WO2010051752A1 - 一种实现多载波聚合传输的方法和装置 - Google Patents

一种实现多载波聚合传输的方法和装置 Download PDF

Info

Publication number
WO2010051752A1
WO2010051752A1 PCT/CN2009/074783 CN2009074783W WO2010051752A1 WO 2010051752 A1 WO2010051752 A1 WO 2010051752A1 CN 2009074783 W CN2009074783 W CN 2009074783W WO 2010051752 A1 WO2010051752 A1 WO 2010051752A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
carrier
downlink
component
component carrier
Prior art date
Application number
PCT/CN2009/074783
Other languages
English (en)
French (fr)
Inventor
潘学明
肖国军
丁昱
索士强
孙韶辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008102260370A external-priority patent/CN101741710B/zh
Priority claimed from CN 200810226038 external-priority patent/CN101741798B/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020117012941A priority Critical patent/KR101239865B1/ko
Priority to EP09824407.2A priority patent/EP2355567B1/en
Priority to ES09824407.2T priority patent/ES2587056T3/es
Priority to EP15202540.9A priority patent/EP3032860B1/en
Priority to US13/127,539 priority patent/US9137003B2/en
Publication of WO2010051752A1 publication Critical patent/WO2010051752A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location

Definitions

  • the present invention relates to a third generation mobile communication technology Long Term Evolution (LTE) technology and a carrier aggregation technology, and more particularly to an uplink and downlink configuration and reception method for carrier aggregation of a time division duplex duplex (TDD) system.
  • LTE Long Term Evolution
  • TDD time division duplex duplex
  • LTE-A LTE-Advanced, LTE-A
  • LTE-A LTE-Advanced, LTE-A
  • LTE-A LTE-Advanced, LTE-A
  • component carriers LTE-carrier aggregation
  • FIG. 1 shows an example of discontinuous multi-carrier aggregation.
  • the LTE carrier aggregation that is discontinuous with each other in the four frequency domains provides the transmission bandwidth of the system.
  • component carriers that implement multi-carrier aggregation, some component carriers are continuous in the frequency domain, and some component carriers are discontinuous in the frequency domain.
  • each member carrier is kept as consistent as possible with LTE Release 8 (R8), thus ensuring that the R8 terminal can work normally on each member carrier.
  • R8 LTE Release 8
  • the base station needs to broadcast the current uplink and downlink subframe allocation information of the current cell to the cell. After the TDD terminal obtains this information, normal data transmission and reception can be performed.
  • CP cyclic prefix
  • Table 1 Different uplink and downlink configuration modes of LTE-TDD systems In Orthogonal Frequency Division Multiplexing (OFDM) systems, the cyclic prefix (CP) is used to overcome multipath effects in wireless channels and prevent intersymbol interference due to multipath.
  • the length of the CP is greater than the maximum delay spread of the wireless channel.
  • Different channel environments are supported by using different cyclic prefix lengths, that is, a long CP is used for a scene with a large multipath delay (for example, a large coverage scene), and a scene with a small multipath delay (such as a small coverage scene) is used for a short period.
  • CP Orthogonal Frequency Division Multiplexing
  • LTE R8 defines two CP types, a regular CP and an extended CP, for unicast transmission.
  • the corresponding parameters are shown in Table 2.
  • a subframe configured with a regular CP one subframe includes 7 OFDM symbols, and the first OFDM.
  • the CP length of the symbol is 160, and the CP of other OFDM symbols is 144.
  • the CP length of each OFDM symbol is 512. It can be seen that the extended CP has a relatively long length, and while providing better anti-multipath performance, the number of OFDM symbols available for data transmission per unit time (for example, one subframe) is correspondingly reduced, that is, the system overhead is also larger.
  • the CP configuration mode refers to whether the CP of the subframe uses a regular CP or an extended CP.
  • Configuration Type Number of OFDM symbols in one subframe W s ⁇ b CP length Ncpj
  • the CP configuration of the uplink and downlink signals is different.
  • the downlink CP configuration mode of the cell is detected by the UE in the cell search, specifically by detecting the time delay between the synchronization signals. If the delay is greater than a preset threshold, a longer extended CP is used, and vice versa. CP.
  • the uplink CP configuration mode of the cell is notified by the cell broadcast to the UE.
  • the current LTE-A system design does not consider the uplink and downlink configuration problems on different carriers in the TDD mode. There is no related solution, and the R8 terminal cannot work normally on each component carrier.
  • the CP length configuration mode of each component carrier needs to be considered.
  • the CP configuration mode adopted by the LTE R8 system only considers the CP length configuration of a single carrier, and cannot be transplanted to the LTE- In the A system. Summary of the invention
  • the embodiments of the present invention provide a method and an apparatus for implementing multi-carrier aggregation transmission, which can implement uplink and downlink configurations in an LTE-A system to meet the requirements of the TDD system.
  • a method for implementing multi-carrier aggregation transmission includes: performing uplink and downlink configuration for each component carrier participating in aggregation in a cell, and ensuring that at least one identical uplink subframe and at least one at least two component carriers exist.
  • the configuration of the at least one component carrier conforms to the uplink and downlink configuration of the R8 in the same downlink subframe;
  • the uplink and downlink configuration of any component carrier and the uplink and downlink configurations of the other component carriers that are aggregated with any of the component carriers are sent to the LTE-A UE that accesses the corresponding component carrier.
  • Another method for implementing multi-carrier aggregation transmission proposed by the embodiment of the present invention includes:
  • the uplink and downlink configuration of the LTE-A UE access carrier and the uplink and downlink configuration of other component carriers aggregated with the access carrier are received by the LTE-A UE on the access carrier.
  • the LTE-A UE When the LTE-A UE needs to receive or transmit data on multiple carriers at the same time, the LTE-A UE is scheduled to be a downlink or uplink subframe on the aggregated multiple component carriers.
  • the steps on the uplink subframe include:
  • the LTE-A UE performs inverse discrete Fourier transform on data of each component carrier to obtain orthogonal frequency division multiplexing OFDM symbols of each component carrier;
  • the LTE-A UE inserts a cyclic prefix on the time domain of each component carrier according to the pre-configured correspondence table, and the cyclic prefix forms a subframe with a predetermined number of OFDM symbols on the component carrier.
  • An apparatus for implementing multi-carrier aggregation transmission includes: a configuration module, configured to perform uplink and downlink configuration for each component carrier participating in aggregation in a cell, and ensure that at least one of the at least two component carriers has at least one identical The uplink subframe and the at least one same downlink subframe, the configuration of the at least one component carrier is consistent with the uplink and downlink configuration of the R8, and the sending module is configured to aggregate the uplink and downlink configuration of any component carrier and the component carrier
  • the uplink and downlink configurations of the other component carriers are sent to the LTE-A UEs that access the corresponding component carriers.
  • the solution of the present invention is to perform uplink and downlink configuration for each component carrier participating in the aggregation in the cell, and to ensure that at least one identical uplink subframe and at least one same downlink subframe exist between at least two component carriers, thereby ensuring that the LTE-A system can provide Larger system bandwidth, at least one component carrier configuration conforms to the R8 uplink and downlink configuration, thus ensuring the downward direction of R8 Rong.
  • the uplink and downlink configuration of any component carrier and the uplink and downlink configurations of the other component carriers that are aggregated with any of the component carriers are sent to the LTE-A UE, so that the LTE-A UE can learn
  • the uplink and downlink configuration is to correctly complete the sending and receiving of data.
  • the multi-carrier aggregation is implemented by pre-setting a correspondence table between the component carriers and the cyclic prefix configured by the component carrier, and inserting a cyclic prefix in each of the component carriers according to the correspondence table.
  • Each member carrier is configured with a cyclic prefix, and the cyclic prefix of each component carrier may be the same or different.
  • the present invention solves the problem of CP length configuration on each carrier in LTE-A carrier aggregation transmission.
  • FIG. 1 is a schematic diagram of discontinuous carrier aggregation in an LTE-A system.
  • FIG. 2 is a general flow diagram of an uplink and downlink configuration method for carrier aggregation of a TDD system according to the present invention.
  • FIG. 3 is a schematic diagram of the coexistence condition of adjacent frequency when the carrier is uplink and downlink configuration 1;
  • 4 is a schematic diagram 2 of the adjacent frequency coexistence condition when the carrier is uplink and downlink configured;
  • FIG. 5 is a schematic diagram of carrier allocation when an LTE-A UE needs a larger downlink bandwidth
  • FIG. 6 is a schematic diagram of carrier allocation when an LTE-A UE needs a larger uplink bandwidth
  • FIG. 7 is a schematic diagram of multi-carrier aggregation according to an embodiment of the present invention. Schematic diagram of component carrier coverage of the LTE-A system;
  • FIG. 8 is a flowchart of a CP configuration process for multi-carrier aggregation according to an embodiment of the present invention
  • FIG. 9 is a flowchart of another CP configuration process for multi-carrier aggregation according to an embodiment of the present invention
  • FIG. 10 is a flowchart of a UE according to an embodiment of the present invention. A flowchart for knowing the CP length configuration of each component carrier;
  • FIG. 11 is a cyclic prefix configuration for multi-carrier aggregation according to an embodiment of the present invention.
  • Device block diagram is a cyclic prefix configuration for multi-carrier aggregation according to an embodiment of the present invention.
  • LTE R8 A UE that supports single carrier but cannot support multi-carrier aggregation is called an LTE R8 UE.
  • LTE- A UE A UE that can be applied to an LTE-A system and supports multi-carrier aggregation is called LTE- A UE.
  • FIG. 2 is a general flow diagram of an uplink and downlink configuration method for carrier aggregation of a TDD system according to the present invention. As shown in Figure 2, the method includes:
  • Step 201 Perform uplink and downlink configuration for each component carrier participating in the aggregation in the cell, and ensure that at least one identical uplink subframe and at least one same downlink subframe exist between at least two component carriers, and at least one component carrier is configured according to R8. Up and down configuration.
  • the present invention proposes that for the LTE-A TDD system, the uplink and downlink configurations on each component carrier can be independently configured, that is, the following situations can occur:
  • the uplink and downlink configurations on each component carrier are identical, or the upper and lower interfaces on each component carrier
  • the row configuration is different, or the uplink and downlink configurations on each component carrier are partially the same.
  • the TDD system of the adjacent carrier may be configured on the component carrier to ensure the normal operation of each system, and the uplink and downlink of each component carrier are required in the uplink and downlink configuration process of the component carrier.
  • the uplink and downlink configurations configured with the adjacent frequency meet the coexistence requirement, that is, there are certain restrictions on the uplink and downlink allocation of the carrier.
  • the specific coexistence requirements and restrictions on the uplink and downlink configurations are the same as the existing requirements. For example, Figure 3 and Figure 4 describe.
  • the carrier deploys a TD-CDMA network at frequency fl (for example The uplink and downlink configurations are 7:8), and the LTE-TDD system 1 is deployed on the frequency f2 adjacent to the fl.
  • the uplink and downlink configuration of the LTE-TDD system 1 is as shown in Table 1 due to the need for coexistence of adjacent frequencies.
  • Configuration 6 is configured to avoid interference between adjacent frequency systems;
  • TD-SCDMA is deployed on the frequency point f3 (for example, the uplink and downlink configuration is 4:3)
  • the LTE-TDD system 2 is deployed on the frequency point f4 adjacent to the f3, because the adjacent frequency coexists.
  • the uplink and downlink configuration of the LTE-TDD system 2 needs to be configured according to configuration 1 in Table 1 to avoid interference between adjacent frequency systems.
  • the LTE-A system can provide higher system bandwidth for the LTE-A UE, it is required to be able to allocate multiple carriers to the same LTE-A UE at the same time, and the multiple carriers need to have the same uplink or downlink. Therefore, when performing uplink and downlink time slot configuration, at least one identical uplink subframe and at least one same downlink subframe exist between at least two component carriers to provide sufficient bandwidth for data transmission for the LTE-A UE.
  • the configuration of at least one member carrier wave is required to conform to the uplink and downlink configuration of the R8.
  • the component carrier is configured for uplink and downlink.
  • the following manner can be performed:
  • the carrier aggregation mode in the cell is a continuous aggregation or a non-continuous aggregation. If the aggregation is continuous, the same uplink and downlink configuration is performed for all component carriers. If the communication is discontinuous, the uplink and downlink configurations are performed for each component carrier.
  • the uplink and downlink assignments that are different from each other may cause mutual interference between uplink and downlink on the adjacent frequency band, and therefore are preferably configured as respective carriers.
  • the uplink and downlink configurations are the same. Of course, it can also be configured into different uplink and downlink configurations. In this case, the interference problem of the adjacent frequency needs to be considered.
  • all the component carriers can be configured to meet the uplink and downlink configurations of the R8, and some of the component carriers can be configured to meet the uplink and downlink configurations of the R8.
  • the selected uplink and downlink configurations of each carrier can also be arbitrarily selected. The combination may be such that the above-described constraints such as the inter-frequency coexistence requirement are satisfied.
  • Step 202 The uplink and downlink configuration of each component carrier and the uplink and downlink configurations of the other component carriers that are aggregated by the component carrier are sent to the LTE-A UE that accesses the corresponding component carrier.
  • the manner of sending the uplink and downlink configuration may be as follows: The UE accessing the corresponding carrier is notified by using a broadcast message on each carrier or a high layer signaling of the carrier.
  • the uplink and downlink configurations of the other component carriers that are to be aggregated with a certain carrier A may be configured in multiple manners.
  • the uplink and downlink configurations of each other component carrier that is aggregated with a certain carrier A may be delivered in sequence, or in increments.
  • the way of sending The uplink and downlink configurations of the component carriers that are different from the uplink and downlink configurations of the carrier A are sent in the same manner.
  • the so-called incremental delivery that is, when the uplink and downlink configurations of other component carriers and carrier A are different, the uplink and downlink configurations of other component carriers are delivered. Otherwise, the other component carriers are considered to be the same as the uplink and downlink configurations of carrier A.
