WO2010043799A2 - Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere - Google Patents

Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere Download PDF

Info

Publication number
WO2010043799A2
WO2010043799A2 PCT/FR2009/051920 FR2009051920W WO2010043799A2 WO 2010043799 A2 WO2010043799 A2 WO 2010043799A2 FR 2009051920 W FR2009051920 W FR 2009051920W WO 2010043799 A2 WO2010043799 A2 WO 2010043799A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
thermochemical
pyrolysis
reactor
air
Prior art date
Application number
PCT/FR2009/051920
Other languages
English (en)
Other versions
WO2010043799A3 (fr
Inventor
Jean-Xavier Morin
Original Assignee
Jean-Xavier Morin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jean-Xavier Morin filed Critical Jean-Xavier Morin
Priority to EP09755991A priority Critical patent/EP2342309A2/fr
Priority to CA2740501A priority patent/CA2740501A1/fr
Publication of WO2010043799A2 publication Critical patent/WO2010043799A2/fr
Publication of WO2010043799A3 publication Critical patent/WO2010043799A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/12Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/725Redox processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15061Deep cooling or freezing of flue gas rich of CO2 to deliver CO2-free emissions, or to deliver liquid CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/02Biomass, e.g. waste vegetative matter, straw
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a method and a device for extracting carbon dioxide from the atmosphere.
  • the object of the invention is to extract selectively and economically the
  • Biomass of agricultural and forest origin stores the CO 2 by photosynthesis over periods between one and one hundred years.
  • this biomass is highly reactive with more than 70% dry matter and about 50% moisture on crude, the invention proposes to take advantage of these characteristics to convert this biomass into energy and fuels while capturing the CO 2 emitted with a simplified and compact technology.
  • the CO 2 that is captured can be stored for several hundred years in the basement, for example in submarine aquifers.
  • this new approach carries out a CO 2 extraction of atmospheric air using a natural intermediate vector for storing CO 2 that constitutes biomass.
  • Patent document WO 01/02513 also describes a method for treating biomass.
  • the organic substances are first milled and / or dried and then introduced into a pyrolysis reactor in which they are brought into contact with the material of an associated fluidized bed whose combustion gases are purified before being discharged. According to this known method, no specific capture of CO 2 is provided.
  • US 2003/0029088 discloses a method of converting fuel into hydrogen with capture of carbon dioxide.
  • the capture of the carbon dioxide is carried out by a thermochemical cycle comprising an interconnected combustion reactor and an oxidation chamber, and in which metal oxides which are alternately oxidized and reduced and which provide the input of oxygen for combustion.
  • Thermochemical conversion is carried out by means of a pyrolysis reactor and this thermochemical cycle.
  • the object of the invention is to adapt such a process to the treatment of non-fossil carbon cycle biomass by an improved economic process that can be adapted to any size of installation.
  • the treatment of biomass for example agricultural residues, forest waste and sorted household waste, or biomasses grown for energy purposes, such as miscanthus or algae, can be carried out very locally, Biomass sources, with small and very large scale facilities.
  • the invention thus proposes a process for extracting carbon dioxide from the atmosphere, by thermochemical conversion of biomasses, as a natural intermediate carrier for storing carbon dioxide, a capture of the carbon dioxide being carried out by a thermochemical cycle comprising an interconnected combustion reactor and an oxidation chamber, and in which metal oxides are circulated which are alternately oxidized and reduced and which supply oxygen for said combustion, this thermochemical conversion being carried out by means of a pyrolysis reactor and said thermochemical cycle, characterized in that said pyrolysis is preceded by a drying of the biomasses carried out by fumes in depleted air leaving said oxidation chamber of said thermochemical cycle.
  • these fumes constitute an inert gas containing less than 5% oxygen which can dry the biomass at a temperature of 750 ° C. without combustion.
  • This embodiment takes advantage of the high porosity and reactivity of the carbonaceous residue of biomass after starting moisture and volatile materials.
  • this method ensures a production of energy and fuels.
  • thermochemical cycle preferably provide said pyrolysis.
  • the hot solids circulating in said oxidation chamber provide said pyrolysis.
  • the system is as compact as possible. Knowing that the carbon residue to be converted can represent only 15% of the incoming fuel fraction, the volume of gaseous effluents, excluding pyrolysis gas, is reduced to 15% of the fumes of combustion in air. It is this flow of gaseous effluents that determines the equipment size of a thermochemical cycle.
  • the compactness of this CO 2 extraction system is therefore extremely high, which reduces the investment costs and allows an operator to dispense with the purchase of CO 2 allowances, corresponding to the case of use of fossil fuels.
  • this biomass treatment in three stages, drying, pyrolysis and conversion of the carbon residue is to minimize the supply of oxygen to provide for the conversion of the final carbonaceous solid residue.
  • Said production of energy and / or fuels is preferably carried out in the form of high pressure steam and synthesis gas whose composition can be adjusted after reforming to manufacture synthetic fuels of the methanol or di-methyl-ether type.
