WO2010050300A1 - 路面状態推定方法 - Google Patents

路面状態推定方法 Download PDF

Info

Publication number
WO2010050300A1
WO2010050300A1 PCT/JP2009/065592 JP2009065592W WO2010050300A1 WO 2010050300 A1 WO2010050300 A1 WO 2010050300A1 JP 2009065592 W JP2009065592 W JP 2009065592W WO 2010050300 A1 WO2010050300 A1 WO 2010050300A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
band
sound
measurement waveform
determination condition
Prior art date
Application number
PCT/JP2009/065592
Other languages
English (en)
French (fr)
Inventor
泰通 若尾
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP09823413.1A priority Critical patent/EP2343522B1/en
Priority to US13/125,924 priority patent/US8737628B2/en
Priority to JP2010535723A priority patent/JP5436442B2/ja
Publication of WO2010050300A1 publication Critical patent/WO2010050300A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions

Definitions

  • a currently running road surface condition is selected from a plurality of predetermined road surface conditions based on a sound detection signal from a contact surface sound detecting means for detecting a sound near a tire contact surface of a running vehicle.
  • the present invention relates to a road surface state estimation method to be estimated.
  • the road surface state that changes according to the weather is monitored, and management is performed so that the road surface can be used safely according to the road surface state.
  • a road surface management vehicle probe car
  • a road surface management vehicle probe car
  • the visual inspection by humans there is a problem that the judgment is not correct or a lot of labor is required. Therefore, it is required to easily and accurately determine the state of the road surface.
  • Patent Document 1 For such a problem, for example, in Patent Document 1, an average value of the sound pressure level in a set frequency region is calculated, and a considerably wet road surface, a slightly wet road surface, or a dry surface is calculated according to the sound pressure level.
  • a method for determining either an asphalt road surface or an ice burn is disclosed.
  • Patent Document 2 discloses a frequency region (for example, 1 to 2 kHz) in which the frequency analysis data changes characteristically depending on the road surface state and a frequency region (for example, 0.5 to 1 kHz) in which the frequency analysis data does not change much depending on the road surface state. It is disclosed that a ratio of average values of sound pressure levels in each region is selected and a ratio of the average value is determined, and for example, it is determined whether the road surface is a flooded road surface or a dry road surface.
  • An object of the present invention is to provide a road surface state estimation method capable of estimating a road surface state that is currently running from the road surface state, and an apparatus and system used therefor.
  • ⁇ 1> indicates a currently running road surface condition from a plurality of predetermined road surface conditions based on a sound detection signal from a ground contact surface sound detecting means for detecting a sound near the tire ground contact surface of a running vehicle.
  • a frequency distribution waveform is calculated using a 1 / N octave analysis from the sound detection signal when the vehicle is driven, and the calculated frequency distribution waveform (hereinafter referred to as “measurement waveform”).
  • a road surface state estimating method characterized in that, when detecting the sound, a microphone disposed in a container is used, and the determination condition is set so as to be applied to the measurement waveform including resonance sound from the container. .
  • ⁇ 3> is the measurement waveform
  • the minimum value of the sound pressure value of the band on the higher frequency side than the band including the frequency band of the resonance sound by the container (hereinafter referred to as “container resonance sound band”) is the band on the lower frequency side of the container resonance sound band.
  • the first judgment condition is that the sound pressure value is greater than the minimum value of Two bands having a minimum value including a minimum sound pressure value are included in a frequency region of five bands including a band having a minimum sound pressure value among bands on a lower frequency side than the container resonance sound band.
  • the third determination condition is that the sound pressure value of the second band from the bottom of the frequency is larger than any of the sound pressure values of other bands on the lower frequency side than the container resonance sound band band
  • the container resonance sound band is a band X
  • the band having the lowest frequency is band Y, and all the bands between band X and band Y have a sound pressure value higher than the straight line connecting the sound pressure value of band X and the sound pressure value of band Y.
  • ⁇ 4> is the road surface state estimation method according to claim 3, wherein when the measurement waveform satisfies a first determination condition, the road surface corresponding to the measurement waveform is estimated to be in a wet state.
  • ⁇ 5> is the road surface state estimation method according to claim 3, wherein when the measurement waveform satisfies a second determination condition, the road surface corresponding to the measurement waveform is estimated to be in an ice state.
  • ⁇ 6> is the method according to claim 3, wherein when the measurement waveform satisfies at least one of the third determination condition and the fourth determination condition, the road surface corresponding to the measurement waveform is estimated to be in a dry state.
  • Road surface condition estimation method is the method according to claim 3, wherein when the measurement waveform satisfies at least one of the third determination condition and the fourth determination condition, the road surface corresponding to the measurement waveform is estimated to be in a dry state.
  • ⁇ 8> is a first step in which the measurement waveform is determined according to the first determination condition, and when the measurement waveform satisfies the first determination condition, the road surface corresponding to the measurement waveform is in a wet state. Presumed that there is When the measurement waveform does not satisfy the first determination condition in the determination in the first step, the measurement waveform is determined according to the second determination condition as the second step after the first step, When the measurement waveform satisfies the second determination condition, it is estimated that the road surface corresponding to the measurement waveform is in an ice state, When the measurement waveform does not satisfy the second determination condition in the determination in the second step, the measurement waveform according to the third determination condition and the fourth determination condition is set as a third step after the second step.
  • the road surface corresponding to the measurement waveform is estimated to be in a dry state
  • the road surface corresponding to the measurement waveform is estimated to be a sherbet or a snow road state.
  • a frequency distribution waveform is calculated using a 1 / N octave analysis from the sound detection signal when the vehicle is driven, and the calculated measurement waveforms include the plurality of measurement waveforms.
  • the road surface condition during traveling is estimated by determining whether or not a predetermined determination condition is satisfied for each of the road surface conditions, as detailed below, it is finely divided into wet, dry, ice, sherbet, etc. From the classified road surface conditions, it is possible to estimate the road surface condition that is currently running with high accuracy.
  • the resonance sound associated with road noise is reduced and a uniform sound is produced on the same type of road surface.
  • a pressure spectrum can be obtained, and road surface determination can be made robust.
  • a microphone placed in the container is used, so that it is possible to prevent the microphone from being damaged immediately when it hits a stone flying from the road surface or when it is splashed with water. can do.
  • the determination condition is set so as to be applied to the measurement waveform including the resonance sound by the container, the waveform obtained by determining the waveform as it is obtained without the need to perform the operation such as separation of the resonance sound is determined. Can be estimated.
  • ⁇ 2> since the sound from the front of the rear wheel of the vehicle is used when detecting the sound, the road surface condition can be determined more accurately. This is because when the sound from the front wheel that disturbs the road surface condition first is used, there is a problem that unnecessary sound, such as sound that hardens snow on a snowy road, will be heard as noise. This is because it is easy to collect pure road noise because it enters the road surface with the road surface already calmed down.
  • ⁇ 5> when each of the measurement waveforms satisfies a clearly defined second determination condition, the road surface corresponding to the measurement waveform is estimated to be in an ice state. Can be estimated.
  • FIG. 1 is a schematic diagram illustrating a road surface state estimation device used in a road surface state estimation method according to an embodiment of the present invention.
  • the road surface state estimation device 10 is based on a road surface state estimation sound detection device 20 that detects sound near the tire ground contact surface of a running vehicle, and the sound detection signal based on the sound detection signal obtained from the sound detection device 20.
  • a calculation device 2 is provided that calculates a frequency distribution waveform and uses it as a measurement waveform, and estimates the road surface currently running by determining the characteristics of the measurement waveform based on preset determination conditions. .
  • the road surface state estimation device 10 can also include a display device 3 for notifying the driver of the road surface state during traveling. Furthermore, if the road surface state is classified into a predetermined dangerous state, an alarm device (not shown) that issues an alarm to the driver can be provided. In this case, as an alarm, sound, light, Forms such as vibration can be used.
  • the road surface state estimation sound detection device 20 includes the microphone 1 that constitutes the ground surface sound detection means and the container 4 that accommodates the microphone 1. It is possible to prevent the microphone from being damaged immediately when it comes into contact with stones coming in or when it is splashed with water. At this time, the resonance sound from the container is also collected, but in estimating the road surface, the frequency distribution waveform including the resonance sound from the container is used as a reference, so the waveform as obtained is used. It is possible to estimate the road surface.
