WO2010050482A1 - 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法 - Google Patents

生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法 Download PDF

Info

Publication number
WO2010050482A1
WO2010050482A1 PCT/JP2009/068433 JP2009068433W WO2010050482A1 WO 2010050482 A1 WO2010050482 A1 WO 2010050482A1 JP 2009068433 W JP2009068433 W JP 2009068433W WO 2010050482 A1 WO2010050482 A1 WO 2010050482A1
Authority
WO
WIPO (PCT)
Prior art keywords
decomposition
acid
aliphatic polyester
enzyme
resin composition
Prior art date
Application number
PCT/JP2009/068433
Other languages
English (en)
French (fr)
Inventor
成志 吉川
傳喜 片山
小暮 正人
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to EP16157855.4A priority Critical patent/EP3042961B1/en
Priority to EP09823592.2A priority patent/EP2348122B1/en
Priority to US13/125,921 priority patent/US8501445B2/en
Priority to CN200980152955.6A priority patent/CN102264912B/zh
Priority to JP2009258658A priority patent/JP5445756B2/ja
Priority to JP2009258659A priority patent/JP2010138390A/ja
Publication of WO2010050482A1 publication Critical patent/WO2010050482A1/ja
Priority to US13/929,083 priority patent/US8846355B2/en
Priority to US14/490,727 priority patent/US9284432B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing oligomers and / or monomers by enzymatic degradation of a biodegradable resin, a method for efficiently decomposing an easily decomposable resin composition, and a decomposition solution.
  • biodegradable resin compositions such as biodegradable polylactic acid resin compositions have been proposed as packaging materials.
  • Degradation of packaging containers and the like using these biodegradable resin compositions generally takes place sequentially from the surface of the container, and it takes a considerable amount of time for the entire container to be completely decomposed.
  • Resin compositions have been developed. For example, an easily degradable resin composition having improved biodegradability by blending an aliphatic polyester that releases an acid by hydrolysis has been reported (Patent Document 3).
  • the biodegradable resin when the biodegradable resin is decomposed using an enzyme, the enzyme and the oligomer and / or monomer produced by the decomposition form aggregates, and it is finally difficult to recover the oligomer and / or monomer. Further, since the aggregate is not redissolved, the oligomer and / or monomer cannot be recovered.
  • the polylactic acid degeneration method that generates oligomers mainly composed of repolymerizable cyclics has a low moisture content in the reaction system, and the oligomers cannot be recovered in a high yield.
  • the present invention provides a method for efficiently producing oligomers and / or monomers without producing such aggregates, and the first is to provide a method capable of recovering oligomers and / or monomers. Objective. In addition, it was found that when an easily decomposable resin composition containing an aliphatic polyester that releases an acid by hydrolysis as described above is enzymatically decomposed in a decomposition solution, the decomposition rate decreases with the passage of time. Accordingly, a second object of the present invention is to provide a method for efficiently decomposing an easily decomposable resin composition containing an aliphatic polyester that releases an acid by hydrolysis.
  • a third object of the present invention is to provide a method for more efficiently decomposing an easily decomposable resin composition containing an aliphatic polyester that releases an acid by hydrolysis.
  • the present invention provides a method for producing an oligomer and / or monomer by decomposing a biodegradable resin in a decomposition solution containing a biodegradable enzyme, a buffering agent, an organic solvent and water.
  • the SP value of the organic solvent is less than 8.5 or more than 11.5, and the content (volume content) of the organic solvent in the decomposition solution is more than 1% and less than 15%.
  • the generation method is provided.
  • the present inventors decomposed the readily decomposable resin composition in the decomposition solution, so that the acid catalyst is released with time and the decomposition solution has a low pH.
  • Acid catalyst for the acid released from the easily decomposable resin composition although the degradation activity of the degradation enzyme is exhibited even when the pH of the degradation solution is raised while the conditions are not sufficient for the activity of the degradation enzyme.
  • the decomposition action by the acid Efficient degradation can be achieved by degrading the easily decomposable resin composition in an enzymatic degradation solution under a condition that maintains a pH at which both the degradation activity by the degradation enzyme and a degradation enzyme can be sufficiently exhibited simultaneously. It found to be a function, which resulted in the completion of the present invention.
  • the present invention relates to an aliphatic polyester (A) having biodegradability and an aliphatic polyester (B) that releases an acid by hydrolysis and has a faster decomposition rate than the aliphatic polyester (A).
  • a method for decomposing an easily decomposable resin composition comprising: (a) a step of specifying a maximum active pH value that maximizes the decomposition activity value when the aliphatic polyester (A) alone is decomposed by the hydrolase in a buffer solution; (b) determining an active pH range that gives a decomposition activity value of 30% or more of the decomposition activity value at the maximum activity pH value; and (c) a step of degrading the easily decomposable resin composition in an enzyme reaction solution containing a hydrolase and having a pH within the active pH range and less than 8.0. During the process, the pH of the enzyme reaction solution is maintained within the active pH range and less than 8.0, A decomposition method is provided.
  • the present inventors decomposed the readily decomposable resin composition in the decomposition solution, so that the acid catalyst is released with the passage of time and the decomposition solution has a low pH.
  • Acid catalyst for the acid released from the easily decomposable resin composition although the degradation activity of the degradation enzyme is exhibited even when the pH of the degradation solution is raised while the conditions are not sufficient for the activity of the degradation enzyme. It was confirmed that the effect of was not sufficiently obtained.
  • the inventors of the present application added an acid neutralizing agent that is incompatible with the degrading enzyme to the hydrolase for degrading the readily decomposable resin composition, thereby decomposing the acid.
  • the inventors have found that the pH is maintained so that both the degradation action by the degrading enzyme and the degrading enzyme can be fully exhibited at the same time, and as a result, efficient degradation becomes possible, and the present invention has been completed.
  • the present invention relates to an aliphatic polyester (A) having biodegradability and an aliphatic polyester (B) that releases an acid by hydrolysis and has a faster decomposition rate than the aliphatic polyester (A).
  • a decomposition solution for decomposing an easily decomposable resin composition which is a mixed solution of an enzyme reaction solution and an acid neutralizing agent incompatible with the enzyme reaction solution.
  • the acid neutralizer is calcium carbonate or chitosan, and / or A degradation solution is provided wherein the hydrolase is a protease, cutinase, cellulase or lipase.
  • a method for decomposing an easily decomposable resin composition comprising: decomposing the easily decomposable resin composition in an enzyme reaction solution containing a degrading enzyme and an acid neutralizer incompatible with the enzyme reaction solution And preferably 1.
  • the pH of the enzyme reaction solution during the enzyme reaction is maintained within the active pH range defined by the following steps (a) to (b) and less than 8.0: and / or (a ′) a step of specifying a maximum active pH value that maximizes the decomposition activity value when the aliphatic polyester (A) alone is decomposed in the buffer by the decomposing enzyme; (b ′) a step of determining an active pH range that gives a decomposition activity value of 30% or more of the decomposition activity value at the maximum activity pH value, and / or 2.
  • the acid released by the aliphatic polyester (B ′) is oxalic acid, maleic acid or glycolic acid, and / or Provided is a method in which an easily decomposable resin composition is obtained by dispersing polyoxalate or polyglycolic acid in a polylactic acid-based resin.
  • the degradation rate of the biodegradable resin is high, and the formation of aggregated precipitates during the degradation of the biodegradable resin is suppressed and the oligomer and / or is efficiently produced.
  • Monomers can be produced.
  • the obtained oligomer can be decomposed into monomers and can be repolymerized therefrom.
  • disassembly rate of an easily decomposable resin composition can be improved according to the decomposition
  • the method for producing the oligomer and / or monomer of the present invention comprises a biodegradable resin or a biodegradable resin in a decomposition solution containing a biodegradable enzyme, a buffer, an organic solvent and water.
  • the molded body containing the degradable resin is decomposed.
  • oligomer refers to a polymer in which monomers are bonded, for example, a dimer (dimer), a trimer (trimer), a tetramer (tetramer), and the like.
  • the oligomer and / or monomer may have a straight chain or a side chain.
  • the biodegradable resin may be any resin having biodegradability, and examples thereof include chemically synthesized resins, microbial resins, and natural product-based resins. Specific examples include aliphatic polyesters, polyvinyl alcohol (PVA), and celluloses. Examples of the aliphatic polyester include polylactic acid (PLA) resin and derivatives thereof, polybutylene succinate (PBS) resin and derivatives thereof, polycaprolactone (PCL), polyhydroxybutyrate (PHB) and derivatives thereof, polyethylene adipate (PEA) ), Polyglycolic acid (PGA), polytetramethylene adipate, condensates of diol and dicarboxylic acid, and the like.
  • celluloses examples include methyl cellulose, ethyl cellulose, and acetyl cellulose.
  • additives are plasticizers, heat stabilizers, light stabilizers, antioxidants, UV absorbers, flame retardants, colorants, pigments, fillers, inorganic fillers, mold release agents, antistatic agents, fragrances, lubricants. , Foaming agents, antibacterial / antifungal agents, nucleating agents and the like.
  • the polymer blended with the biodegradable resin include celluloses, chitin, glycogen, chitosan, polyamino acid, starch and the like.
  • the biodegradable resin preferably contains a decomposition accelerator.
  • a decomposition accelerator those skilled in the art can appropriately select and use an acid that can accelerate the decomposition of the biodegradable resin.
  • an acid having a pH of 4 or less when dissolved in water at a concentration of 0.005 g / ml such as an acid having a pH of 3 or less, an acid having a pH of 2 or less, such as a pH of 1.5 or less, and a pH of 1
  • An acid that releases an acid having a pH of 3 or less and a pH of 1.0 or less by hydrolysis can be used.
  • Specific examples include oxalic acid (pH 1.6), maleic acid, and glycolic acid (pH 2.5).
  • decomposition accelerators examples include polyethylene oxalate, poly (neopentyl) oxalate (PNOx), polyethylene maleate, and polyglycolic acid.
  • PNOx poly(neopentyl) oxalate
  • Preferred decomposition accelerators are polyethylene oxalate and polyglycolic acid. These may be a copolymer, a single use, or a combination of two or more.
  • Examples of other components that form a decomposition accelerator or a copolymer include ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, polyethylene glycol, and the like.
  • Dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid
  • glycolide, caprolactone, butyrolactone, valerolactone, polo Examples include lactones such as piolactone and undecalactone.
  • a polymer obtained by polymerizing oxalic acid as at least one monomer in a homopolymer, copolymer, or blend is referred to as polyoxalate.
  • the content of the decomposition accelerator contained in the biodegradable resin is preferably 1 to 30% by weight, more preferably 2 to 20% by weight in view of mechanical properties and processability.
  • the biodegradable resin is preferably a polylactic acid resin.
  • the polylactic acid resin is not particularly limited as long as it is a polyester resin obtained by polymerizing lactic acid, and may be a homopolymer, copolymer, blend polymer or the like of polylactic acid.
  • components that form a copolymer with polylactic acid include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol.
  • polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol.
  • Dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid; glycolic acid, L-lactic acid, D-lactic acid, hydroxypropionic acid , Hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, mandelic acid, hydroxybenzoic acid and other hydroxycarboxylic acids; glycolide, caprolactone, butyrolactone, valerolacto And lactones such as unopocalactone and unopocalactone.
  • the polymer to be blended examples include celluloses, chitin, glycogen, chitosan, polyamino acid, starch and the like.
  • the lactic acid used for the polymerization when polylactic acid is used may be either L-form or D-form, or a mixture of L-form and D-form.
  • the biodegradable resin is preferably an aliphatic polyester (A) having biodegradability and a fat having biodegradability that releases an acid by hydrolysis and has a faster decomposition rate than the aliphatic polyester (A). It is an easily decomposable resin composition containing a group polyester (B ′).
  • the molded body made of a biodegradable resin may be a molded body molded by a known molding method. Known molding methods include injection molding, extrusion molding, and sheet molding.
  • the layer structure of the obtained molded body is not limited to a single layer structure, and may be a multilayer structure.
  • the biodegradable enzyme contained in the decomposition solution is not particularly limited as long as it is a degrading enzyme that acts on the biodegradable polymer to be used. Furthermore, the enzyme may or may not be immobilized. Examples include lipase, protease, and cutinase. Moreover, microorganisms may be put in and the extracellular enzyme may be used, and the culture medium component and nutrient component which the microorganism requires may be added.
  • the amount of the biodegradable enzyme can be appropriately determined by those skilled in the art. For example, it can be determined corresponding to the biodegradable resin to be decomposed on the basis of the activity unit for each enzyme used.
  • Buffers contained in the decomposition solution include glycine-HCl buffer, phosphate buffer, Tris-HCl buffer, acetate buffer, citrate buffer, citrate-phosphate buffer, borate buffer, Examples include tartrate buffer, glycine-sodium hydroxide buffer, and the like. Further, it may be a solid neutralizing agent, and examples thereof include calcium carbonate, chitosan, and deprotonated ion exchange resin. The amount of the buffering agent can be appropriately determined by those skilled in the art. For example, a buffer solution having a salt concentration of 10 to 100 mM can be used.
  • the organic solvent contained in the decomposition solution must have a SP value (Hildebrand solubility parameter) of less than 8.5 or greater than 11.5.
  • SP value is 7.3
  • acetonitrile (11.7) ethanol (12.7)
  • the organic solvent preferably has an SP value of less than 8.5 or 11.6 or more. More preferably, the SP value is 8 or less or 12 or more. More preferably, the SP value is 7.5 or less or 12.5 or more.
  • the organic solvent is preferably ethanol.
  • the content (volume content) of the organic solvent in the decomposition solution is more than 1% and less than 15%.
  • the organic solvent content is 1.5% to 12%. More preferably, the content of the organic solvent is 2% to 10%. More preferably, the content of the organic solvent is 4% to 10%.
  • the content (volume content) of the organic solvent is 1% or less, aggregated precipitates are generated in the decomposition solution and the recovery rate of the oligomer or monomer is reduced.
  • the content is 15% or more, the decomposition rate of the biodegradable resin is reduced. This is not preferable.
  • the water content (volume content) in the decomposition solution is 50% or more. Preferably, it is 80 to 99%.
  • the temperature at which the biodegradable resin is decomposed in the decomposition solution may be any temperature at which the enzyme exhibits decomposition activity. More preferably, it is 0 ° C to 100 ° C. More preferably, it is 20 ° C to 70 ° C.
  • the temperature can be set in consideration of temperature conditions that exert the action of the decomposition accelerator. In that case, for example, (glass transition temperature of decomposition accelerator—5 ° C.) ⁇ Decomposition temperature ⁇ upper limit of temperature showing enzyme activity can be used as a reference.
  • the time for degrading the biodegradable resin (2 cm ⁇ 2 cm, thickness 100 ⁇ m) in the decomposition solution is preferably 1 to 10 days. More preferably, it is 1 day to 7 days. More preferably, it is within 4 days.
  • the stirring conditions of the decomposition solution are not particularly limited, and it is sufficient that the decomposition solution is uniformly stirred.
  • the easily decomposable resin composition includes an aliphatic polyester (A) having biodegradability, an acid released by hydrolysis, and an aliphatic group. And an easily decomposable resin composition described in International Publication No. 2008-0386648, for example, including an aliphatic polyester (B ′) having biodegradability faster than the polyester (A).
  • the biodegradable aliphatic polyester (A) include polylactic acid resin, polybutylene succinate, polycaprolactone, polyhydroxybutyrate, polybutylene succinate-adipate copolymer, and a copolymer of the above aliphatic polyester.
  • a copolymer of an aromatic polyester such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate with the above aliphatic polyester.
  • component forming the aliphatic polyester (A) copolymer examples include ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol.
  • Polyhydric alcohols such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid and the like; glycolic acid, L-lactic acid, D- Hydroxycarboxylic acids such as lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, mandelic acid, hydroxybenzoic acid; glycolide, caprolactone, butyrolol Examples include lactones such as kuton, valerolactone, poropiolactone, and undecalactone.
  • polymer to be blended examples include celluloses, chitin, glycogen, chitosan, polyamino acid, starch and the like.
  • the lactic acid used for the polymerization when polylactic acid is used may be either L-form or D-form, or a mixture of L-form and D-form.
  • Preferred examples of the aliphatic polyester (A) having biodegradability include polylactic acid resins and polybutylene succinate.
  • the molecular weight of the biodegradable aliphatic polyester (A) is not particularly limited, but a machine for producing a container or the like using an easily decomposable resin composition containing the aliphatic polyester (A). In view of mechanical properties and processability, the weight average molecular weight is preferably in the range of 5,000 to 1,000,000, more preferably in the range of 10,000 to 500,000.
  • the aliphatic polyester (B ′) has a biodegradability that releases an acid by hydrolysis and has a faster decomposition rate than the aliphatic polyester (A).
  • the term "having biodegradability with a high degradation rate” means that the amount of degradation product (degradation rate) eluted per day when a single resin is enzymatically degraded in an aqueous solution is an aliphatic polyester. Compared to (A), it means more (faster), preferably the amount of decomposition product (decomposition rate) is more than twice.
  • the aliphatic polyester (B ′) having biodegradability faster than the aliphatic polyester (A) is referred to as “easily degradable aliphatic polyester (B ′)”.
  • the acid to be released is not particularly limited as long as it satisfies the above conditions.
  • An acid having a pH of 2 or less for example, an acid that releases an acid having a pH of 1.5 or less, a pH of 1.3 or less, and a pH of 1.0 or less by hydrolysis can be used.
  • oxalic acid pH 1.6
  • maleic acid maleic anhydride
  • glycolic acid pH 2.5
  • oxalic acid maleic acid
  • glycolic acid glycolic acid
  • oxalic acid, maleic acid and glycolic acid are preferred.
  • the aliphatic polyester (B ′) not only elutes the acid during hydrolysis and causes cracking in the aliphatic polyester (A), but also the inner part of the aliphatic polyester (A) by elution of the aliphatic polyester (B ′) itself. Can generate voids. As a result, more enzyme action points can be generated inside the aliphatic polyester (A), and the degradation rate can be further increased.
  • Examples of the easily decomposable aliphatic polyester (B ′) include polyethylene oxalate, poly (neopentyl) oxalate (PNOx), polyethylene maleate, polyglycolic acid, and the like. These are copolymers and used alone. Two or more types may be used in combination.
  • components that form the copolymer include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol; succinic acid , Adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid and other dicarboxylic acids; glycolic acid, L-lactic acid, D-lactic acid, hydroxypropionic acid, hydroxybutyric acid , Hydroxycarboxylic acids such as hydroxyvaleric acid, hydroxycaproic acid, mandelic acid, hydroxybenzoic acid; glycolide, caprolactone, butyrolactone,
  • polyoxalate a polymer obtained by polymerizing oxalic acid as at least one monomer in a homopolymer, copolymer, or blend is referred to as polyoxalate.
  • preferred decomposition accelerators are polyoxalate and polyglycolic acid.