  • thermochemical cycle uses air, water vapor and carbon dioxide to oxidize and reduce said metal oxides.
  • the invention also relates to a device for implementing the method specified above, characterized in that said drying is carried out by means of a drying reactor consisting of an aerated mobile bed downward co-current, shaped flared and equipped with devasters.
  • FIG. 1 represents a device for implementing the method according to the invention.
  • FIG. 2 is a vertical sectional view of a drying device for carrying out the method according to the invention.
  • a device for carrying out the process according to the invention comprises three main interconnected components, a drying reactor 1, a flash pyrolysis reactor 2 and a thermochemical converter 3, constituting a thermochemical cycle comprising a combustion reactor 8 and an oxidation chamber 9 interconnected and wherein circulates metal oxides which are alternately oxidized and reduced.
  • the treated biomass 4 the moisture content of which is 40 to 55%, is finely divided by shredding into papermaker chips and sawdust, and then introduced into the drying reactor 1, preferably into a downflow aerated moving bed, flared shape and equipped with devoutors, which will be described further.
  • the drying reactor 1 preferably into a downflow aerated moving bed, flared shape and equipped with devoutors, which will be described further.
  • the water vapor and the depleted air 14 are released into the atmosphere.
  • the gases admitted into this drying reactor 1 are at a temperature of 400 to 600 ° C.
  • the biomass once dried at about 10 to 15% residual moisture is transferred by screw and gravity drop with airlock to a pyrolysis reactor flash 2, carried out at a temperature of between 400 and 800 ° C., in a fluidized bed fed with hot solids from the thermochemical cycle 3 operating at a temperature of 700 to 1000 ° C., depending on the oxides used.
  • the release of volatile matter and residual moisture contained in the introduced biomass is immediate and constitutes the outlet 6 of pyrolysis gas of the process.
  • This gaseous composition can be adjusted by reforming with oxygen 17 at 1200 to 1400 0 C to convert tars and methane then a step of "CO shift" to arrive at a synthesis loop 10 of manufacturing synthetic fuels, methanol type or di-methyl-ether.
  • the reaction (CO + H2O -> H2 + CO2) represents said "CO shift”.
  • the carbon residue remaining after pyrolysis, mixed with the bed material in circulation, is transferred via a pipe 7 to the combustion reactor 8, fed with steam and CO 2 through the pipes 15, 15 'as for conventional autothermal gasification .
  • the carbonaceous residue is progressively converted in the thermochemical circulating loop 3 until the carbon disappears and the residual ash escapes by a cyclone and by a bed withdrawal at the bottom of the combustion reactor 8.
  • the bed material of this combustion reactor 8 is that of the thermochemical cycle 3 in which circulates natural or synthetic metal oxides which are alternately oxidized and reduced and which provide the supply of oxygen for combustion or gasification, which is superimposed on the bed material containing the carbonaceous residue.
  • This circulating bed material which consists of fine particles of mixed oxides of iron, titanium and / or manganese type is oxidized, reduced, plays the role of coolant and contains the carbon residue to be converted.
  • the CO 2 resulting from the conversion of the carbonaceous residue 11 leaves the combustion reactor 8 and undergoes cooling, dedusting, condensation of the water of the fumes and compression for transport. It can then be stored in aquifer. Part 15 of this CO 2 with water vapor feeds the combustion reactor 8 and another part 16 with steam is injected into the pyrolysis reactor 2, according to the CO ratio requirements. / H2 of the step of
  • Very rapid oxidation of the bed material is provided by fluidization with air or air enriched with oxygen 12 in the oxidation chamber 9 provided in the thermochemical converter 3 comprising gas locks. These locks are sealing devices between enclosures containing gases of different composition.
  • the gas stream 13 discharged from this oxidation chamber 9 is essentially air depleted of oxygen.
  • This gaseous stream of oxygen-depleted air is particularly well suited to the drying of highly reactive biomass without the risk of ignition and is used preferentially for the drying of biomass, since it represents more than 70% of the flue gas flow of the installation.
  • Fig. 2 shows the drying reactor 1 which is preferably a downflow moving bed provided with coasters. It comprises an enclosure AI, of flared shape downwards, its upper part receiving biomasses from an IC hopper via an input worm IB. Its lower part is equipped with worm output ID. The fumes in depleted air coming out of the oxidation chamber 8 of the thermochemical cycle are injected IE in the upper part of the chamber, to carry out the drying and the cooled gases are evacuated IF at the bottom.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne un procédé d'extraction de dioxyde de carbone de l'atmosphère, par une conversion thermochimique de biomasses, en tant que vecteur intermédiaire naturel de stockage du dioxyde de carbone,, une capture du dioxyde de carbone étant effectuée par un cycle thermochimique (3) comportant un réacteur de combustion (8) et une chambre d'oxydation (9) interconnectées, et dans lequel circulent des oxydes métalliques qui sont alternativement oxydés et réduits et qui assurent l'apport d'oxygène pour ladite combustion, cette conversion thermochimique étant réalisée au moyen d'un réacteur de pyrolyse (2) et dudit cycle thermochimique (3). Selon l'invention, ladite pyrolyse est précédée d'un séchage (1) des biomasses effectué par des fumées en air appauvri (13) sortant de ladite chambre d'oxydation (9) dudit cycle thermochimique.

