10.
  • cover 26 and the light guide sheet 27 those similar to the cover 26 and the light guide sheet 27 used in the liquid crystal display device 100D using an optical fiber face plate as the light guide element 20, which will be described in detail later, are preferably used. it can.
  • the light guide element a light guide element including a transparent part provided with a metal part on the side surface is used.
  • the material of the transparent part is not limited as long as it is at least transparent, and there is an advantage that the range of material selection is widened. Therefore, a material having a high transmittance can be used regardless of the refractive index. This suppresses the non-display area from becoming dark. Further, since metal reflection is used, all light can be guided regardless of the incident angle of light, and the viewing angle is widened. Moreover, since the material selection range of the transparent part is wide, an inexpensive material can be selected as the material of the transparent part, and the cost can be reduced. Further, by using such a light guide element, it is possible to make it difficult to see the frame region of the display panel or the joint when tiling.
  • the sheet laminate 90 can be easily manufactured by the following method.
  • the light reflectance of aluminum (Al), silver (Ag), etc. is high in the one side surface of the transparent layer 93 formed from the translucent material like an acrylic resin or glass.
  • the metal layer 94 is formed as a thin film by vapor deposition or sputtering to obtain a laminated film 96.
  • the plurality of metal layers 94 included in the sheet laminate 90 preferably include a metal layer having a thickness of 100 nm to 5 ⁇ m. If the thickness of the metal layer 94 is less than 100 nm, sufficient light reflection characteristics may not be obtained. On the other hand, when the thickness of the metal layer 94 is larger than 5 ⁇ m, the ratio of the transparent layer 93 to the incident surface of the sheet laminate 90 is reduced, which is not preferable because the light transmittance is lowered and the display luminance is lowered.
  • membrane formed by a vapor deposition method or a sputtering method is large (for example, forming more thickly than 1 micrometer)
  • several metal layers are metal layers whose thickness is 1 micrometer or less. It is further preferable that it contains.
  • seat laminated body 90 exists in said range, the thickness of one part metal layer may be outside the said range.
  • the metal layer 94 is preferably free from scattering on the surface and the reflection on the surface is close to specular reflection.
  • the laminated film 96 is cured so that each layer does not peel off. Is obtained (FIG. 10B).
  • a material having adhesiveness or adhesiveness a thermosetting resin or a resin material of a thermoplastic resin can be used, but a range in which a high translucency, low light scattering property, and sufficient strength after curing can be obtained. Thus, it is preferable that the layer thickness is thin.
  • the transparent layer 93 has adhesiveness / adhesiveness, it is not particularly necessary to separately provide an adhesive layer and an adhesive layer.
  • the laminated body 95 obtained as described above is cut obliquely with respect to the plane direction of the transparent layer 93 and the metal layer 94, By grinding the cut surface as necessary and adjusting the appearance, the triangular prism-shaped sheet laminate 90 shown in FIG. 4 is obtained.
  • the cutting direction is a parameter determined by the width of the non-display area (frame area) 30 of the liquid crystal display panel 10 and the area of the area (part of the peripheral display area) 32 where the sheet laminate 90 is disposed.
  • the sheet laminate 90 used as the light guide element 20 of the liquid crystal display device 100a has an angle between the broken line 61 and the surface direction of the transparent layer 93 and the metal layer 94 of 65 degrees, and the broken line 62 and the transparent layer 93 and the metal layer 94 The angle formed with the surface direction is 30 degrees.
  • a roll-to-roll method is used to form a laminated film 96 having a metal layer 94 formed on the surface of the transparent layer 93.
  • the sheet laminate 90 can be more easily produced by using a plurality of fused layers.
  • a roll-to-roll method for fusing the laminated film 96 a method similar to the roll-to-roll method described later as a method for producing the sheet laminate 80 can be used.
  • FIG. 11 is a schematic cross-sectional view of a liquid crystal display device 200 according to an embodiment of the present invention.
  • a liquid crystal display device 200 shown in FIG. 11 includes two adjacent liquid crystal display panels, 10a and 10b, and two light guide elements 20a and 20b.
  • the liquid crystal display device 200 is a display device in which two liquid crystal display panels 10a and 10b are tiled with a predetermined angle ( ⁇ described later). Tiling can be performed by a known method.
  • FIG. 12 is an enlarged view of a joint portion between the liquid crystal display panel 10a and the liquid crystal display panel 10b of the liquid crystal display device 200.
  • FIG. The joint portion of the liquid crystal display device 200 will be described later.
  • FIG. 13 is a schematic perspective view of the liquid crystal display device 200.
  • FIG. 11 is a cross-sectional view of the liquid crystal display device 200 shown in FIG. 13 taken along a plane perpendicular to the viewer-side surfaces 17a and 17b of the liquid crystal display panels 10a and 10b.
  • a light guide element 20a is provided on the observer-side surface 17a of the liquid crystal display panel 10a.
  • the liquid crystal display device 200 is a transmissive type, and a backlight device 50a is provided on the opposite side (lower side in FIGS. 11 and 12) of the liquid crystal display panel 10a.
  • display is performed by modulating the light emitted from the backlight device 50a by the liquid crystal display panel 10a.
  • a light guide element 20b is provided on the observer side surface 17b of the liquid crystal display panel 10b, and a backlight device 50b is provided on the opposite side to the observer side.
  • liquid crystal display device 200 two liquid crystal display panels 10a and 10b are used. Of course, more display panels may be arranged. An example of a display device including three or more display panels will be described later.
  • the liquid crystal display panel 10a may be any known liquid crystal display panel, for example, a TFT type VA mode liquid crystal display panel. As shown in FIG. 12, the liquid crystal display panel 10a includes a TFT substrate 12a and a counter substrate 11a, and a liquid crystal layer 13a is provided between the TFT substrate 12a and the counter substrate 11a.
  • the TFT substrate 12a is provided with TFTs and pixel electrodes
  • the counter substrate 11a is provided with color filters and counter electrodes.
  • the liquid crystal layer 13a is held between the counter substrate 11a and the TFT substrate 12a by the seal portion 14a.
  • Optical film portions 15a and 16a are provided on the observer side (upper side in FIG. 12) of the counter substrate 11a and on the opposite side (lower side in FIG.
  • the liquid crystal display panel 10b includes a TFT substrate 12b, a counter substrate 11b, a liquid crystal layer 13b, a seal portion 14b, optical film portions 15b and 16b, and the like.
  • the liquid crystal display panels 10a and 10b have display areas 31a and 31b in which a plurality of pixels are arranged, and frame areas 30a and 30b outside the display areas 31a and 31b.
  • the frame regions 30a and 30b include regions where seal portions 14a and 14b, terminals of various wirings, drive circuits, and the like are provided. In general, a light shielding film is provided in the frame regions 30a and 30b. Therefore, the frame regions 30a and 30b do not contribute to display.
  • a plurality of pixels are arranged in a matrix having rows and columns.
  • the row direction corresponds to the horizontal direction on the display surface of the liquid crystal display panel 10a (the direction perpendicular to the paper surface in FIG. 11), and the column direction corresponds to the vertical direction on the display surface (the left-right direction on the paper surface in FIG. 11).
  • a plurality of pixels are arranged in a matrix having rows and columns in the display area 31b of the liquid crystal display panel 10b.
  • the backlight devices 50a and 50b are, for example, direct type backlight devices including a plurality of fluorescent tubes parallel to each other. However, as will be described later, those capable of adjusting the luminance distribution are preferable.
  • the angle formed by the viewer-side surface 17a of the liquid crystal display panel 10a and the viewer-side surface 17b of the liquid crystal display panel 10b is set to a predetermined angle ⁇ (0 ° ⁇ ⁇ 180 °).
  • the liquid crystal display panel 10a and the liquid crystal display panel 10b are arranged.
  • the angle ⁇ represents an angle formed by the observer-side surface 17b of the liquid crystal display panel 10b and a surface obtained by extending the observer-side surface 17a of the liquid crystal display panel 10a toward the liquid crystal display panel 10b.
  • the angle ⁇ is set to various angles depending on the product form.
  • the liquid crystal display panels 10a and 10b are arranged so that the side surface of the other liquid crystal display panel overlaps the frame region of the one liquid crystal display panel.
  • the side surface 18b of the liquid crystal display panel 10b overlaps the frame region 30a of the liquid crystal display panel 10a.
  • the light guide element 20a disposed on the viewer side of the liquid crystal display panel 10a includes a light incident surface 21a, a light exit surface 22a, and a plurality of light guide elements 20a formed between the light incident surface 21a and the light exit surface 22a. And a light guide portion.
  • the incident surface 21a of the light guide element 20a overlaps the peripheral display region 32a that is adjacent to the frame region 30a along the second axis (J2) in the display region 31a of the liquid crystal display panel 10a.
  • the incident surface 21a overlaps the peripheral display area adjacent to the part adjacent to the liquid crystal display panel 10b in the frame area 30a along the second axis J2.
  • the light guide element 20a is arranged so that the incident surface 21a is parallel to the viewer-side surface 17a of the liquid crystal display panel 10a.
  • the second axis J2 is an axis extending parallel to the column direction of the liquid crystal display panel 10a (the vertical direction on the display surface of the liquid crystal display panel 10a).
  • the distance between the entrance surface 21a and the exit surface 22a increases along the second axis J2 from the peripheral display region 32a toward the frame region 30a (from left to right in FIG. 12).
  • the incident surface 21a extends to the boundary 35a between the peripheral display region 32a and the frame region 30a.
  • the light guide element 20b has an incident surface 21b, an output surface 22b, and a plurality of light guide portions formed between the incident surface 21b and the output surface 22b.
  • 21b is arranged so as to overlap with the peripheral display region 32b which is the region adjacent to the frame region 30b along the third axis J3 in the display region 31b of the liquid crystal display panel 10b (the frame region 30b, the display region 31b, the peripheral region).
  • the display area 32b is shown in FIG. Further, the distance between the entrance surface 21b and the exit surface 22b increases from the peripheral display region 32b toward the frame region 30b along the third axis J3.
  • the third axis J3 is an axis extending parallel to the column direction of the liquid crystal display panel 10b (the vertical direction on the display surface of the liquid crystal display panel 10b).
  • the cross-sectional shape of the light guide element 20a is a triangle.
  • the overall shape of the light guide element 20a is a triangular prism whose section perpendicular to the longitudinal direction is triangular. This triangular prism is defined by an incident surface 21a, an exit surface 22a, and a side surface 23a.
  • the overall shape of the light guide element 20b is a triangular prism whose section perpendicular to the longitudinal direction is triangular, and this triangular prism is defined by an incident surface 21b, an output surface 22b, and a side surface 23b.
  • the light guide elements 20a and 20b are arranged so that the longitudinal direction is parallel to the horizontal direction on the display surfaces of the liquid crystal display panels 10a and 10b.
  • the emission surface 22a is closer to the viewer side than the viewer side surface 17a of the liquid crystal display panel 10a.
  • the emission surface 22b is closer to the viewer than the viewer-side surface 17b of the liquid crystal display panel 10b. Therefore, the emission surfaces 22a and 22b exist on the viewer side of the peripheral display area 32a, the frame area 30a, the frame area 30b, and the peripheral display area 32b.
  • the light guide elements 20a and 20b of the liquid crystal display device 200 include a plurality of light guide parts including a transparent part in which a metal part is provided on at least a part of the side surface, like the light guide element 20 of the liquid crystal display device 100a.
  • a light guide element for example, it has a light guide element that is a sheet laminate in which a plurality of transparent layers and a plurality of metal layers are laminated, or a substantially cylindrical transparent part whose side surface is covered with a metal part.
  • a light guide element can be used.
  • stacked as the light guide elements 20a and 20b is demonstrated. As shown in FIG.
  • a transparent layer and a metal layer are laminated in parallel with the side surface 23a of the light guide element 20a.
  • a transparent layer and a metal layer are laminated in parallel to the side surface 23b of the light guide element 20b.
  • the light incident on the light guide element 20a from the incident surface 21a propagates in the transparent portion in parallel with the side surface 23a and is emitted from the emission surface 22a toward the viewer.
  • the incident surface 21a overlaps the peripheral display region 32a of the liquid crystal display panel 10a. Therefore, the light emitted from the pixels in the peripheral display region 32a enters the light guide element 20a from the incident surface 21a, propagates through the individual light guide paths parallel to the side surface 23a, and is emitted from the output surface 22a. . Accordingly, an image formed in the peripheral display region 32a is displayed on the viewer side of the light guide element 20a.
  • the light guide element 20b is also a sheet laminate similar to the light guide element 20a, and light emitted from the pixels in the peripheral display region 32b enters the light guide element 20b from the incident surface 21b. The light propagates through the individual light guide paths parallel to the side surface 23b and is emitted from the emission surface 22b. Accordingly, an image formed in the peripheral display region 32b of the liquid crystal display panel 10b is displayed on the viewer side of the light guide element 20b.
  • the images formed in the peripheral display regions 32a and 32b are light guide elements.
  • the frame regions 30a and 30b become difficult to see. Accordingly, in the liquid crystal display device 200, it is difficult to see the joint between the liquid crystal display panel 10a and the liquid crystal display panel 10b.
  • the end 24a of the light exit surface 22a of the light guide element 20a on the liquid crystal display panel 10b side is a liquid crystal.
  • the display panel 10a is in contact with the end 24b of the light exit surface 22b of the light guide element 20b (corresponding to the intersection of the light exit surface 22b and the side surface 23b). For this reason, in the liquid crystal display device 200, it is visually recognized that the emission surface 22a and the emission surface 22b are connected. This realizes a display in which the seam is more difficult to see.
  • the emission surface 22a of the light guide element 20a and the emission surface 22b of the light guide element 20b are parallel.
  • the emission surface 22a and the emission surface 22b are on the same plane, and are viewed by an observer as if the emission surfaces 22a and 22b form one surface.
  • the liquid crystal display device 200 can continuously display a seamless image because the light exit surface 22a of the light guide element 20a and the light exit surface 22b of the light guide element 20b are on the same plane. Examples of design values of the light guide element will be described later.
  • the sheet laminate used as the light guide element 20a and the light guide element 20b is similar to the light guide element 20 of the liquid crystal display device 100a described above, from the plate-like laminate to the incident surface and the exit surface so as to form a triangular prism. It can produce by cutting out.
  • FIG. 14 is a perspective view of a triangular prism-shaped sheet laminate 40 used as the light guide element 20a of the liquid crystal display device 200.
  • the sheet laminate 40 is composed of a laminate of a transparent layer 43 and a metal layer 44.
  • FIG. 14 also shows the entrance surface 21a, the exit surface 22a, and the side surface 23a when the light guide element 20a is made of a sheet laminate. As shown in FIG. 14, when a sheet laminate is used as the light guide element 20a, the side surface 23a is perpendicular to the sheet lamination direction.
  • the transparent layer 43 and the metal layer 44 of the sheet laminate 40 are placed on the side surface 23a of the light guide element 20a and the side surface 23b of the light guide element 20b in FIG. Arranged in parallel.
  • a metal layer 44 is provided on one surface of 43 and dried and cured to obtain a laminated film 46.
  • the laminated film 46 is cured so that each layer does not peel off, and the laminated body 45 similar to the laminated body 95 (FIG. 10B). Is obtained (FIG. 15B).
  • the laminated body 45 is cut along cut surfaces (indicated by broken lines 61 and 62). As shown by broken lines 61 and 62, the laminated body 45 is cut in an oblique direction with respect to the bonding surface of the transparent layer 43 and the metal layer 44, and if necessary, the cut surface is polished and the appearance is adjusted, so that FIG. A sheet laminate 40 having the triangular prism shape shown is obtained.
  • FIG. 16 is a cross-sectional view schematically showing the relationship between the liquid crystal display panels 10a and 10b and the light guide elements 20a and 20b.
  • the direction of the plane parallel to the viewer-side surface 17a of the liquid crystal display panel 10a is indicated by a dashed line 70a
  • the direction of the plane parallel to the viewer-side surface 17b of the liquid crystal display panel 10b is indicated by a dashed-dotted line 70b. Since the incident surface 21a of the light guide element 20a is parallel to the viewer-side surface 17a of the liquid crystal display panel 10a, the line 70a is parallel to the incident surface 21a. Similarly, the line 70b is parallel to the incident surface 21b of the light guide element 20b.
  • the direction of the surface parallel to the emission surface 22a of the light guide element 20a is indicated by a one-dot chain line 71a
  • the direction parallel to the emission surface 22b of the light guide element 20b is indicated by a one-dot chain line 71b.
  • the angle formed by the line 70a and the line 70b is the same as the angle ⁇ formed by the observer side surface 17a of the liquid crystal display panel 10a and the observer side surface 17b of the liquid crystal display panel 10b.
  • the angle formed by the line 70a and the line 71a is ⁇
  • the angle formed by the line 70b and the line 71b is ⁇ .
  • ⁇ and ⁇ are apex angles of the triangular prism.
  • vertical to a longitudinal direction of the incident surfaces 21a and 21b of the light guide elements 20a and 20b and the output surfaces 22a and 22b is set as follows.
  • L4 Length of the exit surface 22b of the light guide element 20b length
  • the angle formed by the line 70a and the line 71a and the angle formed by the line 70b and the line 71b are equal.
  • the line 71a is parallel to the line 71b.
  • the emission surface 22a and the emission surface 22b are on the same plane.
  • the end 24a of the emission surface 22a and the end 24b of the emission surface 22b are in contact with each other. Therefore, the line 71a and the line 71b are a straight line connected. That is, the emission surface 22a and the emission surface 22b form a connected plane.
  • the appearance is good and the display quality of the image is high as compared with the case where the exit surfaces are not the same plane.
  • the image is enlarged or reduced.
  • L1 ⁇ L2 the image formed in the peripheral display region 32a of the liquid crystal display panel 10a is enlarged by the light guide element 20a and displayed on the viewer side.
  • the peripheral display area 32a needs to be compressed to form an image as compared with an image formed in the central display area 33a, which is an area other than the peripheral display area 32a in the display area 31a. It takes.
  • L1> L2 the image formed in the peripheral display area 32a of the liquid crystal display panel 10a is reduced by the light guide element 20a and displayed on the viewer side. Similar to the case of L1 ⁇ L2, this case also takes time and cost. A method for enlarging or reducing the image will be described later.
  • L1 and L2 are equal.
  • the shape of the cross section (cross section perpendicular to the longitudinal direction) of the light guide element 20a is an isosceles triangle.
  • the entire shape of the light guide element 20a is an isosceles triangular prism.
  • the light guide element 20b also has an equal isosceles triangular prism with L3 and L4 equal.
  • the shape of the cross section perpendicular to the longitudinal direction of the optimal light guide elements 20a and 20b is an isosceles triangle similar to each other.
  • the volume of the light guide element 20a is larger than the volume of the light guide element 20b.
  • the cross section of the light guide element 20a and the cross section of the light guide element 20b are similar isosceles triangles. Therefore, the area of the cross section perpendicular to the longitudinal direction of the light guide element 20a is larger than the area of the cross section perpendicular to the longitudinal direction of the light guide element 20b.
  • the light guide element 20a and the light guide element 20b are triangular prisms having the same length in the longitudinal direction. Therefore, the volume of the light guide element 20a is larger than the volume of the light guide element 20b.
  • the side surface 18b of the liquid crystal display panel 10b overlaps the frame region 32a of the liquid crystal display panel 10a.
  • the volume of the light guide element 20b is larger than the volume of the light guide element 20a.
  • the volume of one light guide element is larger than the volume of the other light guide element even if the shape of the light guide element is not a triangular prism shape.
  • the light guide element 320a is larger than the volume of the light guide element 320b.
  • Reference numeral 20c region shown in satin in FIG. 16 is an invalid region that does not contribute to display. Accordingly, this region 20c may be a void or a member formed of a resin material or the like. Furthermore, a part of the light guide element 20a or 20b may be formed so as to protrude into the region 20c.
  • the overall shape of the light guide element is different from the isosceles triangular prism as described above, the above discussion means that the shape in the effective area is an isosceles triangular prism, Even if the element protrudes into an invalid area and the entire shape is not an isosceles triangular prism, the effect is not lost.
  • FIG. 17 is a cross-sectional view of the liquid crystal display device 200 'according to the embodiment.
  • the liquid crystal display device 200 ' includes liquid crystal display panels 10a' and 10b 'similar to the liquid crystal display panels 10a and 10b of the liquid crystal display device 200, and light guide elements 20a' and 20b '.
  • FIG. 18 is an enlarged view of the joint between the liquid crystal display panel 10a 'and the liquid crystal display panel 10b' of the liquid crystal display device 200 '.
  • the edges 19 a ′ and 19 b ′ on the viewer side of the liquid crystal display panels 10 a ′ and 10 b ′ are arranged at an angle ⁇ ′ so as to contact each other.
  • the angle ⁇ ′ is an angle formed by a direction 70a ′ parallel to the observer-side surface 17a ′ of the liquid crystal display panel 10a ′ and a direction 70b ′ parallel to the observer-side surface 17b ′ of the liquid crystal display panel 10b ′. is there.
  • the light guide elements 20a 'and 20b' are disposed on the observer-side surfaces 17a 'and 17b' of the liquid crystal display panels 10a 'and 10b', respectively.
  • the light guide elements 20a 'and 20b' are arranged on the viewer side of the peripheral display areas 32a 'and 32b'.
  • the shapes of the light guide elements 20a 'and 20b' are triangular prisms, and light emitted from the peripheral display regions 32a 'and 32b' is emitted to the viewer side by the light guide elements 20a 'and 20b'.
  • the images formed in the peripheral display areas 32a ′ and 32b ′ are displayed on the observer side of the light guide elements 20a ′ and 20b ′, and the frame areas 30a ′ and 30b ′ become difficult to see, and there are no seamless images. Is displayed.
  • the liquid crystal display device 200 and the liquid crystal display device 200 ′ are different in the joint portion of the two display panels. As described above, in the liquid crystal display device 200, the side surface 18b of the liquid crystal display panel 10b overlaps the frame region 30a of the liquid crystal display panel 10a, but in the liquid crystal display device 200 ′, the display panels 10a ′ and 10b ′ are observed. The person side edges 19a 'and 19b' are in contact with each other.
  • the design values of the light guide elements 20a ′ and 20b ′ are as follows.
  • ⁇ ′ are apex angles of the light guide elements 20a ′ and 20b ′ that are triangular prisms.
  • L1 ′ and L2 ′ are the lengths in the cross section of the entrance surface 21a ′ and the exit surface 22a ′ of the light guide element 20a ′, respectively
  • L3 ′ and L4 ′ are the entrance of the light guide element 20b ′, respectively. It is the length in the cross section of surface 21b 'and output surface 22b'.
  • the width of the frame regions 30 a ′ and 30 b ′ is 4 mm like the liquid crystal display device 200.
  • the volume of the light guide element 20a and the light guide element 20b could be about 1/3 and about 1/5, respectively, as compared with the liquid crystal display device 200 '.
  • the volume of the light guide element can be reduced because the side surface of the other display panel overlaps the frame region of one display panel.
  • the liquid crystal display device 200 is very useful because the same effect as that of the liquid crystal display device 200 ′ can be obtained even if the amount of light-guiding element material, which is expensive, is reduced.
  • L3 and L4 are smaller than L1 and L2, respectively. That is, the volume of the light guide element 20b is smaller than the volume of the light guide element 20a.
  • the light guide element 20a has a smaller volume than the light guide elements 20a 'and 20b', but the light guide element 20b may have a smaller volume.
  • the liquid crystal display device 200 ′ does not require a large-area light guide element unlike the conventional display device described in Patent Documents 1-3 described above, the liquid crystal display device is easy to manufacture and low in cost.
  • the light guide element can be further reduced in size. Therefore, in the liquid crystal display device 200, the cost can be further reduced.
  • a light diffusing layer may be provided on the viewer side of the emission surfaces 22a and 22b of the light guide elements 20a and 20b.
  • a known light diffusion layer or light diffusion element can be used as the light diffusion layer.
  • a light diffusing element such as a scattering film containing fine particles, a diffuse reflection layer having a surface with randomly formed fine irregularities, a prism sheet typified by Sumitomo 3M BEF, or a microlens array is used. Can do.
  • the exit surfaces 22a and 22b of the light guide elements 20a and 20b do not have to be flat, and a light guide element having a curved exit surface can be used.
  • the light guide elements 20a and 20b have a triangular cross section (a cross section perpendicular to the longitudinal direction) and the emission surfaces 22a and 22b are straight in the cross section.
  • the liquid crystal display device 300 shown in FIG. Like the light guide elements 320a and 320b, the exit surfaces 322a and 322b may be circular arcs in cross section.
  • the emission surfaces 322a and 322b are cylindrical curved surfaces.
  • the exit surface of the light guide element does not have to be a cylindrical curved surface, and can be freely designed as long as the thickness increases from the peripheral display region toward the frame region.
  • the thicknesses of the optical film portions 15a and 15b provided on the viewer side of the viewer side substrates (opposing substrates 11a and 11b) of the liquid crystal display panels 10a and 10b and the viewer side substrate are as small as possible ( For example, it is preferable that the thickness of the substrate is 0.3 mm and the thickness of the optical film portion is 0.1 mm) and the parallel light transmittance is high (that is, the diffusion is small).
  • the adhesive including the adhesive provided on the viewer side of the liquid crystal display panel, such as an adhesive film included in the optical film part, should be made of a material that does not contain light diffusing particles. preferable.
  • the side surface 58b (shown in FIG. 12) on the liquid crystal display panel 10a side of the backlight device 50b provided on the side opposite to the viewer side of the liquid crystal display panel 10b is the viewer side of the liquid crystal display panel 10a. It is parallel to the surface 17a. That is, the side surface 58b is formed obliquely so that the angle formed by the side surface 58b and the viewer side surface 17b of the liquid crystal display panel 10b is equal to the angle ⁇ formed by the viewer side surface 17a and the viewer side surface 17b. ing. Further, a part of the side surface 58b of the backlight device 50b overlaps the frame region 30a of the liquid crystal display panel 10a.
  • the display region 31b of the liquid crystal display panel 10b can be closer to the display region 31a of the liquid crystal display panel 10a and the volume of the light guide element can be reduced compared with the case where the side surface 58b is not inclined. Effective for down. Even if the side surface of the backlight device is not formed obliquely in this way, the volume of the light guide element can be reduced as described above.
  • a part of the side surface of the display panel is cut obliquely like the side surface 58b of the backlight device 50b, so that display areas of the display panel can be connected to each other. Can be brought close to each other, and the same effect can be obtained.
  • the images formed on the peripheral display areas 32a and 32b where the light guide elements 20a and 20b are disposed pass through the light guide elements 20a and 20b. Is displayed.
  • images formed in the central display areas 33a and 33b which are areas other than the peripheral display areas 32a and 32b among the display areas 31a and 31b, are displayed on the viewer side without passing through the light guide element. Therefore, a luminance difference is generated between an image formed in the peripheral display areas 32a and 32b and displayed through the light guide element and an image formed in the central display areas 33a and 33b and displayed on the viewer side.