  • the uplink and downlink configuration of each component carrier may be sent to the LTE R8 UE accessing the corresponding carrier, so that the LTE R8 UE can send and receive data in the LTE-A system.
  • the uplink and downlink configurations of the component carrier A and the other component carriers can be delivered by using different physical resources or logical resources, for example, using different broadcast channels or encapsulations in different data packets. Therefore, the LTE R8 UE can only receive the uplink and downlink configuration of the carrier, so that the LTE-A UE can receive the uplink and downlink configurations of the carrier and other component carriers.
  • the present invention further provides a receiving method for an uplink and downlink configuration.
  • the LTE-A UE performs the uplink and downlink configuration, specifically: receiving the uplink and downlink configuration of each carrier delivered by the base station and the uplink and downlink configuration of other carriers aggregated by the carrier, so as to In the process of data transmission, multiple carrier aggregations can be used for data transmission to increase the system data transmission bandwidth.
  • the uplink and downlink configuration of each carrier can be sent to the LTE R8 UE that accesses the carrier through the corresponding carrier, so that the LTE R8 UE can also receive the base station.
  • the uplink and downlink configuration of the carrier needs to be known, specifically, the broadcast message sent on the carrier is known;
  • LTE-A UEs For the LTE-A UEs that access each LTE-TDD carrier, it is necessary to know the uplink and downlink configuration of the other carriers that are aggregated to provide a larger transmission bandwidth with the carrier.
  • each carrier broadcasts the uplink and downlink configuration information of other aggregated carriers in addition to the uplink and downlink configuration information of the local carrier.
  • the broadcast message may also be sent in an incremental manner, that is, the uplink and downlink configurations on the respective carriers are respectively notified to be the same as the local carrier, and then only the uplink and downlink configuration information on the component carriers different from the carrier configuration are broadcast.
  • the higher layer signaling On the carrier, for example, when the RRC connection is established.
  • the high-level signaling may also be notified in an incremental manner, that is, the specific uplink and downlink configuration information is notified only when the other carriers are different from the uplink and downlink configurations of the carrier, otherwise the corresponding carrier is only indicated to be the same as the uplink and downlink configuration of the carrier. .
  • uplink and downlink configuration and reception in the LTE-A system are realized, thus creating conditions for providing LTE-A UEs with larger system bandwidth.
  • the LTE-A UE may be scheduled on the uplink or downlink subframes on the aggregated multiple component carriers.
  • the base station may select a part of the aggregated multiple carriers, and
  • the LTE-A UEs are scheduled to be downlink subframes on these carriers, as shown in FIG.
  • An embodiment of the present invention provides an apparatus for implementing multi-carrier aggregation transmission, where the apparatus includes: a configuration module, configured to perform uplink and downlink configuration for each component carrier participating in aggregation in a cell, and ensure that at least one of the at least two component carriers exists at least one The uplink subframe and the at least one same downlink subframe, the configuration of the at least one component carrier is consistent with the uplink and downlink configuration of the R8; the sending module is configured to aggregate the uplink and downlink configuration of any component carrier and the any component carrier The uplink and downlink configurations of other member carriers are sent to the LTE-A that accesses the corresponding component carrier.
  • the configuration module includes: determining whether the carrier aggregation mode in the cell is a continuous aggregation or a non-continuous aggregation; if the aggregation is continuous, performing the same uplink and downlink configuration for all component carriers, and if it is a non-continuous aggregation, performing separately for each component carrier. Up and down configuration.
  • the uplink and downlink configuration of the any component carrier and the uplink and downlink configuration of other component carriers aggregated with the any component carrier are delivered by using the high-level signaling of any one of the component carriers.
  • the manner in which the sending module sends the uplink and downlink configurations of other component carriers aggregated with any one of the component carriers is:
  • Up-and-down configuration of other component carriers aggregated with any of the component carriers is delivered one by one; Or the information about whether the uplink and downlink configurations of the other component carriers are the same as the uplink and downlink configurations of the any component carrier, and the other component carriers that are different from the uplink and downlink configurations of the component carrier Row configuration
  • the uplink and downlink configuration of the other component carriers different from the uplink and downlink configurations of any of the component carriers are delivered.
  • the solution of the present invention is directed to a multi-carrier aggregation environment, and the following CP configuration scheme is proposed: a correspondence table between the component carriers participating in the multi-carrier aggregation and the cyclic prefix length configured by the component carrier is configured in advance on the transmitting end, where the transmitting end is a base station or a user. device.
  • the sending process includes the following steps:
  • the transmitting end performs inverse discrete Fourier transform on the data of each component carrier to obtain an OFDM symbol of each member carrier;
  • the transmitting end inserts a cyclic prefix on the time domain of each component carrier according to the pre-configured correspondence table, and the cyclic prefix forms a subframe with a predetermined number of OFDM symbols on the component carrier.
  • the receiving end configures the same correspondence table as the transmitting end. If the transmitting end is a base station, the receiving end is a user equipment; if the transmitting end is a user equipment, the receiving end is a base station; receiving in the foregoing uplink and downlink configuration
  • the processing of the receiver includes the following steps:
  • the receiving end performs a de-cyclic prefix operation on the subframes received on the component carriers according to the pre-configured correspondence table to obtain OFDM symbols on each component carrier.
  • the receiving end performs discrete Fourier transform on the OFDM symbols on each component carrier.
  • the CP lengths of the multiple carriers can be independently configured, that is, the CP lengths of different carriers can be configured to be the same or different.
  • the specific CP configuration follows the basic parameters of the regular CP and the extended CP specified by R8, as shown in Table 2.
  • carrier 1 and Carrier 2 performs multi-carrier aggregation to provide greater transmission bandwidth for LTE-A users.
  • Carrier 1 is configured to extend the CP to provide greater coverage.
  • Carrier 2 and Carrier 3 provide a larger transmission bandwidth for the hotspot area, and are configured as a regular CP in order to reduce system overhead.
  • Each of the carriers may be adjacent or not adjacent in frequency.
  • the circle corresponding to each carrier indicates the coverage of the carrier.
  • the LTE R8 UE can only work on a certain carrier, and its CP type and working mode are no different from the prior art.
  • the LTE-A UE can simultaneously transmit and receive data on multiple carriers, so it needs to have the ability to process both regular CP and extended CP data.
  • the uplink data transmission is performed on the user equipment, and the data is first subjected to channel coding, modulation symbol mapping, and serial-to-parallel conversion. Then, data transmitted by multiple carriers is subjected to inverse discrete Fourier transform (IDFT) to obtain OFDM. The symbol is then inserted into the regular CP or the extended CP in the time domain according to the correspondence between the specific data and the component carrier; finally, digital/analog (D/A) conversion is performed, and modulation is performed to the radio frequency transmission.
  • IDFT inverse discrete Fourier transform
  • the data transmitted by the multiple carriers is IDFT, and may be a unified IDFT transform of each carrier as shown in FIG. 8, or may be an IDFT transform independent of each carrier as shown in FIG. 9, and the selection of the two depends on LTE. -A system parameter design.
  • the base station also needs to perform the above processing process for transmitting the downlink data, and only replaces the uplink data with the downlink data.
  • Performing downlink data reception for the base station first converting the radio frame signal from the radio frequency to the baseband, performing analog-to-digital (A/D) conversion, and then performing a CP-removal operation according to the CP length configured on each carrier in the pre-configured correspondence table; Then performing serial-to-parallel conversion, and then performing discrete Fourier transform (DFT) transform to realize demodulation of OFDM symbols; the demodulated data is subjected to parallel-serial conversion, modulation symbol de-mapping and channel decoding, thereby obtaining information bits received by the LTE-A UE.
  • the DFT transform may be a unified DFT transform of each carrier as shown in FIG. 3 or a carrier independent DFT transform as shown in FIG. 9, and the selection of the two depends on the LTE-A system parameter design.
  • the base station receives the uplink data and also performs the above processing, but only The downlink data is replaced with the uplink data.
  • the multi-carrier aggregation of the above example includes only two component carriers.
  • multi-carrier aggregation for more member carriers those skilled in the art can obtain the analogy according to the above-mentioned example, and therefore are not described.
  • the LTE-A UE needs to know the CP length configuration on each carrier in the system to configure the correspondence between the member carrier and the CP length.
  • the LTE-A UE detects a downlink cyclic prefix type of the first member carrier participating in the multi-carrier aggregation by using a cell search process;
  • the LTE-A UE receives the message of the first component carrier according to the downlink cyclic prefix type, obtains uplink cyclic prefix configuration information of the first component carrier from the message, and participates in other members of the multi-carrier aggregation.
  • the LTE-A UE configures a correspondence table between the component carrier and the cyclic prefix configuration information according to the obtained uplink cyclic prefix configuration information of each component carrier and the downlink cyclic prefix configuration information.
  • the embodiment of the present invention provides a method for the UE to learn the configuration of the CP length on each carrier by using a broadcast message.
  • the base station sends the uplink and downlink CP length configuration including the carrier on each component carrier participating in the multi-carrier aggregation of each cell. And a broadcast message of the uplink and downlink CP length configuration of the other component carriers participating in the multi-carrier aggregation.
  • the processing on the UE side is as shown in FIG. 10, and includes the following steps:
  • Step 1001 The UE detects a downlink CP type on a certain carrier by using a cell search process, and the carrier may be referred to as a temporary primary carrier.
  • the specific method for the UE to detect the downlink CP type may include: performing a cell search by the UE, detecting a synchronization signal on a certain carrier, and detecting a CP type according to a time domain position relationship between the synchronization signals.
  • Step 1002 The UE receives a broadcast message on the temporary primary carrier, and removes the broadcast message from the broadcast.
  • the uplink CP length configuration information of the temporary primary carrier is obtained in the information.
  • Step 1003 The UE obtains the CP length configuration on the other component carriers participating in the multi-carrier aggregation in the LTE-A cell from the broadcast message on the temporary primary carrier, including the downlink CP length configuration and the uplink CP length configuration.
  • the base station configures the CP length on each carrier of the multi-carrier aggregation to the UE through the other high-layer signaling in the LTE-A cell, including the downlink and uplink CP length configurations.
  • the high layer signaling may be dedicated signaling or signaling of a specific control flow, for example, the higher layer signaling may be Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the LTE-A UE After the LTE-A UE learns the uplink and downlink CP length configuration of each component carrier, the LTE-A UE and the base station perform specific services.
  • the base station may schedule the UE to be used on the corresponding carrier according to a certain scheduling policy according to the service to be performed by the LTE-A UE. Specifically, the base station may schedule a UE (such as a VOIP user) with higher transmission quality or coverage requirements on a long CP carrier; and schedule a UE (such as a high-speed data transmission user) with less coverage requirement or higher efficiency requirement.
  • a UE such as a VOIP user
  • a UE such as a high-speed data transmission user
  • the base station also needs to have the ability to simultaneously process different CP lengths on each carrier.
  • FIG. 11 is a block diagram of a cyclic prefix configuration apparatus for multi-carrier aggregation according to an embodiment of the present invention, where the apparatus includes:
  • Correspondence unit 1101 configured to pre-configure a correspondence table between each component carrier participating in multi-carrier aggregation and a cyclic prefix configured by the component carrier;
  • An inverse transform unit 1102 configured to perform inverse discrete Fourier transform on data of each component carrier to obtain orthogonal frequency division multiplexing OFDM symbols of each component carrier;
  • the cyclic prefix configuration unit 1103 is configured to insert a cyclic prefix on the time domain of each component carrier according to the correspondence relationship table preconfigured by the corresponding relationship unit 1101, and the cyclic prefix and the component carrier obtained by the inverse transform unit 1102 a predetermined number of OFDM symbols Make up a sub-frame.
  • the device further includes:
  • the removing unit 1104 is configured to perform a de-cyclic prefix operation on the subframes received on the component carriers according to the corresponding relationship table pre-configured by the corresponding relationship unit 1101, to obtain an OFDM symbol on each component carrier;
  • the transform unit 1105 is configured to perform a discrete Fourier transform on the OFDM symbols on each component carrier obtained by the removing unit 1104.
  • the inverse transform unit 1102 includes more than one inverse transform sub-unit, and each inverse transform sub-unit corresponds to one component carrier, respectively, for performing inverse discrete Fourier transform on the data of the corresponding component carrier.
  • the transforming unit 1105 includes more than one transform subunit, and each of the transform subunits corresponds to one component carrier for performing discrete Fourier transform on the OFDM symbol of the corresponding component carrier.
  • the present invention solves the problem of uplink and downlink configuration on different component carriers of the LTE-A TDD system.
  • the component carrier can be configured to meet the uplink and downlink configuration of the R8 as needed.
  • R8 the uplink and downlink configuration of the R8
  • the solution of the present invention implements a multi-carrier by inserting a cyclic relationship between each component carrier and a cyclic prefix configured by the component carrier in advance, and inserting a cyclic prefix on each member carrier according to the correspondence table.
  • Each component carrier of the aggregation is configured with a cyclic prefix, and the cyclic prefix of each component carrier may be the same or different.
  • the present invention solves the problem of CP length configuration on each carrier in LTE-A carrier aggregation transmission.