  • the resonance frequency of the container is preferably 800 to 1600 Hz. If it is within this frequency range, the determination condition set in advance can be used as it is.
  • the container 4 includes, for example, a container body 5, a cover 6 separated from the container body 5, a container body 5, and a sponge-like elastic body 7 that elastically connects the cover 6.
  • a container body 5 a container body 5
  • a cover 6 separated from the container body 5 a container body 5
  • a sponge-like elastic body 7 that elastically connects the cover 6.
  • the road surface state estimating sound detection device 20 is attached to the rear wheel. This is because the rear wheel enters the road surface in a state where the road surface is already calm compared to the front wheel. This makes it easier to make a difference in sound depending on the road surface condition such as dry, wet and ice, and can greatly improve the accuracy of estimation of the road surface condition. Moreover, it is more preferable to attach the microphone to the front rather than to the rear of the rear wheel. If it is attached to the rear, water splashes and mud splashes will hit the microphone and noise will be generated easily. .
  • the frequency distribution waveform there is a frequency distribution waveform processed by 1 / N octave analysis in addition to using a frequency distribution waveform using an FFT analyzer as it is.
  • 1 / N octave analysis is performed.
  • the arithmetic device 2 determines whether or not the waveform satisfies one or more predetermined determination conditions, and depending on the result, in which state the road surface condition is Estimate if there is.
  • a predetermined relationship is set in advance for the sound pressure values of two or more bands. Good.
  • the road surface state currently being traveled determines one of four road surface states set in advance: wet, ice, dry, and sherbet / snow.
  • the road surface state estimation sound detection device 20 the one shown in FIG. 1 is used, and the dimensions of the container 4 are set so that the resonance frequency is 800 to 1600 Hz.
  • the resonance frequency was 800 to 1600 Hz.
  • FIG. 2 is a graph showing a measurement waveform for a wet state as a one-third octave analysis waveform.
  • the horizontal axis represents frequency
  • the vertical axis represents sound pressure value in units of dB, and 1 for each bandwidth.
  • Two bars are arranged in order from the lowest frequency, each bar is a band, and the height of this bar represents the sound pressure value for each band.
  • the measurement waveform is represented by a third octave analysis waveform.
  • the sound generated from the road surface is a sound that spreads to a high frequency range when the block collides with the water film, so this analysis waveform has a vessel resonance sound band around 1000 Hz, i.e. It is characteristic that the attenuation in the region beyond it is small.
  • the minimum value of the sound pressure value of the band on the higher frequency side than the container resonance sound band is larger than the minimum value of the sound pressure value of the band on the lower frequency side than the container resonance sound band. Is the first determination condition.
  • the sound pressure value of the band corresponding to the arrow A which is the band having the minimum sound pressure value on the higher frequency side than the container resonance sound band
  • the first determination condition is that the sound pressure value of the band corresponding to the arrow B, which is the band having the minimum sound pressure value on the lower frequency side than the band, is higher.
  • FIG. 3 is a graph showing a measurement waveform with respect to the ice condition.
  • the measurement waveform is characterized by a small peak generated in the vicinity of 300 to 500 Hz due to the slip of the block at the time of depression.
  • a minimum sound pressure value is included in a frequency band of 5 bands including a band having a minimum sound pressure value among bands on a lower frequency side than the container resonance sound band except for the DC component. It is characteristic that two bands are included, and this is the second determination condition.
  • the second determination condition is that two bands (bands corresponding to arrows C and F respectively) having extremely small sound pressure values are included in the frequency domain.
  • the band corresponding to arrow C is a band having a minimum sound pressure value because it is smaller than the bands corresponding to arrows E and D on both sides of the band.
  • the band corresponding to arrow F is also a minimum sound. It is a band having a pressure value.
  • FIG. 4 shows the first pattern of the measurement waveform indicated by the road surface in the dry state.
  • the first pattern in the case where the road surface is in a dry state is that the sound pressure value of the lowest frequency band excluding the band consisting of the DC component of zero frequency, that is, the second lowest frequency band is the container resonance sound band.
  • the third determination condition is that the measurement waveform has this characteristic that it is larger than any of the sound pressure values of other bands having a frequency lower than that of the band.
  • the third determination condition is that the sound pressure value of the band corresponding to the arrow G located second from the bottom is higher than the sound pressure value of any other band. .
  • FIG. 5 shows the second pattern of the measurement waveform indicated by the road surface in the dry state. Even when the road surface is in the dry state, the measurement waveform may not satisfy the third determination condition.
  • the determination condition will be described with reference to FIG. 5.
  • the container resonance sound band (arrow X) is defined as band X, and the sound pressure value is the minimum value of the band on the lower frequency side than the container resonance sound band (indicated by arrow J).
  • the band X and the band Y are defined as a band Y having the lowest frequency (arrow Y) among the bands on the higher frequency side than the container resonance sound band having a sound pressure value lower than the sound pressure value of the corresponding band.
  • FIG. 6 is a measurement waveform indicated by a road surface in a sherbet state or a snow road state, and this road surface has a characteristic that none of the first to fourth determination conditions described above is satisfied.
  • the determination is performed as described above using only the first determination condition.
  • the determination is performed as described above using only the second determination condition, and the determination is performed using only the third determination condition and the fourth determination condition when determining whether or not the road surface is in the dry state.
  • the case where the measurement waveform satisfies two or more determination conditions at the same time is also considered. Thus, it is preferable to estimate as described below.
  • FIG. 7 is a flowchart showing an example of a road surface state estimation process optimized for such a purpose.
  • the arithmetic unit 2 After receiving the calculation start signal (start), the arithmetic unit 2 first determines whether or not the first determination condition in the measurement waveform is satisfied as shown in FIG. 7 (step 1), and as a result, the measurement waveform Is determined to satisfy the first determination condition, it is estimated that the road surface is in a wet state. On the other hand, if it is determined in step 1 that the first determination condition is not satisfied, it is determined whether the measurement waveform satisfies the second determination condition (step 2), and as a result, the measurement waveform is determined to be the second determination condition. If it is determined that the condition is satisfied, the road surface is estimated to be in an ice state.
  • step 3 it is determined whether the measurement waveform satisfies the third determination condition. If it is determined that the road surface is, it is estimated that the road surface is in a dry state. If it is determined in step 3 that the third determination condition is not satisfied, it is determined whether the measurement waveform satisfies the fourth determination condition (step 4). As a result, the measurement waveform satisfies the fourth determination condition. If it is determined that the road surface is, it is estimated that this road surface is also in a dry state. If it is determined in step 4 that the measured waveform does not satisfy the fourth determination condition, it is estimated that the road surface is a sherbet state or a snow road state, and the road surface state estimation process is completed.
  • the road surface state estimation device 10 as described above is used, and the following road surface estimation system can be exemplified. That is, this is equipped with a road surface state estimation device 10 including a road surface state estimation sound detection device 20 in order to estimate a road surface state within a predetermined area, and using this device 10, the road surface state during traveling And a base station that indicates the position of the road surface to be estimated to each of the probe cars, the probe car is set independently or an instruction from the base station
  • the road surface position data set based on the road surface and the road surface state data estimated for the road surface are transmitted to the base station, and the base station receives the data transmitted from the probe car and adds based on the received data.
  • the position of the road surface to be estimated is determined and the probe car to be estimated is determined, and the position of the road surface to be estimated is transmitted to the determined probe car. That. If such a system is comprised, the road surface in an area can be estimated efficiently.
  • a four-wheel drive vehicle was used as the test vehicle, and a microphone housed in a container was installed at the bottom of the vehicle in a posture that can collect the sound in front of the rear wheels.
  • the evaluation results are shown in Table 1. In the table, the ratio is expressed in%.
  • the accuracy rate for road surfaces other than sherbet is 80%, indicating a high accuracy rate.
  • the road surface state estimation device as described above is used, for example, to manage a snowy road surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