Description

PROCEDE ET DISPOSITIF D'EXTRACTION DE DIOXYDE DE CARBONE DE L'ATMOSPHERE
L'invention concerne un procédé et un dispositif d'extraction de dioxyde de carbone de l'atmosphère.
L'augmentation continue des teneurs en dioxyde de carbone (CO2) dans l'atmosphère depuis 1860, qui a désormais tendance à s'accélérer, de par les émissions des installations industrielles de production d'électricité à base de combustibles fossiles, conduit à un réchauffement climatique de deux degrés minimum en 2100 qu'il s'agit de limiter en divisant les émissions de CO2 par un facteur de quatre pour ne pas dépasser 550 ppm de CO2 dans les années 2100.
Le but de l'invention est d'extraire sélectivement et économiquement le
CO2 de l'air de l'atmosphère. La biomasse d'origine agricole et forestière stocke le CO2 par photosynthèse sur des périodes comprises entre un et cent ans. Cette biomasse étant très réactive avec plus de 70 % de matières volatiles sur sec et environ 50 % d'humidité sur brut, l'invention propose de prendre avantage de ces caractéristiques pour convertir cette biomasse en énergie et carburants tout en capturant le CO2 émis avec une technologie simplifiée et compacte.
Le CO2 qui est capté peut être stocké pendant plusieurs centaines d'années dans le sous sol, par exemple dans des aquifères sous marins.
Grâce à l'invention, on réalise par cette nouvelle approche une extraction de CO2 de l'air atmosphérique en utilisant un vecteur intermédiaire naturel de stockage de CO2 que constitue la biomasse.
Le document de brevet WO 01/02513 décrit par ailleurs un procédé de traitement de biomasse. Les substances organiques sont tout d'abord broyées et/ou séchées, puis introduites dans un réacteur de pyrolyse dans lequel elles sont mises en contact avec le matériau d'un lit fluidisé associé dont les gaz de combustion sont purifiés avant rejet. Selon ce procédé connu, aucune capture spécifique du CO2 n'est prévue.
Le document de brevet US 2003/0029088 décrit un procédé de conversion de combustible en hydrogène, avec capture du dioxyde de carbone. Selon ce procédé, la capture du dioxyde de carbone est effectuée par un cycle thermochimique comportant un réacteur de combustion et une chambre d'oxydation interconnectées, et dans lequel circulent des oxydes métalliques qui sont alternativement oxydés et réduits et qui assurent l'apport d'oxygène pour la combustion. Une conversion thermochimique est réalisée au moyen d'un réacteur de pyrolyse et de ce cycle thermochimique.
S'il est envisagé d'utiliser de la biomasse en tant que combustible, ce document développe essentiellement l'utilisation de charbon.
L'objet de l'invention est d'adapter un tel procédé au traitement de biomasse à cycle carbone non fossile par un procédé perfectionné économique qui puisse être adapté à toutes tailles d'installation. En particulier, le traitement de biomasses, par exemple les résidus agricoles, les déchets forestiers et les déchets ménagers triés, ou les biomasses cultivées à des fins énergétiques, telles que le miscanthus ou des algues, peut être effectué de façon très locale, à proximité des sources de biomasses, avec des installations de petite taille et à très grande échelle.
L'invention propose donc un procédé d'extraction de dioxyde de carbone de l'atmosphère, par une conversion thermochimique de biomasses, en tant que vecteur intermédiaire naturel de stockage du dioxyde de carbone, , une capture du dioxyde de carbone étant effectuée par un cycle thermochimique comportant un réacteur de combustion et une chambre d'oxydation interconnectées, et dans lequel circulent des oxydes métalliques qui sont alternativement oxydés et réduits et qui assurent l'apport d'oxygène pour ladite combustion, cette conversion thermochimique étant réalisée au moyen d'un réacteur de pyrolyse et dudit cycle thermochimique, caractérisé en ce que ladite pyrolyse est précédée d'un séchage des biomasses effectué par des fumées en air appauvri sortant de ladite chambre d'oxydation dudit cycle thermochimique.
