WO2010046813A1 - Light emitting diode driving apparatus - Google Patents

Light emitting diode driving apparatus Download PDF

Info

Publication number
WO2010046813A1
WO2010046813A1 PCT/IB2009/054532 IB2009054532W WO2010046813A1 WO 2010046813 A1 WO2010046813 A1 WO 2010046813A1 IB 2009054532 W IB2009054532 W IB 2009054532W WO 2010046813 A1 WO2010046813 A1 WO 2010046813A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
parameter
emitting diodes
different
light
Prior art date
Application number
PCT/IB2009/054532
Other languages
French (fr)
Inventor
Hans-Peter Loebl
Stefan P. Grabowski
Original Assignee
Philips Intellectual Property & Standards Gmbh
Koninklijke Philips Electronics N. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property & Standards Gmbh, Koninklijke Philips Electronics N. V. filed Critical Philips Intellectual Property & Standards Gmbh
Priority to CN200980141833.7A priority Critical patent/CN102197706B/en
Priority to EP09744759A priority patent/EP2340687B1/en
Priority to JP2011531618A priority patent/JP5801201B2/en
Priority to US13/124,944 priority patent/US8536796B2/en
Priority to RU2011120452/07A priority patent/RU2523664C2/en
Priority to KR1020117011587A priority patent/KR101721426B1/en
Publication of WO2010046813A1 publication Critical patent/WO2010046813A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to a light emitting diode driving apparatus comprising an arrangement for supplying a signal to a group of first and second light emitting diodes, and also relates to a device comprising such an apparatus, and to a light emitting diode driving method.
  • Examples of such an apparatus are lamps comprising light emitting diodes, and examples of such a device are consumer products and non-consumer products.
  • the document US 2008 / 0116818 discloses a time division modulation with an average current regulation for an independent control of arrays of light emitting diodes.
  • a time division multiplexer a current sensor multiplexer, a voltage sensor multiplexer, an analog-to- digital converter, a comparator, some control logic and drivers are required.
  • a light emitting diode driving apparatus comprising an arrangement for supplying a signal to a group of first and second light emitting diodes, wherein - the first light emitting diode comprises a first internal impedance for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output, - the second light emitting diode comprises a second internal impedance different from the first internal impedance for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output, and
  • a first ratio is defined by the first light output divided by the second light output
  • a second ratio is defined by the third light output divided by the fourth light output, the first ratio being different from the second ratio.
  • the first light emitting diode can respond differently to a first change in the value of the parameter of the signal than the second light emitting diode
  • the second light emitting diode can respond differently to a second change in the value of the parameter of the signal than the first light emitting diode.
  • these light emitting diodes can be driven relatively independently from each other.
  • the fact that the first (second) light emitting diode comprises the first (second) internal impedance for in response to the parameter having the first / second value producing the first / second (third / fourth) light output may be considered to be equivalent to the first (second) light emitting diode comprising the first (second) internal impedance for in response to the parameter having the first / second value requiring a first / second (third / fourth) amount of power and/or energy, whereby a third ratio may be defined by the first amount of power and/or energy divided by the second amount of power and/or energy, whereby a fourth ratio may be defined by the third amount of power and/or energy divided by the fourth amount of power and/or energy, the third ratio being different from the fourth ratio.
  • the apparatus is defined by each light output having an intensity and/or a color. Different light outputs will have different intensities and/or different colors.
  • the apparatus is defined by the first ratio being different from the second ratio owing to the fact that a difference between intensities of the first and second light outputs differs from a difference between intensities of the third and fourth light outputs and/or that a difference between colors of the first and second light outputs differs from a difference between colors of the third and fourth light outputs.
  • the differences between the intensities correspond to dimming one of the light emitting diodes more or less than the other one, in other words to dimming the light emitting diodes relatively individually.
  • the apparatus is defined by the arrangement being arranged for in response to a selection of at least one of the values of the parameter controlling the driving of at least one of the first and second light emitting diodes.
  • the selection allows the driving of the light emitting diodes to be controlled in a relatively individual way.
  • the apparatus is defined by said controlling comprising an intensity adaptation and/or a color adaptation.
