AZINE DERIVATIVES AND METHODS OF USE THEREOF
FIELD OF THE INVENTION The present invention relates to Azine Derivatives, pharmaceutical compositions comprising the Azine Derivatives and the use of these compounds for treating or preventing allergy, an allergy-induced airway response, congestion, a cardiovascular disease, an inflammatory disease, a gastrointestinal disorder, a neurological disorder, a metabolic disorder, obesity or an obesity-related disorder, diabetes, a diabetic complication, impaired glucose tolerance or impaired fasting glucose.
BACKGROUND OF THE INVENTION
The histamine receptors, Hi, H2 and H3 are well-identified forms. The H] receptors are those that mediate the response antagonized by conventional antihistamines. Hi receptors are present, for example, in the ileum, the skin, and the bronchial smooth muscle of humans and other mammals. Through H2 receptor-mediated responses, histamine stimulates gastric acid secretion in mammals and the chronotropic effect in isolated mammalian atria.
H3 receptor sites are found on sympathetic nerves, where they modulate sympathetic neurotransmission and attenuate a variety of end organ responses under control of the sympathetic nervous system. Specifically, H3 receptor activation by histamine attenuates norepinephrine outflow to resistance and capacitance vessels, causing vasodilation.
Imidazole H3 receptor antagonists are well known in the art. More recently, non- imidazole H3 receptor antagonists have been disclosed in U.S. Patent Nos.6,720,328 and 6,849,621. U.S. Patent No. 5,869,479 discloses compositions for the treatment of the symptoms of allergic rhinitis using a combination of at least one histamine H] receptor antagonist and at least one histamine H3 receptor antagonist.
Diabetes refers to a disease process derived from multiple causative factors and is characterized by elevated levels of plasma glucose, or hyperglycemia in the fasting state or after administration of glucose during an oral glucose tolerance test. Persistent or uncontrolled hyperglycemia is associated with increased and premature morbidity and mortality. Abnormal glucose homeostasis is associated with alterations of the lipid, lipoprotein and apolipoprotein metabolism and other metabolic and hemodynamic disease. As such, the diabetic patient is at
an especially increased risk of macrovascular and microvascular complications, including coronary heart disease, stroke, peripheral vascular disease, hypertension, nephropathy, neuropathy, and retinopathy. Accordingly, therapeutic control of glucose homeostasis, lipid metabolism and hypertension are critically important in the clinical management and treatment of diabetes mellitus.
There are two generally recognized forms of diabetes. In type 1 diabetes, or insulin- dependent diabetes mellitus (IDDM), patients produce little or no insulin, the hormone which regulates glucose utilization. In type 2 diabetes, or noninsulin dependent diabetes mellitus (NIDDM), patients often have plasma insulin levels that are the same or even elevated compared to nondiabetic subjects; however, these patients have developed a resistance to the insulin stimulating effect on glucose and lipid metabolism in the main insulin-sensitive tissue (muscle, liver and adipose tissue), and the plasma insulin levels, while elevated, are insufficient to overcome the pronounced insulin resistance.
Insulin resistance is not associated with a diminished number of insulin receptors but rather to a post-insulin receptor binding defect that is not well understood. This resistance to insulin responsiveness results in insufficient insulin activation of glucose uptake, oxidation and storage in muscle, and inadequate insulin repression of Hpolysis in adipose tissue and of glucose production and secretion in the liver.
The available treatments for type 2 diabetes, which have not changed substantially in many years, have recognized limitations. While physical exercise and reductions in dietary intake of calories will dramatically improve the diabetic condition, compliance with this treatment is very poor because of well-entrenched sedentary lifestyles and excess food consumption, especially of foods containing high amounts of saturated fat. Increasing the plasma level of insulin by administration of sulfonylureas (e.g., tolbutamide and glipizide) or meglϊtinide, which stimulate the pancreatic [beta]-cells to secrete more insulin, and/or by injection of insulin when sulfonylureas or meglitinide become ineffective, can result in insulin concentrations high enough to stimulate the very insulin-resistant tissues. However, dangerously low levels of plasma glucose can result from administration of insulin or insulin secretagogues (sulfonylureas or meglitinide), and an increased level of insulin resistance due to the even higher plasma insulin levels can occur. The biguanides are a class of agents that can increase insulin sensitivity and bring about some degree of correction of hyperglycemia. However, the biguanides can induce lactic acidosis and nausea/diarrhea.
The glitazones (i.e., 5-benzylthiazoHdine-2,4~diones) are a separate class of compounds with potential for the treatment of type 2 diabetes. These agents increase insulin sensitivity in muscle, liver and adipose tissue in several animal models of type 2 diabetes, resulting in partial or complete correction of the elevated plasma levels of glucose without occurrence of hypoglycemia. The glitazones that are currently marketed are agonists of the peroxisome proliferator activated receptor (PPAR), primarily the PPAR-gamma subtype. PPAR-gamma agonism is generally believed to be responsible for the improved insulin sensititization that is observed with the glitazones. Newer PPAR agonists that are being tested for treatment of type 2 diabetes are agonists of the alpha, gamma or delta subtype, or a combination of these, and in many cases are chemically different from the glitazones (Le., they are not thiazolidinediones). Serious side effects (e.g.t liver toxicity) have been noted in some patients treated with glitazone drugs, such as troglitazone.
Additional methods of treating the disease are currently under investigation. New biochemical approaches include treatment with alpha-glucosidase inhibitors (e.g., acarbose) and protein tyrosine phosphatase- IB (PTP-IB) inhibitors.
Compounds that are inhibitors of the dipeptidyl peptidase-IV enzyme are also under investigation as drugs that may be useful in the treatment of diabetes, and particularly type 2 diabetes.
Despite a widening body of knowledge concerning the treatment of diabetes, there remains a need in the art for small-molecule drugs with increased safety profiles and/or improved efficacy that are useful for the treatment of diabetes and related metabolic diseases. This invention addresses that need.
SUMMARY QF THE INVENTION In one aspect, the present invention provides Compounds of Formula (I) (the "Azine
Derivatives"):
(I) and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof,
wherein:
A is a bond, alkylene, -O-, -C(O)- or -C(=N-OR9)-; B is -N- or -CH-; such that when A is -O-, then B is -CH-; D is -N- or -CH-; Q is heterocycloalkyl, heterocycioalkenyl, heteroaryl,
R R wherein a heterocycloalkyl, heterocycioalkenyl, heteroaryl group can be unsubstituted or substituted with up to 3 groups, which can be the same or different and which are selected from alkyl, aryl, halo, haloalkyl, heterocycloalkyl, -OC(O)R
8, -C(O)OR
8, -C(O)N(R
8)
2, - NHC(O)OR
8, -N(R
7)
2, -OR
8, -S(O)
pR
7, or -CN,
such that when Q is
then at least one of B and D is -CH-;
V, X, Y and Z are each independently -N- or -CH-; W is a bond, alkylene or -C(O)-; R ' is alkyl, heterocycloalkyl or -(alkyleneVcycloalkyU
R2 is H, alkyl, -(alkylene)n-aryl or ~(alkylene)n-heteroaryl, wherein any aryl or heteroaryl group can be unsubstituted or substituted with up to 3 groups, which can be the same or different and which are selected from alkyl, aryl, halo, haloalkyl, -OC(O)R8, - C(O)OR8, -C(O)N(RV -NHC(O)OR8, -N(R7)2, -OR8, -S(O)pR7, or -CN; R3 and R4 are independently H, alkyl, or aryl, wherein an alkyl group can be optionally substituted with one or more -OR8 groups, which can be the same or different, or R3 and R4 together with either the: (i) -N-CO-V- group or (ii) the N atom to which they are attached, combine to form a heterocycloalkyl, heterocycioalkenyl or heteroaryl group, any of which can be unsubstituted or substituted with up to 3 groups, which can be the same or different and which are selected from alkyl, aryl, halo, haioalkyl, -OC(O)R8, -C(O)OR8, -C(O)N(R8)2, - NHC(O)OR8, -N(R7)2, -OR8, -S(O)pR7, or -CN;
Rs is H, alkyl, halo, haloalkyl, -CN, -OC(O)R8, -C(O)OR8, -C(0)N(R8)2, -NHC(O)OR8, -N(R7)2 or -OR8, or R1 and R5, together with the atoms to which they are attached, combine to form an aryl, cycloalkyl, heterocycloalkyl, heterocycloalkenyl or heteroaryl group, any of which can be unsubstituted or substituted with up to 3 groups, which can be the same or different and which are selected from alkyl, aryl, halo, haloalkyl, -OC(O)R8, -C(O)OR8, - C(O)N(R8)2, -NHC(O)OR8, -N(R7)2, -OR8, -S(O)pR7, or -CN;
R6 is alkyl, cycloalkyl, aryl, heteroaryl, heterocycloalkyl or heterocycloalkenyl, wherein a cycloalkyl, aryl, heteroaryl, heterocycloalkyl or heterocycloalkenyl group can be unsubstituted or substituted with up to 3 groups, which can be the same or different and which are selected from alkyl, aryl, halo, haloalkyl, -OC(O)R8, -C(O)OR8, -C(O)N(R8)2 - NHC(O)OR8, -N(R7)2, -OR8, -S(O)pR7, or -CN; each occurrence of R7 is independently H, alkyl, cycloalkyl or aryl; each occurrence of R8 is independently H, alkyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl or haloalkyl; R9 is H or alkyl; each occurrence of p is independently O or 1; and each occurrence of p is independently 0, 1 or 2, such mat the compound of Formula (I) is not a compound listed in Table 1 below:
Table 1
-
DETAILED DESCRIPTION OF THE INVENTION
A "patient" is a human or non-human mammal. In one embodiment, a patient is a human. In another embodiment, a patient is a non-human mammal, including, but not limited to, a monkey, dog, baboon, rhesus, mouse, rat, horse, cat or rabbit. In another embodiment, a patient is a companion animal, including but not limited to a dog, cat, rabbit, horse or ferret. In one embodiment, a patient is a dog. In another embodiment, a patient is a cat.
The term "obesity" as used herein, refers to a patient being overweight and having a body mass index (BMI) of 25 or greater. In one embodiment, an obese patient has a BMI of about 25 or greater. In another embodiment, an obese patient has a BMI of between about 25 and about 30. In another embodiment, an obese patient has a BMI of between about 35 and about 40. In still another embodiment, an obese patient has a BMI greater than 40.
The term "obesity-related disorder" as used herein refers to: (i) disorders which result from a patient having a BMI of about 25 or greater; and (ii) eating disorders and other disorders associated with excessive food intake. Non-limiting examples of an obesity-related disorder include edema, shortness of breath, sleep apnea, skin disorders and high blood pressure.
The term "metabolic syndrome" as used herein, refers to a set of risk factors that make a patient more succeptible to cardiovascular disease and/or type 2 diabetes. As defined herein, a patient is considered to have metabolic syndrome if the patient has one or more of the following five risk factors:
1) central/abdominal obesity as measured by a waist circumference of greater than 40 inches in a male and greater than 35 inches in a female;
2) a fasting triglyceride level of greater than or equal to 150 mg/dL; 3) an HDL cholesterol level in a male of less than 40 mg/dL or in a female of less than
50 mg/dL;
4) blood pressure greater than or equal to 130/85 mm Hg; and
5) a fasting glucose level of greater than or equal to 110 mg/dL.
The term "impaired glucose tolerance" as used herein, is defined as a two-hour glucose level of 140 to 199 mg per dL (7.8 to 11.0 mmol) as measured using the 75-g oral glucose tolerance test. A patient is said to be under the condition of impaired glucose tolerance when he/she has an intermediately raised glucose level after 2 hours, wherein the level is less than would qualify for type 2 diabetes mellitus.
The term "impaired fasting glucose" as used herein, is defined as a fasting plasma glucose level of 100 to 125 mg/dL; normal fasting glucose values are below 100 mg per dL.
The term "upper airway" as used herein, refers to the upper respiratory system--i.e., the nose, throat, and associated structures. The term "effective amount" as used herein, refers to an amount of Compound of
Formula (I) and/or an additional therapeutic agent, or a composition thereof that is effective in producing the desired therapeutic, ameliorative, inhibitory or preventative effect when administered to a patient suffering from a Condition, hi the combination therapies of the present invention, an effective amount can refer to each individual agent or to the combination as a whole, wherein the amounts of all agents administered are together effective, but wherein the component agent of the combination may not be present individually in an effective amount.