Outre l'avantage d'une installation compacte, ces fumées constitue un gaz inerte contenant moins de 5% d'oxygène qui peut sécher la biomasse à une température de 7500C sans combustion.
La pyrolyse permet de libérer les matières volatiles contenues dans la biomasse.
Ce mode de réalisation prend avantage de la grande porosité et réactivité du résidu carboné de biomasse après départ de l'humidité et des matières volatiles.
Selon un mode de réalisation préféré de l'invention, ce procédé assure une production d'énergie et de carburants.
Grâce à ce procédé, il est réalisé une capture du dioxyde de carbone avec production de carburants en amont du réacteur de pyrolyse et d'électricité en amont du réacteur à lit fluidisé.
Les solides chauds en circulation dans ledit cycle thermochimique assurent de préférence ladite pyrolyse.
Avantageusement, les solides chauds en circulation dans ladite chambre d'oxydation assurent ladite pyrolyse. Le système est ainsi le plus compact possible. Sachant que le résidu carboné à convertir peut ne représenter que 15% de la fraction de combustible entrant, le volume d'effluents gazeux, hors gaz de pyrolyse, se réduit à 15 % des fumées d'une combustion à l'air. Or c'est ce débit d'effluents gazeux qui conditionne la taille des équipements d'un cycle thermochimique. La compacité de ce système d'extraction de CO2 est donc extrêmement élevée, ce qui réduit les coûts d'investissements et permet à un opérateur de se dispenser d'acheter les quotas CO2, correspondant au cas d'emploi de combustibles fossiles.
L'autre avantage procuré par le fait de décomposer, ce traitement de biomasse en trois étapes, séchage, pyrolyse et conversion du résidu carboné est de minimiser l'apport d'oxygène à apporter pour la conversion du résidu solide carboné final.
Ladite production d'énergie et/ou de carburants est de préférence réalisée sous forme de vapeur haute pression et de gaz de synthèse dont la composition peut être ajustée après reformage pour fabriquer des carburants synthétiques du type méthanol ou du di-méthyle-éther.
De préférence, ledit cycle thermochimique utilise l'air, la vapeur d'eau et le dioxyde de carbone pour oxyder et réduire lesdits oxydes métalliques.
Ledit air est avantageusement de l'air enrichi en oxygène. L'invention concerne également un dispositif pour la mise en œuvre du procédé précisé ci-dessus, caractérisé en ce que ledit séchage est réalisé au moyen d'un réacteur de séchage constitué d'un lit mobile aéré à co-courant descendant, de forme évasée et muni de dévoûteurs.
L'invention est décrite ci-après plus en détail à l'aide de figures ne représentant qu'un mode de réalisation préféré de l'invention.
La figure 1 représente un dispositif de mise en œuvre du procédé selon l'invention.
La figure 2 est une vue en coupe verticale d'un dispositif de séchage pour la mise en œuvre du procédé conforme à l'invention. Comme illustré sur la figure 1, un dispositif pour la mise en œuvre du procédé conforme à l'invention comporte trois composants principaux interconnectés un réacteur de séchage 1, un réacteur de pyrolyse flash 2 et un convertisseur thermochimique 3, constituant un cycle thermochimique comportant un réacteur de combustion 8 et une chambre d'oxydation 9 interconnectées et dans lequel circule des oxydes métalliques qui sont alternativement oxydés et réduits.
La biomasse traitée 4 dont la teneur en humidité est de 40 à 55 %, est finement divisée par déchiquetage en copeaux de type papeterie et en sciure, puis introduite dans le réacteur de séchage 1, de préférence en lit mobile aéré à courant descendant, de forme évasée et muni de dévoûteurs, qui sera décrit plus loin. En sortie de ce réacteur de séchage 1, la vapeur d'eau et l'air appauvri 14 sont libérés dans l'atmosphère.