 走行中の車両のタイヤ接地面付近の音を検出する接地面音検出手段からの音検出信号に基づいて、確実にしかも、細かく分類された路面状態の中から、正確に、現在走行中の路面状態を推定することのできる路面状態推定方法を提供する。  路面状態推定用音検出装置20から得られる音検出信号に基づいてN分の1オクターブ解析を用いて周波数分布波形を算出し、算出された前記周波数分布波形が、前記複数の路面状態の各々について予め設定された判定条件を満たしているか否かを判定することにより走行中の路面状態を推定し、前記音を検出する際、容器内に配置されたマイクを用いるとともに、前記判定条件を、前記容器による共鳴音を含めて前記周波数分布波形に適用するように設定する。

Description

路面状態推定方法
 本発明は、走行中の車両のタイヤ接地面付近の音を検出する接地面音検出手段からの音検出信号に基づいて、予め定められた複数の路面状態の中から現在走行中の路面状態を推定する路面状態推定方法に関する。
 走行中の車両が接地している路面の状態をリアルタイムに検知することは極めて有意義であり、この情報を運転者に伝えることにより走行時の安全性を向上させ、また、路面状態を知ることによりアンチロックブレーキシステムを効果的に作動させることができる等の効果を生み出すことができる。路面状態を検知する方法として、スリップ率を測定し、それから求められる摩擦係数に基づく方法も提案されているが、求められた摩擦係数は、特にスリップ率が小さなときには信頼性が極めて低いため、路面の推定がうまく行えないという問題があり、その対応策として、路面によってタイヤが路面に接地する際の音が変化することを利用して、タイヤ接地面付近の音を検出し、この検知音の周波数分析データに基づいて路面を判定する提案が行われている。
 また、天候に応じて変化する路面状態を監視し、路面状態に応じて、その路面を安全に使用できるよう管理することが行われている。例えば、路面管理車両(プローブカー)を走らせて常時路面の状態を監視し、雪等が降り出した場合には、融雪剤を散布する指示を出すことが行われているが、従来、路面の推定は、人による目視等に依存し、判断が正しくなかったり、多大の労力を要するというような問題もあり、簡易にしかも精度良く路面の状態を判定することが求められていた。
 このような問題に対して、例えば、特許文献1には、設定した周波数領域での音圧レベルの平均値を算出し、この音圧レベルによって、かなり濡れた路面、やや濡れた路面、乾燥したアスファルト路面、および、アイスバーンのいずれかを判定する方法が開示されている。また、特許文献2には、路面状態によって周波数分析データが特徴的に変化する周波数領域(例えば1~2kHz)と、路面状態によって周波数分析データが余り変化しない周波数領域(例えば0.5~1kHz)とを選択し、それぞれの領域における音圧レベルの平均値の比を求め、この比の大きさによって、例えば冠水路面状態か、乾燥路面状態かを判定することが開示されている。
特開平6-174543号公報 特開平8-261993号公報
 しかしながら、特許文献1に開示された路面状態の推定方法においては、比較の方法として、1つの周波数領域に限定してそれらを比較しており、設定された周波数領域では同程度の強度を示していても、別の周波数領域では強度が全く異なっていることがあり、その結果、例えば、平滑な乾燥アスファルト路と、やや濡れた路面との違いを区別できないことがわかった。また、特許文献2に開示された路面状態の推定方法においては、判定できる路面状態が、例えば2種類しかないので、極めて少ないところに問題がある。
 本発明は、このような問題点に鑑みてなされたものであり、走行中の車両のタイヤ接地面付近の音を検出する接地面音検出手段からの音検出信号に基づいて、細かく分類された路面状態の中から、現在走行中の路面状態を推定することのできる路面状態推定方法、および、それに用いられる装置ならびにシステムを提供することを目的とする。
 <1>は、走行中の車両のタイヤ接地面付近の音を検出する接地面音検出手段からの音検出信号に基づいて、予め定められた複数の路面状態の中から現在走行中の路面状態を推定する路面状態推定方法において、
 前記音検出信号として、車両を走行させたときの前記音検出信号からN分の1オクターブ解析を用いて周波数分布波形を算出し、算出された前記周波数分布波形(以下、「測定波形」という)が、前記複数の路面状態の各々について予め設定された判定条件を満たしているか否かを判定することにより走行中の路面状態を推定し、
 前記音を検出する際、容器内に配置されたマイクを用いるとともに、前記判定条件を、前記容器による共鳴音を含めて前記測定波形に適用するように設定することを特徴とする路面状態推定方法。
 <2>は、前記音を検出する際、車両の後輪前方からの音を用いることを特徴とする請求項1に記載の路面状態推定方法。
 <3>は、前記測定波形において、
 前記容器による共鳴音の周波数帯域が含まれるバンド(以下、「容器共鳴音帯域バンド」という)より高周波数側のバンドの音圧値の最小値が、容器共鳴音帯域バンドより低周波数側のバンドの音圧値の最小値より大きいことを第1判定条件とし、
 前記容器共鳴音帯域バンドより低周波数側のバンドのうち音圧値が最小のバンドを含む5バンドの周波数領域に、音圧値が最小値を含む極小値を有するバンドが2つ含まれることを第2判定条件とし、
 周波数が下から2番目のバンドの音圧値が、前記容器共鳴音帯域バンドより低周波数側の他のバンドの音圧値のいずれよりも大きいことを第3判定条件とし、
容器共鳴音帯域バンドをバンドXとし、容器共鳴音帯域バンドより低周波数側のバンドの音圧値の最小値よりも低い音圧値を有する容器共鳴音帯域バンドより高周波数側のバンドのうち、最も周波数が低いバンドをバンドYとして、バンドXとバンドYとの間の全部のバンドが、バンドXの音圧値とバンドYの音圧値とを結んだ直線より高い音圧値を有することを第4判定条件とし、
前記第1~第4判定条件の少なくとも1つを用いて、路面状態を推定する請求項1又は2に記載の路面状態推定方法。
 <4>は、前記測定波形が第1判定条件を満たしている場合、前記測定波形に対応する路面をウエット状態であると推定する請求項3に記載の路面状態推定方法。
 <5>は、前記測定波形が、第2判定条件を満たしている場合、前記測定波形に対応する路面をアイス状態であると推定する請求項3に記載の路面状態推定方法。
 <6>は、前記測定波形が、第3判定条件および第4判定条件の少なくとも1つを満たしている場合、前記測定波形に対応する路面をドライ状態であると推定する請求項3に記載の路面状態推定方法。
 <7>は、前記測定波形が、第1~第4判定条件のいずれも満たさない場合、前記測定波形に対応する路面をシャーベット又は雪路状態であると推定する請求項3に記載の路面状態推定方法。
 <8>は、第1ステップとして、前記第1判定条件による前記測定波形の判定を行い、前記測定波形が、第1判定条件を満たしている場合、前記測定波形に対応する路面をウエット状態であると推定し、
 前記測定波形が、第1ステップでの判定において前記第1判定条件を満たしていない場合には、第1ステップのあと、第2ステップとして、前記第2判定条件による前記測定波形の判定を行い、前記測定波形が第2判定条件を満たしている場合、前記測定波形に対応する路面をアイス状態であると推定し、
 前記測定波形が、第2ステップでの判定において前記第2判定条件を満たしていない場合には、第2ステップのあと、第3ステップとして、前記第3判定条件および第4判定条件による前記測定波形の判定を行い、前記測定波形が、第3判定条件および第4判定条件の少なくとも1つを満たしている場合、前記測定波形に対応する路面をドライ状態であると推定し、
 前記測定波形が、第3ステップでの判定において第3判定条件および第4判定条件のいずれも満たしていない場合には、前記測定波形に対応する路面をシャーベット又は雪路状態であると推定する請求項3に記載の路面状態推定方法。