  • the light guide elements 20a and 20b have the light guide part including the transparent part provided with the metal part on the side surface, and the light incident on the transparent part is the metal part. It is reflected and guided. At this time, part of the light is absorbed each time the light is reflected by the metal part. This occurs regardless of the magnitude relationship between L1, L2, L3, and L4. This also causes a luminance difference between the region where the light guide elements 20a and 20b are provided and the region where the light guide element is not provided.
  • Such a luminance difference can be improved by changing the luminance of the images formed in the peripheral display areas 32a and 32b relative to the luminance of the images formed in the central display areas 33a and 33b.
  • the brightness of the image displayed in the area where the light guide elements 20a and 20b are provided is lower than the brightness of the image displayed in the area where the light guide elements 20a and 20b are not provided (in the above, L1 ⁇ L2 or L3 ⁇ L4)
  • the brightness of the images formed in the peripheral display areas 32a and 32b is made relatively higher than the brightness of the images formed in the central display areas 33a and 33b. Can improve.
  • the liquid crystal display device 200 can take the following two methods.
  • Method a Decrease the transmittance of the pixels provided in the central display areas 33a and 33b.
  • Method b The intensity of light emitted toward the peripheral display areas 32a and 32b is set higher than the intensity of light emitted toward the central display areas 33a and 33b.
  • Method a is easily realized by adjusting the voltage supplied to the pixel.
  • the intensity of light emitted from the backlight devices 50a and 50b toward the pixels arranged in the peripheral display areas 32a and 32b is emitted toward the pixels arranged in the central display areas 33a and 33b. This can be realized if the intensity is higher than the intensity of light.
  • the cold cathode tubes are arranged as the backlight devices 50a and 50b
  • the cold cathode tube groups arranged corresponding to the peripheral display regions 32a and 32b correspond to the other cold cathode tube groups (corresponding to the central display regions 33a and 33b). It is only necessary to light up brighter than the cold cathode tube group).
  • LEDs light emitting diodes
  • the above methods a and b may be combined to make the luminance uniform.
  • a luminance difference is also generated between the light guide elements 20a, 20b on the peripheral display areas 32a, 32b side and the frame areas 30a, 30b side. If this difference in luminance is large, the viewer may feel uncomfortable.
  • the shapes of the light guide elements 20a and 20b are triangular prisms, and the exit surfaces 22a and 22b increase in distance from the incident surfaces 21a and 21b from the peripheral display regions 32a and 32b toward the frame regions 30a and 30b. That is, the length of the light guide increases from the peripheral display areas 32a and 32b toward the frame areas 30a and 30b. As described above, as the length of the light guide path is longer, the number of times the light is reflected by the metal layer 44 is increased and the transmittance is reduced.
  • the light guide elements 20a and 20b are changed from the peripheral display areas 32a and 32b to the frame area 30a.
  • the transmittance decreases toward 30b. This causes a difference in transmittance between the peripheral display areas 32a and 32b and the frame areas 30a and 30b.
  • a difference in luminance occurs due to the difference in transmittance.
  • the reflectance of the metal layer 44 is low, the difference in transmittance between the peripheral display area 32a, 32b side portion of the light guide element 20a, 20b and the frame area 30a, 30b side part becomes large, and the luminance difference becomes large. growing.
  • the luminance can be made uniform by continuously changing the transmittance of the pixels or the luminance of the backlight in the peripheral display areas 32a and 32b.
  • a self-luminous display panel such as a plasma display panel (PDP) or an organic EL display panel (OLED) is used as the display panel
  • PDP plasma display panel
  • OLED organic EL display panel
  • the above method a or method b is used to change the color tone. Can be adjusted.
  • the image formed in the peripheral display region 32a is enlarged along the second axis J2 by the light guide element 20a. Therefore, in order to obtain a normal display, the image formed in the peripheral display region 32a is compressed in advance according to the rate of enlargement by the light guide element 20a, compared with the image formed in the central display regions 33a and 33b. It is preferable to keep it.
  • Method 1 Like the liquid crystal display panel 10a shown in FIG. 20, the pixels 173a (pixels provided in the central display area 33a) are arranged over the entire display area 31a (the peripheral display area 32a and the central display area 33a) of the liquid crystal display panel 10a. ) And the pixels 172a (pixels provided in the peripheral display area 32a), while the pitch is constant, a compressed image is formed in the peripheral display area 32a by signal processing. That is, the display signal supplied to the plurality of pixels provided in the peripheral display region 32a is compressed along the second axis J2. At this time, the display signal supplied to the pixel 172a provided in the peripheral display region 32a is compressed according to the enlargement ratio by the light guide element 20a.
  • Method 2 Like the liquid crystal display panel 10a shown in FIG. 21, the pitch of the pixels 172a arranged in the peripheral display region 32a is made smaller than the pitch of the pixels 173a arranged in other regions (central display region 33a) ( Compression) and forming a compressed image without signal processing.
  • the method 2 does not require special signal processing, it is necessary to manufacture a dedicated display panel in advance, which causes problems such as poor versatility and cost.
  • Method 1 has an advantage that a general display panel can be used although special signal processing is required.
  • the method 1 can be realized by software, for example.
  • the light exit surface 22a of the light guide element 20a is a plane (the cross section is a straight line)
  • the image is uniformly enlarged along the second axis J2, so that the compression of the image and the compression of the display signal are also uniform.
  • signal processing can be easily performed.
  • a light guide element having a curved exit surface such as the light guide elements 320a and 320b of the liquid crystal display device 300 shown in FIG. 19, the image may be compressed according to the enlargement ratio of the light guide element. .
  • the method for forming an image by compressing the peripheral display region 32a from the central display region 33a when L1 ⁇ L2 and the image formed in the peripheral display region 32a is enlarged by the light guide element 20a has been described above.
  • L1> L2 the image formed in the peripheral display region 32a is reduced along the second axis J2 by the light guide element 20a, so that the image formed in the peripheral display region 32a is displayed in the central display region. It is preferable to enlarge in advance from the image formed on 33a.
  • the method of enlarging and forming an image can be realized by the reverse method of the above-described reduction.
  • the configuration of the liquid crystal display device 200 can be applied to a display device in which a plurality of display panels are arranged at a predetermined angle. However, the liquid crystal display device 200 is also applicable to a display device that can change the angle formed by the display panels. Applicable.
  • the display device 400 shown in FIG. 22 is rotatable about a shaft 72 as a rotation center at a contact portion between the light guide elements 420a and 420b provided on the observer-side surfaces 417a and 417b of the adjacent display panels 410a and 410b. It has a moving part. Details of the movable part are shown in FIG. FIG. 23 is an enlarged cross-sectional view of the movable part, FIG. 23 (a) shows an open state, and FIG.
  • the configuration of the liquid crystal display device 400 to a display device having two screens such as a mobile phone, a game machine, and an electronic book, a seamless image can be displayed at low cost.
  • a display device having a larger screen can be equipped with a display device having a larger screen than before.
  • FIG. 24 is a perspective view of a display device 500 including a plurality of display panels.
  • a display device 500 shown in FIG. 24 includes a plurality of display panels 510, and the display panels 510 are adjacent to each other.
  • One of the two adjacent display panels so that the angle formed by the observer-side surface of one display panel and the observer-side surface of the other display panel is more than 0 ° and less than 180 ° (for example, 10 °).
  • the side surface of the other display panel overlaps the frame region of the other display panel.
  • the curved display device 500 by providing the light guide elements 520a and 520b at the ends adjacent to each other of the display panel, it is possible to display an image in which a joint is difficult to see. Even in such a display device, since a seamless image can be displayed by a small light guide element, the cost is reduced.
  • a display device having the entire inner surface as a display surface is possible by arranging at least three display panels in a ring shape around one axis.
  • four display panels 610a, 610b, 610c, and 610d are annularly arranged around the central axis Jc, and the light guide element 620a and the light guide element 620b are arranged at the corners of the display device. Is arranged. Even in such a display device, a seamless image can be displayed by a small light guide element, and the cost can be reduced.
  • the entire inner wall of the room can be covered with a seamless display device.
  • a seamless display device By covering the entire inner wall with a seamless display device, it is possible to realize an ultra-high presence that is impossible when there is only one display panel.
  • a liquid crystal display device 100B shown in FIG. 26 can be obtained by arranging liquid crystal display devices having light guide elements 20 on four sides in a matrix. In the liquid crystal display device 100B, since the light guide elements 20 are provided on the four sides of the liquid crystal display device 100a, a display in which the seam is difficult to be seen is realized over the entire liquid crystal display device 100B.
  • the liquid crystal display panels 10 are inclined by 10 degrees, for example, so that the sides on which the light guide elements 20 are provided are adjacent to each other.
  • a seamless curved surface display device can be realized.
  • the angle formed by the display surfaces of the plurality of liquid crystal display devices 10 is not particularly limited as long as the sides of the light guide element 20 are in contact with each other, but the angle formed by the angle of less than 180 ° is the top of the light guide element 20. It is preferable in that the corner is not conspicuous. In principle, a seamless display can be performed even at an angle of 180 ° or more.
  • the backlight device 50 is not shown.
  • the backlight device 50 may be individually provided in each liquid crystal display device 100a, or a plurality of liquid crystal display devices constituting a liquid crystal display device obtained by tiling.
  • a common backlight device 50 may be provided for part or all of 100a.
  • the backlight device 50 is not necessary when a self-luminous display panel such as an organic EL display panel is used instead of the liquid crystal display panel 10.
  • the two display panels 10 are arranged in an L-shape by being inclined 90 degrees so that the edges (sides) provided with the light guide elements 20 are in contact with each other.
  • a display device having a seamless L-shaped display area can be realized.
  • This can be applied to a display device having an unprecedented design shape, such as a standing digital photo frame or an in-vehicle information display device.
  • the angle formed by the display surfaces of the two display panels 10 is not limited to 90 degrees.
  • the entire inner surface can be used as a display surface.
  • the entire inner surface can be used as a display surface.
  • the entire inner surface can be used as a display surface.
  • the display device 800 shown in FIG. 29 four display panels 10 are arranged in a ring shape along the inner wall of the room, and the light guide elements 20 are arranged corresponding to the corners. It can also be covered with a display device.
  • By covering the entire wall of the room with a seamless display device it is possible to provide a display device that realizes an ultra-high presence that is impossible with a single display device.
  • the presence of the ceiling or floor portion is further increased by using the display device.
  • the liquid crystal display device 100a shown in FIG. 1 can be used instead of the display panel 10.
  • the angle between the adjacent display surfaces 97a and 97b can be varied by making the contact portion of the adjacent display panel a movable portion that can rotate around the shaft 72. . Accordingly, it is possible to seamlessly display the display on a mobile phone, a game machine, an electronic book or the like having two screens. Thus, even a small device can be equipped with a large screen display device, which is very useful.
  • light guide elements 20 a ′ and 20 b ′ having a substantially isosceles triangle cross section can be used depending on the angle of the adjacent display panel 10. In this case, since the length of the entrance surface and the exit surface of the light guide element are substantially equal, the image is displayed at the same magnification without being enlarged or reduced.
  • liquid crystal display panels When a plurality of liquid crystal display panels are arranged to be inclined with respect to each other like the above-described liquid crystal display devices 700, 800, and 900, liquid crystal displays adjacent to each other like the liquid crystal display devices 200, 300, 400, 500, and 600 It is preferable to arrange the side surface of the other liquid crystal display panel so that the side surface of the other liquid crystal display panel overlaps the frame area of one of the liquid crystal display panels.
  • an optical fiber face plate or a laminate of at least two kinds of translucent layers having different refractive indexes can be used as the light guide element.
  • FIG. 31 shows a liquid crystal display device 100D when an optical fiber face plate is used as the light guide element 20.
  • FIG. 31 is a cross-sectional view of the liquid crystal display device 100D.
  • the optical fibers are arranged in parallel to the side surface 23 of the light guide element 20.
  • the light incident on the light guide element 20 from the incident surface 21 propagates in the optical fiber in parallel with the side surface 23 and is emitted from the emission surface 22 toward the observer. Since the emission surface 22 is provided so as to overlap the frame region 30 of the liquid crystal display panel 10, the liquid crystal display device 100D can use the region corresponding to the frame region 30 of the liquid crystal display panel 10 for display.
  • the optical fiber face plate used as the light guide element 20 is manufactured by cutting the entrance surface and the exit surface obliquely so as to form a triangular prism shape in the length direction of the optical fiber from the optical fiber face plate formed in a plate shape.
  • an optical fiber face plate made of quartz for example, the refractive index of the core is 1.8 and the refractive index of the cladding is 1.5
  • NA numerical aperture
  • the refractive index of the core and the clad is not particularly limited.
  • the material of the optical fiber is not particularly limited, and a transparent resin material such as an acrylic resin may be used.
  • a fiber face plate provided with a light absorber that prevents light leaking from the inside of the core from being transmitted to the adjacent core, from the viewpoint of preventing blurring of a display image.
  • FIG. 32 shows an enlarged view of the corner of the liquid crystal display panel in this case.
  • the light guide element at the corner portion may be formed using a fiber 21 t having a diameter that gradually increases from the incident surface toward the output surface.
  • Such a tapered light guide element 20B can also be produced by cutting out a normal non-tapered fiber face plate from a stretched fiber so that the diameter of each fiber changes depending on the location while applying heat. it can.
  • the cross section along the line orthogonal to each of the two orthogonal sides forming the corner and the cross section along the line that equally divides the corner into two are the above-described conditions. Is formed so as to have a shape satisfying the above (here, a triangle).
  • the liquid crystal display device 100D does not have a light guide element in the most part of the display region 31 except the part 32 of the peripheral display region, like the liquid crystal display device 100a described above. Therefore, since an optical fiber face plate having a large area is not required, it is easy to manufacture and has an advantage of low cost. In addition, the liquid crystal display device 100D has an advantage that not only can a display device with a very large screen be realized by tiling, but also it can be easily disassembled and transported, so that it is easy to handle. Thus, there is an advantage even when the optical fiber face plate is used as the light guide element.
  • the liquid crystal display device 100D may further include a translucent cover that covers the display area of the liquid crystal display panel 10 and the emission surfaces 22 of the two light guide elements 20.
  • the cover 26 and the light guide element 20 are fixed to the surface of the liquid crystal display panel 10 by a transparent adhesive layer (not shown).
  • the light guide element 20 is further fixed by a resin layer 25 formed between the side surface 23 and the surface of the liquid crystal display panel 10.
  • the resin layer 25 may be omitted, but when the resin layer is provided, the light guide element 20 can be more stably fixed.
  • the cover 26 is fixed by the emission surface 22 of the light guide element 20 and an adhesive layer. Further, an adhesive layer between the light guide element 20 and the liquid crystal display panel 10 is not necessarily required, and may be fixed via an air layer therebetween.
  • the light guide element 20, the cover 26, and the resin layer 25 provided on the surface of the liquid crystal display panel 10 on the viewer side may be collectively referred to as a light guide sheet 27.
  • the light guide element 20 and the display surface of the liquid crystal display panel 10 can be protected by providing the cover 26 and the resin layer 25 to form a sheet having a flat surface.
  • the cover 26 is, for example, a transparent resin plate (for example, an acrylic resin plate) formed in advance so as to conform to the shape of the display surface of the light guide element 20 and the liquid crystal display panel 10.
  • Providing a cover provides the advantage that the front brightness can be increased.
  • the function of the cover 26 will be described with reference to FIGS. 33 and 34.
  • a liquid crystal display device 100D 'shown in FIG. 34 has an optical sheet 27' having no cover 26 instead of the light guide sheet 27 of the liquid crystal display device 100D shown in FIG.
  • the light propagating through the light guide element 20 is refracted according to the refractive index difference between the exit surface 22 and the outside.
  • the light is refracted according to the refractive index of the light guide element 20, for example, the ratio of the refractive index 1.8 of the core of the optical fiber and the refractive index 1.0 of air, and is indicated by a thick arrow in FIG.
  • the light is emitted in a direction greatly inclined from the front direction (the normal direction of the display surface of the liquid crystal display panel 10).
  • the front luminance of the liquid crystal display device 100D 'decreases.
  • the exit surface 22 is refracted in accordance with the ratio between the refractive index of the light guide element 20 and the refractive index of the cover 26. Therefore, the amount of light emitted in the front direction is increased as compared with the case without the cover 26.
  • the cover 26 is made of a material having the same refractive index as the refractive index of the core of the optical fiber, since the refraction at the exit interface is eliminated, the decrease in front luminance is minimized.
  • a light guide sheet 27B shown in FIG. 35 (a) or a light guide sheet 27C shown in FIG. 35 (b) may be used.
  • a light guide sheet 27 ⁇ / b> B shown in FIG. 35A has a light diffusion layer 28 formed on the light exit surface of the light guide element 20.
  • the light diffusion layer 28 By providing the light diffusion layer 28, it is possible to obtain the effect that the light emitted from the emission surface is diffused and the viewing angle is widened.
  • the light diffusion layer 28 a known light diffusion layer or light diffusion element can be used.
  • a scattering film containing fine particles typified by a diffusion adhesive sheet made by Yodogawa Paper Co., Ltd., a diffusion layer having a surface with randomly formed micro unevenness typified by anti-glare treatment made by Nitto Denko Corporation, 3M
  • a light diffusing element such as a prism sheet typified by BEF from the company or a microlens array can be used.
  • the light diffusing element is not limited to one type, and a plurality of methods such as a combination of a prism sheet and a diffusion adhesive sheet may be used in combination.
  • the light diffusion layer 28 When the light diffusion layer 28 is provided, light is diffused in the front direction on the exit surface of the light guide element 20, which has the effect of reducing the above-described reduction in front luminance. Therefore, it is preferable to provide the light diffusion layer 28 even when the cover 26 is not provided. Further, the light diffusion layer 28 may be provided so as to cover not only the exit surface of the light guide element 20 but also the display area.
  • a light guide element 20C having a curved surface can be used as in the light guide sheet 27C shown in FIG.
  • the shape of the light guide element 20 ⁇ / b> C can be freely designed as long as the thickness increases toward the frame region of the liquid crystal display panel 10.
  • the antireflection film can reduce surface reflection of external light and improve visibility.
  • Antireflection films include magnesium fluoride (MgF 2 ) thin films, films coated with low-refractive-index resins typified by fluorine-added acrylic resins, etc. A moth-eye antireflection film with reduced reflection can be used.
  • the thickness of the viewer side substrate (counter substrate) 11 and the optical film portion 15 of the liquid crystal display panel 10 is as thin as possible (for example, the thickness of the substrate 11 is 0.3 mm and the thickness of the optical film portion 15).
  • the thickness of the substrate 11 is 0.3 mm and the thickness of the optical film portion 15.
  • an adhesive including an adhesive provided on the viewer side of the liquid crystal display panel 10 such as an adhesive film included in the optical film unit 15 uses a material that does not include particles that diffuse light. It is preferable.
  • the sheet laminate 80 having a plurality of light-transmitting layers shown in FIG. 80 As described above, the sheet laminate 80 having a plurality of light-transmitting layers shown in FIG. 80
  • the sheet laminate 80 is a laminate of translucent layers having at least two different refractive indexes.
  • the light transmissive layers are laminated in parallel to each other in a direction orthogonal to the length direction (light propagation direction). Similar to the light guide element 20 in FIG. 1, the sheet laminate 80 is in a direction of a straight line connecting the end portion of the display region 31 and the end portion of the sheet laminate 80 (that is, the end of the display device agrees). Further, the light transmitting layers 83 and 84 are arranged so that the length directions thereof coincide with each other, and function as the light guide element 20.
  • the sheet laminate 80 can be easily manufactured by the following method.
  • a base material 83 made of a translucent material such as acrylic resin or glass, for example, an OPSTAR (product of JSR) having a refractive index lower than that of the base material 83
  • OPSTAR product of JSR
  • a low-refractive-index resin containing a fluorine compound such as (name) is applied, dried and cured, and the base material 84 is formed.
  • the base material is cured so that each layer does not peel off.
  • thermosetting resin a thermoplastic resin, or an ultraviolet curable resin material
  • a thermosetting resin a thermoplastic resin, or an ultraviolet curable resin material
  • it has high translucency, low light scattering property, and further strength after curing. Is preferably within the range where the film thickness is sufficiently obtained.
  • the base material 83 or the base material 84 has adhesiveness / adhesiveness, it is not particularly necessary to separately provide an adhesive layer or an adhesive layer.
  • the laminate obtained as described above is cut in an oblique direction with respect to the surfaces of the light-transmitting layers 83 and 84, as indicated by broken lines 61 and 62.
  • the sheet laminate 80 shown in FIG. 5 is obtained by polishing the cut surface if necessary and adjusting the appearance.
  • the cutting direction is a parameter determined by the width of the non-display area 30 and the area of the area 32 (see, for example, FIG. 33) in which the sheet stack 80 is disposed, and the surface direction of the broken line 61 and the base materials 83 and 84
  • the angle between the broken line 62 and the surface direction of the light transmitting layers 83 and 84 is 30 degrees.
  • the light-transmitting layer 83 can be flexibly bent like a film substrate made of a resin material
  • a roll-to-roll method is used as shown in FIGS. 37 (a) and (b) and FIG. And can be manufactured more easily.
  • FIGS. 37 (a) and (b) show a first method by a roll-to-roll method.
  • a coating material such as a slit coater is applied to a resin material 84 having a refractive index lower than that of the base material 83 on one surface of a film base material 83 made of a translucent flexible material.
  • the resin is discharged from the nozzle 85 and applied uniformly onto the substrate 83, dried and cured, and then wound up with a roll.
  • a film base 83 for example, a polyethylene terephthalate (PET) film or an acrylic film can be used.
  • PET polyethylene terephthalate
  • the resin material having a low refractive index for example, a resin containing a fluorine-based compound such as Opstar (trade name) manufactured by JSR Corporation can be used.
  • this roll is heated above the softening point of the film base 84 in an oven or the like, thereby fusing the films together.
  • the laminate obtained as described above is cut obliquely with respect to the surfaces of the base materials 83 and 84, as indicated by broken lines 61 and 62,
  • the sheet laminate 80 shown in FIG. 5 is obtained by polishing the cut surface as necessary and adjusting the appearance.
  • the surfaces of the base materials 83 and 84 are strictly curved surfaces, if the diameter of the roll is sufficiently larger than the thickness of the sheet laminate 80 (for example, a diameter of 6 inches), the surface of the base material is substantially flat. And can be approximated. Moreover, even if it is actually a curved surface, the effect obtained is not particularly changed as long as the film material is sufficiently guided. Moreover, after peeling a laminated body from a roll, it can also deform
  • the film may be wound so as not to peel off by being wound on a roll through a layer having adhesiveness (including tackiness).
  • thermosetting resin a thermoplastic resin, or an ultraviolet curable resin material
  • a thermosetting resin a thermoplastic resin, or an ultraviolet curable resin material
  • it has high translucency, low light scattering property, and further strength after curing. Is preferably within the range where the film thickness is sufficiently obtained.
  • FIG. 38 shows a second method by roll-to-roll.
  • the substrate 84 is wound up with a roll so as to overlap.
  • this roll is heated in an oven or the like above the softening point of the film base 83 or the film base 84 to fuse the films together.
  • the sheet laminate 80 shown in FIG. 5 is obtained in the same manner as described above.
  • the film in addition to the method of fusing the film, the film may be wound so as not to peel off by being wound on a roll through a layer having adhesiveness or adhesiveness.
  • the sheet laminate 80 produced by the first roll-to-roll method has a light beam at the interface between a PET layer having a refractive index of 1.65 and a low refractive index resin layer containing a fluorine-based compound having a refractive index of 1.4.
  • Light guides that is, in terms of optical fiber, the PET layer corresponds to the core, and the low refractive index resin layer corresponds to the cladding.
  • NA numerical aperture
  • a light absorption layer further outside the low refractive index resin layer.
  • the display image may be blurred.
  • a PET film containing a coloring material can be used as the light absorption layer.
  • uniform display can be obtained also in the liquid crystal display device 100a by the same method as the configuration for obtaining uniform display in the liquid crystal display device 200 described with reference to FIGS.
  • the display light emitted from the part 32 of the peripheral display region in which the light guide element 20 is arranged is expanded among the display light along the first axis by the light guide element 20.
  • the luminance decreases according to the enlargement ratio.
  • an optical fiber face plate is used as the light guide element, the luminance decreases due to the aperture ratio of the core of the optical fiber and the transmission loss of the optical fiber.
  • uniform luminance is realized by at least one of the methods a and b.
  • the cold cathode tube groups 51 and 52 arranged corresponding to the part 32 of the peripheral display area are lit brighter than other cold cathode tubes. It is realized by.
  • FIG. 40 is a cross-sectional view showing a liquid crystal display device 100e including a liquid crystal display panel 10e with a constant pixel pitch.
  • the liquid crystal display panel 10e includes pixels 173 (pixels in the central display region 33) and 172e (pixels in the peripheral display region) over the entire display region (the central display region 33 and a part 32e of the peripheral display region).
  • the pitch of the part 32e pixels is constant.
  • FIG. 41 shows a liquid crystal display device 100f including the liquid crystal display panel 10f in this case.
  • the pitch of the pixels 172f in the part 32f of the peripheral display region is narrower than the pitch of the pixels 173 in the central display region 33.
  • the present invention by providing the light guide element on the viewer side of the display panel, a display in which the frame region is difficult to see is realized. Further, in a display device including a plurality of display panels, by providing the light guide element, it is possible to make the joints of the display panels more difficult to see than in the past.
  • the present invention is suitably used for various direct-view display devices.

Abstract

 直視型の表示装置100aは、表示領域31と表示領域の外側に形成された額縁領域30とを有する表示パネル10と、入射面21と、出射面22と、入射面21と出射面22の間に形成された複数の導光部とを有する導光素子20とを備える。複数の導光部は透明部を含み、透明部の側面の少なくとも一部には金属部が設けられており、導光素子20の入射面21は、表示パネル10の額縁領域30に第1の軸J1に沿って隣接する周辺表示領域の一部32に重なり、且つ、表示パネル10の表面と平行になるように配置され、導光素子20の出射面22は、第1の軸J1に沿って周辺表示領域の一部32から額縁領域30に向かって入射面21からの距離が増大する。本発明によると、従来よりも簡便で軽量な構造で、表示パネルの額縁領域あるいはタイリングした場合の継ぎ目が見え難い直視型の表示装置が提供される。

Description

表示装置
 本発明は、表示装置、特に直視型の表示装置に関する。
 近年、テレビや情報表示用の表示装置において、大型化への強い要望がある。大型の表示装置の代表として、発光ダイオード(LED)などの自発光素子をマトリクス状に配列した表示装置や投射型表示装置があるが、これらは画質の点で不利であり、高画質の表示が可能な直視型の液晶表示装置(LCD)やプラズマ表示装置(PDP)のさらなる大型化が望まれている。
 直視型の液晶表示装置やプラズマ表示装置は、基本的にガラス基板上に形成されるので、その画面の大きさは基板サイズに依存する。現在、液晶表示装置の製造に用いられているガラス基板(マザー基板)は、第8世代(2200mm×2400mm)が最大であり、この基板を用いて対角約100インチの液晶表示装置が製造されている。量産に使用できる基板はますます大型化していくものの、その速度は緩やかであり、現在の市場に要求されているさらに大面積の表示装置を今すぐ供給することは難しい。
 そこで、従来から表示装置の大画面化を実現する方法として、複数の表示装置を配列し(タイリングということがある)、大画面の表示装置を擬似的に実現する試みがなされている。しかしながら、タイリング技術を用いると、複数の表示装置の継ぎ目が見えるという問題がある。液晶表示装置を例にこの問題を説明する。
 なお、液晶表示装置は、主に、液晶表示パネルと、バックライト装置、液晶表示装置に各種の電気信号を供給する回路や電源およびこれらを収容する筐体を備えている。液晶表示パネルは、主に一対のガラス基板と、これらの間に設けられた液晶層とを有する。一対のガラス基板のうち、一方には、例えば画素電極がマトリクス状に形成され、TFTやバスラインおよびこれらに信号を供給するための駆動回路等が設けられており、他方には、カラーフィルタ層や対向電極が設けられている。また、液晶表示パネルは、複数の画素が配列された表示領域と、その周辺の額縁領域とを有している。額縁領域には、一対の基板を互いに対向させるとともに液晶層を密閉・保持するためのシール部や、画素を駆動するための駆動回路実装部等が設けられている。
 このように、液晶表示パネルには表示に寄与しない額縁領域が存在するので、複数の液晶表示パネルを配列することによって大画面を構成すると、画像に継ぎ目が生じてしまう。この問題は液晶表示装置に限らず、PDP、有機EL表示装置、電気泳動表示装置など、直視型の表示装置に共通の問題である。
 特許文献1には、表示パネルの全面を覆う光ファイバーフェイスプレートを有し、表示領域から出射される光を、光ファイバーフェイスプレートによって非表示領域まで導光することによって継ぎ目の無い表示を行う構成が開示されている。
 また、特許文献2には、表示パネルの全面に光ファイバーフェイスプレート複合体を設け、表示領域から出射される光を、光ファイバーフェイスプレートによって非表示領域まで導光することによって継ぎ目の無い表示を行う構成が開示されている。
 また、特許文献3には、表示パネルのほぼ全面に、多数の傾斜薄膜とその傾斜薄膜の間に充填される透明体からなる光補償手段を有し、光補償手段で非表示領域まで導光させることによって、継ぎ目の無い表示を行う構成が開示されている。傾斜薄膜として金属膜や樹脂(例えばアクリル樹脂またはポリカーボネイトのような透明樹脂)の膜を用いる構成が開示されている。
特開平7-128652号公報 特開2000-56713号公報 特開2001-5414号公報
 光ファイバーフェイスプレートは、光ファイバーの集合体であるので、大面積になるほど製造が難しく、多大なコストがかかる。特許文献1および特許文献2に記載されている従来技術では、表示パネルのほぼ全面を覆う光ファイバーフェイスプレートが必要であり、特に大型の表示装置においては、製造方法およびコストの観点から現実的ではない。
 また、特許文献3に記載の技術は、光ファイバーフェイスプレートに代えて多数の傾斜薄膜とその傾斜薄膜の間に充填される透明体からなる光補償手段を利用している点において、特許文献1および2の技術と異なるものの、表示パネルのほぼ全面を覆う光補償手段を必要とし、特許文献1および特許文献2に記載の技術と同様の問題を有している。
 なお、特許文献2には、表示領域に配置される平行プレート(入射面と出射面とが平行な光ファイバーフェイスプレート)を省略し得ると記載されている。しかしながら、平行プレートを省略すると、表示領域の縁部に配置されたブロック状(断面が矩形)の光ファイバーフェイスプレートの端面部が表示領域内で段差を形成するので、画像が不連続になり、表示品位が損なわれる。
 また、特許文献3には、光補償手段の製造方法について、外型枠に所定の角度に傾斜薄膜を傾けて設置して固定し、その間に液状の透明体を注入して充填したのち、これを硬化させる、と記載されている。
 表示装置の表示画像のボケを防ぐためには、少なくとも画素ピッチと同じか、それ以下の細かいピッチで傾斜薄膜を作製する必要がある。また、液状の透明体を充填する空隙を空けて傾斜薄膜を作製するためには、例えばフォトリソグラフィ法により超高アスペクト比のリブを形成することが考えられるが、それは非常に困難である。
 また、傾斜角が大きい(例えば表示面法線方向から30°以上の傾斜)傾斜薄膜を作製することも困難であり、さらには、そのような傾斜角が大きい傾斜薄膜間の空隙内に液状の透明体を気泡無く充填することも困難である。
 これらの課題は、表示装置の画面サイズが大きくなるほど、さらに難易度が増す。このような光補償手段を作製する場合には、量産性が低く、多大なコストが掛かってしまう。
 また、傾斜薄膜はそれ自体自立できるように、ある程度以上の膜厚を有するように作製する必要があるが、その膜厚は傾斜薄膜のピッチに対して十分小さくないと、導光素子の透過率が低下し、表示装置の輝度低下につながる。たとえば、膜厚を0.5mm、傾斜薄膜のピッチを1mmとすると、透過率は50%である(実際には傾斜薄膜間に充填された透明体による吸収もあるので、透過率はさらに低くなる)。また、実際の表示装置では画素ピッチがもっと小さいので、傾斜薄膜のピッチをさらに小さくしなければならず、透過率はさらに低下する。
 本発明は、上記問題を解決するためになされたものであり、従来よりも製造が容易な、または従来よりも低コストの、表示パネルの額縁領域あるいはタイリングした場合の継ぎ目が見え難い直視型の表示装置を提供することを目的とする。
 本発明の直視型の表示装置は、表示領域と前記表示領域の外側に形成された額縁領域とを有する少なくとも1つの表示パネルと、入射面と、出射面と、前記入射面と前記出射面の間に形成された複数の導光部とを有する少なくとも1つの導光素子と、を備え、前記複数の導光部は少なくとも1つの透明部を含み、前記少なくとも1つの透明部の側面の少なくとも一部には金属部が設けられており、前記少なくとも1つの導光素子の前記入射面は、前記少なくとも1つの表示パネルの前記額縁領域に第1の軸に沿って隣接する周辺表示領域の一部に重なり、且つ、前記少なくとも1つの表示パネルの表面と平行になるように配置され、前記少なくとも1つの導光素子の前記出射面は、前記第1の軸に沿って前記周辺表示領域の前記一部から前記額縁領域に向かって前記入射面からの距離が増大することを特徴とする。
 ある実施形態において、前記少なくとも1つの導光素子は、複数の透明層と複数の金属層が積層された積層体を有する。
 ある実施形態において、前記複数の金属層は、厚さが100nm以上5μm以下である金属層を含む。
 ある実施形態において、前記複数の金属層は、厚さが100nm以上1μm以下である金属層を含む。
 ある実施形態において、前記少なくとも1つの透明部は略円柱形であり、かつ、前記少なくとも1つの透明部の前記側面は前記金属部で覆われている。
 ある実施形態において、前記少なくとも1つの表示パネルは互いに隣接する第1および第2表示パネルを含み、前記第1表示パネルの観察者側表面と前記第2表示パネルの観察者側表面とがなす角が0°超180°未満となるように、前記第1表示パネルの前記額縁領域に前記第2表示パネルの側面が重なり、前記少なくとも1つの導光素子は第1および第2導光素子を含み、前記第1導光素子の体積は前記第2導光素子の体積より大きい。
 ある実施形態において、前記第1導光素子の前記出射面の前記第2表示パネル側の端部は、前記第2導光素子の前記出射面の前記第1表示パネル側の端部に接している。
 ある実施形態において、前記第1導光素子の前記出射面は前記第2導光素子の前記出射面と平行である。
 ある実施形態において、前記第1および第2導光素子の形状は三角柱である。
 ある実施形態において、前記第1および第2導光素子の形状は二等辺三角柱である。
 ある実施形態において、前記第1表示パネルの観察者側表面と前記第2表示パネルの観察者側表面とがなす角をθとして、前記第1および第2導光素子の形状は、頂角がθ/2である二等辺三角柱である。
 ある実施形態において、前記第1および第2導光素子の前記出射面の形状は円柱曲面である。
 ある実施形態において、本発明による表示装置は、前記第2表示パネルの観察者側表面と反対側に、バックライト装置をさらに備え、前記バックライト装置の前記第1表示パネル側の側面は、前記第1表示パネルの観察者側表面と平行であり、前記第1表示パネルの前記額縁領域に重なっている。
 ある実施形態において、前記第1導光素子の前記出射面上または前記第2導光素子の前記出射面上には光拡散層が設けられている。
 ある実施形態において、前記少なくとも1つの表示パネルは、少なくとも3枚の表示パネルを含み、前記少なくとも3枚の表示パネルは環状に配置されている。
 本発明によると、従来よりも製造が容易な、または従来よりも低コストの、表示パネルの額縁領域あるいはタイリングした場合の継ぎ目が見え難い直視型の表示装置を提供することができる。
本発明による実施形態の液晶表示装置100aの模式的な断面図である。 液晶表示装置100aの端部の模式的な断面図である。 一列に配列された複数の液晶表示装置100aを備えた液晶表示装置100Aの模式的な斜視図である。 本発明による実施形態の表示装置の導光素子として用いられるシート積層体90の構成を模式的に示す斜視図である。 本発明による実施形態の表示装置の導光素子として用いられるシート積層体80の構成を模式的に示す斜視図である。 シート積層体90の導光部を拡大した模式的な断面図である。 シート積層体80の導光部を拡大した模式的な断面図である。 非表示領域30の幅が小さい場合の、導光素子(シート積層体90)の断面図である。 非表示領域30の幅が大きい場合の、導光素子(シート積層体90)の断面図である。 (a)および(b)は、シート積層体90の製造方法を説明するための模式図である。 本発明による実施形態の液晶表示装置200の模式的な断面図である。 液晶表示パネル10a、10bの接合部の模式的な拡大断面図である。 本発明による実施形態の液晶表示装置200の模式的な斜視図である。 シート積層体40の模式的な斜視図である。 (a)および(b)は、シート積層体40の製造方法を説明するための模式図である。 導光素子の設計を説明するための模式図である。 本発明による実施形態の他の表示装置200’の模式的な断面図である。 液晶表示パネル10a’、10b’の接合部の模式的な拡大断面図である。 本発明による実施形態の他の表示装置300の模式的な断面図である。 画像を圧縮して表示する方法(方法1)を説明するための模式図である。 画像を圧縮して表示する方法(方法2)を説明するための模式図である。 本発明による実施形態の他の表示装置400の模式的な斜視図である。 本発明による実施形態の他の表示装置400の可動部の拡大断面図であり、(a)は開いた状態、(b)は閉じた状態を示す。 本発明による実施形態の他の表示装置500の模式的な斜視図である。 本発明による実施形態の他の表示装置600の模式的な斜視図である。 マトリクス状に配列され複数の液晶表示装置を備えた液晶表示装置100Bの模式的な斜視図である。 本発明による実施形態の他の液晶表示装置100Cの模式的な斜視図である。 本発明による実施形態の他の表示装置700の模式的な斜視図である。 本発明による実施形態の他の表示装置800の模式的な斜視図である。 本発明による実施形態の他の表示装置900の模式的な斜視図である。 本発明による実施形態の液晶表示装置100Dの模式的な断面図である。 テーパー状の導光素子20Bの模式的な斜視図である。 液晶表示装置100Dの端部の模式的な断面図である。 液晶表示装置100D’の端部の模式的な断面図である。 (a)および(b)は、本発明による実施形態の液晶表示装置に用いられる導光シート27Bおよび27Cの模式的な断面図である。 (a)および(b)は、シート積層体80の製造方法を説明するための模式図である。 (a)および(b)は、シート積層体80の他の製造方法を説明するための模式図である。 シート積層体80のさらに他の製造方法を説明するための模式図である。 本発明による実施形態の他の液晶表示装置の模式的な断面図である。 均一なピッチで配列された画素を有する液晶表示パネル10eを備える液晶表示装置100eの模式的な断面図である。 周辺表示領域の画素ピッチを他の領域の画素ピッチよりも狭くした液晶表示パネル10fを備える液晶表示装置100fの模式的な断面図である。
 以下、図面を参照して本発明による実施形態の表示装置を説明する。
 図1から図3を参照して、本発明による実施形態の表示装置の構成と動作を説明する。以下では、表示パネルとして液晶表示パネルを用いた液晶表示装置を例示するが、本発明の表示装置に用いる表示パネルはこれに限られない。表示パネルとして、たとえば、PDP用表示パネル、有機EL表示パネル、電気泳動表示パネル等を用いることもできる。
 図1は、本発明による実施形態の液晶表示装置100aの模式的な断面図である。図2は液晶表示装置100aの端部の模式的な断面図である。図3は、複数の液晶表示装置100aを備えた液晶表示装置100Aの模式的な斜視図である。液晶表示装置100aは単独で用いることもできるし、図3に示すように複数の液晶表示装置100aをタイリングすることによって大型の液晶表示装置100Aを得ることもできる。なお、タイリングは公知の方法で行うことができる。
 図1に示すように、液晶表示装置100aは、液晶表示パネル10と、液晶表示パネル10の観察者側に配置され、第1の軸J1(図1において、水平方向)に沿って互いに対向する2つの導光素子20とを備えている。液晶表示装置100aは透過型であり、バックライト装置50をさらに有し、バックライト装置50から出射された光を液晶表示パネル10で変調することによって表示を行う。
 液晶表示パネル10は、公知の任意の液晶表示パネルであってよく、例えばTFT型のVAモードの液晶表示パネルである。液晶表示パネル10は、TFT基板12及び対向基板11を有し、TFT基板12と対向基板11との間には液晶層13が設けられている。TFT基板12にはTFTや画素電極が設けられ、対向基板11にはカラーフィルタや対向電極が設けられている。液晶層13は、シール部14によって、TFT基板12と対向基板11との間に保持されている。対向基板11の観察者側(図1における上側)、TFT基板12の観察者側と反対側(図1における下側)には、それぞれ、光学フィルム部15、16が設けられている。光学フィルム部15、16は、偏光板や、必要に応じて設けられる位相差板を含む。
 液晶表示パネル10は、複数の画素が配列された表示領域31と、表示領域31の外側にある額縁領域30とを有する。額縁領域30は、シール部14や、各種配線の端子、駆動回路等が設けられる領域を含む。額縁領域30には一般に遮光膜が設けられている。従って、額縁領域30は表示に寄与しない。
 液晶表示パネル10の表示領域31には、複数の画素が、行及び列を有するマトリクス状に配列されている。行方向は、液晶表示パネル10の表示面における水平方向(図1における、紙面の左右方向)、列方向は表示面における垂直方向(図1における紙面に垂直な方向)に対応する。
 バックライト装置50としては公知のものを広く用いることができる。例えば、複数の冷陰極管を平行に配列した直下型のバックライト装置を用いることができる。但し、後述するように、バックライト装置50は、輝度の分布を調整できるものが好ましい。
 液晶表示パネル10の観察者側に配置される導光素子20は、入射面21と出射面22と、入射面21と出射面22との間に形成された複数の導光部とを有している。複数の導光部は透明部を含み、透明部の側面の少なくとも一部には金属部が設けられている。導光素子20の入射面21は、液晶表示パネル10の額縁領域30に第1の軸J1に沿って隣接する周辺表示領域の一部32に重なり、且つ、液晶表示パネル10の表面(「表示面」ともいう。)と平行になるように配置され、導光素子20の出射面22は、第1の軸J1に沿って周辺表示領域の一部32から額縁領域30に向かって入射面21からの距離が増大する。
 ここでは、第1の軸J1は水平方向に延びる(液晶表示パネル10の行方向に平行に延びる)軸であり、図1は第1の軸J1に沿った断面図である。液晶表示装置100aでは、導光素子20の断面の形状は三角形である。導光素子20の全体の形状は、長手方向に垂直な断面が三角形の三角柱である。この三角柱は、入射面21、出射面22および側面23で規定される。液晶表示装置100aにおいて、導光素子20は、長手方向が液晶表示パネル10の水平方向に垂直(列方向と平行)となるように配置されている。
 先述のように、導光素子20は、複数の導光部を有している。また、複数の導光部は少なくとも1つの透明部を有し、透明部の側面の少なくとも一部には金属部が設けられている。導光素子20の入射面21から入射した光は、透明部内を伝播し、出射面22から出射する。このとき、透明部に入射した光は、透明部の側面に設けられた金属部に反射されながら、透明部内を伝播する。このことにより、導光素子20においては、透明部が導光部として機能する。導光素子20の金属部は、透明部の側面全体に設けられている必要はなく、透明部に入射した光が金属反射によって伝播することができるように設けられていればよい。
 次に図4を参照して導光素子20の好ましい構成について説明する。
 導光素子20としては、たとえば、複数の透明層と複数の金属層が積層された積層体を用いることができる。図4は導光素子20として用いられる三角柱状のシート積層体90を模式的に示す斜視図である。シート積層体90は、透明層93と金属層94が互いに平行に積層された積層体である。シート積層体90において、透明層93と金属層94は、長さ方向(光の伝播方向)に直交する方向に互いに平行となるように積層されている。透明層93と金属層94の積層方向は、導光素子20の側面23に垂直な方向である。導光素子20に入射面21から入射した光は、側面23に平行に透明層93内を伝播し、出射面22から観察者側に向けて出射される。このとき、透明層93に入射した光は、隣接する金属層94で反射されながら、透明層93内を伝播する。入射面21には様々な角度から光が入射するが、シート積層体90は、金属層94における金属反射を利用するので、入射角度に関わらず全ての光を導光させることができる。
 また、導光素子20として、側面の少なくとも一部が金属部で覆われた略円柱形の透明部を含む複数の導光部を有するものを用いることができる。このとき、透明部に入射する光が、透明部の側面に設けられた金属部で反射されながら、透明部内を伝播する。すなわち、個々の透明部が導光部として機能する。このときの導光素子20の断面は、図1、2に示す導光素子20と同様である。すなわち、導光素子20において、透明部の長さ方向が導光素子20の側面23に平行に揃うように形成されている。
 導光素子20として、複数の透光層が積層されたシート積層体80を用いることもできる。シート積層体80は、少なくとも2種類以上の、屈折率の異なる透光層が積層された積層体である。図5に、2種類の透光層83、84を有するシート積層体80の斜視図を示す。複数の透光層が積層されたシート積層体80については後に詳述する。
 図5に示すシート積層体80では、透光層83と透光層83より屈折率が低い透光層84が互いに平行に積層されている。導光素子20としてシート積層体80を用いた場合には、導光素子20に入射面21から入射した光は、側面23に平行に透光層83内を伝播し、出射面22から観察者側に向けて出射される。透光層83の屈折率が透光層84の屈折率より高いので、透光層83に入射した光は透光層83と透光層84の界面において全反射されて、透光層83内を伝播する。
 全反射は、屈折率が大きい媒質から屈折率が小さい媒質に光が入射するときに、入射光が2つの媒質の境界面を透過せず、全て反射する現象である。入射角がある一定の角度以上の場合に全反射が起こる。この角度は臨界角と呼ばれる。臨界角の大きさは透光層83の屈折率と透光層84の屈折率の比に依存する。透光層83に入射する光のうち、入射角が臨界角より大きい光のみが透光層83内を伝播することができる。臨界角より大きい入射角で入射した光に対する反射率は100%であるが、入射角が臨界角以下である光は反射されず屈折して透光層83から出ていく。
 一方、シート積層体90は、金属層94における金属反射を利用して入射光を導光するので、入射角に関わらず全ての入射光を伝播することができる。
 このことを図6、図7を参照して説明する。図6はシート積層体90の導光部を拡大した模式的な断面図であり、図7はシート積層体80の導光部を拡大した模式的な断面図である。図6には、シート積層体90の透明層93内に、異なる入射角で入射する光線98、99を示す。図7においても同様に、シート積層体80に入射する光線88、89を示す。
 シート積層体90では、金属反射を利用して導光するので、さまざまな角度から入射する光線98、99を導光させることができる(図6)。それに対しシート積層体80では、入射角が臨界角より大きい光線88は導光するものの、入射角が臨界角より小さい光線89は、透光層84を通り、隣の透光層83に入射し迷光となるか、あるいは透光層84内に吸収層が形成されている場合には、この吸収層により吸収される(図7)。
 このように、全反射を利用するシート積層体80では、金属層を用いたシート積層体90に比べ、伝播可能な入射角の範囲が狭い。伝播可能な入射角の範囲は上述のように透光層の屈折率の比の大きさに依存する。透光層の屈折率の比を大きくするような材料は限られている。従って、透光層83、透光層84の材料の選択には制約がある。
 例えば、透光層83として比較的屈折率が低いアクリルフィルムを用いると、光ファイバーでいうところの開口数(NA)が小さくなる。すなわち、伝播可能な入射角の範囲が狭くなる。従って、透光層83としてアクリルフィルムを用いることは好ましくない。そのため、例えば、透光層83としてポリエチレンテレフタレートフィルム(PET、屈折率1.65)、透光層84としてアクリルフィルム(屈折率1.49)が用いられる。PETは透過率がアクリルより低いので、表示が暗くなってしまう。
 一方シート積層体90では、透明層93は透明であればよく、屈折率の大きさは問われないので、透明層93に用いる材料の選択の幅が広い。透明層93としてガラス並みに透過率が高いアクリルフィルム(例えばPMMA)を用いることができる。従って、導光素子20としてシート積層体90を用いると、シート積層体80を用いる場合に比べ、明るく表示させることができる。シート積層体90の透明層93としてアクリルフィルムを用いる場合には、例えば三菱レイヨン社製の「アクリプレン」を用いることができる。