Les gaz 5 admis dans ce réacteur de séchage 1 sont à une température de 400 à 600 0C. La biomasse une fois séchée à environ 10 à 15% d'humidité résiduelle est transférée par vis et chute gravitaire avec sas vers un réacteur de pyrolyse flash 2, réalisée à une température comprise entre 400 et 8000C, en lit fluidisé alimenté en solides chauds provenant du cycle thermochimique 3 fonctionnant à une température comprise 700 à 10000C selon les oxydes utilisés. La libération des matières volatiles et de l'humidité résiduelle contenues dans la biomasse introduite est immédiate et constitue la sortie 6 de gaz de pyrolyse du procédé. Cette composition gazeuse peut être ajustée par un reformage à l'oxygène 17 à 1200 à 14000C pour convertir les goudrons et le méthane puis une étape de « CO shift » pour arriver à une boucle 10 de synthèse de fabrication de carburants synthétiques, du type méthanol ou du di-méthyle-éther. La réaction (CO+ H2O -> H2 + CO2) représente ledit « CO shift ».
Le résidu carboné restant après pyrolyse, mélangé au matériau de lit en circulation, est transféré par une conduite 7 vers le réacteur de combustion 8, alimenté en vapeur d'eau et CO2 par les conduites 15, 15' comme pour une gazéification autothermique classique. Le résidu carboné est converti progressivement dans la boucle circulante thermochimique 3 jusqu'à disparition du carbone et les cendres résiduelles s'échappent par un cyclone et par un soutirage de lit en bas de réacteur de combustion 8.
Le matériau de lit de ce réacteur de combustion 8 est celui du cycle thermochimique 3 dans lequel circule des oxydes métalliques naturels ou synthétiques qui sont alternativement oxydés et réduits et qui assurent l'apport d'oxygène pour la combustion ou gazéification, auquel se superpose le matériau de lit contenant le résidu carboné.
Ce matériau de lit en circulation qui est constitué de particules fines d'oxydes mixtes de type fer, titane et/ou manganèse est oxydé, réduit, joue le rôle de caloporteur et contient le résidu carboné à convertir. Le CO2 issu de la conversion du résidu carboné 11 sort du réacteur de combustion 8 et subit refroidissement, dépoussiérage, condensation de l'eau des fumées et compression pour transport. Il peut ensuite être stocké en aquifère. Une partie 15 de ce CO2 avec de la vapeur d'eau assure l'alimentation du réacteur de combustion 8 et une autre partie 16 avec de la vapeur d'eau est injectée dans le réacteur de pyrolyse 2, selon les besoins de rapport CO/H2 de l'étape de
« CO shift », elle même dépendant du carburant synthétique final à produire.
L'oxydation très rapide du matériau de lit est assurée par une fluidisation à l'air ou à l'air enrichi à l'oxygène 12 dans la chambre d'oxydation 9 aménagée dans le convertisseur thermochimique 3 comportant des sas de gaz. Ces sas sont des dispositifs d'étanchéité entre des enceintes contenant des gaz de composition différente.
Le flux gazeux 13 évacué de cette chambre d'oxydation 9 est essentiellement de l'air appauvri en oxygène. Ce flux gazeux d'air appauvri en oxygène est particulièrement bien adapté au séchage de biomasse hautement réactive sans risque d'allumage et est utilisé préférentiellement pour le séchage de la biomasse, car il représente plus de 70 % du débit de fumées de l'installation. La figure 2 représente le réacteur de séchage 1 qui est de préférence un lit mobile à courant descendant muni de dévoûteurs. Il comporte une enceinte IA, de forme évasée vers le bas, sa partie haute recevant les biomasses à partir d'une trémie IC par l'intermédiaire d'une vis sans fin d'entrée IB. Sa partie basse est pourvue de vis sans fin de sortie ID. Les fumées en air appauvri sortant de la chambre de d'oxydation 8 du cycle thermochimique sont injectées IE en partie haute de l'enceinte, pour réaliser le séchage et les gaz refroidis sont évacués IF en partie basse.