 <1>によれば、前記音検出信号として、車両を走行させたときの前記音検出信号からN分の1オクターブ解析を用いて周波数分布波形を算出し、算出された測定波形が、前記複数の路面状態の各々について予め設定された判定条件を満たしているか否かを判定することにより走行中の路面状態を推定するので、詳細を後述するように、ウエット、ドライ、アイス、シャーベット等と細かく分類された路面状態の中から、現在走行中の路面状態を高精度に推定することができる。特に、解析する周波数分布波形として、3分の1オクターブ分布波形など、N分の1オクターブ分布波形を用いることによって、ロードノイズに伴う共振音を低減して同じ種類の路面に対して均一な音圧スペクトルを得ることができ、路面判定をロバストなものにすることができる。
 また、前記音を検出する際、容器内に配置されたマイクを用いるので、路面から飛んでくる石等がぶつかる場合や、水が直接かかることにより、マイクがすぐに破損してしまうのを防止することができる。
 この場合、前記判定条件を、この容器による共鳴音含めて前記測定波形に適用するように設定するので、共鳴音の分離等の操作を行う必要もなく得られたままの波形を判定して路面を推定することが可能となる。
 <2>によれば、前記音を検出する際、車両の後輪前方からの音を用いるので、路面状態の判定をさらに正確に行うことができる。これは、路面状態を最初に乱す前輪からの音を用いた場合には、例えば雪路において雪を固める音など、不要な音が雑音としてはいっていしまうという問題があるのに対して、後輪は既に路面が沈静化した状態で路面に進入するので、純粋なロードノイズを採取しやすいからである。
 <3>によれば、前述のように明確に定義された第1~第4判定条件の少なくとも1つを用いて、路面状態を推定するので、推定をばらつきのないものにすることができる。
 <4>によれば、前記測定波形が、明確に定義された第1判定条件を満たしている場合、前記測定波形に対応する路面をウエット状態であると推定するので、ウエット状態を精度良く推定することができる。
 <5>によれば、前記測定波形が、それぞれ明確に定義された第2判定条件を満たしている場合、前記測定波形に対応する路面をアイス状態であると推定するので、アイス状態を精度良く推定することができる。
 <6>によれば、前記測定波形が、それぞれ明確に定義された、第3又は第4判定条件のいずれかを満たしている場合、前記測定波形に対応する路面をドライ状態であると推定するので、ドライ状態を精度良く推定することができる。
 <7>によれば、前記測定波形が、第1~第4判定条件のいずれも満たしていない場合、ウエット、アイス、ドライのいずれの状態でもない状態と判定されることになり、これは、シャーベット又は雪路状態に対応するので、シャーベット又は雪路状態を精度良く推定することができる。
 <8>によれば、前記の通り、前記第1~第3ステップをこの通りの順序で行うので、測定波形が、第1~第4の判定条件の2つ以上を満たしている場合でも、より確率の高い状態を択一的に推定することができ、推定の精度を一層高めることができる。
本発明に係る実施形態の路面状態推定方法に用いられる路面状態推定装置の構成を示すブロック線図である。 ウエット路面の典型的な測定波形を示すグラフである。 アイス路面の他の典型的な測定波形を示すグラフである。 第3特徴点を有するドライ路面の典型的な測定波形を示すグラフである。 第4特徴点を有するドライ路面の典型的な測定波形を示すグラフである。 シャーベット路面の測定波形を例示するグラフである。 路面状態推定プロセスの例を示すフローチャートである。
 本発明の実施形態について図に基づいて説明する。図1は、本発明に係る実施形態の路面状態推定方法に用いられる路面状態推定装置を示す模式図である。路面状態推定装置10は、走行中の車両のタイヤ接地面付近の音を検出する路面状態推定用音検出装置20と、音検出装置20から得られる音検出信号に基づいて、前記音検出信号から周波数分布波形を算出してこれを測定波形とし、この測定波形が有する特徴を予め設定した判定条件に基づいて判定することにより現在走行中の路面を推定する演算装置2とを具えて構成される。また、路面状態推定装置10は、これらに加えて、走行中の路面状態を運転者に知らせるための表示装置3を具えることもできる。さらに、路面状態が予め定めた危険な状態に分類されるものであれば、運転者に警報を発する警報装置(図示せず)を設けることもでき、この場合の警報としては、音、光、振動などの形態を用いることができる。
 ここで、路面状態推定用音検出装置20は、これを、接地面音検出手段を構成するマイク1と、マイク1を収容する容器4とで構成するのが好ましく、このことによって、路面から飛んでくる石等がぶつかる場合や、水が直接かかることにより、マイクがすぐに破損してしまうのを防止することができる。このとき、容器による共鳴音も合わせて集音することになるが、路面の推定においては、この容器による共鳴音をも含めた周波数分布波形を基準とするので、得られたままの波形を用いて路面を推定することが可能となる。
 容器の共鳴周波数としては、800~1600Hzとするのが好ましく、この周波数の範囲ならば、予め設定された前記の判定条件をそのまま用いて判定することができる。
 この場合、容器4は、例えば、容器本体5と、容器本体5から切り離されたカバー6、容器本体5およびカバー6を弾性的に連結するスポンジ状弾性体7とで構成することにより、外からの音を、スポンジ状弾性体7の空隙を通過させて、容器4の内部のマイク1で集音することができ、同時に、カバー6を容器本体5で弾性支持することができる。
 また、路面状態推定用音検出装置20は、これを後輪に取付けるのが好ましく、これは、前輪に比べて後輪は既に路面が沈静化した状態で路面に進入するので、純粋なロードノイズを採取しやすいことによるものであり、このことによって、ドライ、ウェット、アイス等の路面状態による音の違いを出しやすくなり、路面状態の推定の正確度を大幅に向上させることができる。また、マイクは、後輪の後方ではなく前方に取り付けるのがさらに好ましく、もし、これを後方に取り付けた場合には、水はねや泥はねがマイクにぶつかりノイズが発生しやすくなってしまう。
 ここで、周波数分布波形としては、FFTアナライザを用いた周波数分布波形をそのまま用いる他、N分の1オクターブ分析により加工した周波数分布波形などがあるが、本発明においては、N分の1オクターブ分析により加工した周波数分布波形を用いており、このことによって、ロードノイズに伴う共振音の影響を弱めて同じ状態の路面に対して均一な音圧スペクトルを得ることができ、特に、Nを3として、3分の1オクターブ分布波形を用いることにより、音圧分布の均一性と分解能との両立を図ることができる。
 演算装置2は、測定波形を算出した後、その波形を、予め定められた1以上の判定条件について、これを満たしているか否かを判定し、その結果に応じて、路面状態がどの状態であるか推定する。この判定条件としては、周波数の大きさ順に並べられたN分の1オクターブごとの帯域をバンドと呼ぶとき、2以上のバンドの音圧値の相互について予め設定された所定の関係とするのがよい。
 現在走行中の路面状態が、予め設定した、ウェット、アイス、ドライ、およびシャーベット/雪の4つの路面状態のどれかを判定する場合を例にとって、以下に詳細を説明する。なお、路面状態推定用音検出装置20としては、図1に示したものを用い、容器4の寸法は、共鳴周波数が800~1600Hzとなるように設定し、具体的には、容器は、直径が50mm程度で長さが200mm程度のものを作成し、共鳴周波数が約1000Hzとなるようにした。