 また、図6、7からも明らかであるが、シート積層体90の方が伝播可能な入射角の範囲が広いので、表示画像の視野角が広いという利点がある。
 また、導光素子20として、光ファイバーフェイスプレートを用いることができる。よく知られているように、光ファイバーは、コアと呼ばれる芯の部分と、コアの外側のクラッドと呼ばれる部分を有する。コアの屈折率をクラッドの屈折率より高くすることによって、全反射を利用して光がコア内を伝播する。導光素子20として光ファイバーフェイスプレートを用いるときには、個々の光ファイバーが導光部として機能する。なお、光ファイバーフェイスプレートについては後に詳述する。
 光ファイバーフェイスプレートでは、臨界角の大きさによって伝播可能な入射角の範囲が異なるので、コアとクラッドの材料の選択には制約がある。しかしながら、側面が金属部で覆われた略円柱形の透明部を有する導光素子では、シート積層体90と同様に、透明部の材料の選択の幅が広い。また、金属反射を利用するので、入射角度に関わらず全ての光を伝播させることができる。従って、視野角が広くなる。
 以上説明したように、導光素子20は、屈折率の異なる透光層が積層されたシート積層体80や光ファイバーフェイスプレートを用いた導光素子に比べ、材料の選択の幅が広い。従って、屈折率に関わらず透過率が高い材料を選択することができ、明るく表示することができる。また、透明部の材料の選択の幅が広いので、透明部の材料として安価な材料を用いることができる。透明部の材料として、一般的に高価なガラスやPET等の屈折率が高い材料ではなく、例えばアクリル等の安価な材料を用いることができる。従って導光素子20を低コストで作製することができる。
 また、液晶表示装置100aは、額縁領域30に隣接する周辺表示領域の一部32および額縁領域30に重なるように設けられた導光素子20を有しているだけであり、周辺表示領域の一部32を除く表示領域31の大部分には導光素子を有していない。従って、上述した特許文献1-3に記載されている従来の表示装置のように、大面積の導光素子を必要としないので、製造が容易で、低コストであるという利点を有している。
 また、導光素子20は、金属反射を利用するので、入射角度に関わらず全ての光を伝播させることができるので、視野角が広いという利点を有している。
 ここで、図2を参照して、液晶表示装置100aにおいて液晶表示パネル10の額縁領域30が見え難い理由を説明する。
 導光素子20に入射面21から入射した光は、側面23に平行に透明部内を伝播し、出射面22から観察者側に向けて出射される。上述のように、入射面21は液晶表示パネル10の周辺表示領域の一部32に重なっている。従って、出射面22から出射された光により、周辺表示領域の一部32に形成される画像が導光素子20の観察者側に表示される。液晶表示装置100aでは、導光素子20の出射面22は、額縁領域30と重なる位置まで延設されている。また、出射面22は入射面21と平行ではなく、額縁領域30に向かって入射面21からの距離が増大するように形成されている。従って、入射面21に入射する表示光(画像情報)は、拡大されて出射面から出射される。このことにより、液晶表示パネル10の額縁領域30の観察者側に画像が表示され、額縁領域が見え難くなる。
 液晶表示装置100aでは、導光素子20の出射面22は、液晶表示パネル10の端と一致する位置まで延設されていてもよい。この場合には、出射面22が額縁領域30全体を覆うので、観察者側からは額縁領域30全体が視認されず好ましい。
 液晶表示装置100aを単独で用いる場合には、額縁領域が見え難い、あるいは視認される額縁領域が、液晶表示パネル10の額縁領域30よりも狭い表示装置を得ることができる。この場合に、例示したように、水平方向において対向する2つの額縁領域に対して導光素子20を設ける場合に限られず、垂直方向において対向する他の2つの額縁領域に対しても導光素子20を設けて、液晶表示装置100aの4辺の全てにおいて額縁領域を見え難くする、あるいは視認されなくする構成を採用してもよい。また、液晶表示装置100aの用途によっては、1辺だけまたは任意の2辺または3辺に導光素子20を設けてもよい。この場合にも、導光素子20が観察者側に設けられている辺では、額縁領域が見え難い。
 また、複数の液晶表示装置100aをタイリングする場合には、隣接する液晶表示装置100aの辺に導光素子20を設けることによって、継ぎ目が見え難い表示装置を得ることができる。例えば、複数の液晶表示装置100aを一列に配列することによって、図3に示す大型の液晶表示装置100Aを得ることができる。この大型の液晶表示装置100Aにおいては、複数の液晶表示装置100aの互いに隣接する辺に導光素子20が設けられている。このことにより、大型の液晶表示装置100Aは継ぎ目が見え難い表示を実現できる。
 シート積層体90の金属層94の材料としては、アルミニウム(Al)や銀(Ag)等の反射率の高い金属を用いることができる。但し、例えば、アルミニウムの反射率は約90%、銀の反射率は約98%であるので、光が金属層94で反射するたびに、その一部が吸収される。金属層94の代わりに、誘電体多層膜など原理的に光吸収のない反射膜も使用することができるが、多層薄膜を作製するコストが高いために、好ましくない。
 金属層を用いたシート積層体90では、導光路の長さ(導光部の光が伝播する方向の長さ)が長いほど反射回数が多くなり、金属層94における光の吸収が大きくなる。一方、全反射を利用したシート積層体80では、透光層83と透光層84の界面における反射率は100%なので、導光路が長くなったとしても光は界面で吸収されない。
 図8、9を参照して、金属層を用いたシート積層体90では、導光路の長さにより光の透過率の低下が異なることについて説明する。
 図8には非表示領域(額縁領域)30の幅が小さい場合、図9には非表示領域30の幅が大きい場合について、導光素子20の断面図を示す。図8に示すように、非表示領域30の幅が比較的小さい場合には導光路が短く、図9に示すように、非表示領域30の幅が比較的大きい場合には導光路が長い。このように導光路の長さは、非表示領域30の幅に依存する。図8に示す、非表示領域30の幅が比較的小さい場合(例えば5mm以下)には、導光路は短く反射回数は少なくなるので、金属層を用いたシート積層体90のほうが、全反射を利用したシート積層体80より透過率が高くなる。逆に、図9に示す、非表示領域30の幅が比較的大きい場合(例えば5mm以上)には、導光路は長く反射回数は多くなるので、全反射を利用したシート積層体80の方が透過率は高くなる。透過率に関しては、導光路の長さ以外にも、用いる材料、接着剤や粘着剤等の種類によって、どちらの構造が有利であるかは変わってくる。金属層を用いたシート積層体90は、導光路の長さによって透過率が変化するが、伝播可能な入射角の範囲が広く、透明層93の材料選択の幅が広いので、透過率が高い材料を選択することができる。従って、金属層を用いたシート積層体90は全反射を利用したシート積層体80より有利である。
 液晶表示装置100aは、液晶表示パネル10の表示領域31と2つの導光素子20の出射面22とを覆う透光性のカバー(カバー26)をさらに有していても良い(図1および図2に図示)。このとき、カバー26および導光素子20は、不図示の透明な接着剤層によって液晶表示パネル10の表面に固定されている。導光素子20は、側面23と液晶表示パネル10の表面との間に形成された樹脂層25によってさらに固定されていてもよい。樹脂層25は省略してもよいが、樹脂層25を設けた場合には導光素子20をより安定に固定することができる。カバー26は導光素子20の出射面22と接着剤層によって固定されている。導光素子20と液晶表示パネル10との間の接着剤層も必ず必要なわけではなく、これらの間に空気層を介して固定してもよい。
 液晶表示パネル10の観察者側の表面に設けられた、導光素子20、カバー26および樹脂層25をまとめて、導光シート27ということがある。カバー26および樹脂層25を設け、平坦な表面を有するシート状にすることによって、導光素子20や、液晶表示パネル10の表示面を保護できる。また、液晶表示装置100aの表面が平坦になるので、見た目の違和感も軽減される。さらに、表面の汚れを拭き取り易いという利点も得られる。カバー26は、例えば、導光素子20および液晶表示パネル10の表示面の形状に沿うように予め成形された透明な樹脂板(例えばアクリル樹脂板)である。カバー26を設けることにより、液晶表示装置100aの表示品位を高くすることができる。
 カバー26および導光シート27としては、後に詳述する、導光素子20として光ファイバーフェイスプレートを用いた液晶表示装置100Dに用いられるカバー26および導光シート27と同様のものを好適に用いることができる。
 本発明の液晶表示装置では、導光素子として、側面に金属部が設けられた透明部を含む導光素子を用いる。透明部の材料は、少なくとも透明であればよく、屈折率を問わないことから、材料選択の幅が広がる、という利点がある。従って、屈折率の大きさに関わらず透過率の高い材料を用いることができる。このことにより、非表示領域が暗くなることが抑制される。また、金属反射を利用するので、光の入射角度に関わらず、全ての光を導光することができ、視野角が広くなる。また、透明部の材料選択の幅が広いので、透明部の材料として安価な材料を選択することができ、コストを低減することができる。また、このような導光素子を用いることによって、表示パネルの額縁領域あるいはタイリングした場合の継ぎ目を見え難くすることができる。
 次に図10を参照して、金属反射を利用する導光素子20の製造方法について説明する。ここでは、図4に示す三角柱状のシート積層体90の製造方法について説明する。シート積層体90は、以下の方法で容易に作製することができる。
 図10(a)に示すように、アクリル樹脂またはガラスのような透光性の材料から形成された透明層93の片側表面に、アルミニウム(Al)や銀(Ag)等の光反射率の高い金属層94を、蒸着法やスパッタ法により、薄膜として形成し、積層膜96を得る。
 シート積層体90が有する複数の金属層94は、厚さが100nm以上5μm以下である金属層を含むことが好ましい。金属層94の厚さが100nm未満であると、光反射特性が十分に得られないことがある。また、金属層94の厚さが5μmより大きいと、シート積層体90の入射面における透明層93が占める割合が小さくなり、光透過率が低下して表示輝度が低下するので好ましくない。なお、蒸着法やスパッタ法で形成する膜の厚さが大きいほど(例えば1μmより厚く形成すると)、製造時間およびコストが増大するので、複数の金属層は、厚さが1μm以下である金属層を含むことがさらに好ましい。なお、シート積層体90の全ての金属層の厚さが上記の範囲内にあることが好ましいが、一部の金属層の厚さが上記範囲外であってもよい。
 また、金属層94としては、表面における散乱等が無く、表面における反射が鏡面反射に近いことが好ましい。
 次に、透明層93の表面に金属層94が形成された積層膜96を粘着性または接着性を有する層を介して、複数層積層した後に、各層が剥離しないように硬化させ、積層体95を得る(図10(b))。粘着性または接着性を有する材料としては、熱硬化性樹脂や熱可塑性樹脂の樹脂材料等が使用できるが、透光性が高く、光散乱性が少なく、さらに硬化後の強度が十分得られる範囲で、層厚は薄いほうが好ましい。透明層93が粘着性・接着性を有する場合には、特に別途粘着層、接着層を配置する必要はない。
 次に、上述のようにして得られた積層体95を、図10(b)に破線61、62で示すように、透明層93及び金属層94の面方向に対して斜め方向に切断し、必要によって切断面を研磨し、外観を整えることによって、図4に示した三角柱状のシート積層体90が得られる。
 切断の方向は、液晶表示パネル10の非表示領域(額縁領域)30の幅と、シート積層体90を配置する領域(周辺表示領域の一部)32の面積により決定されるパラメータである。液晶表示装置100aの導光素子20として用いられるシート積層体90は、破線61と透明層93、金属層94の面方向とのなす角を65度、破線62と透明層93、金属層94の面方向とのなす角を30度として作製されている。
 透明層93が樹脂材料から形成されたフィルム基材のように、フレキシブルに湾曲可能である場合には、透明層93の表面に金属層94が形成された積層膜96を、ロールツーロール法を用いて複数融着させることで、シート積層体90をさらに容易に作製することができる。積層膜96を融着させるロールツーロール法としては、シート積層体80の製造方法として後述するロールツーロール法と同様の方法を用いることができる。
 次に、図11から図41を参照して、本発明による実施形態の表示装置の種々の具体例を示す。
 図11は、本発明による実施形態の液晶表示装置200の模式的な断面図である。図11に示す液晶表示装置200は、隣接する2枚の液晶表示パネル、10a、10b、および2つの導光素子20a、20bを備える。液晶表示装置200は、2枚の液晶表示パネル10aおよび10bを所定の角度(後述するθ)を設けてタイリングした表示装置である。なお、タイリングは公知の方法で行うことができる。図12は液晶表示装置200の液晶表示パネル10aと液晶表示パネル10bの接合部の拡大図である。液晶表示装置200の接合部については後に説明する。図13は液晶表示装置200の模式的な斜視図である。図11は、図13に示す液晶表示装置200を液晶表示パネル10a、10bの観察者側表面17a、17bに垂直な平面で切った断面図である。
 図11、図12に示すように、液晶表示パネル10aの観察者側表面17a上には導光素子20aが設けられている。液晶表示装置200は透過型であり、液晶表示パネル10aの観察者側と反対側(図11、図12における下側)にはバックライト装置50aが設けられている。液晶表示装置200では、バックライト装置50aから出射された光を液晶表示パネル10aで変調することによって表示を行なう。液晶表示パネル10aと同様に、液晶表示パネル10bの観察者側表面17b上には導光素子20bが設けられ、観察者側と反対側にはバックライト装置50bが設けられている。
 液晶表示装置200では、2枚の液晶表示パネル10aおよび10bを用いたが、もちろん、さらに多くの表示パネルを配列しても良い。3枚以上の表示パネルを備える表示装置の例については後述する。
 液晶表示パネル10aは、公知の任意の液晶表示パネルであってよく、例えばTFT型のVAモードの液晶表示パネルである。図12に示すように、液晶表示パネル10aは、TFT基板12aおよび対向基板11aを有し、TFT基板12aと対向基板11aとの間には液晶層13aが設けられている。TFT基板12aにはTFTや画素電極が設けられ、対向基板11aにはカラーフィルタや対向電極が設けられている。液晶層13aは、シール部14aによって、対向基板11aとTFT基板12aとの間に保持されている。対向基板11aの観察者側(図12における上側)、TFT基板12aの観察者側と反対側(図12における下側)には、それぞれ、光学フィルム部15a、16aが設けられている。光学フィルム部15a、16aは、偏光板や、必要に応じて設けられる位相差板を含む。液晶表示パネル10bは、液晶表示パネル10aと同様に、TFT基板12b、対向基板11b、液晶層13b、シール部14b、光学フィルム部15b、16b等を有している。
 液晶表示パネル10a、10bは、複数の画素が配列された表示領域31a、31bと表示領域31a、31bの外側にある額縁領域30a、30bとを有する。額縁領域30a、30bは、シール部14a、14bや、各種配線の端子、駆動回路等が設けられる領域を含む。額縁領域30a、30bには一般に遮光膜が設けられている。従って、額縁領域30a、30bは表示に寄与しない。
 液晶表示パネル10aの表示領域31aには、複数の画素(不図示)が、行および列を有するマトリクス状に配列されている。行方向は、液晶表示パネル10aの表示面における水平方向(図11における紙面に垂直な方向)、列方向は表示面における垂直方向(図11における紙面の左右方向)に対応する。液晶表示パネル10bの表示領域31bにも液晶表示パネル10aと同様に複数の画素が行および列を有するマトリクス状に配列されている。
 バックライト装置50a、50bは、例えば、互いに平行な複数の蛍光管を備える直下型バックライト装置である。但し、後述するように、輝度の分布を調整できるものが好ましい。
 図11に示すように、液晶表示パネル10aの観察者側表面17aと液晶表示パネル10bの観察者側表面17bとがなす角が所定の角度θ(0°<θ<180°)となるように、液晶表示パネル10aと液晶表示パネル10bは配置される。図11に示すように、角度θは、液晶表示パネル10bの観察者側表面17bと、液晶表示パネル10aの観察者側表面17aを液晶表示パネル10b側に延長した面とがなす角を表す。
 角度θは、製品形態によりさまざまな角度に設定されるが、図11には、θ=60°である液晶表示装置200を図示している。
 液晶表示パネル10a及び10bは、一方の液晶表示パネルの額縁領域にもう一方の液晶表示パネルの側面が重なるように配置される。液晶表示装置200では、液晶表示パネル10aの額縁領域30aに、液晶表示パネル10bの側面18bが重なっている。
 図12に示すように、液晶表示パネル10aの観察者側に配置される導光素子20aは、入射面21aと、出射面22aと、入射面21aと出射面22aとの間に形成された複数の導光部とを有している。導光素子20aの入射面21aは、液晶表示パネル10aの表示領域31aのうち、額縁領域30aに第2軸(J2)に沿って隣接する領域である周辺表示領域32aに重なっている。なお、入射面21aは、額縁領域30aのうち液晶表示パネル10bと隣接する側にある部分に、第2軸J2に沿って隣接する周辺表示領域に重なっている。また、入射面21aが液晶表示パネル10aの観察者側表面17aに平行となるように、導光素子20aは配置されている。ここで、第2軸J2は、液晶表示パネル10aの列方向(液晶表示パネル10aの表示面における垂直方向)に平行に延びる軸とする。入射面21aと出射面22aとの距離は、第2軸J2に沿って周辺表示領域32aから額縁領域30aに向かって(図12において左から右に向かって)増大する。液晶表示装置200では、入射面21aは周辺表示領域32aと額縁領域30aとの境界35aまで延設されている。
 導光素子20bは、導光素子20aと同様に、入射面21bと、出射面22bと、入射面21bと出射面22bとの間に形成された複数の導光部とを有し、入射面21bは液晶表示パネル10bの表示領域31bのうち額縁領域30bに第3軸J3に沿って隣接する領域である周辺表示領域32bに重なるように配置されている(額縁領域30b、表示領域31b、周辺表示領域32bは図11に図示)。また、入射面21bと出射面22bとの距離は、第3軸J3に沿って周辺表示領域32bから額縁領域30bに向かって増大する。ここで、第3軸J3は、液晶表示パネル10bの列方向(液晶表示パネル10bの表示面における垂直方向)に平行に延びる軸とする。
 液晶表示装置200では、導光素子20aの断面の形状は三角形である。導光素子20aの全体の形状は、長手方向に垂直な断面が三角形の三角柱である。この三角柱は、入射面21a、出射面22a、側面23aで規定される。同様に、導光素子20bの全体の形状は、長手方向に垂直な断面が三角形の三角柱であり、この三角柱は、入射面21b、出射面22b、側面23bで規定される。液晶表示装置200において、導光素子20a、20bは、長手方向が液晶表示パネル10a、10bの表示面における水平方向に平行になるように配置されている。
 導光素子20aの形状は、三角柱であるので、出射面22aは、液晶表示パネル10aの観察者側表面17aよりも観察者側に存在する。同様に、導光素子20bの形状は、三角柱であるので、出射面22bは、液晶表示パネル10bの観察者側表面17bよりも観察者側に存在する。従って、周辺表示領域32a、額縁領域30a、額縁領域30b、および周辺表示領域32bの観察者側には、出射面22aおよび22bが存在する。
 液晶表示装置200の導光素子20aおよび20bは、上述の液晶表示装置100aの導光素子20と同様に、側面の少なくとも一部に金属部が設けられた透明部を含む複数の導光部を有する。このような導光素子としては、例えば複数の透明層と複数の金属層が積層されたシート積層体である導光素子や、側面が金属部で覆われている略円柱形の透明部を有する導光素子を用いることができる。ここでは、導光素子20a、20bとして、複数の透明層と複数の金属層が積層されたシート積層体を用いる場合について説明する。図12に示すように、液晶表示装置200の導光素子20aでは、導光素子20aの側面23aに平行に透明層と金属層が積層されている。導光素子20bにおいても同様に、導光素子20bの側面23bに平行に透明層と金属層が積層されている。
 導光素子20aに入射面21aから入射した光は、側面23aに平行に透明部内を伝播し、出射面22aから観察者側に向けて出射される。上述のように、入射面21aは液晶表示パネル10aの周辺表示領域32aに重なっている。そのため、周辺表示領域32a内の画素から出射された光は、入射面21aから導光素子20a内に入り、側面23aに平行な個々の導光路内を伝播して、出射面22aから出射される。従って、周辺表示領域32aに形成される画像が導光素子20aの観察者側に表示される。液晶表示装置200では、導光素子20bも導光素子20aと同様のシート積層体であり、周辺表示領域32b内の画素から出射された光は、入射面21bから導光素子20b内に入り、側面23bに平行な個々の導光路内を伝播して、出射面22bから出射される。従って、液晶表示パネル10bの周辺表示領域32bに形成される画像が導光素子20bの観察者側に表示される。
 周辺表示領域32a、額縁領域30a、額縁領域30b、および周辺表示領域32bの観察者側には、出射面22aおよび22bが存在するので、周辺表示領域32a、32bに形成される画像が導光素子20a、20bの観察者側に表示されることにより、額縁領域30a、30bが見え難くなる。このことにより、液晶表示装置200では、液晶表示パネル10aと液晶表示パネル10bの継ぎ目が見え難い。
 図12に示すように、液晶表示装置200では、液晶表示パネル10bの側の、導光素子20aの出射面22aの端部24a(出射面22aと側面23aとの交線に相当)は、液晶表示パネル10aの側の、導光素子20bの出射面22bの端部24b(出射面22bと側面23bとの交線に相当)と接している。このため、液晶表示装置200では、出射面22aと出射面22bとがつながっているように視認される。このことにより、一層継ぎ目が見え難い表示が実現される。さらに、液晶表示装置200では、導光素子20aの出射面22aと導光素子20bの出射面22bとは平行である。そのため、出射面22aと出射面22bとは同一平面上にあり、観察者には、出射面22aと22bとが一つの面を形成しているように視認される。このことにより、さらに継ぎ目が見え難い表示が実現される。すなわち、液晶表示装置200は、導光素子20aの出射面22aと導光素子20bの出射面22bとが同一平面上にあることにより、連続的に継ぎ目が無い画像を表示できる。なお、導光素子の設計値の例については後述する。
 導光素子20aおよび導光素子20bとして用いられるシート積層体は、先述の液晶表示装置100aの導光素子20と同様に、板状の積層体から、三角柱状になるように入射面と出射面を切り出すことで作製することができる。