Claims

REVENDICATIONS
1. Procédé d'extraction de dioxyde de carbone de l'atmosphère, par une conversion thermochimique de biomasses, en tant que vecteur intermédiaire naturel de stockage du dioxyde de carbone, , une capture du dioxyde de carbone étant effectuée par un cycle thermochimique (3) comportant un réacteur de combustion (8) et une chambre d'oxydation (9) interconnectées, et dans lequel circulent des oxydes métalliques qui sont alternativement oxydés et réduits et qui assurent l'apport d'oxygène pour ladite combustion, cette conversion thermochimique étant réalisée au moyen d'un réacteur de pyrolyse (2) et dudit cycle thermochimique (3), caractérisé en ce que ladite pyrolyse est précédée d'un séchage (1) des biomasses effectué par des fumées en air appauvri (13) sortant de ladite chambre d'oxydation (9) dudit cycle thermochimique.
2. Procédé selon la revendication 1, caractérisé en ce qu'il assure une production d'énergie et de carburants.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que les solides chauds en circulation dans ledit cycle thermochimique (3) assurent ladite pyrolyse (2).
4. Procédé selon la revendication précédente, caractérisé en ce que les solides chauds en circulation dans ladite chambre d'oxydation (9) assurent ladite pyrolyse (2).
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite production d'énergie et/ou de carburants est réalisée sous forme de vapeur haute pression et de gaz de synthèse dont la composition peut être ajustée après reformage pour fabriquer des carburants synthétiques (10).
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit cycle thermochimique (3) utilise l'air, la vapeur d'eau et le dioxyde de carbone pour oxyder et réduire lesdits oxydes métalliques.
7. Procédé selon la revendication précédente, caractérisé en ce que ledit air est de l'air enrichi en oxygène.
PCT/FR2009/051920 2008-10-17 2009-10-08 Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere WO2010043799A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09755991A EP2342309A2 (fr) 2008-10-17 2009-10-08 Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere
CA2740501A CA2740501A1 (fr) 2008-10-17 2009-10-08 Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0857066A FR2937334A1 (fr) 2008-10-17 2008-10-17 Dispositif d'extraction de co2 de l'atmosphere
FR0857066 2008-10-17
FR0857903 2008-11-21
FR0857903A FR2937333B1 (fr) 2008-10-17 2008-11-21 Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere

Publications (2)

Publication Number Publication Date
WO2010043799A2 true WO2010043799A2 (fr) 2010-04-22
WO2010043799A3 WO2010043799A3 (fr) 2010-11-25

Family

ID=40677750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051920 WO2010043799A2 (fr) 2008-10-17 2009-10-08 Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere

Country Status (4)

Country Link
EP (1) EP2342309A2 (fr)
CA (1) CA2740501A1 (fr)
FR (2) FR2937334A1 (fr)
WO (1) WO2010043799A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395306A3 (fr) * 2010-06-10 2013-03-06 PiEco GmbH Procédé et dispositif de séchage de fibres, notamment de copeaux de bois
CN103113919A (zh) * 2013-03-07 2013-05-22 华北电力大学(保定) 一种三反应器生物质热解系统及其工作方法
ITTO20120427A1 (it) * 2012-05-14 2013-11-15 Pierluigi Martini Apparato per la gassificazione di sostanze solide carboniose contenute in biomasse vergini e in rifiuti.
WO2012175194A3 (fr) * 2011-06-22 2014-01-23 Meissner, Jan A. Procédé et installations pour la réduction des gaz à effet de serre de carburants et de combustibles
WO2018065591A1 (fr) 2016-10-07 2018-04-12 Marc Feldmann Procédé et système pour améliorer les performances de réduction des émissions de gaz à effet de serre des biocombustibles et des biocarburants et/ou pour enrichir en carbone organique les surfaces consacrées à l'agriculture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958430B (zh) * 2022-04-27 2023-02-07 广东工业大学 一种副产氢气的二氧化碳自循环式生物质高温气化系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030024853A1 (en) * 2001-07-31 2003-02-06 Lyon Richard K. Method for efficient and environmentally clean utilization of solid fuels
US20030029088A1 (en) * 2001-07-31 2003-02-13 Lyon Richard K. Process for converting coal into fuel cell quality hydrogen and sequestration-ready carbon dioxide
WO2004072207A1 (fr) * 2003-02-17 2004-08-26 Fortum Oyj Procede de production d'un gaz de synthese
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers
EP1933087A2 (fr) * 2006-12-11 2008-06-18 General Electric Company Systèmes et procédé d'utilisation d'un processeur en carburant non mélangé

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7819070B2 (en) * 2005-07-15 2010-10-26 Jc Enviro Enterprises Corp. Method and apparatus for generating combustible synthesis gas
WO2007081296A1 (fr) * 2006-01-16 2007-07-19 Gep Yesil Enerji Uretim Teknolojileri Ltd. Sti. Gazogene a ecoulement descendant/ascendant pour production de gaz de synthese a partir de dechets solides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030024853A1 (en) * 2001-07-31 2003-02-06 Lyon Richard K. Method for efficient and environmentally clean utilization of solid fuels
US20030029088A1 (en) * 2001-07-31 2003-02-13 Lyon Richard K. Process for converting coal into fuel cell quality hydrogen and sequestration-ready carbon dioxide
WO2004072207A1 (fr) * 2003-02-17 2004-08-26 Fortum Oyj Procede de production d'un gaz de synthese
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers
EP1933087A2 (fr) * 2006-12-11 2008-06-18 General Electric Company Systèmes et procédé d'utilisation d'un processeur en carburant non mélangé