Abstract

本发明提供了实现多载波聚合传输的方法,其特征在于,该方法包括:为小区内参与聚合的各个成员载波进行上下行配置,并保证至少两个成员载波间存在至少一个相同的上行子帧和至少一个相同的下行子 帧,至少一个成员载波的配置符合 R8的上下行配置;将任一成员载波的上下行配置和与所述任一成员载波聚合的其他成员载波的上下行配置下发给接入相应成员载波的 LTE-A UE。本发明还提供了实现多载波聚合传输的装置。应用本发明,能够实现在 LTE-A系统中的上下行配置,以适应 TDD系统要求。

Description

一种实现多载波聚合传输的方法和装置 技术领域
本发明涉及第三代移动通信技术长期演进项目 ( LTE )技术以及载波 聚合技术, 特别涉及一种时分复用双工(TDD ) 系统载波聚合的上下行 配置和接收方法。 发明背景
对于演进的 LTE ( LTE Advanced, LTE-A ) 系统, 为支持比 LTE系 统更宽的系统带宽, 比如 100MHz, 需要通过将多个 LTE载波的资源连 接起来使用, 称之为多载波聚合, 其中每个 LTE载波被称为成员载波。 多载波聚合具体有三种方式:
( 1 )、 将多个频域上相互连续的 LTE载波进行聚合, 为 LTE-A提 供更大的传输带宽;
( 2 )、 将多个频域上相互不连续的 LTE载波进行聚合, 为 LTE-A 提供更大的传输带宽。 图 1给出了不连续多载波聚合的例子, 4个频域 上相互不连续的 LTE载波聚合提供系统的传输带宽。
( 3 )实现多载波聚合的成员载波中, 有些成员载波频域上连续, 而 有些成员载波频域上不连续。
目前, 标准化组织的研究倾向的方案中, 每个成员载波上的设计保 持与 LTE版本 8 ( Release 8 , R8 )尽量一致, 从而保证 R8的终端能够 在每一个成员载波上正常工作。
对 LTE Release 8 TDD模式来讲, 通过不同的上下行配置来满足上 下行不对称业务量的需求, 其上下行子帧分配有表 1所示的多种配置。 在 TDD 系统中, 基站需要向小区广播本小区当前的上下行子帧分配信 息, TDD终端获得此信息后才能进行正常的数据发送和接收。
Figure imgf000003_0001
表 1 LTE-TDD系统的不同上下行配置方式 在正交频分复用 (OFDM ) 系统中, 循环前缀(CP )用来克服无线 信道中的多径效应, 防止由于多径造成的符号间干扰, 通常 CP长度要 大于无线信道的最大时延扩展。 通过采用不同的循环前缀长度支持不同 的信道环境, 即对于多径时延较大的场景 (例如大覆盖场景)使用长 CP; 对于多径时延较小的场景 (例如小覆盖场景)使用短 CP。
LTE R8对于单播传输定义了常规 CP和扩展 CP两种 CP类型, 具 体对应参数如表 2所示, 对于配置了常规 CP的子帧, 一个子帧包括 7 个 OFDM符号,其中第一个 OFDM符号的 CP长度为 160,其它 OFDM 符号的 CP为 144。对于配置扩展 CP的子帧,每个 OFDM符号的 CP长 度均为 512。 可以看出, 扩展 CP的长度相对较长, 在提供更好的抗多 径性能的同时, 单位时间(例如一个子帧)内可用数据传输的 OFDM符号 数相应减少, 即系统开销也更大。 因此实际网络部署时需要根据实际需 要决定 CP配置方式。 所述 CP配置方式指的是子帧的 CP是采用常规 CP还是扩展 CP。 配置类型 一个子帧内 OFDM符号个数 Ws^b CP长度 Ncpj
常规 CP 7 160 for Z = 0 (子帧内第一个 OFDM符号)
144 for I = 1,2,...,6 (子帧内其他 OFDM符号) 扩展 CP 6 512 for / = 0,1,-,5
表 2 在 LTE R8中, 上下行信号的 CP配置方式是不同的。 小区的下行 CP配置方式由 UE在小区搜索中检测得到,具体是通过检测同步信号之 间的时间延迟, 如果延迟大于预先设定的阈值, 则采用较长的扩展 CP, 反之采用较短的常规 CP。 而小区的上行 CP配置方式是由小区广播通知 UE的。
综上所述, 目前 LTE-A系统设计中未考虑 TDD模式下不同载波上 的上下行配置问题, 没有相关的解决方案, 也无法保证 R8的终端在每 一个成员载波上正常工作。 并且, 由于 LTE-A系统引入了多载波聚合环 境, 需要考虑每个成员载波的 CP长度配置方式, LTE R8 系统采用的 CP配置方式仅考虑单载波的 CP长度配置, 不能筒单移植到 LTE-A系 统中。 发明内容
有鉴于此, 本发明实施例提出一种实现多载波聚合传输的方法和装 置, 能够实现在 LTE-A系统中的上下行配置, 以适应 TDD系统要求。
本发明实施例提出的一种实现多载波聚合传输的方法包括: 为小区内参与聚合的各个成员载波进行上下行配置, 并保证至少两 个成员载波间存在至少一个相同的上行子帧和至少一个相同的下行子 帧, 至少一个成员载波的配置符合 R8的上下行配置;
将任一成员载波的上下行配置和与所述任一成员载波聚合的其他 成员载波的上下行配置下发给接入相应成员载波的 LTE-A UE。 本发明实施例提出的另一种实现多载波聚合传输的方法包括:
LTE-A UE在其接入载波上接收基站下发的该 LTE-A UE接入载波的上 下行配置和与该接入载波聚合的其他成员载波的上下行配置。
其中, 当 LTE-A UE需要在多个载波上同时接收或发送数据时, 将 所述 LTE-A UE调度在聚合的多个成员载波上同为下行或上行的子帧 上。
预先在 LTE-A UE配置参与多载波聚合的各个成员载波与该成员载 波配置的循环前缀长度的对应关系表, 所述将所述 LTE-A UE调度在聚 合的多个成员载波上同为下行或上行的子帧上的步骤包括:
LTE-A UE将各个成员载波的数据进行逆离散傅立叶变换得到各个 成员载波的正交频分复用 OFDM符号;
LTE-A UE根据所述预先配置的对应关系表, 在每个成员载波的时 域上分别插入循环前缀, 所述循环前缀与该成员载波上预定数目的 OFDM符号组成子帧。
本发明实施例提出的一种实现多载波聚合传输的装置, 包括: 配置模块, 用于为小区内参与聚合的各个成员载波进行上下行配 置, 并保证至少两个成员载波间存在至少一个相同的上行子帧和至少一 个相同的下行子帧, 至少一个成员载波的配置符合 R8的上下行配置; 下发模块, 用于将任一成员载波的上下行配置和与所述任一成员载 波聚合的其他成员载波的上下行配置下发给接入相应成员载波的 LTE-A UE。
本发明方案为小区内参与聚合的各个成员载波进行上下行配置, 并 保证至少两个成员载波间存在至少一个相同的上行子帧和至少一个相 同的下行子帧, 从而保证 LTE-A系统能够提供更大的系统带宽, 同时至 少一个成员载波的配置符合 R8的上下行配置,从而保证对 R8的向下兼 容。 在按照上述方式进行配置后, 将任一成员载波的上下行配置和与所 述任一成员载波聚合的其他成员载波的上下行配置下发给 LTE-A UE, 从而使 LTE-A UE能够获知该上下行配置, 以正确完成数据的发送和接 收。
更进一步地, 通过预先设置各个成员载波与该成员载波配置的循环 前缀的对应关系表, 并根据该对应关系表在每个成员载波的时域上分别 插入循环前缀, 从而实现了对多载波聚合的每个成员载波分别配置循环 前缀, 并且各个成员载波的循环前缀可以相同也可以不同。 本发明解决 了 LTE-A载波聚合传输中各个载波上的 CP长度配置问题。 附图简要说明
图 1为 LTE-A系统中不连续载波聚合的示意图。
图 2为本发明提供的 TDD系统载波聚合的上下行配置方法总体流 程图。
图 3为载波上下行配置时的邻频共存条件示意图 1 ;
图 4为载波上下行配置时的邻频共存条件示意图 2;
图 5为 LTE-A UE需要更大下行带宽时的载波分配示意图; 图 6为 LTE-A UE需要更大上行带宽时的载波分配示意图; 图 7为本发明实施例所举的多载波聚合的 LTE - A系统的成员载波 覆盖范围示意图;
图 8为本发明实施例的一种多载波聚合的 CP配置处理流程图; 图 9为本发明实施例的另一种多载波聚合的 CP配置处理流程图; 图 10为本发明实施例的 UE获知各个成员载波的 CP长度配置的流 程图;
图 11 为本发明实施例提出的一种针对多载波聚合的循环前缀配置 装置框图。
实施本发明的方式
为使本发明的目的、 技术手段和优点更加清楚明白, 以下结合附图 对本发明做进一步详细说明。 为使本发明的目的、 技术方案和优点更加 清楚, 下面结合附图对本发明作进一步的详细阐述。 以下为便于描述, 将仅能适用于 LTE R8 系统, 支持单载波而不能支持多载波聚合的 UE 称为 LTE R8 UE, 将能够适用于 LTE-A系统且支持多载波聚合的 UE称 为 LTE-A UE。
图 2为本发明提供的 TDD系统载波聚合的上下行配置方法总体流 程图。 如图 2所示, 该方法包括:
步骤 201 , 为小区内参与聚合的各个成员载波进行上下行配置, 并 保证至少两个成员载波间存在至少一个相同的上行子帧和至少一个相 同的下行子帧, 至少一个成员载波的配置符合 R8的上下行配置。