  • the intensity of one of the light emitting diodes may be adapted relatively independently from the intensity of the other one of the light emitting diodes.
  • the color of one of the light emitting diodes may be adapted relatively independently from the color of the other one of the light emitting diodes.
  • the apparatus is defined by the parameter comprising a frequency parameter and/or a timing parameter.
  • the frequency parameter may be a frequency of the signal or of a component of the signal, such as a pulse
  • the timing parameter may be a duration or a duty cycle of the signal or of a component of the signal, such as a pulse.
  • the apparatus is defined by the first and second light emitting diodes forming parts of a serial branch.
  • the apparatus is defined by the first and second light emitting diodes being stacked organic light emitting diodes.
  • the apparatus is defined by the stacked organic light emitting diodes being separated by a transparent electrode that is electrically coupled to the arrangement via at least one of the organic light emitting diodes.
  • the electrodes between stacked organic light emitting diodes are more difficult to be reached than the electrodes at the top and bottom of the stacked organic light emitting diodes. So, especially for stacked organic light emitting diodes it may be interesting to drive a group of light emitting diodes relatively individually while only supplying one adaptable signal to the group.
  • the apparatus is defined by the respective first and second light emitting diodes forming parts of respective first and second parallel branches.
  • the apparatus is defined by the first internal impedance comprising a first capacity and a first resistivity, the second internal impedance comprising a second capacity and a second resistivity, the first and second capacities having different values and/or the first and second resistivities having different values.
  • Such a combination of a capacity and a resistivity may be a parallel combination having a more blocking / less passing character below a cut-off frequency and having a more passing / less blocking character above this cut-off frequency.
  • the apparatus is defined by comprising
  • Such a first (second) external impedance may improve a performance of the first (second) internal impedance and/or add an additional performance to the first
  • a device comprising the apparatus and a power supply for supplying power to the apparatus.
  • a light emitting diode driving method comprising a step of supplying a signal to a group of first and second light emitting diodes, wherein - the first light emitting diode comprises a first internal impedance for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output,
  • the second light emitting diode comprises a second internal impedance different from the first internal impedance for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output, and
  • a first ratio is defined by the first light output divided by the second light output
  • a second ratio is defined by the third light output divided by the fourth light output, the first ratio being different from the second ratio.
  • An insight may be that a value of an impedance may depend on a value of a parameter of a signal supplied to the impedance.
  • a basic idea may be that different light emitting diodes should have different internal impedances to react differently to different values of a parameter of a signal supplied to the light emitting diodes.
  • a further advantage may be that a number of connections in the apparatus may be reduced.
  • Fig. 1 shows a device comprising a light emitting diode driving apparatus
  • Fig. 2 shows internal impedances of light emitting diodes
  • Fig. 3 shows a current versus frequency graph for each internal impedance.
  • a device 3 comprising a light emitting diode driving apparatus 1 coupled to a power supply 2 such as a battery or a converter.
  • the apparatus 1 comprises an arrangement 10 for supplying a signal such as a current signal (or a voltage signal) to a group of first and second light emitting diodes 11 and 12 here connected serially. Alternatively, these light emitting diodes may be connected in parallel. More than two light emitting diodes are not to be excluded.
  • the first and second light emitting diodes 11 and 12 may be stacked organic light emitting diodes, separated by a transparent electrode that is electrically coupled to the arrangement 10 via at least one of the organic light emitting diodes.
  • the electrodes between stacked organic light emitting diodes are more difficult to be reached than the electrodes at the end of the stacked organic light emitting diodes, in which case it may be interesting to drive a group of light emitting diodes relatively individually while only supplying one adaptable signal to the group.
  • the first internal impedance 41 comprises a first capacity 21 and a first resistivity 31 (resistance or resistor) connected in parallel.
  • the second internal impedance 42 comprises a second capacity 22 and a second resistivity 32 (resistance or resistor) connected in parallel.
  • the first and second capacities 21 and 22 have different values and/or the first and second resistivities 31 and 32 have different values.
  • a current (in rnA) versus frequency (in kHz) graph is shown for each internal impedance 41 and 42.