 図14に、液晶表示装置200の導光素子20aとして用いられる三角柱状のシート積層体40の斜視図を示す。シート積層体40は、透明層43と、金属層44との積層体で構成されている。なお、図14には、導光素子20aをシート積層体で作製した場合の、入射面21a、出射面22a、側面23aも併せて示す。図14に示すように、導光素子20aとしてシート積層体を用いた場合、側面23aはシートの積層方向に垂直である。導光素子20a、20bとしてシート積層体40を用いた場合、シート積層体40の透明層43、金属層44は、図12中の導光素子20aの側面23aおよび導光素子20bの側面23bに平行に配列される。
 シート積層体40の作製方法を、図15を用いて説明する。
 液晶表示装置100aの導光素子20として用いられるシート積層体90と同様に、図15(a)に示すように、まず、アクリル樹脂またはガラスのような透光性の材料から形成される透明層43の片側表面に、金属層44を設け、乾燥・硬化させ、積層膜46を得る。次に、積層膜46を粘着性または接着性を有する層を介して、複数層積層した後に、各層が剥離しないように硬化させ、積層体95(図10(b))と同様の積層体45を得る(図15(b))。
 次に、積層体45を、切断面(破線61、62で示す)で切断する。積層体45を、破線61、62に示すように透明層43、金属層44の接着面に対して斜めの方向に切断し、必要によっては切断面を研磨し外観を整えることによって、図14に示した三角柱形状を有するシート積層体40が得られる。
 次に、図16を用いて、液晶表示装置200における液晶表示パネル10aと液晶表示パネル10bとがなす角(θ)および導光素子20a、20bの設計値の例を説明する。
 図16は、液晶表示パネル10a、10bと導光素子20a、20bの関係を模式的に示す断面図である。液晶表示パネル10aの観察者側表面17aと平行な面の方向を一点鎖線70aで示し、液晶表示パネル10bの観察者側表面17bと平行な面の方向を一点鎖線70bで示す。導光素子20aの入射面21aは液晶表示パネル10aの観察者側表面17aと平行であるので、線70aは入射面21aと平行である。同様に、線70bは導光素子20bの入射面21bと平行である。また、導光素子20aの出射面22aと平行な面の方向を一点鎖線71aで示し、導光素子20bの出射面22bと平行な方向を一点鎖線71bで示す。
 線70aと線70bとがなす角は、液晶表示パネル10aの観察者側表面17aと液晶表示パネル10bの観察者側表面17bとがなす角θと同じ大きさである。
 線70aと線71aとがなす角をα、線70bと線71bとがなす角をβとする。α、βは、三角柱の頂角である。
 また、導光素子20a、20bの入射面21a、21b、出射面22a、22bの、長手方向に垂直な断面における長さを以下の通り設定する。
  L1:導光素子20aの入射面21aの長さ
  L2:導光素子20aの出射面22aの長さ
  L3:導光素子20bの入射面21bの長さ
  L4:導光素子20bの出射面22bの長さ
 α=β=θ/2と設定すると、線70aと線71aとがなす角、および線70bと線71bとがなす角は等しくなる。また、このとき、α+β=θであることから、線71aは線71bと平行となる。このことは、出射面22aと出射面22bとが同一平面上にあることを意味する。また、液晶表示装置200では、先述のように、出射面22aの端部24aと出射面22bの端部24bとが接している。そのため、線71aと線71bとはつながった一直線となる。すなわち、出射面22aと出射面22bとはつながった一平面を形成している。このことにより、液晶表示装置200では、出射面どうしが同一平面でない場合に比べ、見栄えが良く、画像の表示品位も高い。
 ここで、L1とL2が異なる場合、画像が拡大もしくは縮小されることとなる。L1<L2である場合、液晶表示パネル10aの周辺表示領域32aに形成される画像は、導光素子20aで拡大されて観察者側に表示される。この場合、周辺表示領域32aには、表示領域31aのうち周辺表示領域32a以外の領域である中央表示領域33aに形成される画像に比べ、圧縮して画像を形成する必要があり、手間とコストがかかる。また、L1>L2である場合、液晶表示パネル10aの周辺表示領域32aに形成される画像は、導光素子20aで縮小されて観察者側に表示される。L1<L2である場合と同様にこの場合も、手間とコストがかかる。画像を拡大、あるいは縮小する方法については後述する。
 従って、L1とL2とは等しいことが好ましい。この場合には、導光素子20aの断面(長手方向に垂直な断面)の形状は二等辺三角形である。このとき、導光素子20aの全体の形状は二等辺三角柱である。
 同様の理由から、導光素子20bも、L3とL4とが等しく、全体形状が二等辺三角柱であることが好ましい。
 このように、最適な導光素子20a、20bの長手方向に垂直な断面の形状は、互いに相似な二等辺三角形である。
 これは最適な場合であって、必ずしもα=β=θ/2でなくとも良いし、必ずしもL1=L2、およびL3=L4でなくとも良い。
 以下に示すように、導光素子20aの体積は導光素子20bの体積より大きい。図16に示すように、L1>L3であり、L2>L4である。また、上記のように、導光素子20aの断面と導光素子20bの断面とは、互いに相似な二等辺三角形である。従って、導光素子20aの長手方向に垂直な断面の面積は導光素子20bの長手方向に垂直な断面の面積より大きい。また図13に示すように、導光素子20aおよび導光素子20bは、長手方向の長さが同程度である三角柱である。従って、導光素子20aの体積は導光素子20bの体積より大きい。このことは、先述のように、液晶表示装置200では、液晶表示パネル10aの額縁領域32aに液晶表示パネル10bの側面18bが重なっているからである。なお、逆に、液晶表示パネル10bの額縁領域32bに液晶表示パネル10aの側面を重ねる場合には、導光素子20bの体積が導光素子20aの体積より大きくなる。
 例えば、後に例示する導光素子20aおよび20bの設計値は、L1=L2=14.9mm、L3=L4=10.9mmである。このとき、導光素子20aの体積は、導光素子20bの体積の約1.87倍である。
 導光素子の形状が三角柱状である場合を例に説明したが、導光素子の形状が三角柱状でなくても、一方の導光素子の体積は他方の導光素子の体積より大きい。例えば、後述する液晶表示装置300(図19)のように、導光素子320aの出射面322aおよび導光素子320bの出射面322bがいずれも円柱曲面の一部であるときでも、導光素子320aの体積は導光素子320bの体積より大きい。
 なお、導光素子20aの側面23aと、導光素子20bの側面23bと、液晶表示パネル10bの観察者側表面17bのうちの額縁領域30bに対応する部分との3つの面で囲まれた領域20c(図16で梨地で示した領域)は、表示に寄与しない無効な領域である。従って、この領域20cは、空隙でもよいし、樹脂材料等で形成した部材を配置してもよい。さらには、導光素子20aまたは20bの一部が領域20c内にはみ出すように形成されてもよい。その場合、導光素子の全体の形状は、上述のような二等辺三角柱とは異なるが、上述の議論は、あくまで有効な領域における形状が二等辺三角柱であることを意味しており、導光素子が無効な領域にはみ出し、全体の形状が二等辺三角柱ではなくなったとしても、その効果は失われるものではない。
 液晶表示装置200の設計値を以下に示す。
  α=β=θ/2=30°
  L1=L2=14.9mm
  L3=L4=10.9mm
 額縁領域30a、30bの幅をいずれも4mmとした。
 次に、他の実施形態の液晶表示装置200’を示す。
 図17は実施形態の液晶表示装置200’の断面図である。液晶表示装置200’は、液晶表示装置200の液晶表示パネル10a及び10bと同様の液晶表示パネル10a’及び10b’と、導光素子20a’、20b’とを備える。図18は液晶表示装置200’の液晶表示パネル10a’と液晶表示パネル10b’の接合部の拡大図である。液晶表示装置200’では、液晶表示パネル10a’、10b’の観察者側のエッジ19a’、19b’どうしが接するように角度θ’をなして配置されている。なお、角度θ’は、液晶表示パネル10a’の観察者側表面17a’と平行な方向70a’と、液晶表示パネル10b’の観察者側表面17b’と平行な方向70b’とがなす角である。また、導光素子20a’、20b’は、それぞれ、液晶表示パネル10a’、10b’の観察者側表面17a’、17b’上に配置されている。導光素子20a’、20b’は、周辺表示領域32a’、32b’の観察者側に配置されている。
 導光素子20a’、20b’の形状は三角柱であり、周辺表示領域32a’、32b’から出る光が導光素子20a’、20b’により観察者側に出射される。このことにより、周辺表示領域32a’、32b’に形成される画像が導光素子20a’、20b’の観察者側に表示され、額縁領域30a’、30b’が見え難くなり、継ぎ目が無い画像が表示される。
 液晶表示装置200と液晶表示装置200’とは、2枚の表示パネルの接合部分が異なる。上述のように、液晶表示装置200では、液晶表示パネル10aの額縁領域30a上に液晶表示パネル10bの側面18bが重なっているが、液晶表示装置200’では、表示パネル10a’、10b’の観察者側のエッジ19a’、19b’どうしが接している。
 液晶表示装置200’では、導光素子20a’、20b’の設計値を以下の通りとした。
  α’=β’=θ’/2=30°
  L1’=L2’=L3’=L4’=25.7mm
なお、α’およびβ’は、三角柱である導光素子20a’および20b’の頂角である。また、L1’およびL2’は、それぞれ、導光素子20a’の入射面21a’および出射面22a’の断面における長さであり、L3’およびL4’は、それぞれ、導光素子20b’の入射面21b’および出射面22b’の断面における長さである。額縁領域30a’、30b’の幅は、液晶表示装置200と同様に4mmである。
 液晶表示装置200の導光素子20a、20bの体積を液晶表示装置200’の導光素子20a’、20b’の体積と比較すると、以下の通りとなる。
  20a:20a’=34:100
  20b:20b’=18:100
 液晶表示装置200では、液晶表示装置200’に比べ、導光素子20aおよび導光素子20bの体積を、それぞれ、約1/3および約1/5とすることができた。液晶表示装置200では、一方の表示パネルの額縁領域に他方の表示パネルの側面が重なっていることにより、導光素子の体積が小さくて済む。このように、液晶表示装置200では、高コストである導光素子材料の使用量を減らしても液晶表示装置200’と同等の効果を得ることができるので、非常に有用である。
 なお、液晶表示装置200’は、表示パネル10a’、10b’の観察者側のエッジ19a’、19b’どうしが接しており、L1’=L2’=L3’=L4’であり、導光素子20a’の体積および導光素子20b’の体積は同じである。液晶表示装置200では、L3、L4は、それぞれ、L1、L2より小さい。すなわち、導光素子20bの体積は導光素子20aの体積より小さい。導光素子20aは導光素子20a’や20b’より体積が小さいが、導光素子20bはさらに体積が小さくて済む。
 液晶表示装置200’でも上述した特許文献1-3に記載されている従来の表示装置のように大面積の導光素子を必要としないので、製造が容易で、低コストであるが、液晶表示装置200では導光素子をさらに小型化することができる。従って、液晶表示装置200では、さらにコストを低減することができる。
 液晶表示装置200において、導光素子20a及び20bの出射面22a及び22bの観察者側には光拡散層を設けてもよい。光拡散層を設けることにより、出射面から出射される光が拡散され、液晶表示装置200の視野角が広がる、という効果が得られる。光拡散層としては公知の光拡散層または光拡散素子を用いることができる。例えば、微小粒子を含む散乱膜や、ランダムに微小凹凸が形成された表面を有する拡散反射層や、住友スリーエム社のBEFに代表されるプリズムシート、マイクロレンズアレイなどの光拡散素子を使用することができる。
 また、導光素子20a及び20bの出射面22a及び22bは、平面でなくてもよく、出射面が曲面である導光素子を用いることができる。液晶表示装置200では、導光素子20aおよび20bの断面(長手方向に垂直な断面)は三角形であり、出射面22a、22bは断面において直線であるが、例えば図19に示す液晶表示装置300の導光素子320a、320bのように、出射面322a、322bが断面において円弧であってもよい。この場合の出射面322a、322bは円柱曲面となる。もちろん導光素子の出射面は円柱曲面でなくてもよく、周辺表示領域から額縁領域に向かって厚さが増大するような形状であれば、自由に設計できる。
 なお、液晶表示パネル10a及び10bの液晶層と、導光素子との距離が大きい場合や、その間に光拡散層がある場合には、導光素子を通して見える画像がぼける場合がある。従って、液晶表示パネル10a、10bの観察者側基板(対向基板11a、11b)と観察者側基板の観察者側に設けられている光学フィルム部15a、15bの厚さはできるだけ小さいことが好ましく(例えば、基板の厚さが0.3mm、光学フィルム部の厚さが0.1mm)、平行光の透過率が高い(すなわち、拡散が少ない)ことが好ましい。また、同様の理由から、光学フィルム部に含まれる粘着フィルムなど、液晶表示パネルの観察者側に設けられる接着剤(粘着剤を含む)は、光を拡散する粒子を含まない材料を用いることが好ましい。
 液晶表示装置200では、液晶表示パネル10bの観察者側と反対側に設けられているバックライト装置50bの液晶表示パネル10a側の側面58b(図12に示す)は液晶表示パネル10aの観察者側表面17aと平行である。すなわち、側面58bと液晶表示パネル10bの観察者側表面17bとがなす角が、観察者側表面17aと観察者側表面17bとがなす角θと等しくなるように、側面58bは斜めに形成されている。また、バックライト装置50bの側面58bの一部が液晶表示パネル10aの額縁領域30aに重なっている。このような構成により、側面58bが斜めではない場合に比べ、液晶表示パネル10bの表示領域31bは液晶表示パネル10aの表示領域31aに近づき、導光素子の体積を小さくすることができるので、コストダウンに効果的である。なお、バックライト装置の側面がこのように斜めに形成されていなくても、上述のように導光素子の体積を小さくすることができる。
 また、表示パネルとして、バックライト装置を有しない表示パネルを用いる場合、表示パネルの側面の一部をバックライト装置50bの側面58bのように、斜めに切り欠くことで、表示パネルの表示領域どうしを近づけることができ、同様の効果を得ることができる。
 次に、均一な表示を得るための構成を説明する。まず、輝度の均一化について説明する。
 液晶表示パネル10a及び10bに形成される画像のうち、導光素子20a、20bが配置されている周辺表示領域32a、32bに形成される画像は、導光素子20a、20bを通って観察者側に表示される。一方、表示領域31a、31bのうち周辺表示領域32a、32b以外の領域である中央表示領域33a、33bに形成される画像は導光素子を介さず観察者側に表示される。そのため、周辺表示領域32a、32bに形成されて導光素子を通って表示される画像と、中央表示領域33a、33bに形成されて観察者側に表示される画像との間に輝度差が生じる。たとえば、導光素子20aの入射面21aの断面における長さL1が出射面22aの断面における長さL2より大きい場合、周辺表示領域32aに形成される画像は導光素子20aを通って縮小される。そのため、輝度は高くなる。逆に、L1<L2である場合、周辺表示領域32aに形成される画像は導光素子20aを通って拡大される。この場合、輝度は低くなる。L3>L4である場合や、L3<L4である場合も、それぞれL1>L2、L1<L2である場合と同様である。また、上述のように、液晶表示装置200では、導光素子20a、20bは、側面に金属部が設けられた透明部を含む導光部を有し、透明部内に入射した光は金属部で反射されて導光される。このとき、金属部で反射するたびに、一部の光が吸収される。このことは、L1、L2やL3、L4の大小関係に関わらず生じる。このことによっても、導光素子20a、20bが設けられている領域と、導光素子が設けられていない領域との間に輝度差が発生する。
 このような輝度差は、周辺表示領域32a、32bに形成される画像の輝度を、中央表示領域33a、33bに形成される画像の輝度に対して相対的に変化させることによって改善できる。
 例えば、導光素子20a、20bが設けられている領域に表示される画像の輝度が、導光素子20a、20bが設けられていない領域に表示される画像の輝度より低い場合(上記では、L1<L2やL3<L4である場合)には、周辺表示領域32a、32bに形成される画像の輝度を、中央表示領域33a、33bに形成される画像の輝度よりも相対的に高くすることによって改善できる。
 液晶表示装置200では、以下の2通りの方法を採り得る。
 方法a:中央表示領域33a、33bに設けられている画素の透過率を下げる。
 方法b:周辺表示領域32a、32bに向けて出射される光の強度を、中央表示領域33a、33bに向けて出射される光の強度よりも高くする。
 方法aは、画素に供給する電圧を調整することによって、容易に実現される。方法bは、例えば、周辺表示領域32a、32bに配列された画素に向けてバックライト装置50a、50bから出射される光の強度を中央表示領域33a、33bに配列された画素に向けて出射される光の強度よりも高くすれば実現できる。バックライト装置50a、50bとして冷陰極管が配列されている場合、周辺表示領域32a、32bに対応して配置された冷陰極管群を他の冷陰極管群(中央表示領域33a、33bに対応して配置された冷陰極管群)よりも明るく点灯させればよい。また、バックライト装置50a、50bとして、発光ダイオード(LED)が並べて配置されている場合でも同様の方法で実現できる。もちろん、上記の方法a、bを組み合わせて輝度の均一化を行なってもよい。
 また、導光素子20a、20bの、周辺表示領域32a、32b側の部分と額縁領域30a、30b側の部分との間にも輝度差が生じる。この輝度差が大きいと、観察者に違和感を与えることがある。導光素子20a、20bの形状は三角柱であり、出射面22a、22bは、周辺表示領域32a、32bから額縁領域30a、30bに向かって入射面21a、21bとの距離が増大する。すなわち、周辺表示領域32a、32bから額縁領域30a、30bに向かって導光路の長さが長くなる。上述したように、導光路の長さが長いほど金属層44で光が反射される回数が多く透過率が低下するので、導光素子20a、20bは、周辺表示領域32a、32bから額縁領域30a、30bに向かって透過率が低くなる。このことにより、周辺表示領域32a、32b側の部分と額縁領域30a、30b側の部分との間に透過率の差が生じる。この透過率の差によって輝度差が生じる。金属層44の反射率が低いと、導光素子20a、20bの周辺表示領域32a、32b側の部分と額縁領域30a、30b側の部分との間の透過率の差が大きくなり、輝度差が大きくなる。
 このような輝度差に対しては、周辺表示領域32a、32b内で、画素の透過率またはバックライトの輝度を連続的に変化させることにより、輝度を均一化することができる。
 また、表示パネルとして、プラズマ表示パネル(PDP)や有機EL表示パネル(OLED)のような自発光型の表示パネルを用いる場合には、導光素子が配置されていない表示領域に設けられた画素の輝度を相対的に小さくすればよい。
 また、導光素子の透過率が、導光素子に入射する光の波長によって異なる場合、すなわち、透過光の色が変化しうる場合でも、上記の方法aまたは方法bを用いることにより、色味の調整が可能である。
 次に、画像の均一化について説明する。
 上述したように、導光素子20aにおいて、L1<L2である場合には、周辺表示領域32aに形成される画像は導光素子20aによって第2軸J2に沿って拡大される。そのため、正常な表示を得るためには、周辺表示領域32aに形成される画像を、中央表示領域33a、33bに形成される画像に比べ、導光素子20aによって拡大される率に応じて予め圧縮しておくことが好ましい。画像を圧縮して表示する方法としては、以下の2種類がある。2種類の方法を、図20、21を用いて説明する。図20、図21は、それぞれ、下記方法1、2を説明するための模式図である。
 方法1:図20に示す液晶表示パネル10aのように、液晶表示パネル10aの表示領域31a全体(周辺表示領域32a及び中央表示領域33a)に亘って画素173a(中央表示領域33aに設けられた画素)および画素172a(周辺表示領域32aに設けられた画素)のピッチは一定としつつ、信号処理によって周辺表示領域32aに圧縮画像を形成する方法である。すなわち、周辺表示領域32aに設けられた複数の画素に供給される表示信号を第2軸J2に沿って圧縮する。このとき、周辺表示領域32aに設けられた画素172aに供給される表示信号は、導光素子20aによる拡大率に応じて、圧縮される。
 方法2:図21に示す液晶表示パネル10aのように、周辺表示領域32aに配列された画素172aのピッチを他の領域(中央表示領域33a)に配列された画素173aのピッチよりも狭くし(圧縮し)、信号処理を行なうことなく圧縮画像を形成する方法である。方法2は特別な信号処理が不要であるものの、予め専用の表示パネルを製造する必要があり、汎用性に劣る、コストがかかる、等の問題がある。
 これに対し、方法1は、特別な信号処理が必要になるものの、一般的な表示パネルを使用することができるという利点を有している。方法1は、例えば、ソフトウェアで実現することができる。また、導光素子20aの出射面22aが平面(断面が直線)である場合には、画像が第2軸J2に沿って均等に拡大されるので、画像の圧縮、表示信号の圧縮も均等にすればよく、信号処理が簡単に行なえる、という利点がある。図19に示した液晶表示装置300の導光素子320a、320bのように、出射面が曲面である導光素子を用いる場合には、導光素子による拡大率に応じて画像を圧縮すればよい。
 以上、L1<L2であって周辺表示領域32aに形成される画像が導光素子20aによって拡大される場合について、周辺表示領域32aに中央表示領域33aより圧縮して画像を形成する方法を説明した。L1>L2である場合には、周辺表示領域32aに形成される画像は導光素子20aによって第2軸J2に沿って縮小されるので、周辺表示領域32aに形成される画像を、中央表示領域33aに形成される画像より予め拡大しておくことが好ましい。画像を拡大して形成する方法は、上記縮小する場合の逆の方法で実現できる。
 また、導光素子20bについても同様に、L3<L4、L3>L4の各場合に、上述の方法で周辺表示領域32bに形成される画像を第3軸J3に沿って、それぞれ、縮小、拡大すればよい。
 なお、液晶表示装置200では、導光素子20a、20bの形状は二等辺三角柱である。すなわち、導光素子20a、20bの長手方向に垂直な断面は二等辺三角形であり、L1=L2、L3=L4である。従って、周辺表示領域32a、32bに形成される画像は導光素子20a、20bによって拡大も縮小もされない。そのため、上記のような画像の拡大や縮小の必要はない。ただし、導光素子20a、20bの金属部において一部の光が吸収されることにより輝度差が目立つ場合等は、必要に応じて上記の方法a、bにより、輝度差の改善を行なうことが好ましい。また、導光素子20a、20bの体積が異なることに起因して、出射面22aに表示される画像と出射面22bに表示される画像との間に輝度差が生じる可能性がある。そのような場合にも、必要に応じて、上記の方法a、bにより輝度差の改善を行なうことが好ましい。
 液晶表示装置200の構成は、複数の表示パネルが所定の角度を設けて配置されている表示装置に適用することができるが、表示パネルどうしがなす角を変化させることが可能な表示装置にも適用できる。図22に示す表示装置400は、隣接する表示パネル410a、410bの観察者側表面417a、417b上に設けられている導光素子420aと420bの接触部を、軸72を回転中心とする回転可能な可動部としている。可動部の詳細を図23に示す。図23は可動部の拡大断面図であり、図23(a)は開いた状態、図23(b)は閉じた状態を示す。このような構成を採用すると、隣接する表示パネル410aと410bとがなす角を可変にできる。また、常に表示パネルの継ぎ目が見え難いまま開閉することができる。このような表示装置400においても、小型の導光素子を用いているので、低コストで継ぎ目を見え難くすることができる。