本发明提出对于 LTE-A TDD系统, 其每个成员载波上的上下行配 置可独立配置, 即可以出现如下种情况: 各个成员载波上的上下行配置 完全相同, 或者, 各个成员载波上的上下行配置各不相同, 或者, 各个 成员载波上的上下行配置有部分相同。
优选地, 由于成员载波上可能有其他邻频的 TDD 系统, 为符合邻 频载波间的要求, 保证各个系统的正常运行, 要求在成员载波的上下行 配置过程中, 每个成员载波的上下行配置与其邻频的上下行配置满足共 存要求, 即对该载波的上下行分配有一定的限制。 具体的共存要求和对 上下行配置的限制与现有的要求相同。 例如图 3和图 4描述。
如图 3所示, 由于运营商在频点 fl上部署了 TD-CDMA网络 (例如 上下行配置为 7:8), 同时在与 fl相邻的频点 f2上部署了 LTE-TDD系统 1 , 由于邻频共存的需要, 该 LTE-TDD系统 1的上下行配置需按照表 1 中的配置 6进行配置, 以避免邻频系统间干扰;
如图 4所示, 由于频点 f3上部署了 TD-SCDMA (例如上下行配置为 4: 3), 同时在与 f3相邻的频点 f4上部署了 LTE-TDD系统 2, 由于邻频 共存的需要, 该 LTE-TDD系统 2的上下行配置需按照表 1 中的配置 1 进行配置, 以避免邻频系统间干扰。
同时, 为保证 LTE-A系统能够为 LTE-A UE提供更高的系统带宽, 要求能够同时将多个载波分配给同一 LTE-A UE使用, 并且这多个载波 需要具有相同的上行或下行子帧, 因此, 在进行上下行时隙配置时, 需 要至少两个成员载波间存在至少一个相同的上行子帧和至少一个相同 的下行子帧, 以为 LTE-A UE提供足够的带宽进行数据传输。
进一步地, 为保证成员载波能够向下兼容 R8,要求至少一个成员载 波的配置符合 R8的上下行配置。
上述即为在成员载波进行上下行配置时需要满足的条件。 具体的, 在成员载波上下行配置过程中, 优选地, 可以按照下述方式进行:
判断小区内的载波聚合方式为连续聚合还是非连续聚合, 若是连续 聚合, 则为所有成员载波进行相同的上下行配置, 若是非连续聚合, 则 为每个成员载波分别进行上下行配置。
具体的, 当多个成员载波是连续聚合的情况, 由于各个载波邻频, 配置互不相同的上下行分配会导致相邻频带上上下行之间的互干扰, 因 此优选地配置成各个载波的上下行配置相同。 当然, 也可以配置成不同 的上下行配置, 这时, 需要考虑邻频的干扰问题。
当多个成员载波是非连续聚合的情况, 由于各个载波之间在频谱上 互不相邻, 因此可以配置成不同的上下行配置, 而不会存在前述的干扰 问题。 但是, 各个成员载波与其邻频载波间的上下行配置仍需要符合前 述的共存要求。
经过上述配置的各个成员载波, 可以全部成员载波均符合 R8的上 下行配置, 也可以其中的部分成员载波符合 R8的上下行配置, 具体每 个载波的所选择的上下行配置也可以是任意选择进行组合的, 只要满足 前述的邻频间共存要求等限制条件即可。
步骤 202, 将每个成员载波的上下行配置和与该成员载波聚合的其 他成员载波的上下行配置下发给接入相应成员载波的 LTE-A UE。
本步骤中, 具体下发上下行配置的方式可以为: 通过在每个载波上 的广播消息或该载波的高层信令通知接入相应载波的 UE。
下发与某载波 A 聚合的其他成员载波的上下行配置的方式也可以 有多种, 例如, 将与某载波 A聚合的每个其他成员载波的上下行配置依 次下发, 或者采用增量下发的方式。 所谓依次下发, 即首先通知 UE是 否与载波 A的上下行配置相同,再将与载波 A的上下行配置不同的那些 成员载波的上下行配置依次下发。 所谓增量下发, 即在其他成员载波与 载波 A的上下行配置不同时, 才下发其他成员载波的上下行配置, 否则 认为其他成员载波与载波 A的上下行配置相同。
优选地, 为保证向 R8的向下兼容, 还可以将每个成员载波的上下 行配置下发给接入相应载波的 LTE R8 UE,使 LTE R8 UE可以在 LTE-A 系统中发送和接收数据。这时,可以在任一载波 A上将成员载波 A和其 他成员载波的上下行配置利用不同的物理资源或逻辑资源下发, 例如, 使用不同的广播信道或封装在不同的数据包中下发, 从而使 LTE R8 UE 只接收本载波的上下行配置, 使 LTE-A UE能够接收本载波以及其他成 员载波的上下行配置。
至此, 本发明中基本的上下行配置方法流程结束。 与上述上下行配置方法相应的, 本发明还提供一种上下行配置的接 收方法。 在该接收方法中, 由 LTE-A UE进行上下行配置的接收, 具体 为: 将基站下发的各个载波的上下行配置以及与该载波聚合的其他载波 的上下行配置进行接收, 从而在后续进行数据传输过程中, 可以利用多 个载波聚合进行数据传输, 以提高系统数据传输带宽。 同时, 由于上述 本发明在进行上下行配置时, 还可以将每个载波的上下行配置通过相应 载波下发给接入该载波的 LTE R8 UE, 因此, 在 LTE R8 UE也能够接收 基站下发的该 LTE R8 UE所接入载波的上下行配置。 具体的,
对于接入每一 LTE TDD载波的 LTE R8 UE, 需要获知本载波的上 下行配置, 具体是通过该载波上发送的广播消息得知;
对于接入每一 LTE-TDD载波的 LTE-A UE, 需要获知与该载波聚 合提供更大传输带宽的其他载波的上的上下行配置, 具体获知方式可以 为:
A )通过本载波上的广播消息获知, 即每个载波除了广播本载波的 上下行配置信息外, 还广播其他聚合载波的上下行配置信息。 该广播消 息也可以采用增量方式发送, 即先分别通知各个载波上的上下行配置与 本载波是否相同, 而后仅广播与本载波配置不同的成员载波上的上下行 配置信息。
B )通过本载波上的高层信令获知, 例如建立 RRC连接时通知。 类 似地, 所述高层信令也可以采用增量方式通知, 即只有当其他载波与本 载波上下行配置不同时才通知具体的上下行配置信息, 否则仅指示对应 载波与本载波上下行配置相同。
通过上述方式即实现了 LTE-A 系统中的上下行配置以及接收, 这 样, 为给 LTE-A UE提供更大的系统带宽创造了条件。 在进行上述配置 后, 优选地, 由于存在更大带宽的需求, 当某 LTE-A UE需要在多个载 波上同时接收或发送数据时, 可以将该 LTE-A UE调度在聚合的多个成 员载波上同为上行或下行的子帧上。
例如, 若某一 LTE-A UE需要更大的下行带宽 (需要在多个载波上同 时接收数据), 则基站可以在聚合的多个载波中选择部分载波, 并将该
LTE-A UE调度在这些载波上同为下行的子帧上, 如图 5所示。
对于上行更大带宽的支持也采用类似的方法, 如图 6所示。
另夕卜,在实施本发明的过程中,还需要保证不同载波上的 LTE-TDD 系统之间保持精确同步, 具体包括无线帧对齐以及子帧对齐。
本发明实施例提出一种实现多载波聚合传输的装置, 该装置包括: 配置模块, 用于为小区内参与聚合的各个成员载波进行上下行配 置, 并保证至少两个成员载波间存在至少一个相同的上行子帧和至少一 个相同的下行子帧, 至少一个成员载波的配置符合 R8的上下行配置; 下发模块, 用于将任一成员载波的上下行配置和与所述任一成员载 波聚合的其他成员载波的上下行配置下发给接入相应成员载波的 LTE-A
UE。
所述配置模块包括: 判断小区内的载波聚合方式为连续聚合还是非 连续聚合, 若是连续聚合, 则为所有成员载波进行相同的上下行配置, 若是非连续聚合, 则为每个成员载波分别进行上下行配置。
所述下发模块通过广播消息下发所述任一成员载波的上下行配置 和与所述任一成员载波聚合的其他成员载波的上下行配置; 或者,
通过所述任一成员载波的高层信令下发所述任一成员载波的上下 行配置和与所述任一成员载波聚合的其他成员载波的上下行配置。
所述下发模块下发与所述任一成员载波聚合的其他成员载波的上 下行配置的方式为:
逐个下发与所述任一成员载波聚合的其他成员载波的上下行配置; 或者, 下发所述其他成员载波的上下行配置与所述任一成员载波的 上下行配置是否相同的信息、 以及与所述任一成员载波的上下行配置不 同的所述其他成员载波的上下行配置;
或者, 下发与所述任一成员载波的上下行配置不同的所述其他成员 载波的上下行配置。
本发明方案针对多载波聚合环境, 提出如下 CP配置方案: 预先在 发送端配置参与多载波聚合的各个成员载波与该成员载波配置的循环 前缀长度的对应关系表, 所述发送端为基站或用户设备。 在前述上下行 配置方案的基础上, 发送过程包括如下步骤:
发送端将各个成员载波的数据进行逆离散傅立叶变换得到各个成 员载波的 OFDM符号;
发送端根据所述预先配置的对应关系表, 在每个成员载波的时域上 分别插入循环前缀,所述循环前缀与该成员载波上预定数目的 OFDM符 号组成子帧。
在接收端配置与发送端相同的对应关系表, 若发送端为基站, 则所 述接收端为用户设备; 若发送端为用户设备, 则所述接收端为基站; 在 前述上下行配置的接收方案基础上, 接收方的处理包括如下步骤:
接收端根据所述预先配置的对应关系表, 对在各个成员载波上接收 的子帧进行去循环前缀操作, 得到各个成员载波上的 OFDM符号;
接收端对各个成员载波上的 OFDM符号进行离散傅立叶变换。