 図2は、ウェット状態に対する測定波形を3分の1オクターブ分析波形で表したグラフであり、横軸は周波数を表し、縦軸は単位をdBとする音圧値を表し、バンド幅毎に1つの棒が周波数の低い方から順に並べられている、それぞれの棒がバンドであり、この棒の高さが各バンドに対する音圧値を表している。以下の説明において、測定波形は、3分の1オクターブ分析波形で表す。
 ウェット状態の路面の場合、路面から発生する音は、水膜にブロックが衝突した時に発生する音が高い周波数領域まで広がる音なので、この分析波形は、1000Hz付近、すなわち、容器共鳴音帯域バンドを越えた領域での減衰が小さい点が特徴的である。具体的には、測定波形において、容器共鳴音帯域バンドより高周波数側のバンドの音圧値の最小値が、容器共鳴音帯域バンドより低周波数側のバンドの音圧値の最小値より大きいことが特徴であり、これを第1判定条件とする。
 すなわち、図2を参照して説明すると、容器共鳴音帯域バンドより高周波数側において最小の音圧値を有するバンドである、矢印Aに対応するバンドの音圧値の方が、容器共鳴音帯域バンドより低周波数側において最小の音圧値を有するバンドである、矢印Bに対応するバンドの音圧値より高いというのが、第1判定条件である。
 図3は、アイス状態に対する測定波形を示すグラフであり、アイス路面では、測定波形において、踏み込み時のブロックの滑りによって300~500Hz付近に発生する小さなピークが特徴的であり、具体的には、3分の1オクターブ分布波形において、直流成分を除く前記容器共鳴音帯域バンドより低周波数側のバンドのうち音圧値が最小のバンドを含む5バンドの周波数領域に、極小の音圧値を有するバンドが2つ含まれることが特徴的であり、これを第2判定条件とする。
 すなわち、図3を参照して説明すると、直流成分を除く前記容器共鳴音帯域バンドより低周波数側のバンドのうち音圧値が最小のバンドである、矢印Fに対応するバンドを含む5バンドの周波数領域に、極小の音圧値を有するバンド(矢印C、矢印Fにそれぞれ対応するバンド)が2つ含まれていることが第2判定条件である。矢印Cに対応するバンドは、その両隣の、矢印E、矢印Dにそれぞれ対応するバンドより小さいので極小の音圧値を有するバンドであり、同様にして、矢印Fに対応するバンドも極小の音圧値を有するバンドである。
 図4は、ドライ状態の路面が示す、測定波形の第1パターンである。路面がドライ状態の場合である第1パターンは、周波数ゼロの直流成分よりなるバンドを除いて最も周波数の低いバンド、すなわち、周波数が下から2番目のバンドの音圧値が、容器共鳴音帯域バンドより低周波数の他のバンドの音圧値のいずれよりも大きいという特徴を有し、測定波形がこの特徴を有していることを第3判定条件とする。
 このことを、図4を参照して説明すると、下から2番目に位置する矢印Gに対応するバンドの音圧値は他のどのバンドの音圧値よりも高いことが第3判定条件である。
 図5は、ドライ状態の路面が示す、測定波形の第2パターンであり路面がドライ状態の場合であっても、測定波形が上記第3判定条件を満たさない場合もあり、この場合、第4判定条件として、図5を参照して説明すると、容器共鳴音帯域バンド(矢印X)をバンドXとし、音圧値が容器共鳴音帯域バンドよりも低周波数側のバンドの最小値(矢印Jに対応するバンドの音圧値)よりも低い音圧値を有する容器共鳴音帯域バンドよりも高周波数側のバンドのうち最も周波数が低いバンド(矢印Y)をバンドYとして、バンドXとバンドYとの間の全部のバンドが、バンドXの音圧値とバンドYの音圧値とを結んだ直線より高い音圧値を有しているかを判定し、測定波形が、第4判定条件を満たしていればドライ状態であると判定する。
 図6は、シャーベット状態又は雪路状態の路面が示す、測定波形であり、この路面は、上述の、第1~第4のどの判定条件も満たさないという特性を備えている。
 以上のように、路面がウェット状態か否かを判定する際、第1判定条件だけを用いて前述のように判定を行い、同様にして、路面がアイス状態か否かを判定する際、第2判定条件だけを用いて前述のように判定を行い、また、路面がドライ状態か否かを判定する際、第3判定条件と第4判定条件とだけを用いて前述のように判定を行うこともできるが、これらの複数の路面状態のうち、測定波形がどの路面状態に対応するかを択一的に選択するには、測定波形が同時に2以上の判定条件を満たしている場合も考慮して、次に説明するようにして推定するのが好ましい。
 図7は、このような目的のために最適化された路面状態推定プロセスの例を示すフローチャートである。演算装置2は、演算開始の信号を受けたあと(スタート)、まず、図7に示すように、測定波形における第1判定条件を満たしているかを判定し(ステップ1)、その結果、測定波形が第1判定条件を満たしていると判定した場合には、この路面は、ウエット状態であると推定する。一方、ステップ1において、第1判定条件を満たしていないと判定した場合には、測定波形が第2判定条件を満たしているかを判定し(ステップ2)、その結果、測定波形が第2判定条件を満たしていると判定した場合には、この路面は、アイス状態であると推定する。ステップ2において、第2判定条件を満たしていないと判定した場合には、測定波形が第3判定条件を満たしているかを判定し(ステップ3)、その結果、測定波形が第3判定条件を満たしていると判定した場合には、この路面は、ドライ状態であると推定する。ステップ3において、第3判定条件を満たしていないと判定した場合には、測定波形が第4判定条件を満たしているかを判定し(ステップ4)、その結果、測定波形が第4判定条件を満たしていると判定した場合には、この路面も、ドライ状態であると推定する。ステップ4において、測定波形が第4判定条件を満たしていないと判定した場合には、この路面は、シャーベット状態又は雪路状態であると推定して、路面状態推定プロセスを完了する。
 上記に説明したような路面状態推定装置10を利用したものとし、次のような路面推定システムを例示することができる。すなわち、これは、所定エリア内の路面の状態を推定するために、路面状態推定用音検出装置20を含む路面状態推定装置10を搭載し、この装置10を用いて、走行中の路面の状態を推定する複数のプローブカーと、前記プローブカーのそれぞれに推定する路面の位置を指示する基地局とを有するシステムであり、前記プローブカーは、自主的に設定した、又は、基地局からの指示に基づいて設定した路面の位置データと前記路面に対して推定した路面状態データとを基地局に送信し、基地局は、プローブカーから送信されたデータを受信し、受信したデータに基づいて追加的に状態を推定すべき路面の位置と、この推定を行うべきプローブカーとを決定し、決定したプローブカーに前記推定すべき路面の位置を送信するように構成されている。このようなシステムを構成すると、エリア内の路面を効率的に推定することができる。
 実際に車両を走行させ、走行したときの接地面音検出手段からの音検出信号に基づいて推定した路面を実際に走行した路面との合致度合いを調べた。区別する路面状態は、ドライ、ウェット、アイス、およびシャーベット/雪の4種類であり、推定の方法は、先に例示した方法による。
 また、試験車両としては、4輪駆動車を用い、この車両の下部に、容器に収容されたマイクを、後輪前方の音を集音できる姿勢で設置し、北海道、および東北地方の一般道を30~70km/hの速度で走行させ、そのときの音を集音した。
評価結果を表1に示す。表中、割合は%で示している。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、シャーベット以外の路面に対する正解率は80%であり、高い正解率を示している。
 上記のような路面状態推定装置は、例えば、雪の路面を管理するのに用いられる。
 1  マイク
 2  演算手段
 3  表示装置
 4  容器
 5  容器本体
 6  カバー
 7  スポンジ
 10  路面状態推定装置
 20  路面状態推定用音検出装置