  • a current flowing through the capacity 21 is indicated 21'
  • a current flowing through the capacity 22 is indicated 22'
  • a current flowing through the resistivity 31 is indicated 31 '
  • a current flowing through the resistivity 32 is indicated 32'.
  • the first light emitting diode 11 comprises the first internal impedance 41 for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output.
  • the second light emitting diode 12 comprises a second internal impedance 42 for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output.
  • a first ratio is defined by the first light output divided by the second light output
  • a second ratio is defined by the third light output divided by the fourth light output.
  • the first and second internal impedances 41 and 42 are different from each other in such a way that the first ratio is different from the second ratio, and/or the first and second internal impedances 41 and 42 respond differently to different values of and/or changes in the parameter of the signal in such a way that the first ratio is different from the second ratio.
  • the first and second light emitting diodes 11 and 12 can be addressed relatively individually.
  • Each light output may have an intensity and/or a color.
  • the first ratio may be different from the second ratio owing to the fact that a difference between intensities of the first and second light outputs differs from a difference between intensities of the third and fourth light outputs and/or that a difference between colors of the first and second light outputs differs from a difference between colors of the third and fourth light outputs.
  • the arrangement 10 may be arranged for in response to a selection of at least one of the values of the parameter controlling the driving of at least one of the first and second light emitting diodes 11, 12.
  • the selection allows the driving / addressing of the light emitting diodes to be controlled in a relatively individual way.
  • Said controlling may comprise an intensity adaptation and/or a color adaptation.
  • the parameter may comprise a frequency parameter and/or a timing parameter. So, the arrangement 10 for example converts a primary DC voltage or a primary AC voltage into a secondary signal such as a current or a voltage.
  • This secondary signal has an adaptable parameter such as an adaptable frequency of the secondary signal or such as an adaptable frequency of a pulse of the secondary signal or such as an adaptable duration of the secondary signal or such as an adaptable duration of a pulse of the secondary signal or such as an adaptable duty cycle of the secondary signal or such as an adaptable duty cycle of a pulse of the secondary signal etc.
  • the secondary signal is an AC current at different frequencies.
  • the arrangement 10 produces a secondary signal with an adaptable parameter and the arrangement 10 can change this adaptable parameter.
  • the arrangement 10 can control the driving of at least one of the first and second light emitting diodes 11, 12 in response to an instruction in the form of a selection of a value of the parameter from a person or another unit not shown.
  • a light emitting diode driving apparatus 1 comprises an arrangement 10 for supplying a signal to light emitting diodes 11, 12.
  • the light emitting diodes 11, 12 comprise different internal impedances 41, 42 for producing different light outputs in response to a parameter of the signal having different values.
  • the light emitting diodes 11, 12 can be driven relatively independently from each other.
  • Each light output may have an intensity and/or a color. Different light outputs may have different intensities for dimming purposes and/or different colors for color tuning purposes.
  • the parameter may comprise a frequency parameter and/or a timing parameter.
  • the light emitting diodes 11, 12 may form parts of a serial branch, for example when being stacked organic light emitting diodes, or may form part of parallel branches.
  • the internal impedances 41, 42 may comprise capacities 21, 22 and resistivities 31, 32.
  • a computer program may be stored / distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. Any reference signs in the claims should not be construed as limiting the scope.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A light emitting diode driving apparatus (1) comprises an arrangement (10) for supplying a signal to light emitting diodes (11, 12). The light emitting diodes (11, 12) comprise different internal impedances (41, 42) for producing different light outputs in response to a parameter of the signal having different values. As a result, the light emitting diodes (11, 12) can be driven relatively independently from each other. Each light output may have an intensity and/or a color. Different light outputs may have different intensities for dimming purposes and/or different colors for color tuning purposes. The parameter may comprise a frequency parameter and/or a timing parameter. The light emitting diodes (11, 12) may form parts of a serial branch, for example when being stacked organic light emitting diodes, or may form part of parallel branches. The internal impedances (41, 42) may comprise capacities (21, 22) and resistivities (31, 32).

Description

LIGHT EMITTING DIODE DRIVING APPARATUS
FIELD OF THE INVENTION
The invention relates to a light emitting diode driving apparatus comprising an arrangement for supplying a signal to a group of first and second light emitting diodes, and also relates to a device comprising such an apparatus, and to a light emitting diode driving method.
Examples of such an apparatus are lamps comprising light emitting diodes, and examples of such a device are consumer products and non-consumer products.
BACKGROUND OF THE INVENTION
The document US 2008 / 0116818 discloses a time division modulation with an average current regulation for an independent control of arrays of light emitting diodes. Thereto, as shown in Figure 7 of US 2008 / 0116818, a time division multiplexer, a current sensor multiplexer, a voltage sensor multiplexer, an analog-to- digital converter, a comparator, some control logic and drivers are required.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a relatively simple apparatus for relatively individually driving light emitting diodes. It is a further object of the invention to provide a device comprising such an apparatus. It is a yet further object of the invention to provide a relatively simple method for relatively individually driving light emitting diodes.
According to a first aspect, a light emitting diode driving apparatus is provided comprising an arrangement for supplying a signal to a group of first and second light emitting diodes, wherein - the first light emitting diode comprises a first internal impedance for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output, - the second light emitting diode comprises a second internal impedance different from the first internal impedance for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output, and
- a first ratio is defined by the first light output divided by the second light output, a second ratio is defined by the third light output divided by the fourth light output, the first ratio being different from the second ratio.
Owing to the fact that the first and second light emitting diodes comprise different internal impedances, and that the first ratio is different from the second ratio, the first light emitting diode can respond differently to a first change in the value of the parameter of the signal than the second light emitting diode, and the second light emitting diode can respond differently to a second change in the value of the parameter of the signal than the first light emitting diode. In other words, by supplying the signal to the first and second light emitting diodes, these light emitting diodes can be driven relatively independently from each other.
The fact that the first (second) light emitting diode comprises the first (second) internal impedance for in response to the parameter having the first / second value producing the first / second (third / fourth) light output may be considered to be equivalent to the first (second) light emitting diode comprising the first (second) internal impedance for in response to the parameter having the first / second value requiring a first / second (third / fourth) amount of power and/or energy, whereby a third ratio may be defined by the first amount of power and/or energy divided by the second amount of power and/or energy, whereby a fourth ratio may be defined by the third amount of power and/or energy divided by the fourth amount of power and/or energy, the third ratio being different from the fourth ratio.
According to an embodiment, the apparatus is defined by each light output having an intensity and/or a color. Different light outputs will have different intensities and/or different colors. Preferably, the apparatus is defined by the first ratio being different from the second ratio owing to the fact that a difference between intensities of the first and second light outputs differs from a difference between intensities of the third and fourth light outputs and/or that a difference between colors of the first and second light outputs differs from a difference between colors of the third and fourth light outputs. The differences between the intensities correspond to dimming one of the light emitting diodes more or less than the other one, in other words to dimming the light emitting diodes relatively individually. The differences between the colors correspond to color tuning one of the light emitting diodes more or less than the other one, in other words to color tuning the light emitting diodes relatively individually. According to an embodiment, the apparatus is defined by the arrangement being arranged for in response to a selection of at least one of the values of the parameter controlling the driving of at least one of the first and second light emitting diodes. The selection allows the driving of the light emitting diodes to be controlled in a relatively individual way. Preferably, the apparatus is defined by said controlling comprising an intensity adaptation and/or a color adaptation. The intensity of one of the light emitting diodes may be adapted relatively independently from the intensity of the other one of the light emitting diodes. The color of one of the light emitting diodes may be adapted relatively independently from the color of the other one of the light emitting diodes.
According to an embodiment, the apparatus is defined by the parameter comprising a frequency parameter and/or a timing parameter. The frequency parameter may be a frequency of the signal or of a component of the signal, such as a pulse, and the timing parameter may be a duration or a duty cycle of the signal or of a component of the signal, such as a pulse.
According to an embodiment, the apparatus is defined by the first and second light emitting diodes forming parts of a serial branch. Preferably, the apparatus is defined by the first and second light emitting diodes being stacked organic light emitting diodes. Further preferably, the apparatus is defined by the stacked organic light emitting diodes being separated by a transparent electrode that is electrically coupled to the arrangement via at least one of the organic light emitting diodes. The electrodes between stacked organic light emitting diodes are more difficult to be reached than the electrodes at the top and bottom of the stacked organic light emitting diodes. So, especially for stacked organic light emitting diodes it may be interesting to drive a group of light emitting diodes relatively individually while only supplying one adaptable signal to the group.
According to an embodiment, the apparatus is defined by the respective first and second light emitting diodes forming parts of respective first and second parallel branches. According to an embodiment, the apparatus is defined by the first internal impedance comprising a first capacity and a first resistivity, the second internal impedance comprising a second capacity and a second resistivity, the first and second capacities having different values and/or the first and second resistivities having different values. Such a combination of a capacity and a resistivity may be a parallel combination having a more blocking / less passing character below a cut-off frequency and having a more passing / less blocking character above this cut-off frequency.
According to an embodiment, the apparatus is defined by comprising
- a first external impedance coupled to the first light emitting diode, and
- a second external impedance coupled to the second light emitting diode.
Such a first (second) external impedance may improve a performance of the first (second) internal impedance and/or add an additional performance to the first
(second) internal impedance. The first (second) external impedance may be coupled serially or in parallel to the first (second) internal impedance. According to a second aspect, a device is provided comprising the apparatus and a power supply for supplying power to the apparatus.
According to a third aspect, a light emitting diode driving method is provided comprising a step of supplying a signal to a group of first and second light emitting diodes, wherein - the first light emitting diode comprises a first internal impedance for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output,
- the second light emitting diode comprises a second internal impedance different from the first internal impedance for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output, and
- a first ratio is defined by the first light output divided by the second light output, a second ratio is defined by the third light output divided by the fourth light output, the first ratio being different from the second ratio.
An insight may be that a value of an impedance may depend on a value of a parameter of a signal supplied to the impedance.
A basic idea may be that different light emitting diodes should have different internal impedances to react differently to different values of a parameter of a signal supplied to the light emitting diodes.
A problem to provide a relatively simple apparatus for relatively individually driving light emitting diodes has been solved.
A further advantage may be that a number of connections in the apparatus may be reduced.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiment(s) described hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
Fig. 1 shows a device comprising a light emitting diode driving apparatus,
Fig. 2 shows internal impedances of light emitting diodes, and Fig. 3 shows a current versus frequency graph for each internal impedance. DETAILED DESCRIPTION OF EMBODIMENTS
In the Fig. 1, a device 3 is shown comprising a light emitting diode driving apparatus 1 coupled to a power supply 2 such as a battery or a converter. The apparatus 1 comprises an arrangement 10 for supplying a signal such as a current signal (or a voltage signal) to a group of first and second light emitting diodes 11 and 12 here connected serially. Alternatively, these light emitting diodes may be connected in parallel. More than two light emitting diodes are not to be excluded. When connected serially, the first and second light emitting diodes 11 and 12 may be stacked organic light emitting diodes, separated by a transparent electrode that is electrically coupled to the arrangement 10 via at least one of the organic light emitting diodes. The electrodes between stacked organic light emitting diodes are more difficult to be reached than the electrodes at the end of the stacked organic light emitting diodes, in which case it may be interesting to drive a group of light emitting diodes relatively individually while only supplying one adaptable signal to the group.
In the Fig. 2, (simplifications of) the respective first and second internal impedances 41 and 42 of the respective first and second light emitting diodes 11 and 12 are shown. The first internal impedance 41 comprises a first capacity 21 and a first resistivity 31 (resistance or resistor) connected in parallel. The second internal impedance 42 comprises a second capacity 22 and a second resistivity 32 (resistance or resistor) connected in parallel. The first and second capacities 21 and 22 have different values and/or the first and second resistivities 31 and 32 have different values.
In the Fig. 3, a current (in rnA) versus frequency (in kHz) graph is shown for each internal impedance 41 and 42. A current flowing through the capacity 21 is indicated 21', a current flowing through the capacity 22 is indicated 22', a current flowing through the resistivity 31 is indicated 31 ', and a current flowing through the resistivity 32 is indicated 32'. A cut-off frequency of the internal impedance 41 is indicated 41 ', and a cut-off frequency of the internal impedance 42 is indicated 42', thereby assuming that the first capacity 21 has a value of 10 nF, the second capacity 22 has a value of 5 nF, the resistivities 31 and 32 each have a value of 4 kOhm, which results in the internal impedance 41 having a cut-off frequency of 4 kHz and the second internal impedance 42 having a cut-off frequency of 8 kHz (f = l/2πRC).
The first light emitting diode 11 comprises the first internal impedance 41 for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output. The second light emitting diode 12 comprises a second internal impedance 42 for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output. A first ratio is defined by the first light output divided by the second light output, a second ratio is defined by the third light output divided by the fourth light output. The first and second internal impedances 41 and 42 are different from each other in such a way that the first ratio is different from the second ratio, and/or the first and second internal impedances 41 and 42 respond differently to different values of and/or changes in the parameter of the signal in such a way that the first ratio is different from the second ratio. As a result, by selecting different values of the parameter of the signal, the first and second light emitting diodes 11 and 12 can be addressed relatively individually.
Each light output may have an intensity and/or a color. The first ratio may be different from the second ratio owing to the fact that a difference between intensities of the first and second light outputs differs from a difference between intensities of the third and fourth light outputs and/or that a difference between colors of the first and second light outputs differs from a difference between colors of the third and fourth light outputs.
The arrangement 10 may be arranged for in response to a selection of at least one of the values of the parameter controlling the driving of at least one of the first and second light emitting diodes 11, 12. The selection allows the driving / addressing of the light emitting diodes to be controlled in a relatively individual way. Said controlling may comprise an intensity adaptation and/or a color adaptation. The parameter may comprise a frequency parameter and/or a timing parameter. So, the arrangement 10 for example converts a primary DC voltage or a primary AC voltage into a secondary signal such as a current or a voltage. This secondary signal has an adaptable parameter such as an adaptable frequency of the secondary signal or such as an adaptable frequency of a pulse of the secondary signal or such as an adaptable duration of the secondary signal or such as an adaptable duration of a pulse of the secondary signal or such as an adaptable duty cycle of the secondary signal or such as an adaptable duty cycle of a pulse of the secondary signal etc. In the embodiment shown in the Fig. 3, the secondary signal is an AC current at different frequencies. So, the arrangement 10 produces a secondary signal with an adaptable parameter and the arrangement 10 can change this adaptable parameter. Preferably, the arrangement 10 can control the driving of at least one of the first and second light emitting diodes 11, 12 in response to an instruction in the form of a selection of a value of the parameter from a person or another unit not shown.
Summarizing, a light emitting diode driving apparatus 1 comprises an arrangement 10 for supplying a signal to light emitting diodes 11, 12. The light emitting diodes 11, 12 comprise different internal impedances 41, 42 for producing different light outputs in response to a parameter of the signal having different values. As a result, the light emitting diodes 11, 12 can be driven relatively independently from each other. Each light output may have an intensity and/or a color. Different light outputs may have different intensities for dimming purposes and/or different colors for color tuning purposes. The parameter may comprise a frequency parameter and/or a timing parameter. The light emitting diodes 11, 12 may form parts of a serial branch, for example when being stacked organic light emitting diodes, or may form part of parallel branches. The internal impedances 41, 42 may comprise capacities 21, 22 and resistivities 31, 32.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. For example, it is possible to operate the invention in an embodiment wherein different parts of the different disclosed embodiments are combined into a new embodiment.
Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage. A computer program may be stored / distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. Any reference signs in the claims should not be construed as limiting the scope.

Claims

CLAIMS:
1. A light emitting diode driving apparatus (1) comprising an arrangement (10) for supplying a signal to a group of first and second light emitting diodes (11, 12), wherein
- the first light emitting diode (11) comprises a first internal impedance (41) for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output,
- the second light emitting diode (12) comprises a second internal impedance (42) different from the first internal impedance (41) for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output, and
- a first ratio is defined by the first light output divided by the second light output, a second ratio is defined by the third light output divided by the fourth light output, the first ratio being different from the second ratio.
2. The apparatus (1) as claimed in claim 1, each light output having an intensity and/or a color.
3. The apparatus (1) as claimed in claim 2, the first ratio being different from the second ratio owing to the fact that a difference between intensities of the first and second light outputs differs from a difference between intensities of the third and fourth light outputs and/or that a difference between colors of the first and second light outputs differs from a difference between colors of the third and fourth light outputs.
4. The apparatus (1) as claimed in claim 1, the arrangement (10) being arranged for in response to a selection of at least one of the values of the parameter controlling the driving of at least one of the first and second light emitting diodes (11, 12).
5. The apparatus (1) as claimed in claim 4, said controlling comprising an intensity adaptation and/or a color adaptation.
6. The apparatus (1) as claimed in claim 1, the parameter comprising a frequency parameter and/or a timing parameter.
7. The apparatus (1) as claimed in claim 1, the first and second light emitting diodes (11, 12) forming parts of a serial branch.
8. The apparatus (1) as claimed in claim 7, the first and second light emitting diodes (11, 12) being stacked organic light emitting diodes.
9. The apparatus (1) as claimed in claim 8, the stacked organic light emitting diodes being separated by a transparent electrode that is electrically coupled to the arrangement (10) via at least one of the organic light emitting diodes.
10. The apparatus (1) as claimed in claim 1, the respective first and second light emitting diodes (11, 12) forming parts of respective first and second parallel branches.
11. The apparatus (1) as claimed in claim 1, the first internal impedance (41) comprising a first capacity (21) and a first resistivity (31), the second internal impedance (42) comprising a second capacity (22) and a second resistivity (32), the first and second capacities (21, 22) having different values and/or the first and second resistivities (31, 32) having different values.
12. The apparatus (1) as claimed in claim 1, comprising
- a first external impedance coupled to the first light emitting diode (11), and
- a second external impedance coupled to the second light emitting diode (12).
13. A device (3) comprising the apparatus (1) as claimed in claim 1 and a power supply (2) for supplying power to the apparatus (1).
14. A light emitting diode driving method comprising a step of supplying a signal to a group of first and second light emitting diodes (11, 12), wherein
- the first light emitting diode (11) comprises a first internal impedance (41) for in response to a parameter of the signal having a first value producing a first light output and for in response to the parameter having a second value different from the first value producing a second light output, - the second light emitting diode (12) comprises a second internal impedance (42) different from the first internal impedance (41) for in response to the parameter having the first value producing a third light output and for in response to the parameter having the second value producing a fourth light output, and
- a first ratio is defined by the first light output divided by the second light output, a second ratio is defined by the third light output divided by the fourth light output, the first ratio being different from the second ratio.
PCT/IB2009/054532 2008-10-21 2009-10-15 Light emitting diode driving apparatus WO2010046813A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980141833.7A CN102197706B (en) 2008-10-21 2009-10-15 Light emitting diode driving apparatus
EP09744759A EP2340687B1 (en) 2008-10-21 2009-10-15 Light emitting diode driving apparatus
JP2011531618A JP5801201B2 (en) 2008-10-21 2009-10-15 Light emitting diode drive device
US13/124,944 US8536796B2 (en) 2008-10-21 2009-10-15 Light emitting diode driving apparatus
RU2011120452/07A RU2523664C2 (en) 2008-10-21 2009-10-15 Led driving apparatus
KR1020117011587A KR101721426B1 (en) 2008-10-21 2009-10-15 Light emitting diode driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08167089 2008-10-21
EP08167089.5 2008-10-21

Publications (1)

Publication Number Publication Date
WO2010046813A1 true WO2010046813A1 (en) 2010-04-29

Family

ID=41587370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/054532 WO2010046813A1 (en) 2008-10-21 2009-10-15 Light emitting diode driving apparatus

Country Status (8)

Country Link
US (1) US8536796B2 (en)
EP (1) EP2340687B1 (en)
JP (1) JP5801201B2 (en)
KR (1) KR101721426B1 (en)
CN (1) CN102197706B (en)
RU (1) RU2523664C2 (en)
TW (1) TWI501691B (en)
WO (1) WO2010046813A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021425A1 (en) * 2002-08-05 2004-02-05 Foust Donald Franklin Series connected OLED structure and fabrication method
US6727660B1 (en) * 2003-03-27 2004-04-27 General Electric Company Organic electroluminescent devices and method for improving energy efficiency and optical stability thereof
US20070216610A1 (en) * 2004-01-30 2007-09-20 Cambridge Display Technology Limited Display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095661A (en) * 1998-03-19 2000-08-01 Ppt Vision, Inc. Method and apparatus for an L.E.D. flashlight
US7178971B2 (en) 2001-12-14 2007-02-20 The University Of Hong Kong High efficiency driver for color light emitting diodes (LED)
DE602004021430D1 (en) * 2004-02-09 2009-07-16 Toyota Ind Corp TRANSLECTIVE DISPLAY WITH A COLOR OLED BACKLIGHT
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
JP2006253215A (en) * 2005-03-08 2006-09-21 Sharp Corp Light emitting device
TW200704283A (en) * 2005-05-27 2007-01-16 Lamina Ceramics Inc Solid state LED bridge rectifier light engine
DE502005003742D1 (en) * 2005-06-14 2008-05-29 Novaled Ag A method of operating an organic light emitting device and organic light emitting device
EP1777533A1 (en) * 2005-10-21 2007-04-25 ALCATEL Transport Solution Deutschland GmbH Monitoring device for an array of electrical units
ATE397842T1 (en) * 2005-11-22 2008-06-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh DRIVE DEVICE FOR LED CELLS
EP1987701A1 (en) * 2006-02-14 2008-11-05 Koninklijke Philips Electronics N.V. Lighting device with controllable light intensity
KR101303360B1 (en) * 2006-06-23 2013-09-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Method and device for driving an array of light sources
US7902771B2 (en) * 2006-11-21 2011-03-08 Exclara, Inc. Time division modulation with average current regulation for independent control of arrays of light emitting diodes
US20080137008A1 (en) 2006-12-06 2008-06-12 General Electric Company Color tunable oled illumination display and method for controlled display illumination
WO2008075389A1 (en) * 2006-12-21 2008-06-26 Osram Gesellschaft mit beschränkter Haftung A cell arrangement for feeding electrical loads such as light sources, corresponding circuit and design method
US7851981B2 (en) * 2006-12-22 2010-12-14 Seasonal Specialties, Llc Visible perception of brightness in miniature bulbs for an ornamental lighting circuit
CN201074788Y (en) * 2007-06-14 2008-06-18 河北科技大学 LED energy-saving lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021425A1 (en) * 2002-08-05 2004-02-05 Foust Donald Franklin Series connected OLED structure and fabrication method
US6727660B1 (en) * 2003-03-27 2004-04-27 General Electric Company Organic electroluminescent devices and method for improving energy efficiency and optical stability thereof
US20070216610A1 (en) * 2004-01-30 2007-09-20 Cambridge Display Technology Limited Display device

Also Published As

Publication number Publication date
CN102197706A (en) 2011-09-21
CN102197706B (en) 2014-05-07
KR101721426B1 (en) 2017-03-30
KR20110073608A (en) 2011-06-29
RU2523664C2 (en) 2014-07-20
TW201023670A (en) 2010-06-16
US8536796B2 (en) 2013-09-17
RU2011120452A (en) 2012-11-27
EP2340687B1 (en) 2012-08-01
JP2012506617A (en) 2012-03-15
EP2340687A1 (en) 2011-07-06
JP5801201B2 (en) 2015-10-28
US20110199009A1 (en) 2011-08-18
TWI501691B (en) 2015-09-21

Similar Documents

Publication Publication Date Title
US10750594B2 (en) Apparatus and methods for supplying power
US9253849B2 (en) LED lighting device with incandescent lamp color temperature behavior
US8330390B2 (en) AC LED light source with reduced flicker
US8446109B2 (en) LED light source with direct AC drive
US8492986B2 (en) LED circuit arrangement with improved flicker performance
KR20130010455A (en) Apparatus, method and system for providing ac line power to lighting devices
EP2493264B1 (en) Electrical load driving circuit
JP2014519197A (en) Light generator
JP2009170919A (en) Bi-directional led drive circuit
JP2009218593A (en) Unipolar charging/discharging led drive method and circuit thereof
JP2009170913A (en) Bi-directional light emitting diode drive circuit in power parallel resonance
JP2009170915A (en) Bi-directional light emitting diode drive circuit in power non-resonance
JP5289984B2 (en) LED unidirectional drive circuit with bi-directional electrical energy impedance division
EP2883420B1 (en) Power supply device.
JP2009170917A (en) Bi-directional light emitting diode drive circuit in bi-directional power parallel resonance
US8536796B2 (en) Light emitting diode driving apparatus
JP5944672B2 (en) LED lighting device, lighting apparatus including the same, and lighting device
CN108541105B (en) LED driving system and method
JP2011171116A (en) Lighting device
KR20160056651A (en) LED illumination apparatus for correcting deviation of forward voltage
US20240244726A1 (en) Led control unit, lighting device having the same, and operating method thereof
EP4316207A1 (en) Method of multi-mode color control by an led driver
CN116133192A (en) Light source driving device, light source brightness adjusting method and system
EP2926624B1 (en) Halogen retrofit led lighting device using an electronic transformer and a controller

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141833.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09744759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009744759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011531618

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13124944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3400/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117011587

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011120452

Country of ref document: RU