本发明提出的方案中, 在 LTE-A的载波聚合系统中, 多个载波上的 CP长度可以独立配置, 即不同载波的 CP长度可以配置为相同或不同。 并且,考虑到每个载波都需要提供 LTE R8 用户设备 ( UE )的接入可能, 因此具体的 CP配置沿用 R8规定的常规 CP和扩展 CP的基本参数, 如 表 2所示。 以两个载波聚合的 LTE-A系统为例, 如图 7所示, 载波 1和 载波 2进行多载波聚合, 以便为 LTE-A用户提供更大的传输带宽。 其中 载波 1配置为扩展 CP, 提供更大的覆盖范围。 载波 2和载波 3为热点 地区提供更大的传输带宽, 为了降低系统开销, 配置为常规 CP。 其中 各个载波可以在频率上可以是相邻的, 也可以不相邻。 每个载波对应的 圓表示该载波的覆盖范围。
LTE R8 UE只能工作在某一载波上, 其采用的 CP类型与工作方式 与现有技术没有差别。
LTE-A UE能够在多个载波上同时收发数据, 因此其需要具有同时 处理常规 CP和扩展 CP数据的能力。如图 8或图 9所示,对于用户设备 进行上行数据发送, 首先对数据进行信道编码、 调制符号映射、 串并转 换; 接着将多个载波发送的数据进行逆离散傅立叶变换(IDFT )得到 OFDM符号, 而后根据具体数据与成员载波之间的对应关系在时域插入 常规 CP或扩展 CP; 最后进行数 /模 (D/A)转换, 调制到射频发射。 所述 多个载波发送的数据进行 IDFT,可以是如图 8所示的各载波统一的 IDFT 变换, 也可以是如图 9所示的各载波独立的 IDFT变换, 这两者的选择 取决于 LTE-A系统参数设计。基站发送下行数据同样要进行上述处理过 程, 只是将其中的上行数据替换为下行数据。
对于基站进行下行数据接收, 先将无线帧信号从射频变换到基带, 进行模 /数 ( A/D )转换, 而后根据预先配置的对应关系表中各个载波上 配置的 CP长度进行去 CP操作;接着进行串并转换,再进行离散傅立叶 变换(DFT )变换实现 OFDM符号的解调; 解调后的数据再依次经过并 串转换、 调制符号解映射和信道解码, 得到 LTE-AUE接收的信息比特。 所述 DFT变换可能是如图 3所示的各载波统一的 DFT变换也可能是如 图 9所示的各载波独立的 DFT变换, 这两者的选择取决于的 LTE-A系 统参数设计。 基站接收上行数据同样要进行上述处理过程, 只是将其中 的下行数据替换为上行数据。
以上所举示例的多载波聚合仅包括两个成员载波, 对于更多成员载 波进行多载波聚合的情形, 本领域技术人员依照上述示例筒单类比即可 得到, 故不在——赘述。
LTE-A UE需要获知系统内各个载波上的 CP长度配置才能配置成员 载波与 CP长度的对应关系表。 LTE-A UE获知并配置对应关系表的过程 :¾口下:
LTE-A UE通过小区搜索过程检测到参与多载波聚合的第一成员载 波的下行循环前缀类型;
LTE-A UE根据所述下行循环前缀类型接收所述第一成员载波的消 息, 从所述消息中获取所述第一成员载波的上行循环前缀配置信息, 以 及参与所述多载波聚合的其它成员载波的上行循环前缀配置信息和下 行循环前缀配置信息;
LTE-A UE根据获取的各个成员载波的上行循环前缀配置信息和下 行循环前缀配置信息配置成员载波与循环前缀配置信息的对应关系表。
本发明实施例提出了一种通过广播消息使 UE获知各个载波上 CP 长度配置的方法, 基站在各个小区的参与多载波聚合的每个成员载波 上, 下发包含本载波的上下行 CP长度配置, 以及参与该多载波聚合的 其它成员载波的上下行 CP长度配置的广播消息。 UE侧的处理过程如图 10所示, 包括如下步骤:
步骤 1001: UE通过小区搜索过程, 检测到某一载波上的下行 CP 类型, 可称该载波为临时主载波。 所述 UE检测下行 CP类型的具体做 法可以包括: UE进行小区搜索, 检测到某一载波上的同步信号, 根据 同步信号之间的时域位置关系检测出 CP类型。
步骤 1002: UE接收所述临时主载波上的广播消息,从所述广播消 息中获取临时主载波的上行 CP长度配置信息。
步骤 1003: UE从所述临时主载波上的广播消息中获取 LTE-A小区 内参与多载波聚合的其他各个成员载波上的 CP长度配置, 包括下行 CP 长度配置和上行 CP长度配置。
或者,基站在 LTE-A小区通过其他高层信令向 UE参与多载波聚合 的各个载波上的 CP长度配置, 包括下行和上行的 CP长度配置。该高层 信令可以是专用信令, 或者是特定控制流程的信令, 例如, 该高层信令 可以是无线资源控制 (RRC )信令。
在 LTE-A UE获知了各个成员载波的上下行 CP长度配置后, LTE-A UE和基站进行具体业务。
基站根据所述 LTE-A UE所要进行的业务, 可以基于一定的调度策 略, 将 UE调度到相应的载波上。 具体地说, 基站可以将对传输质量或 者覆盖要求较高的 UE (例如 VOIP用户)调度在长 CP载波上; 将覆盖需 求较小或对效率要求较高的 UE (例如高速数据传输用户 )调度在短 CP 载波上; 对于需要同时在所有载波上收发提供更高峰值速率的 UE, 基 站也需要具有同时处理各个载波上不同 CP长度的能力。
图 11 为本发明实施例提出的一种针对多载波聚合的循环前缀配置 装置框图, 该装置包括:
对应关系单元 1101 ,用于预先配置参与多载波聚合的各个成员载波 与该成员载波配置的循环前缀的对应关系表;
逆变换单元 1102,用于将各个成员载波的数据进行逆离散傅立叶变 换得到各个成员载波的正交频分复用 OFDM符号;
循环前缀配置单元 1103 , 根据所述对应关系单元 1101预先配置的 对应关系表, 在每个成员载波的时域上分别插入循环前缀, 所述循环前 缀与所述逆变换单元 1102得到的该成员载波上预定数目的 OFDM符号 组成子帧。
该装置进一步包括:
去除单元 1104, 用于根据所述对应关系单元 1101预先配置的对应 关系表, 对在各个成员载波上接收的子帧进行去循环前缀操作, 得到各 个成员载波上的 OFDM符号;
变换单元 1105, 用于对所述去除单元 1104得到的各个成员载波上 的 OFDM符号进行离散傅立叶变换。
较佳地, 所述逆变换单元 1102 包括超过一个的逆变换子单元, 每 个逆变换子单元分别对应一个成员载波, 用于对所对应的成员载波的数 据进行逆离散傅立叶变换。
较佳地, 所述变换单元 1105 包括超过一个的变换子单元, 每个变 换子单元分别对应一个成员载波,用于对所对应的成员载波的 OFDM符 号进行离散傅立叶变换。
由上述本发明的具体实现可见, 本发明解决了 LTE-A TDD系统不 同成员载波上的上下行配置问题, 在进行上下行配置时, 可以根据需要 将成员载波配置为符合 R8的上下行配置, 以实现向 R8的向下兼容, 或 者也可以采用其他合适的上下行配置, 以实现更好的传输性能。 并且, 本发明方案通过预先设置各个成员载波与该成员载波配置的循环前缀 的对应关系表, 并根据该对应关系表在每个成员载波的时域上分别插入 循环前缀, 从而实现了对多载波聚合的每个成员载波分别配置循环前 缀, 并且各个成员载波的循环前缀可以相同也可以不同。 本发明解决了 LTE-A载波聚合传输中各个载波上的 CP长度配置问题。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现多载波聚合传输的方法, 其特征在于, 该方法包括: 为小区内参与聚合的各个成员载波进行上下行配置, 并保证至少两 个成员载波间存在至少一个相同的上行子帧和至少一个相同的下行子 帧, 至少一个成员载波的配置符合 R8的上下行配置;
将任一成员载波的上下行配置和与所述任一成员载波聚合的其他 成员载波的上下行配置下发给接入相应成员载波的 LTE-A UE。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述为小区内参与 聚合的各个成员载波进行上下行配置为:
为聚合在一起的各个成员载波进行相同的上下行配置; 或者, 为聚合在一起的各个成员载波进行不同的上下行配置。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述为小区内参与 聚合的各个成员载波进行上下行配置为: 判断小区内的载波聚合方式为 连续聚合还是非连续聚合, 若是连续聚合, 则为所有成员载波进行相同 的上下行配置, 若是非连续聚合, 则为每个成员载波分别进行上下行配 置。
4、 根据权利要求 1 所述的方法, 其特征在于, 所述将任一成员载 波的上下行配置和与所述任一成员载波聚合的其他成员载波的上下行 配置下发给接入相应载波的 LTE-A UE包括:
通过广播消息下发所述任一成员载波的上下行配置和与所述任一 成员载波聚合的其他成员载波的上下行配置; 或者,
通过所述任一成员载波的高层信令下发所述任一成员载波的上下 行配置和与所述任一成员载波聚合的其他成员载波的上下行配置。
5、 根据权利要求 4所述的方法, 其特征在于, 下发与所述任一成 员载波聚合的其他成员载波的上下行配置的方式为:
