WO2010044877A2 - Life safety device with extended shelf life - Google Patents

Life safety device with extended shelf life Download PDF

Info

Publication number
WO2010044877A2
WO2010044877A2 PCT/US2009/005645 US2009005645W WO2010044877A2 WO 2010044877 A2 WO2010044877 A2 WO 2010044877A2 US 2009005645 W US2009005645 W US 2009005645W WO 2010044877 A2 WO2010044877 A2 WO 2010044877A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
terminal
voltage
circuit
over
Prior art date
Application number
PCT/US2009/005645
Other languages
French (fr)
Other versions
WO2010044877A3 (en
Inventor
Matthew J. Buchholz
Travis Silver
Original Assignee
Walter Kidde Portable Equipment Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walter Kidde Portable Equipment Inc. filed Critical Walter Kidde Portable Equipment Inc.
Priority to CN200980150687.4A priority Critical patent/CN102257697B/en
Priority to AU2009303833A priority patent/AU2009303833A1/en
Priority to JP2011532084A priority patent/JP2012506232A/en
Priority to CA2741012A priority patent/CA2741012A1/en
Priority to EP09820907.5A priority patent/EP2345132A4/en
Publication of WO2010044877A2 publication Critical patent/WO2010044877A2/en
Publication of WO2010044877A3 publication Critical patent/WO2010044877A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to life safety devices having a battery assembly with a rechargeable battery.
  • Flush mount life safety devices are used in residential and commercial buildings to provide warning to occupants of hazards such as fire or a buildup of unsafe gases such as carbon monoxide.
  • the life safety devices are typically mounted on a wall or a ceiling of a building.
  • flush mount life safety devices are powered by a battery assembly that includes a rechargeable battery.
  • the life safety device is connected to a source of AC power, which provides electrical current for charging the rechargeable battery.
  • the rechargeable battery is a part of a battery assembly that is mounted in the life safety device at the factory. Once the battery assembly is connected to the circuitry of the life safety device, power can be drawn from the battery prior to the device being placed into service. Under those conditions, the life safety device is not connected to a source of AC power, and therefore the battery is not being recharged.
  • the battery assembly typically includes a rechargeable battery, a battery charging circuit, a booster circuit to increase the battery voltage to a voltage level required to operate the life safety device circuitry, and a battery protection circuit.
  • the battery protection circuit provides over-current protection, which disconnects the battery if the current draw is too high, and over-discharge protection to prevent the battery cell voltage from decreasing to a level which will cause internal damage to the cell.
  • the shelf life of the device must be limited.
  • the shelf life is determined by the current consumption required between the time of installation of the battery assembly in the device and the installation of the device with a connection to AC power. If the product is kept "on the shelf (i.e., either unsold or sold but not yet installed) beyond the shelf life, the battery cell voltage may slowly fall to a level that causes internal damage to the cell(s) of the battery. To avoid cell damage, any device that has exceeded its shelf life has to be returned to the factory, the battery must be replaced with a newly recharged battery, and the product must be repackaged and reshipped.
  • Extended shelf life of a battery of a life safety device is achieved by making use of an over-discharge protection mode of a battery protection circuit associated with the rechargeable battery.
  • the over-discharge protection (or power down) mode can be initiated to prevent current flow from the battery. Once initiated, the over-discharge protection mode will continue until the life safety device is connected to a charging power source.
  • the over-discharge protection mode offers much lower current consumption requirements than the over-current protection mode. As a result, shelf life of the device is extended.
  • FIG. 1 is a block diagram of a life safety device.
  • FIG. 2 is an electrical schematic diagram of the battery assembly of the life safety device of FIG. 1.
  • FIG. 1 shows a block diagram of flush mount life safety device 10, which may be, for example, a smoke alarm, a carbon monoxide (CO) alarm, a combination smoke and CO alarm, or a similar device for providing warning to occupants of a residence or other building of a potentially life threatening condition.
  • Flush mount life safety device 10 is typically mounted on a wall or ceiling, and is connected to a source of alternating current (AC) power.
  • AC alternating current
  • life safety device includes low voltage supply 12, battery assembly 14 (which includes rechargeable battery 16, battery charging circuit 18, booster circuit 20, and battery protection circuit 22), regulator electronics 24, hazards detector 26, microcontroller unit (MCU) 28, sounder circuitry 30, and battery test electronics 32.