 従って、例えば携帯電話機やゲーム機、電子ブック等、画面を2つ有する表示装置においても液晶表示装置400の構成を適用すれば、低コストで継ぎ目が無い画像を表示できる。このように、小型の電子機器でも、従来よりも大きな画面の表示装置を搭載できる。
 また、液晶表示装置200は、表示パネルを2枚備えているが、液晶表示装置200を応用して、図24に示す表示装置500のように、さらに多くの表示パネルをタイリングしてもよい。図24に、複数の表示パネルを備える表示装置500の斜視図を示す。図24に示す表示装置500は、複数の表示パネル510を備え、各表示パネル510は互いに隣接している。隣接する2枚の表示パネルのうち一方の表示パネルの観察者側表面と他方の表示パネルの観察者側表面とがなす角が0°超180°未満(例えば10°)となるように、一方の表示パネルの額縁領域に他方の表示パネルの側面が重なっている。この曲面型の表示装置500においても、表示パネルの互いに隣接する端部に導光素子520a、520bを設けることによって、継ぎ目が見え難い画像を表示することができる。このような表示装置においても、小型の導光素子によって継ぎ目が無い画像を表示することができるので、コストが低減される。
 また、少なくとも3枚の表示パネルを1つの軸を中心に環状に配置することによって、内面全体を表示面とする表示装置も可能である。例えば、図25に示す表示装置600では、4枚の表示パネル610a、610b、610cおよび610dが、中心軸Jcを中心に環状に配置され、表示装置の角に導光素子620aおよび導光素子620bが配置されている。このような表示装置においても、小型の導光素子によって継ぎ目が無い画像を表示することができ、コストの低減が実現される。
 また、表示装置600を応用して、部屋の内壁に沿って表示パネルを配置し、角に対応して導光素子を設けることによって、部屋の内壁全体を継ぎ目の無い表示装置で覆うこともできる。内壁全体を継ぎ目の無い表示装置で覆うことによって、表示パネルが1枚である場合には不可能な、超高臨場感を実現できる。
 次に、液晶表示装置100aを複数タイリングした大型の液晶表示装置の他の形態を説明する。
 上述のように、複数の液晶表示装置100aが一列に配列された大型の液晶表示装置100A(図3)では、隣接する液晶表示装置100aの辺に導光素子20を設けることによって、継ぎ目が見え難い表示が実現できる。導光素子20を4辺に設けた液晶表示装置をマトリクス状に配列することによって、図26に示す液晶表示装置100Bを得ることができる。液晶表示装置100Bでは、液晶表示装置100aの4辺に導光素子20が設けられているので、液晶表示装置100B全体にわたって継ぎ目が見え難い表示が実現される。
 さらに、図27に示す液晶表示装置100Cのように、液晶表示パネル10の、導光素子20が設けられた辺同士が隣接するように、例えば10度ずつ傾けて複数の液晶表示パネル10を配置すれば、継ぎ目の無い曲面型の表示装置が実現できる。もちろん、複数の液晶表示装置10の表示面のなす角については、導光素子20の辺が接していれば特に制限はないが、なす角が180°未満であるほうが、導光素子20の頂角が目立たない点で好ましい。なお、原理的には、180°以上の角度でも継ぎ目の無い表示を行うことはできる。
 なお、図3、図26および図27においては、バックライト装置50の図示を省略している。複数の液晶表示装置100aをタイリングする場合には、バックライト装置50を個々の液晶表示装置100aに個別に設けてもよいし、タイリングによって得られる液晶表示装置を構成する複数の液晶表示装置100aの一部または全部に共通なバックライト装置50を設けてもよい。液晶表示パネル10に代えて、有機EL表示パネルなどの自発光型の表示パネルを用いる場合に、バックライト装置50が不要であることは言うまでも無い。
 次に、図28~図31を参照して、本発明による実施形態の表示装置の種々の具体例をさらに示す。
 例えば、図28に示す表示装置700のように、2つの表示パネル10の、導光素子20が設けられた縁(辺)同士が接するように、90度傾けてL字型に並べて配置することで、継ぎ目の無いL字型の表示領域(表示領域70aおよび70b)を有する表示装置を実現することができる。これは、例えば立て掛け型のデジタルフォトフレームや、車載型の情報表示機器等、今までにないデザイン形状の表示装置に応用することができる。もちろん、2つの表示パネル10の表示面が成す角は90度に限られない。
 また、少なくとも3枚の表示パネル10を1つの軸に沿って環状に配置することによって、内面全体を表示面とすることができる。例えば図29に示す表示装置800のように、4枚の表示パネル10を部屋の内壁に沿って環状に配置し、角に対応して導光素子20を配置することによって、部屋の内壁全体を表示装置で覆うこともできる。部屋の壁一面を継ぎ目の無い表示装置で覆うことによって、単体の表示装置では不可能な、超高臨場感を実現する表示装置を提供することができる。もちろん、天井部分または床部分も表示装置とすることで、臨場感がさらに増すことは言うまでも無い。なお、表示パネル10に代えて、例えば図1に示した液晶表示装置100aを用いることもできる。
 さらに、図30に示す表示装置900のように、隣接する表示パネルの接触部を軸72の回りに回転可能な可動部とすることで、隣接する表示面97aと97bとの角度を可変にできる。従って、2つ画面を有する携帯電話やゲーム機、電子ブック等のディスプレイの表示を継ぎ目無く表示できる。このように、小型の機器でも大画面の表示装置を搭載でき、非常に有用である。
 上記の表示装置700、800および900において正常に画像を表示するためには、上述したように一般に、画像を圧縮(または拡大)して表示する必要がある。しかしながら、図17に示す表示装置200’のように、隣接する表示パネル10の角度によっては、断面形状が略2等辺三角形の導光素子20a’、20b’を用いることができる。この場合には、導光素子の入射面と出射面との長さがほぼ等しいので、画像は拡大も縮小もされず等倍で表示される。
 なお、上述の液晶表示装置700、800、および900のように、複数の液晶表示パネルを互いに傾けて配置するときには、液晶表示装置200、300、400、500および600のように互いに隣接する液晶表示パネルのうちの一方の液晶表示パネルの額縁領域に他方の液晶表示パネルの側面が重なるように配置すると、導光素子を小さくすることができるので、好ましい。
 先述のように、導光素子として、光ファイバーフェイスプレートや、少なくとも2種類以上の屈折率の異なる透光層の積層体を用いることもできる。
 導光素子として光ファイバーフェイスプレートを用いる場合について説明する。個々の光ファイバーはコアとクラッドを有し、コアの屈折率はクラッドの屈折率より高い。図31に導光素子20として光ファイバーフェイスプレートを用いた場合の液晶表示装置100Dを示す。図31は液晶表示装置100Dの断面図である。図31に示す断面図においては、導光素子20の側面23に平行に光ファイバーが配列されている。導光素子20に入射面21から入射した光は、側面23に平行に光ファイバー内を伝播し、出射面22から観察者側に向けて出射される。出射面22は、液晶表示パネル10の額縁領域30と重なるように設けられているので、液晶表示装置100Dは、液晶表示パネル10の額縁領域30に対応する領域を表示に利用することができる。
 導光素子20として用いられる光ファイバーフェイスプレートは、板状に形成された光ファイバーフェイスプレートから光ファイバーの長さ方向に対し、三角柱状になるように入射面および出射面を斜めに切り出すことで作製することができる。例えば、石英製の光ファイバーフェイスプレート(例えば、コアの屈折率は1.8、クラッドの屈折率は1.5)を好適に用いることができる。もちろん、コアとクラッドの屈折率差が大きいほど、光ファイバーの開口数(NA:Numerical Aperture)が大きくなり、光透過率が高くなるので好ましいが、コアとクラッドの屈折率には特に制限はない。光ファイバーの材料は、特に限定は無く、アクリル樹脂等の透明な樹脂材料を用いてもよい。また、コア内から漏れた光が、隣のコアに伝達されるのを防ぐ光吸収体を備えたファイバーフェイスプレートを用いると、表示画像のぼけが防止される点でさらに好ましい。
 図26に示した液晶表示装置100Bの導光素子20として光ファイバーフェイスプレートを用いる場合の、液晶表示パネルの角部について説明する。図32にこの場合における液晶表示パネルの角部の拡大図を示す。角部分の導光素子は、例えば、図32に模式的に示すように、入射面から出射面に向けて直径が次第に大きくなるファイバー21tを用いて形成され得る。このようなテーパー状の導光素子20Bは、通常の非テーパー状のファイバーフェイスプレートを、熱を加えながら各ファイバーの直径が場所により変化するように延伸したものから切り出すことによっても作製することができる。
 導光素子20Bは、角を形成する互いに直交する2つの辺のそれぞれに直交する線に沿った断面および角を2等分する線に沿った断面(図32中のハッチング部分)が上述の条件を満足する形状(ここでは三角形)を有するように形成されている。
 液晶表示装置100Dは、上述の液晶表示装置100aと同様に、周辺表示領域の一部32を除く表示領域31の大部分には導光素子を有していない。従って、大面積の光ファイバーフェイスプレートを必要としないので、製造が容易で、低コストという利点を有している。また、液晶表示装置100Dは、タイリングによって超大画面の表示装置を実現することができるだけでなく、解体して容易に運搬できるので、取り扱い性も高いという利点を有している。このように、導光素子として光ファイバーフェイスプレートを用いた場合にも、利点を有している。
 液晶表示装置100Dは、液晶表示パネル10の表示領域と2つの導光素子20の出射面22とを覆う透光性のカバーをさらに有していても良い。カバー26および導光素子20は、不図示の透明な接着剤層によって液晶表示パネル10の表面に固定されている。導光素子20は、側面23と液晶表示パネル10の表面との間に形成された樹脂層25によってさらに固定されている。樹脂層25は省略してもよいが、樹脂層を設けた場合には導光素子20をより安定に固定することができる。カバー26は導光素子20の出射面22と接着剤層によって固定されている。また、導光素子20と液晶表示パネル10との間の接着剤層も必ず必要なわけではなく、これらの間に空気層を介して固定してもよい。
 液晶表示パネル10の観察者側の表面に設けられた、導光素子20、カバー26および樹脂層25をまとめて、導光シート27ということがある。カバー26および樹脂層25を設け、平坦な表面を有するシート状にすることによって、導光素子20や、液晶表示パネル10の表示面を保護できる。また、液晶表示装置100Dの表面が平坦になるので、見た目の違和感も軽減される。さらに、表面の汚れを拭き取り易いという利点も得られる。カバー26は、例えば、導光素子20および液晶表示パネル10の表示面の形状に沿うように予め成形された透明な樹脂板(例えばアクリル樹脂板)である。
 カバーを設けることにより、正面輝度を高くできるという利点が得られる。図33と図34とを参照しながら、カバー26の機能を説明する。
 図34に示す液晶表示装置100D’は、図33に示した液晶表示装置100Dの導光シート27に代えて、カバー26を有しない光学シート27’を有している。
 図34に示すように、導光素子20内を伝播した光は出射面22と外部との屈折率差に応じて屈折する。ここで、カバーが無い場合、導光素子20の屈折率、例えば光ファイバーのコアの屈折率1.8と空気の屈折率1.0との比に応じて屈折し、図34に太い矢印で示したように、正面方向(液晶表示パネル10の表示面法線方向)から大きく傾いた方向に出射されることになる。その結果、液晶表示装置100D’の正面輝度は低下することになる。なお、カバーを設けない場合には、光ファイバーフェイスプレートの上、および液晶表示パネル10の表示面の上に反射防止膜を形成することが好ましい。
 これに対し、図33に示したように、カバー26を設けると、出射面22においては、導光素子20の屈折率と、カバー26の屈折率との比に応じて屈折することになる。従って、カバー26が無い場合よりも、正面方向に出射される光の量が増える。このとき、カバー26が、光ファイバーのコアの屈折率と同一の屈折率を有する材料である場合には、出射界面における屈折が無くなるために、正面輝度の低下は最も少なくなる。
 図31に示した液晶表示装置100Dが有する導光シート27に代えて、図35(a)に示す導光シート27Bや、図35(b)に示す導光シート27Cを用いることもできる。
 図35(a)に示す導光シート27Bは、導光素子20の出射面上に形成された光拡散層28を有している。光拡散層28を設けることにより、出射面から出射する光が拡散され、視野角が広がるという効果を得ることができる。光拡散層28としては公知の光拡散層または光拡散素子を用いることができる。例えば、巴川製紙所社製の拡散粘着シートに代表される微小粒子を含む散乱膜や、日東電工社製のアンチグレア処理に代表されるランダムに微小凹凸が形成された表面を有する拡散層や、スリーエム社のBEFに代表されるプリズムシート、マイクロレンズアレイなどの光拡散素子を使用することができる。もちろん、光拡散素子は1種類だけではなく、例えばプリズムシートと拡散粘着シートとの組み合わせ等、複数の方法を併用してもよい。
 光拡散層28を設けた場合には、導光素子20の出射面において光が正面方向に拡散するために、上述の正面輝度低下を少なくする効果がある。したがって、カバー26を設けない場合でも、光拡散層28を設けることが好ましい。また、導光素子20の出射面だけでなく表示領域をも覆うように光拡散層28を設けてもよい。
 また、図35(b)に示す導光シート27Cのように、曲面を有する導光素子20Cを用いることができる。導光素子20Cは、液晶表示パネル10の額縁領域に向かって厚さが増大するような形状であれば、形状は自由に設計できる。
 さらに、カバー26の上に反射防止膜を形成することが好ましい。反射防止膜によって、外光の表面反射を低減し、視認性を向上させることができる。反射防止膜としては、フッ化マグネシウム(MgF2)薄膜や、フッ素を添加したアクリル樹脂等に代表される低屈折率樹脂を塗布した膜や、表面にサブ波長オーダーの微小凹凸を形成して表面反射を低減したモスアイ反射防止膜等が使用できる。
 なお、液晶表示パネル10の液晶層13(図31参照)と導光素子20との距離が大きい場合や、その間に光拡散層28がある場合には、導光素子20を通して見える画像がぼける場合がある。従って、液晶表示パネル10の観察者側基板(対向基板)11と光学フィルム部15の厚さはできるだけ薄いことが好ましく、(例えば、基板11の厚さが0.3mm、光学フィルム部15の厚さが0.1mm)、平行光の透過率が高い(拡散が少ない)ことが好ましい。また、同様の理由から、光学フィルム部15に含まれる粘着フィルムなど、液晶表示パネル10の観察者側に設けられる接着剤(粘着剤を含む)は、光を拡散する粒子を含まない材料を用いることが好ましい。
 先述のように、導光素子20として、図5に示す複数の透光層を有するシート積層体80を用いることもできる。
 シート積層体80は、少なくとも2種類以上の屈折率の異なる透光層の積層体である。透光層は長さ方向(光の伝播方向)に直交する方向に互いに平行に積層されている。図1における導光素子20と同様に、シート積層体80は、表示領域31の端の部分と、シート積層体80の端(つまり表示装置の端と同意)の部分とを結ぶ直線の傾き方向に、透光層83および84の長さ方向が一致するように配置され、導光素子20として機能する。
 シート積層体80は、以下の方法で容易に作製することができる。
 図36(a)に示すように、アクリル樹脂またはガラスのような透光性の材料からなる基材83の片側表面に、基材83よりも屈折率の低い、例えばJSR社製のオプスター(商品名)等のフッ素系化合物を含む低屈折率の樹脂を塗布し、乾燥・硬化させ、基材84を形成する。次に、これらの基材を粘着性または接着性を有する層を介して、複数層積層した後に、各層が剥離しないように硬化させる。粘着性または接着性を有する材料としては、熱硬化性樹脂や熱可塑性樹脂、または紫外線硬化性の樹脂材料等が使用できるが、透光性が高く、光散乱性が少なく、さらに硬化後の強度が十分得られる範囲で、膜厚は薄い方が好ましい。例えば、基材83または基材84が粘着性・接着性を有する場合には、特に別途粘着層または接着層を配置する必要はない。
 次に、図36(b)に示すように、上述のようにして得られた積層体を、破線61、62で示すように、透光層83、84の面に対して斜め方向に切断し、必要によって切断面を研磨し、外観を整えることによって、図5に示したシート積層体80が得られる。
 切断の方向は、非表示領域30の幅と、シート積層体80を配置する領域32(例えば図33参照)の面積により決定されるパラメータであって、破線61と基材83、84の面方向とのなす角を65度、破線62と透光層83、84の面方向とのなす角を30度とした。
 また、透光層83が樹脂材料からなるフィルム基材のように、フレキシブルに湾曲可能な場合には、図37(a)および(b)や図38に示すように、ロールツーロールによる方法を用いて、さらに容易に作製することができる。
 図37(a)および(b)は、ロールツーロール法による第1の方法を示す。
 まず、図37(a)に示すように、透光性のフレキシブルな材料からなるフィルム基材83の片側表面に、基材83よりも屈折率の低い樹脂材料84をスリットコータ等の塗布装置を用いて、ノズル85から樹脂を吐出させて基材83上に均一に塗布し、乾燥・硬化させ、その後ロールで巻き取る。フィルム基材83としては例えばポリエチレンテレフタレート(PET)フィルムやアクリルフィルムを用いることができる。屈折率の低い樹脂材料としては、例えばJSR社製のオプスター(商品名)等のフッ素系化合物を含む樹脂を用いることができる。次に、このロールをオーブン等でフィルム基材84の軟化点以上に加熱し、フィルム同士を融着させる。
 次に、図37(b)に示すように、上述のようにして得られた積層体を、破線61、62で示すように、基材83、84の面に対して斜め方向に切断し、必要によって切断面を研磨し、外観を整えることによって、図5に示したシート積層体80が得られる。
 ここで、基材83、84の面は厳密には曲面であるが、ロールの径を、シート積層体80の厚さよりも十分大きく(例えば6インチ径等)すると、基材の面は略平面と近似することができる。また、実際に曲面であったとしても、フィルム材料内を十分導光する範囲であれば得られる効果は特に変わらない。また、積層体をロールから剥離した後、熱を加えながらプレス機等により平板になるように圧力を加えることによって、曲面形状から平面形状に変形させることもできる。
 フィルムを融着させる方法の他に、接着性(粘着性を含む)を有する層を介してロールに巻き取ることで、各層が剥離しないように硬化させてもよい。
 粘着性または接着性を有する材料としては、熱硬化性樹脂や熱可塑性樹脂、または紫外線硬化性の樹脂材料等が使用できるが、透光性が高く、光散乱性が少なく、さらに硬化後の強度が十分得られる範囲で、膜厚は薄い方が好ましい。
 図38に、ロールツーロールによる第2の方法を示す。
 ポリエチレンテレフタレート(PET)フィルムやアクリルフィルムのような透光性の材料からなるフィルム基材83と、基材83よりも屈折率の低い、例えばダイキン工業社製のネオフロン等のフッ素系化合物からなるフィルム基材84とを、重ねるようにロールで巻き取る。
 次に、このロールをオーブン等でフィルム基材83またはフィルム基材84の軟化点以上に加熱し、フィルム同士を融着させる。
 この後、上述と同様にして、図5に示したシート積層体80が得られる。ここでもフィルムを融着させる方法の他に、粘着性または接着性を有する層を介してロールに巻き取ることで、各層が剥離しないように硬化させてもよい。
 例えば、ロールツーロールの第1の方法で作製したシート積層体80は、屈折率1.65のPET層と屈折率1.4のフッ素系化合物を含有した低屈折率樹脂層との界面で光が導光する。すなわち、光ファイバーで言うところの、PET層がコアに相当し、低屈折率樹脂層がクラッドに相当する。もちろんコアとクラッドの屈折率差が大きいほど、シート積層体の開口数(NA)が大きくなるために、光透過率が高くなる点で好ましい。また、PET層から漏れた光が隣接するPET層に入射するのを防ぐために、低屈折率樹脂層の更に外側に光吸収層を積層することが好ましい。PET層から漏れた光が隣接するPET層に入射すると、表示画像のぼけが発生することがある。光吸収層としては、例えば、着色材料を含んだPETフィルム等を用いることができる。
 上記において、図20、21を参照して説明した液晶表示装置200において均一な表示を得るための構成と同様の方法により、液晶表示装置100aにおいても均一な表示が得られる。
 液晶表示装置100aでは、表示光のうち、導光素子20が配置される周辺表示領域の一部32から出射される表示光は、導光素子20によって第1軸に沿って拡大されるので、その拡大率に応じて輝度が低下する。導光素子として光ファイバーフェイスプレートを用いた場合には、光ファイバーのコアの開口率及び光ファイバーの伝送損失によって、輝度が低下する。この場合には、上記方法a、bの少なくとも一方により、輝度の均一化が実現される。例えば方法bは、図39に示すバックライト装置50のように、周辺表示領域の一部32に対応して配置される冷陰極管群51および52を他の冷陰極管よりも明るく点灯させることにより実現される。
 また、液晶表示装置100aでは、周辺表示領域の一部32で形成された画像は拡大される。この場合には、上記方法1及び方法2の少なくとも一方により、画像の均一化が実現される。例えば方法1により画像を均一化する場合の例について、図40を参照して説明する。図40は、画素のピッチを一定とした液晶表示パネル10eを備える液晶表示装置100eを示す断面図である。図40に示すように、液晶表示パネル10eは、表示領域全体(中央表示領域33及び周辺表示領域の一部32e)に亘って画素173(中央表示領域33の画素)、172e(周辺表示領域の一部32eの画素)のピッチが一定である。画素のピッチを一定とし、信号処理により周辺表示領域の一部32eに配列された画素172eに供給される表示信号を圧縮することで画像の均一化が実現される。また、方法2により画像を均一化する場合の例について、図41を参照して説明する。図41にこの場合の液晶表示パネル10fを備える液晶表示装置100fを示す。図41に示すように、液晶表示パネル10fは、周辺表示領域の一部32fの画素172fのピッチが中央表示領域33の画素173のピッチより狭い。周辺表示領域の一部32fの画素のピッチを狭くすることにより、画像の均一化が実現される。
 上述したように、本発明によると、表示パネルの観察者側に導光素子を設けることによって、額縁領域が見え難い表示が実現される。また、複数の表示パネルを備える表示装置において、導光素子を設けることにより、従来よりも容易に表示パネルの継ぎ目を見え難くすることができる。
 本発明は、種々の直視型の表示装置に好適に用いられる。
  10 液晶表示パネル
  11 対向基板
  12 TFT基板
  13 液晶層
  14 シール部
  15、16 光学フィルム部
  20 導光素子
  21 入射面
  22 出射面
  23 側面
  25 樹脂層
  26 カバー
  30 額縁領域
  31 表示領域
  32 周辺表示領域の一部
  50 バックライト装置
  100a 液晶表示装置