逐个下发与所述任一成员载波聚合的其他成员载波的上下行配置; 或者, 下发所述其他成员载波的上下行配置与所述任一成员载波的 上下行配置是否相同的信息、 以及与所述任一成员载波的上下行配置不 同的所述其他成员载波的上下行配置;
或者, 下发与所述任一成员载波的上下行配置不同的所述其他成员 载波的上下行配置。
6、 根据权利要求 1、 4或 5所述的方法, 其特征在于, 在进行各个 成员载波的上下行配置后, 该方法进一步包括: 将任一成员载波的上下 行配置下发给接入相应成员载波的 LTE R8 UE。
7、 根据权利要求 1所述的方法, 其特征在于, 当 LTE-A UE需要在 多个载波上同时接收或发送数据时, 将所述 LTE-A UE调度在聚合的多 个成员载波上同为下行或上行的子帧上。
8、 根据权利要求 7所述的方法, 其特征在于, 预先在 LTE-A UE配 置参与多载波聚合的各个成员载波与该成员载波配置的循环前缀长度 的对应关系表, 所述将所述 LTE-A UE调度在聚合的多个成员载波上同 为下行或上行的子帧上的步骤包括:
LTE-A UE将各个成员载波的数据进行逆离散傅立叶变换得到各个 成员载波的正交频分复用 OFDM符号;
LTE-A UE根据所述预先配置的对应关系表, 在每个成员载波的时 域上分别插入循环前缀, 所述循环前缀与该成员载波上预定数目的 OFDM符号组成子帧。
9、 根据权利要求 8 所述的方法, 其特征在于, 任一成员载波配置 的循环前缀长度等于长期演进项目版本 8中规定的常规循环前缀长度或 扩展循环前缀长度。
10、 根据权利要求 8所述的方法, 其特征在于, 所述将各个成员载 波的数据进行逆离散傅立叶变换为: 对各个成员载波的数据分别进行逆 离散傅立叶变换, 或者, 对各个成员载波的数据统一进行逆离散傅立叶 变换。
11、根据权利要求 8、 9或 10所述的方法,其特征在于,所述 LTE-A UE配置所述对应关系表包括:
通过小区搜索过程检测到参与多载波聚合的第一成员载波的下行 循环前缀类型;
根据所述下行循环前缀类型接收所述第一成员载波的消息, 从所述 消息中获取所述第一成员载波的上行循环前缀配置信息, 以及参与所述 多载波聚合的其它成员载波的上行循环前缀配置信息和下行循环前缀 配置信息;
根据获取的各个成员载波的上行循环前缀配置信息和下行循环前 缀配置信息配置成员载波与循环前缀配置信息的对应关系表。
12、 根据权利要求 11所述的方法, 其特征在于, 所述 LTE-A UE从 所述消息中获取所述第一成员载波的上行循环前缀配置信息, 以及参与 所述多载波聚合的其它成员载波的上行循环前缀配置信息和下行循环 前缀配置信息的步骤之后, 进一步包括:
基站根据所述用户设备所要进行的业务, 基于调度策略将所述 LTE-A UE调度的相应的成员载波上。
13、 根据权利要求 12所述的方法, 其特征在于, 所述基站基于调 度策略将所述 LTE-A UE调度的相应的成员载波上包括:
基站判断所述业务要求的传输质量是否大于预定的传输质量阈值, 或覆盖范围是否大于预定覆盖范围阈值, 或者传输效率小于预定的效率 阈值, 若是, 则将 LTE-A UE调度在配置了扩展循环前缀的成员载波上; 否则, 将 LTE-A UE调度在配置了常规循环前缀的成员载波上。
14、 根据权利要求 13 所述的方法, 其特征在于, 所述基站基于调 度策略将所述 LTE-A UE调度的相应的成员载波上包括:
基站判断业务要求的数据量是否超过预定的数据量阈值, 若是则将 所述 LTE-A UE调度在多于一个的成员载波上工作。
15、 一种实现多载波聚合传输的方法, 其特征在于, 该方法包括: LTE-A UE在其接入载波上接收基站下发的该 LTE-A UE接入载波的上 下行配置和与该接入载波聚合的其他成员载波的上下行配置。
16、 根据权利要求 15 所述的方法, 其特征在于, 该方法进一步包 括: LTE UE在其接入载波上接收基站下发的该 LTE UE接入载波的上下 行配置。
17、 根据权利要求 16所述的方法, 其特征在于, 预先在各成员载 波上分别设置用于承载本载波上下行配置和与本载波聚合的其他载波 上下行配置信息的物理资源或逻辑资源;
所述 LTE-A UE在其接入载波上预设的所述用于承载该接入载波上 下行配置信息的物理资源或逻辑资源上提取该接入载波的上下行配置, 在其接入载波上预设的所述用于承载与该接入载波聚合的其他成员载 波上下行配置信息的物理资源或逻辑资源上提取与该接入载波聚合的 其他成员载波的上下行配置;
所述 LTE UE在其接入载波上预设的所述用于承载该接入载波上下 行配置信息的物理资源或逻辑资源上提取该接入载波的上下行配置。
18、 一种实现多载波聚合传输的装置, 其特征在于, 该装置包括: 配置模块, 用于为小区内参与聚合的各个成员载波进行上下行配 置, 并保证至少两个成员载波间存在至少一个相同的上行子帧和至少一 个相同的下行子帧, 至少一个成员载波的配置符合 R8的上下行配置; 下发模块, 用于将任一成员载波的上下行配置和与所述任一成员载 波聚合的其他成员载波的上下行配置下发给接入相应成员载波的 LTE-A UE。
19、 根据权利要求 18 所述的装置, 其特征在于, 所述配置模块包 括: 判断小区内的载波聚合方式为连续聚合还是非连续聚合, 若是连续 聚合, 则为所有成员载波进行相同的上下行配置, 若是非连续聚合, 则 为每个成员载波分别进行上下行配置。
20、 根据权利要求 18 所述的装置, 其特征在于, 所述下发模块通 过广播消息下发所述任一成员载波的上下行配置和与所述任一成员载 波聚合的其他成员载波的上下行配置; 或者,
通过所述任一成员载波的高层信令下发所述任一成员载波的上下 行配置和与所述任一成员载波聚合的其他成员载波的上下行配置。
21、 根据权利要求 20所述的装置, 其特征在于, 所述下发模块下 发与所述任一成员载波聚合的其他成员载波的上下行配置的方式为: 逐个下发与所述任一成员载波聚合的其他成员载波的上下行配置; 或者, 下发所述其他成员载波的上下行配置与所述任一成员载波的 上下行配置是否相同的信息、 以及与所述任一成员载波的上下行配置不 同的所述其他成员载波的上下行配置;
或者, 下发与所述任一成员载波的上下行配置不同的所述其他成员 载波的上下行配置。
22、 根据权利要求 18至 22任一项所述的装置, 其特征在于, 该装 置进一步包括:
对应关系单元, 用于预先配置参与多载波聚合的各个成员载波与该 成员载波配置的循环前缀的对应关系表;
逆变换单元, 用于将各个成员载波的数据进行逆离散傅立叶变换得 到各个成员载波的正交频分复用 OFDM符号;
循环前缀配置单元, 根据所述对应关系单元预先配置的对应关系 表, 在每个成员载波的时域上分别插入循环前缀, 所述循环前缀与所述 逆变换单元得到的该成员载波上预定数目的 OFDM符号组成子帧。
23、 根据权利要求 22所述的装置, 其特征在于, 该装置进一步包 括:
去除单元, 用于根据所述对应关系单元预先配置的对应关系表, 对 在各个成员载波上接收的子帧进行去循环前缀操作, 得到各个成员载波 上的 OFDM符号;
变换单元,用于对所述去除单元得到的各个成员载波上的 OFDM符 号进行离散傅立叶变换。
24、 根据权利要求 22所述的装置, 其特征在于, 所述逆变换单元 包括超过一个的逆变换子单元, 每个逆变换子单元分别对应一个成员载 波, 用于对所对应的成员载波的数据进行逆离散傅立叶变换。
25、 根据权利要求 23 所述的装置, 其特征在于, 所述变换单元包 括超过一个的变换子单元, 每个变换子单元分别对应一个成员载波, 用 于对所对应的成员载波的 OFDM符号进行离散傅立叶变换。
PCT/CN2009/074783 2008-11-04 2009-11-04 一种实现多载波聚合传输的方法和装置 WO2010051752A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117012941A KR101239865B1 (ko) 2008-11-04 2009-11-04 다중 반송파의 집적 전송을 실현하는 방법 및 장치
EP09824407.2A EP2355567B1 (en) 2008-11-04 2009-11-04 Method and device for enabling multi-carriers aggregation transmission
ES09824407.2T ES2587056T3 (es) 2008-11-04 2009-11-04 Método y dispositivo de transmisión con agregación de multiportadora
EP15202540.9A EP3032860B1 (en) 2008-11-04 2009-11-04 Method and device for enabling multi-carriers aggregation transmission
US13/127,539 US9137003B2 (en) 2008-11-04 2009-11-04 Method and device for enabling multi-carriers aggregation transmission