  • the easily decomposable aliphatic polyester (B ′) is preferably present dispersed in the aliphatic polyester (A). Enzyme can enter and act in the voids where the readily degradable aliphatic polyester (B ′) is decomposed and eluted in water, and the easily decomposable resin composition not only from the surface of the easily decomposable resin composition but also from the inside. This will increase the speed of decomposition.
  • Examples of such an easily decomposable resin composition include an easily decomposable resin composition obtained by dispersing polyoxalate or polyglycolic acid in a polylactic acid resin.
  • the easily decomposable aliphatic polyester (B ′) is present uniformly and finely dispersed in the aliphatic polyester (A).
  • one or more monomer components of the aliphatic polyester (A) may be polymerized with the easily decomposable aliphatic polyester (B ′).
  • the easily decomposable aliphatic polyester (B ′) has a high polarity, that is, has a high affinity for water. Since such a readily degradable aliphatic polyester (B ′) has a high hydrolysis rate, a large number of pores are quickly generated inside the aliphatic polyester (A), and the active area of the enzyme is increased. The decomposition rate of the aliphatic polyester (A) is also increased.
  • Polarity can use SP value (solubility parameter) calculated from Fedors method (Polym.Eng.Sci., 14,147-154 (1974)) as an index, and the SP value is, for example, 22.0 or more. It may be 23.0 or more and 24.0 or more, and is preferably 25.0 or more.
  • the content of the easily decomposable aliphatic polyester (B ′) in the easily decomposable resin composition to be decomposed by the method of the present invention is the same as the easily decomposable resin composition containing the easily decomposable aliphatic polyester (B ′).
  • it is preferably 1 to 30% by weight, more preferably 2 to 20% by weight.
  • the easily decomposable resin composition decomposed by the method of the present invention is obtained by uniformly mixing biodegradable aliphatic polyester (A) and easily decomposable aliphatic polyester (B ′) by a conventional method.
  • the biodegradable aliphatic polyester (A) and the easily degradable aliphatic polyester (B ′) are simultaneously fed to a uniaxial or biaxial extrusion kneader, melt-mixed, and then pelletized.
  • the easily decomposable resin composition of the present invention can be produced.
  • the melt extrusion temperature is appropriately set by those skilled in the art in consideration of the glass transition temperature, melting point, mixing ratio, etc. of the biodegradable aliphatic polyester (A) and easily degradable aliphatic polyester (B ′) to be used. Generally, it is 100 to 250 ° C.
  • plasticizers heat stabilizers, light stabilizers, antioxidants, ultraviolet absorbers, flame retardants, colorants, pigments may be used as necessary.
  • Additives such as fillers, fillers, mold release agents, antistatic agents, fragrances, lubricants, foaming agents, antibacterial / antifungal agents, and nucleating agents may be blended.
  • water-soluble resins such as polyethylene glycol and polyvinyl alcohol
  • water-soluble resins such as polyethylene glycol and polyvinyl alcohol
  • a copolymer of the aliphatic polyester (A) having biodegradability and the easily degradable aliphatic polyester (B ′) is blended. Also good.
  • a known molding method can be used for producing a container using the easily decomposable resin composition that is decomposed by the method of the present invention.
  • a multilayer film, a multilayer sheet, a multilayer parison, a multilayer pipe, or the like can be formed by performing extrusion molding using a multilayer multiple die using the number of extruders corresponding to the type of resin.
  • a multilayer preform for bottle molding can be manufactured by co-injection molding such as a simultaneous injection method or a sequential injection method using the number of injection molding machines corresponding to the type of resin.
  • Packaging materials such as films can be used as pouches in various forms and as lid materials for tray cups.
  • the pouch include three- or four-side sealed flat pouches, gusseted pouches, standing pouches, pillow packaging bags, and the like.
  • Bag making can be performed by a known bag making method.
  • a cup or tray-shaped packaging container can be obtained by subjecting the film or sheet to means such as vacuum forming, pressure forming, bulging forming, or plug assist forming.
  • an extrusion coating method or sandwich lamination can be used.
  • the single layer and multilayer film which were formed previously can also be laminated
  • the method include, but are not limited to, a method in which two layers of an easily decomposable resin composition / polylactic acid (sealant) are extrusion-coated on a film via an anchor agent.
  • a parison, a pipe, or a preform is pinched off by a pair of split molds, and a bottle or a tube can be easily formed by blowing a fluid into the inside.
  • a pipe and a preform After cooling a pipe and a preform, it is heated to a stretching temperature, stretched in the axial direction, and blow stretched in the circumferential direction by fluid pressure to obtain a stretch blow bottle or the like.
  • the hydrolase used in the present invention is not particularly limited as long as it generally decomposes a biodegradable resin, and those skilled in the art can use any hydrolase.
  • hydrolases include protease, cellulase, cutinase, lipase and the like.
  • protease K manufactured by Wako Pure Chemical Industries, Ltd.
  • lipase CS2 from the independent alcoholic beverage research institute.
  • the amount of the hydrolyzable enzyme can be appropriately determined by those skilled in the art. For example, it can be determined according to the readily decomposable resin to be decomposed on the basis of the activity unit for each enzyme used.
  • the buffer used in the present invention is not particularly limited as long as it is generally used for the purpose of stabilizing the pH.
  • Such buffers include glycine-HCl buffer, phosphate buffer, Tris-HCl buffer, acetate buffer, citrate buffer, citrate-phosphate buffer, borate buffer, tartrate buffer, Examples thereof include glycine-sodium hydroxide buffer.
  • a solid neutralizing agent may be used, and examples thereof include calcium carbonate, chitosan, and deprotonated ion exchange resin.
  • the concentration of the buffer can be appropriately determined by those skilled in the art. For example, a buffer having a salt concentration of 10 to 100 mM can be used.
  • step (a) of the present invention when the simple substance of the aliphatic polyester (A) is decomposed by a hydrolase in a buffer solution, a maximum active pH value that maximizes the decomposition activity value is specified.
  • the simple substance of the aliphatic polyester (A) consists of the aliphatic polyester (A) alone, which is a component of the above-described easily decomposable resin composition, and preferably has the same shape as the easily decomposable resin composition to be decomposed. Is used. Other conditions such as the amount of decomposition solution, temperature and the like can be appropriately set by those skilled in the art, but are preferably set the same as in step (c) described later.
  • a decomposition experiment of a single enzyme of aliphatic polyester (A) is performed a plurality of times using buffers having different pH values, and the hydrolytic enzyme decomposition activity that decomposes the single monomer of aliphatic polyester (A)
  • the maximum active pH value at which the value is maximized is identified.
  • the degradation activity value can be determined, for example, based on the degradation amount of the aliphatic polyester (A) after a certain time, but may be changed according to the mode of degradation of the easily decomposable resin composition.
  • the number of set values of the pH of the buffer solution and the interval between the pH values can be determined by those skilled in the art as values necessary for specifying the optimum pH for the decomposition.
  • the pH of each pH buffer used in this step does not need to cover the entire pH range, and the intervals do not need to be uniform, and those skilled in the art are usually based on the approximate peak of the expected degradation activity value. Can be set to an appropriate distribution.
  • step (b) of the present invention a pH range that gives a decomposition activity value of 30% or more of the decomposition activity value at the maximum activity pH value is determined.
  • the enzyme activity has an optimum pH depending on the type of enzyme, reaction conditions, and the like, and shows a mountain-shaped activity with the optimum pH as a peak. Therefore, in the step (a), an activity showing 30% or more of the degradation activity value of the maximum activity pH value specified in the step (a) is created by creating a graph of the activity of the degrading enzyme according to the change in pH.
  • the pH range can be easily determined.
  • the decomposition activity value in the present invention does not need to be strictly divided, and is a value necessary to decompose the easily decomposable resin composition to a desired degree according to the absolute value of the decomposition activity value or the distribution of the decomposition activity. Can be determined by a person skilled in the art with a certain width.
  • the easily decomposable resin composition (that is, a resin composition containing both the aliphatic polyester (A) and the aliphatic polyester (B ′)) contains a hydrolase, and In the enzyme reaction solution whose pH is within the active pH range and less than 8.0, wherein during the decomposition step, the pH of the enzyme reaction solution is within the active pH range and 8 Maintained below 0.0.
  • the pH of the enzyme reaction solution is within the active pH range and 8 Maintained below 0.0.
  • the pH value of the enzyme reaction solution is maintained at the above pH condition. That is, not only the pH at the start of the reaction immediately after placing the readily decomposable resin composition in the enzyme reaction solution, but also throughout this process, that is, the easily decomposable resin composition is decomposed to a desired level.
  • the pH is within the above pH range for the time required for. However, it does not allow the pH to deviate from the above pH range for a short time, so that the pH value falls within the above range to the extent that the time required for the decomposition of the easily decomposable resin composition can be secured. It only needs to be managed.
  • the method for maintaining the pH within the active pH range and less than 8.0 is not particularly limited, and can be performed by a person skilled in the art by any method.
  • the enzyme decomposition solution is exchanged after a predetermined time, for example, 2 days or 3 days, the concentration of the buffer solution is adjusted within a range not affecting the activity of the decomposition enzyme, or a neutralizing agent such as calcium carbonate is added to the enzyme. It can carry out by adding in a decomposition solution.
  • the aliphatic polyester (A) having biodegradability, the acid is released by hydrolysis, and the aliphatic polyester (A) Mixing a degradable resin composition containing a biodegradable aliphatic polyester (B ′) having a faster degradation rate with a degrading enzyme and an acid neutralizing agent incompatible with the enzyme reaction solution
  • a degradable resin composition containing a biodegradable aliphatic polyester (B ′) having a faster degradation rate with a degrading enzyme and an acid neutralizing agent incompatible with the enzyme reaction solution By decomposing in the liquid, the decomposition rate of the easily decomposable resin composition was improved, and it was possible to efficiently decompose in a short time.
  • the surface of the easily decomposable resin composition is decomposed by enzymatic decomposition, and the inside is decomposed by an acid such as oxalic acid released by hydrolysis.
  • acids such as oxalic acid and lactic acid eluted to the outside from the easily decomposable resin composition are neutralized by the acid neutralizing agent, and further, the acid neutralizing agent does not enter the inside of the easily decomposable resin composition. This is presumably because the initial decomposition rate is extremely high because the acid-based decomposition is not inhibited.
  • the decomposition method of the present invention using an acid neutralizing agent that is incompatible with an enzyme reaction solution includes the above-described easily decomposable resin composition, a degrading enzyme, and an acid neutralizing agent that is incompatible with the enzyme reaction solution. It is characterized by decomposing in an enzyme reaction solution.
  • the decomposing enzyme used in the decomposing method of the present invention using an acid neutralizing agent incompatible with the enzyme reaction solution is not particularly limited as long as it generally decomposes a biodegradable resin. Any can be used. Examples of such enzymes include protease, cellulase, cutinase, lipase and the like. For example, it is possible to use protease K manufactured by Wako Pure Chemical Industries, Ltd.
  • the amount of enzyme added to the enzyme reaction solution can be appropriately determined by those skilled in the art based on the type of enzyme, the amount of film, etc., and is not particularly limited.
  • Tritirachium album derived Proteinase K In the case of using a powder produced by Kojun Pharmaceutical Co., Ltd., it can be used in an amount of 1 to 10 ⁇ g, preferably 5 to 8 ⁇ g, per 1 mg of biodegradable resin to be decomposed.
  • an acid neutralizer that is incompatible with an enzyme reaction solution is a liquid neutralizer and easily and completely dissolved in the enzyme reaction solution under the conditions normally used for the enzyme reaction in the liquid. It means all acid neutralizing agents excluding such solid and semi-solid neutralizing agents, and is not particularly limited. Such neutralizing agents are known to those skilled in the art and include, for example, calcium carbonate, chitosan, cation exchange resin, and the like. Of these, calcium carbonate or chitosan is preferred in the present invention.
  • the solubility of the acid neutralizing agent used in the present invention varies depending on the composition of the enzyme reaction solution, the temperature, etc., but the acid neutralization is particularly effective if the pH can be stably maintained within the enzyme activity pH range under the test conditions.
  • the type of agent there is no limit to the type of agent.
  • the amount of the neutralizing agent can be appropriately determined by those skilled in the art and is not particularly limited.
  • the film weight of the biodegradable resin to be decomposed is 0.2 to 2 times, preferably 0.5 to 1.5 times. It can be.
  • the eluted acid component is an aliphatic polyester (A) such as polylactic acid. It is considered that the surface area on which the enzyme acts is increased by causing a large number of cracks inside the aliphatic polyester (A) by hydrolysis, and as a result, the decomposition is accelerated. In order not to neutralize the acting acid, it is preferable that the neutralizing agent does not enter the crack.
  • the neutralizing agent does not inhibit the action of an acid that decomposes the easily decomposable resin inside the easily decomposable resin, while the easily decomposable resin is made of aliphatic polyester (B ′).
  • the pH of the enzyme reaction solution can be prevented from being lowered by neutralizing the acid to form a salt, and the activity of the degrading enzyme can be maximized.
  • the above condition can be achieved by adjusting the particle size of the neutralizing agent to a certain value or more in relation to the size of the crack.
  • the aliphatic polyester (B ′) is decomposed. Is about 10 ⁇ m, the particle size of the neutralizing agent is preferably 10 ⁇ m or more.
  • the pH of the enzyme reaction solution during the enzyme reaction is the following steps (a ′) to (b ′): (a ′) a step of specifying a maximum active pH value that maximizes the decomposition activity value when the aliphatic polyester (A) alone is decomposed in the buffer by the decomposing enzyme; (b ′) determining an active pH range that gives a decomposition activity value of 30% or more of the decomposition activity value at the maximum activity pH value; Is maintained within the active pH range defined by and below 8.0.
  • step (a) when the aliphatic polyester (A) alone is decomposed by a hydrolase in a buffer solution, a maximum active pH value is specified that maximizes the decomposition activity value.
  • the simple substance of the aliphatic polyester (A) consists of the aliphatic polyester (A) alone, which is a component of the above-described easily decomposable resin composition, and preferably has the same shape as the easily decomposable resin composition to be decomposed. Is used. Other conditions such as the amount of decomposition liquid and temperature can be appropriately set by those skilled in the art, but are preferably set the same as when the easily decomposable resin composition is decomposed.
  • the buffer used in the present invention is not particularly limited as long as it is generally used for the purpose of stabilizing the pH.
  • Such buffers include glycine-HCl buffer, phosphate buffer, Tris-HCl buffer, acetate buffer, citrate buffer, citrate-phosphate buffer, borate buffer, tartrate buffer, Examples thereof include glycine-sodium hydroxide buffer.
  • the decomposition experiment of the single unit of the aliphatic polyester (A) is performed a plurality of times using buffers having different pH values, and the decomposition activity value of the decomposing enzyme that decomposes the single unit of the aliphatic polyester (A).
  • the degradation activity value can be determined, for example, based on the degradation amount of the aliphatic polyester (A) after a certain time, but may be changed according to the mode of degradation of the easily decomposable resin composition.
  • the number of set values of the pH of the buffer solution and the interval between the pH values can be determined by those skilled in the art as values necessary for specifying the optimum pH for the decomposition.
  • the pH of each pH buffer used in this step does not need to cover the entire pH range, and the intervals do not need to be uniform, and those skilled in the art are usually based on the approximate peak of the expected degradation activity value. Can be set to an appropriate distribution.
  • step (b ′) a pH range that gives a degradation activity value of 30% or more of the degradation activity value at the maximum activity pH value is determined.
  • the enzyme activity has an optimum pH depending on the type of enzyme, reaction conditions, and the like, and shows a mountain-shaped activity with the optimum pH as a peak. Therefore, in step (a ′), the activity of 30% or more of the degradation activity value of the maximum activity pH value specified in step (a ′) is created by creating a graph of the activity of the degradation enzyme according to the change in pH.
  • the active pH range shown can be easily determined.
  • the decomposition activity value in the present invention does not need to be strictly divided, and is a value necessary to decompose the easily decomposable resin composition to a desired degree according to the absolute value of the decomposition activity value or the distribution of the decomposition activity. Can be determined by a person skilled in the art with a certain width.
  • an enzyme reaction solution for decomposing an easily decomposable resin composition (that is, a resin composition containing both aliphatic polyester (A) and aliphatic polyester (B ′)) is used as an enzyme. It is possible to adjust the pH to a certain range by adding an incompatible acid neutralizing agent to the reaction solution, where the pH is the active pH determined by the steps (a ′) to (b ′). By making it within the range, the action of hydrolase can be sufficiently obtained, and at the same time, the pH at which the aliphatic polyester (B ′) released by hydrolysis is released by hydrolysis can be reduced by making the pH less than 8.0. It is possible to sufficiently obtain a decomposition action by an acid of 2.0 or less, and the decomposition action by both of these acids and decomposing enzymes can improve the decomposition rate of the easily decomposable resin composition.
  • the pH of the enzyme reaction solution during the enzyme reaction is maintained at the above pH condition, and more specifically, the pH at the start of the reaction immediately after the readily decomposable resin composition is placed in the enzyme reaction solution.
  • the pH is maintained within the above pH range.
  • it does not allow the pH to deviate from the above pH range for a short time, so that the pH value falls within the above range to the extent that the time required for the decomposition of the easily decomposable resin composition can be secured. It only needs to be managed.
  • the temperature at which the easily decomposable resin is decomposed in the decomposition solution may be any temperature at which the acid released by the enzyme and the easily decomposable aliphatic polyester (B ′) exhibits the decomposition activity. More preferably, it is 0 ° C to 100 ° C. More preferably, it is 20 ° C to 70 ° C. More specifically, the decomposition temperature can be based on, for example, (glass transition temperature of readily degradable aliphatic polyester (B ′) ⁇ 5 ° C.) ⁇ Decomposition temperature ⁇ upper limit of temperature showing enzyme activity>. .
  • the easily decomposable aliphatic polyester (B ′) when polyethylene oxalate is used as the easily decomposable aliphatic polyester (B ′), it is possible to accelerate the decomposition under a temperature condition of, for example, 37 ° C., and when polyglycolic acid is used, for example, Decomposition can be accelerated by setting the temperature to 45 ° C. According to the decomposition method of the present invention, the decomposition rate of the easily decomposable resin composition can be improved by the decomposition action of both the acid and the decomposing enzyme in the decomposition solution. Examples of the present invention will be described below, but the present invention is not limited thereto.