  • Low voltage supply 12 is connected to an AC mains input, as represented by line input L and neutral input N.
  • Low voltage supply 12 converts AC input power to DC charging power, which is provided to the Charge In input of battery assembly 14 and regulator electronics 24.
  • Low voltage supply 12 also provides an AC_ON monitoring signal to MCU 28, which indicates that low voltage supply 12 is receiving AC power from the AC mains input.
  • Battery 16 of battery assembly 14 is a long life rechargeable battery, such as a lithium ion rechargeable battery.
  • Battery charging circuit 18 maintains charge on battery 16 using the charging power from low voltage supply 12.
  • Booster circuit 20 increases battery voltage Vbatt, which may range from about 2.2 to 4.2 volts, to output voltage Vout, which is used by regulator electronics 24 to provide regulated voltage to hazards detector 26 and MCU 28.
  • Vout may be, for example, a constant voltage of about 8.7 volts.
  • Battery protection circuit 22 provides protection to battery 16 against over- current and over-discharge conditions. Battery protection circuit 22 enters protection modes, in which battery 16 may be disconnected from other circuit components when the battery voltage Vbatt is too low (an over-discharge condition) or when the current being drawn from battery 16 exceeds a maximum current level (over-current protection).
  • Hazards detector 26 may be, for example, a photoelectric or ionization type smoke detector, a carbon monoxide detector, or a combination smoke and carbon monoxide detector. The output of hazards detector 26 is provided to MCU 28.
  • MCU 28 coordinates and controls the operation of life safety device 10. Based upon inputs received from hazards detector 26, MCU 28 determines whether a condition exists that requires sounding an alarm to warn occupants of a potentially dangerous condition. If an alarm is required, MCU 28 provides control signals to sounder circuitry 30 to generate the appropriate alarm. In some cases, the alarm will be an audible signal generated continuously or in pulses. In other embodiments, sounder circuitry 30 may generate a verbal message (or a combination of an audible signal and a verbal message) to occupants in response to a command from MCU 28. During the course of normal operation of life safety device 10, MCU 28 will periodically perform a battery test using battery test electronics 32.
  • MCU 28 provides a battery test pulse BAT_TEST to battery test electronics 32, which causes battery test electronics 32 to turn on and draw current from the Vbatt output of battery assembly 14.
  • Battery test electronics 32 provides test output BATJVOLT to MCU 28 that represents the measured battery voltage while the discharge is taking place.
  • the battery test pulse BATJTEST is very short (typically 100 microseconds). The duration of the battery test pulse is selected to be just long enough to make sure that a steady state condition is reached. The battery voltage is measured, and the test is then terminated so that battery 16 is allowed to recover from the discharge.
  • FIG. 2 is an electrical schematic diagram of battery assembly 14, which includes battery 16, battery charging circuit 18, booster circuit 20, battery protection circuit 22, and electrical connector 40.
  • connector 40 is a four pin connector, with PINl corresponding to CHARGE IN, PIN2 corresponding to Vbatt, PIN3 corresponding to Vout, and PIN4 corresponding to ground.
  • battery 16 is a lithium ion battery.
  • Vbatt battery voltage
  • the maximum voltage is about 4.2 volts
  • a minimum voltage is about 2.2 volts.
  • Charging circuit 18 includes diode 50, transistor 52, programmable shunt regulator 54, and resistors 56, 58, 60, and 62.
  • programmable shunt regulator 54 is a TL431 adjustable precision shunt regulator.
  • Charging circuit 18 is active when voltage appears between PINl (CHARGE IN) and PIN4 (ground). The voltage will be present when AC power is connected to low voltage supply 12, shown in FIG. 1. The voltage supplied by low voltage supply 12 is greater than the voltage at the positive terminal of battery 16 (Vbatt). Charge current flows into charging circuit 18 through diode 50 and resistor 56 to the collector of transistor 52. The emitter of transistor 52 is connected to the positive terminal of battery 16 (and to PIN2).
  • the flow of charging current through transistor 52 is controlled by resistors 58, 60, and 62 and programmable shunt regulator 54.
  • Resistor 58 connects the collector of transistor 52 to the base of transistor 52 and the cathode of programmable shunt regulator 54.
  • Resistors 60 and 62 which are connected between the emitter of transistor 52 and ground, form a voltage divider, which provides a reference voltage to shunt regulator 54.
  • Shunt regulator 54 establishes a voltage at the base of transistor 52, which controls the maximum voltage to which battery 16 can be charged. If the voltage at the emitter of transistor 52 rises too high, transistor 52 will turn off, and no further charging current can flow from PES[I (CHARGE IN) to battery 16.
  • Booster circuit 20 includes VFM step up DC/DC converter controller 70, inductor 72, capacitor 74, FET 76, diode 78, resistors 80 and 82, and capacitor 84.
  • DC/DC converter controller 70 is an RN5RY202 CMOS based VFM control integrated circuit which includes a voltage reference unit, an error amplifier, an oscillator, a VFM control circuit, and feedback resistors.
  • FET 76 is a CES2312 N-channel enhancement mode field effect transistor.
  • Booster circuit 20 is a DC/DC converter, which steps up battery voltage Vbatt to output voltage Vout.
  • Resistors 80 and 82 form a voltage divider between PIN3 (Vout) and PIN4 (ground).
  • the voltage divider is connected to the output voltage terminal of controller 70, which is fixed at a reference value (e.g. 2 volts) within controller 70.
  • Capacitor C4 acts as a smoothing capacitor at the output of booster circuit 20.
  • Battery protection circuit 22 includes battery protection integrated circuit 90, dual
  • FET 92 which includes FETS 92A and 92B, capacitor 94, resistors 96, 98, and 100, and metal contact 102.
  • battery protection IC 90 is an S-8261 series integrated circuit that includes over-charge detection, over-discharge detection, and over- current detection.
  • Dual FET 92 is, for example, a CEG8205 dual N-channel enhancement mode field effect transistor.
  • Battery protection circuit 22 provides both over-current and over-discharge protection for battery 16.
  • Battery protection IC 90 monitors voltage between its VDD and VSS pins to determine whether an over-discharge condition exists. It monitors voltage between its VM and VSS terminals to determine whether an over-current condition exists.
  • IC 90 is in a normal operating mode in which it turns on both FETs 92 A and 92B of dual
  • Resistor 96 and capacitor 94 provide protection for power fluctuation.
  • resistor 96 provides electrostatic discharge (ESD) protection for battery protection IC 90.
  • ESD electrostatic discharge
  • the voltage at pin VDD will be equal to battery voltage Vbatt at the positive terminal of battery 16.
  • Resistor 98 which is connected between the VDD pin and contact 102, normally does not affect the voltage of pin VDD, because contact 102 is not connected to any other circuit component.
  • FET 92A acts as a charge control switch, while FET 92B acts as a discharge control switch. Both FETs 92 A and 92B must be turned on in order to connect the negative terminal of battery 16 directly to ground (PIN4).
  • Resistor 100 is connected between ground and pin VM. It also provides protection for battery protection IC 90 against a condition in which the polarity of PINl and PIN4 is reversed.
  • the voltage at pin VM is equal to or higher than the over-current detection voltage set by battery protection IC 90. This condition occurs when there is excess of discharge current flowing from battery 16 which continues longer than an over-current detection delay time of battery under the normal conditions.
  • battery protection IC 90 turns off discharge control FET 92A.
  • the over-current condition returns to a normal condition when the impedance between PIN2 and PIN4 becomes higher than an automatic recoverable load resistance, and battery protection IC 90 detects that the potential at the VM pin is lower than the over-current detection voltage.
  • An over-discharge condition occurs when the voltage at the VDD pin of battery protection IC 90 falls below the over-discharge detection voltage and the detection continues for an over-discharge delay time or longer. Under those conditions, battery protection IC 90 turns discharge control FET 92A off. This causes the VM pin voltage to be pulled up by an internal resistor within battery protection IC 90 to a voltage near VDD. The current consumption is reduced to a power down current consumption level.
  • the power down mode is released when charging power is present between pins PINl and PIN4 and the voltage difference between pins VM and VDD exceeds a predetermined voltage (e.g. 1.3 volts). Battery protection IC 90 then returns to normal operation mode.
  • a predetermined voltage e.g. 1.3 volts
  • the present invention takes advantage of the over-discharge detection feature of battery protection circuit 22 in order to extend the shelf life of battery 16 and life safety device 10.
  • an electrically conductive probe (not shown) is connected to PIN4 (ground) of connector 40.
  • the probe is then inserted through a small opening in life safety device 10 so that it makes contact with contact pad 102.
  • resistor 98 When an electrical connection is made from PIN4 (ground) through the probe and contact 102 to resistor 98, the voltage at pin VDD of battery protection IC 90 is reduced, because resistors R96 and R98 form a voltage divider between the positive and negative terminals of battery 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

A life safety device includes a battery assembly with a rechargeable battery. Extended shelf life is achieved by annually initiating an over-discharge protection mode in which a battery protection circuit prevents current flow from the battery. The life safety device remains in the over-discharge protection mode until the device is connected to a charging power source at the time of installation. The battery assembly then exits the protection mode and enters its normal mode of operation.

Description

LIFE SAFETY DEVICE WITH EXTENDED SHELF LIFE
BACKGROUND
The present invention relates to life safety devices having a battery assembly with a rechargeable battery. Flush mount life safety devices are used in residential and commercial buildings to provide warning to occupants of hazards such as fire or a buildup of unsafe gases such as carbon monoxide. The life safety devices are typically mounted on a wall or a ceiling of a building. Typically, flush mount life safety devices are powered by a battery assembly that includes a rechargeable battery. The life safety device is connected to a source of AC power, which provides electrical current for charging the rechargeable battery.
The rechargeable battery is a part of a battery assembly that is mounted in the life safety device at the factory. Once the battery assembly is connected to the circuitry of the life safety device, power can be drawn from the battery prior to the device being placed into service. Under those conditions, the life safety device is not connected to a source of AC power, and therefore the battery is not being recharged.
The battery assembly typically includes a rechargeable battery, a battery charging circuit, a booster circuit to increase the battery voltage to a voltage level required to operate the life safety device circuitry, and a battery protection circuit. The battery protection circuit provides over-current protection, which disconnects the battery if the current draw is too high, and over-discharge protection to prevent the battery cell voltage from decreasing to a level which will cause internal damage to the cell.
When shipping a life safety device with a rechargeable battery, it has been a conventional method to place the battery protection circuit in an over-current protection mode. This may be achieved, for example, by shorting the battery voltage terminal of the battery assembly to the ground terminal prior to shipping the product.
To ensure the long service life for the life safety device (e.g., a ten year service life), the shelf life of the device must be limited. The shelf life is determined by the current consumption required between the time of installation of the battery assembly in the device and the installation of the device with a connection to AC power. If the product is kept "on the shelf (i.e., either unsold or sold but not yet installed) beyond the shelf life, the battery cell voltage may slowly fall to a level that causes internal damage to the cell(s) of the battery. To avoid cell damage, any device that has exceeded its shelf life has to be returned to the factory, the battery must be replaced with a newly recharged battery, and the product must be repackaged and reshipped.
Although the over-current protection reduces the amount of current drawn from the battery prior to installation, the limited shelf of the devices life has remained an issue. Removal of products from stores because of expired shelf life of the battery assembly is inconvenient and expensive.
SUMMARY
Extended shelf life of a battery of a life safety device is achieved by making use of an over-discharge protection mode of a battery protection circuit associated with the rechargeable battery. At the time of installation of the battery assembly and shipment of the life safety device, the over-discharge protection (or power down) mode can be initiated to prevent current flow from the battery. Once initiated, the over-discharge protection mode will continue until the life safety device is connected to a charging power source. The over-discharge protection mode offers much lower current consumption requirements than the over-current protection mode. As a result, shelf life of the device is extended.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a life safety device. FIG. 2 is an electrical schematic diagram of the battery assembly of the life safety device of FIG. 1.
DETAILED DESCRIPTION
FIG. 1 shows a block diagram of flush mount life safety device 10, which may be, for example, a smoke alarm, a carbon monoxide (CO) alarm, a combination smoke and CO alarm, or a similar device for providing warning to occupants of a residence or other building of a potentially life threatening condition. Flush mount life safety device 10 is typically mounted on a wall or ceiling, and is connected to a source of alternating current (AC) power.
As shown in FIG. 1, life safety device includes low voltage supply 12, battery assembly 14 (which includes rechargeable battery 16, battery charging circuit 18, booster circuit 20, and battery protection circuit 22), regulator electronics 24, hazards detector 26, microcontroller unit (MCU) 28, sounder circuitry 30, and battery test electronics 32. Low voltage supply 12 is connected to an AC mains input, as represented by line input L and neutral input N. Low voltage supply 12 converts AC input power to DC charging power, which is provided to the Charge In input of battery assembly 14 and regulator electronics 24. Low voltage supply 12 also provides an AC_ON monitoring signal to MCU 28, which indicates that low voltage supply 12 is receiving AC power from the AC mains input.
Battery 16 of battery assembly 14 is a long life rechargeable battery, such as a lithium ion rechargeable battery. Battery charging circuit 18 maintains charge on battery 16 using the charging power from low voltage supply 12. Booster circuit 20 increases battery voltage Vbatt, which may range from about 2.2 to 4.2 volts, to output voltage Vout, which is used by regulator electronics 24 to provide regulated voltage to hazards detector 26 and MCU 28. Vout may be, for example, a constant voltage of about 8.7 volts.
Battery protection circuit 22 provides protection to battery 16 against over- current and over-discharge conditions. Battery protection circuit 22 enters protection modes, in which battery 16 may be disconnected from other circuit components when the battery voltage Vbatt is too low (an over-discharge condition) or when the current being drawn from battery 16 exceeds a maximum current level (over-current protection).
Hazards detector 26 may be, for example, a photoelectric or ionization type smoke detector, a carbon monoxide detector, or a combination smoke and carbon monoxide detector. The output of hazards detector 26 is provided to MCU 28.
MCU 28 coordinates and controls the operation of life safety device 10. Based upon inputs received from hazards detector 26, MCU 28 determines whether a condition exists that requires sounding an alarm to warn occupants of a potentially dangerous condition. If an alarm is required, MCU 28 provides control signals to sounder circuitry 30 to generate the appropriate alarm. In some cases, the alarm will be an audible signal generated continuously or in pulses. In other embodiments, sounder circuitry 30 may generate a verbal message (or a combination of an audible signal and a verbal message) to occupants in response to a command from MCU 28. During the course of normal operation of life safety device 10, MCU 28 will periodically perform a battery test using battery test electronics 32. At the appropriate time, MCU 28 provides a battery test pulse BAT_TEST to battery test electronics 32, which causes battery test electronics 32 to turn on and draw current from the Vbatt output of battery assembly 14. Battery test electronics 32 provides test output BATJVOLT to MCU 28 that represents the measured battery voltage while the discharge is taking place. During this normal battery test operation, the battery test pulse BATJTEST is very short (typically 100 microseconds). The duration of the battery test pulse is selected to be just long enough to make sure that a steady state condition is reached. The battery voltage is measured, and the test is then terminated so that battery 16 is allowed to recover from the discharge.
FIG. 2 is an electrical schematic diagram of battery assembly 14, which includes battery 16, battery charging circuit 18, booster circuit 20, battery protection circuit 22, and electrical connector 40. As shown in FIG. 2, connector 40 is a four pin connector, with PINl corresponding to CHARGE IN, PIN2 corresponding to Vbatt, PIN3 corresponding to Vout, and PIN4 corresponding to ground.
In the embodiment illustrated in FIG. 2, battery 16 is a lithium ion battery. In order to avoid reducing the service life of battery 16, battery voltage Vbatt must be maintained within set upper and lower limits. During normal operation, the maximum voltage is about 4.2 volts, and a minimum voltage is about 2.2 volts.
Charging circuit 18 includes diode 50, transistor 52, programmable shunt regulator 54, and resistors 56, 58, 60, and 62. In one embodiment programmable shunt regulator 54 is a TL431 adjustable precision shunt regulator. Charging circuit 18 is active when voltage appears between PINl (CHARGE IN) and PIN4 (ground). The voltage will be present when AC power is connected to low voltage supply 12, shown in FIG. 1. The voltage supplied by low voltage supply 12 is greater than the voltage at the positive terminal of battery 16 (Vbatt). Charge current flows into charging circuit 18 through diode 50 and resistor 56 to the collector of transistor 52. The emitter of transistor 52 is connected to the positive terminal of battery 16 (and to PIN2). The flow of charging current through transistor 52 is controlled by resistors 58, 60, and 62 and programmable shunt regulator 54. Resistor 58 connects the collector of transistor 52 to the base of transistor 52 and the cathode of programmable shunt regulator 54. Resistors 60 and 62, which are connected between the emitter of transistor 52 and ground, form a voltage divider, which provides a reference voltage to shunt regulator 54. Shunt regulator 54 establishes a voltage at the base of transistor 52, which controls the maximum voltage to which battery 16 can be charged. If the voltage at the emitter of transistor 52 rises too high, transistor 52 will turn off, and no further charging current can flow from PES[I (CHARGE IN) to battery 16.
Booster circuit 20 includes VFM step up DC/DC converter controller 70, inductor 72, capacitor 74, FET 76, diode 78, resistors 80 and 82, and capacitor 84. In one embodiment, DC/DC converter controller 70 is an RN5RY202 CMOS based VFM control integrated circuit which includes a voltage reference unit, an error amplifier, an oscillator, a VFM control circuit, and feedback resistors. In that embodiment, FET 76 is a CES2312 N-channel enhancement mode field effect transistor.
The voltage required to operate the circuitry of life safety device 10 requires a voltage that is higher than the 4.2 volts maximum from battery 16. Booster circuit 20 is a DC/DC converter, which steps up battery voltage Vbatt to output voltage Vout.
When battery assembly 14 is in a normal an operating mode with dual FET 92 turned on so that battery 16 is connected to PIN2 (Vbatt) and PIN4 (ground), battery voltage Vbatt appears between the VDD and GND terminals of controller 70. An oscillating signal from the EXT terminal of controller 70 is provided to the gate of FET 76, which alternately turns FET 76 on and off. When FET 76 is turned on, current flows from the positive terminal of battery 16 through inductor 72 and through FET 76 to ground. As a result, energy is stored in the magnetic field within inductor 72. When FET 76 turns off, current flows through FET 76 is interrupted. The stored energy in inductor 72 is delivered through diode 78 to PIN3 (Vout). Resistors 80 and 82 form a voltage divider between PIN3 (Vout) and PIN4 (ground). The voltage divider is connected to the output voltage terminal of controller 70, which is fixed at a reference value (e.g. 2 volts) within controller 70. Capacitor C4 acts as a smoothing capacitor at the output of booster circuit 20. Battery protection circuit 22 includes battery protection integrated circuit 90, dual
FET 92, which includes FETS 92A and 92B, capacitor 94, resistors 96, 98, and 100, and metal contact 102. In one embodiment, battery protection IC 90 is an S-8261 series integrated circuit that includes over-charge detection, over-discharge detection, and over- current detection. Dual FET 92 is, for example, a CEG8205 dual N-channel enhancement mode field effect transistor.
Battery protection circuit 22 provides both over-current and over-discharge protection for battery 16. Battery protection IC 90 monitors voltage between its VDD and VSS pins to determine whether an over-discharge condition exists. It monitors voltage between its VM and VSS terminals to determine whether an over-current condition exists.
Under normal conditions, the voltage difference between VDD and VSS is greater than an over-discharge detection voltage, and the voltage between VM and VSS is less than an over-current detection voltage. Under those conditions, battery protection
IC 90 is in a normal operating mode in which it turns on both FETs 92 A and 92B of dual
FET circuit 92.
Resistor 96 and capacitor 94 provide protection for power fluctuation. In addition, resistor 96 provides electrostatic discharge (ESD) protection for battery protection IC 90. Under normal conditions, the voltage at pin VDD will be equal to battery voltage Vbatt at the positive terminal of battery 16. Resistor 98, which is connected between the VDD pin and contact 102, normally does not affect the voltage of pin VDD, because contact 102 is not connected to any other circuit component.
FET 92A acts as a charge control switch, while FET 92B acts as a discharge control switch. Both FETs 92 A and 92B must be turned on in order to connect the negative terminal of battery 16 directly to ground (PIN4).
Resistor 100 is connected between ground and pin VM. It also provides protection for battery protection IC 90 against a condition in which the polarity of PINl and PIN4 is reversed. When an over-current condition occurs, the voltage at pin VM is equal to or higher than the over-current detection voltage set by battery protection IC 90. This condition occurs when there is excess of discharge current flowing from battery 16 which continues longer than an over-current detection delay time of battery under the normal conditions. When an over-current condition is detected, battery protection IC 90 turns off discharge control FET 92A. The over-current condition returns to a normal condition when the impedance between PIN2 and PIN4 becomes higher than an automatic recoverable load resistance, and battery protection IC 90 detects that the potential at the VM pin is lower than the over-current detection voltage.
An over-discharge condition occurs when the voltage at the VDD pin of battery protection IC 90 falls below the over-discharge detection voltage and the detection continues for an over-discharge delay time or longer. Under those conditions, battery protection IC 90 turns discharge control FET 92A off. This causes the VM pin voltage to be pulled up by an internal resistor within battery protection IC 90 to a voltage near VDD. The current consumption is reduced to a power down current consumption level.
The power down mode is released when charging power is present between pins PINl and PIN4 and the voltage difference between pins VM and VDD exceeds a predetermined voltage (e.g. 1.3 volts). Battery protection IC 90 then returns to normal operation mode.
The present invention takes advantage of the over-discharge detection feature of battery protection circuit 22 in order to extend the shelf life of battery 16 and life safety device 10. At the time of installation of battery assembly 14 into life safety device 10 at the factory, an electrically conductive probe (not shown) is connected to PIN4 (ground) of connector 40. The probe is then inserted through a small opening in life safety device 10 so that it makes contact with contact pad 102. When an electrical connection is made from PIN4 (ground) through the probe and contact 102 to resistor 98, the voltage at pin VDD of battery protection IC 90 is reduced, because resistors R96 and R98 form a voltage divider between the positive and negative terminals of battery 16. This temporary reduction in voltage at pin VDD will cause battery protection IC 90 to detect an over-discharge condition, and to switch into the power down mode. Once the power down mode has been initiated, battery assembly 14 will remain in that mode until life safety device 10 is connected to a source of AC power at the time of installation. The over-discharge protection/power down mode dramatically reduces the amount of discharge of battery 16 between the time of installation of the battery assembly 14 in device 10 and the time of installation of life safety device 10 in a building. As a result, the shelf life of life safety device 10 and battery 16 is significantly improved. Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims

CLAIMS:
1. A battery assembly for a life safety device, the battery assembly comprising: a battery; a booster circuit for producing an output voltage that is greater than battery voltage; a battery protection circuit for sensing battery voltage and disconnecting the battery from the booster circuit when in an over-discharge protection mode; a battery charging circuit for charging the battery, wherein charging of the battery by the battery charging circuit causes the battery protection circuit to exit the over-discharge protection mode; and a manually actuated circuit for causing the battery protection circuit to enter the over-discharge protection mode.
2. The battery assembly of claim 1 , wherein the battery protection circuit includes a terminal for monitoring battery voltage, and wherein the manually actuated circuit, when actuated, causes voltage at the terminal to be decreased to a level that initiates the over- discharge protection mode.
3. The battery assembly of claim 2, wherein the manually actuated circuit comprises a metal contact that is positioned to be electrically connected to a ground connection in the battery assembly.
4. The battery assembly of claim 3, wherein the manually actuated circuit includes a voltage divider connected between the battery and the metal contact.
5. The battery assembly of claim 4, wherein the voltage divider has a node connected to the terminal for monitoring battery voltage.
6. The battery assembly of claim 1 , wherein the battery protection circuit is operable to switch from the over-discharge protective mode to a normal operating mode, in which the battery delivers power to the life safety device, in response to charging of the battery by the battery charging circuit.
7. The battery assembly of claim 1, wherein the battery protection circuit includes: a semiconductor switch connected between a negative terminal of the battery and a ground terminal; and a battery protection integrated circuit for controlling a state of the semiconductor switch so that the semiconductor switch is turned on during a normal an operating mode and is turned off during the over-discharge protection mode.
8. The battery assembly of claim 7, wherein the battery protection integrated circuit includes a first terminal for monitoring battery voltage, and wherein the battery protection integrated circuit enters the over-discharge protection mode when voltage at the first terminal is less than an over-discharge detection voltage for an over-discharge detection delay time or longer.
9. The battery assembly of claim 8, wherein the battery protection circuit includes a first resistor connected between a positive terminal of the battery and the first terminal of the battery protection integrated circuit.
10. The battery assembly of claim 9, wherein the manually actuated circuit includes a second resistor connected to the first terminal, and wherein the manually actuated circuit is actuated by electrically connecting the second resistor to the ground terminal.
11. The battery assembly of claim 10 and further comprising: a multipin connector including a CHARGE IN terminal, a battery voltage terminal, an output voltage terminal, and the ground terminal.
12. The battery assembly of claim 11, wherein the positive terminal of the battery is connected to the battery voltage terminal; the battery protection circuit is connected to the battery voltage terminal and the ground terminal; the charging circuit is connected to the CHARGE IN terminal, the battery voltage terminal and the ground terminal; and the booster circuit is connected to the battery voltage terminal, the output voltage terminal, and the ground terminal.
13. A method of extending shelf life of a battery of a life safety device, the method comprising: manually initiating an over-discharge protection mode of a battery protection circuit associated with the battery to prevent current flow from the battery; and returning the battery protection circuit to a normal an operating mode by connecting the life safety device to a charging power source.
14. The method of claim 13, wherein the battery and the battery protection circuit are part of a battery assembly that is connected to the life safety device by a multipin connector.
15. The method of claim 14, wherein the multipin connector includes a CHARGE IN terminal, a battery voltage terminal, and a ground terminal.
16. The. method of claim 15, wherein manually initiating an over-discharge protection mode comprises temporarily applying a voltage to the battery protection circuit that is less than an over-discharge detection voltage for an over-discharge detection delay time or longer.
17. The method of claim 16, wherein temporarily applying a voltage comprises temporarily connecting a resistor to the ground terminal.
18. The method of claim 16, wherein the battery protection circuit includes a semiconductor switch between a negative terminal of the battery and the ground terminal.
19. The method of claim 18, wherein the battery protection circuit turns the semiconductor switch on during the normal operating mode and turns the semiconductor switch off during the over-discharge protection mode.
20. The method of claim 15, wherein the battery protection circuit returns to the normal operating mode in response to electrical power being present at the CHARGE IN terminal.
PCT/US2009/005645 2008-10-16 2009-10-16 Life safety device with extended shelf life WO2010044877A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980150687.4A CN102257697B (en) 2008-10-16 2009-10-16 Life safety device with extended shelf life
AU2009303833A AU2009303833A1 (en) 2008-10-16 2009-10-16 Life safety device with extended shelf life
JP2011532084A JP2012506232A (en) 2008-10-16 2009-10-16 Life safety device with extended shelf life
CA2741012A CA2741012A1 (en) 2008-10-16 2009-10-16 Life safety device with extended shelf life
EP09820907.5A EP2345132A4 (en) 2008-10-16 2009-10-16 Life safety device with extended shelf life

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/288,164 2008-10-16
US12/288,164 US8339103B2 (en) 2008-10-16 2008-10-16 Life safety device with extended shelf life

Publications (2)

Publication Number Publication Date
WO2010044877A2 true WO2010044877A2 (en) 2010-04-22
WO2010044877A3 WO2010044877A3 (en) 2010-08-05

Family

ID=42107112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/005645 WO2010044877A2 (en) 2008-10-16 2009-10-16 Life safety device with extended shelf life

Country Status (7)

Country Link
US (1) US8339103B2 (en)
EP (1) EP2345132A4 (en)
JP (1) JP2012506232A (en)
CN (1) CN102257697B (en)
AU (1) AU2009303833A1 (en)
CA (1) CA2741012A1 (en)
WO (1) WO2010044877A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436586B2 (en) * 2008-01-21 2013-05-07 John Zonkoski No drain power saver
CN102566632A (en) * 2010-12-13 2012-07-11 鸿富锦精密工业(深圳)有限公司 Voltage stabilizing circuit
US8612782B2 (en) * 2011-03-31 2013-12-17 Intel Corporation System and method for determining multiple power levels of the sub-systems based on a detected available power and prestored power setting information of a plurality of different combinations of the sub-systems
DE102012100866A1 (en) * 2012-02-02 2013-08-08 Vorwerk & Co. Interholding Gmbh Method for forming a transport safety device and battery-powered electrical appliance
KR101975393B1 (en) * 2013-04-18 2019-05-07 삼성에스디아이 주식회사 External battery
CN104600676B (en) * 2015-01-29 2018-02-16 天地融科技股份有限公司 Battery protecting circuit, electric energy provide device and electronic installation
US9515496B1 (en) * 2016-03-21 2016-12-06 Hangzhou Chic Intelligent Technology Co., Ltd Battery management system for human-machine interaction vehicles
US11251637B2 (en) 2018-12-04 2022-02-15 Mobile Escapes, Llc Mobile power system with multiple converters and related platforms and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271605B1 (en) 1999-05-04 2001-08-07 Research In Motion Limited Battery disconnect system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610495A (en) 1994-06-20 1997-03-11 Motorola, Inc. Circuit and method of monitoring battery cells
JP3439035B2 (en) 1996-07-30 2003-08-25 三洋電機株式会社 Battery pack to prevent battery over-discharge
US6144186A (en) 1999-07-16 2000-11-07 Motorola, Inc. Low power enable circuit
US7038333B2 (en) 2002-02-15 2006-05-02 The Gillette Company Hybrid power supply
US7123158B2 (en) 2003-08-29 2006-10-17 Walter Kidde Portable Equipment, Inc. Life safety alarm with a sealed battery power supply
JP2005229774A (en) * 2004-02-16 2005-08-25 Seiko Instruments Inc Battery state monitoring circuit and battery device
CA2584498C (en) 2004-10-18 2013-12-10 Walter Kidde Portable Equipment, Inc. Low battery warning silencing in life safety devices
TWI326928B (en) 2006-08-08 2010-07-01 Compal Electronics Inc Method for charging portable electronic apparatus
JP2008131707A (en) * 2006-11-20 2008-06-05 Nec Tokin Corp Charger for cellular phone
CN201113411Y (en) * 2007-09-21 2008-09-10 深圳市比克电池有限公司 Battery protector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271605B1 (en) 1999-05-04 2001-08-07 Research In Motion Limited Battery disconnect system

Also Published As

Publication number Publication date
CN102257697B (en) 2015-03-11
JP2012506232A (en) 2012-03-08
EP2345132A2 (en) 2011-07-20
US8339103B2 (en) 2012-12-25
CN102257697A (en) 2011-11-23
WO2010044877A3 (en) 2010-08-05
AU2009303833A1 (en) 2010-04-22
US20100097035A1 (en) 2010-04-22
CA2741012A1 (en) 2010-04-22
EP2345132A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
US8339103B2 (en) Life safety device with extended shelf life
US11239691B2 (en) Powering an emergency lighting system
US8077028B2 (en) System and apparatus with self-diagnostic and emergency alert voice capabilities
JP3210390B2 (en) Battery charging apparatus and charging method
US8054189B2 (en) Life safety device with automatic battery discharge at the end of life
US10276035B2 (en) System and method for providing temporary power to intermittent units
US11682919B2 (en) Intelligent control system, emergency starting power supply, and intelligent battery clip
CN110481358A (en) A kind of charging gun assembly and charging method
JP3570283B2 (en) Battery charging / discharging device
US20070279954A1 (en) Device For Converting AC Power To Multiple DC Outputs With Retractable Cords And Multiple Adapter Tips
KR20180115125A (en) Appratus and method for prevention over-discharge and restarting energy storeage system
US11293984B2 (en) Detection circuit, detection method and uninterruptible power system using same
JP2001327086A (en) Charging circuit
JP3424707B2 (en) Charge / discharge control circuit
IES68845B2 (en) A mains powered alarm device having a rechargeable battery backup
JP3317184B2 (en) Power supply device and method for detecting deterioration of power supply device
CN216870442U (en) On-line capacitance detection device for circuit system
CA2578890C (en) System and apparatus with self-diagnostic and emergency alert voice capabilities
JP3499456B2 (en) Battery level detection device for electronic equipment
JPH05219656A (en) Batter charger
JPH0591675A (en) Battery charger
IE960288A1 (en) A mains powered alarm device having a rechargeable¹battery backup

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150687.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820907

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2741012

Country of ref document: CA

Ref document number: 2011532084

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009820907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009303833

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009303833

Country of ref document: AU

Date of ref document: 20091016

Kind code of ref document: A