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810226037.0 2008-11-04
CN200810226038.5 2008-11-04
CN2008102260370A CN101741710B (zh) 2008-11-04 2008-11-04 一种tdd系统载波聚合的上下行配置和接收方法
CN 200810226038 CN101741798B (zh) 2008-11-04 2008-11-04 一种实现多载波聚合传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2010051752A1 true WO2010051752A1 (zh) 2010-05-14

Family

ID=42152496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074783 WO2010051752A1 (zh) 2008-11-04 2009-11-04 一种实现多载波聚合传输的方法和装置

Country Status (5)

Country Link
US (1) US9137003B2 (zh)
EP (2) EP3032860B1 (zh)
KR (1) KR101239865B1 (zh)
ES (1) ES2587056T3 (zh)
WO (1) WO2010051752A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469611A (zh) * 2010-11-17 2012-05-23 中兴通讯股份有限公司 一种上报终端载波聚合能力的方法、系统和终端
WO2012177042A2 (ko) * 2011-06-23 2012-12-27 (주)팬택 다중 요소 반송파를 이용하는 tdd시스템에서의 데이터 트래픽을 제어하는 방법 및 장치
CN102892199A (zh) * 2011-07-20 2013-01-23 中兴通讯股份有限公司 一种实现信号发送的方法和系统
WO2012142128A3 (en) * 2011-04-11 2013-05-16 Qualcomm Incorporated Csi reporting for multiple carriers with different system configurations
KR20140004657A (ko) * 2011-03-13 2014-01-13 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
EP2690808A2 (en) * 2011-03-25 2014-01-29 LG Electronics Inc. Method wherein a base station transmits and receives tdd configuration information regarding a plurality of ccs in a wireless communication system supporting a plurality of the ccs, and apparatus for same
KR20140035340A (ko) * 2011-03-11 2014-03-21 엘지전자 주식회사 Ack(acknowledgement)/nack(negative ack) 정보 수신방법 및 전송방법과, 사용자기기 및 기지국
EP2733883A1 (en) * 2011-07-11 2014-05-21 China Academy of Telecommunications Technology Data transmission method and device in carrier aggregation system
EP2658303A4 (en) * 2010-12-22 2016-08-24 Datang Mobile Comm Equip Co METHOD AND DEVICE FOR DATA TRANSMISSION BASED ON CARRIER AGGREGATION (CA) TECHNOLOGY
EP3518450A1 (en) * 2011-02-18 2019-07-31 Samsung Electronics Co., Ltd. Mobile communication system and channel transmission/reception method thereof
US11864218B1 (en) 2021-06-10 2024-01-02 T-Mobile Usa, Inc. 5G new radio uplink intermodulation distortion mitigation

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156164B1 (ko) * 2008-12-22 2012-06-18 한국전자통신연구원 주파수 집합 통신 환경에서의 단말 및 기지국, 이를 이용한호 접속 처리 방법
CN101925155A (zh) * 2009-06-11 2010-12-22 中兴通讯股份有限公司 载波聚合系统中的载波分配方法与装置
EP2337413A1 (en) * 2009-12-18 2011-06-22 Panasonic Corporation Implicit component carrier determination for aperiodic channel quality reports
JP5475891B2 (ja) 2009-12-18 2014-04-16 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート 複数個の端末と同時に通信する無線パケット通信システムにおけるデータ送/受信方法
CN102934389B (zh) 2010-04-08 2016-04-20 诺基亚通信公司 用于分量载波配置的方法和设备
US9160513B2 (en) 2011-07-28 2015-10-13 Qualcomm Incorporated Method and apparatus for signaling control data of aggregated carriers
CN104012017B (zh) * 2011-10-20 2017-11-21 Lg电子株式会社 在无线通信系统中发送控制信息的方法和装置
KR20130069284A (ko) * 2011-12-16 2013-06-26 주식회사 팬택 송수신 포인트, 송수신 포인트의 타이밍 설정 방법, 단말, 및 단말의 pdsch a/n 전송 방법
US9838194B2 (en) 2011-12-16 2017-12-05 Goldpeak Innovations Inc User equipment, PDSCH A/N transmitting method thereof, transmission/reception point, and PDSCH A/N receiving method thereof
US20130163501A1 (en) * 2011-12-22 2013-06-27 Qualcomm Incorporated Flexible cyclic prefix management
CN103096494B (zh) * 2012-01-20 2015-01-21 华为终端有限公司 基于跨载波调度的数据传输方法、用户设备和基站
US9112693B2 (en) 2012-03-16 2015-08-18 Sharp Laboratories Of America, Inc. Devices for sending and receiving hybrid automatic repeat request information for carrier aggregation
WO2013162261A1 (ko) 2012-04-23 2013-10-31 엘지전자 주식회사 반송파 집성 시스템에서 harq 수행 방법 및 장치
JP2013251860A (ja) * 2012-06-04 2013-12-12 Ntt Docomo Inc 通信制御方法、無線通信システム、無線基地局及びユーザ端末
US9634816B2 (en) * 2012-09-09 2017-04-25 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
KR101664876B1 (ko) * 2013-05-14 2016-10-12 삼성전자 주식회사 무선 통신 시스템에서 셀간 간섭 제어를 위한 간섭 측정 방법 및 장치
US9553652B2 (en) * 2014-02-07 2017-01-24 Mediatek Inc. Communications method and apparatus for carrier aggregation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917420A (zh) * 2005-08-17 2007-02-21 大唐移动通信设备有限公司 时分双工系统传输方法
CN1960210A (zh) * 2005-11-04 2007-05-09 上海原动力通信科技有限公司 降低不同帧结构的时分双工系统共存干扰的方法及应用
WO2007111431A1 (en) * 2006-03-29 2007-10-04 Posdata Co., Ltd. Apparatus for estimating and compensating carrier frequency offset and data receiving method in receiver of wireless communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848618B2 (en) * 2006-08-22 2014-09-30 Qualcomm Incorporated Semi-persistent scheduling for traffic spurts in wireless communication
US20080144612A1 (en) * 2006-12-13 2008-06-19 Nokia Corporation Flexible radio resource sharing in time and frequency domains among TDD communication systems
EP3554170A1 (en) * 2008-10-20 2019-10-16 InterDigital Patent Holdings, Inc. Carrier aggregation
CN101917420B (zh) 2010-08-04 2014-12-03 安徽天虹数码技术有限公司 工作网络行为防火墙的行为过滤方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917420A (zh) * 2005-08-17 2007-02-21 大唐移动通信设备有限公司 时分双工系统传输方法
CN1960210A (zh) * 2005-11-04 2007-05-09 上海原动力通信科技有限公司 降低不同帧结构的时分双工系统共存干扰的方法及应用
WO2007111431A1 (en) * 2006-03-29 2007-10-04 Posdata Co., Ltd. Apparatus for estimating and compensating carrier frequency offset and data receiving method in receiver of wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2355567A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469611A (zh) * 2010-11-17 2012-05-23 中兴通讯股份有限公司 一种上报终端载波聚合能力的方法、系统和终端
EP2658303A4 (en) * 2010-12-22 2016-08-24 Datang Mobile Comm Equip Co METHOD AND DEVICE FOR DATA TRANSMISSION BASED ON CARRIER AGGREGATION (CA) TECHNOLOGY
EP3518450A1 (en) * 2011-02-18 2019-07-31 Samsung Electronics Co., Ltd. Mobile communication system and channel transmission/reception method thereof
KR20140035340A (ko) * 2011-03-11 2014-03-21 엘지전자 주식회사 Ack(acknowledgement)/nack(negative ack) 정보 수신방법 및 전송방법과, 사용자기기 및 기지국
KR101958784B1 (ko) * 2011-03-11 2019-07-02 엘지전자 주식회사 하향링크 제어정보 수신방법 및 전송방법과, 사용자기기 및 기지국
KR101958785B1 (ko) 2011-03-11 2019-03-15 엘지전자 주식회사 Ack(acknowledgement)/nack(negative ack) 정보 수신방법 및 전송방법과, 사용자기기 및 기지국
KR20140045334A (ko) * 2011-03-11 2014-04-16 엘지전자 주식회사 하향링크 제어정보 수신방법 및 전송방법과, 사용자기기 및 기지국
EP2688239A4 (en) * 2011-03-13 2014-10-22 Lg Electronics Inc METHOD FOR TRANSMITTING / RECEIVING A SIGNAL AND DEVICE THEREFOR
US9743391B2 (en) 2011-03-13 2017-08-22 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
EP2688239A2 (en) * 2011-03-13 2014-01-22 LG Electronics Inc. Method for transmitting/receiving signal and device therefor
KR101911254B1 (ko) * 2011-03-13 2018-10-24 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
US10051612B2 (en) 2011-03-13 2018-08-14 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
US9480058B2 (en) 2011-03-13 2016-10-25 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
US9178682B2 (en) 2011-03-13 2015-11-03 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
KR20140004657A (ko) * 2011-03-13 2014-01-13 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
US9160516B2 (en) 2011-03-13 2015-10-13 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
US9160517B2 (en) 2011-03-13 2015-10-13 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
EP2690808A2 (en) * 2011-03-25 2014-01-29 LG Electronics Inc. Method wherein a base station transmits and receives tdd configuration information regarding a plurality of ccs in a wireless communication system supporting a plurality of the ccs, and apparatus for same
EP2690808A4 (en) * 2011-03-25 2014-09-10 Lg Electronics Inc METHOD IN WHICH A BASE STATION ISSUES AND RECEIVES TIME-DIVISION DUPLEX CONFIGURATION INFORMATION (TDD) ON A PLURALITY OF COMPONENT CARRIERS (CC) IN A WIRELESS COMMUNICATION SYSTEM SUPPORTING A PLURALITY OF DC, AND APPARATUS FOR ITS IMPLEMENTATION
US9191172B2 (en) 2011-03-25 2015-11-17 Lg Electronics Inc. Method wherein a base station transmits and receives TDD configuration information regarding a plurality of CCs in a wireless communication system supporting a plurality of the CCs, and apparatus for same
US9019850B2 (en) 2011-04-11 2015-04-28 Qualcomm Incorporated CSI reporting for multiple carriers with different system configurations
WO2012142128A3 (en) * 2011-04-11 2013-05-16 Qualcomm Incorporated Csi reporting for multiple carriers with different system configurations
US9236986B2 (en) 2011-06-23 2016-01-12 Pantech Co., Ltd. Method and apparatus for controlling data traffic in a TDD system that uses multi-component carriers
WO2012177042A3 (ko) * 2011-06-23 2013-03-28 (주)팬택 다중 요소 반송파를 이용하는 tdd시스템에서의 데이터 트래픽을 제어하는 방법 및 장치
WO2012177042A2 (ko) * 2011-06-23 2012-12-27 (주)팬택 다중 요소 반송파를 이용하는 tdd시스템에서의 데이터 트래픽을 제어하는 방법 및 장치
JP2014521260A (ja) * 2011-07-11 2014-08-25 電信科学技術研究院 キャリア・アグリゲーションシステムにおけるデータの伝送方法及び装置
EP2733883A4 (en) * 2011-07-11 2014-07-09 China Academy Of Telecomm Tech METHOD AND DEVICE FOR TRANSMITTING DATA IN A CARRIER AGGREGATION SYSTEM
EP2733883A1 (en) * 2011-07-11 2014-05-21 China Academy of Telecommunications Technology Data transmission method and device in carrier aggregation system
CN102892199B (zh) * 2011-07-20 2018-03-09 中兴通讯股份有限公司 一种实现信号发送的方法和系统
CN102892199A (zh) * 2011-07-20 2013-01-23 中兴通讯股份有限公司 一种实现信号发送的方法和系统
US11864218B1 (en) 2021-06-10 2024-01-02 T-Mobile Usa, Inc. 5G new radio uplink intermodulation distortion mitigation

Also Published As

Publication number Publication date
EP2355567B1 (en) 2016-05-18
KR20110088556A (ko) 2011-08-03
KR101239865B1 (ko) 2013-03-06
EP2355567A4 (en) 2014-05-07
EP3032860B1 (en) 2024-01-10
EP2355567A1 (en) 2011-08-10
ES2587056T3 (es) 2016-10-20
US20110261714A1 (en) 2011-10-27
EP3032860A1 (en) 2016-06-15
US9137003B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
WO2010051752A1 (zh) 一种实现多载波聚合传输的方法和装置
US11729753B2 (en) Framing, scheduling, and synchronization in wireless systems
JP6541762B2 (ja) 無線通信システムにおいて時分割複信フレーム構成情報送受信方法及び装置
JP6987905B2 (ja) 動的時分割複信システムのためのアップリンク制御リソース割り振り
US20220014322A1 (en) Downlink control channel in wireless systems
US10498513B2 (en) Methods for dynamic management of reference signals
US8964689B2 (en) Method and apparatus for operating multi-band and multi-cell
US20110261769A1 (en) Method and apparatus for controlling inter-cell interference of control channels in ofdm-based hierarchical cellular system
JP2017201829A (ja) 周波数領域分離を用いた適応tddのための干渉管理
TW201806349A (zh) 具單載頻域多存取(sc-fdma)及ofdma彈性參考訊號傳輸方法
WO2010121538A1 (zh) 一种用于多点协同传输的上行参考信号的配置方法和装置
WO2014172868A1 (zh) 传输信号的方法和设备
WO2008113301A1 (fr) Procédé et appareil de transmission destinés à une signalisation de commande de liaison montante dans un système ofdma par répartition dans le temps
JP2014529228A (ja) バックホール接続のキャリアをアグリゲートするための方法および装置
JP2013509047A (ja) 拡張された帯域幅におけるリソース割り当てのためのシステムおよび方法
WO2013079034A1 (zh) 下行数据发送、接收方法及基站与用户终端
US9509473B2 (en) Method and device for sending and receiving a reference signal
WO2012119368A1 (zh) 一种导频的发送方法及系统
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置
JP2018501733A (ja) 多数のキャリアを通してワイヤレス通信を管理するための技法
WO2014015699A1 (zh) 新载波参考信号发送、接收方法及装置
WO2010139155A1 (zh) 帧结构及其配置方法、通信方法
WO2014008814A1 (zh) 上行授权信息发送方法、授权信息指示方法及基站
JP4818413B2 (ja) 通信システム、その基地局及び通信方法
WO2008035716A1 (fr) Système de communication, sa station de base et procédé de communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117012941

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009824407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13127539

Country of ref document: US