Claims (8)

  1.  走行中の車両のタイヤ接地面付近の音を検出する接地面音検出手段からの音検出信号に基づいて、予め定められた複数の路面状態の中から現在走行中の路面状態を推定する路面状態推定方法において、
     前記音検出信号として、車両を走行させたときの前記音検出信号からN分の1オクターブ解析を用いて周波数分布波形を算出し、算出された前記周波数分布波形(以下、「測定波形」という)が、前記複数の路面状態の各々について予め設定された判定条件を満たしているか否かを判定することにより走行中の路面状態を推定し、
     前記音を検出する際、容器内に配置されたマイクを用いるとともに、前記判定条件を、前記容器による共鳴音を含めて前記測定波形に適用するように設定することを特徴とする路面状態推定方法。
  2.  前記音を検出する際、車両の後輪前方からの音を用いることを特徴とする請求項1に記載の路面状態推定方法。
  3.  前記測定波形において、
     前記容器による共鳴音の周波数帯域が含まれるバンド(以下、「容器共鳴音帯域バンド」という)より高周波数側のバンドの音圧値の最小値が、容器共鳴音帯域バンドより低周波数側のバンドの音圧値の最小値より大きいことを第1判定条件とし、
     前記容器共鳴音帯域バンドより低周波数側のバンドのうち音圧値が最小のバンドを含む5バンドの周波数領域に、音圧値が最小値を含む極小値を有するバンドが2つ含まれることを第2判定条件とし、
     周波数が下から2番目のバンドの音圧値が、前記容器共鳴音帯域バンドより低周波数側の他のバンドの音圧値のいずれよりも大きいことを第3判定条件とし、
    容器共鳴音帯域バンドをバンドXとし、容器共鳴音帯域バンドより低周波数側のバンドの音圧値の最小値よりも低い音圧値を有する容器共鳴音帯域バンドより高周波数側のバンドのうち、最も周波数が低いバンドをバンドYとして、バンドXとバンドYとの間の全部のバンドが、バンドXの音圧値とバンドYの音圧値とを結んだ直線より高い音圧値を有することを第4判定条件とし、
     前記第1~第4判定条件の少なくとも1つを用いて、路面状態を推定する請求項1又は2に記載の路面状態推定方法。
  4.  前記測定波形が第1判定条件を満たしている場合、前記測定波形に対応する路面をウエット状態であると推定する請求項3に記載の路面状態推定方法。
  5.  前記測定波形が、第2判定条件を満たしている場合、前記測定波形に対応する路面をアイス状態であると推定する請求項3に記載の路面状態推定方法。
  6.  前記測定波形が、第3判定条件および第4判定条件の少なくとも1つを満たしている場合、前記測定波形に対応する路面をドライ状態であると推定する請求項3に記載の路面状態推定方法。
  7.  前記測定波形が、第1~第4判定条件のいずれも満たさない場合、前記測定波形に対応する路面をシャーベット又は雪路状態であると推定する請求項3に記載の路面状態推定方法。
  8.  第1ステップとして、前記第1判定条件による前記測定波形の判定を行い、前記測定波形が、第1判定条件を満たしている場合、前記測定波形に対応する路面をウエット状態であると推定し、
     前記測定波形が、第1ステップでの判定において前記第1判定条件を満たしていない場合には、第1ステップのあと、第2ステップとして、前記第2判定条件による前記測定波形の判定を行い、前記測定波形が第2判定条件を満たしている場合、前記測定波形に対応する路面をアイス状態であると推定し、
     前記測定波形が、第2ステップでの判定において前記第2判定条件を満たしていない場合には、第2ステップのあと、第3ステップとして、前記第3判定条件および第4判定条件による前記測定波形の判定を行い、前記測定波形が、第3判定条件および第4判定条件の少なくとも1つを満たしている場合、前記測定波形に対応する路面をドライ状態であると推定し、
     前記測定波形が、第3ステップでの判定において第3判定条件および第4判定条件のいずれも満たしていない場合には、前記測定波形に対応する路面をシャーベット又は雪路状態であると推定する請求項3に記載の路面状態推定方法。
PCT/JP2009/065592 2008-10-30 2009-09-07 路面状態推定方法 WO2010050300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09823413.1A EP2343522B1 (en) 2008-10-30 2009-09-07 Method of estimating road surface condition
US13/125,924 US8737628B2 (en) 2008-10-30 2009-09-07 Method for estimating road surface state
JP2010535723A JP5436442B2 (ja) 2008-10-30 2009-09-07 路面状態推定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-280023 2008-10-30
JP2008280023 2008-10-30

Publications (1)

Publication Number Publication Date
WO2010050300A1 true WO2010050300A1 (ja) 2010-05-06

Family

ID=42128668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065592 WO2010050300A1 (ja) 2008-10-30 2009-09-07 路面状態推定方法

Country Status (4)

Country Link
US (1) US8737628B2 (ja)
EP (1) EP2343522B1 (ja)
JP (1) JP5436442B2 (ja)
WO (1) WO2010050300A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145356A1 (ja) * 2010-05-19 2011-11-24 株式会社ブリヂストン 路面状態推定方法
KR102183198B1 (ko) * 2020-08-20 2020-11-25 주식회사 비알인포텍 타이어의 노면 마찰 사운드 분석을 통한 블랙아이스 감지 시스템
JPWO2020250332A1 (ja) * 2019-06-12 2020-12-17
KR20220144115A (ko) * 2021-04-19 2022-10-26 주식회사 디알에스 음향 이미지를 이용한 블랙 아이스 발생 예측 방법
KR20220144116A (ko) * 2021-04-19 2022-10-26 주식회사 디알에스 블랙 아이스 발생 예측 방법
US11503393B2 (en) * 2019-07-10 2022-11-15 Fujitsu Limited Storage medium, road surface condition estimation method, and information processing apparatus
WO2022249515A1 (ja) * 2021-05-26 2022-12-01 株式会社ブリヂストン 路面状態判定装置、路面状態判定システム、車両、路面状態判定方法、及びプログラム
CN117332909A (zh) * 2023-12-01 2024-01-02 南京师范大学 基于智能体的多尺度城市内涝道路交通暴露性预测方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8618921B2 (en) * 2009-11-10 2013-12-31 GM Global Technology Operations LLC Method and system for identifying wet pavement using tire noise
ES2390302B2 (es) * 2012-07-04 2013-02-25 Universidad Politécnica de Madrid Sistema embarcado en vehículos y método para la detección del estado del asfalto
DE102013101639A1 (de) * 2013-02-19 2014-09-04 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Bestimmung eines Fahrbahnzustands
ES2791714T3 (es) 2013-03-18 2020-11-05 Signify Holding Bv Métodos y aparatos de gestión de información y de control de redes de iluminación exterior
DE102013223367A1 (de) 2013-11-15 2015-05-21 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Bestimmung eines Fahrbahnzustands mittels eines Fahrzeugkamerasystems
US20160221581A1 (en) * 2015-01-29 2016-08-04 GM Global Technology Operations LLC System and method for classifying a road surface
US10715972B2 (en) * 2015-07-31 2020-07-14 CityBeacon IP BV Multifunctional interactive beacon with mobile device interaction
US11145142B2 (en) * 2016-09-06 2021-10-12 International Business Machines Corporation Detection of road surface defects
EP3602032B1 (fr) * 2017-03-24 2022-12-07 Compagnie Generale Des Etablissements Michelin Système de mesure phonique pour véhicule automobile
KR102011008B1 (ko) 2017-04-25 2019-08-16 만도헬라일렉트로닉스(주) 노면 상태 감지 시스템 및 방법
US10163434B1 (en) * 2017-06-26 2018-12-25 GM Global Technology Operations LLC Audio control systems and methods based on road characteristics and vehicle operation
EP3655770A1 (fr) * 2017-07-17 2020-05-27 Compagnie Générale des Etablissements Michelin Méthode de détection de l'état de la route et du pneumatique
CN107521500B (zh) * 2017-09-05 2019-11-05 百度在线网络技术(北京)有限公司 信息获取方法和装置
DE102018116079A1 (de) * 2018-07-03 2020-01-09 HELLA GmbH & Co. KGaA Verfahren zur Erfassung und Verarbeitung der Fahrbahnbeschaffenheit einer mit einem Fahrzeug befahrenen Fahrbahn
JP7120109B2 (ja) * 2019-03-25 2022-08-17 株式会社デンソー 車両における路面状態判定装置、運転支援システムおよび路面状態判定方法
CN110487713B (zh) * 2019-09-02 2021-11-26 武汉科技大学 基于摩擦系数的纹理特征波长范围确定方法
US11788859B2 (en) * 2019-12-02 2023-10-17 Here Global B.V. Method, apparatus, and computer program product for road noise mapping
KR102550167B1 (ko) * 2020-01-29 2023-07-04 김영언 차량주변 이상 신호 알림 시스템 및 방법
KR102346533B1 (ko) * 2020-05-13 2021-12-31 에스케이플래닛 주식회사 노면 상태 탐지 장치 및 시스템, 이를 이용한 노면 상태 탐지 방법
KR20220034983A (ko) * 2020-09-11 2022-03-21 현대자동차주식회사 노면 인식 장치, 그를 가지는 차량 및 그 제어 방법
DE102021209390B4 (de) * 2021-08-26 2024-03-21 Volkswagen Aktiengesellschaft Verfahren zum Einstellen eines Lenkwinkels und/oder einer Gierrate eines Kraftfahrzeug sowie Kraftfahrzeug mit Regeleinheit
US20230168093A1 (en) * 2021-11-30 2023-06-01 International Business Machines Corporation Multi-modal cognitive mechanism for road section recognition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174543A (ja) 1992-12-03 1994-06-24 Toyota Motor Corp 路面状態検出装置