Claims (15)

  1.  表示領域と前記表示領域の外側に形成された額縁領域とを有する少なくとも1つの表示パネルと、
     入射面と、出射面と、前記入射面と前記出射面の間に形成された複数の導光部とを有する少なくとも1つの導光素子と、
    を備え、
     前記複数の導光部は少なくとも1つの透明部を含み、
     前記少なくとも1つの透明部の側面の少なくとも一部には金属部が設けられており、
     前記少なくとも1つの導光素子の前記入射面は、前記少なくとも1つの表示パネルの前記額縁領域に第1の軸に沿って隣接する周辺表示領域の一部に重なり、且つ、前記少なくとも1つの表示パネルの表面と平行になるように配置され、
     前記少なくとも1つの導光素子の前記出射面は、前記第1の軸に沿って前記周辺表示領域の前記一部から前記額縁領域に向かって前記入射面からの距離が増大する、直視型の表示装置。
  2.  前記少なくとも1つの導光素子は、複数の透明層と複数の金属層が積層された積層体を有する、請求項1に記載の表示装置。
  3.  前記複数の金属層は、厚さが100nm以上5μm以下である金属層を含む、請求項2に記載の表示装置。
  4.  前記複数の金属層は、厚さが100nm以上1μm以下である金属層を含む、請求項3に記載の表示装置。
  5.  前記少なくとも1つの透明部は略円柱形であり、かつ、前記少なくとも1つの透明部の前記側面は前記金属部で覆われている、請求項1に記載の表示装置。
  6.  前記少なくとも1つの表示パネルは互いに隣接する第1および第2表示パネルを含み、
     前記第1表示パネルの観察者側表面と前記第2表示パネルの観察者側表面とがなす角が0°超180°未満となるように、前記第1表示パネルの前記額縁領域に前記第2表示パネルの側面が重なり、
     前記少なくとも1つの導光素子は第1および第2導光素子を含み、
     前記第1導光素子の体積は前記第2導光素子の体積より大きい、請求項1から5のいずれかに記載の表示装置。
  7.  前記第1導光素子の前記出射面の前記第2表示パネル側の端部は、前記第2導光素子の前記出射面の前記第1表示パネル側の端部に接している、請求項6に記載の表示装置。
  8.  前記第1導光素子の前記出射面は前記第2導光素子の前記出射面と平行である、請求項6または7に記載の表示装置。
  9.  前記第1および第2導光素子の形状は三角柱である、請求項6から8のいずれかに記載の表示装置。
  10.  前記第1および第2導光素子の形状は二等辺三角柱である、請求項9に記載の表示装置。
  11.  前記第1表示パネルの観察者側表面と前記第2表示パネルの観察者側表面とがなす角をθとして、
     前記第1および第2導光素子の形状は、頂角がθ/2である二等辺三角柱である、請求項10に記載の表示装置。
  12.  前記第1および第2導光素子の前記出射面の形状は円柱曲面である、請求項6または7に記載の表示装置。
  13.  前記第2表示パネルの観察者側表面と反対側に、バックライト装置をさらに備え、
     前記バックライト装置の前記第1表示パネル側の側面は、前記第1表示パネルの観察者側表面と平行であり、前記第1表示パネルの前記額縁領域に重なっている、請求項6から12のいずれかに記載の表示装置。
  14.  前記第1導光素子の前記出射面上または前記第2導光素子の前記出射面上には光拡散層が設けられている、請求項6から13のいずれかに記載の表示装置。
  15.  前記少なくとも1つの表示パネルは、少なくとも3枚の表示パネルを含み、
     前記少なくとも3枚の表示パネルは環状に配置されている、請求項6から14のいずれかに記載の表示装置。
PCT/JP2009/006074 2008-11-17 2009-11-13 表示装置 WO2010055671A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2009801459360A CN102216972A (zh) 2008-11-17 2009-11-13 显示装置
EP09825924A EP2360662A4 (en) 2008-11-17 2009-11-13 DISPLAY DEVICE
JP2010537703A JP5020383B2 (ja) 2008-11-17 2009-11-13 表示装置
US13/129,428 US20110255301A1 (en) 2008-11-17 2009-11-13 Display device
BRPI0921298A BRPI0921298A2 (pt) 2008-11-17 2009-11-13 dispositivo de exibição
RU2011124517/28A RU2011124517A (ru) 2008-11-17 2009-11-13 Устройство отображения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008293878 2008-11-17
JP2008-293878 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010055671A1 true WO2010055671A1 (ja) 2010-05-20

Family

ID=42169816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006074 WO2010055671A1 (ja) 2008-11-17 2009-11-13 表示装置

Country Status (7)

Country Link
US (1) US20110255301A1 (ja)
EP (1) EP2360662A4 (ja)
JP (1) JP5020383B2 (ja)
CN (1) CN102216972A (ja)
BR (1) BRPI0921298A2 (ja)
RU (1) RU2011124517A (ja)
WO (1) WO2010055671A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083080A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Optical system and method to mimic zero-border display
JP2013182200A (ja) * 2012-03-02 2013-09-12 Alps Electric Co Ltd ガラス複合体、ガラス複合体を用いた入力装置、及び、電子機器
JP2013182136A (ja) * 2012-03-02 2013-09-12 Asahi Glass Co Ltd 前面板付きディスプレイパネル
JP2014535073A (ja) * 2011-10-12 2014-12-25 コーニング インコーポレイテッド 湾曲したベゼル隠蔽ディスプレイ装置カバーおよびベゼルのないディスプレイ装置
KR20150021775A (ko) * 2013-08-21 2015-03-03 삼성디스플레이 주식회사 멀티 패널 표시 장치
WO2015190164A1 (ja) * 2014-06-11 2015-12-17 三菱電機株式会社 液晶表示装置
US10067535B2 (en) 2012-09-28 2018-09-04 Apple Inc. Multiple-element light-bending structures for minimizing display borders
JP2018194699A (ja) * 2017-05-18 2018-12-06 大日本印刷株式会社 表示装置、配列型表示装置
WO2019017443A1 (ja) * 2017-07-20 2019-01-24 富士フイルム株式会社 画像表示装置
WO2019150794A1 (ja) * 2018-01-31 2019-08-08 ソニー株式会社 表示装置および光学デバイス
US10436979B2 (en) 2012-08-02 2019-10-08 Apple Inc. Displays with coherent fiber bundles
US10600997B2 (en) 2012-09-28 2020-03-24 Apple Inc. Borderless display with light-bending structures

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965604B (zh) * 2008-03-31 2012-12-12 夏普株式会社 显示装置
US8619210B2 (en) * 2008-08-04 2013-12-31 Sharp Kabushiki Kaisha Display device
JP2016505864A (ja) 2012-11-02 2016-02-25 コーニング インコーポレイテッド 画像アーティファクトが最小化されている没入型ディスプレイ
TWI486653B (zh) * 2013-02-05 2015-06-01 Ye Xin Technology Consulting Co Ltd 影像補償裝置、顯示裝置及拼接型顯示裝置
CN103971599A (zh) * 2013-02-05 2014-08-06 业鑫科技顾问股份有限公司 图像补偿装置及其制造方法
TWI530735B (zh) * 2013-02-05 2016-04-21 業鑫科技顧問股份有限公司 影像補償裝置及其製造方法
CN104516557B (zh) * 2013-09-27 2019-01-04 鸿富锦精密工业(深圳)有限公司 触控显示装置及拼接式触控显示器
CN104516045B (zh) * 2013-09-27 2018-04-24 鸿富锦精密工业(深圳)有限公司 图像补偿元件、显示装置及拼接式显示器
CN104517534A (zh) * 2013-09-27 2015-04-15 业鑫科技顾问股份有限公司 图像补偿元件、显示装置及拼接式显示器
CN104516046A (zh) * 2013-09-27 2015-04-15 业鑫科技顾问股份有限公司 图像补偿元件、显示装置及拼接式显示器
KR102145563B1 (ko) * 2013-10-31 2020-08-18 삼성전자주식회사 베젤 가림 부재를 가진 디스플레이 장치
KR20150093893A (ko) * 2014-02-07 2015-08-19 삼성디스플레이 주식회사 표시 장치
CN103996360B (zh) * 2014-05-26 2016-06-29 广东威创视讯科技股份有限公司 消缝装置和无缝拼接显示设备
CN104157216B (zh) * 2014-07-21 2017-01-25 京东方科技集团股份有限公司 一种拼接屏的驱动方法
US20160054606A1 (en) * 2014-08-22 2016-02-25 Kabushiki Kaisha Toshiba Flat panel display device
CN104269427B (zh) * 2014-09-05 2017-03-29 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制作方法、显示装置
CN104297987B (zh) * 2014-10-14 2017-02-08 天津三星电子有限公司 一种显示器及电子设备
CN106033159B (zh) 2015-03-12 2019-10-01 中强光电股份有限公司 显示装置
CN106033156B (zh) * 2015-03-12 2019-11-05 中强光电股份有限公司 显示装置及显示方法
KR102051958B1 (ko) * 2015-09-03 2019-12-04 주식회사 토비스 디스플레이장치의 디지털 베젤
CN105448196B (zh) * 2015-12-21 2018-08-17 曹嘉灿 一种消隐边框显示装置及显示器
US10310645B2 (en) * 2016-03-15 2019-06-04 Microsoft Technology Licensing, Llc Display window with light steering
CN105869526A (zh) * 2016-06-25 2016-08-17 北京方瑞博石数字技术有限公司 一种光纤和玻璃复合的图像放大导像屏
CN106057095B (zh) * 2016-08-18 2018-09-07 京东方科技集团股份有限公司 拼接式显示面板及拼接式显示装置
US10185064B2 (en) 2016-10-26 2019-01-22 Microsoft Technology Licensing, Llc Curved edge display with controlled luminance
US10223952B2 (en) 2016-10-26 2019-03-05 Microsoft Technology Licensing, Llc Curved edge display with controlled distortion
US10048532B2 (en) * 2016-11-08 2018-08-14 Microsoft Technology Licensing, Llc Display edge emission compensation
CN107016935B (zh) * 2017-06-12 2019-02-26 京东方科技集团股份有限公司 一种显示屏、拼接显示屏及显示装置
JP2019028217A (ja) * 2017-07-28 2019-02-21 セイコーエプソン株式会社 表示装置、電子機器及びウェアラブル機器
TWI691942B (zh) * 2018-01-09 2020-04-21 勝利仕科技股份有限公司 拼接式顯示器
CN108230913A (zh) * 2018-01-29 2018-06-29 惠州市华星光电技术有限公司 一种拼接屏
US10725238B2 (en) * 2018-04-11 2020-07-28 Seamless Technology Inc. Display assembly including at least two display devices
US20190318669A1 (en) * 2018-04-11 2019-10-17 Seamless Technology Inc. Display assembly including at least two display devices
US20190317275A1 (en) * 2018-04-11 2019-10-17 Seamless Technology Inc. Display assembly including at least two display devices
US11353652B1 (en) * 2018-07-10 2022-06-07 Apple Inc. Electronic devices having displays with curved surfaces and image transport layers
CN111383517A (zh) * 2018-12-29 2020-07-07 胜利仕科技股份有限公司 拼接式显示器
US10857885B1 (en) * 2019-06-27 2020-12-08 Aptiv Technologies Limited In-vehicle display
CN110488920B (zh) * 2019-07-31 2021-07-16 联想(北京)有限公司 一种电子设备
US11774644B1 (en) * 2019-08-29 2023-10-03 Apple Inc. Electronic devices with image transport layers having light absorbing material
CN111025742B (zh) * 2020-01-02 2022-07-15 云谷(固安)科技有限公司 一种显示面板及显示装置
US11067745B1 (en) * 2020-07-20 2021-07-20 Seamless Technology Inc. Display assembly including at least two display devices
US11797052B2 (en) 2020-07-24 2023-10-24 Dell Products L.P. Information handling system zero bezel display
US11573450B1 (en) * 2020-09-23 2023-02-07 Apple Inc. Electronic devices with chemically strengthened coherent fiber bundles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165786A (ja) * 1985-01-17 1986-07-26 松下電器産業株式会社 液晶表示パネルの製造方法
JPH02123989U (ja) * 1989-03-23 1990-10-12
JPH0643479A (ja) * 1992-07-27 1994-02-18 Sharp Corp 液晶表示装置
JPH07128652A (ja) 1993-10-28 1995-05-19 Hewlett Packard Co <Hp> 液晶表示装置
JPH0937194A (ja) * 1995-07-17 1997-02-07 Mitsubishi Electric Corp 画像表示装置
JP2000056713A (ja) 1998-08-04 2000-02-25 Sharp Corp ディスプレイユニットおよび複合型ディスプレイ、並びに、ディスプレイモジュール
JP2001005414A (ja) 1999-05-31 2001-01-12 Samsung Sdi Co Ltd マルチディスプレイ装置
JP2004524551A (ja) * 2000-11-27 2004-08-12 シームレス ディスプレイ リミテッド ビジュアル・ディスプレイスクリーン装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104795A (zh) * 1993-11-13 1995-07-05 葛晓勤 超大屏幕显示器面板
JP2004029629A (ja) * 2002-06-28 2004-01-29 Matsushita Electric Ind Co Ltd 表示装置、電子黒板および電子掲示板
GB0223883D0 (en) * 2002-10-15 2002-11-20 Seamless Display Ltd Visual display screen arrangement
JP2008521035A (ja) * 2004-11-16 2008-06-19 聯想(北京)有限公司 接合ディスプレイ間の継ぎ目を取り除く方法及び装置
US20100238090A1 (en) * 2007-04-05 2010-09-23 Spectrum Dynamics Llc Screen seaming device system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165786A (ja) * 1985-01-17 1986-07-26 松下電器産業株式会社 液晶表示パネルの製造方法
JPH02123989U (ja) * 1989-03-23 1990-10-12
JPH0643479A (ja) * 1992-07-27 1994-02-18 Sharp Corp 液晶表示装置
JPH07128652A (ja) 1993-10-28 1995-05-19 Hewlett Packard Co <Hp> 液晶表示装置
JPH0937194A (ja) * 1995-07-17 1997-02-07 Mitsubishi Electric Corp 画像表示装置
JP2000056713A (ja) 1998-08-04 2000-02-25 Sharp Corp ディスプレイユニットおよび複合型ディスプレイ、並びに、ディスプレイモジュール
JP2001005414A (ja) 1999-05-31 2001-01-12 Samsung Sdi Co Ltd マルチディスプレイ装置
JP2004524551A (ja) * 2000-11-27 2004-08-12 シームレス ディスプレイ リミテッド ビジュアル・ディスプレイスクリーン装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360662A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083080A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Optical system and method to mimic zero-border display
US10109232B2 (en) 2011-09-30 2018-10-23 Apple Inc. Optical system and method to mimic zero-border display
US10777129B2 (en) 2011-09-30 2020-09-15 Apple Inc. Optical system and method to mimic zero-border display
JP2014535073A (ja) * 2011-10-12 2014-12-25 コーニング インコーポレイテッド 湾曲したベゼル隠蔽ディスプレイ装置カバーおよびベゼルのないディスプレイ装置
JP2013182200A (ja) * 2012-03-02 2013-09-12 Alps Electric Co Ltd ガラス複合体、ガラス複合体を用いた入力装置、及び、電子機器
JP2013182136A (ja) * 2012-03-02 2013-09-12 Asahi Glass Co Ltd 前面板付きディスプレイパネル
TWI511107B (zh) * 2012-03-02 2015-12-01 Alps Electric Co Ltd Glass composites, input devices using glass composites, and electronic machines
US10436979B2 (en) 2012-08-02 2019-10-08 Apple Inc. Displays with coherent fiber bundles
US11860409B2 (en) 2012-08-02 2024-01-02 Apple Inc. Displays with coherent fiber bundles
US11131803B2 (en) 2012-08-02 2021-09-28 Apple Inc. Displays with coherent fiber bundles
US10067535B2 (en) 2012-09-28 2018-09-04 Apple Inc. Multiple-element light-bending structures for minimizing display borders
US10551874B2 (en) 2012-09-28 2020-02-04 Apple Inc. Multiple-element light-bending structures for minimizing display borders
US10600997B2 (en) 2012-09-28 2020-03-24 Apple Inc. Borderless display with light-bending structures
US11626578B2 (en) 2012-09-28 2023-04-11 Apple Inc. Borderless display with light-bending structures
US11573603B2 (en) 2012-09-28 2023-02-07 Apple Inc. Multiple-element light-bending structures for minimizing display borders
US11112830B2 (en) 2012-09-28 2021-09-07 Apple Inc. Multiple-element light-bending structures for minimizing display borders
US11165046B2 (en) 2012-09-28 2021-11-02 Apple Inc. Borderless display with light-bending structures
KR20150021775A (ko) * 2013-08-21 2015-03-03 삼성디스플레이 주식회사 멀티 패널 표시 장치
KR102148823B1 (ko) * 2013-08-21 2020-08-28 삼성디스플레이 주식회사 멀티 패널 표시 장치
WO2015190164A1 (ja) * 2014-06-11 2015-12-17 三菱電機株式会社 液晶表示装置
JP7151824B2 (ja) 2017-05-18 2022-10-12 大日本印刷株式会社 表示装置、配列型表示装置
JP2018194699A (ja) * 2017-05-18 2018-12-06 大日本印刷株式会社 表示装置、配列型表示装置
JP2021144236A (ja) * 2017-05-18 2021-09-24 大日本印刷株式会社 表示装置、配列型表示装置
JPWO2019017443A1 (ja) * 2017-07-20 2020-07-09 富士フイルム株式会社 画像表示装置
US10901139B2 (en) 2017-07-20 2021-01-26 Fujifilm Corporation Image display device
WO2019017443A1 (ja) * 2017-07-20 2019-01-24 富士フイルム株式会社 画像表示装置
US11327224B2 (en) 2018-01-31 2022-05-10 Sony Group Corporation Display device and optical device
WO2019150794A1 (ja) * 2018-01-31 2019-08-08 ソニー株式会社 表示装置および光学デバイス

Also Published As

Publication number Publication date
EP2360662A4 (en) 2012-11-07
EP2360662A1 (en) 2011-08-24
JPWO2010055671A1 (ja) 2012-04-12
BRPI0921298A2 (pt) 2016-03-08
RU2011124517A (ru) 2012-12-27
JP5020383B2 (ja) 2012-09-05
US20110255301A1 (en) 2011-10-20
CN102216972A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5020383B2 (ja) 表示装置
JP4731637B2 (ja) 表示装置
JP5237437B2 (ja) 表示装置
WO2010016194A1 (ja) 表示装置
US6665029B2 (en) Optical path changing film and reflective liquid-crystal display device including same
US6950155B2 (en) Liquid-crystal display device
US7973880B2 (en) Illumination device and liquid crystal display device
WO2010007716A1 (ja) 液晶表示装置
EP1199512A1 (en) Glass substrate and liquid-crystal display device
US7871680B2 (en) Optical film and liquid-crystal display device
WO2011093388A1 (ja) 導光シートおよび表示装置
WO2012073929A1 (ja) 液晶表示装置およびマルチディスプレイシステム
JPH08313891A (ja) 液晶表示装置およびその製造方法
JP4402111B2 (ja) 液晶表示パネルおよび液晶表示装置
KR20090058992A (ko) 다중시각 표시장치
JP2003202568A (ja) 導光体およびその製造方法、面状光源装置、表示装置
US20140233261A1 (en) Display device and multi-display device
WO2017217009A1 (ja) 画像表示装置
CN111856806A (zh) 显示装置
JP2018113225A (ja) 導光板、面光源装置、表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145936.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010537703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13129428

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009825924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2464/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011124517

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0921298

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110516