  • Examples A-1 to A-12 and Comparative Examples A-1 to A-17 were performed as follows.
  • ProK ProteinaseK
  • 20 mg of proteinase K powder derived from Tritirachium album was dissolved in 1 ml of 0.05 M Tris-HCl buffer (pH 8.0) containing 50 w / w% glycerin to prepare a proK (Proteinase K) enzyme solution.
  • CLE enzyme solution A Cryptococcus sp. S-2-derived lipase CS2 (Japanese Patent Laid-Open No. 2004-73123, provided by the National Research Institute for Liquors) showing a lipase activity of 653 U / mL was used. The lipase activity was measured using paranitrophenyl laurate as a substrate. Here, 1 U of lipase activity is defined as the amount of enzyme when 1 ⁇ mol / min of paranitrophenol is released from paranitrophenyl laurate.
  • the glass transition temperature (Tg) was measured using DSC 6220 (differential scanning calorimetry) manufactured by Seiko Instruments Inc. Measurement conditions were from 0 to 200 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere. The samples were PEOx and PEOx20 described later, and the sample amount was 5 to 10 mg.
  • the mixture was stirred at an internal temperature of 150 ° C. under a reduced pressure of 0.1 to 0.5 mmHg for 1 hour. After reacting at an internal temperature of 170 ° C. to 190 ° C. for 7 hours, the viscosity increased and the product was taken out.
  • the ⁇ inh of the composite was 0.12.
  • HLC-8120 manufactured by Tosoh Corporation was used, TSKgel SuperHM-H ⁇ 2 was used as a column, and TSKguard column SuperH-H was used as a guard column.
  • the temperature of the column oven was 40 ° C.
  • chloroform was used as the eluent, and the flow rate was 0.5 ml / min.
  • the sample injection volume was 15 ⁇ l.
  • the standard used was chloroform dissolved in chloroform.
  • chloroform was used as a solvent to a concentration of 5 mg / ml, and filtered.
  • Oxalic acid which is a monomer, has a pH of 1.6 at a concentration of 0.005 g / ml, and PEOx elutes oxalic acid or an oxalic acid oligomer by hydrolysis in an aqueous solution.
  • PEOx elutes oxalic acid or an oxalic acid oligomer by hydrolysis in an aqueous solution.
  • PBS biodegradable resin
  • PBS Polybutylene succinate
  • Absorbance measurement (turbidity measurement)
  • Absorbance of the decomposed solution obtained by decomposing the film was measured at a wavelength of 660 nm using a spectrophotometer UV-160A manufactured by Shimadzu Corporation.
  • Method for preparing organic solvent-containing buffer Here, a method for preparing a buffer solution containing 4% ethanol will be described. Ethanol was added to the 60 mmol / L phosphate buffer so that the content (volume content) was 4%, and the pH was adjusted to 7 with 1 mol / l hydrochloric acid to prepare an organic solvent-containing buffer. This solution was used as a buffer containing 4% ethanol.
  • Example A-1 A decomposition solution is prepared by mixing 10 ml of 60 mmol / L phosphate buffer (pH 7), 12 ⁇ l of CLE enzyme solution, and ethanol so that the ethanol content of the decomposition solution is 4%. It adjusted so that it might become.
  • the biodegradable resin (polylactic acid / PEOx) film cut into 2 cm ⁇ 2 cm (weight 50 mg) was placed in a 25 ml vial and shaken at 37 ° C. and 100 rpm for 7 days. In order to avoid an extreme decrease in pH, 7 days were divided into 2 days, 2 days, and 3 days, and the decomposition solution was exchanged.
  • Example A-2 The procedure was the same as Example A-1, except that the ethanol content was 2%.
  • Example A-3 The same procedure as in Example A-1 was conducted, except that the ethanol content was 7%.
  • Example A-4 The procedure was the same as Example A-1, except that the ethanol content was 10%.
  • Example A-5 The same procedure as in Example A-1 was carried out except that the hexane content was changed to 4% instead of ethanol.
  • Example A-6 The same procedure as in Example A-1 was carried out except that the content of hexane was changed to 10% instead of ethanol.
  • Example A-7 The same procedure as in Example A-1 was carried out except that the methanol content was changed to 4% instead of ethanol.
  • Example A-8 The same procedure as in Example A-1 was carried out except that the content of acetonitrile was changed to 4% instead of ethanol.
  • Example A-9 The same procedure as in Example A-1 was conducted except that the biodegradable resin (polylactic acid / PEOx) film was replaced with a biodegradable resin (PBS) film.
  • biodegradable resin polylactic acid / PEOx
  • PBS biodegradable resin
  • Example A-10 The same procedure as in Example A-5 was conducted, except that the biodegradable resin (polylactic acid / PEOx) film was replaced with a biodegradable resin (PBS) film.
  • biodegradable resin polylactic acid / PEOx
  • PBS biodegradable resin
  • Example A-11 The same procedure as in Example A-1 was carried out except that 12 ⁇ l of proK enzyme solution was used.
  • Example A-12 The same procedure as in Example A-1 was conducted, except that the biodegradable resin (polylactic acid / PEOx) film was replaced with a biodegradable resin (polylactic acid / PEOx20) film and the decomposition temperature was changed to 45 ° C.
  • Example A-1 The procedure was the same as Example A-1, except that the ethanol content was 1%.
  • Example A-2 The procedure was the same as Example A-1, except that the ethanol content was 15%.
  • Example A-3 The procedure was the same as Example A-1, except that the ethanol content was 20%.
  • Example A-4 The same procedure as in Example A-1 was carried out except that the ethanol content was adjusted to 30%.
  • Example A-5 The same procedure as in Example A-1 was conducted except that the content of toluene was changed to 4% instead of ethanol.
  • Example A-6 The same procedure as in Example A-1 was conducted except that the content of toluene was changed to 50% instead of ethanol.
  • Example A-7 The same procedure as in Example A-1 was conducted, except that the content of toluene was 95% instead of ethanol.
  • Example A-8 The same procedure as in Example A-1 was carried out except that the content of chloroform was changed to 4% instead of ethanol.
  • Example A-9 The same procedure as in Example A-1 was conducted except that the content of ethyl acetate was changed to 4% instead of ethanol.
  • Example A-10 The same procedure as in Example A-1 was carried out except that the content of isopropanol was changed to 4% instead of ethanol.
  • Example A-11 The same procedure as in Example A-1 was performed except that the dioxane content was changed to 4% instead of ethanol.
  • Example A-12 The same procedure as in Example A-1 was carried out except that the content of hexane was changed to 1% instead of ethanol.
  • Example A-13 The same procedure as in Example A-1 was carried out except that the methanol content was changed to 1% instead of ethanol.
  • Comparative Example A-15 The same procedure as in Comparative Example A-14 was conducted, except that the biodegradable resin (polylactic acid / PEOx) film was replaced with a biodegradable resin (PBS) film.
  • PBS biodegradable resin
  • Comparative Example A-16 The same procedure as in Comparative Example A-14 was carried out except that the proK enzyme solution was changed to 12 ⁇ l.
  • Comparative Example A-17 The same procedure as in Comparative Example 14 was performed except that the biodegradable resin (polylactic acid / PEOx) film was replaced with a biodegradable resin (polylactic acid / PEOx20) film.
  • Tables 2 and 3 show the results of the one-week degradation rate and degradation liquid transparency of Examples A-1 to A-12 and Comparative Examples A-1 to A-17.
  • Example A-3 The HPLC chart of the decomposition solution of Example A-3 is shown in FIG. From this, it was found that lactic acid monomers and lactic acid oligomers were produced from the biodegradable resin (polylactic acid / PEOx).
  • HPLC measurement conditions JASCO GULLIVER series was used for the HPLC system.
  • the analytical conditions were as follows. The column was used in a column oven in which Waters Atlantis dC 18 5 ⁇ m, 4.6 ⁇ 250 mm was kept at 40 ° C., and 0.5% phosphoric acid and acetonitrile were used at a flow rate of 1 mL / min. Gradient was applied as described above, and 50 ⁇ l of sample was injected using this as a mobile phase. For detection, UV absorption at 210 nm was used, and as a standard sample, purified L-lactic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • FIG. 3 shows the correlation between the degradation rate after 4 days from the degradation test and the SP value. That is, as a preferable SP value range of the organic solvent, it was found that the SP value of the organic solvent ⁇ 8.5 or 11.5 ⁇ the SP value of the organic solvent.
  • Example A-1 Example A-3, Comparative Example A-1, and Comparative Example A-14, in which the degradation rate after one week was 100%.
  • Each decomposition residual solution until the film was 100% decomposed was integrated, and 1.2 ⁇ L / mL of proK enzyme solution was added, followed by shaking at 37 ° C. for 1 week.
  • the amount of lactic acid monomer was calculated from the reaction solution using HPLC.
  • the lactic acid monomer recovery rate was calculated from the amount of lactic acid monomer / the amount of charged polylactic acid ⁇ 100. The results are shown in Table 4.
  • Examples B-1 to 8 and Comparative Examples B-1 to 10 were performed as follows.
  • the enzyme solution of the hydrolase used was prepared as follows.
  • -ProK ProteinaseK
  • 20 mg of Tritirachium album-derived ProteinaseK (Wako Pure Chemical Industries, Ltd.) powder is dissolved in 1 ml of 0.05MTris-HCl buffer (pH 8.0) containing 50 w / w% glycerin.
  • An enzyme solution was prepared.
  • -CLE enzyme solution The Cryptococcus sp. S-2 lipase CS2 (Japanese Patent Laid-Open No.
  • the glass transition temperature (Tg) was measured using DSC 6220 (differential scanning calorimetry) manufactured by Seiko Instruments Inc. Measurement conditions were from 0 to 200 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere. The samples were PEOx and PEOx20 described later, and the sample amount was 5 to 10 mg.
  • the temperature of the column oven was 40 ° C., chloroform was used as the eluent, and the flow rate was 0.5 ml / min.
  • the sample injection volume was 15 ⁇ l.
  • the standard used was chloroform dissolved in chloroform.
  • chloroform was used as a solvent to a concentration of 5 mg / ml, and filtered.
  • Oxalic acid which is a monomer, has a pH of 1.6 at a concentration of 0.005 g / ml, and PEOx and PEOx20 elute oxalic acid or an oxalic acid oligomer by hydrolysis in an aqueous solution.
  • Example B-1 Protease enzyme activity measurement on biodegradable film (monopolyester of aliphatic polyester (A)) Eleven types of 60 mM phosphate buffer (pH 4.7-9.0) with 12 ⁇ l of proK enzyme solution ) A polylactic acid film (thickness: 100 ⁇ m) cut into 2 cm ⁇ 2 cm (45 mg) was immersed in 10 ml and shaken at 37 ° C. and 100 rpm for 4 days. The degradation amount (mg) after 4 days was defined as the film degradation activity value.
  • the amount of degradation after 4 days is the film weight (mg) at the start of degradation minus the film weight (mg) after 4 days.
  • the film weight measurement is a value measured by drying at 45 ° C. overnight with a dryer.
  • the film degradation activity in the phosphate buffer at each pH was as follows.
  • Example B-2 Step (c) of Example 1 was carried out under the same conditions as in Example B-1, except that pH 7.0, 60 mM phosphate buffer was used. (Since the same readily decomposable resin composition as in Example 1 was used, the active pH range was also pH 5.0 to pH 7.2.)
  • Example B-3 Step (c) of Example 1 was carried out under the same conditions as Example B-1, except that pH 6.5 and 60 mM phosphate buffer was used.
  • Example B-4 The same procedure as in step (c) of Example B-1 was carried out except that distilled water and 22.5 mg of calcium carbonate (Wako Pure Chemical Industries, Ltd.) as a neutralizing agent were added instead of the phosphate buffer. (Since the same readily decomposable resin composition as in Example B-1 was used, the range of the active pH range was also pH 5.0 to pH 7.2.) The final pH was 6.5.
  • Example B-1 Step (c) of Example B-1 was performed under the same conditions as Example B-1, except that pH 9 and 60 mM phosphate buffer were used. (Since the same readily decomposable resin composition as in Example B-1 was used, the active pH range was also pH 5.0 to pH 7.2.)
  • Comparative Example B-2) Step (c) of Example B-1 was carried out under the same conditions as in Example 1 except that pH 8.0 and 60 mM phosphate buffer were used.
  • Example B-3 (Since the same readily decomposable resin composition as in Example B-1 was used, the active pH range was also pH 5.0 to pH 7.2.)
  • Comparative Example B-3 The easy-degradable resin composition film cut into 2cm x 2cm (weight 45mg) is immersed in 10ml of pH6.5, 60mM phosphate buffer solution with 12 ⁇ l of proK enzyme solution and shaken at 37 ° C and 100rpm for 7 days. It was. The enzyme solution was not changed.
  • Example B-4 (Comparative Example B-4) Step (c) of Example B-1 was carried out under the same conditions as Example B-1, except that pH 4.7 and 60 mM phosphate buffer were used. (Since the same readily decomposable resin composition as in Example B-1 was used, the active pH range was also pH 5.0 to pH 7.2.)
  • Example B-5 Enzyme activity measurement of lipase CS2 for biodegradable film (aliphatic polyester (A) alone) 60 mM phosphate buffer solution (11 types in the range of pH 3.0 to 8.0) with 48 ⁇ l of CLE enzyme solution added A polylactic acid film (thickness: 100 ⁇ m) cut into 2 cm ⁇ 2 cm (45 mg) was immersed in 10 ml, and shaken at 37 ° C. and 100 rpm for 4 days. The degradation amount (mg) after 4 days was defined as the film degradation activity value.
  • the amount of degradation after 4 days is the film weight (mg) at the start of degradation minus the film weight (mg) after 4 days.
  • the film weight measurement is a value measured by drying at 45 ° C. overnight with a dryer.
  • the film degradation activity in the phosphate buffer at each pH was as follows.
  • Example B-6 Step (c) of Example B-5 was carried out under the same conditions as Example B-5, except that pH 6.5, 60 mM phosphate buffer was used. (Since the same readily decomposable resin composition as in Example B-5 was used, the active pH range was also pH 4.4 to pH 7.8.)
  • Example B-7 Step (c) of Example B-5 was carried out under the same conditions as in Example B-5, except that pH 7.5, 60 mM phosphate buffer was used.
  • Example B-8 (Since the same readily decomposable resin composition as in Example B-5 was used, the active pH range was also pH 4.4 to pH 7.8.)
  • Example B-8 The same procedures as in Example 5 were followed except that the easily decomposable resin composition film ⁇ aliphatic polyester (B ′) was replaced with PEOx20 ⁇ and the temperature was changed to 45 ° C. The initial pH was 7, the final pH was 4.5, and degradation was performed in the active pH range.
  • Example B-5 Step (c) of Example 5 was carried out under the same conditions as Example B-5, except that pH 8 and 60 mM phosphate buffer were used. (Since the same readily decomposable resin composition as in Example B-5 was used, the active pH range was also pH 4.4 to pH 7.8.)
  • Comparative Example B-6) Step (c) of Example B-5 was carried out under the same conditions as Example B-5, except that pH 9 and 60 mM phosphate buffer were used.
  • Example B-5 (Since the same readily decomposable resin composition as in Example B-5 was used, the active pH range was also pH 4.4 to pH 7.8.)
  • Step (c) of Example B-5 was performed under the same conditions as Example B-5, except that pH 4.7 and a 60 mM phosphate buffer were used.
  • Step (c) of Example B-5 was carried out under the same conditions as Example B-5, except that pH 3.7 and 60 mM phosphate buffer were used.
  • Example B-5 (Since the same readily decomposable resin composition as in Example B-5 was used, the active pH range was also pH 4.4 to pH 7.8.)
  • Step (c) of Example B-5 was performed under the same conditions as Example B-5, except that pH 3.0 and a 60 mM phosphate buffer were used.
  • the active pH range was also pH 4.4 to pH 7.8.
  • Comparative Example B-10 The same procedures as in Example 5 were followed except that the easily decomposable resin composition film ⁇ aliphatic polyester (B ′) was replaced with PEOx20 ⁇ . The initial pH was 7, the final pH was 5.1, and the degradation was performed in the active pH range.
  • the pH of the decomposition solution was always in the range of pH 4.4 to 7.8 where the enzyme was active, and it was marked as x otherwise. Items having a pH of 8 or less due to the acid catalyst effect were marked with ⁇ , and those with a pH of 8 or more were marked with ⁇ .
  • Examples C-1 to C-5 and Comparative Examples C-1 to C-4 were performed as follows.
  • the enzyme reaction solution of the decomposing enzyme used was prepared as follows.
  • -ProK ProteinaseK
  • Tritirachium album-derived ProteinaseK manufactured by Wako Pure Chemical Industries, Ltd.
  • Proteinase K enzyme reaction solution was prepared.
  • S-2 lipase CS2 (JP 2004-73123) enzyme reaction solution showing lipase activity of 653 U / mL provided by the National Research Institute for Liquors.
  • the lipase activity was measured using paranitrophenyl laurate as a substrate.
  • 1 U of lipase activity is defined as the amount of enzyme when 1 ⁇ mol / min of paranitrophenol is released from paranitrophenyl laurate.
  • the glass transition temperature (Tg) was measured using DSC 6220 (differential scanning calorimetry) manufactured by Seiko Instruments Inc. Measurement conditions were from 0 to 200 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere. The samples were PEOx and PEOx20 described later, and the sample amount was 5 to 10 mg.
  • PEOx polyethylene oxalate
  • aliphatic polyester (B ') aliphatic polyester (B ')
  • 354 g (3.0 mol) of dimethyl oxalate, ethylene glycol 223.5 g (3.6 mol) and 0.30 g of tetrabutyl titanate were added, and the temperature in the flask was heated from 110 ° C. to 170 ° C. while methanol was distilled off, and reacted for 9 hours. Finally, 210 ml of methanol was distilled off. Thereafter, the mixture was stirred at an internal temperature of 150 ° C.
  • HLC-8120 manufactured by Tosoh Corporation was used, TSKgel SuperHM-H ⁇ 2 was used as a column, and TSKguard column SuperH-H was used as a guard column.
  • the temperature of the column oven was 40 ° C.
  • chloroform was used as the eluent, and the flow rate was 0.5 ml / min.
  • the sample injection volume was 15 ⁇ l.
  • the standard used was chloroform dissolved in chloroform.
  • chloroform was used as a solvent to a concentration of 5 mg / ml, and filtered.
  • Oxalic acid which is a monomer, has a pH of 1.6 at a concentration of 0.005 g / ml, and PEOx and PEOx20 elute oxalic acid or an oxalic acid oligomer by hydrolysis in an aqueous solution.
  • Example C-1 Add 50ml Falcon tube 2cm x 2cm (weight 90mg thickness 250 ⁇ m) easily degradable resin composition film (PEOx was used for aliphatic polyester B ') and 30ml distilled water (neutral), and further proK An enzyme solution (36 ⁇ l) and calcium carbonate (manufactured by Wako Pure Chemical Industries, Ltd., particle size: 10 to 15 ⁇ m) were added in an amount 0.5 times the film weight. The reaction was carried out at 37 ° C. and 200 rpm for one week.
  • Example C-2 Add 5L x 5cm easily decomposable resin composition film (20 sheets, total weight 12g thickness 250 ⁇ m) and 3L of distilled water (neutral) to a 3L water tank equipped with temperature control, heater and stirrer. CLE enzyme solution (15 ml) and chitosan (Wako Pure Chemical Industries, Ltd., Chitosan 50, particle size of 30 to 300 ⁇ m) were added 1.5 times the film weight. The reaction was carried out at 37 ° C. and 500 rpm for one week.
  • Example C-3 The same procedure as in Example C-2 was conducted except that chitosan was replaced with calcium carbonate.
  • Example C-4 Add a readily degradable resin composition film cut into 2cm x 2cm (weight 70mg thickness 150 ⁇ m) into a 25ml glass vial (with PEOx20 used for aliphatic polyester B ') and 10ml of distilled water (neutral). 48 ⁇ l of CLE enzyme solution and calcium carbonate (manufactured by Wako Pure Chemical Industries, Ltd., particle size 10 to 15 ⁇ m) were added 0.5 times the film weight. The reaction was carried out at 45 ° C. and 100 rpm for one week.
  • Comparative Example C-1 The same procedure as in Example C-1 was conducted except that calcium carbonate was not added.
  • Comparative Example C-2) The same procedure as in Example C-3 was carried out except that calcium carbonate was not added.
  • Comparative Example C-3) The same procedure as in Example 4 was performed except that the decomposition temperature was changed to 37 ° C.
  • Example C-5 Add easily degradable resin composition film cut into 2cm x 2cm (weight 45mg thickness 100 ⁇ m) into 25ml vial and 10ml (neutral) distilled water, and add 12 ⁇ l of proK enzyme solution and 0.5 times the film weight of calcium carbonate It was. The reaction was carried out at 37 ° C. and 100 rpm for one week.
  • Comparative Example C-4) A readily degradable resin composition film cut into 2 cm ⁇ 2 cm (weight 45 mg thickness 100 ⁇ m) and a degradation solution (pH 7.0 phosphate buffer 10 ml, proK enzyme solution 12 ⁇ l) were added to a 25 ml vial. The reaction was carried out at 37 ° C. and 100 rpm for one week, and the decomposition solution was exchanged at intervals of 2, 2, 3 days.
  • Example A-2 is a photograph comparing the transparency of Example A-1 (left) and Comparative Example A-14 (right). It is an HPLC chart of Example A-3. It is a graph which shows the correlation of the decomposition rate and SP value 4 days after a decomposition test. It is a graph which shows FT-IR of a cloudy substance. It is a graph which shows the measurement conditions of HPLC. It shows polylactic acid film degradation activity of proK. The time-dependent change of pH at the time of decomposing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

 本発明は、酵素を用いて生分解性樹脂を分解させた場合に効率よくオリゴマーまたはモノマーを生成する方法を提供し、オリゴマーおよび/またはモノマーを回収することができることを目的とする。  本発明は、生分解性酵素、緩衝剤、有機溶媒及び水を含有する分解液中で、生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法であって、前記有機溶媒のSP値が8.5未満であるか又は11.5を超える値であり、前記分解液中の有機溶媒の含有率(体積含率)が1%よりも多く15%未満である、前記生成方法を提供する。このオリゴマーまたはモノマーを生成する方法は、生分解性樹脂の分解率及びオリゴマーおよび/またはモノマーの凝集沈殿物が少なく回収率が高い。

Description

生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法
 本発明は生分解性樹脂の酵素分解によるオリゴマーおよび/またはモノマーの生成方法、易分解性樹脂組成物を効率的に分解する方法および分解液に関する。
 現在、包装容器の廃棄が問題となっている。汎用樹脂と同様な焼却処理は、二酸化炭素を環境へ直接排出するため、良い方法とは言えない。埋め立て等の環境中の微生物に分解させる方法は、環境への付加が低減されると期待できるが、分解に時間が掛かるだけでなく用地の確保も難しい。
 一方、生分解性樹脂から作られた成形品などを、酵素を用いて分解させる方法も提案されている(特許文献1参照)。また、再重合可能な環状体を主成分とするオリゴマーを生成するポリ乳酸の解重方法が提案されている(特許文献2参照)。
 また、包装資材として生分解性のポリ乳酸系樹脂組成物などの生分解性樹脂組成物が提案されている。これらの生分解性樹脂組成物を用いた包装容器などの分解は一般に容器表面から順次起こっており、容器全体が完全に分解するまでには相当の時間を必要とし、さらに、分解速度は樹脂の結晶性や分子配向といった樹脂内部の構造によって影響を受け、場所によって分解しやすいところ、分解しにくいところが存在するという問題もあったが、近年ではこれらの問題を解決するために様々な生分解性樹脂組成物が開発されており、例えば、加水分解により酸を放出する脂肪族ポリエステルを配合することによって生分解性が向上された易分解性樹脂組成物が報告されている(特許文献3)。
特表2001-512504号公報 国際公開第2004/013217号パンフレット 国際公開2008-038648号公報
 しかしながら、酵素を用いて生分解性樹脂を分解させた場合、酵素と分解により生成したオリゴマーおよび/またはモノマーとが凝集物を形成し、最終的にオリゴマーおよび/またはモノマーの回収も困難になる。またこの凝集物は再溶解しないために、オリゴマーおよび/またはモノマーを回収することができない。また、再重合可能な環状体を主成分とするオリゴマーを生成するポリ乳酸の解重方法では、反応系内の水分率が低く、高収率でオリゴマーを回収することができない。したがって、本発明はこのような凝集物を生成させずに効率よくオリゴマーおよび/またはモノマーを生成する方法を提供し、オリゴマーおよび/またはモノマーを回収することができる方法を提供することを第一の目的とする。
 また、上記のように加水分解により酸を放出する脂肪族ポリエステルを含む易分解性樹脂組成物を分解液中で酵素分解させる場合、時間の経過とともに分解速度が遅くなることが分かった。従って、本発明は、加水分解により酸を放出する脂肪族ポリエステルを含む易分解性樹脂組成物をより効率的に分解する方法を提供することを第二の目的とする。
 また、上記のように加水分解により酸を放出する脂肪族ポリエステルを含む易分解性樹脂組成物を分解液中で酵素分解させる場合、時間の経過とともに易分解性樹脂組成物から酸が放出されることから、分解液のpHが低下し、酵素分解の活性が下がることで分解速度が遅くなることが分かった。従って、本発明は、加水分解により酸を放出する脂肪族ポリエステルを含む易分解性樹脂組成物をより効率的に分解する方法を提供することを第三の目的とする。
 上記の第一の目的について、本発明は、生分解性酵素、緩衝剤、有機溶媒及び水を含有する分解液中で、生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法であって、前記有機溶媒のSP値が8.5未満であるか又は11.5を超える値であり、前記分解液中の有機溶媒の含有率(体積含率)が1%よりも多く15%未満である、前記生成方法を提供する。
 上記の第二の目的について、本願発明者らは、易分解性樹脂組成物を分解液中で分解すると時間の経過とともに酸触媒が放出されて分解液が低pHになるため生分解性樹脂の分解酵素の活性を充分に発揮できる条件にならない一方で、分解液のpHを上げた状態としても、分解酵素の分解活性は発揮されるものの易分解性樹脂組成物から放出された酸の酸触媒による効果が充分に得られないことを確認し、これに対応して、加水分解により酸を放出する脂肪族ポリエステルを含む易分解性樹脂組成物を酵素により分解する際に、前記酸による分解作用及び分解酵素による分解作用の両方を同時に充分に発揮できるようなpHが維持されるような条件下にある酵素分解液中で前記易分解性樹脂組成物を分解させることによって効率的な分解が可能となることを見出し、本発明を完成するに至った。
 即ち、本発明は、生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物を分解する方法であって、
(a) 脂肪族ポリエステル(A)の単体を緩衝液中で前記加水分解酵素によって分解する場合にその分解活性値を最大とする最大活性pH値を特定する工程、
(b) 前記最大活性pH値における分解活性値の30%以上の分解活性値を与える活性pH範囲を定める工程、及び
(c) 前記易分解性樹脂組成物を、加水分解酵素を含み、かつ、pHが前記活性pH範囲内、かつ、8.0未満である酵素反応液中で分解する工程であって、この分解工程中、前記酵素反応液のpHが、前記活性pH範囲内、かつ、8.0未満に維持される、工程、
を含む、分解方法を提供する。
 上記の第三の目的について、本願発明者らは、易分解性樹脂組成物を分解液中で分解すると時間の経過とともに酸触媒が放出されて分解液が低pHになるため生分解性樹脂の分解酵素の活性を充分に発揮できる条件にならない一方で、分解液のpHを上げた状態としても、分解酵素の分解活性は発揮されるものの易分解性樹脂組成物から放出された酸の酸触媒による効果が充分に得られないことを確認した。これに対応して、本願発明者らは、前記易分解性樹脂組成物を分解するための加水分解酵素に該分解酵素に非相溶な酸中和剤を加えることによって、前記酸による分解作用及び分解酵素による分解作用の両方を同時に充分に発揮できるようなpHが維持され、その結果効率的な分解が可能となることを見出し、本発明を完成するに至った。
 即ち、本発明は、生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物を分解する分解液であって、酵素反応液と、酵素反応液に非相溶な酸中和剤との混合液であって、好ましくは
1.酸中和剤が炭酸カルシウムまたはキトサンである、及び/又は
2.加水分解酵素がプロテアーゼ、クチナーゼ、セルラーゼまたはリパーゼである
分解液を提供する。
 また、生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物の分解方法であって、前記易分解性樹脂組成物を、分解酵素、及び、酵素反応液に非相溶な酸中和剤を含む酵素反応液中で分解する方法であって、好ましくは
1.酵素反応中における酵素反応液のpHが、以下の工程(a)~(b)により定められる活性pH範囲内、かつ、8.0未満に維持されること:及び/又は
(a') 脂肪族ポリエステル(A)の単体を緩衝液中で前記分解酵素によって分解する場合にその分解活性値を最大とする最大活性pH値を特定する工程、
(b') 前記最大活性pH値における分解活性値の30%以上の分解活性値を与える活性pH範囲を定める工程、及び/又は
2.脂肪族ポリエステル(B’)が放出する酸がシュウ酸、マレイン酸またはグリコール酸である、及び/又は
3.易分解性樹脂組成物が、ポリ乳酸系樹脂中にポリオキサレートまたはポリグリコール酸を分散させて得られる、方法が提供される。
 本発明のオリゴマーおよび/またはモノマーを生成する方法によれば、生分解性樹脂の分解率が高く、且つ、生分解性樹脂の分解時における凝集沈殿物の生成を抑制し効率よくオリゴマーおよび/またはモノマーを生成することができる。また得られたオリゴマーはモノマーへの分解が可能で、そこから再重合することもできる。
 また、本発明の分解方法によって、分解液中で、酸及び分解酵素の両方による分解作用により、易分解性樹脂組成物の分解速度を向上させることができる。
1.オリゴマーおよび/またはモノマーを生成する方法について
 本発明のオリゴマーおよび/またはモノマーを生成する方法は、生分解性酵素、緩衝剤、有機溶媒及び水を含有する分解液中で生分解性樹脂または該生分解性樹脂を含有する成形体を分解する。
 ここでいうオリゴマーとは、モノマーが結合した重合体であって、例えば、ダイマー(二量体)、トライマー(三量体)、テトラマー(四量体)等をいう。また、オリゴマーおよび/またはモノマーは直鎖または側鎖を有するものであってもよい。
 生分解性樹脂は、生分解性を有する樹脂であればよく、例えば化学合成系樹脂、微生物系樹脂、天然物利用系樹脂などが挙げられる。具体的には、脂肪族ポリエステル、ポリビニルアルコール(PVA)、セルロース類などが挙げられる。脂肪族ポリエステルとしては、例えばポリ乳酸(PLA)樹脂及びその誘導体、ポリブチレンサクシネート(PBS)樹脂及びその誘導体、ポリカプロラクトン(PCL)、ポリヒドロキシブチレート(PHB)及びその誘導体、ポリエチレンアジペート(PEA)、ポリグリコール酸(PGA)、ポリテトラメチレンアジペート、ジオールとジカルボン酸の縮合物などが挙げられる。セルロース類としては、例えばメチルセルロース、エチルセルロース、アセチルセルロースなどが挙げられる。また、上記生分解性樹脂の修飾体や共重合体、上記生分解性樹脂同士及び汎用化学樹脂、添加剤との混合体であってもよい。ここで添加剤とは可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、無機充填剤、離型剤、耐電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などである。生分解性樹脂にブレンドするポリマーとしては、セルロース類、キチン、グリコーゲン、キトサン、ポリアミノ酸、澱粉などが挙げられる。
 生分解性樹脂は、好ましくは分解促進剤を含有する。分解促進剤としては、生分解性樹脂の分解を促進することができる酸を当業者が適宜選択して使用することができる。例えば、0.005g/mlの濃度で水に溶解させたときのpHが4以下の酸、例えばpHが3以下の酸、pHが2以下の酸、例えばpHが1.5以下、pHが1.3以下、pHが1.0以下の酸を加水分解により放出する酸を使用することができる。具体例としては、シュウ酸(pH 1.6)、マレイン酸、グリコール酸(pH 2.5)が挙げられる。このような分解促進剤としては、ポリエチレンオキサレート、ポリ(ネオペンチル)オキサレート(PNOx)、ポリエチレンマレエート、ポリグリコール酸などが挙げられる。好ましい分解促進剤はポリエチレンオキサレート及びポリグリコール酸である。これらは共重合体、単独での使用、2種以上組み合わせての使用でもよい。
 分解促進剤や共重合体を形成する他の成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
 また本明細書では、ホモポリマー、共重合体、ブレンド体において、少なくとも一つのモノマーとしてシュウ酸を重合したポリマーをポリオキサレートとする。
 生分解性樹脂に含まれる分解促進剤の含有量は、機械的特性や加工性を考えると、好ましくは1~30重量%であり、より好ましくは2~20重量%である。
 生分解性樹脂は、好ましくはポリ乳酸樹脂である。ポリ乳酸樹脂としては、乳酸を重合して得られるポリエステル樹脂であれば特に限定されず、ポリ乳酸のホモポリマー、コポリマー、ブレンドポリマーなどであってもよい。
 ポリ乳酸と共重合体を形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;グリコール酸、L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
 ブレンドするポリマーとしては、セルロース類、キチン、グリコーゲン、キトサン、ポリアミノ酸、澱粉などが挙げられる。なお、ポリ乳酸を用いる際の重合に用いられる乳酸は、L-体又はD-体のいずれかであってもよく、L-体とD-体の混合物であってもよい。
 また、生分解性樹脂は、好ましくは生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物である。
 生分解性樹脂からなる成形体とは公知の成形法で成形される成形体であればよい。公知の成形法とは射出成形法、押出成型法、シート成形法などである。得られる成形体の層構成は単層構造に限らず多層構造であってもよい。
 分解液中に含まれる生分解性酵素としては、用いる生分解性高分子に作用する分解酵素であれば特に制限ない。さらに、酵素は固定化していても固定化していなくてもよい。リパーゼやプロテアーゼ、クチナーゼなどが挙げられる。また微生物を入れ、その菌体外酵素を用いてもよく、その微生物が必要とする培地成分や栄養成分が添加されていてもよい。生分解性酵素の量は当業者が適宜決定することが可能であり、例えば使用する酵素ごとの活性単位を基準として分解しようとする生分解性樹脂に対応して決定することができる。
 分解液中に含まれる緩衝剤としては、グリシン-塩酸緩衝液、リン酸緩衝液、トリス-塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液、クエン酸-リン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、グリシン-水酸化ナトリウム緩衝液などが挙げられる。また、固体の中和剤でもよく、例えば炭酸カルシウム、キトサン、脱プロトンイオン交換樹脂などが挙げられる。緩衝剤の量は当業者が適宜決定することが可能であり、例えば塩濃度として10~100mMとした緩衝液を使用することができる。
 分解液中に含まれる有機溶媒は、そのSP値(Hildebrand溶解度パラメータ)が8.5未満であるか又は11.5を超える値でなければならない。このような有機溶媒としては、ヘキサン(SP値は7.3)、シクロヘキサン(8.2)ジメチルスルホキシド(14.4)、アセトニトリル(11.7)、エタノール(12.7)、メタノール(14.4)などが挙げられる。前記有機溶媒は、好ましくはそのSP値が8.5未満であるか又は11.6以上である。より好ましくは、SP値は8以下であるか又は12以上である。さらに好ましくは、SP値は7.5以下であるか又は12.5以上である。上記範囲のSP値を有する有機溶媒を用いる場合には、生分解性樹脂の分解率が高く、凝集物の生成も抑制することができる。前記有機溶媒は、好ましくはエタノールである。
 分解液中の有機溶媒の含有率(体積含率)は1%よりも多く15%未満である。好ましくは、有機溶媒の含有率は1.5%~12%である。より好ましくは、有機溶媒の含有率は2%~10%である。さらに好ましくは、有機溶媒の含有率は4%~10%である。有機溶媒の含有率(体積含率)が1%以下では、分解液中に凝集沈殿物が生成されオリゴマーまたはモノマーの回収率が低下し、15%以上では、生分解性樹脂の分解率が低下するので好ましくない。
 分解液中の水分の含有率(体積含率)は、50%以上である。好ましくは、80~99%であることがよい。
 分解液中で生分解性樹脂を分解する際の温度は、酵素が分解活性を示す温度であればよい。より好ましくは、0℃~100℃である。さらに好ましくは、20℃~70℃である。また、生分解性樹脂が分解促進剤を含有する場合には、さらに分解促進剤の作用を発揮する温度条件を考慮して温度を設定することができる。その場合は、例えば(分解促進剤のガラス転移温度―5℃)<分解温度<酵素活性を示す温度の上限、を基準とすることができる。例えば、分解促進剤としてポリエチレンオキサレートを使用した場合には例えば37℃の温度条件下で分解を促進することが可能であり、分解促進剤としてポリグリコール酸を使用した場合には例えば45℃とすることにより分解を促進することができる。また、分解液中で生分解性樹脂(2cm×2cm、厚み100μm)を分解する時間は、好ましくは1日~10日である。より好ましくは、1日~7日である。さらに好ましくは、4日以内である。また、分解液の撹拌条件は特に限りはなく、分解液が均一に撹拌されればよい。
2.易分解性樹脂組成物の分解方法及び分解液について
 本発明において、易分解性樹脂組成物は、生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含み、例えば国際公開2008-038648号公報に記載された易分解性樹脂組成物などが挙げられる。
 生分解性を有する脂肪族ポリエステル(A)としては、例えばポリ乳酸系樹脂、ポリブチレンサクシネート、ポリカプロラクトン、ポリヒドロキシブチレート、ポリブチレンサクシネート・アジペート共重合体や上記脂肪族ポリエステルの共重合体、またポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の芳香族ポリエステルと上記脂肪族ポリエステルとの共重合体などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記脂肪族ポリエスエル(A)の共重合体を形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;グリコール酸、L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
 ブレンドするポリマーとしては、セルロース類、キチン、グリコーゲン、キトサン、ポリアミノ酸、澱粉などが挙げられる。なお、ポリ乳酸を用いる際の重合に用いられる乳酸は、L-体又はD-体のいずれかであってもよく、L-体とD-体の混合物であってもよい。
 好ましい生分解性を有する脂肪族ポリエステル(A)としては、ポリ乳酸系樹脂、ポリブチレンサクシネートなどが挙げられる。
 生分解性を有する脂肪族ポリエステル(A)の分子量としては、特に制限されるものではないが、脂肪族ポリエステル(A)を含む易分解性樹脂組成物を用いて容器等を製造する際の機械的特性や加工性を考えると、重量平均分子量で5,000~1,000,000の範囲が好ましく、10,000~500,000の範囲がより好ましい。
 脂肪族ポリエステル(B’)は、加水分解によって酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する。ここで、本明細書では、分解速度が速い生分解性を有するとは、水溶液中で単体樹脂を酵素分解した場合に1日当たりに溶出してくる分解物の量(分解速度)が脂肪族ポリエステル(A)と比較して多い(速い)ことをいい、好ましくはその分解物の量(分解速度)が2倍以上であることをいう。本明細書では、便宜的に、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)のことを「易分解性脂肪族ポリエステル(B’)」という。
 放出される酸としては、上記の条件を満たすものであれば特に限定はされないが、例えば0.005g/mlの濃度で水に溶解させたときのpHが4以下の酸、例えばpHが3以下の酸、pHが2以下の酸、例えばpHが1.5以下、pHが1.3以下、pHが1.0以下の酸を加水分解により放出する酸を使用することができる。具体例としては、シュウ酸(pH 1.6)、マレイン酸、無水マレイン酸、グリコール酸(pH 2.5)等が挙げられるが、上記のうちシュウ酸、マレイン酸およびグリコール酸が好ましい。このような脂肪族ポリエステル(B’)を使用することによって脂肪族ポリエステル(A)が速く分解されるが、これは、脂肪族ポリエステル(B’)に水が浸入して溶出する際、溶出した酸成分がポリ乳酸等の脂肪族ポリエステル(A)を加水分解して脂肪族ポリエステル(A)の内部に多数の亀裂を生じさせ、酵素が作用する表面積がさらに増加するためであると考えられる。脂肪族ポリエステル(B’)は加水分解時に酸を溶出し脂肪族ポリエステル(A)に亀裂を生じさせるのみでなく、脂肪族ポリエステル(B’)自身の溶出によっても脂肪族ポリエステル(A)の内部に空孔を生成させることが出来る。
 その結果より多くの酵素作用点が脂肪族ポリエステル(A)の内部に生成させることができ、分解速度をさらに上げることが出来る。
 易分解性脂肪族ポリエステル(B’)の例としては、ポリエチレンオキサレート、ポリ(ネオペンチル)オキサレート(PNOx)、ポリエチレンマレエート、ポリグリコール酸などが挙げられ、これらは共重合体、単独での使用、2種以上を組み合わせての使用でもよい。
 共重合体を形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;グリコール酸、L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。また本明細書では、ホモポリマー、共重合体、ブレンド体において、少なくとも一つのモノマーとしてシュウ酸を重合したポリマーをポリオキサレートとする。
 この中で好ましい分解促進剤はポリオキサレート及びポリグリコール酸である。
 易分解性脂肪族ポリエステル(B’)は脂肪族ポリエステル(A)中に分散して存在することが好ましい。易分解性脂肪族ポリエステル(B’)が水中で分解溶出した空隙に酵素が浸入して作用することができ、易分解性樹脂組成物の表面のみならず、内部からも易分解性樹脂組成物を分解し、これによって分解速度が速くなる。このような易分解性樹脂組成物としては、例えばポリ乳酸系樹脂中にポリオキサレートまたはポリグリコール酸を分散させて得られた易分解性樹脂組成物が挙げられる。
 ここで、良好な分解速度を得るためには、易分解性脂肪族ポリエステル(B’)が脂肪族ポリエステル(A)中に均等かつ細かく分散して存在することが好ましい。脂肪族ポリエステル(A)中での分散性を向上させるために易分解性脂肪族ポリエステル(B’)に脂肪族ポリエステル(A)のモノマー成分を1種以上を重合させてもよい。
 さらに、易分解性脂肪族ポリエステル(B’)は、極性が高い、即ち水への親和性が高いものであることが好ましい。このような易分解性脂肪族ポリエステル(B’)は加水分解速度が速くなるため、脂肪族ポリエステル(A)内部に多数の空孔が素早く生成して酵素の作用面積が増加し、その結果、脂肪族ポリエステル(A)の分解速度も速くなる。極性はFedors法から計算されるSP値(溶解度パラメーター)(Polym.Eng.Sci.,14,147-154(1974))などを指標とすることが可能であり、前記SP値は例えば場合22.0以上、23.0以上、24.0以上であればよく、25.0以上であることが好ましい。
 本発明の方法により分解される易分解性樹脂組成物における、易分解性脂肪族ポリエステル(B’)の含有量は、易分解性脂肪族ポリエステル(B’)を含む易分解性樹脂組成物を用いて容器等を製造する際の機械的特性や加工性を考えると、好ましくは1~30重量%であり、より好ましくは2~20重量%である。
 本発明の方法により分解される易分解性樹脂組成物は、生分解性を有する脂肪族ポリエステル(A)と易分解性脂肪族ポリエステル(B’)とを、常法により均一に混合することにより製造することができる。例えば、生分解性を有する脂肪族ポリエステル(A)と易分解性脂肪族ポリエステル(B’)とを、同時に単軸又は二軸押出し混練機に供給して溶融混合した後、ペレット化することにより本発明の易分解性樹脂組成物を製造することができる。溶融押出し温度としては、使用する生分解性を有する脂肪族ポリエステル(A)と易分解性脂肪族ポリエステル(B’)のガラス転移温度、融点、混合比率などを考慮して、当業者が適宜設定できるが、一般的には100~250℃である。
 本発明の方法により分解される易分解性樹脂組成物には、必要に応じて、公知の可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などの添加剤を配合してもよい。また、生分解性を有する脂肪族ポリエステル(A)又は易分解性脂肪族ポリエステル(B’)以外の樹脂を、本発明の効果を損なわない範囲で配合してもよい。例えば、ポリエチレングリコール、ポリビニルアルコールなどの水溶性の樹脂の他、ポリエチレン、ポリプロピレン、エチレンープロピレン共重合体、酸変性ポリオレフィン、エチレンーメタクリル酸共重合体、エチレンー酢酸ビニル共重合体、アイオノマー樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ酢酸ビニル、ポリ塩化ビニル、ポリスチレン、ポリエステルゴム、ポリアミドゴム、スチレンーブタジエンースチレン共重合体などを配合することができる。また、易分解性脂肪族ポリエステル(B’)の分散性を向上させる目的で生分解性を有する脂肪族ポリエステル(A)と易分解性脂肪族ポリエステル(B’)の共重合体を配合してもよい。
 本発明の方法により分解される易分解性樹脂組成物を用いた容器の製造には、それ自体公知の成型法を用いることができる。
 例えば、樹脂の種類に応じた数の押出機を用いて、多層多重ダイを用いて押出成形を行うことで多層フィルム、多層シート、多層パリソン又は多層パイプ等が成形できる。また、樹脂の種類に応じた数の射出成形機を用いて、同時射出法や逐次射出法等の共射出成形によりボトル成型用の多層プリフォームを製造することができる。このような多層フィルム、パリソン、プリフォームをさらに加工することにより、本発明の方法に用いられる易分解性樹脂組成物を用いた容器を得ることができる。
 フィルム等の包装材料は、種々の形態のパウチや、トレイ・カップの蓋材として用いることができる。パウチとしては、例えば、三方又は四方シールの平パウチ類、ガセット付パウチ類、スタンディングパウチ類、ピロー包装袋等が挙げられる。製袋は公知の製袋法で行うことができる。また、フィルム又はシートを、真空成形、圧空成形、張出成形、プラグアシスト成形等の手段に付することにより、カップ状、トレイ状等の包装容器が得られる。
 多層フィルムや多層シートの製造には、押出コート法や、サンドイッチラミネーションを用いることができる。また、予め形成された単層及び多層フィルムをドライラミネーションによって積層することもできる。例えば、易分解性樹脂組成物/ポリ乳酸(シーラント)層から成る2層共押出フィルムに透明蒸着生分解性フィルムをドライラミネーションにより積層する、ドライラミネートにより積層したポリ乳酸/ポリグリコール酸の2層フィルムに易分解性樹脂組成物/ポリ乳酸(シーラント)の2層をアンカー剤を介して押出コートする方法などが挙げられるが、これらに限定されるものではない。
 また、パリソン、パイプ又はプリフォームを一対の割型でピンチオフし、その内部に流体を吹込むことにより容易にボトルやチューブを成形できる。また、パイプ、プリフォームを冷却した後、延伸温度に加熱し、軸方向に延伸すると共に、流体圧によって周方向にブロー延伸することにより、延伸ブローボトル等が得られる。
 本発明に使用される加水分解酵素としては、一般に生分解性樹脂を分解するものであれば特に限定はされず、当業者が任意のものを使用することができる。このような酵素としては例えばプロテアーゼ、セルラーゼ、クチナーゼ、リパーゼ等が挙げられる。例えば和光純薬工業株式会社製のプロテアーゼKや独立行政法人酒類総合研究所のリパーゼCS2を使用することが可能である。加水分解性酵素の量は当業者が適宜決定することが可能であり、例えば使用する酵素ごとの活性単位を基準として分解しようとする易分解性樹脂に対応して決定することができる。
 本発明に使用される緩衝液として、一般にpHを安定化する目的で用いられる緩衝液であればとくに限定はされない。このような緩衝液としてはグリシン-塩酸緩衝液、リン酸緩衝液、トリス-塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液、クエン酸-リン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、グリシン-水酸化ナトリウム緩衝液などが挙げられる。また固体の中和剤でもよく、例えば炭酸カルシウム、キトサン、脱プロトンイオン交換樹脂などが挙げられる。緩衝液の濃度は当業者が適宜決定することが可能であり、例えば塩濃度として10~100mMとした緩衝液を使用することができる。
 本発明の工程(a)では、脂肪族ポリエステル(A)の単体を緩衝液中で加水分解酵素によって分解する場合にその分解活性値を最大とする最大活性pH値を特定する。脂肪族ポリエステル(A)の単体は、前述の易分解性樹脂組成物の成分である脂肪族ポリエステル(A)単独からなり、好ましくは分解の対象とする易分解性樹脂組成物と同じ形状のものが使用される。分解液の量、温度等のその他の条件は当業者が適宜設定することが可能であるが、好ましくは後述の工程(c)と同じに設定される。
 この工程では、脂肪族ポリエステル(A)の単体の分解実験を、pHの値が異なる緩衝液を使用して複数回行い、前記脂肪族ポリエステル(A)の単体を分解する加水分解酵素の分解活性値が最大となる最大活性pH値を特定する。分解活性値は、例えば一定時間後の脂肪族ポリエステル(A)の分解量を基準として決定することが可能であるが、易分解性樹脂組成物の分解の態様に応じて変更してもよい。また、緩衝液のpHの設定値の数およびpH値の間隔は、分解の最適pHを特定するために必要な値を当業者が決定することができる。この工程に使用される各pHの緩衝液のpHは全pH領域にわたる必要は無く、また、その間隔は均等である必要は無く、通常想定される分解活性値のおおよそのピークを基準として当業者が適当な分布に設定することができる。
 本発明の工程(b)では、前記最大活性pH値における分解活性値の30%以上の分解活性値を与えるpH範囲を定める。一般に、酵素の活性には、酵素の種類や反応条件等に応じて至適pHが存在し、その至適pHをピークとして山型の活性を示す。従って、工程(a)において、pHの変化に応じた分解酵素の活性のグラフを作成することにより、工程(a)で特定した最大活性pH値の分解活性値の30%以上の活性を示す活性pH領域を容易に決定することができる。なお、本発明における分解活性値は厳密に区切る必要は無く、分解活性値の絶対値や分解活性の分布に応じて、易分解性樹脂組成物を所望の程度にまで分解するのに必要な値を当業者が一定の幅を持って定めることができる。
 本発明の工程(c)では、前記易分解性樹脂組成物(すなわち、脂肪族ポリエステル(A)および脂肪族ポリエステル(B’)の両方を含む樹脂組成物)を、加水分解酵素を含み、かつ、pHが前記活性pH範囲内、かつ、8.0未満である酵素反応液中で分解し、ここで、この分解工程中、前記酵素反応液のpHが、前記活性pH範囲内、かつ、8.0未満に維持される。pHを前記活性pH範囲内とすることにより加水分解酵素の作用を充分に得、かつ、同時にpHを8.0未満とすることにより、加水分解により放出する脂肪族ポリエステル(B’)が加水分解により放出するpHが2.0以下の酸による分解作用を充分に得ることが可能となり、これらの酸及び分解酵素の両方による分解作用により、易分解性樹脂組成物の分解速度を向上させることができる。
 この工程においては、酵素反応液のpH値が上記のpH条件に維持される。即ち、易分解性樹脂組成物を酵素反応液中に入れた直後の反応開始時のpHだけでなく、この工程の全体にわたって、すなわち、易分解性樹脂組成物を所望の程度にまで分解するのに必要な時間の間、pHが上記のpH範囲内にある。ただし、pHが上記のpH範囲からわずかな時間外れることをも許容しないものではなく、易分解性樹脂組成物の分解に必要な時間を確保できる程度にpHの値が上記範囲にとなるように管理されていればよい。
 pHを前記活性pH範囲内、かつ、8.0未満に維持する方法としては特に限定はされず、当業者が任意の方法で行うことが可能である。例えば所定の時間、例えば2日、3日の経過後に酵素分解液を交換したり、上記緩衝液の濃度を分解酵素の活性に影響しない範囲で調整したり、中和剤、例えば炭酸カルシウムを酵素分解液中に添加することにより行うことができる。
 また、酵素反応液に非相溶な酸中和剤を使用する本発明の分解方法では、生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物を、分解酵素と、酵素反応液に非相溶な酸中和剤との混合液中で分解させることで、易分解性樹脂組成物の分解速度を向上し、短時間で効率良く分解することができたのである。
 明確な理由は明かではないが、易分解性樹脂組成物の表面は酵素分解によって分解され、内部は加水分解により放出されるシュウ酸等の酸によって分解される。そして、易分解性樹脂組成物から外部に溶出されるシュウ酸や乳酸等の酸は酸中和剤によって中和され、さらに、易分解性樹脂組成物の内部に酸中和剤が浸入しないので酸による分解を阻害しないため、初期の分解速度が極めて高いからであると考えられる。
 酵素反応液に非相溶な酸中和剤を使用する本発明の分解方法は、上記易分解性樹脂組成物を、分解酵素、及び、酵素反応液に非相溶な酸中和剤を含む酵素反応液中で分解することを特徴とする。
 酵素反応液に非相溶な酸中和剤を使用する本発明の分解方法に使用される分解酵素としては、一般に生分解性樹脂を分解するものであれば特に限定はされず、当業者が任意のものを使用することができる。このような酵素としては例えばプロテアーゼ、セルラーゼ、クチナーゼ、リパーゼ等が挙げられる。例えば和光純薬工業株式会社製のプロテアーゼKや独立行政法人酒類総合研究所のリパーゼCS2を使用することが可能である。酵素反応液に添加する酵素の量は、酵素の種類、フィルムの量等を基準として当業者が適宜決定することが可能であり、特に限定されるものではないが、例えばTritirachium album由来ProteinaseK(和光純薬工業株式会社製)の粉末を使用する場合、分解する生分解樹脂1mg に対して1~10μg、好ましくは5~8μgの量で使用することができる。
 本発明において、酵素反応液に非相溶な酸中和剤とは、液体の中和剤、及び、液体中での酵素反応に通常用いられる条件下で酵素反応液に容易に完全に溶解するような固体、半固体等の中和剤を除く酸中和剤全般を意味し、特に限定されるものではない。このような中和剤は当業者に知られており、例えば炭酸カルシウム、キトサン、陽イオン交換樹脂等が挙げられ、上記のうち、本発明においては炭酸カルシウムまたはキトサンが好ましい。
 本発明に使用される酸中和剤の溶解度は、酵素反応液の組成、温度等によって変動するが、試験条件においてpHを酵素活性pH範囲内で安定的に留めることができれば、特に酸中和剤の種類に限りはない。また、中和剤の量は当業者が適宜決定することが可能であり、特に限定されるものではないが、分解する生分解樹脂のフィルム重量の例えば0.2~2倍、好ましくは0.5~1.5倍とすることができる。
 また、前述の通り、本発明に使用される易分解性樹脂は脂肪族ポリエステル(B’)に水が浸入して溶出する際、溶出した酸成分がポリ乳酸等の脂肪族ポリエステル(A)を加水分解して脂肪族ポリエステル(A)の内部に多数の亀裂を生じさせることによって酵素が作用する表面積が増加し、その結果分解が速くなると考えられているため、易分解性樹脂内部で分解に作用する酸を中和しないようにするためには中和剤が前記亀裂の内部に侵入しない条件とすることが好ましい。このような条件とすることによって、中和剤は、易分解性樹脂内部で該易分解性樹脂を分解する酸の作用を阻害しない一方で、易分解性樹脂は脂肪族ポリエステル(B’)が酵素反応液中に溶出した段階ではじめて、酸を中和して塩を形成することによって酵素反応液のpH低下を防止し、分解酵素の活性を最大限に引き出すことができる。上記の条件は、前記亀裂の大きさとの関係において中和剤の粒径を一定の値以上に調整することによって達成することが可能であり、例えば脂肪族ポリエステル(B’)が分解されることによって生じる空孔が10μm程度である場合、中和剤の粒径は10μm以上とすることが好ましい。
 酵素反応液に非相溶な酸中和剤を使用する本発明の分解方法において、好ましくは、酵素反応中における酵素反応液のpHが、以下の工程(a')~(b'):
(a') 脂肪族ポリエステル(A)の単体を緩衝液中で前記分解酵素によって分解する場合にその分解活性値を最大とする最大活性pH値を特定する工程、
(b') 前記最大活性pH値における分解活性値の30%以上の分解活性値を与える活性pH範囲を定める工程、
により定められる活性pH範囲内、かつ、8.0未満に維持される。
 工程(a)では、脂肪族ポリエステル(A)の単体を緩衝液中で加水分解酵素によって分解する場合にその分解活性値を最大とする最大活性pH値を特定する。脂肪族ポリエステル(A)の単体は、前述の易分解性樹脂組成物の成分である脂肪族ポリエステル(A)単独からなり、好ましくは分解の対象とする易分解性樹脂組成物と同じ形状のものが使用される。分解液の量、温度等のその他の条件は当業者が適宜設定することが可能であるが、好ましくは易分解性樹脂組成物を分解するときと同じに設定される。
 本発明に使用される緩衝液として、一般にpHを安定化する目的で用いられる緩衝液であればとくに限定はされない。このような緩衝液としてはグリシン-塩酸緩衝液、リン酸緩衝液、トリス-塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液、クエン酸-リン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、グリシン-水酸化ナトリウム緩衝液などが挙げられる。
 この工程では、脂肪族ポリエステル(A)の単体の分解実験を、pHの値が異なる緩衝液を使用して複数回行い、前記脂肪族ポリエステル(A)の単体を分解する分解酵素の分解活性値が最大となる最大活性pH値を特定する。分解活性値は、例えば一定時間後の脂肪族ポリエステル(A)の分解量を基準として決定することが可能であるが、易分解性樹脂組成物の分解の態様に応じて変更してもよい。また、緩衝液のpHの設定値の数およびpH値の間隔は、分解の最適pHを特定するために必要な値を当業者が決定することができる。この工程に使用される各pHの緩衝液のpHは全pH領域にわたる必要は無く、また、その間隔は均等である必要は無く、通常想定される分解活性値のおおよそのピークを基準として当業者が適当な分布に設定することができる。
 工程(b')では、前記最大活性pH値における分解活性値の30%以上の分解活性値を与えるpH範囲を定める。一般に、酵素の活性には、酵素の種類や反応条件等に応じて至適pHが存在し、その至適pHをピークとして山型の活性を示す。従って、工程(a')において、pHの変化に応じた分解酵素の活性のグラフを作成することにより、工程(a')で特定した最大活性pH値の分解活性値の30%以上の活性を示す活性pH領域を容易に決定することができる。なお、本発明における分解活性値は厳密に区切る必要は無く、分解活性値の絶対値や分解活性の分布に応じて、易分解性樹脂組成物を所望の程度にまで分解するのに必要な値を当業者が一定の幅を持って定めることができる。
 本発明の好ましい方法においては、易分解性樹脂組成物(すなわち、脂肪族ポリエステル(A)および脂肪族ポリエステル(B’)の両方を含む樹脂組成物)を分解するための酵素反応液に、酵素反応液に非相溶な酸中和剤を加えることによりpHを一定の範囲に調整することが可能であり、ここで、pHを前記工程(a')~(b')により定められる活性pH範囲内とすることにより加水分解酵素の作用を充分に得、かつ、同時にpHを8.0未満とすることにより、加水分解により放出する脂肪族ポリエステル(B’)が加水分解により放出するpHが2.0以下の酸による分解作用を充分に得ることが可能となり、これらの酸及び分解酵素の両方による分解作用により、易分解性樹脂組成物の分解速度を向上させることができる。
 この好ましい態様においては、酵素反応中における酵素反応液のpHが上記のpH条件に維持され、より詳細には、易分解性樹脂組成物を酵素反応液中に入れた直後の反応開始時のpHだけでなく、この分解の全体にわたって、すなわち、易分解性樹脂組成物を所望の程度にまで分解するのに必要な時間の間、pHが上記のpH範囲内に維持される。ただし、pHが上記のpH範囲からわずかな時間外れることをも許容しないものではなく、易分解性樹脂組成物の分解に必要な時間を確保できる程度にpHの値が上記範囲にとなるように管理されていればよい。
 分解液中で易分解性樹脂を分解する際の温度は、酵素及び易分解性脂肪族ポリエステル(B’)が放出する酸が分解活性を示す温度であればよい。より好ましくは、0℃~100℃である。さらに好ましくは、20℃~70℃である。より具体的には、分解の温度は、例えば(易分解性脂肪族ポリエステル(B’)のガラス転移温度―5℃)<分解温度<酵素活性を示す温度の上限、を基準とすることができる。例えば、易分解性脂肪族ポリエステル(B’)としてポリエチレンオキサレートを使用した場合には例えば37℃の温度条件下で分解を促進することが可能であり、ポリグリコール酸を使用した場合には例えば45℃とすることにより分解を促進することができる。
 本発明の分解方法によって、分解液中で、酸及び分解酵素の両方による分解作用により、易分解性樹脂組成物の分解速度を向上させることができる。
 以下、本発明の実施例について説明するが、本発明はこれに限定されるものではない。
1.実施例A-1~12及び比較例A-1~17について以下の通り行った。
(proK(ProteinaseK)酵素液)
 Tritirachium album由来ProteinaseK粉末20mgを、50w/w%グリセリンを含む0.05M Tris-HCl緩衝液(pH8.0)1mlに溶解させ、proK(ProteinaseK)酵素液を作製した。
(CLE酵素液)
 リパーゼ活性653U/mLを示すCryptococcus sp. S-2由来リパーゼCS2(特開2004-73123:独立行政法人酒類総合研究所提供)酵素液を用いた。リパーゼ活性は基質としてパラニトロフェニルラウレートを用いて測定した。ここで、リパーゼ活性の1Uとは1μmol/minのパラニトロフェノールをパラニトロフェニルラウレートから遊離させた時の酵素量で定義される。
(ガラス転移温度の測定)
 ガラス転移温度(Tg)はセイコーインスツルメント株式会社製DSC6220(示差走査熱量測定)を用いて行った。測定条件は窒素雰囲気下、10℃/分の昇温速度で0~200℃まで測定した。サンプルは後述するPEOx、PEOx20とし、試料量5~10mgとした。
(ポリエチレンオキサレート(PEOx)の合成)
 マントルヒーター、攪拌装置、窒素導入管、冷却管を取り付けた300mLのセパラブルフラスコにシュウ酸ジメチル354g(3.0mol)、エチレングリコール223.5g(3.6mol)、テトラブチルチタネート0.30gを入れ窒素気流下フラスコ内温度を110℃からメタノールを留去しながら170℃まで加熱し、9時間反応させた。
 最終的に210mlのメタノールを留去した。その後内温150℃で0.1~0.5mmHgの減圧下で1時間攪拌し、内温170℃~190℃で7時間反応後、粘度が上がり取り出した。合成物のηinhは0.12だった。
 溶液粘度(ηinh)の測定は、120℃で一晩真空乾燥させた合成したポリエチレンオキサレートをm-クロロフェノール/1,2,4-トリクロロベンゼン=4/1(重量比)混合溶媒に浸漬し、150℃で約10分溶解させ濃度0.4g/dlの溶液を作り、ついでウベローデ粘度計を用いて30℃で溶液粘度を測定した(単位dl/g)。
(ポリオキサレート(PEOx20)の合成)
 シュウ酸ジメチル354g(3.0mol)の代わりにシュウ酸ジメチル94.5g(0.8mol)及びテレフタル酸ジメチル38.8g(0.2mol)を用いた以外は、上記PEOxの合成と同様の方法で合成した。
 GPC測定により、重量平均分子量 (Mw)は20000であった。GPCには、東ソー株式会社製HLC-8120を用い、カラムとしてTSKgel SuperHM-H×2及びガードカラムとしてTSKguard column SuperH-Hを用いた。カラムオーブンの温度を40℃とし、溶離液としてクロロホルムを用い、流速を0.5ml/minとした。また、サンプル注入量は15μlとした。スタンダードはクロロホルムにポリスチレンを溶解させたものを用いた。サンプル調整はクロロホルムを溶媒として濃度5mg/mlとし、フィルターろ過したものを用いた。
(PEOx、PEOx20の性質)
 モノマーであるシュウ酸は0.005g/ml濃度でpH1.6であり、PEOxは水溶液中で加水分解によりシュウ酸、またはシュウ酸オリゴマーを溶出する。
  〔表1〕
表1 ポリオキサレートのモノマー含有量とガラス転移温度
Figure JPOXMLDOC01-appb-I000001
(生分解性樹脂(ポリ乳酸/PEOx)フィルムの作製)
 ポリ乳酸(Natureworks社製4032D)/ポリエチレンオキサレート=95/5wt%のマスターペレットを、二軸押出機(テクノベル社製ULT Nano05-20AG)を用いて200℃で溶融混合し、ラボプラストミル(株式会社東洋精機製作所製)を用いて厚さ100μmの易分解性樹脂組成物フィルムを製膜した。
(生分解性樹脂(ポリ乳酸/PEOx20)フィルムの作製)
 上記PEOxをPEOx20に代えた他は同様に行った。
(生分解性樹脂(PBS)フィルムの作製)
 ポリブチレンサクシネート(PBS)(昭和高分子社製#1001)ペレットを200℃で5分間溶融後、50kgf/cm2の圧力で加熱加圧し、フィルムを作製した。
(分解率)
 分解率は、生分解性樹脂フィルムの初期重量を測定し、1週間分解させた生分解性樹脂フィルムの重量を測定し、下記の式にて算出した。
((生分解性樹脂フィルムの初期重量-分解後のフィルムの重量)/生分解性樹脂フィルムの初期重量)×100=分解率(%)
(分解液の透明性)
 フィルムを分解させた分解液の透明性を目視で確認し、透明な分解液を○とし、分解直後で白濁を確認できる分解液を×として、評価した。
(吸光度測定(濁度測定))
 フィルムを分解させた分解液を島津製作所製の分光光度計UV-160Aを用い、660nmの波長で吸光度を測定した。
(60mmol/lリン酸緩衝液(pH7)の作製方法)
 60mmol/lのリン酸2水素ナトリウム水溶液と60mMのリン酸水素2ナトリウム水溶液を1:1で混合し、60mmol/lのリン酸2水素ナトリウム水溶液でpH7に調整した。
(有機溶媒含有緩衝液の作製方法)
 ここではエタノール4%含有緩衝液の作製方法を記す。
 上記60mmol/Lリン酸緩衝液にエタノールを含有率(体積含率)が4%になるように加え、1mol/l塩酸でpH7に調整し、有機溶媒含有緩衝液を作製した。この液をエタノール4%含有緩衝液とした。
(実施例A-1)
 分解液のエタノールの含有率が4%となるように、60mmol/Lリン酸緩衝液10ml(pH7)、CLE酵素液12μl及びエタノールとを混合した分解液を作成し、塩酸を添加してpH7となるように調整した。25mlのバイアル瓶内に、該分解液と2cm×2cm(重量50mg)に切り出した生分解性樹脂(ポリ乳酸/PEOx)フィルムを入れ、37℃100rpmで7日間振とうさせた。なお、pHの極度な低下を避けるため、7日間を2日、2日、3日に分け、分解液を交換した。
(実施例A-2)
 エタノールの含有率が2%になるようにした以外は、実施例A-1と同様に行った。
(実施例A-3)
 エタノールの含有率が7%になるようにした以外は、実施例A-1と同様に行った。
(実施例A-4)
 エタノールの含有率が10%になるようにした以外は、実施例A-1と同様に行った。
(実施例A-5)
 エタノールに代えて、ヘキサンの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(実施例A-6)
 エタノールに代えて、ヘキサンの含有率が10%になるようにした以外は、実施例A-1と同様に行った。
(実施例A-7)
 エタノールに代えて、メタノールの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(実施例A-8)
 エタノールに代えて、アセトニトリルの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(実施例A-9)
 生分解性樹脂(ポリ乳酸/PEOx)フィルムを生分解性樹脂(PBS)フィルムに代えた以外は、実施例A-1と同様に行った。
(実施例A-10)
 生分解性樹脂(ポリ乳酸/PEOx)フィルムを生分解性樹脂(PBS)フィルムに代えた以外は、実施例A-5と同様に行った。
(実施例A-11)
 proK酵素液12μlとした以外は実施例A-1と同様に行った。
(実施例A-12)
 生分解性樹脂(ポリ乳酸/PEOx)フィルムを生分解性樹脂(ポリ乳酸/PEOx20)フィルムに代え、分解温度を45℃に代えた以外は、実施例A-1と同様に行った。
(比較例A-1)
 エタノールの含有率が1%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-2)
 エタノールの含有率が15%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-3)
 エタノールの含有率が20%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-4)
 エタノールの含有率が30%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-5)
 エタノールに代えて、トルエンの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-6)
 エタノールに代えて、トルエンの含有率が50%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-7)
 エタノールに代えて、トルエンの含有率が95%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-8)
 エタノールに代えて、クロロホルムの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-9)
 エタノールに代えて、酢酸エチルの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-10)
 エタノールに代えて、イソプロパノールの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-11)
 エタノールに代えて、ジオキサンの含有率が4%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-12)
 エタノールに代えて、ヘキサンの含有率が1%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-13)
 エタノールに代えて、メタノールの含有率が1%になるようにした以外は、実施例A-1と同様に行った。
(比較例A-14)
 エタノールを加えなかった以外は、実施例A-1と同様に行った。
(比較例A-15)
 生分解性樹脂(ポリ乳酸/PEOx)フィルムを生分解性樹脂(PBS)フィルムに代えた以外は比較例A-14と同様に行った。
(比較例A-16)
 proK酵素液12μlとした以外は比較例A-14と同様に行った。
(比較例A-17)
 生分解性樹脂(ポリ乳酸/PEOx)フィルムを生分解性樹脂(ポリ乳酸/PEOx20)フィルムに代えた以外は、比較例14と同様に行った。
(結果)
 実施例A-1~12及び比較例A-1~17の、1週間の分解率及び分解液透明性の結果を表2、3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
*分解液の透明性は分解量に依存するため、ほとんど分解していない比較例は透明になる。
 実施例A-3の分解液のHPLCチャートを図2に示した。ここから生分解性樹脂(ポリ乳酸/PEOx)から乳酸モノマー、乳酸オリゴマーが生成しているとわかった。
(HPLCの測定条件)
 HPLCシステムにはJASCO製GULLIVER seriesを使用した。分析条件は、カラムはWaters製Atlantis dC18 5μm、4.6×250mmを40℃に保ったカラムオーブン内で用い、0.5%リン酸とアセトニトリルで流速1mL/分となるように図5のとおりグラジエントをかけ、それを移動相としてサンプルを50μl注入した。検出には210nmのUV吸収を用い、標準サンプルとしてL-乳酸(和光純薬工業社製)を精製したものを用いた。
 実施例A-1及び2と比較例A-1、2及び3の結果から、好ましい有機溶媒量は1%<有機溶媒量<15%であると分かった。有機溶媒量が1%以下の場合、分解液が不透明になりモノマー回収量が低下する。15%以上の場合、分解量が極端に低下することがわかった。
 次に、分解試験4日後の分解率とSP値の相関を図3に示す。つまり、好ましい有機溶媒のSP値範囲として、有機溶媒のSP値<8.5、又は11.5<有機溶媒のSP値であることが分かった。
(白濁物のIR解析)
 比較例14の白濁液を遠心し、沈殿物を回収後、蒸留水で洗浄した。回収した白色固体は一晩40℃で減圧乾燥させ、FT-IRを用い測定した。FT-IRは反射測定を行った(測定周波数:600cm-1~4000cm-1)。結果を図4に示す。
 1735cm-1のピークはポリ乳酸オリゴマーのカルボニル基に起因し、1635cm-1及び1540cm-1のピークはタンパク質(酵素)のペプチド結合に起因している。つまり酵素分解中の白濁原因はポリ乳酸オリゴマーと酵素との凝集沈殿物が生成しているとわかった。
(乳酸モノマー回収率実験)
 1週間後の分解率が100%であった実施例A-1、実施例A-3、比較例A-1及び比較例A-14に対して以下の実験を行った。
 フィルムが100%分解するまでの各分解残液を統合し、proK酵素液を1.2μL/mL加え、37℃で1週間振とうさせた。その反応液からHPLCを用いて、乳酸モノマー量を算出した。乳酸モノマー回収率は、乳酸モノマー量/仕込みのポリ乳酸量×100により計算した。その結果を表4に示す。
  〔表4〕
表4
Figure JPOXMLDOC01-appb-I000004
2.実施例B-1~8及び比較例B-1~10について以下の通り行った。
 使用した加水分解酵素の酵素液は以下のように調製した。
- proK(ProteinaseK)酵素液
 Tritirachium album由来ProteinaseK(和光純薬工業株式会社)の粉末20mgを、50w/w%グリセリンを含む0.05MTris-HCl緩衝液(pH8.0)1mlに溶解させproK(ProteinaseK)酵素液を作成した。
- CLE酵素液
 独立行政法人酒類総合研究所から提供を受けたリパーゼ活性653U/mL を示すCryptococcus sp. S-2由来リパーゼCS2(特開2004-73123)酵素液を用いた。リパーゼ活性は基質としてパラニトロフェニルラウレートを用い測定した。ここでリパーゼ活性の1Uとは1μmol/minのパラニトロフェノールをパラニトロフェニルラウレートから遊離させた時の酵素量で定義される。
(ガラス転移温度の測定)
 ガラス転移温度(Tg)はセイコーインスツルメント株式会社製DSC6220(示差走査熱量測定)を用いて行った。測定条件は窒素雰囲気下、10℃/分の昇温速度で0~200℃まで測定した。サンプルは後述するPEOx、PEOx20とし、試料量5~10mgとした。
ポリエチレンオキサレート (PEOx)(脂肪族ポリエステル(B’))の合成
 マントルヒーター、攪拌装置、窒素導入管、冷却管を取り付けた300mLのセパラブルフラスコにシュウ酸ジメチル354g(3.0mol)、エチレングリコール223.5g(3.6mol)、テトラブチルチタネート0.30 gを入れ窒素気流下フラスコ内温度を110℃からメタノールを留去しながら170℃まで加熱し9時間反応させた。最終的に210mlのメタノールを留去した。その後内温150℃で0.1-0.5mmHgの減圧下で1時間攪拌し、内温170℃~190℃で7時間反応後、粘度が上がり取り出した。合成物のηinhは0.12であった。
 溶液粘度(ηinh)の測定は、120℃で一晩真空乾燥させた合成したポリエチレンオキサレートを用い、これをm-クロロフェノール/1,2,4-トリクロロベンゼン=4/1(重量比)混合溶媒に浸漬し、150℃で約10分溶解させ濃度0.4g/dlの溶液を作り、ついでウベローデ粘度計を用いて30℃で溶液粘度を測定した。(単位dl/g)
ポリオキサレート(PEOx20)の合成)
 シュウ酸ジメチル354g(3.0mol)の代わりにシュウ酸ジメチル94.5g(0.8mol)及びテレフタル酸ジメチル38.8g(0.2mol)を用いた以外は、上記PEOxの合成と同様の方法で合成した。
 GPC測定により、重量平均分子量 (Mw)は20000であった。GPCには、東ソー株式会社製HLC-8120を用い、カラムとしてTSKgel SuperHM-H×2及びガードカラムとしてTSKguard column SuperH-Hを用いた。カラムオーブンの温度を40℃とし、溶離液としてクロロホルムを用い、流速を0.5ml/minとした。また、サンプル注入量は15μlとした。スタンダードはクロロホルムにポリスチレンを溶解させたものを用いた。サンプル調整はクロロホルムを溶媒として濃度5mg/mlとし、フィルターろ過したものを用いた。
(PEOx、PEOx20の性質)
 モノマーであるシュウ酸は0.005g/ml濃度でpH1.6であり、PEOx、PEOx20は水溶液中で加水分解によりシュウ酸、またはシュウ酸オリゴマーを溶出する。
 ポリオキサレートのモノマー含有量とガラス転移温度
Figure JPOXMLDOC01-appb-I000005
易分解性樹脂組成物フィルム(脂肪族ポリエステル(A)+脂肪族ポリエステル(B’))の作製
 二軸押出機(テクノベル社製)を用いて溶融混練温度200℃でポリ乳酸(Natureworks社製)/PEOxまたはPEOx20=95/5質量%のマスターペレットを作製し、得られたペレットをラボプラストミル(株式会社東洋精機製作所製)を用いて、成膜温度200℃とし100μmの易分解性樹脂組成物フィルムに製膜した。
(実施例B-1)
(a) 生分解性フィルム(脂肪族ポリエステル(A)成分の単体)に対するプロテアーゼの酵素活性測定
 proK酵素液12μlを加え分解液とした60mMリン酸緩衝液(pH4.7~9.0の範囲で11種類)10mlに2cm×2cm(45mg)に切り出したポリ乳酸フィルム(厚さ100μm)を浸し、37℃100rpmで4日間振とうさせた。4日後の分解量(mg)をフィルム分解活性値とした。ここで4日後の分解量とは分解開始時のフィルム重量(mg)-4日後のフィルム重量(mg)である。またフィルム重量測定は乾燥機で45℃一晩乾燥させ測定した値である。各pHのリン酸緩衝液中におけるフィルム分解活性は以下の通りであった。
Figure JPOXMLDOC01-appb-T000006
(b) 活性pH範囲の特定
 ポリ乳酸フィルムに対するプロテアーゼの最大活性値は、上記の表1およびこの内容を図示した図6の通り、pH6.0の60mMリン酸緩衝液を用いた場合の9.13であった。この最大活性値の30%以上である活性値2.7以上を示したpH5.0~pH7.2を、プロテアーゼを使用する場合の活性pH範囲と定めた。
(c) 易分解性樹脂組成物(脂肪族ポリエステル(A)および脂肪族ポリエステル(B’)を含む樹脂組成物)の分解
 proK酵素液12μlを加え分解液としたpH7.2、60mMリン酸緩衝液10mlに2cm×2cm(重量45mg)に切り出した易分解性樹脂組成物フィルム{脂肪族ポリエステル(B’)はPEOx}を浸し、37℃100rpmで7日間振とうさせた。pHの低下を避けるため、7日間を2日、2日、3日に分け、分解液を交換した。
(実施例B-2)
 実施例1の工程(c)を、pH7.0、60mMリン酸緩衝液を用いたほかは実施例B-1と同じ条件で行った。(実施例1と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH5.0~pH7.2である。)
(実施例B-3)
 実施例1の工程(c)を、pH6.5、60mMリン酸緩衝液を用いたほかは実施例B-1と同じ条件で行った。(実施例B-1と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH5.0~pH7.2である。)
(実施例B-4)
 前記リン酸緩衝液の代わりに蒸留水と、中和剤としての炭酸カルシウム22.5mg(和光純薬工業株式会社)を加えたほかは実施例B-1の工程(c)と同様に行った。(実施例B-1と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH5.0~pH7.2である。)最終のpHは6.5であった。
(比較例B-1)
 実施例B-1の工程(c)を、pH9、60mMリン酸緩衝液を用いたほかは実施例B-1と同じ条件で行った。(実施例B-1と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH5.0~pH7.2である。)
(比較例B-2)
 実施例B-1の工程(c)を、pH8.0、60mMリン酸緩衝液を用いたほかは実施例1と同じ条件で行った。(実施例B-1と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH5.0~pH7.2である。)
(比較例B-3)
 proK酵素液12μlを加え分解液としたpH6.5、60mMリン酸緩衝液10mlに2cm×2cm(重量45mg)に切り出した易分解性樹脂組成物フィルムを浸し、37℃100rpmで7日間振とうさせた。酵素液の交換は行わなかった。(実施例B-1と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH5.0~pH7.2である。)
(比較例B-4)
 実施例B-1の工程(c)を、pH4.7、60mMリン酸緩衝液を用いたほかは実施例B-1と同じ条件で行った。(実施例B-1と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH5.0~pH7.2である。)
 実施例B-1~4及び比較例B-1~4のpHの変動を図7に、また易分解性樹脂組成物の分解の結果を下記の表6に示す。
Figure JPOXMLDOC01-appb-T000007
分解工程中に分解液のpHが酵素が活性を示すpH5~7.2の範囲に常に入っている場合は○、それ以外は×とした。
酸触媒効果でpHが8以下の項目は○、8以上は×とした。
(実施例B-5)
(a) 生分解性フィルム(脂肪族ポリエステル(A)単体)に対するリパーゼCS2の酵素活性測定
 CLE酵素液48μlを加え分解液とした60mMリン酸緩衝液(pH3.0~8.0の範囲で11種類)10mlに2cm×2cm(45mg)に切り出したポリ乳酸フィルム(厚さ100μm)を浸し、37℃100rpmで4日間振とうさせた。4日後の分解量(mg)をフィルム分解活性値とした。ここで4日後の分解量とは分解開始時のフィルム重量(mg)-4日後のフィルム重量(mg)である。またフィルム重量測定は乾燥機で45℃一晩乾燥させ測定した値である。各pHのリン酸緩衝液中におけるフィルム分解活性は以下の通りであった。
Figure JPOXMLDOC01-appb-T000008
(b) 活性pH範囲の特定
 ポリ乳酸フィルムに対するリパーゼCS2の最大活性値は、上記の表3およびこの内容を図示した図8の通り、pH7.0の60mMリン酸緩衝液を用いた場合の15であった。この最大活性値の30%以上である活性値4.5以上を示したpH4.4~pH7.8を、リパーゼCS2を使用する場合の活性pH範囲と定めた。
(c) 易分解性樹脂組成物(脂肪族ポリエステル(A)および脂肪族ポリエステル(B’)を含む樹脂組成物)の分解
 CLE酵素液48μlを加え分解液としたpH7.0、60mMリン酸緩衝液10mlに2cm×2cm(重量45mg)に切り出した易分解性樹脂組成物フィルム{脂肪族ポリエステル(B’)はPEOx}を浸し、37℃100rpmで7日間振とうさせた。pHの低下を避けるため、7日間を2日、2日、3日に分け、分解液を交換した。
(実施例B-6)
 実施例B-5の工程(c)を、pH6.5、60mMリン酸緩衝液を用いたほかは実施例B-5と同じ条件で行った。(実施例B-5と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH4.4~pH7.8である。)
(実施例B-7)
 実施例B-5の工程(c)を、pH7.5、60mMリン酸緩衝液を用いたほかは実施例B-5と同じ条件で行った。(実施例B-5と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH4.4~pH7.8である。)
(実施例B-8)
 易分解性樹脂組成物フィルム{脂肪族ポリエステル(B’)はPEOx20}に代え、温度を45℃に代えた他は実施例5と同様に行った。初期のpHは7、終了時のpHは4.5であり、分解は活性pH範囲で行われた。
(比較例B-5)
 実施例5の工程(c)を、pH8、60mMリン酸緩衝液を用いたほかは実施例B-5と同じ条件で行った。(実施例B-5と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH4.4~pH7.8である。)
(比較例B-6)
 実施例B-5の工程(c)を、pH9、60mMリン酸緩衝液を用いたほかは実施例B-5と同じ条件で行った。(実施例B-5と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH4.4~pH7.8である。)
(比較例B-7)
 実施例B-5の工程(c)を、pH4.7、60mMリン酸緩衝液を用いたほかは実施例B-5と同じ条件で行った。(実施例B-5と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH4.4~pH7.8である。)
(比較例B-8)
 実施例B-5の工程(c)を、pH3.7、60mMリン酸緩衝液を用いたほかは実施例B-5と同じ条件で行った。(実施例B-5と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH4.4~pH7.8である。)
(比較例B-9)
 実施例B-5の工程(c)を、pH3.0、60mMリン酸緩衝液を用いたほかは実施例B-5と同じ条件で行った。(実施例B-5と同じ易分解性樹脂組成物を使用したため、活性pH範囲の範囲も同じくpH4.4~pH7.8である。)
(比較例B-10)
 易分解性樹脂組成物フィルム{脂肪族ポリエステル(B’)はPEOx20}に代えた他は実施例5と同様に行った。初期のpHは7、終了時のpHは5.1であり、分解は活性pH範囲で行われた。
 実施例B-5~7及び比較例5~9のpHの変動を図9に、また易分解性樹脂組成物の分解の結果を下記の表8に示す。
Figure JPOXMLDOC01-appb-T000009
分解工程中に分解液のpHが酵素が活性を示すpH4.4~7.8の範囲に常に入っている場合は○、それ以外は×とした。
酸触媒効果でpHが8以下の項目は○、8以上は×とした。
3.実施例C-1~5及び比較例C-1~4について以下の通り行った。
 使用した分解酵素の酵素反応液は以下のように調製した。
- proK(ProteinaseK)酵素反応液
 Tritirachium album由来ProteinaseK(和光純薬工業株式会社製)の粉末20mgを、50w/w%グリセリンを含む0.05MTris-HCl緩衝液(pH8.0)1mlに溶解させproK(ProteinaseK)酵素反応液を作成した。
- CLE酵素反応液
 独立行政法人酒類総合研究所から提供を受けたリパーゼ活性653U/mL を示すCryptococcus sp. S-2由来リパーゼCS2(特開2004-73123)酵素反応液を用いた。リパーゼ活性は基質としてパラニトロフェニルラウレートを用い測定した。ここでリパーゼ活性の1Uとは1μmol/minのパラニトロフェノールをパラニトロフェニルラウレートから遊離させた時の酵素量で定義される。
(ガラス転移温度の測定)
 ガラス転移温度(Tg)はセイコーインスツルメント株式会社製DSC6220(示差走査熱量測定)を用いて行った。測定条件は窒素雰囲気下、10℃/分の昇温速度で0~200℃まで測定した。サンプルは後述するPEOx、PEOx20とし、試料量5~10mgとした。
ポリエチレンオキサレート (PEOx)(脂肪族ポリエステル(B’))の合成
 マントルヒーター、攪拌装置、窒素導入管、冷却管を取り付けた300mLのセパラブルフラスコにシュウ酸ジメチル354g(3.0mol)、エチレングリコール223.5g(3.6mol)、テトラブチルチタネート0.30 gを入れ窒素気流下フラスコ内温度を110℃からメタノールを留去しながら170℃まで加熱し9時間反応させた。最終的に210mlのメタノールを留去した。その後内温150℃で0.1-0.5mmHgの減圧下で1時間攪拌し、内温170℃~190℃で7時間反応後、粘度が上がり取り出した。合成物のηinhは0.12であった。
 溶液粘度(ηinh)の測定は、120℃で一晩真空乾燥させた合成したポリエチレンオキサレートを用い、これをm-クロロフェノール/1,2,4-トリクロロベンゼン=4/1(重量比)混合溶媒に浸漬し、150℃で約10分溶解させ濃度0.4g/dlの溶液を作り、ついでウベローデ粘度計を用いて30℃で溶液粘度を測定した。(単位dl/g)
 また、上記のポリエチレンオキサレートのモノマーであるシュウ酸を0.005g/mlの濃度で溶解した水溶液のpHは1.6であった。
ポリオキサレート(PEOx20)の合成)
 シュウ酸ジメチル354g(3.0mol)の代わりにシュウ酸ジメチル94.5g(0.8mol)及びテレフタル酸ジメチル38.8g(0.2mol)を用いた以外は、上記PEOxの合成と同様の方法で合成した。
 GPC測定により、重量平均分子量 (Mw)は20000であった。GPCには、東ソー株式会社製HLC-8120を用い、カラムとしてTSKgel SuperHM-H×2及びガードカラムとしてTSKguard column SuperH-Hを用いた。カラムオーブンの温度を40℃とし、溶離液としてクロロホルムを用い、流速を0.5ml/minとした。また、サンプル注入量は15μlとした。スタンダードはクロロホルムにポリスチレンを溶解させたものを用いた。サンプル調整はクロロホルムを溶媒として濃度5mg/mlとし、フィルターろ過したものを用いた。
(PEOx、PEOx20の性質)
 モノマーであるシュウ酸は0.005g/ml濃度でpH1.6であり、PEOx、PEOx20は水溶液中で加水分解によりシュウ酸、またはシュウ酸オリゴマーを溶出する。
 ポリオキサレートのモノマー含有量とガラス転移温度
Figure JPOXMLDOC01-appb-I000010
易分解性樹脂組成物フィルム(脂肪族ポリエステル(A)+脂肪族ポリエステル(B’))の作製
 ポリ乳酸(Natureworks社製4032D)/PEOxまたはPEOx20=95/5質量%のマスターペレットを二軸押出機(テクノベル社製)を用いて200℃で溶融混合し、ラボプラストミル(株式会社東洋精機製作所製)を用いて、100μmと250μmの易分解性樹脂組成物フィルムを製膜した。
プロテアーゼKの活性pH範囲の特定
(a) 生分解性フィルム(脂肪族ポリエステル(A)成分の単体)に対するプロテアーゼKの酵素活性測定
 proK酵素液12μlを加え分解液とした60mMリン酸緩衝液(pH4.7~9.0の範囲で11種類)10mlに2cm×2cm(45mg)に切り出したポリ乳酸フィルム(厚さ100μm)を浸し、37℃100rpmで4日間振とうさせた。4日後の分解量(mg)をフィルム分解活性値とした。ここで4日後の分解量とは分解開始時のフィルム重量(mg)-4日後のフィルム重量(mg)である。またフィルム重量測定は乾燥機で45℃一晩乾燥させ測定した値である。各pHのリン酸緩衝液中におけるフィルム分解活性は以下の通りであった。
Figure JPOXMLDOC01-appb-T000011
(b) プロテアーゼKの活性pH範囲の特定
 ポリ乳酸フィルムに対するプロテアーゼKの最大活性値は、上記の表1およびこの内容を図示した図10の通り、pH6.0の60mMリン酸緩衝液を用いた場合の9.13であった。この最大活性値の30%以上である活性値2.7以上を示したpH5.0~pH7.2を、プロテアーゼKを使用する場合の活性pH範囲と定めた。
リパーゼCS2の活性pH範囲の特定
(a) 生分解性フィルム(脂肪族ポリエステル(A)単体)に対するリパーゼCS2の酵素活性測定
 CLE酵素液48μlを加え分解液とした60mMリン酸緩衝液(pH3.0~8.0の範囲で11種類)10mlに2cm×2cm(45mg)に切り出したポリ乳酸フィルム(厚さ100μm)を浸し、37℃100rpmで4日間振とうさせた。4日後の分解量(mg)をフィルム分解活性値とした。ここで4日後の分解量とは分解開始時のフィルム重量(mg)-4日後のフィルム重量(mg)である。
 またフィルム重量測定は乾燥機で45℃一晩乾燥させ測定した値である。各pHのリン酸緩衝液中におけるフィルム分解活性は以下の通りであった。
Figure JPOXMLDOC01-appb-T000012
(b) リパーゼCS2の活性pH範囲の特定
 ポリ乳酸フィルムに対するリパーゼCS2の最大活性値は、上記の表2およびこの内容を図示した図11の通り、pH7.0の60mMリン酸緩衝液を用いた場合の15であった。この最大活性値の30%以上である活性値4.5以上を示したpH4.4~pH7.8を、リパーゼCS2を使用する場合の活性pH範囲と定めた。
(実施例C-1)
 50mlのファルコンチューブに2cm×2cm(重量90mg厚さ250μm)に切り出した易分解性樹脂組成物フィルム(脂肪族ポリエステルB'にPEOxを用いた)と蒸留水30ml(中性)を加え、さらにproK酵素液36μl、炭酸カルシウム(和光純薬工業株式会社製、粒径10~15μm、)をフィルム重量の0.5倍量加えた。反応は37℃、200rpmで一週間行った。
(実施例C-2)
 温調、ヒーター、攪拌機を取り付けた3Lの水槽に5cm×5cmに切り出した易分解性樹脂組成物フィルム(枚数20枚、総重量12g厚さ250μm)と蒸留水3L(中性)を加え、さらにCLE酵素液15ml、キトサン(和光純薬工業株式会社製キトサン50、粒径30~300μm)をフィルム重量の1.5倍加えた。反応は37℃、500rpmで一週間行った。
(実施例C-3)
 キトサンを炭酸カルシウムに変えた他は実施例C-2と同様に行った。
(実施例C-4)
 25mlのガラスバイアル瓶に2cm×2cm(重量70mg厚さ150μm)に切り出した易分解性樹脂組成物フィルム(脂肪族ポリエステルB'にPEOx20を用いた)と蒸留水10ml(中性)を加え、さらにCLE酵素液48μl、炭酸カルシウム(和光純薬工業株式会社製、粒径10~15μm、)をフィルム重量の0.5倍量加えた。反応は45℃、100rpmで一週間行った。
(比較例C-1)
 炭酸カルシウムを加えなかった他は実施例C-1と同様に行った。
(比較例C-2)
 炭酸カルシウムを加えなかった他は実施例C-3と同様に行った。
(比較例C-3)
 分解温度を37℃に代えたほかは実施例4と同様に行った。
Figure JPOXMLDOC01-appb-T000013
 実施例C-1~3と比較例C-1と2の結果から分解液に酸中和剤を添加することでpHの低下を抑制でき、酵素活性が保たれることから分解量が増加することが分かった。また実施例4と比較例3の結果から分解温度を脂肪族ポリエステルB'のガラス転移温度以上にすることで分解量が増加することが分かった。
 続いて水に非相溶な酸中和剤と相溶な酸中和剤での分解能を検討するため以下の実験を行った。
(実施例C-5)
 25mlバイアル瓶に2cm×2cm(重量45mg厚さ100μm)に切り出した易分解性樹脂組成物フィルムと蒸留水10ml(中性)を加え、さらにproK酵素液12μl、炭酸カルシウムをフィルム重量の0.5倍加えた。反応は37℃、100rpmで一週間行った。
(比較例C-4)
 25mlのバイアル瓶に2cm×2cm(重量45mg厚さ100μm)に切り出した易分解性樹脂組成物フィルムと分解液(pH7.0リン酸緩衝液10ml、proK酵素液12μl)を加えた。反応は37℃、100rpmで一週間行い、分解液は2日、2日、3日の間隔で交換し行った。
Figure JPOXMLDOC01-appb-T000014
この結果から水に非相溶な酸中和剤と相溶な酸中和剤では非相溶な酸中和剤のほうが効果的に働くとこがわかった。比較例C-3の相溶な酸中和剤が易分解性樹脂組成物内に浸入し、酸を中和するために分解能が低下することを表している。
実施例A-1(左)と比較例A-14(右)との透明性を比較した写真である。 実施例A-3のHPLCチャートである。 分解試験4日後の分解率とSP値の相関を示すグラフである。 白濁物のFT-IRを示すグラフである。 HPLCの測定条件を示すグラフである。 proKのポリ乳酸フィルム分解活性を示す。 proKの酵素液で易分解性樹脂組成物を分解した際のpHの経時変化を示す。 CLEのポリ乳酸フィルム分解活性を示す。 CLEの酵素液で易分解性樹脂組成物を分解した際のpHの経時変化を示す。 proKのポリ乳酸フィルム分解活性を示す。 CLEのポリ乳酸フィルム分解活性を示す。

Claims (19)

  1.  生分解性酵素、緩衝剤、有機溶媒及び水を含有する分解液中で、生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法であって、前記有機溶媒のSP値が8.5未満であるか又は11.5を超える値であり、前記分解液中の有機溶媒の含有率(体積含率)が1%よりも多く15%未満である、前記生成方法。
  2.  前記有機溶媒がエタノールである、請求項1記載の生成方法。
  3.  前記生分解性樹脂が分解促進剤を含有する請求項1又は2記載の生成方法。
  4.  前記生成方法の分解温度が、分解促進剤のガラス転移温度-5℃以上である請求項3記載の生成方法。
  5.  前記分解促進剤が加水分解により酸を放出する請求項3または4記載の生成方法。
  6.  前記生分解性樹脂が、生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物である、請求項5記載の生成方法。
  7.  前記分解促進剤がポリオキサレートである請求項3から6の何れかに記載の生成方法。
  8.  前記生分解性樹脂がポリ乳酸樹脂である、請求項1から7の何れかに記載の生成方法。
  9.  生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物を分解する方法であって、
    (a) 脂肪族ポリエステル(A)の単体を緩衝液中で加水分解酵素によって分解する場合にその分解活性値を最大とする最大活性pH値を特定する工程、
    (b) 前記最大活性pH値における分解活性値の30%以上の分解活性値を与える活性pH範囲を定める工程、及び
    (c) 前記易分解性樹脂組成物を、加水分解酵素を含み、かつ、pHが前記活性pH範囲内、かつ、8.0未満である酵素反応液中で分解する工程であって、この分解工程中、前記酵素反応液のpHが、前記活性pH範囲内、かつ、8.0未満に維持される、工程、
    を含む、分解方法。
  10.  生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物の分解方法であって、前記易分解性樹脂組成物を、分解酵素、及び、酵素反応液に非相溶な酸中和剤を含む酵素反応液中で分解することを特徴とする、分解方法。
  11.  酵素反応中における酵素反応液のpHが、以下の工程(a')~(b')により定められる活性pH範囲内、かつ、8.0未満に維持されることを特徴とする、請求項10に記載の分解方法:
    (a') 脂肪族ポリエステル(A)の単体を緩衝液中で前記分解酵素によって分解する場合にその分解活性値を最大とする最大活性pH値を特定する工程、
    (b') 前記最大活性pH値における分解活性値の30%以上の分解活性値を与える活性pH範囲を定める工程。
  12.  酸中和剤が炭酸カルシウムまたはキトサンである、請求項10または11記載の分解方法。
  13.  分解温度が、前記脂肪族ポリエステル(B’)のガラス転移温度-5℃以上である、請求項9から12のいずれか1項記載の分解方法。
  14.  加水分解酵素がプロテアーゼ、リパーゼ、セルラーゼまたはクチナーゼである、請求項9から13のいずれか1項記載の分解方法。
  15.  脂肪族ポリエステル(B’)が放出する酸がシュウ酸またはマレイン酸である、請求項9から14のいずれか1項記載の分解方法。
  16.  易分解性樹脂組成物が、ポリ乳酸系樹脂中にポリオキサレートを分散させて得られるものである、請求項9から15のいずれか1項記載の分解方法。
  17.  生分解性を有する脂肪族ポリエステル(A)と、加水分解により酸を放出し、かつ、脂肪族ポリエステル(A)より分解速度が速い生分解性を有する脂肪族ポリエステル(B’)とを含む易分解性樹脂組成物を分解する分解液であって、分解酵素、及び、酵素反応液に非相溶な酸中和剤との混合液であることを特徴とする分解液。
  18.  酸中和剤が炭酸カルシウムまたはキトサンである、請求項17に記載の分解液。
  19.  加水分解酵素がプロテアーゼ、クチナーゼ、セルラーゼまたはリパーゼである、請求項17又は18に記載の分解液。
PCT/JP2009/068433 2008-10-27 2009-10-27 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法 WO2010050482A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16157855.4A EP3042961B1 (en) 2008-10-27 2009-10-27 Method for producing oligomer and/or monomer by degrading biodegradable resin
EP09823592.2A EP2348122B1 (en) 2008-10-27 2009-10-27 Method for producing oligomer and/or monomer by degrading biodegradable resin
US13/125,921 US8501445B2 (en) 2008-10-27 2009-10-27 Method for producing oligomer and/or monomer by degrading biodegradable resin
CN200980152955.6A CN102264912B (zh) 2008-10-27 2009-10-27 降解生物降解性树脂而生成低聚物和/或单体的方法
JP2009258658A JP5445756B2 (ja) 2008-11-12 2009-11-12 易分解性樹脂組成物の分解方法
JP2009258659A JP2010138390A (ja) 2008-11-12 2009-11-12 易分解性樹脂組成物の分解液および分解方法
US13/929,083 US8846355B2 (en) 2008-10-27 2013-06-27 Method for degrading biodegradable resin
US14/490,727 US9284432B2 (en) 2008-10-27 2014-09-19 Method for degrading a readily-degradable resin composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008275738 2008-10-27
JP2008-275738 2008-10-27
JP2008290320 2008-11-12
JP2008-290320 2008-11-12
JP2008-290321 2008-11-12
JP2008290321 2008-11-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/125,921 A-371-Of-International US8501445B2 (en) 2008-10-27 2009-10-27 Method for producing oligomer and/or monomer by degrading biodegradable resin
US13/929,083 Division US8846355B2 (en) 2008-10-27 2013-06-27 Method for degrading biodegradable resin

Publications (1)

Publication Number Publication Date
WO2010050482A1 true WO2010050482A1 (ja) 2010-05-06

Family

ID=42128843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068433 WO2010050482A1 (ja) 2008-10-27 2009-10-27 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法

Country Status (4)

Country Link
US (3) US8501445B2 (ja)
EP (2) EP2348122B1 (ja)
CN (1) CN102264912B (ja)
WO (1) WO2010050482A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132886A (ja) * 2008-10-27 2010-06-17 Toyo Seikan Kaisha Ltd 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法
JP2010138389A (ja) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd 易分解性樹脂組成物の分解方法
JP2010138390A (ja) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd 易分解性樹脂組成物の分解液および分解方法
JP2012077245A (ja) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd 生分解性樹脂組成物
US8501445B2 (en) 2008-10-27 2013-08-06 Toyo Seikan Kaisha, Ltd. Method for producing oligomer and/or monomer by degrading biodegradable resin
CN105683271A (zh) * 2013-09-27 2016-06-15 东洋制罐集团控股株式会社 生物分解性树脂的分解方法
JP2017099385A (ja) * 2011-06-17 2017-06-08 インビスタ テクノロジーズ エス.アー.エール.エル. 廃棄流中のモノマー含有量を増大させるためのヒドロラーゼの使用

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT2922906T (lt) * 2012-11-20 2019-02-11 Carbios Plastikinių gaminių perdirbimo būdas
JP6183039B2 (ja) * 2012-12-12 2017-08-23 東洋製罐株式会社 掘削用分散液及びこれを用いた採掘方法
CN104854215B (zh) * 2012-12-12 2018-03-13 东洋制罐集团控股株式会社 挖掘用分散液和使用分散液采掘地下资源的方法
US9744542B2 (en) 2013-07-29 2017-08-29 Apeel Technology, Inc. Agricultural skin grafting
JP6365811B2 (ja) * 2013-09-10 2018-08-01 東洋製罐株式会社 多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法
ES2924896T3 (es) * 2014-05-16 2022-10-11 Carbios Procedimiento para reciclar artículos de plástico mixto con PET
CN113667659A (zh) 2014-10-21 2021-11-19 卡比欧斯公司 具有聚酯降解活性的多肽及其用途
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
CA2975073C (en) * 2015-02-12 2019-10-15 Toyo Seikan Group Holdings, Ltd. Method of extracting underground resources by using hydrolysable particles
WO2016146540A1 (en) 2015-03-13 2016-09-22 Carbios New polypeptide having a polyester degrading activity and uses thereof
CN107709349B (zh) 2015-05-20 2022-01-28 阿比尔技术公司 植物提取物组合物和制备其的方法
US11198767B2 (en) 2015-06-12 2021-12-14 Carbios Process for preparing a biodegradable plastic composition
EP4129062A1 (en) 2015-09-16 2023-02-08 Apeel Technology, Inc. Method for forming a protective coating by applying fatty acid glyceride compounds to a surface
ES2797697T3 (es) 2015-12-10 2020-12-03 Apeel Tech Inc Proceso para despolimerizar cutina
EP3394264A1 (en) 2015-12-21 2018-10-31 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
WO2017132281A1 (en) 2016-01-26 2017-08-03 Apeel Technology, Inc. Method for preparing and preserving sanitized products
DE102016001910B4 (de) * 2016-02-18 2019-10-10 Viscose Faser Gmbh Verfahren zum Bereitstellen einer Pigmentmenge und Verwendung der damit bereitgestellten Pigmentmenge
EP3458508A1 (en) 2016-05-19 2019-03-27 Carbios A process for degrading plastic products
EP3541192A4 (en) 2016-11-17 2020-07-01 Apeel Technology, Inc. COMPOSITIONS MOLDED FROM PLANT EXTRACTS AND METHOD FOR THE PRODUCTION THEREOF
US10683399B2 (en) 2018-06-26 2020-06-16 Intrinsic Advanced Materials, LLC Biodegradable textiles, masterbatches, and method of making biodegradable fibers
CN109535467A (zh) * 2018-10-23 2019-03-29 东北林业大学 一种调控木纤维聚乳酸复合材料降解速率的方法
JP7415333B2 (ja) * 2019-05-16 2024-01-17 東洋製罐グループホールディングス株式会社 加水分解性樹脂の有機溶媒分散体
EP4114181A1 (en) 2020-03-04 2023-01-11 Apeel Technology, Inc. Coated agricultural products and corresponding methods
MX2023004343A (es) 2020-10-30 2023-05-08 Apeel Tech Inc Composiciones y metodos de preparacion de las mismas.
CN114591499B (zh) * 2022-03-17 2023-06-13 珠海麦得发生物科技股份有限公司 一种聚(r)-3-羟基丁酸酯的制备方法和应用
CN115093035A (zh) * 2022-06-21 2022-09-23 上海太和水科技发展股份有限公司 控制尾水湿地丝状藻孳生肉桂酸甲酯复合剂及其制备和使用方法
CN115537030A (zh) * 2022-09-27 2022-12-30 张大庆 一种亲水性壳聚糖复合物溶液的制备及在液态地膜中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512504A (ja) 1997-02-17 2001-08-21 バイエル・アクチエンゲゼルシヤフト 酵素を用いた生分解性ポリマー類の分解
WO2004013217A1 (ja) 2002-08-05 2004-02-12 Keio University ポリ乳酸の酵素解重合法、及び解重合生成物を用いるポリ乳酸の製造方法
JP2004073123A (ja) 2002-08-20 2004-03-11 National Research Inst Of Brewing リパーゼcs2遺伝子
JP2006124677A (ja) * 2004-10-01 2006-05-18 Mitsubishi Chemicals Corp 生分解性樹脂の分解処理液及びそれを用いた廃棄処理方法
WO2007029630A1 (ja) * 2005-09-07 2007-03-15 Japan Science And Technology Agency 新規なセラミダーゼ及びその利用
WO2008038648A1 (fr) 2006-09-26 2008-04-03 Toyo Seikan Kaisha, Ltd. Composition de résine rapidement dégradable et récipient biodégradable utilisant cette composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534091B2 (ja) * 1988-02-10 1996-09-11 日清デイー・シー・エー食品株式会社 イ―ストド―ナツの製造法
DE19619236A1 (de) * 1996-05-13 1997-11-20 Bayer Ag Abbau von biologisch abbaubaren Polyesteramiden mit Enzymen
JPH11241009A (ja) 1998-02-26 1999-09-07 Mitsui Chem Inc ポリ乳酸系樹脂組成物
JP2002293982A (ja) 2001-04-02 2002-10-09 Kanebo Ltd 生分解性ポリマーの分解促進剤及び分解促進方法並びに分解方法
JP2004058010A (ja) 2002-07-31 2004-02-26 Toyobo Co Ltd 生分解性樹脂製成形物を含む有機廃棄物の処理方法
JP2004269566A (ja) 2003-03-05 2004-09-30 Unitika Ltd 乳酸の回収方法
JP2004290130A (ja) 2003-03-28 2004-10-21 Mitsubishi Chemicals Corp ポリエステル構成成分モノマーの回収方法
US20050027081A1 (en) * 2003-07-29 2005-02-03 Ube Industries, Ltd., A Corporation Of Japan Polyoxalate resin and shaped articles and resin compositions comprising same
JP4649593B2 (ja) 2003-11-05 2011-03-09 独立行政法人産業技術総合研究所 ポリヒドロキシアルカノエート系樹脂の分解方法
JP2006104262A (ja) 2004-10-01 2006-04-20 Mitsubishi Chemicals Corp ポリエステル系樹脂成形体の分解処理方法
WO2010050482A1 (ja) 2008-10-27 2010-05-06 東洋製罐株式会社 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512504A (ja) 1997-02-17 2001-08-21 バイエル・アクチエンゲゼルシヤフト 酵素を用いた生分解性ポリマー類の分解
WO2004013217A1 (ja) 2002-08-05 2004-02-12 Keio University ポリ乳酸の酵素解重合法、及び解重合生成物を用いるポリ乳酸の製造方法
JP2004073123A (ja) 2002-08-20 2004-03-11 National Research Inst Of Brewing リパーゼcs2遺伝子
JP2006124677A (ja) * 2004-10-01 2006-05-18 Mitsubishi Chemicals Corp 生分解性樹脂の分解処理液及びそれを用いた廃棄処理方法
WO2007029630A1 (ja) * 2005-09-07 2007-03-15 Japan Science And Technology Agency 新規なセラミダーゼ及びその利用
WO2008038648A1 (fr) 2006-09-26 2008-04-03 Toyo Seikan Kaisha, Ltd. Composition de résine rapidement dégradable et récipient biodégradable utilisant cette composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYM. ENG. SCI., vol. 14, 1974, pages 147 - 154
See also references of EP2348122A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132886A (ja) * 2008-10-27 2010-06-17 Toyo Seikan Kaisha Ltd 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法
US8501445B2 (en) 2008-10-27 2013-08-06 Toyo Seikan Kaisha, Ltd. Method for producing oligomer and/or monomer by degrading biodegradable resin
US8846355B2 (en) 2008-10-27 2014-09-30 Toyo Seikan Kaisha, Ltd. Method for degrading biodegradable resin
US9284432B2 (en) 2008-10-27 2016-03-15 Toyo Seikan Kaisha, Ltd. Method for degrading a readily-degradable resin composition
JP2010138389A (ja) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd 易分解性樹脂組成物の分解方法
JP2010138390A (ja) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd 易分解性樹脂組成物の分解液および分解方法
JP2012077245A (ja) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd 生分解性樹脂組成物
JP2017099385A (ja) * 2011-06-17 2017-06-08 インビスタ テクノロジーズ エス.アー.エール.エル. 廃棄流中のモノマー含有量を増大させるためのヒドロラーゼの使用
CN105683271A (zh) * 2013-09-27 2016-06-15 东洋制罐集团控股株式会社 生物分解性树脂的分解方法
CN105683271B (zh) * 2013-09-27 2019-09-10 东洋制罐集团控股株式会社 生物分解性树脂的分解方法

Also Published As

Publication number Publication date
CN102264912A (zh) 2011-11-30
EP3042961B1 (en) 2021-05-19
US8846355B2 (en) 2014-09-30
US20130288322A1 (en) 2013-10-31
US8501445B2 (en) 2013-08-06
US9284432B2 (en) 2016-03-15
EP2348122B1 (en) 2016-04-13
EP2348122A1 (en) 2011-07-27
US20150010974A1 (en) 2015-01-08
CN102264912B (zh) 2016-01-06
EP2348122A4 (en) 2012-07-04
EP3042961A1 (en) 2016-07-13
US20110201069A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
WO2010050482A1 (ja) 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法
EP2080787B1 (en) Readily degradable resin composition, and biodegradable container using the same
Kumar et al. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review
Avérous et al. Biodegradable polymers
Jamshidian et al. Poly‐lactic acid: production, applications, nanocomposites, and release studies
JP5651932B2 (ja) 生分解性樹脂組成物
JP5630597B2 (ja) 生分解性樹脂成形体を含む有機系廃棄物の処理方法
WO2010055903A1 (ja) 生分解性樹脂組成物
JP5510892B2 (ja) 生分解性積層体及びそれを用いた生分解性容器
US20060216805A1 (en) Lactic acid, polylactic acid and biodegradable plastic
Fink The chemistry of bio-based polymers
US20230076881A1 (en) Resin composition and method for producing resin molded product
JP5656001B2 (ja) 生分解性多層容器
JP5582445B2 (ja) ポリオキサレート及びそれを含む生分解性樹脂組成物
JP5445756B2 (ja) 易分解性樹脂組成物の分解方法
JP5088699B2 (ja) 易分解性樹脂組成物の分解方法
JP2010138390A (ja) 易分解性樹脂組成物の分解液および分解方法
JP5696971B2 (ja) 生分解性樹脂の処理方法
JP5692484B2 (ja) ポリ乳酸樹脂の結晶化成形体及びその製造方法
JP2005041980A (ja) 樹脂用可塑剤及び該可塑剤を含む樹脂組成物、並びに、該樹脂組成物を成形してなる成形体
JP5382337B2 (ja) 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法
JP2005336226A (ja) 易分解性ポリ乳酸ステレオコンプレックス体およびこのものを含む生分解性高分子材料
Feijoo Domínguez et al. Development and characterization of fully renewable and biodegradable polyhydroxyalkanoate blends with improved thermoformability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152955.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13125921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009823592

Country of ref document: EP