JPH07156782A (ja) * 1993-12-07 1995-06-20 Honda Motor Co Ltd 路面状態検出装置およびこの装置を利用したアンチロックブレーキシステム
JPH08261993A (ja) 1995-03-22 1996-10-11 Sumitomo Electric Ind Ltd 路面状態検出装置
JP2005106728A (ja) * 2003-10-01 2005-04-21 Honda Motor Co Ltd 路面状態検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586028A (en) * 1993-12-07 1996-12-17 Honda Giken Kogyo Kabushiki Kaisha Road surface condition-detecting system and anti-lock brake system employing same
US5852243A (en) * 1997-07-21 1998-12-22 J-Squared, Llc Method and apparatus for detecting a road pavement surface condition
JP5189307B2 (ja) * 2007-03-30 2013-04-24 本田技研工業株式会社 能動型騒音制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174543A (ja) 1992-12-03 1994-06-24 Toyota Motor Corp 路面状態検出装置
JPH07156782A (ja) * 1993-12-07 1995-06-20 Honda Motor Co Ltd 路面状態検出装置およびこの装置を利用したアンチロックブレーキシステム
JPH08261993A (ja) 1995-03-22 1996-10-11 Sumitomo Electric Ind Ltd 路面状態検出装置
JP2005106728A (ja) * 2003-10-01 2005-04-21 Honda Motor Co Ltd 路面状態検出装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242303A (ja) * 2010-05-19 2011-12-01 Bridgestone Corp 路面状態推定方法
CN103003110A (zh) * 2010-05-19 2013-03-27 株式会社普利司通 路面状况估计方法
CN103003110B (zh) * 2010-05-19 2015-07-01 株式会社普利司通 路面状况估计方法
WO2011145356A1 (ja) * 2010-05-19 2011-11-24 株式会社ブリヂストン 路面状態推定方法
JPWO2020250332A1 (ja) * 2019-06-12 2020-12-17
JP7184186B2 (ja) 2019-06-12 2022-12-06 日本電信電話株式会社 道路状態推定装置、方法及びプログラム
US11503393B2 (en) * 2019-07-10 2022-11-15 Fujitsu Limited Storage medium, road surface condition estimation method, and information processing apparatus
KR102183198B1 (ko) * 2020-08-20 2020-11-25 주식회사 비알인포텍 타이어의 노면 마찰 사운드 분석을 통한 블랙아이스 감지 시스템
KR20220144115A (ko) * 2021-04-19 2022-10-26 주식회사 디알에스 음향 이미지를 이용한 블랙 아이스 발생 예측 방법
KR102467517B1 (ko) 2021-04-19 2022-11-16 주식회사 디알에스 음향 이미지를 이용한 블랙 아이스 발생 예측 방법
KR102467518B1 (ko) 2021-04-19 2022-11-16 주식회사 디알에스 블랙 아이스 발생 예측 방법
KR20220144116A (ko) * 2021-04-19 2022-10-26 주식회사 디알에스 블랙 아이스 발생 예측 방법
WO2022249515A1 (ja) * 2021-05-26 2022-12-01 株式会社ブリヂストン 路面状態判定装置、路面状態判定システム、車両、路面状態判定方法、及びプログラム
CN117332909A (zh) * 2023-12-01 2024-01-02 南京师范大学 基于智能体的多尺度城市内涝道路交通暴露性预测方法
CN117332909B (zh) * 2023-12-01 2024-03-08 南京师范大学 基于智能体的多尺度城市内涝道路交通暴露性预测方法

Also Published As

Publication number Publication date
US20110200199A1 (en) 2011-08-18
EP2343522B1 (en) 2018-04-11
EP2343522A4 (en) 2014-07-09
JP5436442B2 (ja) 2014-03-05
US8737628B2 (en) 2014-05-27
JPWO2010050300A1 (ja) 2012-03-29
EP2343522A1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP5436442B2 (ja) 路面状態推定方法
JP5657917B2 (ja) 路面状態推定方法
CN102762394B (zh) 轮胎状态判定装置
JP5165603B2 (ja) タイヤ走行状態推定方法、定常走行状態推定装置、タイヤ摩耗推定方法とその装置
JP3159596B2 (ja) ハイドロプレーニング現象検出装置
WO2013011992A1 (ja) 路面状態推定方法、及び路面状態推定装置
JP5878612B2 (ja) 路面状態推定方法
CN111504248A (zh) 路面上的短期不平度的检测
JP7180354B2 (ja) タイヤ摩耗検知装置
JP2008143508A (ja) 路面状況判定方法及びその装置
JP2013136297A (ja) タイヤ偏摩耗検知方法及びタイヤ偏摩耗検知装置
JP4629756B2 (ja) 路面状態推定方法と路面状態推定装置
JP2003182475A (ja) 路面状態及びタイヤ走行状態推定方法
US7487669B2 (en) Method of estimating a risk of a lack of connecting with the ground for a motor vehicle
JP5100095B2 (ja) タイヤ摩耗量の推定方法及びタイヤ摩耗量推定装置
JP5756817B2 (ja) 車両運転支援方法
JP6063428B2 (ja) タイヤ空気圧低下検出装置、方法及びプログラム
JP2006192993A (ja) 鉄道車両及びその異常検知方法
CN103776589A (zh) 汽车车轮动平衡检测方法及汽车车轮动平衡检测系统
JP5705051B2 (ja) 路面状態推定方法、及び路面状態推定装置
JP5908953B2 (ja) 車両制御方法及び路面状態警告方法
JP2010188885A (ja) 路面状態推定装置
JP2009214796A (ja) 路面状態推定方法及び路面状態推定装置
JP7388000B2 (ja) 路面摩擦係数予測システム
JP6343184B2 (ja) 装着判定装置、装着判定方法および装着判定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535723

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009823413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13125924

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE