WO2010044426A1 - 回転電機及び電気自動車 - Google Patents

回転電機及び電気自動車 Download PDF

Info

Publication number
WO2010044426A1
WO2010044426A1 PCT/JP2009/067795 JP2009067795W WO2010044426A1 WO 2010044426 A1 WO2010044426 A1 WO 2010044426A1 JP 2009067795 W JP2009067795 W JP 2009067795W WO 2010044426 A1 WO2010044426 A1 WO 2010044426A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
rotor
rotating electrical
electrical machine
magnet
Prior art date
Application number
PCT/JP2009/067795
Other languages
English (en)
French (fr)
Inventor
泰行 齋藤
剛志 後藤
中山 健一
日野 徳昭
愼治 杉本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to BRPI0919792-3A priority Critical patent/BRPI0919792B1/pt
Priority to US13/124,502 priority patent/US9300176B2/en
Priority to CN200980141157.3A priority patent/CN102187546B/zh
Priority to KR1020117008579A priority patent/KR101224722B1/ko
Priority to EP21195721.2A priority patent/EP3955425A1/en
Priority to EP09820604.8A priority patent/EP2348611B1/en
Publication of WO2010044426A1 publication Critical patent/WO2010044426A1/ja
Priority to US15/046,813 priority patent/US9812913B2/en
Priority to US15/730,129 priority patent/US10177615B2/en
Priority to US16/213,462 priority patent/US10547222B2/en
Priority to US16/726,309 priority patent/US10840755B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a rotating electric machine and an electric vehicle equipped with the rotating electric machine.
  • a permanent magnet motor using a rare earth sintered magnet that retains powerful energy is generally used. Further, among these permanent magnet motors, embedded magnet motors that can satisfy the requirements of low speed and large torque and a wide range of rotational speed are used.
  • the torque pulsation of the motor causes noise and vibration, and particularly in an electric vehicle, there is a problem that the torque pulsation at low speed deteriorates riding comfort.
  • Conventional motors generally employ a countermeasure for skewing to reduce torque pulsation.
  • a motor is known in which a groove is provided in an electromagnetic steel plate disposed on the outer peripheral side of a magnet embedded in a rotor, and the groove is shifted in the circumferential direction of the rotating shaft (see Patent Document 1).
  • the grooves are provided at locations where the magnetic flux flows in both cases of non-energization and energization. For this reason, for example, if a groove is provided at a position where the pulsation during energization is reduced, the cogging torque is increased, and if a groove is provided at a position where the cogging torque is reduced, the torque pulsation during energization is increased.
  • An object of the present invention is to improve motor performance (for example, efficiency, reliability, cost performance, or productivity).
  • a rotating electrical machine includes a stator having a stator winding, and a rotor provided to be rotatable about a predetermined rotation axis with respect to the stator.
  • the rotor includes a plurality of magnets, a plurality of magnetic auxiliary salient pole portions formed between poles of adjacent magnets, and a magnetic auxiliary salient pole portion in the magnetic auxiliary salient pole portion.
  • a magnetoresistive change portion provided along the axial direction of the rotating shaft at a position shifted from the q axis passing through the salient pole center of the rotating portion in the circumferential direction of the rotating shaft.
  • the amount of deviation of the magnetoresistive change portion from the q-axis differs depending on the position of the magnetic auxiliary salient pole portion so that the torque pulsations during energization cancel each other.
  • the magnetoresistance change portion is a magnetic gap.
  • the circumferential position of the magnet in the rotor is constant regardless of the axial position.
  • the rotor in the rotating electric machine according to the second aspect, is provided along the axial direction, and has a plurality of shafts each having a magnet, a magnetic auxiliary salient pole portion, and a magnetic gap. It may be divided into direction division cores. The circumferential position of the magnet in the axially divided core is preferably constant regardless of the axial position.
  • the rotor in the rotating electric machine according to the fourth aspect, has a plurality of core groups including a plurality of axially divided cores whose circumferential positions of the magnetic air gap are substantially the same. May be.
  • the magnetic air gap may be a recess formed on the surface of the rotor.
  • the circumferential width angle of the recess is in the range of 1/4 to 1/2 of the pitch angle between the teeth provided in the stator. It is preferable that according to the eighth aspect of the present invention, in the rotary electric machine according to the second aspect, the magnetic air gap may be a hole formed in the surface of the rotor.
  • the hole is formed integrally with a hole provided with a magnet.
  • the plurality of magnets have a magnetization direction perpendicular to the axial direction of the rotor, and each magnet has a magnetization direction orientation. It is preferable to arrange them in the circumferential direction so as to be alternately reversed.
  • each of the magnets may constitute a magnet group including a plurality of magnets having substantially equal magnetization directions.
  • the magnetic auxiliary salient pole part may be provided with a plurality of magnetic gaps.
  • the magnetic air gap is asymmetric with respect to the q axis passing through the salient pole center and symmetrical with respect to the d axis passing through the magnetic pole center of the magnet. It may be arranged.
  • the magnetic air gap is symmetric with respect to the q axis passing through the salient pole center and asymmetric with respect to the d axis passing through the magnetic pole center of the magnet.
  • the rotor in the rotating electrical machine according to the first aspect, includes a plurality of rotor cores formed by laminating electromagnetic steel plates each having a hole or notch forming a magnetic gap. You may have.
  • each of the rotor cores in the rotating electric machine according to the fifteenth aspect, is configured such that the position of the magnetic air gap is axially shifted by shifting the electromagnetic steel sheet in the circumferential direction in units of magnetic pole pitch of the magnet. It can be made different depending on the position.
  • the rotor in the rotating electric machine according to the second aspect, includes a first skew structure that shifts the arrangement of the magnets in the circumferential direction corresponding to the position in the axial direction, and the magnetic gap. You may have the 2nd skew structure which shifts arrangement
  • the stator winding is preferably wound with distributed winding.
  • An electric vehicle includes the rotating electric machine according to the first aspect, a battery that supplies DC power, and a converter that converts the DC power of the battery into AC power and supplies the AC power to the rotating electric machine.
  • the torque of the rotating electrical machine is used as the driving force.
  • motor performance for example, efficiency, reliability, cost performance, or productivity
  • efficiency for example, efficiency, reliability, cost performance, or productivity
  • FIG. 1 shows a schematic configuration of a hybrid electric vehicle equipped with a rotating electric machine according to an embodiment of the present invention.
  • the circuit diagram of the power converter device 600 of FIG. 1 is shown. Sectional drawing of the rotary electric machine 200 or the rotary electric machine 202 of FIG. 1 is shown.
  • the perspective view of the rotor core 252 of FIG. 3 is shown.
  • the disassembled perspective view of the rotor core 252 of FIG. 3 is shown.
  • AA sectional view of the stator 230 and the rotor 250 of FIG. 3 is shown.
  • FIG. 4 shows a BB cross-sectional view of the stator 230 and the rotor 250 of FIG. 3.
  • FIG. 4 shows an AA cross-sectional view enlarging the vicinity of the permanent magnet 254b of FIG.
  • FIG. 4 is an enlarged cross-sectional view taken along the line BB in the vicinity of the permanent magnet 254b of FIG. An explanatory view of reluctance torque is shown.
  • the magnetic flux distribution of the AA cross section at the time of non-energization is shown.
  • region 401 is shown.
  • region 402 is shown.
  • the waveform of the cogging torque at the time of non-energization is shown.
  • the waveform of the line induced voltage at the time of non-energization is shown.
  • the magnetic flux distribution of AA cross section at the time of energization is shown.
  • FIG. 5 is a view for explaining cogging torque reduction, and is a cross-sectional view showing a part of a stator core 232 and a rotor 250. It is a figure which shows the relationship between ratio of magnet pole arc degree (tau) m / (tau) p, and cogging torque.
  • the cross section of the stator 230 and the rotor 250 which make other embodiment of this invention is shown.
  • the cross section of the stator 230 and the rotor 250 which make other embodiment of this invention is shown. It is a figure which shows the cross section of the stator 230 which makes other embodiment of this invention, and the rotor 250, and shows the rotary electric machine of concentrated winding.
  • the perspective view of the rotor core 252 which makes other embodiment of this invention is shown.
  • the disassembled perspective view of the rotor core 252 which makes other embodiment of this invention is shown.
  • An AA section through the cores 301 of the stator 230 and the rotor 250 is shown.
  • a BB cross section through the core 302 portion of the stator 230 and the rotor 250 is shown.
  • the surface magnet type rotary electric machine which makes the other Example of this invention is shown.
  • positioned the several magnet which makes the other Example of this invention in the V hour shape is shown.
  • FIG. Sectional drawing of the stator 230 and the rotor 250 which comprise the other Example of this invention is shown.
  • Sectional drawing of the stator 230 and the rotor 250 which comprise the other Example of this invention is shown.
  • Sectional drawing of the stator 230 and the rotor 250 which comprise the other Example of this invention is shown. It is a figure which shows the cross section of the stator 230 and the rotor 250, and shows the rotary electric machine of concentrated winding.
  • the rotating electric machine according to the present embodiment can suppress the cogging torque when not energized and the torque pulsation when energized, and can realize small size, low cost, and low torque pulsation. Therefore, for example, it is suitable as a driving motor for an electric vehicle, and it is possible to provide an electric vehicle that has low vibration, low noise, and is comfortable to ride.
  • the rotating electrical machine according to the present embodiment can be applied to a pure electric vehicle that runs only by the rotating electrical machine or a hybrid type electric vehicle that is driven by both the engine and the rotating electrical machine. Explained.
  • FIG. 1 is a diagram showing a schematic configuration of a hybrid electric vehicle equipped with a rotating electrical machine according to an embodiment of the present invention.
  • the vehicle 100 is mounted with an engine 120, a first rotating electrical machine 200, a second rotating electrical machine 202, and a battery 180.
  • the battery 180 supplies DC power to the rotating electrical machines 200 and 202 when the driving force by the rotating electrical machines 200 and 202 is required, and receives DC power from the rotating electrical machines 200 and 202 during regenerative travel. Transfer of direct-current power between the battery 180 and the rotating electrical machines 200 and 202 is performed via the power converter 600.
  • the vehicle is equipped with a battery that supplies low-voltage power (for example, 14 volt system power) and supplies DC power to a control circuit described below.
  • Rotational torque generated by the engine 120 and the rotating electrical machines 200 and 202 is transmitted to the front wheels 110 via the transmission 130 and the differential gear 160.
  • the transmission 130 is controlled by a transmission control device 134
  • the engine 120 is controlled by an engine control device 124.
  • the battery 180 is controlled by the battery control device 184.
  • the transmission control device 134, the engine control device 124, the battery control device 184, the power conversion device 600 and the integrated control device 170 are connected by a communication line 174.
  • the integrated control device 170 transmits information representing each state from each control device lower than the integrated control device 170, that is, the transmission control device 134, the engine control device 124, the power conversion device 600, and the battery control device 184, to the communication line. Receive via 174.
  • the integrated control device 170 calculates a control command for each control device based on these pieces of information. The calculated control command is transmitted to each control device via the communication line 174.
  • the high voltage battery 180 is composed of a secondary battery such as a lithium ion battery or a nickel metal hydride battery, and outputs a high voltage DC power of 250 to 600 volts or more.
  • the battery control device 184 outputs the discharge status of the battery 180 and the status of each unit cell battery constituting the battery 180 to the integrated control device 170 via the communication line 174.
  • the integrated control device 170 determines whether or not the battery 180 needs to be charged based on the information from the battery control device 184. When the integrated control device 170 determines that the battery 180 needs to be charged, the integrated control device 170 issues a power generation operation instruction to the power conversion device 600. .
  • the integrated control device 170 mainly manages the output torque of the engine 120 and the rotating electrical machines 200 and 202, and calculates the total torque and torque distribution ratio between the output torque of the engine 120 and the output torque of the rotating electrical machines 200 and 202. Then, a control command is transmitted to the transmission control device 134, the engine control device 124, and the power conversion device 600 based on the calculation processing result. Based on the torque command from the integrated control device 170, the power conversion device 600 controls the rotating electrical machines 200 and 202 so that torque output or generated power is generated as commanded.
  • the power converter 600 is provided with a power semiconductor that constitutes an inverter for operating the rotating electrical machines 200 and 202.
  • the power conversion device 600 controls the switching operation of the power semiconductor based on a command from the integrated control device 170. By such a power semiconductor switching operation, the rotating electrical machines 200 and 202 are operated as an electric motor or a generator.
  • DC power from the high voltage battery 180 is supplied to the DC terminal of the inverter of the power converter 600.
  • the power converter 600 converts the supplied DC power into three-phase AC power by controlling the switching operation of the power semiconductor, and supplies it to the rotating electrical machines 200 and 202.
  • the rotating electrical machines 200 and 202 are operated as a generator, the rotors of the rotating electrical machines 200 and 202 are rotationally driven with a rotational torque applied from the outside, and the stator windings of the rotating electrical machines 200 and 202 are three-phased. AC power is generated.
  • the generated three-phase AC power is converted into DC power by the power converter 600, and charging is performed by supplying the DC power to the high-voltage battery 180.
  • FIG. 2 shows a circuit diagram of the power conversion device 600 of FIG.
  • the power conversion device 600 is provided with a first inverter device for the rotating electrical machine 200 and a second inverter device for the rotating electrical machine 202.
  • the first inverter device includes a power module 610, a first drive circuit 652 that controls the switching operation of each power semiconductor 21 of the power module 610, and a current sensor 660 that detects the current of the rotating electrical machine 200.
  • the drive circuit 652 is provided on the drive circuit board 650.
  • the second inverter device includes a power module 620, a second drive circuit 656 that controls the switching operation of each power semiconductor 21 in the power module 620, and a current sensor 662 that detects the current of the rotating electrical machine 202.
  • the drive circuit 656 is provided on the drive circuit board 654.
  • the control circuit 648 provided on the control circuit board 646, the capacitor module 630, and the transmission / reception circuit 644 mounted on the connector board 642 are commonly used by the first inverter device and the second inverter device.
  • the power modules 610 and 620 operate according to drive signals output from the corresponding drive circuits 652 and 656, respectively. Each of the power modules 610 and 620 converts DC power supplied from the battery 180 into three-phase AC power and supplies the power to stator windings that are armature windings of the corresponding rotating electric machines 200 and 202. Further, the power modules 610 and 620 convert AC power induced in the stator windings of the rotating electric machines 200 and 202 into DC and supply it to the high voltage battery 180.
  • the power modules 610 and 620 include a three-phase bridge circuit as shown in FIG. 2, and series circuits corresponding to the three phases are electrically connected in parallel between the positive electrode side and the negative electrode side of the battery 180, respectively. ing.
  • Each series circuit includes a power semiconductor 21 constituting an upper arm and a power semiconductor 21 constituting a lower arm, and these power semiconductors 21 are connected in series.
  • the power module 610 and the power module 620 have substantially the same circuit configuration as shown in FIG. 2, and the power module 610 will be described as a representative here.
  • an IGBT (insulated gate bipolar transistor) 21 is used as a switching power semiconductor element.
  • the IGBT 21 includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode.
  • a diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT 21.
  • the diode 38 includes two electrodes, a cathode electrode and an anode electrode.
  • the cathode electrode is the collector electrode of the IGBT 21 and the anode electrode is the IGBT 21 so that the direction from the emitter electrode to the collector electrode of the IGBT 21 is the forward direction.
  • Each is electrically connected to the emitter electrode.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the MOSFET includes three electrodes, a drain electrode, a source electrode, and a gate electrode.
  • a parasitic diode whose forward direction is from the drain electrode to the source electrode is provided between the source electrode and the drain electrode, so there is no need to provide the diode 38 of FIG.
  • the arm of each phase is configured by electrically connecting the source electrode of the IGBT 21 and the drain electrode of the IGBT 21 in series.
  • IGBT 21 the source electrode of the IGBT 21 and the drain electrode of the IGBT 21 in series.
  • IGBT 21 the source electrode of the IGBT 21 and the drain electrode of the IGBT 21 in series.
  • IGBT 21 the drain electrode of the IGBT 21 in series.
  • each upper and lower arm of each phase is composed of three IGBTs.
  • the drain electrode of the IGBT 21 of each upper arm of each phase is electrically connected to the positive electrode side of the battery 180, and the source electrode of the IGBT 21 of each lower arm of each phase is electrically connected to the negative electrode side of the battery 180.
  • the middle point of each arm of each phase (the connection portion between the source electrode of the upper arm side IGBT and the drain electrode of the lower arm side IGBT) is the armature winding (fixed) of the corresponding phase of the corresponding rotating electric machine 200, 202. Is electrically connected to the secondary winding.
  • the drive circuits 652 and 656 constitute a drive unit for controlling the corresponding power modules 610 and 620, and generate a drive signal for driving the IGBT 21 based on the control signal output from the control circuit 648. To do.
  • the drive signals generated by the drive circuits 652 and 656 are output to the gates of the power semiconductor elements of the corresponding power modules 610 and 620, respectively.
  • Each of the drive circuits 652 and 656 is provided with six integrated circuits that generate drive signals to be supplied to the gates of the upper and lower arms of each phase, and the six integrated circuits are configured as one block.
  • the control circuit 648 constitutes a control unit of each power module 610, 620, and is constituted by a microcomputer that calculates control signals (control values) for operating (turning on / off) a plurality of switching power semiconductor elements. ing.
  • the control circuit 648 receives a torque command signal (torque command value) from the host controller, sensor outputs of the current sensors 660 and 662, and sensor outputs of the rotation sensors mounted on the rotating electrical machines 200 and 202.
  • the control circuit 648 calculates a control value based on these input signals and outputs a control signal for controlling the switching timing to the drive circuits 652 and 656.
  • the transmission / reception circuit 644 mounted on the connector board 642 is for electrically connecting the power conversion apparatus 600 and an external control apparatus, and communicates information with other apparatuses via the communication line 174 in FIG. Send and receive.
  • Capacitor module 630 constitutes a smoothing circuit for suppressing fluctuations in the DC voltage caused by the switching operation of IGBT 21, and is electrically connected to the DC side terminal of first power module 610 or second power module 620. Connected in parallel.
  • FIG. 3 shows a cross-sectional view of the rotating electrical machine 200 or the rotating electrical machine 202 of FIG.
  • the rotating electrical machine 200 and the rotating electrical machine 202 have substantially the same structure, and the structure of the rotating electrical machine 200 will be described below as a representative example.
  • the structure shown below does not need to be employ
  • a stator 230 is held inside the housing 212, and the stator 230 includes a stator core 232 and a stator winding 238. Inside the stator core 232, a rotor 250 is rotatably held through a gap 222.
  • the rotor 250 includes a rotor core 252, a permanent magnet 254, and a non-magnetic cover plate 226, and the rotor core 252 is fixed to the shaft 218.
  • the housing 212 has a pair of end brackets 214 provided with bearings 216, and the shaft 218 is rotatably held by these bearings 216.
  • the shaft 218 is provided with a resolver 224 that detects the position and rotation speed of the pole of the rotor 250.
  • the output from the resolver 224 is taken into the control circuit 648 shown in FIG.
  • the control circuit 648 outputs a control signal to the drive circuit 652 based on the fetched output.
  • the drive circuit 652 outputs a drive signal based on the control signal to the power module 610.
  • the power module 610 performs a switching operation based on the control signal, and converts DC power supplied from the battery 180 into three-phase AC power. This three-phase AC power is supplied to the stator winding 238 shown in FIG. 3 and a rotating magnetic field is generated in the stator 230.
  • the frequency of the three-phase alternating current is controlled based on the detected value of the resolver 224, and the phase of the three-phase alternating current with respect to the rotor 250 is also controlled based on the detected value of the resolver 224.
  • FIG. 4A is a perspective view showing the rotor core 252 of the rotor 250.
  • the rotor core 252 includes two cores 301 and 302 as shown in FIG.
  • the axial length H2 of the core 302 is set to be substantially the same as the axial length H1 of the core 301.
  • FIGS. 5A and 5B are views showing cross sections of the stator 230 and the rotor 250.
  • 5A is a cross-sectional view taken along the line AA through the core 301 (see FIG. 3)
  • FIG. 5B is a cross-sectional view taken along the line BB through the core 302 (see FIG. 3).
  • 5A and 5B, the housing 212, the shaft 218, and the stator winding 238 are not shown.
  • slots 24 and teeth 236 are arranged uniformly over the entire circumference.
  • FIGS. 5 (a) and 5 (b) not all of the slots and teeth are denoted by reference numerals, but only a part of the teeth and slots are represented by representative numerals.
  • Slot insulation (not shown) is provided in the slot 24, and a plurality of phase windings of u phase to w phase constituting the stator winding 238 are mounted. In this embodiment, distributed winding is adopted as a method of winding the stator winding 238.
  • the distributed winding is a winding method in which the phase windings are wound around the stator core 232 so that the phase windings are accommodated in two slots that are spaced apart from each other across the plurality of slots 24.
  • distributed winding is adopted as the winding method, so that the formed magnetic flux distribution is close to a sine wave shape, and it is easy to obtain reluctance torque. Therefore, it is possible to control not only a low rotational speed but also a wide rotational speed range up to a high rotational speed by utilizing field weakening control and reluctance torque, which is suitable for obtaining motor characteristics of an electric vehicle or the like.
  • each core 301, 302 of the rotor core 252 is provided with a hole 310 into which a rectangular magnet is inserted, and a permanent magnet 254 is embedded in the hole 310 and fixed with an adhesive or the like.
  • the circumferential width of the hole 310 is set to be larger than the circumferential width of the permanent magnet 254, and magnetic gaps 257 are formed on both sides of the permanent magnet 254.
  • the magnetic gap 257 may be embedded with an adhesive, or may be solidified integrally with the permanent magnet 254 with a shaping resin.
  • Permanent magnet 254 acts as a field pole for rotor 250.
  • the magnetization direction of the permanent magnet 254 is in the radial direction, and the direction of the magnetization direction is reversed for each field pole. That is, if the stator side surface of the permanent magnet 254a is N-pole and the surface on the shaft side is S-pole, the stator side surface of the adjacent permanent magnet 254b is S-pole and the surface on the shaft side is N-pole. . These permanent magnets 254a and 254b are alternately arranged in the circumferential direction. In the present embodiment, twelve permanent magnets 254 are arranged at equal intervals, and the rotor 250 has 12 poles.
  • Permanent magnet 254 may be embedded in rotor core 252 after being magnetized, or may be magnetized by applying a strong magnetic field after being inserted into rotor core 252 before being magnetized. Since the magnetized permanent magnet 254 is a strong magnet, if the magnet is magnetized before the permanent magnet 254 is fixed to the rotor 250, a strong attractive force between the rotor core 252 and the permanent magnet 254 is fixed. This centripetal force hinders work. Moreover, there is a possibility that dust such as iron powder adheres to the permanent magnet 254 due to the strong attractive force. Therefore, the productivity of the rotating electrical machine is improved when the permanent magnet 254 is magnetized after being inserted into the rotor core 252.
  • a neodymium-based or samarium-based sintered magnet, a ferrite magnet, a neodymium-based bonded magnet, or the like can be used as the permanent magnet 254.
  • the residual magnetic flux density of the permanent magnet 254 is approximately 0.4 to 1.3 T.
  • FIG. 6 (a) is an enlarged view of a part of the cross-sectional view shown in FIG. 5 (a).
  • the core 301 of the rotor core 252 is provided with a groove constituting the magnetic gap 258 on the surface of the rotor 250.
  • the magnetic air gap 257 is provided to reduce cogging torque, and the magnetic air gap 258 is provided to reduce torque pulsation during energization.
  • the magnetic air gap 258a When the central axis between the permanent magnet 254a and the left magnet is q axis a and the central axis between the permanent magnet 254b and the left magnet is q axis b when viewed from the inner peripheral side of the rotor 250, the magnetic air gap 258a. Is shifted to the right with respect to the q axis a, and the magnetic gap 258b is shifted to the left with respect to the q axis b. Further, the magnetic air gap 258a and the magnetic air gap 258b are arranged symmetrically with respect to the d axis which is the central axis of the magnetic pole.
  • FIG. 6 (b) is an enlarged view of a part of the cross-sectional view shown in FIG. 5 (b).
  • magnetic gaps 258c and 258d are formed instead of the magnetic gaps 258a and 258b.
  • the magnetic air gap 258c is shifted to the left with respect to the q axis a, and the magnetic air gap 258d is shifted to the right with respect to the q axis b.
  • the cross-sectional shapes of the core 301 and the core 302 are the positions of the magnetic air gaps 258a, 258b and 258c, 258d. The only difference is the other parts.
  • the magnetic gaps 258a and 258d, 258b and 258c are arranged at positions shifted by 180 degrees in electrical angle. That is, the core 302 can be formed by rotating the core 301 by one magnetic pole. Thereby, the core 301 and the core 302 can be manufactured by the same type
  • FIG. 7 is a diagram for explaining the reluctance torque.
  • the axis through which the magnetic flux passes through the center of the magnet is called the d axis
  • the axis through which the magnetic flux flows from one pole to another between the poles is called the q axis.
  • the iron core portion at the center between the magnets is called an auxiliary salient pole portion 259. Since the magnetic permeability of the permanent magnet 254 provided on the rotor 250 is substantially the same as that of air, the d-axis portion is magnetically concave and the q-axis portion is magnetically convex when viewed from the stator side. It has become. Therefore, the core part of the q-axis part is called a salient pole.
  • the reluctance torque is generated by the difference in the ease of passing the magnetic flux between the d-axis and the q-axis, that is, the salient pole ratio.
  • the rotating electrical machine to which this embodiment is applied is a rotating electrical machine that uses both the magnet torque and the auxiliary salient pole reluctance torque. And torque pulsation generate
  • Torque pulsation has a pulsation component generated when current is not supplied and a pulsation component generated when current is supplied, and the pulsation component generated when current is not supplied is generally called cogging torque.
  • torque pulsation is generated by combining cogging torque and pulsation components during energization.
  • FIG. 8A shows a simulation result of a magnetic flux distribution when no current is passed through the stator winding 238, that is, a magnetic flux distribution by the permanent magnet 254.
  • the region 401 configured by the permanent magnet 254a is shown in FIG.
  • region 402 comprised with the permanent magnet 254b are represented. That is, it is a result of simulating a rotating electrical machine in which the regions 401 and 402 are alternately arranged in the circumferential direction, and shows the AA cross section. Since the rotating electrical machine of this embodiment has 12 poles, 6 poles are alternately arranged in the circumferential direction. Paying attention to the pole unit, the magnetic gaps 258 a and 258 b are arranged in the auxiliary salient pole part 259 in the region 401, and the auxiliary salient pole part 259 in the region 402 does not have the magnetic gap 258.
  • the magnetic flux of the permanent magnet 254 When not energized, the magnetic flux of the permanent magnet 254 shorts the magnet end. Therefore, no magnetic flux passes through the q axis. It can also be seen that the magnetic flux hardly passes through the magnetic gaps 258a and 258b provided at positions slightly deviated from the magnetic gap 257 at the end of the magnet. The magnetic flux passing through the stator core 232 reaches the teeth 236 through the stator core side of the permanent magnet 254. For this reason, since the magnetic air gaps 258a and 258b hardly affect the magnetic flux at the time of non-energization related to the cogging torque, it can be seen that the magnetic air gaps 258a and 258b do not affect the cogging torque.
  • FIG. 8B shows the simulation results for only the region 401
  • FIG. 8C shows the simulation results for only the region 402.
  • FIG. 8B only the region 401 is shown, and in FIG. 8C, only the region 402 is provided with 12 poles in the circumferential direction, and the magnetization direction of the permanent magnet 254 of each pole is reversed for each pole.
  • a rotating electric machine is shown.
  • 8B and 8C also have the same magnetic flux distribution as FIG. 8A, and no magnetic flux passes through the q axis.
  • FIG. 9A shows the waveform of the cogging torque
  • FIG. 9B shows the waveform of the induced voltage between the lines generated on the stator side when the rotor 250 rotates.
  • the horizontal axis represents the rotation angle of the rotor and is indicated by the electrical angle.
  • Line L11 shows the case of the rotor of FIG. 8A in which the region 401 having the magnetic air gap 258 and the region 402 having no magnetic air gap 258 are alternately arranged, and the line L12 is the region 401 having the magnetic air gap 258.
  • 8B shows the case of the rotating electrical machine of FIG. 8B
  • the line L13 shows the case of the rotating electrical machine of FIG. 8C where only the region 402 without the magnetic gap 258 is placed. From the result of FIG. 9A, it can be seen that the presence or absence of the magnetic air gap 258 has little influence on the cogging torque.
  • the induced voltage is a voltage generated when the magnet magnetic flux of the rotating rotor 250 is linked to the stator winding 238. As shown in FIG. 9B, the induced voltage waveform is also the magnetic gap 258. It turns out that it does not affect the presence or absence.
  • the induced voltage is a reflection of the magnetic flux of the magnet in the simulation results shown in FIGS. 8 (a), 8 (b) and 8 (c). The fact that the induced voltage is not changed means that the magnetic gap 258 is It has little influence on the magnetic flux.
  • FIG. 10A, FIG. 10B, and FIG. 10C show simulation results of magnetic flux distribution when the stator winding 238 is energized.
  • the simulation results for the same rotating electrical machine as shown in FIG. 8 (a) show the simulation results for the same rotating electrical machine as shown in FIGS. 10 (a) and 8 (b).
  • FIG. 10C shows a simulation result of the same rotating electrical machine as that shown in FIGS. 10B and 8C.
  • the rotating electrical machine of the present embodiment is a motor having 6 slots per pole, and the coil 233 of the stator winding 238 provided in the slot 24 of the stator core 232 has two layers in the slot depth direction. I know.
  • the coil 233 arranged on the bottom side of the slot is a short-pitch winding that is inserted on the rotor side of the slot 24 that is 6 slots apart from the first slot to the fifth slot when the adjacent slot is counted as the first slot. It is.
  • the short-pitch winding is characterized in that the harmonics of the magnetomotive force of the stator can be reduced, the coil end is short, and the copper loss is reduced. In addition, this way of reducing harmonics can reduce the 6th-order torque pulsation unique to the three-phase motor, and only the 12th-order component remains.
  • the magnetic flux flows on the q axis in any of the simulation results. This is because the current of the stator 230 creates a magnetic flux on the q axis. 10 (a) and 10 (b), the magnetic air gap 258 changes the flow of the magnetic flux of the auxiliary salient pole portion 259, as compared with the result of FIG. 10 (c) without the magnetic air gap 258. Recognize. Therefore, it can be said that the magnetic air gap 258 in the auxiliary salient pole portion 259 has a magnetic influence only when energized.
  • FIG. 11 (a) shows the torque waveform during energization
  • FIG. 11 (b) shows the waveform of the line voltage during energization.
  • the horizontal axis represents the rotation angle of the rotor and is indicated by the electrical angle.
  • Line L21 shows the case of the rotor of FIG. 10A in which the region 401 having the magnetic air gap 258 and the region 402 having no magnetic air gap 258 are alternately arranged
  • the line L22 is the region 401 having the magnetic air gap 258.
  • 10B shows the case of the rotating electrical machine in FIG. 10B
  • the line L23 shows the case of the rotating electrical machine in FIG. 10C in which only the region 402 without the magnetic gap 258 is arranged.
  • FIG. 11 (a) shows that the rotating electrical machine of the present embodiment has a 12th-order torque pulsation component, that is, a component with an electrical angle of 30 deg. Further, it can be seen that the torque pulsation waveform is changed in both L21 and L22 with respect to the torque pulsation L23 in the case where the magnetic air gap 258 is not formed, that is, only in the region 402. This indicates that the magnetic flux during energization is affected by the magnetic gap 258. Furthermore, the torque pulsation L22 of the rotating electrical machine only in the region 401 and the torque pulsation L23 of the rotating electrical machine only in the region 402 are almost opposite in phase. As shown in FIG.
  • the rotating electrical machine according to the present embodiment has a configuration in which regions 401 and regions 402 are alternately arranged, and the total torque pulsation received by the entire rotor as indicated by torque pulsation L21. Is the average value of torque pulsation L22 and torque pulsation L23.
  • the torque pulsation during energization can be reduced by providing the magnetic gaps 258a and 258b as described above.
  • the width angle (circumferential angle) of the grooves constituting the magnetic air gap 258 is set to a range of 1 ⁇ 4 to 1 ⁇ 2 of the pitch angle of the teeth 236.
  • Two or more kinds of magnetic gaps 258 formed in the auxiliary salient pole portion 259 may be used. Thereby, the freedom degree of torque pulsation reduction increases, and pulsation reduction can be performed in more detail.
  • the rotating electrical machine of the present embodiment has a core 302 formed by rotating the core 301 by one pitch of the magnetic pole, and the core 301 and the core are formed as shown in FIG.
  • the axial lengths of 302 are set to be substantially equal, the voltages generated in the phase windings of the stator winding 238 facing each pole can be made substantially equal, and almost no circulating current flows.
  • the phase windings of the stator windings 238 facing the rotor 250 in the regions 401 and 402 are connected in series, the circulating current hardly flows. Therefore, even in the configuration of only the core 301 or only the core 302 no problem.
  • the formation of the magnetic air gaps 258a and 258b does not affect the cogging torque when not energized. Therefore, by applying a conventional cogging torque reduction method, it is possible to reduce the cogging torque separately from the reduction of energization torque pulsation.
  • the cogging torque is reduced by adopting the following configuration.
  • FIG. 12 and 13 are diagrams for explaining a method of reducing the cogging torque.
  • FIG. 12 is a cross-sectional view showing a part of the rotor 250 and the stator core 232.
  • ⁇ p is the pole pitch of the permanent magnet 254
  • ⁇ m is the width angle of the permanent magnet 254.
  • ⁇ g is an angle obtained by combining the permanent magnet 254 and the magnetic air gap 257 provided on both sides thereof, that is, the width angle of the hole 310 shown in FIG.
  • the cogging torque can be reduced by adjusting the ratios ⁇ m / ⁇ p and ⁇ g / ⁇ p of these angles.
  • ⁇ m / ⁇ p is called a magnet pole arc degree
  • ⁇ g / ⁇ p is called a magnet hole pole arc degree.
  • FIG. 13 is a diagram showing the relationship between the ratio of the magnet pole arc degree ⁇ m / ⁇ p and the cogging torque.
  • the vertical axis represents the cogging torque amplitude
  • the horizontal axis represents the rotation angle represented by the electrical angle of the rotor 250.
  • the amplitude of the pulsation changes depending on the ratio ⁇ m / ⁇ p.
  • the cogging torque can be reduced by selecting ⁇ m / ⁇ p to be about 0.75. Further, the tendency that the cogging torque is not changed by the magnetic air gap 258 shown in FIG. 9A can be applied in the same manner where the ratio ⁇ m / ⁇ p of the magnet width and the pole pitch shown in FIG. Therefore, by making the shape of the rotor 250 as shown in FIG. 5 under the above conditions, both the cogging torque and the torque pulsation during energization can be reduced.
  • the magnet hole pole arc degree ⁇ g / ⁇ p is set to 0.5 to 0.9. It is preferable to set the level to about 0.7, more preferably about 0.7 to 0.8.
  • FIG. 14 is a calculation example of the maximum torque when the magnet pole arc degree ⁇ m / ⁇ p and the magnet hole pole arc degree ⁇ g / ⁇ p are changed.
  • the permanent magnet 254 and the magnetic gap 257 are fan-shaped concentric with the outer periphery of the rotor 250.
  • the abscissa indicates the magnet hole pole arc degree ⁇ g / ⁇ p, and a value of 0.7 indicates that the ratio of the auxiliary salient pole part 259 to the pitch between the poles is 0.3.
  • the magnet width ⁇ m cannot be larger than the opening angle ⁇ g of the magnet hole, ⁇ g ⁇ ⁇ m. As ⁇ m increases, the width of the permanent magnet 254 increases, so the torque increases.
  • ⁇ g has an optimum value, and the maximum torque becomes the largest when ⁇ g / ⁇ p is about 0.7 to 0.8. This is because there is an appropriate value for the size of the auxiliary salient pole portion 259, and the reluctance torque becomes small if ⁇ g is made too large or too small.
  • ⁇ m ⁇ g is desirable so that the auxiliary salient pole portion 259 is as large as possible.
  • the reluctance torque can be used most efficiently and the permanent magnet 254 can be made small.
  • the magnet is extremely expensive compared to other materials, and therefore, it is required to use the magnet amount most effectively.
  • the permanent magnet 254 becomes small, the induced voltage due to the magnetic flux of the permanent magnet 254 can be reduced, and the rotating electrical machine can be rotated at a higher speed. Therefore, a rotating electrical machine using reluctance torque as in the present embodiment is generally used for an electric vehicle.
  • FIG. 15A and FIG. 15B show a rotor according to another embodiment of the present invention. Except for the items described below, the second embodiment is the same as the first embodiment.
  • FIG. 15A shows a surface magnet type rotor
  • FIG. 15B shows a rotor in which a plurality of magnets are arranged in a V-hour shape.
  • an auxiliary salient pole portion 259 is provided between the permanent magnets 254, and a magnetic gap 258 is disposed in the auxiliary salient pole portion 259.
  • the magnetic air gap 258 has a central axis between the permanent magnet 254a and the left magnet as viewed from the inner peripheral side of the rotor 250 as q axis a, and a central axis between the permanent magnet 254b and the left magnet as q axis b.
  • FIGS. 15A and 15B show the AA cross section of the rotor.
  • the BB cross section shows the shape of the AA cross section as the magnetic pole 1. The shape is formed by rotating the pitch.
  • the reduction in torque pulsation in this embodiment is not affected by the magnetic flux of the magnet, and therefore depends on the shape of the magnet. do not do.
  • FIG. 16 shows a reduction in torque pulsation by providing two magnetic air gaps 258 according to this embodiment for each auxiliary salient pole portion 259.
  • the shapes of the permanent magnet 254a and the left magnet when viewed from the inner peripheral side of the rotor 250 are q-axis a, and the central axis between the permanent magnet 254b and the left magnet is q-axis b.
  • the magnetic gap 258a on the right side with respect to the q axis a is large, the magnetic gap 258e on the left side with respect to the q axis a is small, the magnetic gap 258b on the right side with respect to the q axis b is large, and Thus, the left magnetic gap 258f is small.
  • FIG. 16 shows the AA cross section of the rotor.
  • the BB cross section is formed by rotating the shape of the AA cross section by one pitch of the magnetic pole. It becomes a shape. Other matters are the same as those described in the first embodiment.
  • the magnetic air gap 258 is a groove provided on the outer periphery of the rotor 250. It is good also as a hole in auxiliary salient pole 259 as shown in (a). Further, as shown in FIG. 17B, the magnetic gap 257 and the magnetic gap 258 may be integrated. Further, as shown in FIG. 17 (c), the auxiliary salient pole portion 259 can be realized by providing portions having different magnetic permeability. In FIG. 17C, the magnetic permeability of the auxiliary salient pole part 259a is set lower than the magnetic permeability of the auxiliary salient pole part 259b. Other matters are the same as those described in the first embodiment.
  • FIG. 18 shows a case where the stator winding 238 shown in FIGS. 5A and 5B is concentrated winding. Since the torque pulsation in this embodiment depends on the shape of the rotor 250, the torque pulsation can be reduced in the same manner as described above even in the case of concentrated winding with different winding methods on the stator side. Other matters are the same as those described in the first embodiment.
  • FIG. 19 (a) is a perspective view showing a rotor core 252 of a rotor 250 according to another embodiment of the present invention. Except for the items described below, the second embodiment is the same as the first embodiment.
  • the rotor core 252 includes two cores 301 and 302 as shown in FIG.
  • the axial length H2 of the core 302 is set to be substantially the same as the axial length H1 of the core 301.
  • FIGS. 20A and 20B are cross-sectional views of the stator 230 and the rotor 250.
  • FIG. 20A is a cross-sectional view taken along the line AA through the core 301 (see FIG. 3)
  • FIG. 20B is a cross-sectional view taken along the line BB through the core 302 (see FIG. 3).
  • 20A and 20B, the housing 212, the shaft 218, and the stator winding 238 are not shown.
  • slots 24 and teeth 236 are arranged uniformly over the entire circumference.
  • FIG. 20 not all of the slots and teeth are denoted by reference numerals, and only some of the teeth and slots are representatively denoted.
  • Slot insulation (not shown) is provided in the slot 24, and a plurality of phase windings of u phase to w phase constituting the stator winding 238 are mounted. In this embodiment, distributed winding is adopted as a method of winding the stator winding 238.
  • each core 301, 302 of the rotor core 252 is provided with a hole 310 into which a rectangular magnet is inserted, and a permanent magnet 254 is embedded in the hole 310 and fixed with an adhesive or the like.
  • the circumferential width of the hole 310 is set to be larger than the circumferential width of the permanent magnet 254, and magnetic gaps 257 are formed on both sides of the permanent magnet 254.
  • the magnetic gap 257 may be embedded with an adhesive, or may be solidified integrally with the permanent magnet 254 with a shaping resin.
  • Permanent magnet 254 acts as a field pole for rotor 250.
  • the magnetization direction of the permanent magnet 254 is in the radial direction, and the direction of the magnetization direction is reversed for each field pole. That is, if the stator side surface of the permanent magnet 254a is N-pole and the surface on the shaft side is S-pole, the stator side surface of the adjacent permanent magnet 254b is S-pole and the surface on the shaft side is N-pole. . These permanent magnets 254a and 254b are alternately arranged in the circumferential direction. In the present embodiment, twelve permanent magnets 254 are arranged at equal intervals, and the rotor 250 has 12 poles.
  • FIG. 21A is an enlarged view of a part of the cross-sectional view shown in FIG.
  • the core 301 of the rotor core 252 is provided with a groove constituting the magnetic gap 258 on the surface of the rotor 250.
  • the magnetic air gap 257 is provided to reduce cogging torque
  • the magnetic air gap 258 is provided to reduce torque pulsation during energization.
  • the magnetic gap 258b is shifted on the left side with respect to the q axis a, and there is no magnetic gap on the left and right sides of the q axis b. Further, the magnetic air gap 258a and the magnetic air gap 258b are arranged symmetrically with respect to the q axis, which is the central axis between the magnets.
  • FIG. 21B is an enlarged view of a part of the cross-sectional view shown in FIG.
  • magnetic gaps 258c and 258d are formed instead of the magnetic gaps 258a and 258b.
  • the magnetic air gap 258c is arranged on the right side with respect to the q axis b
  • the magnetic air gap 258d is arranged on the left side with respect to the q axis b.
  • the cross-sectional shapes of the core 301 and the core 302 are the positions of the magnetic gaps 258a, 258b, 258c, and 258d. The only difference is the other parts.
  • the magnetic gaps 258a and 258c, 258b and 258d are arranged at positions shifted by 180 degrees in electrical angle. That is, the core 302 can be formed by rotating the core 301 by one magnetic pole. Thereby, the core 301 and the core 302 can be manufactured by the same type
  • the rotating electrical machine shown in FIG. 21A has a configuration in which regions 403 and regions 404 are alternately arranged.
  • the region 403 in FIG. 21A is equivalent to the region 401 in FIG. 8A
  • the region 404 in FIG. 21A is equivalent to the region 402 in FIG. 8A
  • FIG. 6 can be said to be electrically and magnetically equivalent to the rotating electrical machine of the embodiment shown in FIG. 6A, although the position where the magnetic air gap 258 is arranged is different. That is, also in this embodiment, different torque pulsations are generated in the region 403 and the region 404, and the torque pulsations can be reduced by acting so that they cancel each other.
  • the magnetic air gap 258 is formed in the auxiliary salient pole portion 259, the cogging torque is hardly affected. That is, by providing the magnetic air gap 258, the influence of the cogging torque on the pulsation can be suppressed, and the energization torque pulsation can be reduced almost independently.
  • the rotating electrical machine of this embodiment has a core 302 formed by rotating the core 301 by one pitch of the magnetic pole, and FIG. 19B. Since the axial lengths of the core 301 and the core 302 are set to be substantially equal as shown in FIG. 6, the voltages generated in the phase windings of the stator winding 238 facing each pole can be made substantially equal, Circulating current does not flow. However, when the phase windings of the stator windings 238 facing the rotor 250 in the regions 403 and 404 are connected in series, the circulating current hardly flows. Therefore, even in the configuration of only the core 301 or only the core 302 no problem.
  • 22 (a) and 22 (b) show a rotor according to another embodiment of the present invention.
  • the items other than those described below are the same as in the above embodiment.
  • FIG. 22 (a) is a surface magnet type rotor
  • FIG. 22 (b) is a rotor in which a plurality of magnets are arranged in a V-hour shape.
  • an auxiliary salient pole portion 259 is provided between the permanent magnets 254, and a magnetic gap 258 is disposed in the auxiliary salient pole portion 259.
  • the magnetic air gap 258 has a central axis between the permanent magnet 254a and the left magnet as viewed from the inner peripheral side of the rotor 250 as q axis a, and a central axis between the permanent magnet 254b and the left magnet as q axis b.
  • the magnetic air gap 258a is arranged on the right side with respect to the q axis a, and the magnetic air gap 258b is arranged on the left side with respect to the q axis a, and there is no magnetic air gap on the left and right sides of the q axis b. Further, the magnetic air gap 258a and the magnetic air gap 258b are arranged symmetrically with respect to the q axis that is the central axis between the magnets. 22 (a) and 22 (b) show the AA cross section of the rotor. Like the above-described embodiment, the BB cross section has the shape of the AA cross section as shown in FIG. The shape is formed by rotating the pitch. As described with reference to FIGS. 8A, 8B, and 8C, the reduction in torque pulsation in this embodiment is not affected by the magnetic flux of the magnet, and thus does not depend on the shape of the magnet. .
  • FIG. 23 shows that the torque pulsation is reduced by providing two magnetic gaps 258 of this embodiment for each auxiliary salient pole portion 259, and the shape thereof is viewed from the inner peripheral side of the rotor 250.
  • the central axis between the permanent magnet 254a and the left magnet is q-axis a
  • the central axis between the permanent magnet 254b and the left magnet is q-axis b
  • the left and right magnetic gaps 258a and 258b of the q-axis a are large.
  • the left and right magnetic gaps 258e, 258f of the q axis b are arranged small.
  • FIG. 23 shows the AA cross section of the rotor.
  • the BB cross section is formed by rotating the shape of the AA cross section by one pitch of the magnetic poles. It becomes a shape.
  • the magnetic gap 258 is a groove provided on the outer periphery of the rotor 250.
  • a hole in the auxiliary salient pole portion 259 may be used, and as shown in FIG. 24B, the magnetic gap 257 and the magnetic gap 258 may be integrated.
  • the auxiliary salient pole portion 259 can be realized by providing portions having different magnetic permeability. In FIG. 24C, the permeability of the auxiliary salient pole part 259a is set lower than the permeability of the auxiliary salient pole part 259b.
  • FIG. 25 shows a case where the stator winding 238 shown in FIG. 20 is concentrated. Since the torque pulsation in this embodiment depends on the shape of the rotor 250, the torque pulsation can be reduced in the same manner as described above even in the case of concentrated winding with different winding methods on the stator side.
  • Auxiliary salient pole portion 259 is provided with magnetic air gaps 258a and 258b, and assists the magnetic air gap 258a and the magnetic air gap 258b so that torque pulsations generated by the magnetic air gaps 258a and 258b cancel each other.
  • Each salient pole portion 259 is shifted and arranged.
  • the magnet can be made as small as possible, and the rotating electrical machine can be reduced in size and cost.
  • the permanent magnet 254 Since the torque pulsation during energization is reduced by shifting the positions of the magnetic air gaps 258a and 258b provided in the auxiliary salient pole portion 259, the permanent magnet 254 as in the conventional skew structure. There is no need to divide the wire into a plurality of portions in the axial direction or skew the magnetization.
  • the permanent magnet 254 for example, a rare earth magnet typified by neodymium is used.
  • the magnet shaping is performed by polishing in the rare earth magnet, increasing the accuracy of the manufacturing error directly leads to an increase in cost. Therefore, according to the present embodiment that does not require the magnet to be divided in the axial direction, the cost of the rotating electrical machine can be reduced. In addition, there is no concern that the dispersion of performance increases due to the accumulation of magnet tolerances or that the yield deteriorates. Thus, according to the present embodiment, it is possible to reduce the productivity and the production cost of the rotating electrical machine.
  • the motor for driving the vehicle has been described as an example.
  • the present invention can be applied not only to motors but also to various rotating electrical machines such as generators such as alternators.
  • the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 回転電機は、固定子巻線を有する固定子と、固定子に対して所定の回転軸を中心に回転自在に設けられた回転子とを備える。回転子は、複数の磁石と、隣接する各磁石の極間に形成された複数の磁気的補助突極部と、磁気的補助突極部内であってその突極中心を通るq軸から回転軸の周方向にずれた位置に回転軸の軸方向に沿って設けられた磁気抵抗変化部とを有する。磁気抵抗変化部のq軸からのずれ量は、通電時のトルク脈動が互いに打ち消されるように磁気的補助突極部の位置に応じて異なっている。

Description

回転電機及び電気自動車
 本発明は、回転電機、およびその回転電機を備えた電気自動車に関する。
 電気自動車やハイブリッド自動車に用いられる駆動用モータには大出力が求められるため、強力なエネルギーを保持する希土類の焼結磁石を用いた永久磁石式モータが一般に用いられている。さらに上記の駆動用モータには、こうした永久磁石モータの内でも、低速大トルク、かつ、広範囲な回転速度領域という要求を満たすことができる埋込み磁石式モータが利用されている。
 ところで、モータのトルク脈動は、騒音や振動の原因となり、特に、電気自動車では低速時におけるトルク脈動が乗り心地を悪化させるという問題がある。従来のモータでは、トルク脈動低減のために、スキューを施す対策が一般的に採用されている。例えば、回転子に埋め込んでいる磁石の外周側に配置された電磁鋼板に溝を設け、この溝を回転軸の周方向にずらして配置したモータが知られている(特許文献1参照)。
特開2005-176424号公報
 上述した磁石の外周側に溝を設けたモータでは、非通電時および通電時のどちらの場合にも磁束が流れる場所に溝を設けている。そのため、例えば通電時の脈動が小さくなる位置に溝を設けるとコギングトルクが増加し、コギングトルクが減るような位置に溝を設けると通電時のトルク脈動が増加してしまうといった問題を有する。
 本発明の目的は、モータの性能(例えば効率,信頼性,コストパフォーマンス、または生産性など)を向上することを目的とする。
 本発明の第1の態様による回転電機は、固定子巻線を有する固定子と、固定子に対して所定の回転軸を中心に回転自在に設けられた回転子とを備える。回転子は、複数の磁石と、複数の磁石のうち隣接する各磁石の極間に形成された複数の磁気的補助突極部と、磁気的補助突極部内であって該磁気的補助突極部の突極中心を通るq軸から回転軸の周方向にずれた位置に、回転軸の軸方向に沿って設けられた磁気抵抗変化部とを有する。磁気抵抗変化部のq軸からのずれ量は、通電時のトルク脈動が互いに打ち消されるように磁気的補助突極部の位置に応じて異なっている。
 本発明の第2の態様によると、第1の態様の回転電機において、磁気抵抗変化部は磁気的空隙であることが好ましい。
 本発明の第3の態様によると、第2の態様の回転電機において、回転子における磁石の周方向の位置は、軸方向の位置によらず一定であることが好ましい。
 本発明の第4の態様によると、第2の態様の回転電機において、回転子は、軸方向に沿って設けられるとともに、磁石、磁気的補助突極部および磁気的空隙を各々有する複数の軸方向分割コアに分割されていてもよい。軸方向分割コア内における磁石の周方向の位置は、軸方向の位置によらず一定であることが好ましい。
 本発明の第5の態様によると、第4の態様の回転電機において、回転子は、磁気的空隙の周方向の位置がほぼ同一である複数の軸方向分割コアから成るコア群を複数有してもよい。コア群を構成する複数の軸方向分割コアの軸方向の厚さの合計は、コア群毎にほぼ同一であることが好ましい。
 本発明の第6の態様によると、第2の態様の回転電機において、磁気的空隙は、回転子の表面に形成された凹部としてよい。
 本発明の第7の態様によると、第6の態様の回転電機において、凹部の周方向の幅角度は、固定子に設けられた各ティース間のピッチ角の1/4から1/2の範囲であることが好ましい。
 本発明の第8の態様によると、第2の態様の回転電機において、磁気的空隙は、回転子の表面に形成された穴としてもよい。
 本発明の第9の態様によると、第8の態様の回転電機において、上記穴は、磁石が設けられている穴と一体に形成されていることが好ましい。
 本発明の第10の態様によると、第1の態様の回転電機において、複数の磁石は、その磁化方向が軸方向と垂直な回転子の径方向であって、各磁石の磁化方向の向きが交互に逆向きになるように、周方向に並べて配置されていることが好ましい。
 本発明の第11の態様によると、第10の態様の回転電機において、磁石の各々は、磁化の向きがほぼ等しい複数の磁石からなる磁石群を構成してもよい。
 本発明の第12の態様によると、第2の態様の回転電機において、磁気的補助突極部には磁気的空隙が複数設けられていてもよい。
 本発明の第13の態様によると、第2の態様の回転電機において、磁気的空隙は、突極中心を通るq軸に対して非対称で、磁石の磁極中心を通るd軸に対して対称に配置されていてよい。
 本発明の第14の態様によると、第2の態様の回転電機において、磁気的空隙は、突極中心を通るq軸に対して対称で、磁石の磁極中心を通るd軸に対して非対称に配置されていてもよい。
 本発明の第15の態様によると、第1の態様の回転電機において、回転子は、磁気的空隙を構成する穴または切り欠きが形成された電磁鋼板を積層してそれぞれ成る複数の回転子コアを有してもよい。
 本発明の第16の態様によると、第15の態様の回転電機において、回転子コアの各々は、電磁鋼板を磁石の磁極ピッチ単位で周方向にずらすことで、磁気的空隙の位置を軸方向の位置に応じて異ならせることができる。
 本発明の第17の態様によると、第2の態様の回転電機において、回転子は、磁石の配置を軸方向の位置に対応して周方向にずらす第1のスキュー構造と、磁気的空隙の配置を軸方向の位置に対応して周方向にずらす第2のスキュー構造とを有してもよい。
 本発明の第18の態様によると、第1の態様の回転電機において、固定子巻線は、分布巻で巻回されていることが好ましい。
 本発明の第19の態様による電気自動車は、第1の態様の回転電機と、直流電力を供給するバッテリと、バッテリの直流電力を交流電力に変換して回転電機に供給する変換装置とを備え、回転電機のトルクを駆動力として用いるものである。
 本発明によれば、モータの性能(例えば効率,信頼性,コストパフォーマンス、または生産性など)を向上することができる。
本発明の一実施の形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す。 図1の電力変換装置600の回路図を示す。 図1の回転電機200または回転電機202の断面図を示す。 図3の回転子鉄心252の斜視図を示す。 図3の回転子鉄心252の分解斜視図を示す。 図3の固定子230および回転子250のA-A断面図を示す。 図3の固定子230および回転子250のB-B断面図を示す。 図3の永久磁石254bの付近を拡大したA-A断面図を示す。 図3の永久磁石254bの付近を拡大したB-B断面図を示す。 リラクタンストルクの説明図を示す。 非通電時のA-A断面の磁束分布を示す。 領域401のみの回転電機の磁束分布を示す。 領域402のみの回転電機の磁束分布を示す。 非通電時のコギングトルクの波形を示す。 非通電時の線間誘起電圧の波形を示す。 通電時のA-A断面の磁束分布を示す。 領域401のみの回転電機の磁束分布を示す。 領域402のみの回転電機の磁束分布を示す。 通電時のトルク脈動の波形を示す。 通電時の線間電圧の波形を示す。 コギングトルク低減を説明する図であり、固定子鉄心232と回転子250の一部を示す断面図である。 磁石極弧度τm/τpの比とコギングトルクとの関係を示す図である。 磁石極弧度τm/τpおよび磁石穴極弧度τg/τpを変化させた場合の最大トルクを示す図である。 本発明の他の実施形態をなす表面磁石タイプの回転電機の固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす複数の磁石をV時形状に配置したタイプの回転電機の固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す。 本発明の他の実施形態をなす固定子230および回転子250の断面を示す図であり、集中巻の回転電機を示す。 本発明の他の実施形態をなす回転子鉄心252の斜視図を示す。 本発明の他の実施形態をなす回転子鉄心252の分解斜視図を示す。 固定子230および回転子250のコア301の部分を通るA-A断面を示す。 固定子230および回転子250のコア302の部分を通るB-B断面を示す。 A-A断面の永久磁石254bの付近を拡大して示した図。 B-B断面の永久磁石254bの付近を拡大して示した図。 本発明の他の実施例をなす表面磁石タイプの回転電機を示す。 本発明の他の実施例をなす複数の磁石をV時形状に配置したタイプの回転電機を示す。 固定子230および回転子250の断面を示す図であり、磁気的空隙258を1つの補助突極部259ごとに2つ設けた回転電機を示す。 本発明の他の実施例をなす固定子230および回転子250の断面図を示す。 本発明の他の実施例をなす固定子230および回転子250の断面図を示す。 本発明の他の実施例をなす固定子230および回転子250の断面図を示す。 固定子230および回転子250の断面を示す図であり、集中巻の回転電機を示す。
 以下、本発明の実施形態を図面に基づいて説明する。
 本実施形態による回転電機は、以下に説明するように、非通電時におけるコギングトルクと通電時におけるトルク脈動とをそれぞれ抑えることができ、小型,低コスト,低トルク脈動が実現できる。そのため、例えば、電気自動車の走行用モータとして好適であり、低振動,低騒音で乗り心地の良い電気自動車を提供することができる。本実施形態による回転電機は、回転電機のみによって走行する純粋な電気自動車や、エンジンと回転電機の双方によって駆動されるハイブリッド型の電気自動車にも適用できるが、以下ではハイブリッド型の電気自動車を例に説明する。
 図1は、本発明の一実施形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す図である。車両100には、エンジン120と第1の回転電機200と第2の回転電機202とバッテリ180とが搭載されている。バッテリ180は、回転電機200,202による駆動力が必要な場合には回転電機200,202に直流電力を供給し、回生走行時には回転電機200,202から直流電力を受ける。バッテリ180と回転電機200,202との間の直流電力の授受は、電力変換装置600を介して行われる。また、図示していないが、車両には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されており、以下に説明する制御回路に直流電力を供給する。
 エンジン120および回転電機200,202による回転トルクは、変速機130とデファレンシャルギア160を介して前輪110に伝達される。変速機130は変速機制御装置134により制御され、エンジン120はエンジン制御装置124により制御される。バッテリ180は、バッテリ制御装置184により制御される。変速機制御装置134,エンジン制御装置124,バッテリ制御装置184,電力変換装置600および統合制御装置170は、通信回線174によって接続されている。
 統合制御装置170は、統合制御装置170より下位の各制御装置、すなわち変速機制御装置134,エンジン制御装置124,電力変換装置600およびバッテリ制御装置184から、それぞれの状態を表す情報を、通信回線174を介して受け取る。統合制御装置170は、これらの情報に基づき各制御装置の制御指令を演算する。演算された制御指令は通信回線174を介してそれぞれの制御装置へ送信される。
 高電圧のバッテリ180はリチウムイオン電池あるいはニッケル水素電池などの2次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力を出力する。バッテリ制御装置184は、バッテリ180の放電状況やバッテリ180を構成する各単位セル電池の状態を、通信回線174を介して統合制御装置170に出力する。
 統合制御装置170は、バッテリ制御装置184からの情報に基づいてバッテリ180の充電が必要が否かを判断し、バッテリ180の充電が必要と判断すると、電力変換装置600に発電運転の指示を出す。また、統合制御装置170は、主に、エンジン120および回転電機200,202の出力トルクの管理、エンジン120の出力トルクと回転電機200,202の出力トルクとの総合トルクやトルク分配比の演算処理、その演算処理結果に基づく変速機制御装置134,エンジン制御装置124および電力変換装置600への制御指令の送信を行う。電力変換装置600は、統合制御装置170からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように回転電機200,202を制御する。
 電力変換装置600には回転電機200,202を運転するためにインバータを構成するパワー半導体が設けられている。電力変換装置600は、統合制御装置170からの指令に基づきパワー半導体のスイッチング動作を制御する。このようなパワー半導体のスイッチング動作により、回転電機200,202が電動機としてあるいは発電機として運転される。
 回転電機200,202を電動機として運転する場合は、高電圧のバッテリ180からの直流電力が電力変換装置600のインバータの直流端子に供給される。電力変換装置600は、パワー半導体のスイッチング動作を制御することにより、供給された直流電力を3相交流電力に変換し回転電機200,202に供給する。一方、回転電機200,202を発電機として運転する場合には、回転電機200,202の回転子が外部から加えられる回転トルクで回転駆動され、回転電機200,202の固定子巻線に3相交流電力が発生する。発生した3相交流電力は電力変換装置600で直流電力に変換され、その直流電力が高電圧のバッテリ180に供給されることにより充電が行われる。
 図2は、図1の電力変換装置600の回路図を示す。電力変換装置600には、回転電機200のための第1のインバータ装置と、回転電機202のための第2のインバータ装置とが設けられている。第1のインバータ装置は、パワーモジュール610と、パワーモジュール610の各パワー半導体21のスイッチング動作を制御する第1の駆動回路652と、回転電機200の電流を検知する電流センサ660とを備えている。駆動回路652は駆動回路基板650に設けられている。一方、第2のインバータ装置は、パワーモジュール620と、パワーモジュール620における各パワー半導体21のスイッチング動作を制御する第2の駆動回路656と、回転電機202の電流を検知する電流センサ662とを備えている。駆動回路656は駆動回路基板654に設けられている。制御回路基板646に設けられた制御回路648,コンデンサモジュール630およびコネクタ基板642に実装された送受信回路644は、第1のインバータ装置と第2のインバータ装置とで共通に使用される。
 パワーモジュール610,620は、それぞれ対応する駆動回路652,656から出力された駆動信号によって動作する。パワーモジュール610,620は、それぞれバッテリ180から供給された直流電力を三相交流電力に変換し、その電力を対応する回転電機200,202の電機子巻線である固定子巻線に供給する。また、パワーモジュール610,620は、回転電機200,202の固定子巻線に誘起された交流電力を直流に変換し、高電圧バッテリ180に供給する。
 パワーモジュール610,620は図2に記載のごとく3相ブリッジ回路を備えており、3相に対応した直列回路が、それぞれバッテリ180の正極側と負極側との間に電気的に並列に接続されている。各直列回路は上アームを構成するパワー半導体21と下アームを構成するパワー半導体21とを備え、それらのパワー半導体21は直列に接続されている。パワーモジュール610とパワーモジュール620とは、図2に示す如く回路構成がほぼ同じであり、ここではパワーモジュール610で代表して説明する。
 本実施形態では、スイッチング用パワー半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)21を用いている。IGBT21は、コレクタ電極,エミッタ電極及びゲート電極の3つの電極を備えている。IGBT21のコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBT21のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT21のコレクタ電極に、アノード電極がIGBT21のエミッタ電極にそれぞれ電気的に接続されている。
 なお、スイッチング用パワー半導体素子として、MOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極,ソース電極及びゲート電極の3つの電極を備えている。MOSFETの場合には、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、図2のダイオード38を設ける必要がない。
 各相のアームは、IGBT21のソース電極とIGBT21のドレイン電極とが電気的に直列に接続されて構成されている。尚、本実施形態では、各相の各上下アームのIGBTを1つしか図示していないが、制御する電流容量が大きいので、実際には複数のIGBTが電気的に並列に接続されて構成されている。以下では、説明を簡単にするため、1個のパワー半導体として説明する。
 図2に示す例では、各相の各上下アームはそれぞれ3個のIGBTによって構成されている。各相の各上アームのIGBT21のドレイン電極はバッテリ180の正極側に、各相の各下アームのIGBT21のソース電極はバッテリ180の負極側にそれぞれ電気的に接続されている。各相の各アームの中点(上アーム側IGBTのソース電極と下アーム側のIGBTのドレイン電極との接続部分)は、対応する回転電機200,202の対応する相の電機子巻線(固定子巻線)に電気的に接続されている。
 駆動回路652,656は、対応するパワーモジュール610,620を制御するための駆動部を構成しており、制御回路648から出力された制御信号に基づいて、IGBT21を駆動させるための駆動信号を発生する。それぞれの駆動回路652,656で発生した駆動信号は、対応するパワーモジュール610,620の各パワー半導体素子のゲートにそれぞれ出力される。駆動回路652,656には、各相の各上下アームのゲートに供給する駆動信号を発生する集積回路がそれぞれ6個設けられており、6個の集積回路を1ブロックとして構成されている。
 制御回路648は各パワーモジュール610,620の制御部を構成しており、複数のスイッチング用パワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成されている。制御回路648には、上位制御装置からのトルク指令信号(トルク指令値)、電流センサ660,662のセンサ出力、回転電機200,202に搭載された回転センサのセンサ出力が入力される。制御回路648はそれらの入力信号に基づいて制御値を演算し、駆動回路652,656にスイッチングタイミングを制御するための制御信号を出力する。
 コネクタ基板642に実装された送受信回路644は、電力変換装置600と外部の制御装置との間を電気的に接続するためのもので、図1の通信回線174を介して他の装置と情報の送受信を行う。コンデンサモジュール630は、IGBT21のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するもので、第1のパワーモジュール610や第2のパワーモジュール620における直流側の端子に電気的に並列に接続されている。
 図3は、図1の回転電機200あるいは回転電機202の断面図を示す。回転電機200と回転電機202とはほぼ同じ構造であり、以下では回転電機200の構造を代表例として説明する。尚、以下に示す構造は、回転電機200,202の双方に採用されている必要は無く、少なくとも一方に採用されていても良い。
 ハウジング212の内部には固定子230が保持されており、固定子230は固定子鉄心232と固定子巻線238とを備えている。固定子鉄心232の内側には、回転子250が空隙222を介して回転可能に保持されている。回転子250は回転子鉄心252と永久磁石254と非磁性体のあて板226を備えており、回転子鉄心252はシャフト218に固定されている。ハウジング212は軸受216が設けられた一対のエンドブラケット214を有しており、シャフト218はこれらの軸受216により回転自在に保持されている。
 図3に示すように、シャフト218には、回転子250の極の位置や回転速度を検出するレゾルバ224が設けられている。このレゾルバ224からの出力は、図2に示す制御回路648に取り込まれる。制御回路648は、取り込まれた出力に基づいて制御信号を駆動回路652に出力する。駆動回路652は、その制御信号に基づく駆動信号をパワーモジュール610に出力する。パワーモジュール610は、制御信号に基づきスイッチング動作を行い、バッテリ180から供給される直流電力を3相交流電力に変換する。この3相交流電力は図3に示す固定子巻線238に供給され、回転磁界が固定子230に発生する。3相交流電流の周波数はレゾルバ224の検出値に基づいて制御され、3相交流電流の回転子250に対する位相も同じくレゾルバ224の検出値に基づいて制御される。
 図4(a)は、回転子250の回転子鉄心252を示す斜視図である。回転子鉄心252は、図4(b)に示すような2つのコア301,302から成る。コア302の軸方向長さH2は、コア301の軸方向長さH1のほぼ同じに設定されている。図5(a),図5(b)は固定子230および回転子250の断面を示す図である。図5(a)はコア301の部分を通るA-A断面図(図3参照)であり、図5(b)はコア302の部分を通るB-B断面図(図3参照)である。なお、図5(a),図5(b)では、ハウジング212,シャフト218および固定子巻線238の記載を省略した。
 固定子鉄心232の内周側には、多数のスロット24とティース236とが全周に渡って均等に配置されている。尚、図5(a),図5(b)では、スロットおよびティースの全てに符号を付すことはせず、代表して一部のティースとスロットにのみに符号を付した。スロット24内にはスロット絶縁(図示省略)が設けられ、固定子巻線238を構成するu相~w相の複数の相巻線が装着されている。本実施例では、固定子巻線238の巻き方として分布巻を採用している。
 分布巻とは、複数のスロット24を跨いで離間した2つのスロットに相巻線が収納されるように、相巻線が固定子鉄心232に巻かれる巻線方式である。本実施例では、巻線方式として分布巻を採用しているので、形成される磁束分布は正弦波状に近く、リラクタンストルクを得やすい。そのため、弱め界磁制御やリラクタンストルクを活用して、低回転速度だけでなく高回転速度までの広い回転数範囲についての制御が可能であり、電気自動車などのモータ特性を得るのに適している。
 また、回転子鉄心252の各コア301,302には、矩形の磁石が挿入される穴310が開けられており、その穴310には永久磁石254が埋め込まれ接着剤などで固定されている。穴310の円周方向の幅は、永久磁石254の円周方向の幅よりも大きく設定されており、永久磁石254の両側には磁気的空隙257が形成されている。この磁気的空隙257は接着剤を埋め込んでも良いし、整形樹脂で永久磁石254と一体に固めても良い。永久磁石254は回転子250の界磁極として作用する。
 永久磁石254の磁化方向は径方向を向いており、界磁極毎に磁化方向の向きが反転している。すなわち、永久磁石254aの固定子側面がN極、軸側の面がS極であったとすれば、隣の永久磁石254bの固定子側面はS極、軸側の面はN極となっている。そして、これらの永久磁石254a,254bが円周方向に交互に配置されている。本実施の形態では、各永久磁石254は等間隔に12個配置されており、回転子250は12極になっている。
 永久磁石254は、磁化した後に回転子鉄心252に埋め込んでも良いし、磁化する前に回転子鉄心252に挿入した後に強力な磁界を与えて磁化するようにしても良い。磁化後の永久磁石254は強力な磁石であるため、回転子250に永久磁石254を固定する前に磁石を着磁すると、永久磁石254の固定時に回転子鉄心252との間に強力な吸引力が生じ、この求心力が作業の妨げとなる。また強力な吸引力により、永久磁石254に鉄粉などのごみが付着する恐れがある。そのため、永久磁石254を回転子鉄心252に挿入した後に磁化する方が、回転電機の生産性が向上する。
 永久磁石254には、ネオジウム系,サマリウム系の焼結磁石やフェライト磁石,ネオジウム系のボンド磁石などを用いることができる。永久磁石254の残留磁束密度はほぼ0.4~1.3T程度である。
 図6(a)は、図5(a)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア301には、永久磁石254の両側に形成される磁気的空隙257の他に、回転子250の表面に磁気的空隙258を構成する溝が設けられている。磁気的空隙257はコギングトルク低減のために設けられたものであり、磁気的空隙258は通電時のトルク脈動を低減するために設けられたものである。回転子250内周側から見て、永久磁石254aとその左側の磁石間の中心軸をq軸a、永久磁石254bとその左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aはq軸aに対して右側に、磁気的空隙258bはq軸bに対して左側にずれて配置される。さらに、磁気的空隙258aと磁気的空隙258bは、磁極の中心軸であるd軸に対称に配置されている。
 一方、図6(b)は、図5(b)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア302の場合には、磁気的空隙258a,258bの代わりに磁気的空隙258c,258dが形成されている。回転子250内周側から見て、磁気的空隙258cはq軸aに対して左側に、磁気的空隙258dはq軸bに対して右側にずれて配置されている。図5(a)、図5(b)、図6(a)及び図6(b)から分かるように、コア301とコア302の断面形状は、磁気的空隙258a,258bと258c,258dの位置が異なるだけでその他の部分は同一である。
 ここで、磁気的空隙258aと258d,258bと258cはそれぞれ電気角で180度ずれた位置に配置される。すなわち、コア301を磁極1ピッチ分回転させることでコア302を形成することが出来る。これにより、コア301とコア302は同じ型で製作でき、製作コストを削減することが出来る。また、各コア301,302の穴310の周方向位置は、ずれることなく一致している。その結果、各穴310に装着される各永久磁石254は軸方向に分割されることなく、一体に各コア301,302を貫通している。もちろん、複数に分割された永久磁石254を、穴310の軸方向に積層するように設けても構わない。
 3相交流電流により回転磁界が固定子230に発生すると、この回転磁界が回転子250の永久磁石254a,254bに作用して磁石トルクが生じる。さらに、回転子250には、この磁石トルクに加えてリラクタンストルクが作用する。
 図7はリラクタンストルクを説明する図である。一般に、磁束が磁石中心を通る軸をd軸、磁束が磁石の極間から極間へ流れる軸をq軸と呼ぶ。このとき、磁石の極間中心にある鉄心部分を補助突極部259と呼ぶ。回転子250に設けられた永久磁石254の透磁率は空気とほぼ同じであるため、固定子側から見た場合、d軸部は磁気的に凹んでおり、q軸部は磁気的に凸になっている。そのため、q軸部の鉄心部分は突極と呼ばれる。リラクタンストルクは、このd軸とq軸の磁束の通り易さの差、すなわち、突極比によって生じる。
 このように、本実施形態が適用される回転電機は、磁石トルクと、補助突極リラクタンストルクの両方を利用する回転電機である。そして、磁石トルクとリラクタンストルクのそれぞれからトルク脈動が発生する。トルク脈動には通電しない場合に発生する脈動成分と通電によって発生する脈動成分があり、通電しない場合に発生する脈動成分は一般的にコギングトルクと呼ばれている。実際に回転電機を負荷状態で使う場合には、コギングトルクと通電時の脈動成分が合わさったトルク脈動が発生する。
 このような回転電機のトルク脈動を低減する方法として述べられている方法は、ほとんどがコギングトルクの低減のみに言及し、通電によって発生するトルク脈動に関しては述べられていない場合が多い。しかし、回転電機の騒音は、無負荷時ではなく負荷時に生じることが多い。つまり、回転電機の低騒音化には負荷時のトルク脈動を低減することが大事であり、コギングトルクだけの対策では不十分である。
 次に、本実施形態におけるトルク脈動の低減方法について説明する。
 最初に、非通電時における磁気的空隙258の影響について説明する。図8(a)は、固定子巻線238に電流を流さない場合の磁束、すなわち、永久磁石254による磁束の分布のシミュレーション結果を示したものであり、永久磁石254aで構成される領域401と永久磁石254bで構成される領域402の2極を表している。つまり、領域401と領域402が交互に周方向に配置されている回転電機をシミュレーションした結果であり、A-A断面について示している。本実施例の回転電機は12極であるから、各々6極ずつ交互に周方向に配置される。極単位に注目すると、領域401には磁気的空隙258aと258bが補助突極部259に配置されており、領域402の補助突極部259には磁気的空隙258がない。
 非通電時には、永久磁石254の磁束は磁石端部を短絡している。そのため、q軸には磁束は全く通らない。また、磁石端部の磁気的空隙257から少しずれた位置に設けられた磁気的空隙258a,258bの部分にも、磁束が殆ど通らないことがわかる。固定子鉄心232を通る磁束は、永久磁石254の固定子側の鉄心部分を通ってティース236へと至っている。このため、磁気的空隙258a,258bは、コギングトルクに関係する非通電時の磁束にほとんど影響を与えないので、磁気的空隙258a,258bはコギングトルクには影響を与えないことがわかる。
 図8(b)は領域401のみ、図8(c)は領域402のみのシミュレーション結果である。それぞれ、図8(b)は領域401のみ、図8(c)は領域402のみが周方向に12極配置され、各極の永久磁石254の磁化方向が極毎に反転するように構成された回転電機を示している。図8(b),図8(c)も図8(a)同様の磁束分布となり、q軸には磁束は通らない。
 図9(a)はコギングトルクの波形を示したものであり、図9(b)は回転子250が回転したときに固定子側に発生する線間の誘起電圧の波形を示したものである。横軸は回転子の回転角度であり、電気角で示している。ラインL11は磁気的空隙258を有する領域401と磁気的空隙258がない領域402が交互に配置される図8(a)の回転子の場合を示し、ラインL12は磁気的空隙258を有する領域401のみが配置される図8(b)の回転電機の場合を示し、ラインL13は磁気的空隙258がない領域402のみが配置される図8(c)の回転電機の場合を示す。図9(a)の結果から、磁気的空隙258の有無はコギングトルクにほとんど影響のないことがわかる。
 また、誘起電圧は回転する回転子250の磁石磁束が固定子巻線238と鎖交することにより発生する電圧であるが、図9(b)に示すように誘起電圧波形も磁気的空隙258の有無に影響しないことがわかる。誘起電圧は図8(a)、図8(b)及び図8(c)に示したシミュレーション結果における磁石の磁束の反映であり、誘起電圧が変化していないということは、磁気的空隙258は磁石磁束に対してほとんど影響を与えていないことになる。
 次に、通電時における磁気的空隙258の影響について説明する。図10(a)、図10(b)及び図10(c)は、固定子巻線238に通電した場合の磁束分布のシミュレーション結果を示したものである。図8(a)に示したのと同様の回転電機についてのシミュレーション結果を示したものが図10(a),図8(b)に示したのと同様の回転電機についてのシミュレーション結果を示したものが図10(b),図8(c)に示したのと同様の回転電機についてのシミュレーション結果を示したものが図10(c)である。本実施例の回転電機は1極あたり6スロットあるモータであって、固定子鉄心232のスロット24に設けられている固定子巻線238のコイル233は、スロット深さ方向に対して2層に分かれている。スロット底側に配置されたコイル233は、隣のスロットを1スロット目と数えると、1スロット目から5スロット目までを跨いで6スロット離れたスロット24の回転子側に挿入される短節巻である。短節巻は固定子起磁力の高調波を少なくでき、かつ、コイルエンドが短く、銅損が少なくなることが特徴である。また、この高調波低減の巻き方によって、三相モータに特有な6次のトルク脈動を少なくすることができ、ほぼ12次の成分だけが残る。
 図10(a)、図10(b)及び図10(c)を見ると、いずれのシミュレーション結果もq軸に磁束が流れている。これは、固定子230の電流が、q軸に磁束を作るためである。図10(a)及び図10(b)では補助突極部259の磁束の流れを磁気的空隙258が変えていることが、磁気的空隙258のない図10(c)の結果との比較よりわかる。従って、補助突極部259にある磁気的空隙258は、通電時のみに磁気的な影響があるといえる。
 図11(a)は通電時のトルク波形を示したものであり、図11(b)は通電時の線間電圧の波形を示したものである。横軸は回転子の回転角度であり、電気角で示している。ラインL21は磁気的空隙258を有する領域401と磁気的空隙258がない領域402が交互に配置される図10(a)の回転子の場合を示し、ラインL22は磁気的空隙258を有する領域401のみが配置される図10(b)の回転電機の場合を示し、ラインL23は磁気的空隙258がない領域402のみが配置される図10(c)の回転電機の場合を示す。
 図11(a)を見ると、本実施形態の回転電機は12次のトルク脈動成分、すなわち電気角で30deg周期の成分が支配的であって、6次成分はほとんど無いことがわかる。また、磁気的空隙258を形成しない、すなわち領域402のみの場合のトルク脈動L23に対して、L21,L22ともにトルク脈動の波形が変化していることがわかる。これは、通電時の磁束が、磁気的空隙258の影響を受けていることを示している。さらに、領域401のみの回転電機のトルク脈動L22と領域402のみの回転電機のトルク脈動L23とは、位相がほぼ正反対になっている。図10(a)に示したように本実施例の回転電機は領域401と領域402とを交互に配置する構成になっており、トルク脈動L21に示すように回転子全体が受けるトルク脈動の合計は、トルク脈動L22とトルク脈動L23の平均値となる。
 このように、本実施形態では、上述したような磁気的空隙258a,258bを設けたことにより、通電時のトルク脈動を低減することができる。なお、このような効果を得るためには、磁気的空隙258を構成する溝の幅角度(周方向角度)を、ティース236のピッチ角の1/4から1/2の範囲に設定するのが好ましい。なお、補助突極部259に形成する磁気的空隙258を2種類以上としても良い。それにより、トルク脈動低減の自由度が増し、より詳細に脈動低減を行うことができる。
 さらに、磁気的空隙を設けない場合に比べてトルクが下がらないという特徴も有している。従来、トルク脈動低減のために行われているスキューという構造の場合には、スキューすることでトルクが下がってしまい、小型化の妨げになるという欠点があった。しかし、本実施形態では、コギンギングトルクと独立して、通電時のトルク脈動だけを低減することができるだけでなく、トルクそのものが下がらないという利点を有している。これは、もともとの溝無しロータの場合のトルク脈動が、12次成分が支配的だったためで、これは、ステータ巻線を短節巻にしていたことも功を奏している。
 また、通電時の電圧であるが、図11(b)に示すように磁気的空隙258の有無に影響していることがわかる。この場合、領域401で回転子250に対向する固定子巻線238の各相巻線と、領域402で回転子250に対向する固定子巻線238の各相巻線との間に電位差が生じ、各相それぞれに巻線を並列につないだ場合、循環電流が流れて損失が増加する。図6で示したように本実施例の回転電機はコア301を磁極1ピッチ分回転させることで形成したコア302を有しており、また図4(b)で示したようにコア301とコア302の軸長をほぼ等しく設定しているため、各極に対向する固定子巻線238の各相巻線に発生する電圧をほぼ等しくすることが出来、ほとんど循環電流は流れない。但し、領域401,領域402で回転子250に対向する固定子巻線238の各相巻線を直列につないだ場合、循環電流はほとんど流れないため、コア301のみ、もしくはコア302のみの構成でも問題ない。
 上述したように、磁気的空隙258a,258bの形成は非通電時のコギングトルクに対して影響を与えない。そのため、従来行われているようなコギングトルクの低減方法を適用することで、通電時トルク脈動の低減とは別個にコギングトルクの低減を図ることができる。本実施の形態では、以下のような構成とすることでコギングトルクの低減を図るようにしている。
 図12,図13は、コギングトルクの低減方法を説明するための図である。図12は、回転子250と固定子鉄心232の一部を示す断面図である。図12において、τpは永久磁石254の極ピッチ、τmは永久磁石254の幅角度である。また、τgは永久磁石254とその両側に設けられた磁気的空隙257とをあわせた角度、すなわち、図4に示した穴310の幅角度である。これらの角度の比τm/τp,τg/τpを調節することで、コギングトルクを小さくすることができる。本実施形態では、τm/τpを磁石極弧度、τg/τpを磁石穴極弧度と呼ぶことにする。
 図13は、磁石極弧度τm/τpの比とコギングトルクとの関係を示す図である。なお、図13に示した結果は、τm=τgとした場合であり、また永久磁石254と磁気的空隙257を回転子250の外周と同心の扇形とした場合である。これを本実施例のように矩形の磁石とした場合には若干最適値が変わるが、考え方として同じであることは言うまでもない。図13において、縦軸はコギングトルクの振幅を表し、横軸は回転子250の電気角で示した回転角を表している。脈動の振幅の大きさは、比τm/τpの大きさによって変化しており、τm=τgの場合、τm/τpを0.75程度に選ぶとコギングトルクを小さくすることができる。また、図9(a)に示した磁気的空隙258によってコギングトルクが変わらない傾向は、図13の磁石幅と極ピッチの比τm/τpがいかなるところでも同じように適用できる。そのため、上記条件のもとで回転子250の形状を図5に示すような形状とすることで、コギングトルクと通電時のトルク脈動の両方を小さくすることができる。
 図13に示す例では、τm=τgとして説明したが、補助突極部259の効果であるリラクタンストルクを効率よく利用するためには、磁石穴極弧度τg/τpを0.5~0.9程度、より好ましくは0.7~0.8程度に設定するのが良い。
 図14は磁石極弧度τm/τpおよび磁石穴極弧度τg/τpを変化させた場合の最大トルクの計算例である。図13同様、永久磁石254と磁気的空隙257を回転子250の外周と同心の扇形とした場合である。横軸は、磁石穴極弧度τg/τpを示しており、この値が0.7ということは、極間ピッチに対する補助突極部259の比が0.3であることを示している。ここで、磁石幅τmは磁石穴の開き角τgよりも大きくできないので、τg≧τmとなる。τmが増えると永久磁石254の幅が増えるから、トルクが増える。一方、τmが一定の場合、τgには最適値があり、τg/τpが0.7~0.8程度において最大トルクが最も大きくなる。これは、補助突極部259の大きさには適当な値があり、それよりもτgを大きくしすぎたり、小さくしすぎたりするとリラクタンストルクが小さくなってしまうためである。τmが0.75よりも大きい場合には、なるべく補助突極部259が大きくなるように、τm=τgが望ましいことになる。
 このように、τg/τpを0.7~0.8程度としたときにリラクタンストルクを最も効率よく利用することができ、永久磁石254を小さくすることができる。永久磁石254に希土類の焼結磁石を用いる場合、磁石は他の材料に比べてきわめて高価なので、磁石量を最も効果的に使うことが求められる。また、永久磁石254が小さくなることから、永久磁石254の磁束による誘起電圧を小さくすることができ、回転電機をより高速に回転させることができる。そのため、電気自動車には、本実施の形態のようなリラクタンストルクを利用した回転電機が一般的に用いられる。
 図15(a),図15(b)は、本発明の他の実施形態をなす回転子を示す。以下で説明する事項以外は実施例1と同様である。
 図15(a)は表面磁石タイプの回転子であり、図15(b)は複数の磁石をV時形状に配置した回転子である。どの回転子においても永久磁石254間には補助突極部259が設けられており、補助突極部259には磁気的空隙258が配置されている。磁気的空隙258はそれぞれ、回転子250内周側から見て永久磁石254aとその左側の磁石間の中心軸をq軸a、永久磁石254bとその左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aがq軸aに対して右側に、磁気的空隙258bがq軸bに対して左側にずれて配置される。さらに、磁気的空隙258aと磁気的空隙258bは、磁極の中心軸であるd軸に対称に配置されている。図15(a)、図15(b)は回転子のA-A断面を示したものであり、上述した実施の形態と同様に、B-B断面は、A-A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。図8(a)、図8(b)及び図8(c)で説明したように、本実施例におけるトルク脈動の低減は、磁石の磁束に影響されるものではないため、磁石の形状に依存しない。
 図16は本実施例の磁気的空隙258を1つの補助突極部259ごとに2つ設けることによりトルク脈動低減を実現したものである。
 この形状はそれぞれ、回転子250内周側から見て永久磁石254aとその左側の磁石間の中心軸をq軸a、永久磁石254bとその左側の磁石間の中心軸をq軸bとすると、q軸aに対して右側の磁気的空隙258aが大きく、q軸aに対して左側の磁気的空隙258eが小さく、q軸bに対して右側の磁気的空隙258bが大きく、q軸bに対して左側の磁気的空隙258fが小さく配置される。さらに、磁気的空隙258aと258b、磁気的空隙258eと258fは磁極の中心軸であるd軸に対称に配置されている。図16は回転子のA-A断面を示したものであり、上述した実施の形態と同様に、B-B断面は、A-A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。これ以外の事項は実施例1で説明した内容を同様である。
 図5(a)図5(b)、図15(a)、図15(b)及び図16に示す例では磁気的空隙258を回転子250の外周に設けられた溝としていたが、図17(a)に示すように補助突極259内にある穴としてもよい。また、図17(b)に示すように磁気的空隙257と磁気的空隙258を一体としてもよい。さらには図17(c)に示すように、補助突極部259に透磁率の違う部位を設けることでも実現できる。図17(c)では補助突極部259aの透磁率が補助突極部259bの透磁率よりも低く設定されている。これ以外の事項は実施例1で説明した内容と同様である。
 図18は、図5(a)及び(b)に示す固定子巻線238を集中巻きにした場合を示す。本実施形態におけるトルク脈動は回転子250の形状に依存するものなので、固定子側の巻線方式が異なる集中巻の場合も、上述した場合と同様にトルク脈動の低減を図ることができる。これ以外の事項は実施例1で説明した内容を同様である。
 図19(a)は、本発明の他の実施例をなす回転子250の回転子鉄心252を示す斜視図である。以下で説明する事項以外は実施例1と同様である。
 回転子鉄心252は、図19(b)に示すような2つのコア301,302から成る。コア302の軸方向長さH2は、コア301の軸方向長さH1のほぼ同じに設定されている。図20(a)、図20(b)は固定子230および回転子250の断面を示す図である。図20(a)はコア301の部分を通るA-A断面図(図3参照)であり、図20(b)はコア302の部分を通るB-B断面図(図3参照)である。なお、図20(a)及び図20(b)では、ハウジング212,シャフト218および固定子巻線238の記載を省略した。
 固定子鉄心232の内周側には、多数のスロット24とティース236とが全周に渡って均等に配置されている。尚、図20では、スロットおよびティースの全てに符号を付すことはせず、代表して一部のティースとスロットにのみに符号を付した。スロット24内にはスロット絶縁(図示省略)が設けられ、固定子巻線238を構成するu相~w相の複数の相巻線が装着されている。本実施例では、固定子巻線238の巻き方として分布巻を採用している。
 また、回転子鉄心252の各コア301,302には、矩形の磁石が挿入される穴310が開けられており、その穴310には永久磁石254が埋め込まれ接着剤などで固定されている。穴310の円周方向の幅は、永久磁石254の円周方向の幅よりも大きく設定されており、永久磁石254の両側には磁気的空隙257が形成されている。この磁気的空隙257は接着剤を埋め込んでも良いし、整形樹脂で永久磁石254と一体に固めても良い。永久磁石254は回転子250の界磁極として作用する。
 永久磁石254の磁化方向は径方向を向いており、界磁極毎に磁化方向の向きが反転している。すなわち、永久磁石254aの固定子側面がN極、軸側の面がS極であったとすれば、隣の永久磁石254bの固定子側面はS極、軸側の面はN極となっている。そして、これらの永久磁石254a,254bが円周方向に交互に配置されている。本実施形態では、各永久磁石254は等間隔に12個配置されており、回転子250は12極になっている。
 図21(a)は、図20(a)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア301には、永久磁石254の両側に形成される磁気的空隙257の他に、回転子250の表面に磁気的空隙258を構成する溝が設けられている。磁気的空隙257はコギングトルク低減のために設けられたものであり、磁気的空隙258は通電時のトルク脈動を低減するために設けられたものである。回転子250内周側から見て、永久磁石254aとその左側の磁石間の中心軸をq軸a、永久磁石254bとその左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aはq軸aに対して右側に、磁気的空隙258bはq軸aに対して左側にずれて配置され、q軸bの左右には磁気的空隙はない。さらに、磁気的空隙258aと磁気的空隙258bは、磁石間の中心軸であるq軸に対称に配置されている。
 一方、図21(b)は、図20(b)に示した断面図の一部を拡大して示したものである。回転子鉄心252のコア302の場合には、磁気的空隙258a,258bの代わりに磁気的空隙258c,258dが形成されている。回転子250内周側から見て、磁気的空隙258cはq軸bに対して右側に、磁気的空隙258dはq軸bに対して左側にずれて配置され、q軸aの左右には磁気的空隙はない。図20(a)、図20(b)、図21(a)及び図21(b)から分かるように、コア301とコア302の断面形状は、磁気的空隙258a,258bと258c,258dの位置が異なるだけでその他の部分は同一である。
 ここで、磁気的空隙258aと258c,258bと258dはそれぞれ電気角で180度ずれた位置に配置される。すなわち、コア301を磁極1ピッチ分回転させることでコア302を形成することが出来る。これにより、コア301とコア302は同じ型で製作でき、製作コストを削減することが出来る。また、各コア301,302の穴310の周方向位置は、ずれることなく一致している。その結果、各穴310に装着される各永久磁石254は軸方向に分割されることなく、一体に各コア301,302を貫通している。もちろん、複数に分割された永久磁石254を、穴310の軸方向に積層するように設けても構わない。
 図21(a)に示される回転電機は、領域403と領域404とを交互に配置する構成になっている。ここで、図21(a)の領域403は図8(a)の領域401と等価、図21(a)の領域404は図8(a)の領域402と等価であり、図21(a)に示される実施例の回転電機は、磁気的空隙258の配置される位置は違うものの、図6(a)に示される実施例の回転電機と電気的,磁気的に等価であると言える。すなわち、本実施例の場合も、領域403と領域404とでは異なるトルク脈動が発生し、それらが相殺し合うように作用することでトルク脈動を低減することができる。また、実施例1と同様に、磁気的空隙258は補助突極部259の部分に形成されているため、コギングトルクにはほとんど影響を与えることはない。すなわち、磁気的空隙258を設けることで、コギングトルクの脈動への影響は抑え、ほぼ独立して通電時トルク脈動の低減を図ることができる。
 また、図21(a)及び(b)で示したように本実施例の回転電機はコア301を磁極1ピッチ分回転させることで形成したコア302を有しており、また図19(b)で示したようにコア301とコア302の軸長をほぼ等しく設定しているため、各極に対向する固定子巻線238の各相巻線に発生する電圧をほぼ等しくすることが出来、ほとんど循環電流は流れない。但し、領域403,領域404で回転子250に対向する固定子巻線238の各相巻線を直列につないだ場合、循環電流はほとんど流れないため、コア301のみ、もしくはコア302のみの構成でも問題ない。
 図22(a)、図22(b)は、本発明の他の実施例をなす回転子を示す。以下で説明する事項以外は上記実施例と同様である。
 図22(a)は表面磁石タイプの回転子であり、図22(b)は複数の磁石をV時形状に配置した回転子である。どの回転子においても永久磁石254間には補助突極部259が設けられており、補助突極部259には磁気的空隙258が配置されている。磁気的空隙258はそれぞれ、回転子250内周側から見て永久磁石254aとその左側の磁石間の中心軸をq軸a、永久磁石254bとその左側の磁石間の中心軸をq軸bとすると、磁気的空隙258aがq軸aに対して右側に、磁気的空隙258bがq軸aに対して左側にずれて配置され、q軸bの左右には磁気的空隙はない。さらに、磁気的空隙258aと磁気的空隙258bは、磁石間の中心軸であるq軸に対称に配置されている。図22(a)及び図22(b)は回転子のA-A断面を示したものであり、上述した実施の形態と同様に、B-B断面は、A-A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。図8(a)、図8(b)及び図8(c)で説明したように本実施例におけるトルク脈動の低減は、磁石の磁束に影響されるものではないため、磁石の形状に依存しない。
 図23は本実施例の磁気的空隙258を1つの補助突極部259ごとに2つ設けることによりトルク脈動低減を実現したものであり、その形状はそれぞれ、回転子250内周側から見て永久磁石254aとその左側の磁石間の中心軸をq軸a、永久磁石254bとその左側の磁石間の中心軸をq軸bとすると、q軸aの左右の磁気的空隙258a,258bは大きく、q軸bの左右の磁気的空隙258e,258fは小さく配置される。さらに、磁気的空隙258aと258b、磁気的空隙258eと258fは磁石間の中心軸であるq軸に対称に配置されている。図23は回転子のA-A断面を示したものであり、上述した実施の形態と同様に、B-B断面は、A-A断面の形状を磁極1ピッチ分回転させることで形成された形状となる。
 なお、図20(a)、図20(b)、図22(a)、図22(b)及び図23に示す例では磁気的空隙258を回転子250の外周に設けられた溝としていたが、図24(a)に示すように補助突極部259内にある穴としてもよく、また図24(b)に示すように磁気的空隙257と磁気的空隙258を一体としてもよい。さらには図24(c)に示すように、補助突極部259に透磁率の違う部位を設けることでも実現できる。図24(c)では補助突極部259aの透磁率が補助突極部259bの透磁率よりも低く設定されている。
 図25は、図20に示す固定子巻線238を集中巻きにした場合を示す。本実施形態におけるトルク脈動は回転子250の形状に依存するものなので、固定子側の巻線方式が異なる集中巻の場合も、上述した場合と同様にトルク脈動の低減を図ることができる。
 上記した種々の実施例は、次のような作用効果を奏する。
(1)補助突極部259に磁気的空隙258a,258bを設け、各磁気的空隙258a,258bにより生じる通電時のトルク脈動が互いに打ち消されるように、磁気的空隙258aと磁気的空隙258bを補助突極部259ごとにずらして配置した。その結果、通電時における回転電機のトルク脈動の低減を図ることができる。特に、通電時のトルク脈動を低減できる本実施の形態の回転電機を電気自動車等の車両走行用モータとして適用した場合、低速加速時の振動や騒音を低減することができ、乗り心地がよく、静粛性の高い電気自動車を提供することができる。
(2)非通電時には、磁気的空隙258は磁石磁束に対して影響を殆ど与えない。そのため、永久磁石254の磁束に起因するコギングトルクの低減対策と、通電時のトルク脈動の低減対策とを独立して個別に行うことができる。その結果、コギングトルクが小さく、かつ、通電時のトルクが大きくなるような磁石トルクの最適化と、通電時のトルク脈動の低減との両立を図ることができる。従来は、トルクが最大となるように磁石を構成してから、コギングトルクが小さくなるようにスキュー等を施していたので、それによってトルク(磁石トルク)が小さくなる欠点があったが、本実施の形態ではトルク脈動低減に伴うトルク低下を避けることができる。
(3)上述したように、トルク脈動低減に伴う磁石トルクの低下を防止できるので、磁石を極力小さくすることができ、回転電機の小型化およびコスト低減を図ることができる。
(4)補助突極部259に設けられた磁気的空隙258a,258bの位置をずらすことで、通電時のトルク脈動の低減を図るようにしているので、従来のスキュー構造のように永久磁石254を軸方向に関して複数に分割したり、着磁をスキューさせたりする必要がない。永久磁石254には、例えばネオジウム系に代表される希土類磁石が用いられるが、希土類磁石では磁石整形を研磨加工で行うため、製造誤差の精度を上げることはコスト増に直結する。そのため、磁石を軸方向に分割する必要のない本実施の形態によれば、回転電機の低コスト化を図ることができる。また、磁石公差の積み上げで性能ばらつきが増えたり、歩留まりが悪くなったりするという心配がない。このように、本実施の形態によれば、回転電機の生産性および生産コストの低減を図ることができる。
 上記の実施例によれば、コギングトルクの低減と通電時のトルク脈動の低減とを図ることが可能である。磁気抵抗を変化させた部位に起因する通電時のトルク脈動が打ち消されるように、磁気抵抗を変化させた部位のq軸から周方向へのずれ量を磁気的補助突極部ごとに異ならせることで、トルク脈動の低減を図ることができる。
 尚、上記実施例では、車両駆動用のモータを例に説明したが、車両駆動用に限らず種々のモータにも適用することができる。さらに、モータに限らず、オルタネータのような発電機などの種々の回転電機に適用が可能である。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2008年第266952号(2008年10月16日出願)
100 車両
180 バッテリ
200,202 回転電機
212,214 ハウジング
230 固定子
232 固定子鉄心
236 ティース
238 固定子巻線
250 回転子
252 回転子鉄心
254 永久磁石
257,258 磁気的空隙
259 補助突極部
301,302 コア
310 穴

Claims (19)

  1.  固定子巻線を有する固定子と、
     前記固定子に対して所定の回転軸を中心に回転自在に設けられた回転子とを備え、
     前記回転子は、複数の磁石と、前記複数の磁石のうち隣接する各磁石の極間に形成された複数の磁気的補助突極部と、前記磁気的補助突極部内であって該磁気的補助突極部の突極中心を通るq軸から前記回転軸の周方向にずれた位置に、前記回転軸の軸方向に沿って設けられた磁気抵抗変化部とを有し、
     前記磁気抵抗変化部のq軸からのずれ量は、通電時のトルク脈動が互いに打ち消されるように前記磁気的補助突極部の位置に応じて異なっている回転電機。
  2.  請求項1記載の回転電機において、
     前記磁気抵抗変化部は、磁気的空隙である。
  3.  請求項2記載の回転電機において、
     前記回転子における前記磁石の前記周方向の位置は、前記軸方向の位置によらず一定である。
  4.  請求項2記載の回転電機において、
     前記回転子は、前記軸方向に沿って設けられるとともに、前記磁石,前記磁気的補助突極部および前記磁気的空隙を各々有する複数の軸方向分割コアに分割され、
     前記軸方向分割コア内における前記磁石の前記周方向の位置は、前記軸方向の位置によらず一定である。
  5.  請求項4記載の回転電機において、
     前記回転子は、前記磁気的空隙の前記周方向の位置がほぼ同一である複数の前記軸方向分割コアから成るコア群を複数有し、
     前記コア群を構成する複数の前記軸方向分割コアの前記軸方向の厚さの合計は、前記コア群毎にほぼ同一である。
  6.  請求項2記載の回転電機において、
     前記磁気的空隙は、前記回転子の表面に形成された凹部である。
  7.  請求項6記載の回転電機において、
     前記凹部の前記周方向の幅角度は、前記固定子に設けられた各ティース間のピッチ角の1/4から1/2の範囲である。
  8.  請求項2記載の回転電機において、
     前記磁気的空隙は、前記回転子の表面に形成された穴である。
  9.  請求項8記載の回転電機において、
     前記穴は、前記磁石が設けられている穴と一体に形成されている。
  10.  請求項1記載の回転電機において、
     前記複数の磁石は、その磁化方向が前記軸方向と垂直な前記回転子の径方向であって、各磁石の磁化方向の向きが交互に逆向きになるように、周方向に並べて配置されている。
  11.  請求項10に記載の回転電機において、
     前記磁石の各々は、磁化の向きがほぼ等しい複数の磁石からなる磁石群を構成している。
  12.  請求項2記載の回転電機において、
     前記磁気的補助突極部には、前記磁気的空隙が複数設けられている。
  13.  請求項2記載の回転電機において、
     前記磁気的空隙は、前記突極中心を通る前記q軸に対して非対称で、前記磁石の磁極中心を通るd軸に対して対称に配置されている。
  14.  請求項2記載の回転電機において、
     前記磁気的空隙は、前記突極中心を通る前記q軸に対して対称で、前記磁石の磁極中心を通るd軸に対して非対称に配置されている。
  15.  請求項1記載の回転電機において、
     前記回転子は、磁気的空隙を構成する穴または切り欠きが形成された電磁鋼板を積層してそれぞれ成る複数の回転子コアを有する。
  16.  請求項15記載の回転電機において、
     前記回転子コアの各々は、前記電磁鋼板を前記磁石の磁極ピッチ単位で前記周方向にずらすことで、前記磁気的空隙の位置を前記軸方向の位置に応じて異ならせる。
  17.  請求項2記載の回転電機において、
     前記回転子は、前記磁石の配置を前記軸方向の位置に対応して前記周方向にずらす第1のスキュー構造と、前記磁気的空隙の配置を前記軸方向の位置に対応して前記周方向にずらす第2のスキュー構造とを有する。
  18.  請求項1記載の回転電機において、
     前記固定子巻線は、分布巻で巻回されている。
  19.  請求項1記載の回転電機と、
     直流電力を供給するバッテリと、
     前記バッテリの直流電力を交流電力に変換して前記回転電機に供給する変換装置とを備え、
     前記回転電機のトルクを駆動力として用いた電気自動車。
PCT/JP2009/067795 2008-10-16 2009-10-14 回転電機及び電気自動車 WO2010044426A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BRPI0919792-3A BRPI0919792B1 (pt) 2008-10-16 2009-10-14 Máquina elétrica rotativa e veículo elétrico
US13/124,502 US9300176B2 (en) 2008-10-16 2009-10-14 Electric machine with Q-offset grooved interior-magnet rotor and vehicle
CN200980141157.3A CN102187546B (zh) 2008-10-16 2009-10-14 旋转电机及电动机动车
KR1020117008579A KR101224722B1 (ko) 2008-10-16 2009-10-14 회전 전기 기기 및 전기 자동차
EP21195721.2A EP3955425A1 (en) 2008-10-16 2009-10-14 Rotating electric machine and electric automobile
EP09820604.8A EP2348611B1 (en) 2008-10-16 2009-10-14 Rotating electric machine and electric automobile
US15/046,813 US9812913B2 (en) 2008-10-16 2016-02-18 Electric machine with Q-offset grooved interior-magnet rotor and vehicle
US15/730,129 US10177615B2 (en) 2008-10-16 2017-10-11 Electric machine with Q-offset grooved interior-magnet rotor and vehicle
US16/213,462 US10547222B2 (en) 2008-10-16 2018-12-07 Electric machine with Q-offset grooved interior-magnet rotor and vehicle
US16/726,309 US10840755B2 (en) 2008-10-16 2019-12-24 Electric machine with q-offset grooved interior-magnet rotor and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008266952A JP5433198B2 (ja) 2008-10-16 2008-10-16 回転電機及び電気自動車
JP2008-266952 2008-10-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/124,502 A-371-Of-International US9300176B2 (en) 2008-10-16 2009-10-14 Electric machine with Q-offset grooved interior-magnet rotor and vehicle
US15/046,813 Continuation US9812913B2 (en) 2008-10-16 2016-02-18 Electric machine with Q-offset grooved interior-magnet rotor and vehicle

Publications (1)

Publication Number Publication Date
WO2010044426A1 true WO2010044426A1 (ja) 2010-04-22

Family

ID=42106589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067795 WO2010044426A1 (ja) 2008-10-16 2009-10-14 回転電機及び電気自動車

Country Status (7)

Country Link
US (5) US9300176B2 (ja)
EP (2) EP3955425A1 (ja)
JP (1) JP5433198B2 (ja)
KR (1) KR101224722B1 (ja)
CN (2) CN102187546B (ja)
BR (1) BRPI0919792B1 (ja)
WO (1) WO2010044426A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157056A1 (ja) * 2011-05-16 2012-11-22 三菱電機株式会社 永久磁石型回転電機
US9172278B2 (en) 2010-09-06 2015-10-27 Mitsubishi Electric Corporation Permanent magnet type rotary electric machine and electric power steering apparatus using the same
TWI711246B (zh) * 2019-06-03 2020-11-21 威剛科技股份有限公司 軸向間隙型旋轉電機的軸向轉子

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708448B2 (ja) * 2008-03-04 2011-06-22 日立オートモティブシステムズ株式会社 回転電機および電気自動車
CN102186694A (zh) * 2008-09-26 2011-09-14 Arb绿色动力有限责任公司 混合能量转换系统
JP5433198B2 (ja) * 2008-10-16 2014-03-05 日立オートモティブシステムズ株式会社 回転電機及び電気自動車
DE102010029514A1 (de) * 2010-05-31 2011-12-01 Robert Bosch Gmbh Elektrische Maschine mit reduzierter Geräuschentwicklung
JP5518663B2 (ja) * 2010-10-05 2014-06-11 本田技研工業株式会社 スキューロータとその製造方法
EP2492501B1 (en) * 2011-02-25 2017-04-12 Siemens Aktiengesellschaft Wind turbine
JP5622634B2 (ja) * 2011-03-28 2014-11-12 カヤバ工業株式会社 ブラシ付きモータ
JP5835928B2 (ja) 2011-04-15 2015-12-24 三菱重工業株式会社 電動モータおよびそれを用いた電動圧縮機
KR20130019088A (ko) * 2011-08-16 2013-02-26 엘지이노텍 주식회사 모터의 적층 로터 코어
JP5730736B2 (ja) * 2011-10-04 2015-06-10 日立オートモティブシステムズ株式会社 永久磁石式回転電機および永久磁石式回転電機を備えた車両
JP5948061B2 (ja) 2012-01-19 2016-07-06 日立オートモティブシステムズ株式会社 回転電機、およびその回転電機を備えた車両
DE112013001644T8 (de) 2012-03-23 2015-02-19 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Motor und diesen verwendender elektrischer Kompressor
WO2014038062A1 (ja) 2012-09-07 2014-03-13 三菱電機株式会社 永久磁石埋込型電動機
CN104661845B (zh) * 2012-09-25 2018-10-23 法雷奥电机设备公司 包括电机和两个离合器的传动组件
FR3005904B1 (fr) * 2013-05-22 2015-05-22 Valeo Equip Electr Moteur Ensemble de transmission comportant une machine electrique et deux embrayages
JP5910464B2 (ja) * 2012-11-02 2016-04-27 株式会社デンソー 回転電機のロータ
KR101682326B1 (ko) * 2013-04-30 2016-12-05 도요타지도샤가부시키가이샤 차량 제어 장치
JP6005591B2 (ja) * 2013-06-13 2016-10-12 株式会社豊田中央研究所 回転電機
AP2016009048A0 (en) * 2013-08-14 2016-02-29 Yamaha Motor Co Ltd Synchronous drive motor
JP6379462B2 (ja) 2013-09-03 2018-08-29 富士電機株式会社 永久磁石埋め込み式回転電機
DE102013110999A1 (de) * 2013-10-02 2015-04-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor
EP3073614B1 (en) * 2013-11-20 2019-08-28 Hitachi Automotive Systems, Ltd. Rotary electric machine and electric vehicle provided with same
CN105814779B (zh) * 2013-12-13 2018-05-08 三菱电机株式会社 永磁体埋入型旋转电机
KR101600835B1 (ko) * 2014-03-19 2016-03-09 전자부품연구원 매입형 영구자석 동기 전동기 및 그 회전자
US9985484B2 (en) * 2015-06-09 2018-05-29 Ford Global Technologies, Llc Surface groove patterns for permanent magnet machine rotors
CN105186816B (zh) * 2015-07-16 2018-08-03 博格思众(常州)电机电器有限公司 定子和转子的组合结构
CN108141076B (zh) * 2015-10-30 2020-02-21 日立汽车系统株式会社 磁铁式转子、具备磁铁式转子的旋转电机以及具备旋转电机的电动汽车
DE112017000584T5 (de) * 2016-03-31 2018-12-13 Aisin Aw Co., Ltd. Rotor und Verfahren zur Auslegung des Rotors
CN107710567B (zh) * 2016-05-04 2019-12-27 余仁伟 一种叠片式无铁芯发电机及其制作方法
JP6227712B2 (ja) * 2016-06-02 2017-11-08 日立オートモティブシステムズ株式会社 回転電機、およびその回転電機を備えた車両
WO2018037449A1 (ja) * 2016-08-22 2018-03-01 三菱電機株式会社 コンシクエントポール型の回転子、電動機および空気調和機
US11005312B2 (en) * 2016-11-21 2021-05-11 Unison Industries, Llc Skewed stator designs for hybrid homopolar electrical machines
WO2018123840A1 (ja) * 2016-12-28 2018-07-05 日本電産株式会社 ロータ及びモータ
US10063180B2 (en) * 2017-01-31 2018-08-28 Ford Global Technologies, Llc Multiple inverter hybrid drive system
US11211883B2 (en) * 2017-03-29 2021-12-28 Hitachi Astemo, Ltd. Control device of rotary electric machine and control method of the same
CN107370265B (zh) * 2017-07-04 2021-03-23 广东威灵电机制造有限公司 斜极转子铁芯及其铁芯冲片、斜极转子和电机
CN111052547A (zh) * 2017-08-30 2020-04-21 日本电产株式会社 转子、马达以及电动助力转向装置
WO2019049392A1 (ja) 2017-09-11 2019-03-14 株式会社 東芝 回転電機
DE102017216164A1 (de) * 2017-09-13 2019-03-14 Robert Bosch Gmbh Rotor einer elektrischen Maschine
JP6573654B2 (ja) * 2017-12-25 2019-09-11 本田技研工業株式会社 回転電機のロータ
FR3080500B1 (fr) * 2018-04-23 2024-01-12 Leroy Somer Moteurs Rotor de machine electrique tournante
JP7028707B2 (ja) 2018-04-25 2022-03-02 株式会社日立インダストリアルプロダクツ 回転電機、回転電動機駆動システム、並びに電動車両
US20190348876A1 (en) * 2018-05-08 2019-11-14 New Widetech Industries Co., Ltd. Consequent-pole motor rotor with magnetic-flux-separating recesses
CN108808918A (zh) * 2018-06-11 2018-11-13 宝龙电子集团有限公司 一种驱动马达
US10965177B2 (en) 2018-07-06 2021-03-30 Otis Elevator Company Permanent magnet (PM) machine having rotor poles with an array of permanent magnets
US11491964B2 (en) * 2018-11-15 2022-11-08 Mando Corporation Variable motor laminations
JP7025361B2 (ja) * 2019-02-06 2022-02-24 本田技研工業株式会社 波巻コイルユニット、ステータ及びコイル挿入方法
JP6972056B2 (ja) * 2019-03-12 2021-11-24 株式会社東芝 回転電機、回転電機システム、車、発電装置、昇降装置、および、ロボット
CN110149016B (zh) * 2019-06-28 2020-05-19 泉州装备制造研究所 无位置传感器永磁同步电机及转子位置判断方法
CN112564343B (zh) * 2019-07-22 2022-08-30 北京和山逢泰科技有限公司 旋转电机及其转子组件
US11594921B2 (en) * 2019-12-11 2023-02-28 GM Global Technology Operations LLC Electric machine with noise-reducing rotor notches
CN111769670A (zh) * 2020-07-16 2020-10-13 精进电动科技股份有限公司 一种分段斜极电机的转子铁芯和永磁同步电机
CN112600325B (zh) * 2020-12-10 2022-06-28 苏州汇川技术有限公司 电机直极转子及永磁同步电机
CN112769307B (zh) * 2021-03-24 2024-04-19 哈尔滨理工大学 一种具有动态可调变轴偏移能力的不对称永磁记忆电机
US11705849B2 (en) 2021-10-01 2023-07-18 Ford Global Technologies, Llc Method for discharging electric vehicle inverter
DE102021213932A1 (de) * 2021-12-08 2023-06-15 Valeo Eautomotive Germany Gmbh Rotormodul für einen Rotor einer rotierenden elektrischen Maschine
GB202118208D0 (en) * 2021-12-15 2022-01-26 Glass Ceramic Tech Limited Apparatus for charging a power bank

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205499A (ja) * 1995-01-30 1996-08-09 Toyota Motor Corp 同期電動機
JP2002223538A (ja) * 2001-01-24 2002-08-09 Aichi Emerson Electric Co Ltd 電動機の回転子
JP2004343886A (ja) * 2003-05-15 2004-12-02 Asmo Co Ltd 埋込磁石型モータ
JP2005176424A (ja) 2003-12-08 2005-06-30 Nissan Motor Co Ltd 回転電機の回転子
JP2005218228A (ja) * 2004-01-29 2005-08-11 Asmo Co Ltd 埋込磁石型モータ
JP2006115613A (ja) * 2004-10-14 2006-04-27 Daikin Ind Ltd 磁性板及びその製造方法、並びに回転子及び電動機
JP2007097387A (ja) * 2005-08-31 2007-04-12 Toshiba Corp 回転電機
JP2007181254A (ja) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子
JP2007330060A (ja) * 2006-06-09 2007-12-20 Hitachi Appliances Inc 永久磁石電動機,永久磁石同期電動機の回転子及びそれを用いた圧縮機
JP2008266952A (ja) 2007-04-18 2008-11-06 Toto Ltd 水栓装置

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939398A (en) * 1986-10-06 1990-07-03 Emerson Electric Co. Laminated assemblies with in situ molded magnets
US5223759A (en) * 1987-12-24 1993-06-29 Seiko Epson Corporation DC brushless motor with solid rotor having permanent magnet
US5117553A (en) * 1990-06-25 1992-06-02 General Electric Company Method of assembling rotor magnets
US5159220A (en) * 1990-06-25 1992-10-27 General Electric Company Realizations of folded magnet AC motors
WO1992001326A1 (en) * 1990-07-12 1992-01-23 Seiko Epson Corporation Rotor of brushless motor and manufacture thereof
US5508576A (en) * 1990-07-12 1996-04-16 Seiko Epson Corporation Rotor for brushless electromotor
US5679995A (en) * 1992-08-12 1997-10-21 Seiko Epson Corporation Permanent magnet rotor of brushless motor
FR2723272B1 (fr) * 1994-07-27 1996-08-30 Gec Alsthom Parvex Sa Moteur synchrone comportant des aimants inseres dans un rotor
JP3308828B2 (ja) * 1996-10-18 2002-07-29 株式会社日立製作所 永久磁石回転電機及びそれを用いた電動車両
EP0909003B1 (en) * 1997-10-13 2006-01-04 Matsushita Electric Industrial Co., Ltd A motor using a rotor including interior permanent magnets
KR200210795Y1 (ko) * 1998-03-20 2001-02-01 윤종용 영구자석 매립형 모터
JP2000134841A (ja) 1998-10-20 2000-05-12 Hitachi Ltd 回転電機
US6340857B2 (en) * 1998-12-25 2002-01-22 Matsushita Electric Industrial Co., Ltd. Motor having a rotor with interior split-permanent-magnet
JP3412544B2 (ja) * 1999-02-04 2003-06-03 トヨタ自動車株式会社 動力出力装置およびその制御方法
JP2000316242A (ja) 1999-04-28 2000-11-14 Sanyo Electric Co Ltd 永久磁石回転型モータ
US6509664B2 (en) * 2000-01-13 2003-01-21 General Electric Company Hybrid synchronous machines comprising permanent magnets and excitation windings in cylindrical element slots
TW538578B (en) * 2000-09-13 2003-06-21 Sanyo Electric Co Synchronous motor with built-in type permanent magnet
KR100451569B1 (ko) * 2002-05-18 2004-10-08 주식회사 하이닉스반도체 수소배리어막을 구비한 반도체 장치의 제조 방법
JP2004032947A (ja) * 2002-06-27 2004-01-29 Aisin Aw Co Ltd モータ
JP4240949B2 (ja) * 2002-08-09 2009-03-18 日立アプライアンス株式会社 永久磁石式回転電機の回転子
JP4415634B2 (ja) 2002-10-18 2010-02-17 三菱電機株式会社 永久磁石式回転電機
DE60322016D1 (de) * 2003-02-18 2008-08-21 Minebea Co Ltd Rotor und Stator einer elektrischen Maschine mit reduziertem pulsierenden Moment
US7042127B2 (en) * 2003-04-02 2006-05-09 Nidec Sankyo Corporation Permanent magnet embedded motor
JP4214998B2 (ja) 2003-04-11 2009-01-28 三菱電機株式会社 永久磁石式電動機
JP4270942B2 (ja) * 2003-05-29 2009-06-03 株式会社日立製作所 電動機
US20040251763A1 (en) * 2003-06-13 2004-12-16 Matsushita Electric Industrial Co., Ltd. Motor
JP4065829B2 (ja) * 2003-10-10 2008-03-26 本田技研工業株式会社 永久磁石式回転子およびブラシレスモータ
JP4269953B2 (ja) * 2004-01-23 2009-05-27 株式会社デンソー 回転電機
JP4449035B2 (ja) * 2004-03-10 2010-04-14 日立オートモティブシステムズ株式会社 電動車両用の永久磁石回転電機
JP2006176424A (ja) 2004-12-21 2006-07-06 Maruzen Pharmaceut Co Ltd テストステロン5α−レダクターゼ阻害剤及び養毛化粧料
KR101095556B1 (ko) * 2005-06-13 2011-12-19 삼성전자주식회사 영구자석 전동기
CN101283499A (zh) * 2005-08-31 2008-10-08 株式会社东芝 旋转电机
JP4898201B2 (ja) * 2005-12-01 2012-03-14 アイチエレック株式会社 永久磁石回転機
JP4793027B2 (ja) * 2006-02-28 2011-10-12 株式会社豊田自動織機 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機
US7772736B2 (en) 2006-06-09 2010-08-10 Hitachi Appliances, Inc. Permanent magnet synchronous motor, rotor of the same, and compressor using the same
KR20090027728A (ko) * 2006-06-12 2009-03-17 레미 인터내셔널, 인코포레이티드 매립형 영구자석을 구비한 전기 기계
JP5259934B2 (ja) * 2006-07-20 2013-08-07 株式会社日立産機システム 永久磁石式回転電機及びそれを用いた圧縮機
BRPI0603363B1 (pt) * 2006-08-16 2018-03-13 Whirlpool S.A. "máquina síncrona"
JP5157138B2 (ja) * 2006-11-24 2013-03-06 株式会社日立製作所 永久磁石式回転電機及び風力発電システム
JP2008206308A (ja) * 2007-02-20 2008-09-04 Toyota Industries Corp 永久磁石式回転電機
JP2008220053A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 電動機
KR101243670B1 (ko) * 2007-03-08 2013-03-18 엘지전자 주식회사 모터의 회전자
WO2008113082A1 (en) * 2007-03-15 2008-09-18 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
US7923881B2 (en) * 2007-05-04 2011-04-12 A.O. Smith Corporation Interior permanent magnet motor and rotor
JP4900069B2 (ja) * 2007-06-13 2012-03-21 トヨタ自動車株式会社 回転電機
JP4492681B2 (ja) * 2007-11-16 2010-06-30 株式会社デンソー 同期機
JP4708448B2 (ja) * 2008-03-04 2011-06-22 日立オートモティブシステムズ株式会社 回転電機および電気自動車
JP2009219331A (ja) * 2008-03-13 2009-09-24 Hitachi Ltd 永久磁石式ジェネレータとそれを用いたハイブリッド車両
JP4605481B2 (ja) * 2008-07-07 2011-01-05 本田技研工業株式会社 永久磁石式回転子
EP2304863B1 (en) * 2008-07-30 2018-06-27 Regal Beloit America, Inc. Interior permanent magnet motor including rotor with unequal poles
JP5433198B2 (ja) * 2008-10-16 2014-03-05 日立オートモティブシステムズ株式会社 回転電機及び電気自動車
FI121614B (fi) * 2008-12-17 2011-01-31 Switch Drive Systems Oy Kestomagneettimoduuli sähkökonetta varten
JP5308832B2 (ja) * 2009-01-09 2013-10-09 株式会社日立製作所 永久磁石式回転電機
JP5862048B2 (ja) * 2010-05-13 2016-02-16 株式会社デンソー 回転電機の回転子
US9041269B2 (en) * 2010-06-17 2015-05-26 Asmo Co., Ltd. Motor
DE102011107803A1 (de) * 2010-07-21 2012-03-22 Asmo Co., Ltd. Motor
WO2012014836A1 (ja) * 2010-07-30 2012-02-02 本田技研工業株式会社 ロータおよびモータ
JP5261836B2 (ja) * 2010-11-01 2013-08-14 本田技研工業株式会社 回転電機のロータ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205499A (ja) * 1995-01-30 1996-08-09 Toyota Motor Corp 同期電動機
JP2002223538A (ja) * 2001-01-24 2002-08-09 Aichi Emerson Electric Co Ltd 電動機の回転子
JP2004343886A (ja) * 2003-05-15 2004-12-02 Asmo Co Ltd 埋込磁石型モータ
JP2005176424A (ja) 2003-12-08 2005-06-30 Nissan Motor Co Ltd 回転電機の回転子
JP2005218228A (ja) * 2004-01-29 2005-08-11 Asmo Co Ltd 埋込磁石型モータ
JP2006115613A (ja) * 2004-10-14 2006-04-27 Daikin Ind Ltd 磁性板及びその製造方法、並びに回転子及び電動機
JP2007097387A (ja) * 2005-08-31 2007-04-12 Toshiba Corp 回転電機
JP2007181254A (ja) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子
JP2007330060A (ja) * 2006-06-09 2007-12-20 Hitachi Appliances Inc 永久磁石電動機,永久磁石同期電動機の回転子及びそれを用いた圧縮機
JP2008266952A (ja) 2007-04-18 2008-11-06 Toto Ltd 水栓装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2348611A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172278B2 (en) 2010-09-06 2015-10-27 Mitsubishi Electric Corporation Permanent magnet type rotary electric machine and electric power steering apparatus using the same
WO2012157056A1 (ja) * 2011-05-16 2012-11-22 三菱電機株式会社 永久磁石型回転電機
JP5372296B2 (ja) * 2011-05-16 2013-12-18 三菱電機株式会社 永久磁石型回転電機
CN103518313A (zh) * 2011-05-16 2014-01-15 三菱电机株式会社 永磁体型旋转电机
TWI711246B (zh) * 2019-06-03 2020-11-21 威剛科技股份有限公司 軸向間隙型旋轉電機的軸向轉子

Also Published As

Publication number Publication date
US20180048198A1 (en) 2018-02-15
US10547222B2 (en) 2020-01-28
US20190115796A1 (en) 2019-04-18
US20110254474A1 (en) 2011-10-20
EP2348611A4 (en) 2016-11-30
CN104467226B (zh) 2017-05-24
EP2348611B1 (en) 2021-12-08
US9812913B2 (en) 2017-11-07
KR101224722B1 (ko) 2013-01-21
US10177615B2 (en) 2019-01-08
JP2010098830A (ja) 2010-04-30
US20200136446A1 (en) 2020-04-30
JP5433198B2 (ja) 2014-03-05
CN104467226A (zh) 2015-03-25
CN102187546A (zh) 2011-09-14
CN102187546B (zh) 2014-12-17
US10840755B2 (en) 2020-11-17
US9300176B2 (en) 2016-03-29
US20160164354A1 (en) 2016-06-09
EP2348611A1 (en) 2011-07-27
KR20110069086A (ko) 2011-06-22
BRPI0919792A2 (pt) 2015-12-15
BRPI0919792B1 (pt) 2020-03-10
EP3955425A1 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP5433198B2 (ja) 回転電機及び電気自動車
JP4708448B2 (ja) 回転電機および電気自動車
US10340756B2 (en) Rotating electric machine and vehicle equipped with rotating electric machine
JP5723524B2 (ja) 回転電機及び電気自動車
JP5730736B2 (ja) 永久磁石式回転電機および永久磁石式回転電機を備えた車両
JP6263551B2 (ja) 回転電機、およびその回転電機を備えた電動車両
JP6227712B2 (ja) 回転電機、およびその回転電機を備えた車両
JP5147928B2 (ja) 回転電機および電気自動車
WO2018159181A1 (ja) 回転電機の回転子及びこれを備えた回転電機
JP5914618B2 (ja) 回転電機及び電気自動車
JP5650276B2 (ja) 回転子及びこれを備えた回転電機
CN108141076B (zh) 磁铁式转子、具备磁铁式转子的旋转电机以及具备旋转电机的电动汽车

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141157.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2735/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009820604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117008579

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13124502

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0919792

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110418