The term "alkyl," as used herein, refers to an aliphatic hydrocarbon group which may be straight or branched and which contains from about 1 to about 20 carbon atoms. In one embodiment, an alkyl group contains from about 1 to about 12 carbon atoms. In another embodiment, an alkyl group contains from about 1 to about 6 carbon atoms. Non-limiting examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, isopentyl, n-hexyl, isohexyl and neohexyl. An alkyl group may be unsubstituted or substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl, aryl, cycloalkyl, cyano, hydroxy, -O-alkyl, -O-aryl, -alkylene-O-alkyl, alkylthio, -NH2, - NH(alkyl), -N(alkyl)2, -NH(cycloalkyl), -O-C(O)-aIkyl, -O-C(O)-aryl, -O-C(O)- cycloalkyl, -C(O)OH and -C(O)O-alkyl. Ih one embodiment, an alkyl group is unsubstituted. In another embodiment, an alkyl group is linear. In another embodiment, an alkyl group is branched.
The term "alkenyl," as used herein, refers to an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and contains from about 2 to about IS carbon atoms. In one embodiment, an alkenyl group contains from about 2 to about 12 carbon atoms. In another embodiment, an alkenyl group contains from about 2 to about 6 carbon atoms. Non-limiting examples of alkenyl groups include ethenyl, propeπyl, n-butenyl, 3-methylbut-2-enyI, n-pentenyl, octenyl and decenyl. An alkenyl group may be unsubstituted or substituted by one or more substituents which may be the same or
different, each substitueπt being independently selected from the group consisting of halo, alkyl, aryi, cycloalkyl, cyano, aikoxy and -S(alkyl). In one embodiment, an alkenyl group is υnsubstituted.
The term "alkynyl," as used herein, refers to an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and contains from about 2 to about 15 carbon atoms. In one embodiment, an alkynyl group contains from about 2 to about 12 carbon atoms. In another embodiment, an alkynyl group contains from about 2 to about 6 carbon atoms. Non-limiting examples of alkynyl groups include ethynyl, propynyl, 2-butynyl and 3-methylbutynyl. An alkynyl group may be unsubstituted or substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of alkyl, aryl and cycloalkyl. In one embodiment, an alkynyl group is unsubstituted.
The term "alkylene," as used herein, refers to an alkyl group, as defined above, wherein one of the alkyi group's hydrogen atoms has been replaced with a bond. Non-limiting examples of alkylene groups include -CH2-, -CH2CH2-, -CH2CH2CH2-,
CH2CH2CH2CH2-, -CH(CH3)CH2CH2- and -CH2CH(CH3)CH2-. An alkylene group may be unsubstituted or substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl, aryl, cycloalkyl, cyano, aikoxy and -S(alkyl). In one embodiment, an alkylene group is unsubstituted. In another embodiment, an alkylene group has from 1 to about 6 carbon atoms. In another embodiment, an alkylene group is branched. In still another embodiment, an alkylene group is linear.
The term "alkenylene," as used herein, refers to an alkenyl group, as defined above, wherein one of the alkenyl group's hydrogen atoms has been replaced with a bond. Non- limiting examples of alkenylene groups include -CH=CH-, -CH2CH=CH-,
CH2CH=CHCH2-, -CH=CHCH2CH2-, -CH2CHCH=CH-, -CH(CH3)CH=CH- and CH=C(CH3)CH2-. In one embodiment, an alkenylene group has from 2 to about 6 carbon atoms. In another embodiment, an alkenylene group is branched. In another embodiment, an alkenylene group is linear. The term "aikyπylene," as used herein, refers to an alkynyl group, as defined above, wherein one of the alkynyl group's hydrogen atoms has been replaced with a bond. Non- limiting examples of alkynylene groups include -C≡C-, -CH2O≡C-, -CH2C=CCH2-,
C≡CCH2CH2-, -CH2CHOC-, -CH(CH3)C≡C- and -C≡CCH2-. In one embodiment, an alkynylene group has from 2 to about 6 carbon atoms. In another embodiment, an alkynylene group is branched. In another embodiment, an alkynylene group is linear.
"Aryl" means an aromatic monocyclic or multicycHc ring system comprising from about 6 to about 14 carbon atoms. In one embodiment, an aryl group contains from about 6 to about 10 carbon atoms. An aryl group can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein below. Non-limiting examples of aryl groups include phenyl and naphthyl. hi one embodiment, an aryl group is unsubstituted. In another embodiment, an aryi group is phenyl. The term "cycloalkyl," as used herein, refers to a non-aromatic mono- or multicyclic ring system comprising from about 3 to about 10 ring carbon atoms. In one embodiment, a cycloalkyl contains from about 5 to about 10 ring carbon atoms. In another embodiment, a cycloalkyl contains from about 5 to about 7 ring atoms. The term "cycloalkyl" also encompasses a cycloalkyl group, as defined above, that is fused to an aryl (e.g., benzene) or heteroaryl ring. Non-limiting examples of monocyclic cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Non-limiting examples of multicyclic cycloalkyls include 1-decalinyl, norbornyl and adamantyl. A cycloalkyl group can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein below. In one embodiment, a cycloalkyl group is unsubstituted. A ring carbon atom of a cycloalkyl group may be functionalized as a carbonyl group to provide a cycloalkanoyl group, such as cyclopropanoyl, cyclobutanoyl, cyclopentanoyl, cyclohexanoyl, cyclooctanoyl, and the like.
The term "cycloalkenyl," as used herein, refers to a non-aromatic mono- or multicyclic ring system comprising from about 3 to about 10 ring carbon atoms and containing at least one endocyclic double bond. In one embodiment, a cycloalkenyl contains from about 5 to about 10 ring carbon atoms. In another embodiment, a cycloalkenyl contains 5 or 6 ring atoms. Non- limiting examples of monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cyclohepta-1,3-dienyl, and the like. A cycloalkenyl group can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein below. In one embodiment, a cycloalkenyl group is unsubstituted. In another embodiment, a cycloalkenyl group is a 5-membered cycloalkenyl.
The term "5-membered cycloalkenyl," as used herein, refers to a cycloalkenyl group, as defined above, which has S ring carbon atoms.
The term "heteroaryl," as used herein, refers to an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, wherein from 1 to 4 of the ring atoms is independently O, N or S and the remaining ring atoms are carbon atoms. In one embodiment, a heteroaryl group has 5 to 10 ring atoms. In another embodiment, a heteroaryl group is monocyclic and has S or 6 ring atoms. A heteroaryl group can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein below. A heteroaryl group is joined via a ring carbon atom, and any nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. The term "heteroaryl" also encompasses a heteroaryl group, as defined above, which has been fused to a benzene ring. Non-limiting examples of heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridonyl (including N-substituted pyridones), isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, triazolyl, 1,2,4-thiadiazoryl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, oxindolyl, imidazo[ 1 ,2-a]pyridinyl, imidazo[2,l-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinoHnyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, 1,2,4-triazinyi, benzothiazolyl and the like. The term "heteroaryl" also refers to partially saturated heteroaryl moieties such as, for example, tetrahydroisoquinolyl, tetrahydroquinolyl and the like. In one embodiment, a heteroaryl group is unsubstituted. In another embodiment, a heteroaryl group is a 5-membered heteroaryl.
The term "5-membered heteroaryl," as used herein, refers to a heteroaryl group, as defined above, which has 5 ring atoms. The term "heterocycloalkyl," as used herein, refers to a non-aromatic saturated monocyclic or multicyclic ring system comprising 3 to about 10 ring atoms, wherein from 1 to 4 of the ring atoms are independently O, S or N and the remainder of the ring atoms are carbon atoms. In one embodiment, a heterocycloalkyl group has from about 5 to about 10 ring atoms. In another embodiment, a heterocycloalkyl group has 5 or 6 ring atoms. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Any -NH group in a heterocycloalkyl ring may exist protected such as, for example, as an -N(BOC), -N(Cbz), -N(Tos) group and the like; such protected heterocycloalkyi groups are considered part of this invention. A
heterocycloalkyl group can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein below. The nitrogen or sulfur atom of the heterocycloalkyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of monocyclic heterocycloalkyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, lactam, lactone, and the like. A ring carbon atom of a heterocycloalkyl group may be functionalized as a carbonyl group. An illustrative example of such a heterocycloalkyl group is pyrrolidonyl:
In one embodiment, a heterocycloalkyl group is unsubstituted. In another embodiment, a heterocycloalkyl group is a 5-membered heterocycloalkyl.
The term "5-membered heterocycloalkyl," as used herein, refers to a heterocycloalkyl group, as defined above, which has 5 ring atoms.
The term "heterocycloalkenyl," as used herein, refers to a heterocycloalkyl group, as defined above, wherein the heterocycloalkyl group contains from 3 to 10 ring atoms, and at least one endocyclic carbon-carbon or carbon-nitrogen double bond. In one embodiment, a heterocycloalkenyl group has from 5 to 10 ring atoms. In another embodiment, a heterocycloalkenyl group is monocyclic and has 5 or 6 ring atoms. A heterocycloalkenyl group can be optionally substituted by one or more ring system substituents, wherein "ring system substituent" is as defined below. The nitrogen or sulfur atom of the heterocycloalkenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of heterocycloalkenyl groups include 1,2,3,4- tetrahydropyridinyl, 1,2- dihydropyridinyl, 1,4-dihydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 1,4,5,6- tetrahydropyrimidinyl, 2-pyrrolinyl, 3-pyrrolinyI, 2-imidazolinyl, 2-pyrazolinyl, dihydroimidazolyl, dihydrooxazolyl, dihydrooxadiazolyl, dihydrothiazolyi, 3,4-dihydro-2H- pyranyl, dihydrofuranyl, fluoro-substituted dihydrofuranyl, 7-oxabicydo{2.2.l]heptenyl, dihydrothiophenyt, dihydrothiopyranyl, and the like. A ring carbon atom of a heterocycloalkenyl group may be functionalized as a carbonyl group. An illustrative example of such a heterocycloalkenyl group is:
In one embodiment, a heterocycloalkenyl group is unsubstituted. In another embodiment, a heterocycloalkenyl group is a 5-membered heterocycloalkenyl. The term "5-membered heterocycloalkenyl," as used herein, refers to a heterocycloalkenyl group, as defined above, which has 5 ring atoms.
It should also be noted that tautomeric forms such as, for example, the moieties:
and
are considered equivalent in certain embodiments of this invention. The term "ring system substituent," as used herein, refers to a substituent group attached to an aromatic or non-aromatic ring system which, for example, replaces an available hydrogen on the ring system. Ring system substituents may be the same or different, each being independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, -alkylene-aryl, -alkylene-heteroaryi, -alkenylene-heteroaryl, -alkynylene- heteroaryl, hydroxy, hydroxyalkyl, haloalkyl, -O-alkyl, -alkylene-O-alkyl, -O-aryl, aralkoxy, acyl, aroyl, halo, nitro, cyano, carboxy, -C(O)O-alkyl, -C(O)O-aryl, -C(O)O- alkelene-aryl, -S(O)-alkyI, -S(0>
2-alkyl, -S(O)-aryl, -S(O)
2-aryl, -S(O)-heteroaryl, -S(O)
2- heteroaryl, -S-alkyl, -S-aryl, -S-heteroaryl, -S-alkylene-aryl, -S-alkylene-heteroaryl, cycloalkyl, heterocycloalkyl, -O-C(O)-alkyl, -0-C(O)-aryl, -O-C(O)-cycloalkyl, -C(=N-CN)- NH
2, -C(=NH)-NH
2, -C(=NH)-NH(alkyl), Y
1Y
2N-, Y
1Y
2N-alkyI-, Y
1Y
2NC(O)- and
Yi Y2NSO2-, wherein Yi and Y
2 can be the same or different and are independently selected from the group consisting of hydrogen, alkyl, aryl, cycloalkyl, and -alkylene-aryl. "Ring system substituent" may also mean a single moiety which simultaneously replaces two available hydrogens on two adjacent carbon atoms (one H on each carbon) on a ring system. Examples of such moiety are methylenedioxy, ethylenedioxy, -C(CH
3)
2- and the like which form moieties such as, for example:
"Halo" means -F5 -Cl, -Br or -I. In one embodiment, halo refers to -Cl or -Br. The term "haloalkyl," as used herein, refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms has been replaced with a halogen. In one embodiment, a haloalkyl group has from 1 to 6 carbon atoms. In another embodiment, a haloalkyl group is substituted with from 1 to 3 F atoms. Non-limiting examples of haloalkyl groups include -CH2F, -CHF2, -CF3, -CH2Cl and -CCl3.
The term "hydroxyalkyl," as used herein, refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms has been replaced with an -OH group. In one embodiment, a hydroxyalkyl group has from 1 to 6 carbon atoms. Non-limiting examples of hydroxyalkyl groups include -CH2OH, -CH2CH2OH, -CH2CH2CH2OH and - CH2CH(OH)CH3.
The term "alkoxy" as used herein, refers to an -O-alkyl group, wherein an alkyl group is as defined above. Non-limiting examples of alkoxy groups include methoxy, ethoxy, n- propoxy, isopropoxy, n-butoxy and t-butoxy. An alkoxy group is bonded via its oxygen atom.
The term "substituted" means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound" or "stable structure" is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
The term "purified", "in purified form" or "in isolated and purified form" for a compound refers to the physical state of the compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof. Thus, the term "purified", "in purified form" or "in isolated and purified form" for a compound refers to the physical state of the compound after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like), in sufficient purity to be characterizable by standard analytical techniques described herein or well known to the skilled artisan.
It should also be noted that any carbon as well as heteroatom with unsatisfied valences in the text, schemes, examples and Tables herein is assumed to have the sufficient number of hydrogen atom(s) to satisfy the valences.
When a functional group in a compound is termed "protected", this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the an as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in Organic Synthesis (1991), Wiley, New York.
When any variable (e.g., aryl, heterocycle, R2, etc.) occurs more than one time in any constituent or in Formula (I), its definition on each occurrence is independent of its definition at every other occurrence, unless otherwise noted.
Prodrugs and solvates of the compounds of the invention are also contemplated herein. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press. The term "prodrug" means a compound (e.g, a drug precursor) that is transformed in vivo to provide a Compound of Formula (I) or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
For example, if a Compound of Formula (I) or a pharmaceutically acceptable salt, hydrate or solvate of the compound contains a carboxyϊic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (Ct-Cg)alkyl, (C2-C ι2)alkanoyloxymethyl, l-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, i -methyl- l-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1- (alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1 -methyl- 1 -
(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, l-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10
carbon atoms, 3-phthalidyl, 4-crotonolactonyi, gamrna-butyrolacton-4-yl, di-N,N-(Ct- C2)alkyiamino(C2-C3)aikyl (such as β-diraethyiaminoethyl), carbamoyi-(C1-C2)alkyl, N,N-di (C1-C2)alky!carbamoyl-(CrC2)alkyI and piperidino-, pyrrolidine- or morpholino(C2-C3)alkyl, and the like. Similarly, if a Compound of Formula (I) contains an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as, for example, (C1-C6)alkanoyloxymethyl, 1-((C1-C6)alkanoyloxy)ethyl, 1- methyl- 1 -((C1-C6)alkanoyloxy)ethyl, (C1-C6)alkoxycarbonyloxymethyl, N-(C1 - C6)alkoxycarbonylaminomethyl, succinoyl, (C1-C6)alkanoyl, α-amino(C1-C4)alkyl, α- amino(C1 -C4)alkylene-aryl, arylacyl and α-aminoacyl, or α-aminoacyl-α-aminoacyl, where each α -aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, -P(O)(O(C1-C6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate), and the like.
If a Compound of Formula (I) incorporates an amine functional group, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl, RO-carbonyl, NRR'-carbonyl where R and R' are each independently (C1-C10)alkyl, (C3-C7) cycloalkyl, benzyl, or R-carbonyl is a natural α-aminoacyl, - C(OH)C(O)OY1 wherein Y1 is H, (C1-C6)alkyl or benzyl, -C(OY2)Y3 wherein Y2 is (C1-C4) alkyl and Y3 is (C1-C6)alkyl, carboxy (C1-C6)alkyl, amino(C1-C4)alkyl or tnono-N- or di-N,N- (C1-C6)alkylaminoalkyl, -C(Y4)Y5 wherein Y4 is H or methyl and Y5 is mono-N- or di-N,N- (C1-C6)alkylamino morpholino, piperidin-1-yl or pyrrolidin-1-yl, and the like.
One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms. "Solvate" means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolatable solvates. Non-limiting examples of solvates include ethanoiates, methanolates, and the like. "Hydrate" is a solvate wherein the solvent molecule is H2O.
One or more compounds of the invention may optionally be converted to a solvate. Preparation of solvates is generally known. Thus, for example, M. Caira et al, J. Pharmaceutical ScL, 93(3).601 -611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water. Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder et al, AAPS
PharmSciTechours., 5(1), article 12 (2004); and A. L. Bingham et al, Chem. Commun., 603- 604 (2001). A typical, non-limiting, process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods. Analytical techniques such as, for example I. R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
The Compounds of Formula (I) can form salts which are also within the scope of this invention. Reference to a Compound of Formula (I) herein is understood to include reference to salts thereof, unless otherwise indicated. The term "salt(s)", as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a Compound of Formula (I) contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term "salt(s)" as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of the Formula (I) may be formed, for example, by reacting a Compound of Formula (I) with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization. Exemplary acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulfates, tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) and the like. Additionally, acids which are generally considered suitable for the formation of pharmaceutically useful salts from basic pharmaceutical compounds are discussed, for example, by P. Stahl et al, Camille G. (eds.) Handbook of Pharmaceutical Salts.
Properties, Selection and Use. (2002) Zurich: Wiley- VCH; S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al.. The Practice of Medicinal Chemistry (1996), Academic Press, New York; and in The Orange Book (Food & Drug Administration, Washington, D.C. on their website). These disclosures are incorporated herein by reference thereto.
Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamine, t-butyl amine, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen- containing groups may be quarternized with agents such as lower aikyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.
AU such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.
Pharmaceutically acceptable esters of the present compounds include the following groups: ( 1 ) carboxylic acid esters obtained by esterification of the hydroxy group of a hydroxyl compound, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, methyl, ethyl, n- propyl, isopropyl, t-butyl, sec-butyl or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted with, for example, halogen, C1-4alkyl, or C1-4alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); (4) phosphonate esters and (5) mono-, di- or triphosphate esters. The phosphate esters may be further esterified by, for example, a C1- 20 alcohol or reactive derivative thereof, or by a 2,3-di (C6-24)acyl glycerol.
Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or
Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Sterochemically pure compounds may also be prepared by using chiral starting materials or by employing salt resolution techniques. Also, some of the Compounds of Formula (I) may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention. Enantiomers can also be separated by use of chiral HPLC column.
It is also possible that the Compounds of Formula (I) may exist in different tautomeric forms, and all such forms are embraced within the scope of the invention. Also, for example, all keto-enol and imine-enamine forms of the compounds are included in the invention. All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates, hydrates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention, as are positional isomers (such as, for example, 4-pyridyl and 3-pyridyl). (For example, if a Compound of Formula (I) incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention. Also, for example, all keto-enol and imine-enamine forms of the compounds are included in the invention.) Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms "salt", "solvate", "ester", "prodrug" and the like, is intended to apply equally to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or prodrugs of the inventive compounds.
The present invention also embraces isotopically-iabelled compounds of the present invention which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen,
phosphorus, fluorine and chlorine, such as 2H, 3H, 13C, 14C, 15N, 180, 170, 31P, 32P, 35S, 18F, and 36Cl, respectively.
Certain isotopically-labelled Compounds of Formula (I) (e.g., those labeled with 3H and 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances. Isotopically labelled Compounds of Formula (I) can generally be prepared using synthetic chemical procedures analogous to those disclosed herein for making the Compounds of Formula (I), by substituting an appropriate isotopically labelled starting material or reagent for a non-isotopically labelled starting material or reagent.
Polymorphic forms of the Compounds of Formula (I), and of the salts, solvates, hydrates, esters and prodrugs of the Compounds of Formula (I), are intended to be included in the present invention.
Unless otherwise stated, the following abbreviations have the stated meanings: Boc or t-Boc is teit-butoxycarbonyl, Boc-PhG-OH is Boc-L-phenylglycine, CAN is eerie ammonium nitrate, CDI is N,N'-carbonyl diimidazole, DIBAL is diisobutylaluminum hydride, DCM is dichloromethane, DMF is dimethylformamide, HATU is 2-(1H-7-Azabenzotriazol-1- yl)--l , 1 ,3,3-tetramethyl uronium hexafluorophosphate, MeOH is methanol, Na(AcO)3BH is sodium triacetoxyborohydride, Pd/C is palladium on carbon catalyst, TFA is trifluoroacetic acid, THF is tetrahydrofuran and p-TSA is para-toluenesulfonic acid.
The Compounds of Formula (I) The present invention provides Compounds of Formula (I):
and pharmaceutically acceptable salts and solvates thereof, wherein R
1, R
5, A, B, D, W, Q, X, Y and Z ate defined above for the Compounds of Formula (I).
In one embodiment, A is O.
In another embodiment, A is a bond. In another embodiment, A is -C(O)-.
In still another embodiment, A is alkylene.
In another embodiment, A is -CH2-.
In one embodiment, B is CH.
In another embodiment, B is N. In one embodiment, A is O and B is CH.
In another embodiment, A is -C(O)- and B is CH.
In another embodiment, A is -C(O)- and B is N.
In still another embodiment, A is -CH2- and B is CH.
In another embodiment, A is -CH2- and B is N. In yet another embodiment, A is a bond and B is CH.
In another embodiment, A is a bond and B is N.
In one embodiment, D is N.
In another embodiment, D is CH.
In another embodiment, B is CH and D is N. In one embodiment, A is O, B is CH and D is N.
In one embodiment, Y is N.
In another embodiment, X is CH, Y is N and Z is CH.
In another embodiment, X is CH, Y is CH and Z is N.
In still another embodiment, X, Y and Z are each CH. In one embodiment, B is CH, D is N, X is CH, Y is N and Z is CH.
In another embodiment, A is O, B is CH, D is N, X is CH, Y is N and Z is CH.
In one embodiment, W is a bond.
In another embodiment, W is alkylene.
In another embodiment, W is -CH2- In one embodiment, Q is heterocycloalkyl.
In another embodiment, Q is heterocycloalkyl fused to a benzene ring.
In another embodiment, Q is heterocycloalkenyl.
In another embodiment, Q is heteroaryl. In still another embodiment, Q is:
In still another embodiment, Q is:
In another embodiment, Q is: and R >2 ; is phenyl or benzyl.
In another embodiment, Q is:
In one embodiment, Q is:
and R is heterocycloalkyl. In another embodiment, Q is:
and R
6 is a benzo-fused heterocycloalkyl group.
In another embodiment, Q is:
and R is:
In one embodiment, Q is:
In another embodiment, Q is:
and R
3 and R
4, together with the nitrogen atom to which they are attached, combine to form one of the following groups:
In one embodiment, Q is:
In another embodiment, Q is:
and R
2 is aryt or heteroaryl.
In another embodiment, Q is:
and R ,2 is phenyl, which is optionally substituted with up to 2 groups, which are the same or different and are selected from alkyl, -O-alkyl, halo, haloalkyl or -CN. In yet another embodiment, Q is:
and R
2 and R
4 and the nitrogen atom to which they are attached, combine to form a heterocycloalkyl group.
In a further embodiment, Q is:
and R
3 and R
4 together with the N atom to which they are attached, combine to form a heterocycloalkyl or heteroaryl group.
In one embodiment, W is -CH2- and Q is heterocycloalkyl. hi another embodiment, W is -CH2- and Q is heterocycloalkyl fused to a benzene ring.
In one embodiment, R1 is -(alkylene)n-cycloalkyl.
In another embodiment, R1 is -alkylene-cycloalkyl.
In another embodiment, R1 is -CH2-cyclopropyl. In still another embodiment, R1 is alkyl. hi another embodiment, R1 is isopropyl or isobutyl.
In one embodiment, R5 is H.
In another embodiment, R5 is other than H.
In one embodiment, for the Compounds of Formula (I), A, B, D, R1, R5, X, Y, Z, W and Q are selected independently from each other.
In another embodiment, a Compound of Formula (I) is in purified form.
In one embodiment, the Compounds of Formula (I) have the formula (Ia):
wherein:
R
1 is alkyl or -aikylene-cycloalkyl;
R3 is aryl or heteroaryl, either of which can be unsubstituted or substituted with up to 3 groups, which can be the same or different and which are selected from alkyl, aryl, halo, haloalkyl, -OR8 or -CN; R3 and R4 are independently H or alkyl, wherein an alkyl group can be optionally substituted with one or more -OR8 groups, which can be the same or different, or R3 and R4 together with the -N-C(O)-N- group to which they are attached, combine to form a heterocycloalkyl or heterocycloalkenyl group, any of which can be unsubstituted or substituted with up to 3 groups, which can be the same or different and which are selected from alkyl, halo or -OR8; each occurrence of R8 is independently H, alkyl, aryl, cycioalkyl, heterocycloalkyl, heteroaryl or haloalkyl;
A is alkylene, -C(O)- or -O-; and
W is a bond or alkylene.
In one embodiment, for the compounds of formula (Ia), A is O.
In another embodiment, for the compounds of formula (Ia), W is -CH2-.
In another embodiment, for the compounds of formula (Ia), R3 and R4 are each H.
In still another embodiment, for the compounds of formula (Ia), R2 is wherein R2 is phenyl, which is optionally substituted with up to 2 groups, which are the same or different and are selected from alkyl, -O-alkyl, halo, haloalkyl or --CN.
In another embodiment, for the compounds of formula (Ia), R1 is -alkylene-cycloalkyl.
In further embodiment, for the compounds of formula (Ia), R1 is -CH2-cyclopropyl.
In one embodiment, for the compounds of formula (Ia), R1 is alkyl. In one embodiment, for the compounds of formula (Ia), A is O or -C(O)-, W is -CHi- and R! is -alkylene-cycioalkyl.
In one embodiment, for the compounds of formula (Ia), A, W, R1, R2, R3 and R4 are selected independently from each other. In another embodiment, a compound of formula (Ia) is in purified form.
Non-limiting illustrative examples of the Compounds of Formula (I) include compounds 1-64, listed below.
COMPOUND LCMS NO. STRUCTURE
(M + H)
517.3
417.2
449.2
449.2
417.2
406.2
411.2
8 441.2
409.2
12 433.2
13 463.3
14 409.2
15 450.2
16 453.2
17 450.2
18 416.2
19 457.3
22 475.3
23 477.3
24 375.2
25 475.3
28 489.3
29 565.3
30 491.3
31 473.3
32 421.2
35 439.2
36 441.2
37 449.2
38 462.3
39 462.3
40 462.3
41 462.3
44
45 397.2
46 463.2
47 364.2
48 378.2
49 352.2
50 366.2
51 394.2, 395.2
54 378.2
55 352.2
56 368.2
57 380.2
58 338.2
59 394.2
60 396.2
61 391.2
62 462.3
and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof.
Methods For Making The Compounds of Formula (I)
Methods useful for making the Compounds of Formula (I) are set forth in the Examples below and generalized in Schemes 1 and 2. Alternative synthetic pathways and analogous structures will be apparent to those skilled in the art of organic synthesis.
Scheme 1 shows a method useful for making the Compounds of Formula (I), which is a useful intermediate for making the Compounds of Formula (I) wherein A is -O- ; B is -CH-; D is N; W is -CH2- and Q is a urea.
Scheme 1
Wherein X, Y, Z, R1, R2 and R5 are defined above for the Compounds of Formula (I) and PG is a secondary amino protecting group, such as Boc.
A compound of formula A can coupled to a compound of formula B in the presence of a base to form a compound of formula C. The nitrogen protecting group of a compound of formula C is then removed using any of a number of well-known methods to provide the amine
intermediates of formula D (for example, when PG is Boc, then TFA can be used to remove the Boc group). The amino group of a compound of formula D can then be alkylated via reaction with a compound of formula R'-Br to provide the N-derivatized compounds of formula E. The cyano group of a compound of formula E is then reduced using catalytic hydrogenation to provide the aminomethyl derivatives of formula F. The methylamino group of a compound of formula F can then be reacted with a substituted isocyanate of formula R2- NCO to provide the compounds of formula 6, which correspond to the Compounds of Formula (I) wherein A is -O-; B is -CH-; D is N; W is -CH2- and Q is a urea.
Scheme 2 shows a method useful for making the Compounds of Formula (I) wherein A is -O-; B is -CH-; D is N; W is -CH2- and Q is:
Scheme 2
Wherein X, Y, Z, R1, R2 and R5 are defined above for the Compounds of Formula (I) and PG is a secondary amino protecting group, such as Boc.
A compound of formula G can be reacted with 1,2-dibromoethane to provide the corresponding imidazoles of formula H, which correspond to the Compounds of Formula (I), wherein A is -O-; B is -CH-; D is N; W is -CH2- and Q is:
The starting materials and reagents depicted in Schemes 1 and 2 are either available from commercial suppliers such as Sigma-Aldrich (St. Louis, MO) and Acros Organics Co.
(Fair Lawn, NJ), or can be prepared using methods well-known to those of skill in the art of organic synthesis.
One skilled in the art will recognize that the synthesis of compounds of Formula (I) may require the need for the protection of certain functional groups (i.e., derivatization for the purpose of chemical compatibility with a particular reaction condition). Suitable protecting groups for the various functional groups of the Compounds of Formula (I) and methods for their installation and removal may be found in Greene et ai, Protective Groups in Organic Synthesis, Wiley-Interscience, New York, (1999).
EXAMPLES
The following examples exemplify illustrative examples of compounds of the present invention and are not to be construed as limiting the scope of the disclosure. Alternative mechanistic pathways and analogous structures within the scope of the invention may be apparent to those skilled in the an.
General Methods
The starting materials and reagents used in preparing compounds described are either available from commercial suppliers such as Aldrich Chemical Co. (Wisconsin, USA) and Acres Organics Co. (New Jersey, USA) or were prepared using methods well-known to those skilled in the art of organic synthesis. All commercially purchased solvents and reagents were used as received. LCMS analysis was performed using an Applied Biosystems API-100 mass spectrometer equipped with a Shimadzu SCL-I OA LC column: Altech platinum C18, 3 um,33 mm X 7 mm ED; gradient flow: 0 minutes, 10% CH3CN; 5 minutes, 95% CH3CN; 7 minutes, 95% CH3CN; 7.5 minutes, 10% CH3CN; 9 minutes, stop. Flash column chromatography was performed using Selecto Scientific flash silica gel, 32-63 mesh. Analytical and preparative TLC was performed using Analtech Silica gel GF plates. Chiral HPLC was performed using a Varian PrepStar system equipped with a Chiralpak OD column (Chiral Technologies).
Example 1 Preparation of Compound 1
Step A - Synthesis of Compound 1C
To a stirred suspension of NaH (3.5 g, 86.62 mmol, 1.2 equiv) in DMF (50 tnL) was added N-Boc-4-hydroxyρiperidine IB (18.0 g, 86.62 mmol, 1.2 equiv) in DMF (25 mL). The mixture was heated to 80 °C and allowed to stir at this temperature for 1 hour, then cooled to room temperature. A solution of 6-chloro-3-pyridine carbonitrile IA (10.0 g, 72.18 mmol) in DMF (25 mL)was then added and the reaction was heated to 80 °C and allowed to stir at this temperature for 16 hours, quenched by the addition of saturated aqueous NH4CI, and extracted with EtOAc (2 x 100 mL). The organic layer was washed with brine, dried over Na2SO4, filtered and concentrated in vacuo to provide a crude residue, which was triturated with Et2O few times and filtered to provide compound 1C (16.13 g), which was used without further purification.
Step B - Synthesis of Compound ID
A solution of compound 1C (16.13 g, 53.17 mmol) in a mixture of CH2CI2 (100 mL) and TFA (41 mL, 531.7 mmol, 10.0 equiv) was heated to reflux and allowed to stir at this temperature for 2 hours, and was then concentrated in vacuo. The resulting viscous residue was then basified with solid K2CO3, filtered, and concentrated in vacuo to provide 10.8 g of compound ID, which was used without further purification.
Step C - Synthesis of Compound IE
To a stirred solution of compound ID (10.8 g, 53.14 mmol) in DMF (50 mL) was added Cs2COs (34.63 g, 106.28 mmol, 2.0 equiv) followed by 1-bτomomethyl cyclopropane (14.35 g, 106.28 mmol, 2.0 equiv). The reaction was allowed to stir at room temperature for 16 hours, then the reaction mixture was diluted with CH2CI2 (50 mL) and water (100 mL). The layers were separated, and the aqueous phase was extracted with CH2CI2 (2 x 25 mL). The combined organic extracts was washed with brine, dried over Na2SO4, filtered and concentrated in vacuo, and the residue obtained was purified using flash column chromatography on silica gel (2% to 4% MeOH/DCM with traces of ammonia) to provide 13.6 g of compound IE.
Step D - Synthesis of Compound IF
To a solution of nitrite IE (6.8 g, 26.4 mmol) in 50 mL MeOH was added Pd/C (50% wet, 10% Pd, 2.8 g, 2.64 mmol, 0.1 equiv), and the resultant mixture was hydrogenated for 16 hours by means of a hydrogen-filled balloon at room temperature. After the reaction was complete, the catalyst was removed by filtering through a short pad of celite and the filtrate was concentrated in vacuo to provide 7.0 g of compound IF, which was used without any further purification.
Step E - Synthesis of Compound 1
To a stirred solution of IF (100 mg, 0.38 mmol) in CH
2Cl
2 (5 mL) was added 3, 5-bis (trifluoromethyl)phenylisocyanate (0.087 g, 0.38 mmol). The reaction was stirred for 1 hour at room temperature, then the reaction mixture was directly purified using flash chromatography on silica gel (2% to 6% MeOHZCH
2CI
2) to provide 130 mg of compound 1 as a white powder.
Compounds 2-16 were synthesized using the above methodology and substituting the appropriate reactants and reagents.
Example 2
Preparation of Compound 26
To a stirred suspension of NaH (186 mg, 4.65 mmol, 20 equiv) in THF (20 mL) was added a solution of compound 1 (120 mg, 0.23 mmol) in THF (5 mL), followed by dropwise addition of 1,2-dibromoethane (0.41 mL, 4.65 mmol, 20 equiv). The reaction was heated to 75 °C and allowed to stir at this temperature for 16 hours, then quenched by the addition of saturated aqueous NH
4Cl. The resulting solution was extracted with CH
2Cl
2 and the organic extract was washed with brine, dried over Na
2SO
4, filtered, and concentrated in vacuo to provide a crude residue which was purified using flash column chromatography on silica gel (CH
2Cl
2ZMeOHTNH
3: 95Z4.5Z0.5) to provide 7 mg of compound 26.
Compounds 21-23, 25 and 27 were synthesized using the above methodology and substituting the appropriate reactants and reagents.
Example 3
Preparation of Compound 17
To a cooled solution of triphosgene (98 mg, 0.33 mmol) in CH2Cl2 (10 mL) was added 5-amino-2-trifluoromethylpyridine (136 mg, 0.80 mmoi, 1.05 equiv) and triethylamine (0.149
mL, 1.07 mmol, 1.4 equiv) in CH2CI2 (2 mL) dropwise over 5 minutes. The reaction was allowed to stir for 5 minutes after addition, then a solution of compound IF (200 mg, 0.765 mmol, 0.96 equiv) and triethylamine (107 μL, 0.765 mmol, 1.0 equiv) in CH2CI2 (5 mL) was added dropwise over 5 minutes, then the reaction was allowed to stir at room temperature for about 15 hours, then it was diluted with water and extracted with CH2Cl2 (2 x 5 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo and the residue obtained was purified using flash column chromatography on silica gel (CHjCI2ZMeOHZNH3: 95Z4.5/0.5) to provide 87 mg of compound 17.
Compounds 18-20 and 34-36 were synthesized using the above methodology and substituting the appropriate reactants and reagents.
Example 4 Preparation of Compound 28
A solution of compound 37 (100 mg, 0.22 mmol, 1.0 equiv) in chloroacetyl chloride (175 μL, 2.2 mmol, 10.0 equiv) was heated to 105 °C and allowed to stir at this temperature for 30 minutes, then concentrated in vacuo. The residue obtained was dissolved in DMF (1 mL) and diisopropylethylamine (194 μL, 1.11 mmol, 5.0 equiv) was added. The reaction was heated to 105 °C and allowed to stir at this temperature for 10 minutes, then diluted with water and extracted with CH2CI2 (2 x 5 mL). The combined organic layers were washed with brine, dried over Na2SC^, filtered and concentrated in vacuo and the residue obtained was purified using a reverse phase column (gradient elution comprising acetonitrileZ waterZ trifluoroacetic acid) to provide compound 28.
Example 5 Preparation of Compound 33
To a stirred solution of IF (500 mg, 1.91 ramol) in CH3CN (5 mL)was added methylbromoacetate (182 μL, 1.91 mmol, 1.0 equiv) and K2CO3 (0.53 g, 3.83 mmol, 2.0 equiv). The reaction was stirred at room temperature for 1 hour, then diluted with CHzCh and filtered. To the filtrate was added 2, 4-dichlorophεnylisocyanate (360 mg, 1.91 mmol) and resulting reaction was stirred at room temperature for 30 minutes, then concentrated in vacuo. The resulting residue was purified using a reverse phase column (gradient elution comprising acetonitrile/ water/ trifluoroacetic acid) to provide 9 mg of compound 33.
Example 6
Preparation of Compound 32
Step A - Synthesis of Compound 6A
To a stirred solution of Boc-PhG-OH (264 mg, 1.05 mmol, 1.1 equiv) in THF (10 mL) was added CDI (170 mg, 1.05 mmol, 1.1 equiv). The reaction was stirred for 1 hour then compound IF (250 mg, 0.96 mmol, 1.0 equiv) was added and the reaction was left to stir at room temperature for about 15 hours. Water was then added and the mixture was extracted with CH2CI2 (2 x 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo to provide a crude residue, which was purified
using flash column chromatography on silica gel ( CH2Cl2/MeOH/NH3: 95/4.5/0.5) to provide 138 mg of compound 6A.
Step B - Synthesis of Compound 6B
To a stirred suspension of NaH (57 mg, 1.42 mmol, 10.0 eqυiv) in 5 mL THF was added compound 6A (70 mg, 0.14 mmol) in 2 mL THF dropwise. The reaction was stirred at room temperature for 30 min followed by the addition of methyl chloroformate (109 μL, 1.42 mmol, 10.0 equiv) in 2 mL THF. The reaction was stirred at room temperature for 4 hours after which it was diluted with water and CH2Cl2. The organic layer was washed with brine, dried over Na2SO4, filtered and concentrated in vacuo to provide compound €B, which was used without further purification.
Step C - Synthesis of Compound 32
To a solution of compound 6B (45 mg, 0.086 mmol) in CH2Cl2 (5 mL) was added TFA (2 mL). The reaction was heated to reflux and allowed to stir at this temperature for 1 hour, then cooled to room temperature and concentrated in vacuo. The resulting residue was diluted with CH2Cl2 and the resulting solution was neutralized with solid K2CO3, then Filtered and concentrated in vacuo to provide 12 mg of compound 32.
Example 7
Preparation of Compound 31
Step A - Synthesis of Compound 7 A
To a solution of compound IF (1.0 g, 3.83 mmol) in 50 mL CH3CN was added K2CO3 (1.69 g, 12.26 mmol, 3.2 equiv) followed by bromoacetaldehyde diethylacetal (2.38 mL, 15.32 mmol, 4.0 equiv). The reaction was heated to reflux and allowed to stir at this temperature for about 15 hours, after which it was concentrated in vacuo, diluted with water and the mixture was extracted with CH2Cl2 (2 x 20 mL) The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo which was purified using flash column chromatography on silica gel (CH2CI2/MeOH/NH3: 90/9.5/0.5) to provide 200 mg of compound 7 A.
Step B • Synthesis of Compound 7B
To a solution of compound 7Λ (200 mg, 0.53 mmol) in 5 mL CH2Cl2 was added 2, A- dichlorophenylisocyanate (100 mg, 0.53 mmol). The reaction was allowed to stir at room temperature for about 15 hours and purified using flash column chromatography on silica gel, eiuting with 2% to 6% MeOH/CH2Cl2 to provide 265 mg of compound 7B.
Step C - Synthesis of Compound 31
To a stirred solution of TB (200 mg, 0.35 mmol) in 5 mL MeOH was added 10 mL 4 N HC! and the reaction was heated to reflux and allowed to stir at this temperature for about 15 hours. After completion, the reaction mixture was concentrated in vacuo, diluted with CH
2Cl
2, and neutralized with saturated aqueous NaHCO
3. The mixture was extracted with CH
2CI
2, the organic layers washed with brine, dried over Na
2SO
4, filtered and concentrated in vacuo to provide 85 mg of compound 31.
Example 8
Preparation of Compound 38
Step A - Synthesis of Compound 8A
The mixture of 5-bromopyridine-2-carboxaldehyde (5 g, 26.8 mmol) in methanol (80 mL), t-BOC piperazine (5 g, 26.8 mmol), and Na(AcO)3BH (11.4 g, 53.6 mmol) was stirred at room temperature for 18 hours. The reaction mixture was diluted with saturated Na2CO3 (300 mL), extracted with ethyl acetate (2 x 200 mL). The organic solution was concentrated in vacuo and separated using flash column chromatography on silica gel (methanol/ dichloromethane (v/v = 2/98)) to provide the intermediate compound 8A (3.6, 38%).
Step B - Synthesis of Compound 8B
The mixture of compound 8A (3.56g, 10 mmol) in methanol (25 mL) and 4N HCl in 1,4-dioxane (25 mL) at room temperature for 2 hours, then concentrated. The resulting reaction mixture was mixed with DMF (20 mL), triethylamine (2.5g), bromomethyl cyclopropane (2.0
eq.) and cesium carbonate (4.Ig), then was stirred at room temperature for 18 hours. The reaction mixture was diluted with water (100 mL), extracted with ethyl acetate (200 mL x 2). The organic solution was concentrated in vacuo and separated using flash column chromatography on silica gel methanol/ dichloromethane (v/v = 2/98) to provide the intermediate compound 8B (1 Ag, 74%).
Step C - Synthesis of Compound 8C
Into the solution of compound 8B (1.3g, 4.2 mmol) in THF (20 mL), which cooled to -
78 °C, was added 2.5M n-BuLi in hexanes (1.85 mL). The reaction mixture was stirred at -78 °C and allowed to stir at this temperature for 30 min., and added DMF (0.33g, 4.6 mmol), then continued to stir at -78 °C and allowed to stir at this temperature for 1 hour and warmed to room temperature. The reaction mixture was diluted with brine ( 100 mL), extracted with ethyl acetate (100 mL x 2). The organic solution was concentrated in vacuo , mixed with methanol (10 mL), methylamine HCl salt (0.26g), triethylamine (0.39g), and Na(AcO)3BH (1.6g), then stirred at room temperature for 18 hours. The reaction mixture was diluted with saturated Na2CO3 (50 mL) and extracted with ethyl acetate (100 mL x 2). The organic solution was concentrated in vacuo to provide the intermediate compound 8C (Ig).
Step D - Synthesis of Compound 38
The mixture of compound 8C (0.12g, 0.44 mmol) in dichloromethane (2 mL) and 2,4- dichlorophenyl isocyanate (0.082g, 0.44mmol) was stirred at room temperature for 2 hours. The reaction mixture was separated using flash column chromatography on silica gel methanol/ dichloromethane (v/v = 4/96) to providecorapound 38 (0.15g, 75%).
Compound 39 was prepared using the above method and substituting the appropriate starting material.
Example 9
Preparation of Compound 40
Step A - Synthesis of Compound 9 A
To a mixture of 2-bromopyridine-5-carboxylic acid (5 g, 24.7 mmol) in dichloromethane (100 mL) was added cyclopropylmethylpiperazine (3.5 g, 24.7 mmol), HATU (18.8g, 49.4 mmol), and Et
3N (1.4 eq.) and the resulting reaction was stirred at room temperature for 13 hours. The reaction mixture was diluted with water (200 mL), extracted with dichloromethane (200 mL x 2) and the combined organic layers were concentrated in vacuo and the resulting residue was purified using flash column chromatography on silica gel (methanol/dichloromethane (v/v = 2/98)) to provide the intermediate compound 9A (6.6g, 83%).
Step B - Synthesis of Compound 9B
To a mixture of compound 9A (2 g, 6.2 mmoi) in DMF (30 mL), CuCN (1.1 g, 12.4 mmol), NaI (0.1 g, 0.62 mmol) was heated to reflux and allowed to stir at this temperature for 3 days. The reaction mixture was diluted with saturated Na2CO3 (200 mL) and extracted with ethyl acetate (100 mL x 2). The organic solution was concentrated in vacuo to provide the intermediate compound 9B (0.45 g, 27 %).
Step C - Synthesis of Compound 9C
A mixture of compound 9B and Pd/C (SO % wt) in MeOH (8 mL) was subjected to hydrogenation for 6 hours at atmospheric pressure, then the reaction mixture was filtered and the filtrate concentrated in vacuo to provide intermediate compound 9C (0.6 g, 100%).
Step D • Synthesis of Compound 40
To a solution of compound 9C (0.1 g, 0.365 mmol) in dichloromethane (2 mL) was added 2,4-dichlorophenyl isocyanate (0.067 g, 0.365 mmol) and the resulting reaction was stirred at room temperature for 2 hours. The reaction mixture was concentrated in vacuo and the resulting residue was purified using flash column chromatography on silica gel (methanol/ dichloromethane (v/v = 4/96)) to provide compound 40 (0.095g, 56%).
Compounds 41-43 were prepared using the above method and substituting the appropriate reactants and reagents.
Example 10
Preparation of Compound 44
A mixture of compound 9C (0.05 g, 0.182 mmol) and cyclopentylcarbonyl chloride
(0.037 g, 0.2 mmol) in dichloromethane (1 mL) was stirred at room temperature for 2 hours. The reaction mixture was concentrated in vacuo and the resulting residue was purified using flash column chromatography on silica gel (methanol/dichloromethane (v/v = 4/96)) to provide compound 44 (0.045g, 67%).
Compound 45 was prepared using the method described above and by substituting the appropriate reactants and reagents.
Example 11
Preparation of Compound 46
Step A - Synthesis of Compound HA
To a mixture of 6-bromopyridine-3-carboxaldehyde (25.1 g, 135 mmol) in toluene (200 mL) was added ethylene glycol (9.2 g, 148 mmol), and p-TSA (0.2 g) and the resulting reaction was heated to reflux and allowed to stir at this temperature for 24 hours. The reaction mixture was cooled to room temperature, concentrated in vacuo and the residue obtained was diluted with saturated Na2CO3 (200 mL) and extracted with ethyl acetate (200 mL x 2). The combined organic extracts were concentrated in vacuo to provide the intermediate compound HA (30g, 97%).
Step B - Synthesis of Compound HB
To a -78 °C solution of compound HA (4.6g, 20 mmol) in THF (40 mL) was added 2.5M n-BuLi in hexanes (9.6 mL). The reaction mixture was stirred at -78 °C for 1 hour, then N-t-BOC-4-(N-methoxy-N-methyl)amide (4.4g in 5 mL THF) was added and the reaction was
stirred for an additional 1 hour -78 °C. The reaction mixture was warmed to 0 °C and allowed to stir at this temperature for 10 minutes, then the reaction mixture was diluted with brine (200 mL) and extracted with ethyl acetate (150 mL x 2). The combined organic extracts were concentrated in vacuo and purified using flash column chromatography on silica gel (ethyl acetate/hexanes (v/v = 10/90)) to provide the intermediate compound HB ( 1.35g, 23%).
Step C - Synthesis of Compound UC
The mixture of compound HB (1.15g, 3.2mmol) in methanol (8 mL) and 4N HCl in
1,4-dioxane (8 mL) at room temperature for 1 hour, then concentrated. The resulting reaction mixture was mixed with DMF (15 mL), triethylamine (0.97g), 2-methyl- bromopropane (0.82g, 6.4 mmol), and cesium carbonate (2. Ig, 6.4 mmol), then heated to 80 °C for 20 hours. The reaction mixture was diluted with water (100 mL), extracted with ethyl acetate (100 mL x 2). The organic solution was concentrated in vacuo and separated using flash column chromatography on silica gel methanol/dichloromethane (v/v = 2/98) to provide intermediate compound HC (0.8g, 80%).
Step D - Synthesis of Compound UD
To a mixture of compound HC (0.75 g, 2.35 mmol) in THF (5 mL) was added IN HCl (23.5 mL, 2.35 mmol), and pTSA (0.1 g) and the resulting reaction was heated to 100 °C and allowed to stir at this temperature for 18 hours. The reaction mixture was cooled to room temperature, concentrated in vacuo and the residue obtained was diluted with saturated Na2CO3 (50 mL) and extracted with ethyl acetate (60 mL x 2). The combined organic extracts were then concentrated in vacuo to provide intermediate compound HD (0.62g, 99%).
Step E - Synthesis of Compound HE
To a mixture of compound 11D (0.62 g, 2.26 mmol) in dichloroethane (10 mL) was added p-methoxy-benzylamine (1.0 eq.) and Na(AcO)3BH (0.95 g, 4.5 mL), and the resulting reaction was stirred at room temperature for 18 hours. The reaction mixture was filtered, the filtrate was concentrated in vacuo, and the resulting residue was purified using flash column chromatography on silica gel (methanol/dichloromethane (v/v = 3/97)) to provide intermediate compound HE (0.51g, 57%).
Step F - Synthesis of Compound HF
To a mixture of compound HE (0.11 g, 0.28 mmol) in CH3CN/H2O ( 10: 1 , 4 mL), was added CAN (0.61 g, 1.1 mmol) and the resulting reaction was stirred at room temperature for 2 days. The reaction mixture was filtered, the filtrate was concentrated in vacuo, and the resulting residue was purified using flash column chromatography on silica gel (methanol/dichloromethane (v/v = 4/96)) to provide the intermediate compound HF (0.038 g, 49%).
Step G - Synthesis of Compound 46
To a solution of compound HF (0.037 g, 0.134 mmol) in dichloromethane ( 1 mL) was added 2,4-dichIorophenyl isocyanate (0.025 g, 0.134 mmol) and the resulting reaction was stirred at room temperature for 2 hours. The reaction mixture was then concentrated in vacuo, and the resulting residue was purified using flash column chromatography on silica gel (methanol/dichloromethane (v/v = 4/96)) to provide compound 46 (0.02g, 32%).
282
Preparation of Compound 47
Step A - Synthesis of Compound 12A
To a solution of nitrite IE (2.5 g, 3.25 mmol) in 20 mL DCM was added DIBAL ( 16 ml, 16 mmol, 1.0 M in hexanes, 1.8 equiv) at -78 °C. The resultant mixture was stirred at -78 °C and allowed to stir at this temperature for 0.5 hr and for 1 hr at room temperature. After the reaction was complete, the reaction was cooled to 0 °C and quenched using 5% aq. H
2SO
4 solution. The aqueous phase was basified using aq. NaOH solution and then extracted with EtOAc, the combined organic layers were washed with brine and dried over Na
2SO
4. The residue after concentration was purified using flash column chromatography on silica gel (CH
2Cl
2/MeOH/NH
3: 95/4.5/0.5) to provide 2 g of intermediate compound 12A.
Step B - Synthesis of Compound 47
To a solution of 12A (170 mg, 0.65 mmol) and isoindoline (150 mg, 1 mmol) in 5 mL THF was added NaBH(O Ac)3 (212 mg, 1 mmol). The resulting reaction was stirred for about 15 hours at room temperature, then the reaction mixture was diluted with EtOAc, and washed with aqueous NaOH solution (1 N) and brine. The organic layer was dried over Na2SO4, filtered and concentrated in vacuo and the residue obtained was purified using Gilson preparative LC to provide 50 mg of compound 47.
Compounds 48-53 were prepared using the method described above and by substituting the appropriate reactants and reagents.
283
Example 13
Preparation of Compound 54
Step A - Synthesis of Compound 13A
To a solution of compound IE (900 mg, 3.3 mmol) in DMSO (S mL) at 0 °C was added
30% H2O2 and then K2CO3. The resulting reaction was stirred at room temperature for 2 hours, then quenched using IN aqueous NaOH solution. The resulting mixture was extracted with EtOAc and the organic phase was washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The resulting residue was purified using flash column chromatography on silica gel (CH2Cl2ZMeOHZNH3: 95Z5Z0.5) to provide 600 mg of compound 13A.
Step B - Synthesis of Compound 54
To a stirred suspension of NaH (36 mg, 0.9 mmol, 2 equiv.) in DMF (S mL) was added compound 13A (130 mg, 0.45 mmol) followed by α, α'-dibromo-o-xylene (238 mg, 0.9 mmol, 2 equiv.). The reaction was stirred at room temperature for about 15 hours, then quenched using aqueous NaOH solution (1.0 N), then extracted with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo to provide a crude residue which was purified using flash column chromatography on silica gel (CH2Cl2ZMeOHZNHs: 95/4.5Z0.5) to provide 150 mg of compound 54.
Compounds 58 and 61 were prepared using the method described above and by substituting the appropriate reactants and reagents.
284
Example 14 Preparation of Compound 56
Λ solution of compounds 14A (89 mg, 0.36 mmol) and 14B (60 mg, 0.47 tnmol) in DMSO (3 mL) was heated in a sealed tube to 120 °C and allowed to stir at this temperature for 3 hours. The reaction mixture was then cooled to room temperature, diluted with EtOAc, washed with aqueous NaOH solution ( 1.0 N), dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified using Gilson preparative LC to provide to provide 90 mg of compound 56.
Example 15
Preparation of Compound 59
A solution of compound 15A (495 mg, 2 mmol, 1.0 equiv), 15B (592 mg, 4 mmol, 2 equiv.), 15C (1 g, 4 mmol, 2 equiv.) in THF (20 mL) was treated with tri n-butylphosphine (1 ml, 4 mmol) under N2 atmosphere. The reaction was stirred at room temperature for about 15 hours, then concentrated in vacuo and the resulting residue was purified using flash column chromatography on silica gel to provide compound 59.
Example 16
Preparation of Compound 60
To a at 0 °C solution of compound 59 (170 mg, 0.43 mmol) in MeOH/THF (1/10, 10 mL) was added NaBH4 (30 mg, 0.8 mmol). The reaction was stirred at room temperature for 2 hours, then diluted with EtOAc. The organic layer was washed with aqueous NaOH solution (1.0 N), dried over Na2SO4, filtered and concentrated in vacuo to provide a crude residue which was purified using flash column chromatography on silica gel to provide ISO mg of compound 60.
Example 17
Preparation of Compound 57
To a 0 °C solution of compound 60 (50 mg, 1 equiv.) in dichloromethane (3 mL) was added TFA (146 mg, 10 equiv.) and triethylsilane (22 mg, 1.5 equiv.). The resulting reaction was stirred at room temperature until TLC monitoring showed the reaction to be complete. The reaction mixture was then concentrated in vacuo and the resulting residue was purified using preparative thin-layer chromatography to provide 30 mg of compound 57.
Example 18
Preparation of Compound 62
Compound 62 was prepared using the method described in Example I and using the appropriate reactants.
86
Example 19
Preparation of Compound 63
Compound 62 was prepared using the method described in Example 2 and using the appropriate reactants.
Example 20 Preparation of Compound 64
Compound 64 was prepared using the method described in Example 17 and using the appropriate reactants.
Example 21 H3 Receptor Binding Assay The source of the H3 receptors in this experiment was guinea pig brain. The animals weighed 400-600 g. The brain tissue was homogenized with a solution of 50 mM Tris, pH 7.5. The final concentration of tissue in the homogenization buffer was 10% w/v. The homogenates were centrifuged at 1,000 x g for 10 min. in order to remove clumps of tissue and debris. The resulting supernatants were then centrifuged at 50,000 x g for 20 min. in order to sediment the membranes, which were next washed three times in homogenization buffer
(50,000 x g for 20 min. each). The membranes were frozen and stored at -70°C until needed.
Compounds of the invention to be tested were dissolved in DMSO and then diluted into the binding buffer (50 mM Tris, pH 7.5) such that the final concentration was 2μg/ml with 0.1% DMSO. Membranes were then added (400 μg of protein) to the reaction tubes. The reaction was started by the addition of 3 nM [3H]R-α-methyl histamine (8.8 Ci/mmol) or 3 nM [^H]Nα-methyI histamine (80 Ci/mmol) and continued under incubation at 30°C and allowed
to stir at this temperature for 30 min. Bound Iigand was separated from unbound ligand by filtration, and the amount of radioactive iigand bound to the membranes was quantitated by liquid scintillation spectrometry. AH incubations were performed in duplicate and the standard error was always less than 10%. Compounds that inhibited more than 70% of the specific binding of radioactive ligand to the receptor were serially diluted to determine a Ki (nM).
Using this method, the following data were obtained for selected Compounds of Formula (I): Ki values in guinea pig brain ranged from about 30 nM to about 2 μM.
Example 22 In Vivo Effect of Compounds of the Invention on Glucose Levels in Diabetic Mice
Five-week-old male ICR mice are used as a model of diabetes and can be purchased, for example, from Taconic Farm (Germantown, NY). The mice are placed on a "western diet" containing 45% (kcal) fat from lard and 0.12% (w/w) cholesterol. After 3 weeks of feeding, the mice are injected once with low dose streptozocin (STZ, ip 75-100 mg/kg) to induce partial insulin deficiency. Two weeks after receiving the STZ injection, the majority of the STZ- treated mice should develop type 2 diabetes and display hyperglycemia, insulin resistance, and glucose intolerance. The diabetic mice are then placed in one of three groups: (1) a non- treated control group, (2) a group treated with rosiglitazone (5 mg/kg/day in diet); or (3) a group treated with a compound of the present invention ( 10/mg/kg in diet) for four weeks.
Example 23
In Vivo Effect of Compounds of the Invention on Glucose Levels in Diabetic Rats Adult, diabetic, Goto-Kakizaki rats (14 weeks old) are used as a model of diabetes. The animals are first tested for non-fasting glucose levels using a glucometer. Rats with glucose levels between 130 and 370 mg/dl are then randomized into treatment (N = 10) and control (N = 10) groups. Animals in the treatment group are administered a compound of the present invention in their food chow at a dose of 10 mg/kg/day. After one week of treatment, blood is collected via tail snip and the non-fasting glucose level can be measured using a glucometer.
Uses of the Compounds of Formula (I)
The Compounds of Formula (I) are useful in human and veterinary medicine for treating or preventing a Condition in a patient. In accordance with the invention, the Compounds of Formula (I) can be administered to a patient in need of treatment or prevention of a Condition. Accordingly, in one embodiment, the invention provides methods for treating a
Condition in a patient comprising administering to the patient an effective amount of one or more Compounds of Formula (I) or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof. In addition, the present invention provides methods for treating or preventing Condition in a patient, comprising administering to the patient one or more Compounds of Formula (I) and an additional therapeutic agent that is not a Compound of Formula (I), wherein the amounts administered are together effective to treat or prevent the Condition.
In one embodiment, the compounds of the present invention can be ligands for the histamine H3 receptor. In another embodiment, the compounds of the present invention can also be described as antagonists of the H3 receptor, or as H3 antagonists.
Treating or Preventing Allergy
The Compounds of Formula (I) are useful for treating or preventing allergy in a patient. Accordingly, in one embodiment, the present invention provides a method for treating allergy in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Non-limiting examples of allergy treatable or preventable using the present methods include Type I hypersensitivity reactions, Type II hypersensitivity reactions, Type III hypersensitivity reactions, Type IV hypersensitivity reactions, food allergies, allergic lung disorders, allergic reaction to a venomous sting or bite; mold allergies, environmental-related allergies (such allergic rhinitis, grass allergies and pollen allergies), anaphlaxis and latex allergy.
Treating or Preventing Allergy-Induced Airway Response
The Compounds of Formula (I) are useful for treating or preventing allergy-induced airway response in a patient.
Accordingly, in one embodiment, the present invention provides a method for treating allergy-induced airway response in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Non-limiting examples of allergy-induced airway response treatable or preventable using the present methods include upper airway responses.
In one embodiment, the allergy-induced airway response is an upper airway response.
Treating or Preventing Congestion
The Compounds of Formula (I) are useful for treating or preventing congestion in a patient.
Accordingly, in one embodiment, the present invention provides a method for treating congestion in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Non-limiting examples of congestion treatable or preventable using the present methods include nasal congestion and all types of rhinitis, including atrophic rhinitis, vasomotor rhinitis, gustatory rhinitis and drug induced rhinitis. In one embodiment, the congestion is nasal congestion.
Treating or Preventing a Neurological Disorder The Compounds of Formula (I) are useful for treating or preventing a neurological disorder in a patient. The term "neurological disorder," as used herein, refers to a disorder of any part of the central nervous system, including, but not limited to, the brain, nerves and spinal cord.
Accordingly, in one embodiment, the present invention provides a method for treating a neurological disorder in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Non-limiting examples of neurological disorders treatable or preventable using the present methods include pain, hypotension, meningitis, a movement disorder (such as Parkinson's disease or Huntington's disease), delirium, dementia, Alzheimer's disease, a demyelinating disorder (such as multiple sclerosis or amyotrophic lateral sclerosis), aphasia, a peripheral nervous system disorder, a seizure disorder, a sleep disorder, a spinal cord disorder,
stroke, attention deficit hyperactivity disorder (ADHD), hypo and hyperactivity of the central nervous system (such as agitation or depression) and schizophrenia.
In one embodiment, the neurological disorder is a sleep disorder. In another embodiment, the neurological disorder is a movement disorder. In another embodiment, the neurological disorder is Alzheimer's disease.
In yet another embodiment, the neurological disorder is schizophrenia. In another embodiment, the neurological disorder is hypotension. In still another embodiment, the neurological disorder is depression, In a further embodiment, the neurological disorder is ADHD, which can be present in an adult or a child.
In one embodiment, the sleep disorder is a sleep disorder is hypersomnia, somnolence or narcolepsy.
In another embodiment, the movement disorder is Parkinson's disease or Huntington's disease. In one embodiment, the neurological disorder is pain.
Non-limiting examples of pain treatable or preventable using the present methods include acute pain, chronic pain, neuropathic pain, nociceptive pain, cutaneous pain, somatic pain, visceral pain, phantom limb pain, cancer pain (including breakthrough pain), pain caused by drug therapy (such as cancer chemotherapy), headache (including migraine, tension headache, cluster headache), pain caused by arithritis, pain caused by injury, toothache, or pain caused by a medical procedure (such as surgery, physical therapy or radiation therapy). In one embodiment, the pain is neuropathic pain. In another embodiment, the pain is cancer pain. In another embodiment, the pain is headache.
Treating or Preventing a Cardiovascular Disease
The Compounds of Formula (I) are useful for treating or preventing a cardiovascular disease in a patient.
Accordingly, in one embodiment, the present invention provides a method for treating a cardiovascular disease in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Examples of cardiovascular diseases treatable or preventable using the present methods include, but are not limted to, an arrhythmia, an atrial fibrillation, a supraventricular tachycardia, arterial hypertension, arteriosclerosis, coronary artery disease, pulmonary artery disease, a cardiomyopathy, pericarditis, a peripheral artery disorder, a peripheral venous disorder, a peripheral lymphatic disorder, congestive heart failure, myocardial infarction, angina, a valvular disorder or stenosis.
In one embodiment, the cardiovascular disease is atherosclerosis.
In another embodiment, the cardiovascular disease is coronary artery disease.
Treating or Preventing a Gastrointestinal Disorder
The Compounds of Formula (I) are useful for treating or preventing a gastrointestinal disorder in a patient.
Accordingly, in one embodiment, the present invention provides a method for treating a gastrointestinal disorder in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Examples of gastrointestinal disorders treatable or preventable using the present methods include, but are not United to, hyper or hypo motility of the GI tract, acidic secretion of the GI tract, an anorectal disorder, diarrhea, irritable bowel syndrome, dyspepsis, gastroesophageal reflux disease (GERD), diverticulitis, gastritis, peptic ulcer disease, gastroenteritis, inflammatory bowel disease, a malabsorption syndrome or pancreatitis.
In one embodiment, the gastrointestinal disorder is GERD.
In another embodiment, the gastrointestinal disorder is hyper or hypo motility of the GI tract.
Treating or Preventing An Inflammatory Disease
The Compounds of Formula (I) are useful for treating or preventing an inflammatory disease in a patient.
Accordingly, in one embodiment, the present invention provides a method for treating an inflammatory disease in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Treating or Preventing Non» Alcoholic Fatty Liver Disease
The Compounds of Formula (I) are useful for treating or preventing non-alcoholic fatty liver disease in. a patient
Accordingly, in one embodiment, the present invention provides a method for treating non-alcoholic fatty liver disease in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Treating or Preventing a Metabolic Disorder
The Compounds of Formula (I) can be useful for treating a metabolic disorder. Accordingly, in one embodiment, the invention provides methods for treating a metabolic disorder in a patient, wherein the method comprises administering to the patient an effective amount of one or more Compounds of Formula (I), or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof.
Examples of metabolic disorders treatable include, but are not limited to, metabolic syndrome (also known as "Syndrome X"), impaired glucose tolerance, impaired fasting glucose, dyslipidemia, hypercholesterolemia, hyperlipidemia, hypertriglyceridemia, low HDL levels, hypertension, phenylketonuria, post-prandial lipidemia, a glycogen-storage disease, Gaucher1 s Disease, Tay-Sachs Disease, Niemann-Pick Disease, ketosis and acidosis.
In one embodiment, the metabolic disorder is hypercholesterolemia.
In another embodiment, the metabolic disorder is hyperlipidemia. In another embodiment, the metabolic disorder is hypertriglyceridemia.
In still another embodiment, the metabolic disorder is metabolic syndrome.
In a further embodiment, the metabolic disorder is low HDL levels.
In another embodiment, the metabolic disorder is dyslipidemia.
Treating or Preventing Obesity and Obesity-Related Disorders
The Compounds of Formula (I) can be useful for treating obesity or an obesity-related disorder. Accordingly, in one embodiment, the invention provides methods for treating obesity or an obesity-related disorder in a patient, wherein the method comprises administering to the patient an effective amount of one or more Compounds of Formula (I), or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof.
Treating or Preventing Diabetes
The Compounds of Formula (I) are useful for treating or preventing diabetes in a patient. Accordingly, in one embodiment, the present invention provides a method for treating diabetes in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I). Examples of diabetes treatable or preventable using the Compounds of Formula (I) include, but are not united to, type 1 diabetes (insulin-dependent diabetes mellitus), type 2 diabetes (non-insulin dependent diabetes mellitus), gestational diabetes, autoimmune diabetes, insulinopathies, diabetes due to pancreatic disease, diabetes associated with other endocrine diseases (such as Cushing's Syndrome, acromegaly, pheochromocytoma, glucagonoma, primary aldosteronism or somatostatinoma), type A insulin resistance syndrome, type B insulin resistance syndrome, lipatrophic diabetes, diabetes induced by β-cell toxins, and diabetes induced by drug therapy (such as diabetes induced by antipsychotic agents). In one embodiment, the diabetes is type 1 diabetes. In another embodiment, the diabetes is type 2 diabetes.
Treating or Preventing a Diabetic Com plication
The Compounds of Formula (I) are useful for treating or preventing a diabetic complication in a patient. Accordingly, in one embodiment, the present invention provides a method for treating a diabetic complication in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Examples of diabetic complications treatable or preventable using the Compounds of Formula (I) include, but are not limted to, diabetic cataract, glaucoma, retinopathy, aneuropathy (such as diabetic neuropathy, polyneuropathy, mononeuropathy, autonomic neuropathy, microalυminuria and progressive diabetic neuropathy!), nephropathy, gangrene of the feet, immune-complex vasculitis, systemic lupsus erythematosus (SLE), atherosclerotic coronary arterial disease, peripheral arterial disease, nonketotic hyperglycemic-hyperosmolar coma, foot ulcers, joint problems, a skin or mucous membrane complication (such as an infection, a shin spot, a candidal infection or necrobiosis lipoidica diabeticorumobesity), hyperlipidemia, hypertension, syndrome of insulin resistance, coronary artery disease, a fungal infection, a bacterial infection, and cardiomyopathy.
In one embodiment, the diabetic complication is neuropathy. In another embodiment, the diabetic complication is retinopathy.
In another embodiment, the diabetic complication is nephropathy.
Treating or Preventing Impaired Glucose Tolerance
The Compounds of Formula (I) are useful for treating or preventing impaired glucose tolerance in a patient.
Accordingly, in one embodiment, the present invention provides a method for treating impaired glucose tolerance in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Treating or Preventing Impaired Fasting Glucose
The Compounds of Formula (I) are useful for treating or preventing impaired fasting glucose in a patient.
Accordingly, in one embodiment, the present invention provides a method for treating impaired fasting glucose in a patient, comprising administering to the patient an effective amount of one or more Compounds of Formula (I).
Combination Therapy
Accordingly, in one embodiment, the present invention provides methods for treating a Condition in a patient, the method comprising administering to the patient one or more Compounds of Formula (I), or a pharmaceutically acceptable salt or solvate thereof and at least one additional therapeutic agent that is not a Compound of Formula (I), wherein the amounts administered are together effective to treat or prevent a Condition.
When administering a combination therapy to a patient in need of such administration, the therapeutic agents in the combination, or a pharmaceutical composition or compositions comprising the therapeutic agents, may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like. The amounts of the various actives in such combination therapy may be different amounts (different dosage amounts) or same amounts (same dosage amounts).
In one embodiment, the one or more Compounds of Formula (I) is administered during at time when the additional therapeutic agent(s) exert their prophylactic or therapeutic effect, or vice versa.
In another embodiment, the one or more Compounds of Formula (I) and the additional therapeutic agent(s) are administered in doses commonly employed when such agents are used as monotherapy for treating a Condition.
In another embodiment, the one or more Compounds of Formula (I) and the additional therapeutic agent(s) are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a Condition.
In still another embodiment, the one or more Compounds of Formula (I) and the additional therapeutic agent(s) act synergistically and are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a Condition.
In one embodiment, the one or more Compounds of Formula (I) and the additional therapeutic agent(s) are present in the same composition. In one embodiment, this composition is suitable for oral administration. In another embodiment, this composition is suitable for intravenous administration. The one or more Compounds of Formula (I) and the additional therapeutic agent(s) can act additively or synergistically. A synergistic combination may allow the use of lower dosages of one or more agents and/or less frequent administration of one or more agents of a combination therapy. A lower dosage or less frequent administration of one or more agents may lower toxicity of the therapy without reducing the efficacy of the therapy. In one embodiment, the administration of one or more Compounds of Formula (I) and the additional therapeutic agent(s) may inhibit the resistance of a Condition to these agents.
In one embodiment, when the patient is treated for diabetes, a diabetic complication, impaired glucose tolerance or impaired fasting glucose, the other therapeutic is an antidiabetic agent which is not a Compound of Formula (I). In another embodiment, when the patient is treated for pain, the other therapeutic agent is an analgesic agent which is not a Compound of Formula (I).
In another embodiment, the other therapeutic agent is an agent useful for reducing any potential side effect of a Compound of Formula (I). Such potential side effects include, but are not limited to, nausea, vomiting, headache, fever, lethargy, muscle aches, diarrhea, general pain, and pain at an injection site.
In one embodiment, the other therapeutic agent is used at its known therapeutically effective dose. In another embodiment, the other therapeutic agent is used at its normally
prescribed dosage. In another embodiment, the other therapeutic agent is used at less than its normally prescribed dosage or its known therapeutically effective dose.
Examples of antidiabetic agents useful in the present methods for treating diabetes or a diabetic complication include a sulfonylurea; an insulin sensitizer (such as a PPAR agonist, a DPP-IV inhibitor, a PTP-IB inhibitor and a glucokinase activator); an α-glucosidase inhibitor; an insulin secretagogue; a hepatic glucose output lowering agent; an anti-obesity agent; an antihypertensive agent; a meglitinide; an agent that slows or blocks the breakdown of starches and sugars in vivo; a peptide that increases insulin production; and insulin or any insulin- containing composition. In one embodiment, the antidiabetic agent is an insulin sensitizer or a sulfonylurea.
Non-limiting examples of sulfonylureas include glipizide, tolbutamide, glyburide, glimepiride, chlorpropamide, acetohexamide, gliamilide, gliclazide, glibenclamide and tolazamide.
Non-limiting examples of insulin sensitizers include PPAR activators, such as troglitazone, rosiglitazone, pioglitazone and englitazone; biguanidines such as metformin and phenformin; DPP-IV inhibitors such as sitagliptin, saxagliptin, denagliptin and vildagliptin; PTP-IB inhibitors; and α-glucokinase activators, such as miglitol, acarbose, and voglibose.
Non-limiting examples of hepatic glucose output lowering agents include Glucophage and Glucophage XR. Non-limiting examples of insulin secretagogues include sulfonylurea and non- sulfonylurea drugs such as GLP-I, exendin, GIP, secretin, glipizide, chlorpropamide, nateglinide, meglitinide, glibenclamide, repaglinide and glimepiride.
The term "insulin" as used herein, includes all formualtions of insulin, including long acting and short acting forms of insulin. In one embodiment, the antidiabetic agent is anti-obesity agent.
Non-limiting examples of anti-obesity agents useful in the present methods for treating diabetes include a 5-HT2C agonist, such as lorcaserin; a neuropeptide Y antagonist; an MCR4 agonist; an MCH receptor antagonist; a protein hormone, such as leptin or adiponectin; an AMP kinase activator; and a lipase inhibitor, such as orlistat. Appetite suppressants are not considered to be within the scope of the anti-obesity agents useful in the present methods.
Non-limiting examples of antihypertensive agents useful in the present methods for treating diabetes include β-blockers and calcium channel blockers (for example diltiazem,
verapamil, nifedipine, amlopidine, and mybefradil), ACE inhibitors (for example captopril, Iisinopril, enalapril, spirapril, ceranopril, zefenopril, fosinopril, cilazopril, and quinapril), AT-I receptor antagonists (for example losartan, irbesartan, and valsartan), renin inhibitors and endothelin receptor antagonists (for example sitaxsentan). Non-limiting examples of meglitinides useful in the present methods for treating diabetes include repaglinide and nateglinide.
Non-limiting examples of insulin sensitizing agents include biguanides, such as metformin, metformin hydrochloride (such as GLUCOPHAGE® from Bristol-Myers Squibb), metformin hydrochloride with glyburide (such as GLUCOV ANCE™ from Bristol-Myers Squibb) and buformin; glitazones; and thiazolidinediones, such as rosiglitazone, rosiglitazone maleate (AVANDIA™ from GlaxoSmithKline), pioglitazone, pioglitazone hydrochloride (ACTOS™, from Takeda) ciglitazone and MCC-555 (Mitstubishi Chemical Co.) In one embodiment, the insulin sensitizer is a thiazolidinedione. In one embodiment, the insulin sensitizer is a biguanide. Non-limiting examples of antidiabetic agents that slow or block the breakdown of starches and sugars and are suitable for use in the compositions and methods of the present invention include alpha-glucosidase inhibitors and certain peptides for increasing insulin production. Alpha-glucosidase inhibitors help the body to lower blood sugar by delaying the digestion of ingested carbohydrates, thereby resulting in a smaller rise in blood glucose concentration following meals. Non-limiting examples of suitable alpha-glucosidase inhibitors include acarbose; miglitol; camiglibose; certain polyamines as disclosed in International Publication No. WO 01/47528 (incorporated herein by reference); voglibose. Non-limiting examples of suitable peptides for increasing insulin production including amlintide (CAS Reg. No. 122384-88-7 from Amylin; pramlintide, exendin, certain compounds having Glucagon-like peptide- 1 (GLP-I) agonistic activity as disclosed in International Publication No. WO 00/07617 (incorporated herein by reference).
Non-limiting examples of orally admiπistrable insulin and insulin containing compositions include AL-401 from Autoimmune, and the compositions disclosed in U.S. Patent Nos. 4,579,730, 4,849,405, 4,963,526, 5,642,868, 5,763,396, 5,824,638, 5,843,866, 6, 153,632 and 6, 191 , 105; and International Publication No. WO 85/05029, each of which is incorporated herein by reference.
Non-limiting examples of other analgesic agents useful in the present methods for treating pain include acetaminophen, an NSAID, an opiate or a tricyclic antidepressant. In one embodiment, the other analgesic agent is acetaminophen or an NSAID. In another embodiment, the other analgesic agent is an opiate. In another embodiment, the other analgesic agent is a tricyclic antidepressant.
Non-limiting examples of NSAIDS useful in the present methods for treating pain include a salicylate, such as aspirin, amoxiprin, benorilate or diflunisal; an arylalkanoic acid, such as diclofenac, etodolac, indometacin, ketorolac, nabumetone, sulindac or tolmetin; a 2- arylpropionic acid (a "profen"), such as ibuprofen, carprofen, fenoprofen, flurbiprofen, loxoprofen, naproxen, tiaprofenic acid or suprofen; a fenamic acid, such as mefenamic acid or meclofenamic acid; a pyrazolidine derivative, such as phenylbutazone, azapropazone, metamizole or oxyphenbutazone; a coxib, such as celecoxib, etoricoxib, lumiracoxib or parecoxib; an oxicam, such as piroxicam, lornoxicam, meloxicam or tenoxicam; or a sulfonanilide, such as nimesulide. Non-limiting examples of opiates useful in the present methods for treating pain include an anilidopiperidine, a phenylpiperidine, a diphenylpropylamine derivative, a benzomorphane derivative, an oripavine derivative and a morphinane derivative. Additional illustrative examples of opiates include morphine, diamorphine, heroin, buprenorphine, dipipanone, pethidine, dextromoramide, alfentanil, fentanyl, remifentanil, methadone, codeine, dihydrocodeine, tramadol, pentazocine, vicodin, oxycodone, hydrocodone, percocet, percodan, norco, dilaudid, darvocet or lorcet.
Non-limiting examples of tricyclic antidepressants useful in the present methods for treating pain include amitryptyline, carbamazepine, gabapentin or pregabalin.
The Compounds of Formula (I) can be combined with an Hi receptor antagonist (i.e., the Compounds of Formula (I) can be combined with an Hi receptor antagonist in a pharmaceutical composition, or the Compounds of Formula (I) can be administered with one or more Hi receptor antagonists).
Numerous chemical substances are known to have histamine H1 receptor antagonist activity and can therefore be used in the methods of this invention. Many H1 receptor antagonists useful in the methods of this invention can be classified as ethanolamines, ethylenediamines, alkylamines, phenothiazines or piperidines. Representative Hi receptor antagonists include, without limitation: astemizole, azatadine, azelastine, acrivastine,
brompheniramine, cetirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carbinoxamine, descarboethoxyloratadine, diphenhydramine, doxylamine, dimethindene, ebastine, epinastine, efletirizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, meclizine, mizolastine, mequitazine, mianserin, noberastine, norastemizole, picumast, pyrilamine, promethazine, terfenadine, tripelennamine, temelastine, trimeprazine and triprolidine. Other compounds can readily be evaluated to determine activity at Hi receptors by known methods, including specific blockade of the contractile response to histamine of isolated guinea pig ileum. See for example, International Publication No. WO 98/06394 (incorporated herein by reference). Those skilled in the art will appreciate that the Hi receptor antagonist is used at its known therapeutically effective dose, or the Hi receptor antagonist is used at its normally prescribed dosage.
Preferably, said H1 receptor antagonist is selected from: astemizole, azatadine, azelastine, acrivastine, brompheniramine, cetirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carbinoxamine, descarboethoxyloratadine, diphenhydramine, doxylamine, dimethindene, ebastine, epinastine, efletirizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, meclizine, mizolastine, mequitazine, mianserin, noberastine, norastemizole, picumast, pyrilamine, promethazine, terfenadine, tripelennamine, temelastine, trimeprazine or triprolidine. More preferably, said Hi receptor antagonist is selected from: astemizole, azatadine, azelastine, brompheniramine, cetirizine, chlorpheniramine, clemastine, carebastine, descarboethoxyloratadine, diphenhydramine, doxylamine, ebastine, fexofenadine, loratadine, levocabastine, mizolastine, norastemizole, or terfenadine.
Most preferably, said Hi receptor antagonist is selected from: azatadine, brompheniramine, cetirizine, chlorpheniramine, carebastine, descarboethoxy-loratadine, diphenhydramine, ebastine, fexofenadine, loratadine, or norastemizole.
Even more preferably, said Hi antagonist is selected from loratadine, descarboethoxyloratadine, fexofenadine or cetirizine. Still even more preferably, said Hi antagonist is loratadine or descarboethoxyloratadine. In one preferred embodiment, said H; receptor antagonist is loratadine.
In another preferred embodiment, said H1 receptor antagonist is descarboethoxyloratadine.
In still another preferred embodiment, said Hi receptor antagonist is fexofenadine.
In yet another preferred embodiment, said Hi receptor antagonist is cetirizine.
Preferably, in the above methods, allergy-induced airway responses are treated.
Also, preferably, in the above methods, allergy is treated. Also, preferably, in the above methods, nasal congestion is treated.
In the methods of this invention wherein a combination of an H3 antagonist of this invention (compound of formula I) is administered with a Hi antagonist, the antagonists can be administered simultaneously or sequentially (first one and then the other over a period of time). In general, when the antagonists are administered sequentially, the H3 antagonist of this invention (Compound of Formula (I)) is administered first.
The doses and dosage regimen of the other agents used in the combination therapies of the present invention for the treatment or prevention of a Condition can be determined by the attending clinician, taking into consideration the the approved doses and dosage regimen in the package insert; the age, sex and general health of the patient; and the type and seventy of the viral infection or related disease or disorder. When administered in combination, the
Compound(s) of Formula (I) and the other agent(s) for treating diseases or conditions listed above can be administered simultaneously or sequentially. This is particularly useful when the components of the combination are given on different dosing schedules, e.g., one component is administered once daily and another every six hours, or when the preferred pharmaceutical compositions are different, e.g., one is a tablet and one is a capsule. A kit comprising the separate dosage forms is therefore advantageous.
Generally, a total daily dosage of the one or more Compounds of Formula (I) and the additional therapeutic agent(s)can when administered as combination therapy, range from about 0.1 to about 2000 mg per day, although variations will necessarily occur depending on the target of the therapy, the patient and the route of administration. In one embodiment, the dosage is from about 0.2 to about 100 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 1 to about 500 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 1 to about 200 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 1 to about 100 mg/day, administered in a single dose or in 2-4 divided doses. In yet another embodiment, the dosage is from about 1 to about 50 mg/day, administered in a single dose or in 2-4 divided doses. In a further embodiment, the
dosage is from about 1 to about 20 mg/day, administered in a single dose or in 2-4 divided doses.
Compositions and Administration For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g., magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18th Edition, (1990), Mack Publishing Co., Easton, PA. Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifϊers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.
Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g., nitrogen.
Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions. The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
In one embodiment, the Compound of Formula (I) is administered orally. In one embodiment, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 150 mg, preferably from about 1 mg to about 15 mg, more preferably from about 1 mg to about SO mg, according to the particular application.
The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total daily dosage may be divided and administered in portions during the day as required.
The amount and frequency of administration of the compounds of the invention and/or the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 300 mg/day, preferably 1 mg/day to 75 mg/day, in two to four divided doses.
When the invention comprises a combination of one or more Compounds of Formula (I) and an additional therapeutic agent, the two active components may be co-administered simultaneously or sequentially, or a single pharmaceutical composition comprising one or more Compounds of Formula (I) and an additional therapeutic agent in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional dosage form such as capsule, tablet, powder, cachet, suspension, solution, suppository or nasal spray. The dosage of the additional therapeutic agent can be determined from published material, and may range from about 1 to about 1000 mg per dose. In one embodiment, when used in combination, the dosage levels of the individual components are lower than the recommended individual dosages because of the advantageous effect of the combination. ϊn one embodiment, when the components of a combination therapy regime are to be administered simultaneously, they can be administered in a single composition with a pharmaceutically acceptable carrier.
In another embodiment, when the components of a combination therapy regime are to be administered separately or sequentially, they can be administered in separate compositions, each containing a pharmaceutically acceptable carrier.
The components of the combination therapy can be administered individually or together in any conventional dosage form such as capsule, tablet, powder, cachet, suspension, solution, suppository, nasal spray, etc.
Kits
In one aspect, the present invention provides a kit comprising a effective amount of one or more Compounds of Formula (I), or a pharmaceutically acceptable salt or solvate of the compound and a pharmaceutically acceptable carrier, vehicle or diluent.
In another aspect, the present invention provides a kit comprising an amount of one or more Compounds of Formula (I), or a pharmaceutically acceptable salt or solvate of the compound and an amount of at least one additional therapeutic agent listed above, wherein the combined amounts are effective for treating or preventing diabetes, a diabetic complication, impaired glucose tolerance or impaired fasting glucosein a patient.
When the components of a combination therapy regime are to are to be administered in more than one composition, they can be provided in a kit comprising in a single package, one container comprising a Compound of Formula (I) in pharmaceutically acceptable carrier, and a separate container comprising an additional therapeutic agent in a pharmaceutically acceptable carrier, with the active components of each composition being present in amounts such that the combination is therapeutically effective.
The present invention is not to be limited by the specific embodiments disclosed in the examples that are intended as illustrations of a few aspects of the invention and any embodiments that are functionally equivalent are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparant to those skilled in the art and are intended to fall within the scope of the appended claims.
A number of references have been cited herein, the entire disclosures of which are incorporated herein by reference.