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395306A3 (fr) * 2010-06-10 2013-03-06 PiEco GmbH Procédé et dispositif de séchage de fibres, notamment de copeaux de bois
WO2012175194A3 (fr) * 2011-06-22 2014-01-23 Meissner, Jan A. Procédé et installations pour la réduction des gaz à effet de serre de carburants et de combustibles
ITTO20120427A1 (it) * 2012-05-14 2013-11-15 Pierluigi Martini Apparato per la gassificazione di sostanze solide carboniose contenute in biomasse vergini e in rifiuti.
CN103113919A (zh) * 2013-03-07 2013-05-22 华北电力大学(保定) 一种三反应器生物质热解系统及其工作方法
WO2018065591A1 (fr) 2016-10-07 2018-04-12 Marc Feldmann Procédé et système pour améliorer les performances de réduction des émissions de gaz à effet de serre des biocombustibles et des biocarburants et/ou pour enrichir en carbone organique les surfaces consacrées à l'agriculture
DE102017005627A1 (de) 2016-10-07 2018-04-12 Lennart Feldmann Verfahren und System zur Verbesserung der Treibhausgas-Emissionsminderungsleistung biogener Kraft-, Heiz- und Brennstoffe und/oder zur Anreicherung landwirtschaftlich genutzter Flächen mit Humus-C

Also Published As

Publication number Publication date
FR2937333B1 (fr) 2011-06-17
FR2937333A1 (fr) 2010-04-23
WO2010043799A3 (fr) 2010-11-25
CA2740501A1 (fr) 2010-04-22
FR2937334A1 (fr) 2010-04-23
EP2342309A2 (fr) 2011-07-13

Similar Documents

Publication Publication Date Title
CA2745055C (fr) Installation a cycle thermochimique pour combustibles reactifs
EP2142622B1 (fr) Procede de production d'un gaz de synthese purifie a partir de biomasse incluant une etape de purification en amont de l'oxydation partielle
CA2706664C (fr) Procede et chaine de traitement pour la conversion thermochimique par gazeification d'une charge humide de materiau biologique
WO2010043799A2 (fr) Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere
FR2483258A1 (fr) Procede d'elimination de dechets solides
CA2565936A1 (fr) Procede de production de gaz de synthese a partir de matiere carbonee et d'energie electrique
FR2960940A1 (fr) Procede de combustion en boucle chimique avec une zone de reaction integrant une zone de separation gaz-solide et installation utilisant un tel procede
FR2985517A1 (fr) Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
FR2895413A1 (fr) Installation de conversion d'hydrocarbures petroliers a installation de combustion integree comprenant une capture du dioxyde de carbone
FR2985265A1 (fr) Procede et equipement de gazeification en lit fixe
FR2794128A1 (fr) Procede de gazeification autothermique de combustibles solides, installation pour la mise en oeuvre du procede et utilisation de l'installation
FR2535734A1 (fr) Procede de gazeification de produits ligno-cellulosiques et dispositif pour sa mise en oeuvre
WO2006087310A1 (fr) Installation de production d'hydrogene ou de gaz de synthese par gazeification
CA2747357A1 (fr) Procede et dispositif de production et de purification de gaz de synthese
EP1713888A1 (fr) Procede de traitement et de valorisation de dechets
CA2316674A1 (fr) Procede et installation de production d'un gaz combustible a partir d'une charge riche en matiere organique
FR2960943A1 (fr) Procede integre d'oxycombustion et de production d'oxygene par boucle chimique
FR2859216A1 (fr) Procede et installation de production a haut rendement d'un gaz de synthese depollue a partir d'une charge riche en matiere organique
CA2740506A1 (fr) Dispositif de lit fluidise a fluidisation rapide et a flux sature de solides circulants
EP2536976B1 (fr) Dispositif destine en particulier a une conversion thermochimique
CA3058977A1 (fr) Procede et installation de production d'electricite a partir d'une charge de csr
CA2740539C (fr) Procede de production continue d'un gaz riche en oxygene a haute temperature
CA2861050A1 (fr) Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
EP4374109A1 (fr) Procede et installation clc avec recuperation d'oxygene gazeux produit par un porteur d'oxygene
AU2011250716B2 (en) Method For Steam Reforming Carbonaceous Material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09755991

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2740501

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2009755991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009755991

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE