WO2010038382A1 - 漏洩診断装置、漏洩診断方法、及び冷凍装置 - Google Patents

漏洩診断装置、漏洩診断方法、及び冷凍装置 Download PDF

Info

Publication number
WO2010038382A1
WO2010038382A1 PCT/JP2009/004824 JP2009004824W WO2010038382A1 WO 2010038382 A1 WO2010038382 A1 WO 2010038382A1 JP 2009004824 W JP2009004824 W JP 2009004824W WO 2010038382 A1 WO2010038382 A1 WO 2010038382A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
leakage
index value
amount
exergy
Prior art date
Application number
PCT/JP2009/004824
Other languages
English (en)
French (fr)
Inventor
米森強
佐々木能成
山口貴弘
吉見学
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP09817425.3A priority Critical patent/EP2333461B1/en
Priority to CN200980135214.7A priority patent/CN102149990B/zh
Priority to AU2009299329A priority patent/AU2009299329B2/en
Priority to US13/121,448 priority patent/US8555703B2/en
Priority to ES09817425.3T priority patent/ES2676541T3/es
Publication of WO2010038382A1 publication Critical patent/WO2010038382A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to a leakage diagnosis apparatus, a leakage diagnosis method, and a refrigeration apparatus including a leakage diagnosis apparatus for diagnosing the presence or absence of refrigerant leakage from a refrigerant circuit.
  • Patent Document 1 describes an abnormality detection system as this type of leakage diagnosis apparatus.
  • This abnormality detection system is configured to detect refrigerant leakage by utilizing the degree of supercooling, superheat, low pressure, high pressure, outside air temperature, room temperature and compressor speed of the refrigeration cycle of the air conditioner. Has been.
  • Patent Document 2 describes an analyzer for a refrigeration apparatus that analyzes refrigerant exergy in a circuit configuration device (for example, a compressor) of a refrigerant circuit and diagnoses a failure of the circuit configuration device.
  • a circuit configuration device for example, a compressor
  • JP 2006-275411 A Japanese Patent No. 4039462
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a leakage diagnosis apparatus for diagnosing the presence or absence of refrigerant leakage in a refrigerant circuit that performs a refrigeration cycle.
  • the purpose is to realize refrigerant leakage diagnosis using the amount of loss of ghee.
  • a compressor (30), a radiator (34, 37), a pressure reduction mechanism (36), and an evaporator (34, 37) are provided as circuit components, and a refrigerant is circulated to perform a refrigeration cycle.
  • a leakage diagnosis device (50) for diagnosing the presence or absence of refrigerant leakage in the refrigerant circuit (20) to be performed is an object.
  • this leak diagnostic apparatus (50) is an index that calculates a leak index value that changes according to the amount of refrigerant leaked from the refrigerant circuit (20), based on the amount of refrigerant exergy loss in the circuit-constituting equipment.
  • a leakage determination means (53) for determining whether or not refrigerant leakage has occurred in the refrigerant circuit (20) And.
  • the leakage index value that changes in accordance with the refrigerant amount leaked from the refrigerant circuit (20) based on the amount of refrigerant exergy loss in the circuit components such as the radiator (34, 37). Calculated. Then, based on the leakage index value, it is determined whether refrigerant leakage has occurred in the refrigerant circuit (20).
  • refrigerant leakage occurs in the refrigerant circuit (20)
  • a predetermined change appears in the amount of refrigerant exergy loss in the circuit component device.
  • a leakage index value that changes in accordance with the refrigerant amount leaked from the refrigerant circuit (20) can be calculated.
  • the leakage index value changes in a predetermined manner when refrigerant leakage occurs. For this reason, in the first invention, based on the amount of loss of refrigerant exergy in the circuit component device, a leakage index value that changes in a predetermined manner when refrigerant leakage occurs in the refrigerant circuit (20) is calculated. Diagnosis of refrigerant leakage is performed based on the value.
  • Exergy is the maximum work that can be converted into mechanical energy when a substance at a certain pressure and temperature is changed to an environmental state, and is also called “effective energy”.
  • the amount of refrigerant exergy loss in the circuit component equipment is “energy that is extra required in the actual refrigeration cycle relative to the theoretical cycle (reverse Carnot cycle) in the circuit component equipment”. Means the amount of exergy lost in the circuit component device. “Exergy loss” can also be expressed as “exergy loss”. The amount of refrigerant exergy loss in the circuit component device will be specifically described.
  • the temperature and pressure of the refrigerant are constant during the heat dissipation process of the theoretical cycle.
  • the refrigerant exchanges heat with a fluid such as air with a temperature difference, and a friction loss occurs in the pipe. Therefore, extra energy is required for the theoretical cycle. Become.
  • the amount of refrigerant exergy loss in the radiator (34, 37) corresponds to the energy required for the theoretical cycle, and represents the amount of loss generated in the radiator (34, 37).
  • the temperature and pressure of the refrigerant are constant.
  • the refrigerant exchanges heat with a fluid such as air with a temperature difference, and a friction loss occurs in the pipe. Therefore, extra energy is required for the theoretical cycle. Become.
  • the amount of refrigerant exergy loss in the evaporator (34, 37) corresponds to the energy required for the theoretical cycle, and represents the magnitude of the loss generated in the evaporator (34, 37).
  • the index value calculation means (31) uses the radiator as a leakage index value based on a loss amount of refrigerant exergy in the radiator (34, 37).
  • the side index value is calculated, and the leakage determination means (53) determines whether or not refrigerant leakage has occurred in the refrigerant circuit (20) based on the radiator side index value.
  • the radiator side index value is calculated based on the amount of refrigerant exergy loss in the radiator (34, 37).
  • the loss of refrigerant exergy in the radiator (34, 37) decreases as the high pressure of the refrigeration cycle decreases. That is, when refrigerant leakage occurs, a predetermined change appears in the amount of refrigerant exergy loss in the radiator (34, 37). For this reason, the diagnosis of the refrigerant leakage is performed based on the radiator side index value calculated based on the amount of loss of refrigerant exergy in the radiator (34, 37).
  • the radiator (34, 37) cools and condenses the gas refrigerant, while the index value calculation means (31) includes the radiator (34, 37). ),
  • the radiator side index value is calculated without using the amount of loss of exergy in the process in which the refrigerant is in the gas single phase state.
  • the radiator side index value is calculated without using the amount of loss of exergy in the process in which the refrigerant is in the gas single phase state in the radiator (34, 37).
  • a fourth invention is the loss of exergy in the third invention, wherein the index value calculation means (31) is in a process in which the refrigerant is in a gas-liquid two-phase state in the radiator (34, 37).
  • the ratio of the other of the amount and the amount of loss of exergy in the process in which the refrigerant is in the liquid single-phase state in the radiator (34, 37) is calculated as the radiator-side index value.
  • the ratio of the other to the “exergy loss amount in the process of being in the state” is calculated as the radiator side index value.
  • the latter of “the amount of exergy loss during the process” is greatly reduced. Therefore, when refrigerant leakage occurs, a predetermined change appears in the radiator side index value. For this reason, “the amount of exergy loss in the process where the refrigerant is in the gas-liquid two-phase state in the radiator (34, 37)” and “the refrigerant is in the liquid single-phase state in the radiator (34, 37)”.
  • the ratio of the other to one of “the amount of exergy loss in the process” is used as the radiator side index value, and the refrigerant leakage is diagnosed based on the radiator side index value.
  • the decompression mechanism (36) is constituted by an expansion valve (36) having a variable opening, and the opening of the expansion valve (36)
  • the leakage determination means (53) is based on the radiator side index value. Even if it is not possible to determine that refrigerant leakage has occurred in the circuit (20), refrigerant leakage occurs in the refrigerant circuit (20) when the opening of the expansion valve (36) falls below a predetermined determination opening. It is determined that
  • the opening of the expansion valve (36) changes before the radiator side index value.
  • the opening degree of the expansion valve (36) is determined as the opening degree. When it becomes below, it determines with the refrigerant
  • the index value calculation means (31) is configured such that the amount of refrigerant exergy loss in the radiator (34, 37) and the radiator (34, 37) The other ratio with respect to one of the refrigerant heat dissipation in 37) is calculated as the radiator side index value.
  • the ratio of the other of “the amount of refrigerant exergy loss in the radiator (34, 37)” and “the amount of refrigerant released in the radiator (34, 37)” to the radiator side Calculated as an index value.
  • the “exhaust loss of refrigerant in the radiator (34,37)” and “radiator (34,37) are accompanied by a decrease in the high pressure of the refrigeration cycle.
  • the amount of heat released from the refrigerant in) decreases by substantially the same amount.
  • the former and the latter are considerably larger values. For this reason, when refrigerant leakage occurs, a predetermined change appears in the radiator side index value.
  • the ratio of the other of “the amount of refrigerant exergy in the radiator (34, 37)” and “the amount of refrigerant released in the radiator (34, 37)” to the other is used as the radiator side index value. Diagnosis of refrigerant leakage is performed based on the radiator side index value.
  • the index value calculation means (31) is configured such that the refrigerant exergy loss amount in the radiator (34, 37) and the compressor (30) The ratio of the other to one of the inputs is calculated as the radiator side index value.
  • the ratio of the other of “the amount of refrigerant exergy loss in the radiator (34, 37)” and “the input of the compressor (30)” to the other is calculated as the radiator side index value.
  • the loss of refrigerant exergy in the radiator (34,37) and the compressor (30) "Input" decreases by approximately the same amount.
  • the former and the latter are considerably larger values. For this reason, when refrigerant leakage occurs, a predetermined change appears in the radiator side index value.
  • the ratio of the other of “exhaust loss of refrigerant in the radiator (34, 37)” and “input of the compressor (30)” to the other is used as the radiator side index value, and the radiator side index Diagnosis of refrigerant leakage is performed based on the value.
  • the refrigerant circuit (20) is controlled so that the low pressure of the refrigeration cycle becomes a constant value, while the index value calculating means ( 31) calculates an evaporator-side index value based on the amount of refrigerant exergy loss in the evaporator (34, 37), and the leakage determination means (53) is based on the evaporator-side index value. It is determined whether or not refrigerant leakage in the refrigerant circuit (20) has progressed to a predetermined level.
  • refrigerant leakage it is determined whether or not refrigerant leakage has occurred in the refrigerant circuit (20) based on the radiator side index value, and refrigerant leakage in the refrigerant circuit (20) is determined based on the evaporator side index value. It is determined whether or not has progressed to a predetermined level.
  • the radiator (34, 37) is in a state where the amount of refrigerant leaked from the refrigerant circuit (20) is relatively small.
  • the refrigerant exergy loss amount in () changes relatively large, whereas the refrigerant exergy loss amount in the evaporator (34, 37) hardly changes.
  • the amount of refrigerant exergy loss in the evaporator (34, 37) changes relatively greatly when the amount of refrigerant leaked from the refrigerant circuit (20) is relatively large.
  • the index value calculating means (31) uses the refrigerant index exergy loss amount in the evaporator (34, 37) as the leakage index value.
  • the side index value is calculated, and the leakage determination means (53) determines whether or not refrigerant leakage has occurred in the refrigerant circuit (20) based on the evaporator side index value.
  • the evaporator-side index value is calculated based on the loss of refrigerant exergy in the evaporator (34, 37) as the leakage index value.
  • the loss of refrigerant exergy in the evaporator (34, 37) decreases as the low pressure of the refrigeration cycle decreases. That is, when refrigerant leakage occurs, a predetermined change appears in the amount of refrigerant exergy loss in the evaporators (34, 37). Therefore, the refrigerant leakage diagnosis is performed based on the evaporator-side index value calculated based on the refrigerant exergy loss amount in the evaporators (34, 37).
  • the index value calculation means (31) loses exergy during a process in which the refrigerant is in a gas-liquid two-phase state in the evaporator (34, 37).
  • the ratio of the other to one of the amount and the loss of exergy in the process in which the refrigerant is in the gas single phase state in the evaporator (34, 37) is calculated as the evaporator-side index value.
  • the ratio of the other to the “exergy loss amount in the process of being in the state” is calculated as the evaporator-side index value.
  • the amount of exergy loss in the process of being in the phase state increases.
  • the “exergy loss amount in the process in which the refrigerant is in the gas-liquid two-phase state in the evaporators (34, 37)” does not change so much. Therefore, when refrigerant leakage occurs, a predetermined change appears in the radiator side index value. For this reason, “the amount of exergy loss in the process in which the refrigerant is in the gas-liquid two-phase state in the evaporator (34, 37)” and “the refrigerant is in the gas single-phase state in the evaporator (34, 37)”.
  • the ratio of the other to “the amount of exergy loss during the process” is used as the evaporator side index value, and the refrigerant leakage is diagnosed based on the evaporator side index value.
  • the decompression mechanism (36) is constituted by an expansion valve (36) having a variable opening, and the opening of the expansion valve (36).
  • the leakage determination means (53) is based on the evaporator side index value and the refrigerant circuit Even if it is not possible to determine that a refrigerant leak has occurred in (20), if the opening of the expansion valve (36) exceeds a predetermined determination opening, a refrigerant leak will occur in the refrigerant circuit (20). It is determined that
  • the opening of the expansion valve (36) exceeds the determination opening, the refrigerant leaks. It is determined that
  • the opening degree of the expansion valve (36) is adjusted so that the degree of superheat of the refrigerant flowing out of the evaporator (34, 37) becomes a constant value, the amount of refrigerant leaking from the refrigerant circuit (20) In a relatively small state, the degree of superheat of the refrigerant flowing out of the evaporator (34, 37) hardly changes.
  • the ratio of one to the other is almost unchanged. That is, the evaporator side index value hardly changes.
  • the opening of the expansion valve (36) increases so that the degree of superheat of the refrigerant flowing out of the evaporator (34, 37) does not increase. Go.
  • the opening degree of the expansion valve (36) is determined as the determination opening degree even if it is not possible to determine that refrigerant leakage has occurred based on the evaporator side index value. If it becomes above, it will determine with the refrigerant
  • the index value calculation means (31) uses the compressor-side index as the leakage index value based on the loss of refrigerant exergy in the compressor (30). The value is calculated, and the leakage determination means (53) determines whether or not refrigerant leakage has occurred in the refrigerant circuit (20) based on the compressor side index value.
  • the compressor-side index value is calculated based on the amount of refrigerant exergy loss in the compressor (30).
  • the amount of refrigerant exergy in the compressor (30) increases as the degree of superheat of the refrigerant sucked into the compressor (30) increases. . That is, when refrigerant leakage occurs, a predetermined change appears in the amount of refrigerant exergy loss in the compressor (30). Therefore, the refrigerant leakage diagnosis is performed based on the compressor-side index value calculated based on the refrigerant exergy loss amount in the compressor (30).
  • the index value calculation means (31) uses the refrigerant exergy loss amount in the radiator (34, 37) as the leakage index value and the evaporator (The ratio of the other to the amount of refrigerant exergy loss in 34, 37) is calculated.
  • the ratio of the other of “the amount of refrigerant exergy loss in the radiator (34,37)” and “the amount of refrigerant exergy loss in the evaporator (34,37)” to the other is: Calculated as a leakage index value.
  • the radiator (34,37) While the amount of refrigerant exergy loss in the refrigerant decreases, the amount of refrigerant exergy loss in the evaporator (34, 37) hardly changes. For this reason, a predetermined change appears in the leakage index value.
  • the refrigerant circuit (20) is controlled so that the high pressure of the refrigeration cycle becomes a constant value, for example, when refrigerant leakage occurs, a predetermined change appears in the leakage index value. For this reason, the ratio of the other of “the amount of refrigerant exergy loss in the radiator (34,37)” and “the amount of refrigerant exergy loss in the evaporator (34,37)” to the other is used as the leakage index value.
  • the refrigerant leakage is diagnosed based on the leakage index value.
  • the refrigerant circuit (20) includes an accumulator for separating the liquid refrigerant from the refrigerant sucked into the compressor (30). 38) is provided, and the accumulator (38) is configured so that the leakage determination means (53) can determine that the refrigerant leakage has occurred in the refrigerant circuit (20) based on the leakage index value. If the difference between the superheat degree of the refrigerant flowing into the refrigerant and the superheat degree of the refrigerant flowing out of the accumulator (38) is greater than or equal to a predetermined suction side reference value, refrigerant leakage has occurred in the refrigerant circuit (20) Do not judge.
  • the degree of superheat of the refrigerant flowing into the accumulator (38) and the degree of superheat of the refrigerant flowing out of the accumulator (38) If the difference from the reference value is greater than or equal to the suction side reference value, it is not determined that refrigerant leakage has occurred.
  • the difference in the degree of superheat at the inlet / outlet of the accumulator (38) is greater than or equal to the suction side reference value, a relatively large amount of refrigerant has accumulated in the accumulator (38).
  • refrigerant leakage has occurred when a relatively large amount of refrigerant has accumulated in the accumulator (38). Not determined.
  • a compressor (30), a radiator (34, 37), a pressure reducing mechanism (36), and an evaporator (34, 37) are provided as circuit components, and a refrigerant is circulated to perform a refrigeration cycle.
  • the leakage diagnosis device (50) for diagnosing the presence or absence of refrigerant leakage in the refrigerant circuit (20) to be performed is targeted.
  • this leak diagnostic apparatus (50) is an index that calculates a leak index value that changes according to the amount of refrigerant leaked from the refrigerant circuit (20), based on the amount of refrigerant exergy loss in the circuit-constituting equipment.
  • a value calculating means (31) and a display means (56) for displaying information for leakage diagnosis based on the leakage index value calculated by the index value calculating means (31).
  • a leakage index value that changes in accordance with the amount of refrigerant leaked from the refrigerant circuit (20) is calculated based on the amount of refrigerant exergy loss in the circuit configuration device. Then, information for leakage diagnosis based on the leakage index value is displayed on the display means (56). For this reason, it is possible to diagnose the refrigerant leakage by a person who has seen the leakage diagnosis information displayed on the display means (56).
  • a compressor (30), a radiator (34, 37), a pressure reducing mechanism (36), and an evaporator (34, 37) are provided as circuit components, and a refrigerant is circulated to perform a refrigeration cycle.
  • the refrigeration apparatus (10) includes a leakage diagnosis apparatus (50) that calculates a leakage index value using the amount of refrigerant exergy loss in the circuit component device.
  • a compressor (30), a radiator (34, 37), a pressure reduction mechanism (36), and an evaporator (34, 37) are provided as circuit components, and a refrigerant is circulated to perform a refrigeration cycle.
  • a leakage diagnosis method for diagnosing the presence or absence of refrigerant leakage with respect to the refrigerant circuit (20) to be performed is targeted.
  • this leakage diagnosis method is an index value calculation step for calculating a leakage index value that changes according to the amount of refrigerant leaked from the refrigerant circuit (20) based on the amount of refrigerant exergy loss in the circuit configuration device.
  • a leakage determination step of determining whether or not refrigerant leakage has occurred in the refrigerant circuit (20) based on the leakage index value calculated in the index value calculation step.
  • the leakage index value that changes in accordance with the amount of refrigerant leaked from the refrigerant circuit (20) using the amount of refrigerant exergy loss in the circuit components such as the radiator (34, 37). Calculated. Then, based on the leakage index value, it is determined whether refrigerant leakage has occurred in the refrigerant circuit (20).
  • a leakage index value that changes in a predetermined manner when refrigerant leakage occurs in the refrigerant circuit (20) is calculated using the amount of loss of refrigerant exergy in the circuit configuration device, and is based on the leakage index value. The refrigerant leakage is diagnosed.
  • a leakage index value that changes in a predetermined manner when refrigerant leakage occurs in the refrigerant circuit (20) is calculated.
  • a leak diagnosis is performed.
  • the refrigerant leakage in the refrigerant circuit (20) can be detected by monitoring the change of the leakage index value, for example. Therefore, the diagnosis of refrigerant leakage using the amount of refrigerant exergy loss in the circuit configuration device of the refrigerant circuit (20) can be realized.
  • the refrigerant leakage diagnosis is performed based on the radiator side index value calculated based on the loss amount of the exergy of the refrigerant. Accordingly, it is possible to realize refrigerant leakage diagnosis using the amount of refrigerant exergy loss in the radiator (34, 37).
  • the conventional leakage detection method can detect a state in which the refrigerant leakage has progressed to some extent, but in a state where the refrigerant leakage is small, the physical quantity used for detecting the refrigerant leakage (for example, the low pressure of the refrigeration cycle) is Since it hardly changed, it was not possible to detect a state where the degree of refrigerant leakage was small.
  • the amount of refrigerant exergy in the radiator (34, 37) appears to some extent even when the amount of refrigerant leaked from the refrigerant circuit (20) is relatively small. Therefore, refrigerant leakage can be detected at a stage where the amount of refrigerant leaked from the refrigerant circuit (20) is relatively small. Therefore, the amount of refrigerant leaking from the refrigerant circuit (20) can be reduced, and when a refrigerant that affects the global environment is used, the influence on the global environment can be reduced.
  • the radiator side index value is calculated without using the amount of loss of exergy in the process in which the refrigerant is in the gas single phase state in the radiator (34, 37).
  • the amount of refrigerant exergy loss in the entire radiator (34, 37) is represented by the area of the region (c) in FIG.
  • the coordinate value of the point B in FIG. 2 is required.
  • the coordinate value of point B consists of the temperature and entropy of the refrigerant after the end of the compression stroke in the compressor (30).
  • the radiator side index value is an accurate value due to the error in the coordinate value of point B.
  • the radiator side index value is calculated without using the amount of loss of exergy in the process in which the refrigerant is in the gas single phase state in the radiator (34, 37).
  • the calculation of the radiator side index value does not require the refrigerant temperature and entropy after the end of the compression stroke. Therefore, the radiator side index value can be calculated using only relatively accurate values.
  • the radiator side index value is non-dimensional, even if the refrigerant circuits (20) having different rated capacities are compared with each other, the radiator side index value is not much. There is no difference.
  • refrigerant leakage without considering the rated capacity of the refrigerant circuit (20). For example, when it is determined whether refrigerant leakage has occurred by comparing the radiator side index value with a predetermined reference value, a common reference value is used between refrigerant circuits (20) having different rated capacities. Diagnosis of refrigerant leakage can be performed.
  • the opening degree of the expansion valve (36) when the opening degree of the expansion valve (36) is adjusted so that the degree of supercooling of the refrigerant flowing out of the radiator (34, 37) becomes a constant value, refrigerant leakage occurs. Since the change in the opening degree of the expansion valve (36) appears before the radiator side index value, if the opening degree of the expansion valve (36) is equal to or less than the determination opening degree, it is determined that a refrigerant leak has occurred. ing. Therefore, refrigerant leakage can be detected at a stage where the amount of refrigerant leaking from the refrigerant circuit (20) is small.
  • the ratio of the ratio as the radiator side index value is used to diagnose refrigerant leakage based on the radiator side index value.
  • This radiator-side index value is a ratio of exergy loss amounts as in the fourth aspect of the invention, and thus is a dimensionless value. For this reason, it is possible to diagnose refrigerant leakage without considering the rated capacity of the refrigerant circuit (20).
  • the “heat dissipation amount of the refrigerant in the radiator (34, 37)” is a value reflecting the operating state of the refrigerant circuit (20) (for example, the circulation amount of the refrigerant).
  • the amount of refrigerant exergy loss in the radiator (34, 37) varies not only when refrigerant leakage occurs but also depending on the operating state of the refrigerant circuit (20) (for example, the amount of refrigerant circulation). .
  • the amount of refrigerant exergy loss in the radiator (34, 37) as it is for diagnosis of refrigerant leakage, it is necessary to consider the operating state of the refrigerant circuit (20).
  • the refrigerant leakage diagnosis is performed by comparing the radiator side index value with a predetermined reference value
  • the operating state of the refrigerant circuit (20) when the reference value is determined is reproduced, and the heat dissipation in that state is reproduced. It is necessary to compare the vessel index value with the reference value.
  • the radiator side index value reflecting the operation state of the refrigerant circuit (20) is used, the refrigerant leakage diagnosis is performed without taking the operation state of the refrigerant circuit (20) into consideration. It can be carried out.
  • the refrigerant leakage diagnosis is performed based on the radiator-side index value with this ratio as the radiator-side index value.
  • This radiator-side index value is a ratio of exergy loss amounts as in the fourth aspect of the invention, and thus is a dimensionless value. For this reason, it is possible to diagnose refrigerant leakage without considering the rated capacity of the refrigerant circuit (20).
  • “input of the compressor (30)” is a value reflecting the operating state of the refrigerant circuit (20) (for example, the circulation amount of the refrigerant).
  • the radiator side index value reflecting the operating state of the refrigerant circuit (20) is used for diagnosis of refrigerant leakage. Therefore, similar to the sixth aspect, the refrigerant leakage can be diagnosed without much consideration of the operating state of the refrigerant circuit (20).
  • the refrigerant circuit (20) it is determined based on the radiator side index value whether refrigerant leakage has occurred in the refrigerant circuit (20), and based on the evaporator side index value, the refrigerant circuit (20). It is determined whether or not the refrigerant leakage at has progressed to a predetermined level. Therefore, it is possible to detect not only whether or not refrigerant leakage has occurred, but also whether or not refrigerant leakage in the refrigerant circuit (20) has progressed to a predetermined level.
  • the refrigerant leakage diagnosis is performed on the basis of the evaporator-side index value calculated based on the refrigerant exergy loss amount. Therefore, the refrigerant leakage diagnosis using the refrigerant exergy loss amount in the evaporator (34, 37) can be realized.
  • the opening degree of the expansion valve (36) when the opening degree of the expansion valve (36) is adjusted so that the degree of superheat of the refrigerant flowing out of the evaporator (34, 37) becomes a constant value, the evaporator-side index value Since the change appears in the opening degree of the expansion valve (36) earlier than that, if the opening degree of the expansion valve (36) is equal to or larger than the determination opening degree, it is determined that the refrigerant leaks. Therefore, refrigerant leakage can be detected at a stage where the amount of refrigerant leaking from the refrigerant circuit (20) is small.
  • the leakage is diagnosed based on the leakage index value using this ratio as the leakage index value. Since this leakage index value is a ratio between the loss amounts of exergy, it is a dimensionless value. For this reason, similarly to the fourth aspect of the invention, it is possible to diagnose refrigerant leakage without considering the rated capacity of the refrigerant circuit (20).
  • refrigerant leakage even if it can be determined that refrigerant leakage has occurred based on the leakage index value, if a relatively large amount of refrigerant has accumulated in the accumulator (38), refrigerant leakage will occur. Not determined to have occurred.
  • the air conditioning load decreases, the amount of refrigerant circulating in the refrigerant circuit (20) decreases, and the amount of refrigerant accumulated in the accumulator (38) increases.
  • the operating capacity of the compressor (30) increases after the amount of refrigerant accumulated in the accumulator (38) increases, it takes time for the amount of refrigerant in the accumulator (38) to decrease.
  • the refrigerant circuit (20) has a short circulation amount of the refrigerant, and thus this state may be erroneously determined as refrigerant leakage.
  • the degree of superheat of the refrigerant flowing into the accumulator (38) even when it is determined that the refrigerant leakage has occurred based on the leakage index value.
  • the superheat degree of the refrigerant flowing out of the accumulator (38) is equal to or greater than a predetermined suction side reference value, it is determined that a relatively large amount of refrigerant has accumulated in the accumulator (38) Do not judge. Therefore, it is possible to suppress erroneous determination of a state where a relatively large amount of refrigerant is accumulated in the accumulator (38) as refrigerant leakage.
  • FIG. 6 is a Ts diagram (temperature-entropy diagram) showing a region used for calculating a leak index value in the leak diagnosis apparatus according to the embodiment.
  • FIG. 4 is a Ts diagram showing a region used for calculating a leakage index value in the leakage diagnosis apparatus according to the embodiment, (A) is a diagram of a reference state, and (B) is a diagram of a first progress state. .
  • It is a Ts diagram which shows the field used for calculation of a leak index value in a leak diagnostic device concerning an embodiment, (A) is a figure of a standard state, and (B) is a figure of the 2nd progress state. .
  • FIG. 1 It is a schematic block diagram of the air conditioning apparatus which concerns on the modification 1 of embodiment. It is a Ts diagram which shows the field used for calculation of a leak index value in a leak diagnostic device concerning modification 1 of an embodiment, (A) is a figure of a standard state, and (B) is the 1st progress state. FIG. It is a Ts diagram which shows the area
  • This embodiment is a refrigeration apparatus (10) provided with a leakage diagnosis apparatus (50) according to the present invention.
  • the refrigeration apparatus (10) is an air conditioner (10) including an outdoor unit (11) and an indoor unit (13), and performs switching between a cooling operation and a heating operation. It is configured as follows.
  • the outdoor unit (11) is provided with an outdoor circuit (21).
  • the indoor unit (13) is provided with an indoor circuit (22).
  • an outdoor circuit (21) and an indoor circuit (22) are connected by a liquid side connection pipe (23) and a gas side connection pipe (24), thereby performing a refrigerant circuit ( 20) is configured.
  • the refrigerant circuit (20) is filled with, for example, a fluorocarbon refrigerant. The amount of refrigerant charged in the refrigerant circuit (20) is determined from the necessary amount of refrigerant during heating operation.
  • the outdoor circuit (21) of the outdoor unit (11) includes a compressor (30), an outdoor heat exchanger (34) that constitutes a heat source side heat exchanger, and an expansion valve (36) that constitutes a pressure reducing mechanism. Is provided as a circuit configuration device.
  • the outdoor circuit (21) includes a four-way switching valve (33) to which the compressor (30) is connected, a liquid side shut-off valve (25) to which the liquid side communication pipe (23) is connected, and a gas side.
  • a gas-side stop valve (26) to which the communication pipe (24) is connected is provided.
  • the compressor (30) is a high-pressure dome type compressor in which the inside of a sealed container-like casing is filled with a compressed refrigerant.
  • the discharge side of the compressor (30) is connected to the first port (P1) of the four-way switching valve (33) via the discharge pipe (40).
  • the suction side of the compressor (30) is connected to the third port (P3) of the four-way switching valve (33) via the suction pipe (41).
  • the suction pipe (41) is provided with an airtight container-like accumulator (38).
  • the outdoor heat exchanger (34) is a cross-fin type fin-and-tube heat exchanger. Outdoor air is supplied to the outdoor heat exchanger (34) by an outdoor fan (12) provided in the vicinity of the outdoor heat exchanger (34). In the outdoor heat exchanger (34), heat is exchanged between the outdoor air and the refrigerant.
  • the outdoor fan (12) can adjust the air volume in multiple stages.
  • the outdoor heat exchanger (34) is connected to the fourth port (P4) of the four-way selector valve (33).
  • the other end of the outdoor heat exchanger (34) is connected to the liquid side shut-off valve (25) via the liquid pipe (42).
  • the liquid pipe (42) is provided with an expansion valve (36) having a variable opening and a receiver (39) in a sealed container shape.
  • the second port (P2) of the four-way switching valve (33) is connected to the gas side shut-off valve (26).
  • the four-way selector valve (33) is in a first state in which the first port (P1) and the second port (P2) communicate with each other and the third port (P3) and the fourth port (P4) communicate with each other (FIG. 1). And a second state (FIG. 1) in which the first port (P1) and the fourth port (P4) communicate with each other and the second port (P2) and the third port (P3) communicate with each other.
  • the state indicated by a broken line) can be switched.
  • a pair of suction temperature sensors (45a) and a suction pressure sensor (46a) are provided on the suction side of the compressor (30).
  • a pair of discharge temperature sensors (45b) and a discharge pressure sensor (46b) are provided on the discharge side of the compressor (30).
  • An outdoor gas temperature sensor (45c) is provided on the gas side of the outdoor heat exchanger (34).
  • An outdoor liquid temperature sensor (45d) is provided on the liquid side of the outdoor heat exchanger (34).
  • An outdoor temperature sensor (18) is provided upstream of the outdoor fan (12).
  • an indoor heat exchanger (37) that constitutes a use side heat exchanger is provided as a circuit component device.
  • the indoor heat exchanger (37) is configured by a cross fin type fin-and-tube heat exchanger.
  • Indoor air is supplied to the indoor heat exchanger (37) by an indoor fan (14) provided in the vicinity of the indoor heat exchanger (37).
  • the indoor fan (14) can adjust the air volume in multiple stages.
  • an air filter is provided between the air inlet opening in the room and the indoor fan (14) (not shown).
  • an indoor liquid temperature sensor (45e) is provided on the liquid side of the indoor heat exchanger (37).
  • An indoor gas temperature sensor (45f) is provided on the gas side of the indoor heat exchanger (37).
  • An indoor temperature sensor (19) is provided upstream of the indoor fan (14).
  • the various sensors (18, 45, 46) of the outdoor unit (11) and the various sensors (19, 45, 46) of the indoor unit (13) described above calculate index values of the leak diagnosis device (50) described later. It may be considered as a part of the means (31) or may be considered as a part of the refrigeration apparatus (10).
  • the refrigeration apparatus (10) of the present embodiment includes a leakage diagnosis apparatus (50) according to the present invention.
  • the leak diagnosis device (50) is configured to perform a leak detection operation for detecting whether or not a refrigerant leak has occurred in the refrigerant circuit (20).
  • the leakage detection operation is an operation for detecting that the refrigerant is decreasing from the reference state in which no refrigerant leakage occurs in the refrigerant circuit (20).
  • the leakage diagnosis device (50) includes a refrigerant state detection unit (51), an exergy calculation unit (52), and a leakage determination unit (53).
  • the refrigerant state detection unit (51) and the exergy calculation unit (52) constitute an index value calculation unit (31), and the leak determination unit (53) constitutes a leak determination unit (53). .
  • the refrigerant state detection unit (51) includes the refrigerant temperature and entropy (coordinate values of point A in FIG. 2) at the inlet of the compressor (30) (the outlet of the evaporator (34, 37)), and the compressor (30). Temperature and entropy (the coordinate value of point B in FIG. 2) at the outlet of the condenser (the inlet of the condenser (34,37)) and the inlet of the expansion valve (36) (the outlet of the condenser (34,37)) Refrigerant temperature and entropy (coordinate value of point E in FIG. 2) and refrigerant temperature and entropy (coordinate value of point G in FIG.
  • the exergy calculation unit (52) uses the refrigerant temperature and entropy obtained by the refrigerant state detection unit (51) to use the compressor (30), the condenser (34, 37), and the evaporator (34, 37). ) Is detected, and a leakage index value that changes in accordance with the refrigerant amount leaked from the refrigerant circuit (20) is calculated using the exergy loss amount.
  • the exergy calculation unit (52) uses, as the leakage index value, the radiator side index value using the amount of refrigerant exergy loss in the condenser (34, 37) and the refrigerant excel in the evaporator (34, 37). An evaporator-side index value using the amount of lost energy and a compressor-side index value using the amount of loss of refrigerant exergy in the compressor (30) are calculated.
  • exergy analysis thermodynamic analysis
  • the loss amount of the exergy of the refrigerant in the circuit component device represents the magnitude of the loss generated in the circuit component device (loss value in the circuit component device).
  • the exergy calculation unit (52) uses the refrigerant temperature and entropy obtained by the refrigerant state detection unit (51) to use the refrigerant exergy loss amount ⁇ E (in the condenser (34, 37). c), a refrigerant exergy loss amount ⁇ E (e) in the evaporator (34, 37), and a refrigerant exergy loss amount ⁇ E (b) in the compressor (30).
  • the exergy calculation unit (52) uses the refrigerant temperature and entropy obtained by the refrigerant state detection unit (51) to input the input (input power) ⁇ E (a) of the compressor (30) and the condenser The refrigerant heat release amount ⁇ E (a + g) at (34, 37) is detected.
  • the compressor (30) the exergy of the refrigerant increases due to the input ⁇ E (a) of the compressor (30), but the exergy of the refrigerant is lost due to mechanical loss and heat dissipation loss.
  • the exergy calculation unit (52) uses, as the first radiator side index value, the amount of refrigerant exergy loss in the condenser (34, 37) with respect to the “input ⁇ E (a) of the compressor (30)”.
  • the exergy calculation unit (52) uses, as the second radiator side index value, “the refrigerant heat release amount ⁇ E (a + g) in the condenser (34,37)” to “the refrigerant in the condenser (34,37)”.
  • the exergy calculation unit (52) outputs the refrigerant exergy loss ⁇ E (e) in the evaporator (34, 37) as an evaporator-side index value.
  • the exergy calculating unit (52) outputs the refrigerant exergy loss ⁇ E (b) in the compressor (30) as it is as the compressor-side index value.
  • the exergy loss ⁇ E (e) in the process in which the refrigerant is in the gas single-phase state in the evaporator (34, 37) can be used as the evaporator-side index value.
  • the leakage determination unit (53) determines whether or not refrigerant leakage has occurred in the refrigerant circuit (20) based on the leakage index value calculated by the exergy calculation unit (52). Specifically, the leakage determination unit (53) uses the leakage index value output from the exergy calculation unit (52) and the value of the reference state (reference value) where no refrigerant leakage occurs in the refrigerant circuit (20). Thus, it is determined whether or not refrigerant leakage has occurred in the refrigerant circuit (20).
  • the leakage determination unit (53) determines whether or not refrigerant leakage has occurred based on the radiator-side index value, and based on the evaporator-side index value, the refrigerant leakage is at a predetermined level (circuit due to insufficient refrigerant). It is determined whether or not it has progressed to a level at which the component equipment may be damaged.
  • the leakage determination unit (53) includes a memory for storing a reference value of each leakage index value.
  • the reference state value of the ratio of “loss of refrigerant exergy in the condenser (34, 37)” to “input of the compressor (30)” is stored as the first reference value R1 (0).
  • the value of the reference state of the ratio of “the amount of refrigerant exergy loss in the condenser (34,37)” to the “heat dissipation amount of the refrigerant in the condenser (34,37)” is the second reference value R2 (0)
  • the reference value of the refrigerant exergy loss amount in the evaporator (34, 37) is stored as the third reference value, and the reference value of the refrigerant exergy loss amount in the compressor (30) Is stored as the fourth reference value.
  • the leakage determination unit (53) determines whether or not refrigerant leakage has occurred based on a change in which the refrigerant exergy loss ⁇ E (c) in the condenser (34, 37) is smaller than that in the reference state. judge. Specifically, the leakage determination unit (53) determines whether the refrigerant leakage is based on the rate of change of the first radiator side index value from the reference state and the rate of change of the second radiator side index value from the reference state. Determine whether it has occurred. In this determination, only one of the change rate from the reference state of the first radiator side index value and the change rate from the reference state of the second radiator side index value may be used.
  • the leakage determination unit (53) detects that the refrigerant exergy loss ⁇ E (e) in the evaporator (34, 37) is larger than that in the reference state and the refrigerant exergy in the compressor (30). It is determined whether or not the refrigerant leakage has progressed to a predetermined level on the basis of both of the change in which the loss amount ⁇ E (b) becomes larger than that in the reference state. Specifically, the leakage determination unit (53) sets the refrigerant leakage to a predetermined level based on the rate of change of the evaporator-side index value from the reference state and the rate of change of the compressor-side index value from the reference state. It is determined whether it is progressing to.
  • the refrigeration apparatus (10) is configured to be able to switch between cooling operation and heating operation by a four-way switching valve (33).
  • the four-way switching valve (33) is set to the second state.
  • the outdoor heat exchanger (34) serves as a condenser and the indoor heat exchanger (37) serves as an evaporator.
  • a compression refrigeration cycle is performed.
  • the operating frequency of the compressor (30) is controlled so that the value of the low pressure of the refrigeration cycle (detected value of the suction pressure sensor (46a)) becomes a constant value, and the indoor heat exchanger (37)
  • the opening degree of the expansion valve (36) is adjusted so that the degree of superheat (superheat) of the refrigerant at the outlet becomes a predetermined target value (for example, 5 ° C.).
  • the refrigerant compressed by the compressor (30) is condensed by exchanging heat with outdoor air in the outdoor heat exchanger (34).
  • the refrigerant condensed in the outdoor heat exchanger (34) is depressurized when passing through the expansion valve (36), and then is evaporated by exchanging heat with indoor air in the indoor heat exchanger (37).
  • the refrigerant evaporated in the indoor heat exchanger (37) is compressed again by the compressor (30).
  • the four-way switching valve (33) is set to the first state.
  • the outdoor heat exchanger (34) serves as an evaporator and the indoor heat exchanger (37) serves as a condenser.
  • a compression refrigeration cycle is performed.
  • the operating frequency of the compressor (30) is controlled so that the value of the high pressure of the refrigeration cycle (detected value of the discharge pressure sensor (46b)) becomes a constant value, and the indoor heat exchanger (37)
  • the opening degree of the expansion valve (36) is adjusted so that the degree of subcooling of the refrigerant at the outlet (subcool) becomes a predetermined target value (for example, 5 ° C).
  • the refrigerant compressed by the compressor (30) is condensed by exchanging heat with indoor air in the indoor heat exchanger (37).
  • the refrigerant condensed in the indoor heat exchanger (37) is decompressed when passing through the expansion valve (36), and thereafter evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (34).
  • the refrigerant evaporated in the outdoor heat exchanger (34) is compressed again by the compressor (30).
  • the leak diagnosis device (50) performs a leak detection operation during cooling operation or heating operation.
  • the leak diagnosis apparatus (50) performs a leak detection operation at a predetermined control cycle, for example.
  • the leakage detection operation during the cooling operation will be described.
  • a first step of detecting the temperature and entropy of the refrigerant at a predetermined position of the refrigerant circuit (20) is performed.
  • the predetermined positions of the refrigerant circuit (20) are the inlet and outlet of the compressor (30) and the inlet and outlet of the expansion valve (36).
  • the refrigerant state detector (51) detects the measured value of the suction temperature sensor (45a) as the temperature of the refrigerant at the inlet of the compressor (30). Further, the refrigerant state detection unit (51) calculates the entropy of the refrigerant at the inlet of the compressor (30) using the measurement value of the suction temperature sensor (45a) and the measurement value of the suction pressure sensor (46a). Thereby, the coordinate value of the point A in the Ts diagram shown in FIG. 2 is obtained.
  • the refrigerant state detection unit (51) detects the measured value of the discharge temperature sensor (45b) as the refrigerant temperature at the outlet of the compressor (30). Further, the refrigerant state detection unit (51) calculates the entropy of the refrigerant at the outlet of the compressor (30) using the measurement value of the discharge temperature sensor (45b) and the measurement value of the discharge pressure sensor (46b). Thereby, the coordinate value of the point B in the Ts diagram shown in FIG. 2 is obtained.
  • the refrigerant state detection unit (51) detects the measured value of the outdoor liquid temperature sensor (45d) as the refrigerant temperature at the inlet of the expansion valve (36). Further, the refrigerant state detection unit (51) calculates the entropy of the refrigerant at the inlet of the expansion valve (36) using the measured value of the outdoor liquid temperature sensor (45d) and the measured value of the discharge pressure sensor (46b). In calculating the entropy of the refrigerant at the inlet of the expansion valve (36), the measured value of the discharge pressure sensor (46b) is assumed that the pressure at the inlet of the expansion valve (36) is equal to the pressure at the outlet of the compressor (30). Is used. Thereby, the coordinate value of the point E in the Ts diagram shown in FIG. 2 is obtained.
  • the refrigerant state detector (51) detects the measured value of the indoor liquid temperature sensor (45e) as the refrigerant temperature at the outlet of the expansion valve (36).
  • the refrigerant state detector (51) calculates the entropy of the refrigerant at the outlet of the expansion valve (36) using the measured value of the indoor liquid temperature sensor (45e) and the measured value of the suction pressure sensor (46a).
  • the measured value of the suction pressure sensor (46a) assumes that the pressure at the outlet of the expansion valve (36) is equal to the pressure at the inlet of the compressor (30). Is used.
  • the enthalpy of the refrigerant at the inlet of the expansion valve (36) is calculated so that entropy can be calculated from the temperature and pressure of the refrigerant. It is assumed that it is equal to the refrigerant enthalpy at the outlet of the expansion valve (36). Thereby, the coordinate value of the point G on the Ts diagram shown in FIG. 2 is obtained.
  • the second step constitutes an index value calculation step together with the first step.
  • the exergy calculation unit (52) performs the refrigerant exergy loss ⁇ E (c) in the outdoor heat exchanger (34) operating as a condenser and the indoor heat exchanger ( 37) refrigerant exergy loss ⁇ E (e), refrigerant exergy loss ⁇ E (b) in compressor (30), compressor (30) input ⁇ E (a), outdoor heat A refrigerant heat release amount ⁇ E (a + g) in the exchanger (34) is calculated.
  • circuit components compressor (30), condenser (34, 37), the amount of refrigerant exergy loss in the expansion valve (36) and the evaporator (34, 37)) can be obtained.
  • Th is the temperature of the air sent to the condenser (34, 37) (in the cooling operation, the measured value of the outside air temperature sensor (18)), and Tc is the air sent to the evaporator (34, 37). (In the cooling operation, the measured value of the indoor temperature sensor (19)).
  • point A is a point determined from the refrigerant temperature and entropy at the inlet of the compressor (30) (the outlet of the evaporator (34, 37)).
  • Point B is a point determined from the refrigerant temperature and entropy at the outlet of the compressor (30) (inlet of the condenser (34, 37)).
  • Point E is a point determined from the refrigerant temperature and entropy at the inlet of the expansion valve (36) (outlet of the condenser (34, 37)).
  • Point G is a point determined from the refrigerant temperature and entropy at the outlet of the expansion valve (36) (inlet of the evaporators (34, 37)).
  • point C is a point where the isobaric line passing through the point B and the saturated vapor line intersect.
  • Point D is a point where an isotherm passing through point C and a saturated liquid line intersect.
  • Point F is a point where an isoenthalpy line passing through point E intersects with a saturated liquid line.
  • Point H is a point where an isotherm passing through point G intersects with a saturated vapor line.
  • Point I is a point at which the temperature becomes Tc on an isentropic line passing through point A.
  • Point J is a point at which the temperature becomes Th on an isentropic line passing through point A.
  • Point K is a point at which the temperature becomes Th on an isentropic line passing through point G.
  • Point L is a point at which the temperature becomes Tc on an isentropic line passing through point G.
  • Point M is a point at which the temperature becomes Th on an isentropic line passing through point B.
  • the point C, the point B, the point E, and the point G, the measured value of the outdoor air temperature sensor (18), and the measured value of the indoor temperature sensor (19) are used to generate the point C.
  • D, F, H, I, J, K, L, and M are calculated.
  • the input ⁇ E (a) of the compressor (30) is represented by the area of the region (a).
  • the refrigerant exergy loss amount ⁇ E (b) in the compressor (30) is represented by the area of the region (b).
  • the refrigerant exergy loss amount ⁇ E (c) in the condenser (34, 37) is expressed by the area of the region (c).
  • the amount of refrigerant exergy loss ⁇ E (d) in the expansion valve (36) is represented by the area of the region (d).
  • the amount of refrigerant exergy loss ⁇ E (e) in the evaporator (34, 37) is represented by the area of the region (e).
  • the area (a) is an area obtained by subtracting the area (g) from the entire hatched area.
  • the work ⁇ E (f) of the reverse Carnot cycle is represented by the area of the region (f).
  • the refrigerant heat release ⁇ E (a + g) in the condenser (34, 37) is in the region below the line from point B to point E through point C and point D, that is, the region (a) (g ) Area is added to the area (total area hatched in FIG. 2).
  • the refrigerant endothermic amount ⁇ E (g) in the evaporator (34, 37) is expressed by the area of the area below the line extending from point G to point A to point A, that is, the area of (g).
  • the exergy calculation unit (52) uses the coordinate values of the points B, C, D, and E and the measured value Th of the outdoor air temperature sensor (18) to determine the refrigerant in the outdoor heat exchanger (34). The amount of exergy loss ⁇ E (c) is calculated.
  • the exergy calculation unit (52) uses the coordinate values of the points A, G, and H and the measured value Tc of the indoor temperature sensor (19) to determine the exergy of the refrigerant in the indoor heat exchanger (37).
  • the loss amount ⁇ E (e) is calculated.
  • the exergy calculation unit (52) uses the coordinate values of the points A and B and the measured value Th of the outside air temperature sensor (18) to reduce the amount of refrigerant exergy ⁇ E (b in the compressor (30). ) Is calculated.
  • the exergy calculation unit (52) calculates the input ⁇ E (a) of the compressor (30) using the coordinate values of the points A, B, C, D, E, G, and H. .
  • the exergy calculation unit (52) calculates the heat release amount ⁇ E (a + g) of the refrigerant in the outdoor heat exchanger (34) using the coordinate values of the points B, C, D, and E.
  • the exergy calculation unit (52) calculates the area of the area below the line segment connecting the points A and B as the refrigerant exergy loss ⁇ E (b) in the compressor (30). It may be configured.
  • the refrigerant exergy loss ⁇ E (b) in the compressor (30) is the change in refrigerant temperature from the inlet to the outlet of the compressor (30), and the refrigerant entropy at the inlet of the compressor (30).
  • the exergy calculation unit (52) calculates the amount of refrigerant exergy loss in the outdoor heat exchanger (34) relative to the refrigerant heat release amount ⁇ E (a + g) in the outdoor heat exchanger (34).
  • the exergy calculation unit (52) outputs the refrigerant exergy loss ⁇ E (e) in the evaporator (34, 37) as an evaporator-side index value, and the refrigerant exergy loss in the compressor (30).
  • the quantity ⁇ E (b) is output as the compressor side index value.
  • the third step constitutes a leakage determination step.
  • the leakage determination unit (53) reads the first reference value R1 (0) and the second reference value R2 (0) from the memory.
  • the leakage determining unit (53) divides the first radiator side index value R1 by the first reference value R1 (0), thereby changing the rate of change (R1 / R) of the first radiator side index value from the reference state. R1 (0)) is calculated.
  • the leakage determination unit (53) determines whether or not a first determination condition is satisfied in which the rate of change of the first radiator-side index value from the reference state is equal to or less than a predetermined first decrease determination value.
  • the leakage determination unit (53) divides the second radiator-side index value R2 by the second reference value R2 (0), thereby changing the second radiator-side index value from the reference state (R2 / R2 (0)) is calculated.
  • the leakage determination unit (53) determines whether or not a second determination condition is satisfied in which the rate of change of the second radiator-side index value from the reference state is equal to or less than a predetermined second decrease determination value.
  • the leakage determination unit (53) determines that refrigerant leakage has occurred in the refrigerant circuit (20) when at least one of the first determination condition and the second determination condition is satisfied. On the other hand, the leakage determination unit (53) determines that no refrigerant leakage has occurred in the refrigerant circuit (20) when both the first determination condition and the second determination condition are not satisfied.
  • the condensation temperature of the refrigerant in the condenser (34) is lower than that in the reference state. . Since the difference between the refrigerant condensing temperature and the outdoor air temperature in the condenser (34) becomes smaller, the refrigerant temperature at the outlet of the condenser (34) becomes higher than the reference state, and at the outlet of the condenser (34). The degree of supercooling of the refrigerant is smaller than that in the reference state. The entropy of the refrigerant at the inlet and outlet of the expansion valve (36) is greater than that in the reference state.
  • the high pressure in the refrigeration cycle is lower than the reference state, but the low pressure in the refrigeration cycle is not much different from the reference state.
  • the degree of superheat of the refrigerant at the outlet of the evaporator (37) is not so different from the reference state.
  • the change in the refrigerant exergy loss amount ⁇ E (c) in the condenser (34) from the reference state is particularly large.
  • the refrigerant exergy loss ⁇ E (c) in the condenser (34) changes. In this case, the refrigerant exergy in the condenser (34) is also changed. Loss amount ⁇ E (c) increases. Therefore, in the present embodiment, it is determined whether or not refrigerant leakage has occurred based on a change in the amount of refrigerant exergy ⁇ E (c) in the condenser (34) that decreases from the reference state.
  • the refrigerant exergy loss ⁇ E (c) in the condenser (34) is smaller than that in the reference state because the degree of refrigerant supercooling at the outlet of the condenser (34) is small. This is because in the effective flow path length of the condenser (34), the ratio of the gas-liquid two-phase region with good heat exchange efficiency increases, and the heat exchange efficiency as a whole increases.
  • the refrigerant exergy loss amount ⁇ E (e) in the evaporator (37) is slightly smaller than the reference state, and the refrigerant exergy loss amount ⁇ E in the compressor (30). Both (b) and the exergy loss amount ⁇ E (d) of the refrigerant in the expansion valve (36) do not change so much from the reference state.
  • the loss amount of refrigerant exergy in the condenser (34, 37) may be used as the radiator side index value as it is.
  • coolant leakage has arisen based on the radiator side index value it is not restricted to the above-mentioned method. For example, you may determine with the refrigerant
  • the leakage determination unit (53) reads out the third reference value and the fourth reference value from the memory. Then, the leakage determination unit (53) calculates the rate of change of the evaporator-side index value from the reference state by dividing the evaporator-side index value ⁇ E (e) by the third reference value. The leakage determination unit (53) determines whether or not a third determination condition is satisfied in which the rate of change of the evaporator-side index value from the reference state is equal to or greater than a predetermined first increase determination value.
  • the leakage determination unit (53) calculates the rate of change of the compressor-side index value from the reference state by dividing the compressor-side index value ⁇ E (b) by the fourth reference value. The leakage determination unit (53) determines whether or not a fourth determination condition is satisfied in which the rate of change of the compressor-side index value from the reference state is equal to or greater than a predetermined second increase determination value.
  • the leakage determination unit (53) determines that the refrigerant leakage has occurred based on the radiator side index value, and when both the third determination condition and the fourth determination condition are satisfied, the refrigerant leakage is detected. It determines with progressing to the predetermined level (the level which may damage a circuit structure apparatus by lack of refrigerant
  • the condensation temperature of the refrigerant in the condenser (34) is higher than that in the first traveling state. Further lower.
  • the refrigerant temperature at the outlet of the condenser (34) becomes higher than that in the first progress state, and the degree of supercooling of the refrigerant at the outlet of the condenser (34) becomes lower than that in the first progress state.
  • the entropy of the refrigerant at the inlet and outlet of the expansion valve (36) is further increased compared to the first progress state.
  • the high pressure in the refrigeration cycle is further lower than that in the first progress state, and the low pressure in the refrigeration cycle is lower than that in the first progress state.
  • the degree of superheat of the refrigerant at the outlet of the evaporator (37) becomes larger than that in the first progress state.
  • the amount of refrigerant exergy loss ⁇ E (c) in the condenser (34) is larger than that in the first progress state.
  • the refrigerant exergy loss ⁇ E (e) in the evaporator (37) does not change so much.
  • the refrigerant circuit (20) is controlled so that the low pressure of the refrigeration cycle becomes a constant value, the refrigerant exergy loss ⁇ E (e) in the evaporator (37) hardly changes.
  • the compressor (30) is deteriorated, the refrigerant circuit (20) is controlled so that the degree of superheat of the refrigerant flowing out of the evaporator (37) becomes a constant value.
  • the amount of refrigerant exergy loss ⁇ E (b) does not change so much.
  • the refrigerant exergy loss amount ⁇ E (e) in the evaporator (37) increases from the reference state, and the refrigerant exergy loss amount ⁇ E (b in the compressor (30). ) Is increased from the reference state, it is determined whether or not the refrigerant leakage has progressed to a predetermined level.
  • the method for determining whether or not refrigerant leakage has occurred based on the respective leakage index values of the evaporator-side index value and the compressor-side index value is not limited to the above-described method. For example, when the condition that the leakage index value exceeds a predetermined determination threshold is satisfied, it may be determined that the refrigerant leakage has progressed to a predetermined level. Further, when the condition that the average value of the leakage index values in a predetermined period (for example, one month) exceeds a predetermined determination threshold is satisfied, it may be determined that the refrigerant leakage has progressed to a predetermined level. .
  • a leakage index value that changes in a predetermined manner when refrigerant leakage occurs in the refrigerant circuit (20) is calculated, and based on the leakage index value Diagnosis of refrigerant leakage is performed.
  • the refrigerant leakage in the refrigerant circuit (20) can be detected by monitoring the change of the leakage index value, for example. Therefore, the diagnosis of refrigerant leakage using the amount of refrigerant exergy loss in the circuit configuration device of the refrigerant circuit (20) can be realized.
  • the condenser (34, 37) even in a state where the amount of refrigerant leaked from the refrigerant circuit (20) is relatively small.
  • the condenser (34, 37) Shows a large change in the amount of refrigerant exergy loss. For this reason, refrigerant leakage can be detected at a stage where the amount of refrigerant leaked from the refrigerant circuit (20) is small. Then, the amount of refrigerant leaking from the refrigerant circuit (20) can be reduced, and when a refrigerant that affects the global environment is used, the influence on the global environment can be reduced.
  • the change from the reference state of the refrigerant exergy loss in the evaporator (34, 37) and the change from the reference state of the refrigerant exergy loss in the compressor (30) Based on both, it is determined whether or not the refrigerant leakage has progressed to a predetermined level. Therefore, it can be more accurately determined whether or not the refrigerant leakage has progressed to a predetermined level.
  • refrigerant leakage has occurred in the refrigerant circuit (20) based on the radiator side index value, and the refrigerant is determined based on the evaporator side index value and the compressor side index value. It is determined whether the refrigerant leak in the circuit (20) has progressed to a predetermined level. Therefore, it is possible to detect not only whether or not refrigerant leakage has occurred, but also whether or not refrigerant leakage has progressed to a predetermined level.
  • the ratio of the “exhaust loss of refrigerant in the condenser (34, 37)” to the “input of the compressor (30)” is predetermined. Therefore, this ratio is used as the radiator side index value, and the refrigerant leakage is diagnosed based on the radiator side index value.
  • the ratio of “the amount of refrigerant exergy loss in the condenser (34, 37)” to “the amount of refrigerant heat released in the condenser (34, 37)” is predetermined.
  • radiator side index value is used as the radiator side index value, and the refrigerant leakage is diagnosed based on the radiator side index value. Since these radiator side index values are the ratios between the loss amounts of exergy, they are non-dimensionalized values. For this reason, it is possible to diagnose refrigerant leakage without considering the rated capacity of the refrigerant circuit (20).
  • “input of the compressor (30)” is a value reflecting the operating state of the refrigerant circuit (20) (for example, the circulation amount of the refrigerant and the temperature of the outdoor air).
  • the “heat dissipation amount of refrigerant in the condenser (34, 37)” is a value reflecting the operating state of the refrigerant circuit (20).
  • the radiator side index value reflecting the operating state of the refrigerant circuit (20) is used for diagnosis of refrigerant leakage. Therefore, it is possible to diagnose refrigerant leakage without taking into account the operating state of the refrigerant circuit (20).
  • a leakage diagnosis device (50) that uses the amount of loss of refrigerant exergy in the circuit component device is provided to determine whether or not refrigerant leakage has occurred in the refrigerant circuit (20). Yes. Therefore, it is possible to provide a refrigeration apparatus (10) that can perform refrigerant leakage diagnosis using the amount of refrigerant exergy loss in the circuit configuration device of the refrigerant circuit (20).
  • FIG. 5 shows the schematic block diagram of the air conditioning apparatus (10) of this modification 1, only one indoor unit (13) is described, and description of other indoor units (13) is omitted.
  • an outdoor expansion valve (36a) is provided in the outdoor circuit (21), and each indoor circuit (22) An expansion valve (36b) is provided.
  • the leak detection operation of the first modification can also be applied to an air conditioner (10) having one indoor unit (13) as shown in FIG.
  • the indoor expansion valve (36b) and the outdoor expansion valve (36a) are constituted by variable-opening electric expansion valves.
  • an electric expansion valve having a maximum control pulse value of 480 pulses is used as the outdoor expansion valve (36a).
  • the outdoor expansion valve (36a) is set to fully open, and the opening degree of the indoor expansion valve (36b) is a constant value (for example, 5 ° C.) of the superheat of the refrigerant flowing out of the indoor heat exchanger (37). Adjusted to be.
  • the opening of the outdoor expansion valve (36a) is adjusted so that the degree of superheat of the refrigerant flowing out of the outdoor heat exchanger (34) becomes a constant value (for example, 5 ° C.).
  • the opening degree of (36b) is adjusted so that the degree of supercooling of the refrigerant flowing out from the indoor heat exchanger (37) becomes a constant value (for example, 5 ° C.).
  • the leak detection operation during the cooling operation will be described.
  • the same first step as in the above embodiment is performed.
  • the exergy calculation unit (52) calculates an exergy loss amount ⁇ E (c2) in a process in which the refrigerant is in a gas-liquid two-phase state in the outdoor heat exchanger (34).
  • the exergy loss amount ⁇ E (c2) in the process in which the refrigerant is in the gas-liquid two-phase state in the outdoor heat exchanger (34) is represented by the area of the region (c2).
  • the exergy calculation unit (52) calculates the area of the area (c2) using the coordinate values of the points C and D and the measured value Th of the outside air temperature sensor (18), thereby exchanging the outdoor heat.
  • the amount of exergy loss ⁇ E (c2) in the process in which the refrigerant is in the gas-liquid two-phase state in the vessel (34) is calculated.
  • the exergy calculation unit (52) calculates an exergy loss amount ⁇ E (c3) in a process in which the refrigerant is in a liquid single phase state in the outdoor heat exchanger (34). 6 and 7, the exergy loss amount ⁇ E (c3) in the process in which the refrigerant is in the liquid single-phase state in the outdoor heat exchanger (34) is represented by the area of the region (c3). .
  • the exergy calculation unit (52) calculates the area of the area (c3) using the coordinate values of the points D and E and the measured value Th of the outside air temperature sensor (18), thereby exchanging the outdoor heat.
  • the amount of exergy loss ⁇ E (c3) in the process in which the refrigerant is in the liquid single phase state is calculated in the vessel (34).
  • the exergy calculation unit (52) calculates an exergy loss amount ⁇ E (e1) in the process in which the refrigerant is in a gas-liquid two-phase state in the indoor heat exchanger (37). 6 and 7, the exergy loss amount ⁇ E (e1) in the process in which the refrigerant is in the gas-liquid two-phase state in the indoor heat exchanger (37) is represented by the area of the region (e1).
  • the exergy calculating unit (52) calculates the area of the area (e1) using the coordinate values of the G point and the H point and the measured value Tc of the indoor temperature sensor (19), thereby exchanging the indoor heat.
  • the amount of exergy loss ⁇ E (e1) in the process in which the refrigerant is in the gas-liquid two-phase state in the container (37) is calculated.
  • the exergy calculation unit (52) calculates an exergy loss amount ⁇ E (e2) in the process in which the refrigerant is in a gas single phase state in the indoor heat exchanger (37). 6 and 7, the amount of exergy loss ⁇ E (e2) in the process in which the refrigerant is in the gas single-phase state in the indoor heat exchanger (37) is represented by the area of the region (e2). .
  • the exergy calculation unit (52) calculates the area of the area (e2) using the coordinate values of the points H and A and the measured value Tc of the indoor temperature sensor (19), thereby exchanging the indoor heat.
  • the amount of exergy loss ⁇ E (e2) in the process in which the refrigerant is in the gas single-phase state in the vessel (37) is calculated.
  • the exergy loss ⁇ E (c2) in the process in which the refrigerant is in the gas-liquid two-phase state is the loss generated when the refrigerant in the gas-liquid two-phase state flows. Represents size.
  • the amount of exergy loss ⁇ E (c3) in the process in which the refrigerant is in the liquid single-phase state represents the amount of loss that occurs when the liquid single-phase refrigerant flows. ing.
  • the amount of exergy loss ⁇ E (e1) in the process in which the refrigerant is in the gas-liquid two-phase state in the indoor heat exchanger (37) is the magnitude of the loss that occurs when the gas-liquid two-phase refrigerant flows. Represents.
  • the amount of exergy loss ⁇ E (e1) in the process in which the refrigerant is in the gas single-phase state in the indoor heat exchanger (37) represents the amount of loss that occurs when the gas single-phase refrigerant flows. ing.
  • the memory of the leakage determination unit (53) includes “outdoor energy loss” for “the amount of loss of exergy in the process in which the refrigerant is in a gas-liquid two-phase state in the outdoor heat exchanger (34)” during the cooling operation.
  • the reference value of the ratio of the “exergy loss amount in the process in which the refrigerant is in the liquid single-phase state in the heat exchanger (34)” is stored as the fifth reference value.
  • this memory has “in the indoor heat exchanger (37) the amount of loss of exergy in the process in which the refrigerant is in a gas-liquid two-phase state in the indoor heat exchanger (37)” during the cooling operation.
  • the value of the reference state of the ratio of the “exergy loss amount in the process in which the refrigerant is in the gas single phase state” is stored as the sixth reference value.
  • the leakage determination unit (53) reads out the fifth reference value and the sixth reference value from the memory. Then, the leakage determination unit (53) calculates the rate of change of the radiator side index value from the reference state by dividing the radiator side index value by the fifth reference value. The leakage determination unit (53) determines whether or not a fifth determination condition is satisfied in which the rate of change of the radiator side index value from the reference state is equal to or less than a predetermined first determination value. The leakage determination unit (53) determines that refrigerant leakage has occurred in the refrigerant circuit (20) when the fifth determination condition is satisfied. On the other hand, when the fifth determination condition is not satisfied, the leakage determination unit (53) determines that no refrigerant leakage has occurred in the refrigerant circuit (20).
  • the leakage determination unit (53) calculates the rate of change from the reference state of the evaporator-side index value by dividing the evaporator-side index value by the sixth reference value.
  • the leakage determination unit (53) determines whether or not a sixth determination condition is satisfied in which the rate of change of the evaporator-side index value from the reference state is equal to or greater than a predetermined second determination value.
  • the leakage determination unit (53) determines that the refrigerant leakage has progressed to a predetermined level (a level at which the circuit component device may be damaged due to insufficient refrigerant).
  • the operation frequency of the compressor (30) is controlled so that the value of the low pressure of the refrigeration cycle (the detection value of the suction pressure sensor (46a)) becomes a constant value. Since the control is performed, in the first progress state in which the amount of refrigerant leaked from the refrigerant circuit (20) is relatively small, there is almost no change in the amount of refrigerant exergy loss in the evaporator (34, 37). In the first traveling state, a relatively large change appears in the amount of refrigerant exergy loss in the condensers (34, 37).
  • high-pressure constant control is performed to control the operating frequency of the compressor (30) so that the high-pressure value of the refrigeration cycle (detected value of the discharge pressure sensor (46b)) becomes a constant value.
  • the amount of refrigerant exergy in the condenser (34, 37) is relatively large. Change appears. And if a refrigerant
  • refrigerant leakage it is determined whether or not refrigerant leakage has occurred in the refrigerant circuit (20) based on the evaporator side index value, and refrigerant leakage in the refrigerant circuit (20) is determined based on the radiator side index value. It is possible to determine whether or not the level has progressed to the level.
  • the exergy calculation unit (52) calculates an exergy loss amount ⁇ E (e1) in the process in which the refrigerant is in a gas-liquid two-phase state in the outdoor heat exchanger (34). To do.
  • the exergy calculation unit (52) calculates an exergy loss amount ⁇ E (e2) in the process in which the refrigerant is in a gas single-phase state in the outdoor heat exchanger (34).
  • the exergy calculation unit (52) uses, as the evaporator-side index value, “the amount of exergy loss ⁇ E (e1) in the process in which the refrigerant is in a gas-liquid two-phase state in the outdoor heat exchanger (34)”.
  • R3 (R3 ⁇ E (e2) / ⁇ E (e1)) of the “exergy loss amount ⁇ E (e2) in the process where the refrigerant is in a single-phase state in the outdoor heat exchanger (34)”
  • the ratio R3 is output.
  • the memory of the leakage determination unit (53) includes “outdoor energy loss amount in the process in which the refrigerant is in a gas-liquid two-phase state in the outdoor heat exchanger (34)” during the heating operation.
  • the value of the reference state of the ratio of the “exergy loss amount in the process in which the refrigerant is in the gas single phase state in the heat exchanger (34)” is stored as the seventh reference value.
  • the leakage determination unit (53) reads the seventh reference value from the memory. And the leak determination part (53) calculates the rate of change from the reference state of the evaporator side index value by dividing the evaporator side index value calculated in the second step by the seventh reference value. The leakage determination unit (53) determines whether or not a seventh determination condition is satisfied in which the rate of change of the evaporator-side index value from the reference state is equal to or greater than a predetermined third determination value. The leakage determination unit (53) determines that refrigerant leakage has occurred in the refrigerant circuit (20) when the seventh determination condition is satisfied. On the other hand, the leakage determination unit (53) determines that no refrigerant leakage has occurred in the refrigerant circuit (20) when the seventh determination condition is not satisfied.
  • the radiator side index value is calculated without using the amount of loss of exergy in the process in which the refrigerant is in the gas single-phase state in the condenser (34, 37). For this reason, the temperature and entropy of the refrigerant after the end of the compression stroke are not required for calculating the radiator side index value. Therefore, the radiator side index value can be calculated using only relatively accurate values.
  • the radiator side index value is calculated without using the amount of exergy loss in the process in which the refrigerant is in the gas single phase state in the condenser (34, 37). Also good.
  • the amount of exergy loss in the process in which the refrigerant is in a gas-liquid two-phase state in the condenser (34, 37) A predetermined change appears in the ratio of the “loss of exergy in the process where the refrigerant is in a liquid single phase state in the condenser (34, 37)”.
  • the refrigerant leakage is diagnosed based on the vessel side index value.
  • the “evaporator (34, 37) in the process in which the refrigerant is in a gas-liquid two-phase state in the evaporator (34, 37)” 37) a predetermined change appears in the ratio of the “exergy loss amount in the process in which the refrigerant is in the gas single phase state”. Based on the evaporator-side index value, this ratio is used as the evaporator-side index value.
  • the refrigerant leakage is diagnosed.
  • the radiator-side index value and the evaporator-side index value are ratios between exergy loss amounts, and thus become dimensionless values. For this reason, it is possible to diagnose refrigerant leakage without considering the rated capacity of the refrigerant circuit (20).
  • the fifth to seventh reference values can be shared among the refrigeration apparatuses (10) having different rated capacities.
  • the leakage determination unit (53) causes the first opening of the indoor expansion valve (36b) to be greater than or equal to a predetermined first determination opening (for example, 1500 pulses). It is determined whether or not the opening condition is satisfied.
  • the leakage determination unit (53) satisfies the first opening condition even when the sixth determination condition is not satisfied (when it is not possible to determine that refrigerant leakage has occurred based on the evaporator-side index value). In this case, it is determined that refrigerant leakage has occurred in the refrigerant circuit (20).
  • the first determination opening is a value larger than the opening of the indoor expansion valve (36b) (a value around 500 pulses) assumed in a state where no refrigerant leaks, and no refrigerant leaks. Then, it is a value that cannot be.
  • the refrigerant circuit (20) When the amount of refrigerant leaked from the refrigerant is relatively small, the degree of superheat of the refrigerant flowing out of the indoor heat exchanger (37) hardly changes. For this reason, the evaporator side index value hardly changes.
  • the opening of the indoor expansion valve (36b) is increased so that the degree of superheat of the refrigerant flowing out of the indoor heat exchanger (37) does not increase. It will become. That is, when refrigerant leakage occurs, the opening of the expansion valve (36) changes before the evaporator-side index value. In the second modification, paying attention to such points, even if it is not possible to determine that refrigerant leakage has occurred based on the evaporator-side index value, the opening of the indoor expansion valve (36b) is the first. If it is equal to or greater than the determination opening, it is determined that refrigerant leakage has occurred. Therefore, refrigerant leakage can be detected at a stage where the amount of refrigerant leaking from the refrigerant circuit (20) is small.
  • the leakage determination unit (53) determines that the opening of the outdoor expansion valve (36a) is greater than or equal to a predetermined second determination opening (for example, 400 pulses). It is determined whether or not the 2 opening condition is satisfied.
  • the leakage determination unit (53) satisfies the second opening condition even when the seventh determination condition is not satisfied (when it is not possible to determine that refrigerant leakage has occurred based on the evaporator-side index value). In this case, it is determined that refrigerant leakage has occurred in the refrigerant circuit (20).
  • the second determination opening is larger than the opening (50-100 pulses) of the outdoor expansion valve (36a) assumed in a state where no refrigerant leaks, and in a state where no refrigerant leaks. It is a value that cannot be.
  • the opening degree of the indoor expansion valve (36b) can be used to determine whether or not refrigerant leakage has occurred during heating operation.
  • the exergy calculation unit (52) sets the value of the exergy in the process in which the refrigerant is in a gas-liquid two-phase state in the indoor heat exchanger (37) as the radiator side index value.
  • the ratio of “the amount of loss of exergy in the process in which the refrigerant is in the liquid single phase state in the indoor heat exchanger (37)” to the “loss amount” is calculated.
  • a leak determination part (53) determines whether the 8th determination conditions from which the change rate from the reference
  • the leakage determination unit (53) determines that refrigerant leakage has occurred in the refrigerant circuit (20) when the eighth determination condition is satisfied.
  • the leakage determination unit (53) determines whether or not a third opening condition is established in which the opening of the indoor expansion valve (36b) is equal to or smaller than a predetermined third determination opening (for example, 100 pulses). Determine whether.
  • the leakage determination unit (53) satisfies the third opening degree condition even when the eighth determination condition is not satisfied (when it is not possible to determine that refrigerant leakage has occurred based on the radiator side index value). In this case, it is determined that refrigerant leakage has occurred in the refrigerant circuit (20).
  • the third determination opening is a value smaller than the opening of the indoor expansion valve (36b) (a value around 500 pulses) assumed in a state where no refrigerant leaks, and no refrigerant leaks. Then, it is a value that cannot be.
  • the refrigerant circuit (20) When supercooling control is performed to adjust the opening of the indoor expansion valve (36b) so that the supercooling degree of the refrigerant flowing out of the indoor heat exchanger (37) becomes a constant value, the refrigerant circuit (20) When the amount of the leaked refrigerant is relatively small, the degree of supercooling of the refrigerant flowing out from the indoor heat exchanger (37) hardly changes. For this reason, the radiator side index value hardly changes. On the other hand, when the refrigerant flowing through the indoor heat exchanger (37) decreases due to refrigerant leakage, the opening of the indoor expansion valve (36b) is set so that the degree of supercooling of the refrigerant flowing out of the indoor heat exchanger (37) does not decrease. It gets smaller.
  • the opening degree of the indoor expansion valve (36b) is third. If it is less than the determination opening, it is determined that refrigerant leakage has occurred. Therefore, refrigerant leakage can be detected at a stage where the amount of refrigerant leaking from the refrigerant circuit (20) is small.
  • Modification 3 of Embodiment A modification 3 of the embodiment will be described.
  • the leakage diagnosis device (50) of the second modification the method for determining whether or not the refrigerant leakage in the refrigerant circuit (20) has progressed to a predetermined level is different from the above embodiment.
  • the exergy calculation unit (52) uses the “outdoor heat exchanger as a leakage index value for the refrigerant exergy loss ⁇ E (e) in the indoor heat exchanger (37)”.
  • the leakage determination unit (53) includes the amount of refrigerant exergy in the outdoor heat exchanger (34) relative to the amount of refrigerant exergy in the indoor heat exchanger (37) during the cooling operation. ”Ratio reference state value is stored as the eighth reference value.
  • the leakage determination unit (53) reads the eighth reference value from the memory. Then, the leakage determination unit (53) calculates the rate of change of the leakage index value from the reference state by dividing the leakage index value calculated in the second step by the eighth reference value.
  • the leakage determination unit (53) determines whether or not an eighth determination condition is satisfied in which the rate of change of the leakage index value from the reference state is equal to or less than a predetermined fifth determination value.
  • the leakage determination unit (53) determines that the refrigerant leakage in the refrigerant circuit (20) has progressed to a predetermined level when the eighth determination condition is satisfied.
  • the ratio of the “exhaust loss of refrigerant in the condenser (34, 37)” to the “exhaust loss of refrigerant in the evaporator (34, 37)” is set as the leakage index value.
  • the refrigerant leakage is diagnosed based on the leakage index value. Since this leakage index value is a ratio between the loss amounts of exergy, it is a dimensionless value. For this reason, it is possible to diagnose refrigerant leakage without considering the rated capacity of the refrigerant circuit (20).
  • the amount of refrigerant accumulated in the accumulator (38) increases.
  • the operating capacity of the compressor (30) increases after the amount of refrigerant accumulated in the accumulator (38) increases, it takes time for the amount of refrigerant in the accumulator (38) to decrease. Therefore, until the refrigerant amount in the accumulator (38) decreases, the refrigerant circuit (20) has a short circulation amount of the refrigerant, and thus this state may be erroneously determined as refrigerant leakage.
  • the degree of superheat of the refrigerant flowing into the accumulator (38) If the difference between the superheat of the refrigerant flowing out of the accumulator (38) exceeds the specified suction side reference value, it is judged that a relatively large amount of refrigerant has accumulated in the accumulator (38), and the refrigerant is judged to be leaking. do not do. Therefore, it is possible to suppress erroneous determination of a state where a relatively large amount of refrigerant is accumulated in the accumulator (38) as refrigerant leakage.
  • the refrigerant circuit (20) is provided with an inlet temperature sensor (17) in the refrigerant pipe connected to the inlet of the accumulator (38) as shown in FIG. If the leakage determination unit (53) is in the cooling operation, for example, the refrigerant that flows into the accumulator (38) by subtracting the measured value of the intake temperature sensor (45a) from the measured value of the inlet temperature sensor (17) And the difference between the degree of superheat of the refrigerant from the accumulator (38) to the compressor (30).
  • the leak diagnosis apparatus (50) may be provided with the data processing part (55) which averages the leak index value which the exergy calculation part (52) output, as shown in FIG. .
  • the leakage diagnosis device (50) is installed at a position away from the refrigeration device (10).
  • the leakage diagnosis apparatus (50) is connected to a control board provided in the refrigeration apparatus (10) through, for example, a network line (57).
  • the leak diagnosis device (50) receives the measured values of all temperature sensors (16-19, 45, 63) and pressure sensors (46) provided in the refrigeration device (10) via the control board.
  • the data management unit (54) is provided.
  • the refrigerant state detection unit (51) uses the measurement values of the temperature sensors (16-19, 45, 63) and the pressure sensor (46) input to the data management unit (54), as in the above embodiment, The refrigerant temperature and entropy are detected at each position of the inlet of the compressor (30), the outlet of the compressor (30), the inlet of the expansion valve (36), and the outlet of the expansion valve (36).
  • the exergy calculation unit (52) calculates the leakage index value as in the above embodiment.
  • the exergy calculation unit (52) calculates the leakage index value once a day, for example, and outputs it to the data processing unit (55).
  • the exergy calculation unit (52) for example, “an outdoor heat exchanger (34) for an exergy loss ⁇ E (c2) in a process in which the refrigerant is in a gas-liquid two-phase state” In 34), the ratio of the exergy loss amount ⁇ E (c3) in the process in which the refrigerant is in the liquid single-phase state is calculated as the leakage index value.
  • Data of the leakage index value is accumulated in the data processing unit (55).
  • the data processing unit (55) averages the accumulated leakage index values, for example, on a monthly basis, and creates the chart shown in FIG.
  • the monitor (56) of the leakage diagnosis apparatus (50) displays a chart created by the data processing unit (55) as leakage diagnosis information.
  • the leakage index value averaged on a monthly basis (hereinafter referred to as “monthly average index value”) is visualized.
  • the leakage determination unit (53) compares the trend of the monthly average index value of a certain year with the trend of the monthly average index value of the previous year. In addition, it may be determined whether or not refrigerant leakage has occurred in the refrigerant circuit (20).
  • the leakage determination unit (53) may determine whether or not refrigerant leakage has occurred in the refrigerant circuit (20) by comparing the monthly average index value with a predetermined reference value. In this case, as shown in FIG. 10, since the monthly average index value varies depending on the month, the reference value may be set to a larger value as the month in which the monthly average index value is expected to increase.
  • the monthly average index value may be lower than the reference value from the beginning of the installation of the refrigeration apparatus (10).
  • the refrigerant is insufficient because the refrigerant circuit (20) is not filled with a sufficient amount of refrigerant when the refrigeration apparatus (10) is installed, instead of refrigerant leakage. .
  • the refrigeration apparatus (10) is not only an air conditioner (10), but also a refrigeration apparatus (10) that cools the inside of a refrigerator for refrigeration or freezing food, indoor air conditioning and cooling, A refrigeration apparatus (10) that performs heating, a refrigeration apparatus (10) with a humidity control function that uses the heat of the refrigerant flowing through the heat exchanger to heat or cool the adsorbent, or a hot water supply function that heats water with a high-pressure refrigerant It may be a refrigeration apparatus (10).
  • the refrigeration apparatus (10) may be configured to perform a supercritical cycle in which the high pressure of the refrigeration cycle is higher than the critical pressure of the refrigerant.
  • a heat exchanger that serves as a condenser operates as a radiator (gas cooler).
  • carbon dioxide is used as the refrigerant.
  • the present invention is useful for a leakage diagnosis apparatus, a leakage diagnosis method, and a refrigeration apparatus including the leakage diagnosis apparatus for diagnosing the presence or absence of refrigerant leakage from the refrigerant circuit.
  • Air conditioning equipment (refrigeration equipment) 20 Refrigerant circuit 30 Compressor 34 Outdoor heat exchanger (heat radiator, evaporator) 36 Expansion valve (pressure reduction mechanism) 37 Indoor heat exchangers (radiators, evaporators) 50 Leakage diagnosis device 51 Refrigerant state detection unit (index value calculation means) 52 Exergy calculation unit (index value calculation means) 53 Leakage determination unit (leakage determination means)

Abstract

【課題】冷凍サイクルを行う冷媒回路に対して冷媒漏れの有無を診断するための漏洩診断装置において、冷媒回路の回路構成機器における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現する。 【解決手段】漏洩診断装置(50)において、エクセルギー算出部(52)が、回路構成機器における冷媒のエクセルギーの損失量に基づいて、冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する。そして、漏洩判定部(53)が、エクセルギー算出部(52)が算出した漏洩指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かを判定する。

Description

漏洩診断装置、漏洩診断方法、及び冷凍装置
 本発明は、冷媒回路からの冷媒の漏洩の有無を診断するための漏洩診断装置、漏洩診断方法、及び漏洩診断装置を備えた冷凍装置に関するものである。
 従来より、冷媒回路からの冷媒の漏洩の有無を診断するための漏洩診断装置が知られている。例えば特許文献1には、この種の漏洩診断装置として、異常検知システムが記載されている。この異常検知システムは、空気調和装置の冷凍サイクルの過冷却度、過熱度、低圧圧力、高圧圧力、外気温度、室内温度及び圧縮機回転数を利用して、冷媒漏洩の検知を行うように構成されている。
 また、特許文献2には、冷媒回路の回路構成機器(例えば圧縮機)における冷媒のエクセルギーを分析して、回路構成機器の故障診断を行う冷凍装置の分析装置が記載されている。
特開2006-275411号公報 特許第4039462号公報
 ところで、従来は、冷媒回路からの冷媒の漏洩量に応じた指標値を用いて、冷媒の漏洩検知を行うことは提案されている。しかし、冷媒回路に設けられた回路構成機器における冷媒のエクセルギーの損失量から、上記指標値を算出できることは知られていなかった。このため、冷媒回路における冷媒漏れの有無を診断するのに、回路構成機器における冷媒のエクセルギーの損失量を用いることは考えられていなかった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、冷凍サイクルを行う冷媒回路における冷媒漏れの有無を診断するための漏洩診断装置において、冷媒回路の回路構成機器における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することにある。
 第1の発明は、圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)における冷媒漏れの有無を診断する漏洩診断装置(50)を対象とする。そして、この漏洩診断装置(50)は、上記回路構成機器における冷媒のエクセルギーの損失量に基づいて、上記冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する指標値算出手段(31)と、上記指標値算出手段(31)が算出した漏洩指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定する漏洩判定手段(53)とを備えている。
 第1の発明では、例えば放熱器(34,37)などの回路構成機器における冷媒のエクセルギーの損失量に基づいて、冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値が算出される。そして、漏洩指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かが判定される。ここで、冷媒回路(20)において冷媒漏れが生じると、回路構成機器における冷媒のエクセルギーの損失量に所定の変化が現れる。従って、回路構成機器における冷媒のエクセルギーの損失量を用いると、冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出できる。漏洩指標値は、冷媒漏れが生じると所定の変化をする。このため、第1の発明では、回路構成機器における冷媒のエクセルギーの損失量に基づいて、冷媒回路(20)において冷媒漏れが生じると所定の変化をする漏洩指標値が算出され、その漏洩指標値に基づいて冷媒漏れの診断が行われる。
 なお、「エクセルギー」とは、ある圧力、温度にある物質を環境状態まで変化させるとき、力学的エネルギーに変換できる最大仕事のことであり、「有効エネルギー」ともいう。回路構成機器における冷媒のエクセルギーの損失量は、「該回路構成機器において、理論サイクル(逆カルノーサイクル)に対して実際の冷凍サイクルで余分に必要になるエネルギー」であり、「実際の冷凍サイクルにおいて該回路構成機器で失われるエクセルギーの量」を意味している。「エクセルギーの損失量」を「エクセルギー損失」と表現することもできる。回路構成機器における冷媒のエクセルギーの損失量について具体的に説明する。
 理論サイクルの圧縮行程では、断熱圧縮が行われ、冷媒のエントロピーが一定である。一方、実際の圧縮機(30)では、機械摩擦による損失や、冷媒に対して熱の出入りがあるため、理論サイクルに対してエネルギーが余分に必要となる。圧縮機(30)における冷媒のエクセルギーの損失量は、理論サイクルに対して余分に必要となるエネルギーに相当し、圧縮機(30)で生じる損失の大きさを表している。
 また、理論サイクルの放熱行程では、冷媒の温度及び圧力が一定である。一方、実施の放熱器(34,37)では、冷媒が例えば空気などの流体と温度差をもって熱交換する上に、管路において摩擦損失が生じるため、理論サイクルに対してエネルギーが余分に必要となる。放熱器(34,37)における冷媒のエクセルギーの損失量は、理論サイクルに対して余分に必要となるエネルギーに相当し、放熱器(34,37)で生じる損失の大きさを表している。
 理論サイクルの蒸発行程では、冷媒の温度及び圧力が一定である。一方、実施の蒸発器(34,37)では、冷媒が例えば空気などの流体と温度差をもって熱交換する上に、管路において摩擦損失が生じるため、理論サイクルに対してエネルギーが余分に必要となる。蒸発器(34,37)における冷媒のエクセルギーの損失量は、理論サイクルに対して余分に必要となるエネルギーに相当し、蒸発器(34,37)で生じる損失の大きさを表している。
 また、理論サイクルの膨張行程では、断熱膨張が行われ、冷媒のエントロピーが一定である。一方、実際の減圧機構(36)では、摩擦損失が生じるため、理論サイクルに対してエネルギーが余分に必要となる。減圧機構(36)における冷媒のエクセルギーの損失量は、理論サイクルに対して余分に必要となるエネルギーに相当し、減圧機構(36)で生じる損失の大きさを表している。
 第2の発明は、上記第1の発明において、上記指標値算出手段(31)が、上記漏洩指標値として、上記放熱器(34,37)における冷媒のエクセルギーの損失量に基づいて放熱器側指標値を算出し、上記漏洩判定手段(53)は、上記放熱器側指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定する。
 第2の発明では、漏洩指標値として、放熱器(34,37)における冷媒のエクセルギーの損失量に基づいて放熱器側指標値が算出される。ここで、冷媒回路(20)において冷媒漏れが生じると、冷凍サイクルの高圧の低下に伴って、放熱器(34,37)における冷媒のエクセルギーの損失量が低下する。つまり、冷媒漏れが生じると、放熱器(34,37)における冷媒のエクセルギーの損失量に所定の変化が現れる。このため、放熱器(34,37)における冷媒のエクセルギーの損失量に基づいて算出した放熱器側指標値に基づいて、冷媒漏れの診断が行われる。
 第3の発明は、上記第2の発明において、上記放熱器(34,37)では、ガス冷媒が冷却されて凝縮する一方、上記指標値算出手段(31)は、上記放熱器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量を用いずに、上記放熱器側指標値を算出する。
 第3の発明では、放熱器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量を用いずに、放熱器側指標値が算出される。
 第4の発明は、上記第3の発明において、上記指標値算出手段(31)が、上記放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量と、上記放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量との一方に対する他方の比率を、上記放熱器側指標値として算出する。
 第4の発明では、「放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率が、放熱器側指標値として算出される。ここで、冷媒回路(20)において冷媒漏れが生じると、冷凍サイクルの高圧の低下に伴って、「放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」とがそれぞれ低下する。また、放熱器(34,37)における冷媒の凝縮温度と放熱器(34,37)において冷媒と熱交換する流体の温度(例えば室外空気の温度)との差が小さくなるので、放熱器(34,37)から流出した冷媒の過冷却度が小さくなる。このため、「放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」のうち、特に後者が大きく低下する。従って、冷媒漏れが生じると、放熱器側指標値に所定の変化が現れる。このため、「放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。
 第5の発明は、上記第4の発明において、上記冷媒回路(20)では、上記減圧機構(36)が開度可変の膨張弁(36)により構成され、上記膨張弁(36)の開度が、上記放熱器(34,37)から流出した冷媒の過冷却度が一定値になるように調節される一方、上記漏洩判定手段(53)は、上記放熱器側指標値に基づけば上記冷媒回路(20)において冷媒漏れが生じていると判定できない場合であっても、上記膨張弁(36)の開度が所定の判定開度以下になると、上記冷媒回路(20)において冷媒漏れが生じていると判定する。
 第5の発明では、放熱器側指標値に基づけば冷媒漏れが生じていると判定できない場合であっても、膨張弁(36)の開度が判定開度以下になると、冷媒漏れが生じていると判定する。ここで、放熱器(34,37)から流出した冷媒の過冷却度が一定値になるように膨張弁(36)の開度が調節される場合は、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態では、放熱器(34,37)から流出した冷媒の過冷却度がほとんど変化しない。このため、「放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率が、ほとんど変化しない。つまり、放熱器側指標値がほとんど変化しない。他方、冷媒漏れにより放熱器(34,37)を流れる冷媒が減少すると、放熱器(34,37)から流出した冷媒の過冷却度が低下しないように、膨張弁(36)の開度が小さくなってゆく。冷媒漏れが生じると、放熱器側指標値よりも先に膨張弁(36)の開度に変化が現れる。第5の発明では、そのような点に着目して、放熱器側指標値に基づけば冷媒漏れが生じていると判定できない場合であっても、膨張弁(36)の開度が判定開度以下になると、冷媒漏れが生じていると判定する。
 第6の発明は、上記第2又は第3の発明において、上記指標値算出手段(31)が、上記放熱器(34,37)における冷媒のエクセルギーの損失量と、上記放熱器(34,37)における冷媒の放熱量との一方に対する他方の比率を、上記放熱器側指標値として算出する。
 第6の発明では、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「放熱器(34,37)における冷媒の放熱量」との一方に対する他方の比率が、放熱器側指標値として算出される。ここで、冷媒回路(20)において冷媒漏れが生じると、冷凍サイクルの高圧の低下に伴って、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「放熱器(34,37)における冷媒の放熱量」とが、ほぼ同じ量だけ低下する。そして、前者と後者では後者の方がかなり大きな値である。このため、冷媒漏れが生じると、放熱器側指標値に所定の変化が現れる。このため、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「放熱器(34,37)における冷媒の放熱量」との一方に対する他方の比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。
 第7の発明は、上記第2又は第3の発明において、上記指標値算出手段(31)が、上記放熱器(34,37)における冷媒のエクセルギーの損失量と上記圧縮機(30)の入力との一方に対する他方の比率を、上記放熱器側指標値として算出する。
 第7の発明では、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「圧縮機(30)の入力」との一方に対する他方の比率が、放熱器側指標値として算出される。ここで、冷媒回路(20)において冷媒漏れが生じると、冷凍サイクルの高圧の低下に伴って、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「圧縮機(30)の入力」とが、ほぼ同じ量だけ低下する。そして、前者と後者では後者の方がかなり大きな値である。このため、冷媒漏れが生じると、放熱器側指標値に所定の変化が現れる。このため、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「圧縮機(30)の入力」との一方に対する他方の比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。
 第8の発明は、上記第2乃至第7の何れか1つの発明において、上記冷媒回路(20)が、冷凍サイクルの低圧が一定値になるように制御される一方、上記指標値算出手段(31)は、上記蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて蒸発器側指標値を算出し、上記漏洩判定手段(53)は、上記蒸発器側指標値に基づいて上記冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かを判定する。
 第8の発明では、放熱器側指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かが判定され、蒸発器側指標値に基づいて、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かが判定される。ここで、冷凍サイクルの低圧が一定値になるように冷媒回路(20)が制御される場合は、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態では、放熱器(34,37)における冷媒のエクセルギーの損失量が比較的大きく変化するのに対して、蒸発器(34,37)における冷媒のエクセルギーの損失量はほとんど変化しない。しかし、蒸発器(34,37)における冷媒のエクセルギーの損失量は、冷媒回路(20)から漏洩した冷媒の量が比較的多い状態では、比較的大きく変化する。第8の発明では、そのような点に着目して、放熱器側指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かが判定され、蒸発器側指標値に基づいて、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かが判定される。
 第9の発明は、上記第1の発明において、上記指標値算出手段(31)が、上記漏洩指標値として、上記蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて蒸発器側指標値を算出し、上記漏洩判定手段(53)は、上記蒸発器側指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定する。
 第9の発明では、漏洩指標値として、蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて蒸発器側指標値が算出される。ここで、冷媒回路(20)において冷媒漏れが生じると、冷凍サイクルの低圧の低下に伴って、蒸発器(34,37)における冷媒のエクセルギーの損失量が低下する。つまり、冷媒漏れが生じると、蒸発器(34,37)における冷媒のエクセルギーの損失量に所定の変化が現れる。このため、蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて算出した蒸発器側指標値に基づいて、冷媒漏れの診断が行われる。
 第10の発明は、上記第9の発明において、上記指標値算出手段(31)が、上記蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量と、上記蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量との一方に対する他方の比率を、上記蒸発器側指標値として算出する。
 第10の発明では、「蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率が、蒸発器側指標値として算出される。ここで、冷媒回路(20)において冷媒漏れが生じると、蒸発器(34,37)から流出した冷媒の過熱度が大きくなり、それに伴って、「蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」が増大する。一方、「蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」は、それほど変化しない。従って、冷媒漏れが生じると、放熱器側指標値に所定の変化が現れる。このため、「蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率を蒸発器側指標値として、該蒸発器側指標値に基づいて冷媒漏れの診断が行われる。
 第11の発明は、上記第10の発明において、上記冷媒回路(20)では、上記減圧機構(36)が開度可変の膨張弁(36)により構成され、上記膨張弁(36)の開度が、上記蒸発器(34,37)から流出した冷媒の過熱度が一定値になるように調節される一方、上記漏洩判定手段(53)は、上記蒸発器側指標値に基づけば上記冷媒回路(20)において冷媒漏れが生じていると判定できない場合であっても、上記膨張弁(36)の開度が所定の判定開度以上になると、上記冷媒回路(20)において冷媒漏れが生じていると判定する。
 第11の発明では、蒸発器側指標値に基づけば冷媒漏れが生じていると判定できない場合であっても、膨張弁(36)の開度が判定開度以上になると、冷媒漏れが生じていると判定する。ここで、蒸発器(34,37)から流出した冷媒の過熱度が一定値になるように膨張弁(36)の開度が調節される場合は、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態では、蒸発器(34,37)から流出した冷媒の過熱度がほとんど変化しない。このため、「蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率がほとんど変化しない。つまり、蒸発器側指標値がほとんど変化しない。他方、冷媒漏れにより蒸発器(34,37)を流れる冷媒が減少すると、蒸発器(34,37)から流出した冷媒の過熱度が増大しないように、膨張弁(36)の開度が大きくなってゆく。冷媒漏れが生じると、蒸発器側指標値よりも先に膨張弁(36)の開度に変化が現れる。第11の発明では、そのような点に着目して、蒸発器側指標値に基づけば冷媒漏れが生じていると判定できない場合であっても、膨張弁(36)の開度が判定開度以上になると、冷媒漏れが生じていると判定する。
 第12の発明は、上記第1の発明において、上記指標値算出手段(31)が、上記漏洩指標値として、上記圧縮機(30)における冷媒のエクセルギーの損失量に基づいて圧縮機側指標値を算出し、上記漏洩判定手段(53)は、上記圧縮機側指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定する。
 第12の発明では、漏洩指標値として、圧縮機(30)における冷媒のエクセルギーの損失量に基づいて圧縮機側指標値が算出される。ここで、冷媒回路(20)において冷媒漏れが生じると、圧縮機(30)に吸入される冷媒の過熱度の増大に伴って、圧縮機(30)における冷媒のエクセルギーの損失量が増大する。つまり、冷媒漏れが生じると、圧縮機(30)における冷媒のエクセルギーの損失量に所定の変化が現れる。このため、圧縮機(30)における冷媒のエクセルギーの損失量に基づいて算出した圧縮機側指標値に基づいて、冷媒漏れの診断が行われる。
 第13の発明は、上記第1の発明において、上記指標値算出手段(31)が、上記漏洩指標値として、上記放熱器(34,37)における冷媒のエクセルギーの損失量と上記蒸発器(34,37)における冷媒のエクセルギーの損失量との一方に対する他方の比率を算出する。
 第13の発明では、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「蒸発器(34,37)における冷媒のエクセルギーの損失量」との一方に対する他方の比率が、漏洩指標値として算出される。ここで、例えば冷凍サイクルの低圧が一定値になるように冷媒回路(20)が制御される場合は、冷媒漏れが生じると、冷凍サイクルの高圧の低下に伴って、放熱器(34,37)における冷媒のエクセルギーの損失量が低下する一方で、蒸発器(34,37)における冷媒のエクセルギーの損失量がほとんど変化しない。このため、漏洩指標値に所定の変化が現れる。また、例えば冷凍サイクルの高圧が一定値になるように冷媒回路(20)が制御される場合も同様に、冷媒漏れが生じると、漏洩指標値に所定の変化が現れる。このため、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「蒸発器(34,37)における冷媒のエクセルギーの損失量」との一方に対する他方の比率を漏洩指標値として、該漏洩指標値に基づいて冷媒漏れの診断が行われる。
 第14の発明は、上記第1乃至第13の何れか1つの発明において、上記冷媒回路(20)には、上記圧縮機(30)に吸入される冷媒から液冷媒を分離するためのアキュームレータ(38)が設けられる一方、上記漏洩判定手段(53)は、上記漏洩指標値に基づけば上記冷媒回路(20)において冷媒漏れが生じていると判定できる場合であっても、上記アキュームレータ(38)に流入する冷媒の過熱度と上記アキュームレータ(38)から流出した冷媒の過熱度との差が所定の吸入側基準値以上になる場合は、上記冷媒回路(20)において冷媒漏れが生じていると判定しない。
 第14の発明では、漏洩指標値に基づけば冷媒漏れが生じていると判定できる場合であっても、アキュームレータ(38)に流入する冷媒の過熱度とアキュームレータ(38)から流出した冷媒の過熱度との差が吸入側基準値以上になる場合は、冷媒漏れが生じていると判定しない。アキュームレータ(38)における出入口の過熱度差が吸入側基準値以上になる場合は、アキュームレータ(38)に比較的多くの冷媒が溜まった状態になっている。第14の発明では、漏洩指標値に基づけば冷媒漏れが生じていると判定できる場合であっても、アキュームレータ(38)に比較的多くの冷媒が溜まっている場合は、冷媒漏れが生じていると判定しない。
 第15の発明は、圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)における冷媒漏れの有無を診断するための漏洩診断装置(50)を対象とする。そして、この漏洩診断装置(50)は、上記回路構成機器における冷媒のエクセルギーの損失量に基づいて、上記冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する指標値算出手段(31)と、上記指標値算出手段(31)が算出した漏洩指標値に基づく漏洩診断用の情報を表示する表示手段(56)とを備えている。
 第15の発明では、回路構成機器における冷媒のエクセルギーの損失量に基づいて、冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値が算出される。そして、漏洩指標値に基づく漏洩診断用の情報が、表示手段(56)に表示される。このため、表示手段(56)に表示された漏洩診断用の情報を見た人間によって、冷媒漏れの診断を行うことが可能である。
 第16の発明は、圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)と、第1乃至第15の何れか1つの漏洩診断装置(50)とを備えている冷凍装置(10)である。
 第16の発明では、冷凍装置(10)が、回路構成機器における冷媒のエクセルギーの損失量を用いて漏洩指標値を算出する漏洩診断装置(50)を備えている。
 第17の発明は、圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)に対して、冷媒漏れの有無を診断する漏洩診断方法を対象とする。そして、この漏洩診断方法は、上記回路構成機器における冷媒のエクセルギーの損失量に基づいて、上記冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する指標値算出ステップと、上記指標値算出ステップで算出した漏洩指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定する漏洩判定ステップとを備えている。
 第17の発明では、例えば放熱器(34,37)などの回路構成機器における冷媒のエクセルギーの損失量を用いて、冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値が算出される。そして、漏洩指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かが判定される。第17の発明では、回路構成機器における冷媒のエクセルギーの損失量を用いて、冷媒回路(20)において冷媒漏れが生じると所定の変化をする漏洩指標値が算出され、その漏洩指標値に基づいて冷媒漏れの診断が行われる。
 本発明では、回路構成機器における冷媒のエクセルギーの損失量に基づいて、冷媒回路(20)において冷媒漏れが生じると所定の変化をする漏洩指標値が算出され、その漏洩指標値に基づいて冷媒漏れの診断が行われる。冷媒回路(20)における冷媒漏れは、例えば、漏洩指標値の変化を監視することにより検知することが可能である。従って、冷媒回路(20)の回路構成機器における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。
 また、上記第2の発明では、冷媒回路(20)において冷媒漏れが生じると、放熱器(34,37)における冷媒のエクセルギーの損失量に所定の変化が現れるので、放熱器(34,37)における冷媒のエクセルギーの損失量に基づいて算出した放熱器側指標値に基づいて、冷媒漏れの診断が行われる。従って、放熱器(34,37)における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。
 また、上記第2の発明では、例えば冷凍サイクルの低圧が一定値になるように冷媒回路(20)が制御される場合は、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態でも、放熱器(34,37)における冷媒のエクセルギーの損失量にある程度大きな変化が現れる。ここで、従来の漏洩検出方法は、冷媒漏れがある程度進行した状態を検出することができるが、冷媒漏れの程度が小さい状態では、冷媒漏れの検出に用いる物理量(例えば冷凍サイクルの低圧圧力)がほとんど変化しないので、冷媒漏れの程度が小さい状態を検出することができなかった。このため、冷媒回路(20)からある程度の量の冷媒が漏れてしまい、回路構成機器の状態に影響を与えるだけでなく、例えばフロン系冷媒を用いる場合は、地球環境に影響を与えるおそれがあった。これに対して、第2の発明では、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態でもある程度大きな変化が表れる「放熱器(34,37)における冷媒のエクセルギーの損失量」を利用しているので、冷媒回路(20)から漏洩した冷媒の量が比較的少ない段階で、冷媒漏れを検知することができる。従って、冷媒回路(20)から漏れる冷媒量を低減させることができ、地球環境に影響を与える冷媒を用いる場合は、地球環境に与える影響を低減させることができる。
 また、上記第3の発明では、放熱器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量を用いずに、放熱器側指標値が算出される。ここで、放熱器(34,37)全体における冷媒のエクセルギーの損失量は、図2における(c)の領域の面積で表される。放熱器(34,37)全体における冷媒のエクセルギーの損失量に基づいて放熱器側指標値を算出する場合は、(c)の領域の面積を算出する必要がある。(c)の領域の面積を算出するには、図2における点Bの座標値が必要となる。点Bの座標値は、圧縮機(30)における圧縮行程の終了後の冷媒の温度及びエントロピーからなる。しかし、圧縮機(30)の圧縮室の出口にセンサを設けることは困難である。また、圧縮室から吐出された冷媒の温度は吐出管(40)に至るまでに低下するので、圧縮機(30)の吐出管(40)に設けた温度センサを用いても、圧縮行程の終了後の冷媒の温度及びエントロピーを正確に検出できない。従って、放熱器(34,37)全体における冷媒のエクセルギーの損失量に基づいて放熱器側指標値を算出する場合は、点Bの座標値の誤差により、放熱器側指標値が正確な値とならない。それに対して、第3の発明では、放熱器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量を用いずに放熱器側指標値が算出されるので、放熱器側指標値の算出に、圧縮行程の終了後の冷媒の温度及びエントロピーが必要とならない。従って、比較的正確な値だけを用いて、放熱器側指標値を算出することができる。
 また、上記第4の発明では、冷媒回路(20)において冷媒漏れが生じると、「放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率に所定の変化が現れるので、この比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。この放熱器側指標値は、エクセルギーの損失量同士の比率であるため、無次元化された値となる。ここで、冷媒回路(20)の定格能力が異なるもの同士で、同じ回路構成機器における冷媒のエクセルギーの損失量の大きさを比較すると、同じ運転条件で比較したとしても、値に差が生じる。このため、漏洩指標値が無次元化されていない場合は、冷媒回路(20)の定格能力を考慮して冷媒漏れの診断を行う必要がある。それに対して、上記第4の発明では、放熱器側指標値が無次元化されているため、冷媒回路(20)の定格能力が異なるもの同士を比較しても、放熱器側指標値にそれほど差は生じない。このため、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。例えば、放熱器側指標値を所定の基準値と比較することによって冷媒漏れが生じているか否かを判定する場合は、定格能力が異なる冷媒回路(20)の間で共通の基準値を用いて冷媒漏れの診断を行うことができる。
 また、上記第5の発明では、放熱器(34,37)から流出した冷媒の過冷却度が一定値になるように膨張弁(36)の開度が調節される場合は、冷媒漏れが生じると、放熱器側指標値よりも先に膨張弁(36)の開度に変化が現れるので、膨張弁(36)の開度が判定開度以下になると、冷媒漏れが生じていると判定している。従って、冷媒回路(20)から漏れた冷媒量が少ない段階で、冷媒漏れを検知することができる。
 また、上記第6の発明では、冷媒回路(20)において冷媒漏れが生じると、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「放熱器(34,37)における冷媒の放熱量」との一方に対する他方の比率に所定の変化が現れるので、この比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。この放熱器側指標値は、上記第4の発明と同様に、エクセルギーの損失量同士の比率であるため、無次元化された値となる。このため、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。
 また、第6の発明では、「放熱器(34,37)における冷媒の放熱量」が、冷媒回路(20)の動作状態(例えば、冷媒の循環量)を反映した値である。ここで、放熱器(34,37)における冷媒のエクセルギーの損失量は、冷媒漏れが生じたときだけでなく、冷媒回路(20)の動作状態(例えば、冷媒の循環量)によっても変化する。このため、冷媒漏れの診断に放熱器(34,37)における冷媒のエクセルギーの損失量をそのまま用いる場合は、冷媒回路(20)の動作状態を考慮する必要がある。例えば、放熱器側指標値を所定の基準値と比較することによって冷媒漏れの診断を行う場合は、該基準値を決めたときの冷媒回路(20)の動作状態を再現し、その状態の放熱器側指標値を基準値と比較する必要である。それに対して、第6の発明では、冷媒回路(20)の動作状態を反映した放熱器側指標値を用いるので、冷媒回路(20)の動作状態をそれほど考慮することなく、冷媒漏れの診断を行うことができる。
 また、上記第7の発明では、冷媒回路(20)において冷媒漏れが生じると、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「圧縮機(30)の入力」との一方に対する他方の比率に所定の変化が現れるので、この比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。この放熱器側指標値は、上記第4の発明と同様に、エクセルギーの損失量同士の比率であるため、無次元化された値となる。このため、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。
 また、第7の発明では、「圧縮機(30)の入力」が、冷媒回路(20)の動作状態(例えば、冷媒の循環量)を反映した値である。冷媒回路(20)の動作状態を反映した放熱器側指標値が冷媒漏れの診断に用いられる。従って、上記第6の発明と同様に、冷媒回路(20)の動作状態をそれほど考慮することなく、冷媒漏れの診断を行うことができる。
 また、上記第8の発明では、放熱器側指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かが判定され、蒸発器側指標値に基づいて、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かが判定される。従って、冷媒漏れが生じているか否かだけではなく、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否も検知することができる。
 また、上記第9の発明では、冷媒回路(20)において冷媒漏れが生じると、蒸発器(34,37)における冷媒のエクセルギーの損失量に所定の変化が現れるので、蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて算出した蒸発器側指標値に基づいて、冷媒漏れの診断が行われる。従って、蒸発器(34,37)における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。
 また、上記第10の発明では、冷媒回路(20)において冷媒漏れが生じると、「蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」と「蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」との一方に対する他方の比率に所定の変化が現れるので、この比率を蒸発器側指標値として、該蒸発器側指標値に基づいて冷媒漏れの診断が行われる。この蒸発器側指標値は、エクセルギーの損失量同士の比率であるため、無次元化された値となる。このため、上記第4の発明と同様に、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。
 また、上記第11の発明では、蒸発器(34,37)から流出した冷媒の過熱度が一定値になるように膨張弁(36)の開度が調節される場合は、蒸発器側指標値よりも先に膨張弁(36)の開度に変化が現れるので、膨張弁(36)の開度が判定開度以上になると、冷媒漏れが生じていると判定している。従って、冷媒回路(20)から漏れた冷媒量が少ない段階で、冷媒漏れを検知することができる。
 また、上記第12の発明では、冷媒回路(20)において冷媒漏れが生じると、圧縮機(30)における冷媒のエクセルギーの損失量に所定の変化が現れるので、圧縮機(30)における冷媒のエクセルギーの損失量に基づいて算出した圧縮機側指標値に基づいて、冷媒漏れの診断が行われる。従って、圧縮機(30)における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。
 また、上記第13の発明では、冷媒回路(20)において冷媒漏れが生じると、「放熱器(34,37)における冷媒のエクセルギーの損失量」と「蒸発器(34,37)における冷媒のエクセルギーの損失量」との一方に対する他方の比率に所定の変化が現れるので、この比率を漏洩指標値として、該漏洩指標値に基づいて冷媒漏れの診断が行われる。この漏洩指標値は、エクセルギーの損失量同士の比率であるため、無次元化された値となる。このため、上記第4の発明と同様に、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。
 また、上記第14の発明では、漏洩指標値に基づけば冷媒漏れが生じていると判定できる場合であっても、アキュームレータ(38)に比較的多くの冷媒が溜まっている場合は、冷媒漏れが生じていると判定しない。ここで、例えば空調負荷が低くなると、冷媒回路(20)における冷媒の循環量が減少し、アキュームレータ(38)に溜まる冷媒量が増加する。しかし、アキュームレータ(38)に溜まる冷媒量が増加した後に圧縮機(30)の運転容量が増加しても、アキュームレータ(38)内の冷媒量が減少するのに時間が掛かる。従って、アキュームレータ(38)内の冷媒量が減少するまでは、冷媒回路(20)では冷媒の循環量が不足するので、このような状態を冷媒漏れと誤判定するおそれがある。第14の発明では、そのような誤判定を防止するために、漏洩指標値に基づいて冷媒漏れが生じていると判定される場合であっても、アキュームレータ(38)に流入する冷媒の過熱度とアキュームレータ(38)から流出した冷媒の過熱度との差が所定の吸入側基準値以上になる場合は、アキュームレータ(38)に比較的多くの冷媒が溜まっていると判断して、冷媒漏れと判定しない。従って、アキュームレータ(38)に比較的多くの冷媒が溜まる状態を、冷媒漏れと誤判定することを抑制することができる。
実施形態に係る空気調和装置の概略構成図である。 実施形態に係る漏洩診断装置において漏洩指標値の算出に用いられる領域を示すT-s線図(温度-エントロピー線図)である。 実施形態に係る漏洩診断装置において漏洩指標値の算出に用いられる領域を示すT-s線図であり、(A)は基準状態の図であり、(B)は第1進行状態の図である。 実施形態に係る漏洩診断装置において漏洩指標値の算出に用いられる領域を示すT-s線図であり、(A)は基準状態の図であり、(B)は第2進行状態の図である。 実施形態の変形例1に係る空気調和装置の概略構成図である。 実施形態の変形例1に係る漏洩診断装置において漏洩指標値の算出に用いられる領域を示すT-s線図であり、(A)は基準状態の図であり、(B)は第1進行状態の図である。 実施形態の変形例1に係る漏洩診断装置において漏洩指標値の算出に用いられる領域を示すT-s線図であり、(A)は基準状態の図であり、(B)は第2進行状態の図である。 その他の実施形態の第2変形例に係る漏洩診断装置のブロック図である。 その他の実施形態の第2変形例に係る漏洩診断装置によって出力される月平均指標値の一例を示す図表である。 その他の実施形態の第2変形例に係る漏洩診断装置によって出力される月平均指標値の別の一例を示す図表である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 本実施形態は、本発明に係る漏洩診断装置(50)を備えた冷凍装置(10)である。この冷凍装置(10)は、図1に示すように、室外ユニット(11)と室内ユニット(13)とを備えた空気調和装置(10)であって、冷房運転と暖房運転とを切り換えて行うように構成されている。
  -冷凍装置の構成-
 室外ユニット(11)には、室外回路(21)が設けられている。室内ユニット(13)には、室内回路(22)が設けられている。この冷凍装置(10)では、室外回路(21)と室内回路(22)を液側連絡配管(23)及びガス側連絡配管(24)で接続することによって、蒸気圧縮冷凍サイクルを行う冷媒回路(20)が構成されている。冷媒回路(20)には、例えばフロン系の冷媒が充填されている。冷媒回路(20)に充填された冷媒量は、暖房運転時における冷媒の必要量から決められている。
  《室外ユニット》
 室外ユニット(11)の室外回路(21)には、圧縮機(30)と、熱源側熱交換器を構成する室外熱交換器(34)と、減圧機構を構成する膨張弁(36)とが、回路構成機器として設けられている。また、室外回路(21)には、圧縮機(30)が接続される四路切換弁(33)と、液側連絡配管(23)が接続される液側閉鎖弁(25)と、ガス側連絡配管(24)が接続されるガス側閉鎖弁(26)とが設けられている。
 圧縮機(30)は、密閉容器状のケーシング内が圧縮後の冷媒で満たされる高圧ドーム型の圧縮機により構成されている。圧縮機(30)の吐出側は、吐出管(40)を介して四路切換弁(33)の第1ポート(P1)に接続されている。圧縮機(30)の吸入側は、吸入管(41)を介して四路切換弁(33)の第3ポート(P3)に接続されている。吸入管(41)には、密閉容器状のアキュームレータ(38)が設けられている。
 室外熱交換器(34)は、クロスフィン式のフィン・アンド・チューブ型熱交換器により構成されている。室外熱交換器(34)には、室外熱交換器(34)の近傍に設けられた室外ファン(12)によって室外空気が供給される。室外熱交換器(34)では、室外空気と冷媒との間で熱交換が行われる。なお、室外ファン(12)は、風量を複数段階に調節できる。
 室外熱交換器(34)の一端は、四路切換弁(33)の第4ポート(P4)に接続されている。室外熱交換器(34)の他端は、液配管(42)を介して液側閉鎖弁(25)に接続されている。この液配管(42)には、開度可変の膨張弁(36)と、密閉容器状のレシーバ(39)とが設けられている。また、四路切換弁(33)の第2ポート(P2)はガス側閉鎖弁(26)に接続されている。
 四路切換弁(33)は、第1ポート(P1)と第2ポート(P2)が互いに連通して第3ポート(P3)と第4ポート(P4)が互いに連通する第1状態(図1に実線で示す状態)と、第1ポート(P1)と第4ポート(P4)が互いに連通して第2ポート(P2)と第3ポート(P3)が互いに連通する第2状態(図1に破線で示す状態)とが切り換え可能となっている。
 室外回路(21)では、圧縮機(30)の吸入側に、一対の吸入温度センサ(45a)及び吸入圧力センサ(46a)が設けられている。圧縮機(30)の吐出側に、一対の吐出温度センサ(45b)及び吐出圧力センサ(46b)が設けられている。また、室外熱交換器(34)のガス側には、室外ガス温度センサ(45c)が設けられている。室外熱交換器(34)の液側には、室外液温度センサ(45d)が設けられている。室外ファン(12)の上流には、外気温度センサ(18)が設けられている。
  《室内ユニット》
 室内ユニット(13)の室内回路(22)には、利用側熱交換器を構成する室内熱交換器(37)が回路構成機器として設けられている。室内熱交換器(37)は、クロスフィン式のフィン・アンド・チューブ型熱交換器により構成されている。室内熱交換器(37)には、室内熱交換器(37)の近傍に設けられた室内ファン(14)によって室内空気が供給される。室内熱交換器(37)では、室内空気と冷媒との間で熱交換が行われる。なお、室内ファン(14)は、風量を複数段階に調節できる。また、室内ユニット(13)では、室内に開口する吸込口と室内ファン(14)との間にエアフィルタが設けられている(図示省略)。
 室内回路(22)では、室内熱交換器(37)の液側に、室内液温度センサ(45e)が設けられている。室内熱交換器(37)のガス側に、室内ガス温度センサ(45f)が設けられている。室内ファン(14)の上流には、室内温度センサ(19)が設けられている。
 なお、上述した室外ユニット(11)の各種センサ(18,45,46)と、室内ユニット(13)の各種センサ(19,45,46)は、後述する漏洩診断装置(50)の指標値算出手段(31)の一部として考えてもよいし、冷凍装置(10)の一部として考えてもよい。
  《漏洩診断装置の構成》
 本実施形態の冷凍装置(10)は、本発明に係る漏洩診断装置(50)を備えている。漏洩診断装置(50)は、冷媒回路(20)において冷媒漏れが生じているか否かを検出するための漏洩検出動作を行うように構成されている。漏洩検出動作は、冷媒回路(20)において冷媒漏れが生じていない基準状態から冷媒が減っていることを検出するための動作である。
 漏洩診断装置(50)は、冷媒状態検出部(51)とエクセルギー算出部(52)と漏洩判定部(53)とを備えている。本実施形態では、冷媒状態検出部(51)及びエクセルギー算出部(52)が指標値算出手段(31)を構成し、漏洩判定部(53)が漏洩判定手段(53)を構成している。
 冷媒状態検出部(51)は、圧縮機(30)の入口(蒸発器(34,37)の出口)における冷媒の温度及びエントロピー(図2における点Aの座標値)と、圧縮機(30)の出口(凝縮器(34,37)の入口)における冷媒の温度及びエントロピー(図2における点Bの座標値)と、膨張弁(36)の入口(凝縮器(34,37)の出口)における冷媒の温度及びエントロピー(図2における点Eの座標値)と、膨張弁(36)の出口(蒸発器(34,37)の入口)における冷媒の温度及びエントロピー(図2における点Gの座標値)とを検出するように構成されている。冷媒の温度は、温度センサ(45)の測定値から直接検出され、冷媒のエントロピーは、温度センサ(45)の測定値及び圧力センサ(46)の測定値から算出される。
 エクセルギー算出部(52)は、冷媒状態検出部(51)で得られた冷媒の温度及びエントロピーを用いて、圧縮機(30)、凝縮器(34,37)、及び蒸発器(34,37)の各回路構成機器における冷媒のエクセルギーの損失量を検出し、該エクセルギーの損失量を用いて、冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する。エクセルギー算出部(52)は、漏洩指標値として、凝縮器(34,37)における冷媒のエクセルギーの損失量を用いた放熱器側指標値と、蒸発器(34,37)における冷媒のエクセルギーの損失量を用いた蒸発器側指標値と、圧縮機(30)における冷媒のエクセルギーの損失量を用いた圧縮機側指標値とを算出する。
 なお、エクセルギー算出部(52)では、各回路構成機器における冷媒のエクセルギーの損失量の検出に、エクセルギー分析(熱力学的分析)が利用されている。回路構成機器における冷媒のエクセルギーの損失量は、該回路構成機器で生じる損失の大きさ(回路構成機器における損失値)を表している。
 具体的に、エクセルギー算出部(52)は、冷媒状態検出部(51)で得られた冷媒の温度及びエントロピーを用いて、凝縮器(34,37)における冷媒のエクセルギーの損失量ΔE(c)と、蒸発器(34,37)における冷媒のエクセルギーの損失量ΔE(e)と、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)とを検出する。また、エクセルギー算出部(52)は、冷媒状態検出部(51)で得られた冷媒の温度及びエントロピーを用いて、圧縮機(30)の入力(入力電力)ΔE(a)と、凝縮器(34,37)における冷媒の放熱量ΔE(a+g)とを検出する。圧縮機(30)では、圧縮機(30)の入力ΔE(a)により冷媒のエクセルギーが増加する反面、機械損失や放熱ロスにより冷媒のエクセルギーが失われる。
 そして、エクセルギー算出部(52)は、第1放熱器側指標値として、「圧縮機(30)の入力ΔE(a)」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量ΔE(c)」の比率R1(R1=ΔE(c)/ΔE(a))を算出し、その比率R1を出力する。エクセルギー算出部(52)は、第2放熱器側指標値として、「凝縮器(34,37)における冷媒の放熱量ΔE(a+g)」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量ΔE(c)」の比率R2(R2=ΔE(c)/ΔE(a+g))を算出し、その比率R2を出力する。
 さらに、エクセルギー算出部(52)は、蒸発器(34,37)における冷媒のエクセルギーの損失量ΔE(e)を、そのまま蒸発器側指標値として出力する。エクセルギー算出部(52)は、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)を、そのまま圧縮機側指標値として出力する。なお、蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e)を蒸発器側指標値とすることも可能である。
 漏洩判定部(53)は、エクセルギー算出部(52)が算出した漏洩指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かを判定する。具体的に、漏洩判定部(53)は、エクセルギー算出部(52)が出力した漏洩指標値と、冷媒回路(20)において冷媒漏れが生じていない基準状態の値(基準値)とを用いて、冷媒回路(20)において冷媒漏れが生じているか否かを判定する。漏洩判定部(53)は、放熱器側指標値に基づいて、冷媒漏れが発生しているか否かを判定し、蒸発器側指標値に基づいて、冷媒漏れが所定のレベル(冷媒不足により回路構成機器が損傷する可能性があるレベル)にまで進行しているか否かを判定する。
 漏洩判定部(53)は、各漏洩指標値の基準値を記憶するメモリを備えている。メモリには、「圧縮機(30)の入力」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量」の比率の基準状態の値が第1基準値R1(0)として記憶され、「凝縮器(34,37)における冷媒の放熱量」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量」の比率の基準状態の値が第2基準値R2(0)として記憶され、蒸発器(34,37)における冷媒のエクセルギーの損失量の基準状態の値が第3基準値として記憶され、圧縮機(30)における冷媒のエクセルギーの損失量の基準状態の値が第4基準値として記憶されている。これらの基準値は、冷房運転時の基準状態の値として、予め求められた値である。
 漏洩判定部(53)は、凝縮器(34,37)における冷媒のエクセルギーの損失量ΔE(c)が基準状態に比べて小さくなる変化に基づいて、冷媒漏れが発生しているか否かを判定する。具体的に、漏洩判定部(53)は、第1放熱器側指標値の基準状態からの変化率と、第2放熱器側指標値の基準状態からの変化率とに基づいて、冷媒漏れが発生しているか否かを判定する。なお、この判定に、第1放熱器側指標値の基準状態からの変化率と、第2放熱器側指標値の基準状態からの変化率との片方だけを用いてもよい。
 また、漏洩判定部(53)は、蒸発器(34,37)における冷媒のエクセルギーの損失量ΔE(e)が基準状態に比べて大きくなる変化と、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)が基準状態に比べて大きくなる変化との両方に基づいて、冷媒漏れが所定のレベルにまで進行しているか否かを判定する。具体的に、漏洩判定部(53)は、蒸発器側指標値の基準状態からの変化率と、圧縮機側指標値の基準状態からの変化率とに基づいて、冷媒漏れが所定のレベルにまで進行しているか否かを判定する。
   -冷凍装置の運転動作-
 冷凍装置(10)の運転動作について説明する。この冷凍装置(10)は、四路切換弁(33)によって冷房運転と暖房運転の切り換えを行うことができるように構成されている。
   <冷房運転>
 冷房運転では、四路切換弁(33)が第2状態に設定される。そして、この状態で圧縮機(30)の運転が行われると、冷媒回路(20)では、室外熱交換器(34)が凝縮器となって室内熱交換器(37)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。
 なお、冷房運転では、冷凍サイクルの低圧の値(吸入圧力センサ(46a)の検出値)が一定値になるように圧縮機(30)の運転周波数が制御され、室内熱交換器(37)の出口の冷媒の過熱度(スーパーヒート)が所定の目標値(例えば5℃)になるように、膨張弁(36)の開度が調節される。
 具体的に、圧縮機(30)で圧縮された冷媒は、室外熱交換器(34)で室外空気と熱交換して凝縮する。室外熱交換器(34)で凝縮した冷媒は、膨張弁(36)を通過する際に減圧され、その後に室内熱交換器(37)で室内空気と熱交換して蒸発する。室内熱交換器(37)で蒸発した冷媒は、圧縮機(30)で再び圧縮される。
   <暖房運転>
 暖房運転では、四路切換弁(33)が第1状態に設定される。そして、この状態で圧縮機(30)の運転が行われると、冷媒回路(20)では、室外熱交換器(34)が蒸発器となって室内熱交換器(37)が凝縮器となる蒸気圧縮冷凍サイクルが行われる。
 なお、暖房運転では、冷凍サイクルの高圧の値(吐出圧力センサ(46b)の検出値)が一定値になるように圧縮機(30)の運転周波数が制御され、室内熱交換器(37)の出口の冷媒の過冷却度(サブクール)が所定の目標値(例えば5℃)になるように、膨張弁(36)の開度が調節される。
 具体的に、圧縮機(30)で圧縮された冷媒は、室内熱交換器(37)で室内空気と熱交換して凝縮する。室内熱交換器(37)で凝縮した冷媒は、膨張弁(36)を通過する際に減圧され、その後に室外熱交換器(34)で室外空気と熱交換して蒸発する。室外熱交換器(34)で蒸発した冷媒は、圧縮機(30)で再び圧縮される。
   -漏洩診断装置の動作-
 漏洩診断装置(50)の動作について説明する。漏洩診断装置(50)は、冷房運転中や暖房運転中に漏洩検出動作を行う。漏洩診断装置(50)は、例えば所定の制御周期で漏洩検出動作を行う。以下では、冷房運転中の漏洩検出動作について説明する。
 漏洩検出動作では、まず、冷媒回路(20)の所定の位置における冷媒の温度及びエントロピーを検出する第1ステップが行われる。冷媒回路(20)の所定の位置とは、圧縮機(30)の入口及び出口と、膨張弁(36)の入口及び出口である。
 第1ステップでは、冷媒状態検出部(51)が、吸入温度センサ(45a)の測定値を圧縮機(30)の入口における冷媒の温度として検出する。また、冷媒状態検出部(51)は、吸入温度センサ(45a)の測定値及び吸入圧力センサ(46a)の測定値を用いて、圧縮機(30)の入口における冷媒のエントロピーを算出する。これにより、図2に示すT-s線図の点Aの座標値が得られる。
 また、冷媒状態検出部(51)は、吐出温度センサ(45b)の測定値を圧縮機(30)の出口における冷媒の温度として検出する。また、冷媒状態検出部(51)は、吐出温度センサ(45b)の測定値及び吐出圧力センサ(46b)の測定値を用いて、圧縮機(30)の出口における冷媒のエントロピーを算出する。これにより、図2に示すT-s線図の点Bの座標値が得られる。
 また、冷媒状態検出部(51)は、室外液温度センサ(45d)の測定値を膨張弁(36)の入口における冷媒の温度として検出する。また、冷媒状態検出部(51)は、室外液温度センサ(45d)の測定値及び吐出圧力センサ(46b)の測定値を用いて、膨張弁(36)の入口における冷媒のエントロピーを算出する。膨張弁(36)の入口の冷媒のエントロピーの算出では、膨張弁(36)の入口の圧力が圧縮機(30)の出口の圧力に等しいものとみなして、吐出圧力センサ(46b)の測定値が用いられる。これにより、図2に示すT-s線図の点Eの座標値が得られる。
 また、冷媒状態検出部(51)は、室内液温度センサ(45e)の測定値を膨張弁(36)の出口における冷媒の温度として検出する。冷媒状態検出部(51)は、室内液温度センサ(45e)の測定値及び吸入圧力センサ(46a)の測定値を用いて、膨張弁(36)の出口における冷媒のエントロピーを算出する。膨張弁(36)の出口の冷媒のエントロピーの算出では、膨張弁(36)の出口の圧力が圧縮機(30)の入口の圧力に等しいものとみなして、吸入圧力センサ(46a)の測定値が用いられる。また、冷房運転中は膨張弁(36)の出口の冷媒が気液二相状態になるため、冷媒の温度及び圧力からエントロピーを算出できるように、膨張弁(36)の入口の冷媒のエンタルピーが膨張弁(36)の出口の冷媒のエンタルピーに等しいものと仮定している。これにより、図2に示すT-s線図の点Gの座標値が得られる。
 次に、漏洩指標値を算出する第2ステップが行われる。第2ステップは、第1ステップと共に指標値算出ステップを構成している。
 第2ステップでは、エクセルギー算出部(52)が、凝縮器として動作する室外熱交換器(34)における冷媒のエクセルギーの損失量ΔE(c)と、蒸発器として動作する室内熱交換器(37)における冷媒のエクセルギーの損失量ΔE(e)と、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)と、圧縮機(30)の入力ΔE(a)と、室外熱交換器(34)における冷媒の放熱量ΔE(a+g)とをそれぞれ算出する。
 ここで、図2に示すT-s線図では、冷凍サイクルを表すラインを利用して領域分けされた各領域の面積を用いると、回路構成機器(圧縮機(30)、凝縮器(34,37)、膨張弁(36)、蒸発器(34,37))における冷媒のエクセルギーの損失量を求めることが可能である。
 図2において、Thは、凝縮器(34,37)に送り込まれる空気の温度(冷房運転では、外気温度センサ(18)の測定値)、Tcは、蒸発器(34,37)に送り込まれる空気の温度(冷房運転では、室内温度センサ(19)の測定値)をそれぞれ表している。
 また、点Aは、圧縮機(30)の入口(蒸発器(34,37)の出口)の冷媒の温度とエントロピーから定まる点である。点Bは、圧縮機(30)の出口(凝縮器(34,37)の入口)の冷媒の温度とエントロピーから定まる点である。点Eは、膨張弁(36)の入口(凝縮器(34,37)の出口)の冷媒の温度とエントロピーから定まる点である。点Gは、膨張弁(36)の出口(蒸発器(34,37)の入口)の冷媒の温度とエントロピーから定まる点である。
 また、点Cは、点Bを通る等圧線と飽和蒸気線とが交わる点である。点Dは、点Cを通る等温線と飽和液線とが交わる点である。点Fは、点Eを通る等エンタルピー線と飽和液線とが交わる点である。点Hは、点Gを通る等温線と飽和蒸気線とが交わる点である。また、点Iは、点Aを通る等エントロピー線上で温度がTcになる点である。点Jは、点Aを通る等エントロピー線上で温度がThになる点である。点Kは、点Gを通る等エントロピー線上で温度がThになる点である。点Lは、点Gを通る等エントロピー線上で温度がTcになる点である。点Mは、点Bを通る等エントロピー線上で温度がThになる点である。
 なお、本実施形態では、点A、点B、点Eおよび点Gの座標値と、外気温度センサ(18)の測定値と、室内温度センサ(19)の測定値とを用いて、点C、点D、点F、点H、点I、点J、点K、点Lおよび点Mの座標値が算出される。
 図2では、圧縮機(30)の入力ΔE(a)が、(a)の領域の面積で表される。圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)が、(b)の領域の面積で表される。凝縮器(34,37)における冷媒のエクセルギーの損失量ΔE(c)が、(c)の領域の面積で表される。膨張弁(36)における冷媒のエクセルギーの損失量ΔE(d)が、(d)の領域の面積で表される。蒸発器(34,37)における冷媒のエクセルギーの損失量ΔE(e)が、(e)の領域の面積で表される。なお、(a)の領域は、ハッチングされた全領域から(g)の領域を引いた領域である。
 また、図2では、逆カルノーサイクルの仕事量ΔE(f)が、(f)の領域の面積で表される。凝縮器(34,37)における冷媒の放熱量ΔE(a+g)が、点Bから点Cと点Dを経て点Eに至る線の下側の領域、つまり(a)の領域に(g)の領域を加えた領域の面積(図2においてハッチングされた全面積)で表される。蒸発器(34,37)における冷媒の吸熱量ΔE(g)が、点Gから点Hを経て点Aに至る線の下側の領域、つまり(g)の領域の面積で表される。
 エクセルギー算出部(52)は、点B、点C、点D及び点Eの座標値と、外気温度センサ(18)の測定値Thとを用いて、室外熱交換器(34)における冷媒のエクセルギーの損失量ΔE(c)を算出する。エクセルギー算出部(52)は、点A、点G及び点Hの座標値と、室内温度センサ(19)の測定値Tcとを用いて、室内熱交換器(37)における冷媒のエクセルギーの損失量ΔE(e)を算出する。エクセルギー算出部(52)は、点A及び点Bの座標値と、外気温度センサ(18)の測定値Thとを用いて、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)を算出する。エクセルギー算出部(52)は、点A、点B、点C、点D、点E、点G及び点Hの座標値を用いて、圧縮機(30)の入力ΔE(a)を算出する。エクセルギー算出部(52)は、点B、点C、点D及び点Eの座標値を用いて、室外熱交換器(34)における冷媒の放熱量ΔE(a+g)を算出する。
 なお、エクセルギー算出部(52)は、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)として、点Aと点Bを結ぶ線分の下側の領域の面積を算出するように構成されていてもよい。この場合、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)は、圧縮機(30)の入口から出口までの冷媒の温度変化を、圧縮機(30)の入口の冷媒のエントロピーから圧縮機(30)の出口の冷媒のエントロピーまでの区間において積分した値になる。
 次に、エクセルギー算出部(52)は、「圧縮機(30)の入力ΔE(a)」に対する「室外熱交換器(34)における冷媒のエクセルギーの損失量ΔE(c)」の比率R1(R1=ΔE(c)/ΔE(a))を算出し、その比率R1を第1放熱器側指標値として出力する。エクセルギー算出部(52)は、「室外熱交換器(34)における冷媒の放熱量ΔE(a+g)」に対する「室外熱交換器(34)における冷媒のエクセルギーの損失量ΔE(c)」の比率R2(R2=ΔE(c)/ΔE(a+g))を算出し、その比率R2を第2放熱器側指標値として出力する。エクセルギー算出部(52)は、蒸発器(34,37)における冷媒のエクセルギーの損失量ΔE(e)を蒸発器側指標値として出力し、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)を圧縮機側指標値として出力する。以上により第2ステップが終了する。
 続いて、冷媒回路(20)において冷媒漏れが生じているか否かを判定する第3ステップが行われる。第3ステップは漏洩判定ステップを構成している。
 第3ステップでは、まず、漏洩判定部(53)が、第1基準値R1(0)と第2基準値R2(0)をメモリから読み出す。そして、漏洩判定部(53)は、第1放熱器側指標値R1を第1基準値R1(0)で除することによって、第1放熱器側指標値の基準状態からの変化率(R1/R1(0))を算出する。漏洩判定部(53)は、第1放熱器側指標値の基準状態からの変化率が所定の第1減少判定値以下になる第1判定条件が成立しているか否かを判定する。
 また、漏洩判定部(53)は、第2放熱器側指標値R2を第2基準値R2(0)で除することによって、第2放熱器側指標値の基準状態からの変化率(R2/R2(0))を算出する。漏洩判定部(53)は、第2放熱器側指標値の基準状態からの変化率が所定の第2減少判定値以下になる第2判定条件が成立しているか否かを判定する。
 漏洩判定部(53)は、第1判定条件と第2判定条件の少なくとも一方が成立する場合に、冷媒回路(20)において冷媒漏れが生じていると判定する。一方、漏洩判定部(53)は、第1判定条件と第2判定条件が両方とも成立しない場合には、冷媒回路(20)において冷媒漏れが生じていないと判定する。
 ここで、図3に示すように、冷媒回路(20)から漏洩した冷媒の量が比較的少ない第1進行状態では、凝縮器(34)における冷媒の凝縮温度が、基準状態に比べて低くなる。凝縮器(34)における冷媒の凝縮温度と室外空気の温度差が小さくなるので、凝縮器(34)の出口における冷媒の温度が、基準状態に比べて高くなり、凝縮器(34)の出口における冷媒の過冷却度が、基準状態に比べて小さくなる。膨張弁(36)の入口および出口における冷媒のエントロピーが、それぞれ基準状態に比べて大きくなる。冷凍サイクルにおける高圧は基準状態に比べて低くなるが、冷凍サイクルにおける低圧は基準状態とそれほど変わらない。蒸発器(37)の出口における冷媒の過熱度は、基準状態とそれほど変わらない。その結果、回路構成機器における冷媒のエクセルギーの損失量のうち、凝縮器(34)における冷媒のエクセルギーの損失量ΔE(c)の基準状態からの変化が特に大きくなる。
 また、凝縮器(34)が劣化した場合にも、凝縮器(34)における冷媒のエクセルギーの損失量ΔE(c)は変化するが、この場合は、凝縮器(34)における冷媒のエクセルギーの損失量ΔE(c)が増加する。このため、本実施形態では、凝縮器(34)における冷媒のエクセルギーの損失量ΔE(c)が基準状態から小さくなる変化に基づいて、冷媒漏れが生じているか否かが判定される。
 第1進行状態において、凝縮器(34)における冷媒のエクセルギーの損失量ΔE(c)が基準状態に比べて小さくなるのは、凝縮器(34)の出口における冷媒の過冷却度が小さくなって、凝縮器(34)の有効流路長において、熱交換効率がよい気液二相領域の割合が増加して、全体として熱交換効率が増加するためである。なお、第1進行状態では、蒸発器(37)における冷媒のエクセルギーの損失量ΔE(e)が基準状態に比べて僅かに小さくなり、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)と、膨張弁(36)における冷媒のエクセルギーの損失量ΔE(d)とは、共に基準状態からそれほど変化しない。
 なお、凝縮器(34,37)における冷媒のエクセルギーの損失量を、そのまま放熱器側指標値としてもよい。また、放熱器側指標値に基づいて冷媒漏れが生じているか否かを判定する方法としては、上述の方法に限られない。例えば、放熱器側指標値が所定の判定閾値を下回る条件が成立する場合に、冷媒漏れが生じていると判定してもよい。また、所定の期間(例えば1ヶ月間)における放熱器側指標値の平均値が所定の判定閾値を下回る条件が成立する場合に、冷媒漏れが生じていると判定してもよい。
 次に、漏洩判定部(53)は、第3基準値と第4基準値を、メモリから読み出す。そして、漏洩判定部(53)は、蒸発器側指標値ΔE(e)を第3基準値で除することによって、蒸発器側指標値の基準状態からの変化率を算出する。漏洩判定部(53)は、蒸発器側指標値の基準状態からの変化率が所定の第1増加判定値以上になる第3判定条件が成立するか否かを判定する。
 また、漏洩判定部(53)は、圧縮機側指標値ΔE(b)を第4基準値で除することによって、圧縮機側指標値の基準状態からの変化率を算出する。漏洩判定部(53)は、圧縮機側指標値の基準状態からの変化率が所定の第2増加判定値以上になる第4判定条件が成立するか否かを判定する。
 なお、上述した判定値(第1減少判定値、第2減少判定値、第1増加判定値および第2増加判定値)は、全てメモリに記憶されている。
 漏洩判定部(53)は、放熱器側指標値に基づいて冷媒漏れが生じていると判定している状態で、第3判定条件と第4判定条件の両方が成立する場合に、冷媒漏れが所定のレベル(冷媒不足により回路構成機器が損傷する可能性があるレベル)にまで進行していると判定する。本実施形態では、第3判定条件と第4判定条件の片方だけが成立しても、冷媒漏れが所定のレベルにまで進行していると判定されない。但し、第3判定条件と第4判定条件の少なくとも一方が成立する場合に冷媒漏れが所定のレベルにまで進行していると判定するように、漏洩判定部(53)を構成してもよい。
 ここで、図4に示すように、冷媒回路(20)から漏洩した冷媒の量が比較的多い第2進行状態では、凝縮器(34)における冷媒の凝縮温度が、第1進行状態に比べてさらに低くなる。凝縮器(34)の出口における冷媒の温度が、第1進行状態に比べてさらに高くなり、凝縮器(34)の出口における冷媒の過冷却度が、第1進行状態に比べてさらに小さくなる。膨張弁(36)の入口および出口における冷媒のエントロピーが、それぞれ第1進行状態に比べてさらに大きくなる。冷凍サイクルにおける高圧が、第1進行状態に比べてさらに低くなり、冷凍サイクルにおける低圧が第1進行状態に比べて低くなる。蒸発器(37)の出口における冷媒の過熱度が、第1進行状態に比べて大きくなる。凝縮器(34)における冷媒のエクセルギーの損失量ΔE(c)が、第1進行状態に比べて大きくなる。その結果、回路構成機器における冷媒のエクセルギーの損失量のうち、蒸発器(37)における冷媒のエクセルギーの損失量ΔE(e)の基準状態からの変化と、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)の基準状態からの変化とが、特に大きくなる。
 また、蒸発器(37)が劣化した場合には、蒸発器(37)における冷媒のエクセルギーの損失量ΔE(e)はそれほど変化しない。特に、冷凍サイクルの低圧が一定値になるように冷媒回路(20)が制御されている場合は、蒸発器(37)における冷媒のエクセルギーの損失量ΔE(e)はほとんど変化しない。また、圧縮機(30)が劣化した場合も、蒸発器(37)から流出した冷媒の過熱度が一定値になるように冷媒回路(20)が制御されているので、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)はそれほど変化しない。このため、本実施形態では、蒸発器(37)における冷媒のエクセルギーの損失量ΔE(e)が基準状態から大きくなる変化と、圧縮機(30)における冷媒のエクセルギーの損失量ΔE(b)が基準状態から大きくなる変化とに基づいて、冷媒漏れが所定のレベルにまで進行しているか否かが判定されている。
 なお、蒸発器側指標値及び圧縮機側指標値の各漏洩指標値に基づいて冷媒漏れが生じているか否かを判定する方法としては、上述の方法に限られない。例えば、漏洩指標値が所定の判定閾値を上回る条件が成立する場合に、冷媒漏れが所定のレベルにまで進行していると判定してもよい。また、所定の期間(例えば1ヶ月間)における漏洩指標値の平均値が所定の判定閾値を上回る条件が成立する場合に、冷媒漏れが所定のレベルにまで進行していると判定してもよい。
  -実施形態の効果-
 本実施形態では、回路構成機器における冷媒のエクセルギーの損失量に基づいて、冷媒回路(20)において冷媒漏れが生じると所定の変化をする漏洩指標値が算出され、その漏洩指標値に基づいて冷媒漏れの診断が行われる。冷媒回路(20)における冷媒漏れは、例えば、漏洩指標値の変化を監視することにより検知することが可能である。従って、冷媒回路(20)の回路構成機器における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。
 また、本実施形態では、冷媒回路(20)において冷媒漏れが生じると、凝縮器(34,37)における冷媒のエクセルギーの損失量に所定の変化が現れるので、凝縮器(34,37)における冷媒のエクセルギーの損失量に基づいて算出した放熱器側指標値に基づいて、冷媒漏れの診断が行われる。従って、凝縮器(34,37)における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。また、冷凍サイクルの低圧が一定になるように冷媒回路(20)が制御される冷凍運転中は、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態でも、凝縮器(34,37)における冷媒のエクセルギーの損失量にある程度大きな変化が現れる。このため、冷媒回路(20)から漏れた冷媒量が少ない段階で、冷媒漏れを検知することができる。そして、冷媒回路(20)から漏れる冷媒量を低減させることができ、地球環境に影響を与える冷媒を用いる場合は、地球環境に与える影響を低減させることができる。
 また、本実施形態では、冷媒回路(20)において冷媒漏れが生じると、蒸発器(34,37)における冷媒のエクセルギーの損失量に所定の変化が現れるので、蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて算出した蒸発器側指標値に基づいて、冷媒漏れの診断が行われる。従って、蒸発器(34,37)における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。
 また、本実施形態では、冷媒回路(20)において冷媒漏れが生じると、圧縮機(30)における冷媒のエクセルギーの損失量に所定の変化が現れるので、圧縮機(30)における冷媒のエクセルギーの損失量に基づいて算出した圧縮機側指標値に基づいて、冷媒漏れの診断が行われる。従って、圧縮機(30)における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を実現することができる。
 また、本実施形態では、蒸発器(34,37)における冷媒のエクセルギーの損失量の基準状態からの変化と、圧縮機(30)における冷媒のエクセルギーの損失量の基準状態からの変化との両方に基づいて、冷媒漏れが所定のレベルにまで進行しているか否かが判定される。従って、冷媒漏れが所定のレベルにまで進行しているか否かをより正確に判定することができる。
 また、本実施形態では、放熱器側指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かが判定され、蒸発器側指標値及び圧縮機側指標値に基づいて、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かが判定される。従って、冷媒漏れが生じているか否かだけではなく、冷媒漏れが所定のレベルにまで進行しているか否も検知することができる。
 また、本実施形態では、冷媒回路(20)において冷媒漏れが生じると、「圧縮機(30)の入力」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量」の比率に所定の変化が現れるので、この比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。また、冷媒回路(20)において冷媒漏れが生じると、「凝縮器(34,37)における冷媒の放熱量」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量」の比率に所定の変化が現れるので、この比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。これらの放熱器側指標値は、エクセルギーの損失量同士の比率であるため、無次元化された値となる。このため、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。
 また、本実施形態では、「圧縮機(30)の入力」が、冷媒回路(20)の動作状態(例えば、冷媒の循環量、室外空気の温度)を反映した値である。また、「凝縮器(34,37)における冷媒の放熱量」が、冷媒回路(20)の動作状態を反映した値である。冷媒回路(20)の動作状態を反映した放熱器側指標値が冷媒漏れの診断に用いられる。従って、冷媒回路(20)の動作状態をそれほど考慮することなく、冷媒漏れの診断を行うことができる。
 また、本実施形態では、冷媒回路(20)において冷媒漏れが生じているか否かを判定するのに、回路構成機器における冷媒のエクセルギーの損失量を利用する漏洩診断装置(50)を設けている。従って、冷媒回路(20)の回路構成機器における冷媒のエクセルギーの損失量を用いた冷媒漏れの診断を行うことができる冷凍装置(10)を提供することができる。
  -実施形態の変形例1-
 実施形態の変形例1について説明する。この変形例1の漏洩診断装置(50)は、漏洩検出動作が上記実施形態とは異なっている。なお、この変形例1では、互いに並列に接続された複数台の室内ユニット(13)を備えた空気調和装置(10)を例に説明する。但し、この変形例1の空気調和装置(10)の概略構成図を示す図5では、室内ユニット(13)を1台のみ記載し、他の室内ユニット(13)の記載は省略している。複数台の室内ユニット(13)を備えた空気調和装置(10)では、図5に示すように、室外回路(21)に室外膨張弁(36a)が設けられ、各室内回路(22)に室内膨張弁(36b)が設けられる。なお、この変形例1の漏洩検出動作は、図1に示すような室内ユニット(13)が1台の空気調和装置(10)にも適用可能である。
 室内膨張弁(36b)及び室外膨張弁(36a)は、開度可変の電動膨張弁により構成されている。室内膨張弁(36b)には、制御パルスの最大値が2000パルスの電動膨張弁が用いられている。一方、室外膨張弁(36a)には、制御パルスの最大値が480パルスの電動膨張弁が用いられている。
 冷房運転中は、室外膨張弁(36a)が全開に設定され、室内膨張弁(36b)の開度が、室内熱交換器(37)から流出した冷媒の過熱度が一定値(例えば5℃)になるように調節される。一方、暖房運転中は、室外膨張弁(36a)の開度が、室外熱交換器(34)から流出した冷媒の過熱度が一定値(例えば5℃)になるように調節され、室内膨張弁(36b)の開度が、室内熱交換器(37)から流出した冷媒の過冷却度が一定値(例えば5℃)になるように調節される。
 まず、冷房運転中の漏洩検出動作について説明する。冷房運転中の漏洩検出動作では、まず、上記実施形態と同じ第1ステップが行われる。続いて、第2ステップでは、エクセルギー算出部(52)が、室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(c2)を算出する。図6及び図7では、室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(c2)が、(c2)の領域の面積で表される。エクセルギー算出部(52)は、C点及びD点の座標値と、外気温度センサ(18)の測定値Thとを用いて、(c2)の領域の面積を算出することによって、室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(c2)を算出する。
 また、エクセルギー算出部(52)は、室外熱交換器(34)において冷媒が液単相状態になっている過程でのエクセルギーの損失量ΔE(c3)を算出する。図6及び図7では、室外熱交換器(34)において冷媒が液単相状態になっている過程でのエクセルギーの損失量ΔE(c3)が、(c3)の領域の面積で表される。エクセルギー算出部(52)は、D点及びE点の座標値と、外気温度センサ(18)の測定値Thとを用いて、(c3)の領域の面積を算出することによって、室外熱交換器(34)において冷媒が液単相状態になっている過程でのエクセルギーの損失量ΔE(c3)を算出する。
 また、エクセルギー算出部(52)は、室内熱交換器(37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(e1)を算出する。図6及び図7では、室内熱交換器(37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(e1)が、(e1)の領域の面積で表される。エクセルギー算出部(52)は、G点及びH点の座標値と、室内温度センサ(19)の測定値Tcとを用いて、(e1)の領域の面積を算出することによって、室内熱交換器(37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(e1)を算出する。
 また、エクセルギー算出部(52)は、室内熱交換器(37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e2)を算出する。図6及び図7では、室内熱交換器(37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e2)が、(e2)の領域の面積で表される。エクセルギー算出部(52)は、H点及びA点の座標値と、室内温度センサ(19)の測定値Tcとを用いて、(e2)の領域の面積を算出することによって、室内熱交換器(37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e2)を算出する。
 なお、室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(c2)は、該気液二相状態の冷媒が流れる際に生じる損失の大きさを表している。室外熱交換器(34)において冷媒が液単相状態になっている過程でのエクセルギーの損失量ΔE(c3)は、該液単相状態の冷媒が流れる際に生じる損失の大きさを表している。室内熱交換器(37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(e1)は、該気液二相状態の冷媒が流れる際に生じる損失の大きさを表している。室内熱交換器(37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e1)は、該ガス単相状態の冷媒が流れる際に生じる損失の大きさを表している。
 次に、エクセルギー算出部(52)は、放熱器側指標値として、「室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(c2)」に対する「室外熱交換器(34)において冷媒が液単相状態になっている過程でのエクセルギーの損失量ΔE(c3)」の比率R1(R1=ΔE(c3)/ΔE(c2))を算出し、その比率R1を出力する。エクセルギー算出部(52)は、蒸発器側指標値として、「室内熱交換器(37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(e1)」に対する「室内熱交換器(37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e2)」の比率R2(R2=ΔE(e2)/ΔE(e1))を算出し、その比率R2を出力する。以上により第2ステップが終了する。
 続いて、冷媒回路(20)において冷媒漏れが生じているか否かを判定する第3ステップが行われる。ここで、漏洩判定部(53)のメモリには、冷房運転中における「室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」に対する「室外熱交換器(34)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」の比率の基準状態の値が、第5基準値として記憶されている。また、このメモリには、冷房運転中における「室内熱交換器(37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」に対する「室内熱交換器(37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」の比率の基準状態の値が、第6基準値として記憶されている。
 第3ステップでは、まず、漏洩判定部(53)が、第5基準値と第6基準値をメモリから読み出す。そして、漏洩判定部(53)は、放熱器側指標値を第5基準値で除することによって、放熱器側指標値の基準状態からの変化率を算出する。漏洩判定部(53)は、放熱器側指標値の基準状態からの変化率が所定の第1判定値以下になる第5判定条件が成立しているか否かを判定する。漏洩判定部(53)は、第5判定条件が成立する場合に、冷媒回路(20)において冷媒漏れが生じていると判定する。一方、漏洩判定部(53)は、第5判定条件が成立しない場合には、冷媒回路(20)において冷媒漏れが生じていないと判定する。
 漏洩判定部(53)は、蒸発器側指標値を第6基準値で除することによって、蒸発器側指標値の基準状態からの変化率を算出する。漏洩判定部(53)は、蒸発器側指標値の基準状態からの変化率が所定の第2判定値以上になる第6判定条件が成立しているか否かを判定する。漏洩判定部(53)は、第6判定条件が成立する場合に、冷媒漏れが所定のレベル(冷媒不足により回路構成機器が損傷する可能性があるレベル)にまで進行していると判定する。
 なお、この変形例1では、冷房運転中に、冷凍サイクルの低圧の値(吸入圧力センサ(46a)の検出値)が一定値になるように圧縮機(30)の運転周波数を制御する低圧一定制御が行われるので、冷媒回路(20)から漏洩した冷媒の量が比較的少ない第1進行状態では、蒸発器(34,37)における冷媒のエクセルギーの損失量に、ほとんど変化が表れない。第1進行状態では、凝縮器(34,37)における冷媒のエクセルギーの損失量に比較的大きな変化が表れる。そして、冷媒漏れが進行すると、蒸発器(34,37)における冷媒のエクセルギーの損失量にも、比較的大きな変化が表れる。従って、放熱器側指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かが判定され、蒸発器側指標値に基づいて、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かが判定される。
 しかし、低圧一定制御ではなく、冷凍サイクルの高圧の値(吐出圧力センサ(46b)の検出値)が一定値になるように圧縮機(30)の運転周波数を制御する高圧一定制御が行われる場合は、第1進行状態では、凝縮器(34,37)における冷媒のエクセルギーの損失量に、ほとんど変化が表れず、蒸発器(34,37)における冷媒のエクセルギーの損失量に比較的大きな変化が表れる。そして、冷媒漏れが進行すると、凝縮器(34,37)における冷媒のエクセルギーの損失量にも、比較的大きな変化が表れる。この場合は、蒸発器側指標値に基づいて、冷媒回路(20)において冷媒漏れが生じているか否かを判定し、放熱器側指標値に基づいて、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かを判定することができる。
 続いて、暖房運転中の漏洩検出動作について説明する。暖房運転中の漏洩検出動作では、冷房運転中の漏洩検出動作と同様に、まず、上記実施形態と同じ第1ステップが行われる。続いて、第2ステップでは、エクセルギー算出部(52)が、室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(e1)を算出する。また、エクセルギー算出部(52)は、室外熱交換器(34)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e2)を算出する。
 そして、エクセルギー算出部(52)は、蒸発器側指標値として、「室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(e1)」に対する「室外熱交換器(34)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量ΔE(e2)」の比率R3(R3=ΔE(e2)/ΔE(e1))を算出し、その比率R3を出力する。以上により第2ステップが終了する。
 続いて、冷媒回路(20)において冷媒漏れが生じているか否かを判定する第3ステップが行われる。ここで、漏洩判定部(53)のメモリには、暖房運転中における「室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」に対する「室外熱交換器(34)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」の比率の基準状態の値が、第7基準値として記憶されている。
 第3ステップでは、まず、漏洩判定部(53)が、第7基準値をメモリから読み出す。そして、漏洩判定部(53)が、第2ステップで算出した蒸発器側指標値を第7基準値で除することによって、蒸発器側指標値の基準状態からの変化率を算出する。漏洩判定部(53)は、蒸発器側指標値の基準状態からの変化率が所定の第3判定値以上になる第7判定条件が成立しているか否かを判定する。漏洩判定部(53)は、第7判定条件が成立する場合に、冷媒回路(20)において冷媒漏れが発生していると判定する。一方、漏洩判定部(53)は、第7判定条件が成立しない場合には、冷媒回路(20)において冷媒漏れが生じていないと判定する。
 この変形例1では、凝縮器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量を用いずに、放熱器側指標値が算出される。このため、放熱器側指標値の算出に、圧縮行程の終了後の冷媒の温度及びエントロピーが必要とならない。従って、比較的正確な値だけを用いて、放熱器側指標値を算出することができる。なお、この変形例1以外においても、凝縮器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量を用いずに、放熱器側指標値を算出してもよい。
 また、この変形例1では、冷媒回路(20)において冷媒漏れが生じると、「凝縮器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」に対する「凝縮器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」の比率に所定の変化が現れるので、この比率を放熱器側指標値として、該放熱器側指標値に基づいて冷媒漏れの診断が行われる。また、冷媒回路(20)において冷媒漏れが生じると、「蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」に対する「蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量」の比率に所定の変化が現れるので、この比率を蒸発器側指標値として、該蒸発器側指標値に基づいて冷媒漏れの診断が行われる。放熱器側指標値及び蒸発器側指標値は、エクセルギーの損失量同士の比率であるため、無次元化された値となる。このため、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。この変形例1では、第5-7基準値を、定格能力が異なる冷凍装置(10)の間で共通化することができる。
  -実施形態の変形例2-
 実施形態の変形例2について説明する。この変形例2の漏洩診断装置(50)は、冷媒漏れが生じているか否かを判定するのに、漏洩指標値に加えて、室内膨張弁(36b)の開度及び室外膨張弁(36a)の開度を利用している。以下では、上記実施形態の変形例1と異なる点について説明する。
 冷房運転中の漏洩検出動作では、第3ステップにおいて、漏洩判定部(53)が、室内膨張弁(36b)の開度が所定の第1判定開度(例えば、1500パルス)以上になる第1開度条件が成立するか否かを判定する。漏洩判定部(53)は、上記第6判定条件が成立しない場合(蒸発器側指標値に基づけば冷媒漏れが生じていると判定できない場合)であっても、第1開度条件が成立する場合には、冷媒回路(20)において冷媒漏れが発生していると判定する。なお、第1判定開度は、冷媒漏れが生じていない状態において想定される室内膨張弁(36b)の開度(500パルス前後の値)よりも大きな値であり、冷媒漏れが生じていない状態では、なり得ない値である。
 ここで、室内熱交換器(37)から流出した冷媒の過熱度が一定値になるように室内膨張弁(36b)の開度を調節する過熱度制御が行われる場合は、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態では、室内熱交換器(37)から流出した冷媒の過熱度がほとんど変化しない。このため、蒸発器側指標値がほとんど変化しない。他方、冷媒漏れにより室内熱交換器(37)を流れる冷媒が減少すると、室内熱交換器(37)から流出した冷媒の過熱度が増大しないように、室内膨張弁(36b)の開度が大きくなってゆく。つまり、冷媒漏れが生じると、蒸発器側指標値よりも先に膨張弁(36)の開度に変化が現れる。この変形例2では、そのような点に着目して、蒸発器側指標値に基づけば冷媒漏れが生じていると判定できない場合であっても、室内膨張弁(36b)の開度が第1判定開度以上になると、冷媒漏れが生じていると判定する。従って、冷媒回路(20)から漏れた冷媒量が少ない段階で、冷媒漏れを検知することができる。
 また、暖房運転中の漏洩検出動作では、第3ステップにおいて、漏洩判定部(53)が、室外膨張弁(36a)の開度が所定の第2判定開度(例えば400パルス)以上になる第2開度条件が成立するか否かを判定する。漏洩判定部(53)は、上記第7判定条件が成立しない場合(蒸発器側指標値に基づけば冷媒漏れが生じていると判定できない場合)であっても、第2開度条件が成立する場合には、冷媒回路(20)において冷媒漏れが発生していると判定する。なお、第2判定開度は、冷媒漏れが生じていない状態において想定される室外膨張弁(36a)の開度(50-100パルス)よりも大きな値であり、冷媒漏れが生じていない状態では、なり得ない値である。
 この変形例2では、暖房運転中において、蒸発器側指標値に基づけば冷媒漏れが生じていると判定できない場合であっても、室外膨張弁(36a)の開度が第2判定開度以上になると、冷媒漏れが生じていると判定する。従って、冷媒回路(20)から漏れた冷媒量が少ない段階で、冷媒漏れを検知することができる。
 なお、暖房運転時に冷媒漏れが生じているか否かを判定するのに、室内膨張弁(36b)の開度を利用することも可能である。この場合、第2ステップにおいて、エクセルギー算出部(52)が、放熱器側指標値として、「室内熱交換器(37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量」に対する「室内熱交換器(37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量」の比率を算出する。そして、第3ステップにおいて、漏洩判定部(53)が、放熱器側指標値の基準状態からの変化率が所定の第4判定値以下になる第8判定条件が成立するか否かを判定する。漏洩判定部(53)は、第8判定条件が成立する場合に、冷媒回路(20)において冷媒漏れが発生していると判定する。
 そして、第3ステップでは、漏洩判定部(53)が、室内膨張弁(36b)の開度が所定の第3判定開度(例えば100パルス)以下になる第3開度条件が成立するか否かを判定する。漏洩判定部(53)は、上記第8判定条件が成立しない場合(放熱器側指標値に基づけば冷媒漏れが生じていると判定できない場合)であっても、第3開度条件が成立する場合には、冷媒回路(20)において冷媒漏れが発生していると判定する。なお、第3判定開度は、冷媒漏れが生じていない状態において想定される室内膨張弁(36b)の開度(500パルス前後の値)よりも小さな値であり、冷媒漏れが生じていない状態では、なり得ない値である。
 室内熱交換器(37)から流出した冷媒の過冷却度が一定値になるように室内膨張弁(36b)の開度を調節する過冷却度制御が行われる場合は、冷媒回路(20)から漏洩した冷媒の量が比較的少ない状態では、室内熱交換器(37)から流出した冷媒の過冷却度がほとんど変化しない。このため、放熱器側指標値がほとんど変化しない。他方、冷媒漏れにより室内熱交換器(37)を流れる冷媒が減少すると、室内熱交換器(37)から流出した冷媒の過冷却度が低下しないように、室内膨張弁(36b)の開度が小さくなってゆく。この変形例2では、そのような点に着目して、放熱器側指標値に基づけば冷媒漏れが生じていると判定できない場合であっても、室内膨張弁(36b)の開度が第3判定開度以下になると、冷媒漏れが生じていると判定する。従って、冷媒回路(20)から漏れた冷媒量が少ない段階で、冷媒漏れを検知することができる。
  -実施形態の変形例3-
 実施形態の変形例3について説明する。この変形例2の漏洩診断装置(50)は、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かを判定する方法が、上記実施形態とは異なっている。
 第2ステップでは、冷房運転中にエクセルギー算出部(52)が、漏洩指標値として、「室内熱交換器(37)における冷媒のエクセルギーの損失量ΔE(e)」に対する「室外熱交換器(34)における冷媒のエクセルギーの損失量ΔE(c)」の比率R(R=ΔE(c)/ΔE(e))を算出し、その比率Rを出力する。
 ここで、漏洩判定部(53)には、冷房運転中における「室内熱交換器(37)における冷媒のエクセルギーの損失量」に対する「室外熱交換器(34)における冷媒のエクセルギーの損失量」の比率の基準状態の値が、第8基準値として記憶されている。第3ステップでは、漏洩判定部(53)が、第8基準値をメモリから読み出す。そして、漏洩判定部(53)は、第2ステップで算出した漏洩指標値を第8基準値で除することによって、漏洩指標値の基準状態からの変化率を算出する。漏洩判定部(53)は、漏洩指標値の基準状態からの変化率が所定の第5判定値以下になる第8判定条件が成立しているか否かを判定する。漏洩判定部(53)は、第8判定条件が成立する場合に、冷媒回路(20)における冷媒漏れが所定のレベルにまで進行していると判定する。
 ここで、冷凍サイクルの低圧が一定値になるように冷媒回路(20)を制御する低圧一定制御が行われる場合は、冷媒漏れが生じると、冷凍サイクルの高圧の低下に伴って、室外熱交換器(34)における冷媒のエクセルギーの損失量が低下する一方で、室内熱交換器(37)における冷媒のエクセルギーの損失量がほとんど変化しない。このため、「蒸発器(34,37)における冷媒のエクセルギーの損失量」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量」の比率に所定の変化が現れる。また、冷凍サイクルの高圧が一定値になるように冷媒回路(20)を制御する高圧一定制御が行われる場合も同様に、「蒸発器(34,37)における冷媒のエクセルギーの損失量」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量」の比率に所定の変化が現れる。
 このため、この変形例3では、「蒸発器(34,37)における冷媒のエクセルギーの損失量」に対する「凝縮器(34,37)における冷媒のエクセルギーの損失量」の比率を漏洩指標値として、該漏洩指標値に基づいて冷媒漏れの診断が行われる。この漏洩指標値は、エクセルギーの損失量同士の比率であるため、無次元化された値となる。このため、冷媒回路(20)の定格能力を考慮することなく、冷媒漏れの診断を行うことができる。
 《その他の実施形態》
 上記実施形態は、以下の変形例のように構成してもよい。
  -第1変形例-
 上記実施形態について、漏洩指標値に基づけば冷媒回路(20)において冷媒漏れが生じていると判定できる場合であっても、アキュームレータ(38)に流入する冷媒の過熱度とアキュームレータ(38)から流出した冷媒の過熱度との差が所定の吸入側基準値以上になる場合は、冷媒回路(20)において冷媒漏れが生じていると判定しないように、漏洩判定部(53)を構成してもよい。
 ここで、例えば空調負荷が低くなると、アキュームレータ(38)に溜まる冷媒量が増加する。しかし、アキュームレータ(38)に溜まる冷媒量が増加した後に圧縮機(30)の運転容量が増加しても、アキュームレータ(38)内の冷媒量が減少するのに時間が掛かる。従って、アキュームレータ(38)内の冷媒量が減少するまでは、冷媒回路(20)では冷媒の循環量が不足するので、このような状態を冷媒漏れと誤判定するおそれがある。第1変形例では、そのような誤判定を防止するために、漏洩指標値に基づけば冷媒漏れが生じていると判定できる場合であっても、アキュームレータ(38)に流入する冷媒の過熱度とアキュームレータ(38)から流出した冷媒の過熱度との差が所定の吸入側基準値以上になる場合は、アキュームレータ(38)に比較的多くの冷媒が溜まっていると判断して、冷媒漏れと判定しない。従って、アキュームレータ(38)に比較的多くの冷媒が溜まる状態を、冷媒漏れと誤判定することを抑制することができる。
 なお、冷媒回路(20)には、図5のように、アキュームレータ(38)の入口に接続する冷媒配管に入口温度センサ(17)が設けられている。漏洩判定部(53)は、冷房運転中であれば、例えば、入口温度センサ(17)の測定値から吸入温度センサ(45a)の測定値を引いた値を、アキュームレータ(38)に流入する冷媒の過熱度とアキュームレータ(38)から圧縮機(30)へ向かう冷媒の過熱度との差として算出する。
  -第2変形例-
 上記実施形態について、漏洩診断装置(50)が、図8に示すように、エクセルギー算出部(52)が出力した漏洩指標値を平均化処理するデータ処理部(55)を備えていてもよい。第2変形例では、漏洩診断装置(50)が、冷凍装置(10)とは離れた位置に設置されている。漏洩診断装置(50)は、例えばネットワーク回線(57)を通じて、冷凍装置(10)に設けられた制御基板に接続されている。漏洩診断装置(50)には、制御基板を介して、冷凍装置(10)に設けられた全ての温度センサ(16-19,45,63)と圧力センサ(46)の計測値が入力されるデータ管理部(54)が設けている。
 冷媒状態検出部(51)は、データ管理部(54)に入力された温度センサ(16-19,45,63)及び圧力センサ(46)の計測値を用いて、上記実施形態と同様に、圧縮機(30)の入口と圧縮機(30)の出口と膨張弁(36)の入口と膨張弁(36)の出口の各位置における冷媒の温度及びエントロピーを検出する。
 エクセルギー算出部(52)は、上記実施形態と同様に、漏洩指標値を算出する。エクセルギー算出部(52)は、例えば1日に1回、漏洩指標値を算出して、データ処理部(55)へ出力する。エクセルギー算出部(52)は、例えば「室外熱交換器(34)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量ΔE(c2)」に対する「室外熱交換器(34)において冷媒が液単相状態になっている過程でのエクセルギーの損失量ΔE(c3)」の比率を漏洩指標値として算出する。
 データ処理部(55)には、漏洩指標値のデータが蓄積されてゆく。データ処理部(55)は、蓄積した漏洩指標値を、例えば1月単位で平均化処理し、図9に示す図表を作成する。漏洩診断装置(50)のモニタ(56)は、漏洩診断用の情報として、データ処理部(55)が作成した図表を表示する。1月単位で平均化処理された漏洩指標値(以下、「月平均指標値」という。)は、可視化される。
 これにより、例えば、図10に示すように、ある年の月平均指標値が各月においてその一年前の月平均指標値を下回る場合は、モニタ(56)を見た冷凍装置(10)の管理者は、月平均指標値が全体的に低下していることを把握することができるので、冷媒漏れが生じていると判定することができる。
 なお、冷媒漏れの判定を人間が行うのではなく、漏洩判定部(53)が、ある年の月平均指標値の傾向と、その一年前の月平均指標値の傾向とを比較することによって、冷媒回路(20)において冷媒漏れが生じているか否かを判定してもよい。
 また、漏洩判定部(53)が、月平均指標値を所定の基準値と比較することによって、冷媒回路(20)において冷媒漏れが生じているか否かを判定してもよい。その場合、図10に示すように、月平均指標値は月によって異なるので、月平均指標値が大きくなることが想定される月ほど、基準値を大きな値に設定してもよい。
 また、例えば、冷凍装置(10)の設置当初から月平均指標値が基準値を下回る場合もあり得る。そのような場合は、冷媒漏れではなく、冷凍装置(10)の設置時に冷媒回路(20)に十分な量の冷媒が充填されていないことによって、冷媒が不足していると推測することができる。
  -第3変形例-
 上記実施形態について、冷凍装置(10)が、空気調和装置(10)だけでなく、食品を冷蔵又は冷凍するための庫内を冷却する冷凍装置(10)、室内の冷暖房と庫内の冷却とを行う冷凍装置(10)、熱交換器を流通する冷媒の熱を吸着剤の加熱又は冷却に用いる調湿機能付きの冷凍装置(10)、或いは、高圧冷媒により水を加熱する給湯機能を有する冷凍装置(10)であってもよい。
  -第4変形例-
 上記実施形態について、冷凍装置(10)が、冷凍サイクルの高圧が冷媒の臨界圧力よりも高くなる超臨界サイクルを行うように構成されていてもよい。この場合、冷凍サイクルの高圧が冷媒の臨界圧力よりも低くなる通常の冷凍サイクルでは凝縮器となる熱交換器が、放熱器(ガスクーラ)として動作する。冷媒としては、例えば二酸化炭素が用いられる。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、冷媒回路からの冷媒の漏洩の有無を診断するための漏洩診断装置、漏洩診断方法、及びその漏洩診断装置を備えた冷凍装置について有用である。
 10  空気調和装置(冷凍装置)
 20  冷媒回路
 30  圧縮機
 34  室外熱交換器(放熱器、蒸発器)
 36  膨張弁(減圧機構)
 37  室内熱交換器(放熱器、蒸発器)
 50  漏洩診断装置
 51  冷媒状態検出部(指標値算出手段)
 52  エクセルギー算出部(指標値算出手段)
 53  漏洩判定部(漏洩判定手段)

Claims (17)

  1.  圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)における冷媒漏れの有無を診断する漏洩診断装置であって、
     上記回路構成機器における冷媒のエクセルギーの損失量に基づいて、上記冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する指標値算出手段(31)と、
     上記指標値算出手段(31)が算出した漏洩指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定する漏洩判定手段(53)とを備えていることを特徴とする漏洩診断装置。
  2.  請求項1において、
     上記指標値算出手段(31)は、上記漏洩指標値として、上記放熱器(34,37)における冷媒のエクセルギーの損失量に基づいて放熱器側指標値を算出し、
     上記漏洩判定手段(53)は、上記放熱器側指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定することを特徴とする漏洩診断装置。
  3.  請求項2において、
     上記放熱器(34,37)では、ガス冷媒が冷却されて凝縮する一方、
     上記指標値算出手段(31)は、上記放熱器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量を用いずに、上記放熱器側指標値を算出することを特徴とする漏洩診断装置。
  4.  請求項2において、
     上記指標値算出手段(31)は、上記放熱器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量と、上記放熱器(34,37)において冷媒が液単相状態になっている過程でのエクセルギーの損失量との一方に対する他方の比率を、上記放熱器側指標値として算出することを特徴とする漏洩診断装置。
  5.  請求項4において、
     上記冷媒回路(20)では、上記減圧機構(36)が開度可変の膨張弁(36)により構成され、上記膨張弁(36)の開度が、上記放熱器(34,37)から流出した冷媒の過冷却度が一定値になるように調節される一方、
     上記漏洩判定手段(53)は、上記放熱器側指標値に基づけば上記冷媒回路(20)において冷媒漏れが生じていると判定できない場合であっても、上記膨張弁(36)の開度が所定の判定開度以下になると、上記冷媒回路(20)において冷媒漏れが生じていると判定することを特徴とする漏洩診断装置。
  6.  請求項2又は3において、
     上記指標値算出手段(31)は、上記放熱器(34,37)における冷媒のエクセルギーの損失量と、上記放熱器(34,37)における冷媒の放熱量との一方に対する他方の比率を、上記放熱器側指標値として算出することを特徴とする漏洩診断装置。
  7.  請求項2又は3において、
     上記指標値算出手段(31)は、上記放熱器(34,37)における冷媒のエクセルギーの損失量と、上記圧縮機(30)の入力との一方に対する他方の比率を、上記放熱器側指標値として算出することを特徴とする漏洩診断装置。
  8.  請求項2において、
     上記冷媒回路(20)は、冷凍サイクルの低圧が一定値になるように制御される一方、
     上記指標値算出手段(31)は、上記蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて蒸発器側指標値を算出し、
     上記漏洩判定手段(53)は、上記蒸発器側指標値に基づいて上記冷媒回路(20)における冷媒漏れが所定のレベルにまで進行しているか否かを判定することを特徴とする漏洩診断装置。
  9.  請求項1において、
     上記指標値算出手段(31)は、上記漏洩指標値として、上記蒸発器(34,37)における冷媒のエクセルギーの損失量に基づいて蒸発器側指標値を算出し、
     上記漏洩判定手段(53)は、上記蒸発器側指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定することを特徴とする漏洩診断装置。
  10.  請求項9において、
     上記指標値算出手段(31)は、上記蒸発器(34,37)において冷媒が気液二相状態になっている過程でのエクセルギーの損失量と、上記蒸発器(34,37)において冷媒がガス単相状態になっている過程でのエクセルギーの損失量との一方に対する他方の比率を、上記蒸発器側指標値として算出することを特徴とする漏洩診断装置。
  11.  請求項10において、
     上記冷媒回路(20)では、上記減圧機構(36)が開度可変の膨張弁(36)により構成され、上記膨張弁(36)の開度が、上記蒸発器(34,37)から流出した冷媒の過熱度が一定値になるように調節される一方、
     上記漏洩判定手段(53)は、上記蒸発器側指標値に基づけば上記冷媒回路(20)において冷媒漏れが生じていると判定できない場合であっても、上記膨張弁(36)の開度が所定の判定開度以上になると、上記冷媒回路(20)において冷媒漏れが生じていると判定することを特徴とする漏洩診断装置。
  12.  請求項1において、
     上記指標値算出手段(31)は、上記漏洩指標値として、上記圧縮機(30)における冷媒のエクセルギーの損失量に基づいて圧縮機側指標値を算出し、
     上記漏洩判定手段(53)は、上記圧縮機側指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定することを特徴とする漏洩診断装置。
  13.  請求項1において、
     上記指標値算出手段(31)は、上記漏洩指標値として、上記放熱器(34,37)における冷媒のエクセルギーの損失量と、上記蒸発器(34,37)における冷媒のエクセルギーの損失量との一方に対する他方の比率を算出することを特徴とする漏洩診断装置。
  14.  請求項1において、
     上記冷媒回路(20)には、上記圧縮機(30)に吸入される冷媒から液冷媒を分離するためのアキュームレータ(38)が設けられる一方、
     上記漏洩判定手段(53)は、上記漏洩指標値に基づけば上記冷媒回路(20)において冷媒漏れが生じていると判定できる場合であっても、上記アキュームレータ(38)に流入する冷媒の過熱度と上記アキュームレータ(38)から流出した冷媒の過熱度との差が所定の吸入側基準値以上になる場合は、上記冷媒回路(20)において冷媒漏れが生じていると判定しないことを特徴とする漏洩診断装置。
  15.  圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)における冷媒漏れの有無を診断するための漏洩診断装置であって、
     上記回路構成機器における冷媒のエクセルギーの損失量に基づいて、上記冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する指標値算出手段(31)と、
     上記指標値算出手段(31)が算出した漏洩指標値に基づく漏洩診断用の情報を表示する表示手段(56)とを備えていることを特徴とする漏洩診断装置。
  16.  圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)と、
     請求項1又は15に記載の漏洩診断装置(50)とを備えていることを特徴とする冷凍装置。
  17.  圧縮機(30)、放熱器(34,37)、減圧機構(36)、及び蒸発器(34,37)が回路構成機器として設けられ、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)における冷媒漏れの有無を診断する漏洩診断方法であって、
     上記回路構成機器における冷媒のエクセルギーの損失量に基づいて、上記冷媒回路(20)から漏れた冷媒量に応じて変化する漏洩指標値を算出する指標値算出ステップと、
     上記指標値算出ステップで算出した漏洩指標値に基づいて、上記冷媒回路(20)において冷媒漏れが生じているか否かを判定する漏洩判定ステップとを備えていることを特徴とする漏洩診断方法。
PCT/JP2009/004824 2008-09-30 2009-09-24 漏洩診断装置、漏洩診断方法、及び冷凍装置 WO2010038382A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09817425.3A EP2333461B1 (en) 2008-09-30 2009-09-24 Leakage diagnosing device, leakage diagnosing method, and refrigerating device
CN200980135214.7A CN102149990B (zh) 2008-09-30 2009-09-24 泄漏诊断装置、泄漏诊断方法及制冷装置
AU2009299329A AU2009299329B2 (en) 2008-09-30 2009-09-24 Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
US13/121,448 US8555703B2 (en) 2008-09-30 2009-09-24 Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
ES09817425.3T ES2676541T3 (es) 2008-09-30 2009-09-24 Aparato de diagnóstico de fuga, procedimiento de diagnóstico de fuga y aparato de refrigeración

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008251970 2008-09-30
JP2008-251970 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038382A1 true WO2010038382A1 (ja) 2010-04-08

Family

ID=42073166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004824 WO2010038382A1 (ja) 2008-09-30 2009-09-24 漏洩診断装置、漏洩診断方法、及び冷凍装置

Country Status (7)

Country Link
US (1) US8555703B2 (ja)
EP (1) EP2333461B1 (ja)
JP (2) JP5040975B2 (ja)
CN (1) CN102149990B (ja)
AU (1) AU2009299329B2 (ja)
ES (1) ES2676541T3 (ja)
WO (1) WO2010038382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016071947A1 (ja) * 2014-11-04 2016-05-12 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル装置の異常検知システム
WO2018096576A1 (ja) * 2016-11-22 2018-05-31 三菱電機株式会社 空気調和装置及び空気調和システム

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800407A1 (en) * 2010-03-15 2021-04-07 Klatu Networks, Inc. Method for monitoring, inferring state of health, and optimizing efficiency of refrigeration systems and corresponding system
US9797639B2 (en) * 2010-06-30 2017-10-24 Danfoss A/S Method for operating a vapour compression system using a subcooling value
TWI468628B (zh) * 2011-11-21 2015-01-11 Ind Tech Res Inst 簡易式配管裝置、具有其之空調設備及其冷媒洩漏檢測方法
CN104204697B (zh) 2012-02-10 2017-02-22 开利公司 检测制冷剂损失的方法
JP6095155B2 (ja) * 2012-12-27 2017-03-15 中野冷機株式会社 冷凍装置及び冷凍装置の冷媒漏れ検知方法
JP5818849B2 (ja) * 2013-08-26 2015-11-18 三菱電機株式会社 空気調和装置および冷媒漏洩検知方法
CN104006934B (zh) * 2014-06-05 2017-02-15 珠海格力电器股份有限公司 检测系统、方法、装置及空调器
JP6267070B2 (ja) * 2014-07-02 2018-01-24 株式会社日立製作所 冷却システムの冷媒漏洩検知方法
US20160047595A1 (en) * 2014-08-18 2016-02-18 Paul Mueller Company Systems and Methods for Operating a Refrigeration System
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
CN104266798B (zh) * 2014-10-10 2017-05-31 广东美的制冷设备有限公司 制冷剂泄漏测试装置和制冷剂泄漏测试方法
JP6359423B2 (ja) * 2014-10-24 2018-07-18 三菱重工業株式会社 空調システムの制御装置、空調システム、及び空調システムの制御装置の異常判定方法
JP5908183B1 (ja) * 2014-11-19 2016-04-26 三菱電機株式会社 空気調和装置
US9696073B2 (en) * 2014-12-16 2017-07-04 Johnson Controls Technology Company Fault detection and diagnostic system for a refrigeration circuit
TR201903550T4 (tr) * 2015-03-31 2019-04-22 Daikin Ind Ltd İklimlendirme cihazı.
JP6582496B2 (ja) * 2015-03-31 2019-10-02 ダイキン工業株式会社 空調室内ユニット
FR3038055B1 (fr) * 2015-06-29 2018-07-27 Valeo Systemes Thermiques Procede de determination d'une fuite de fluide frigorigene dans un circuit de fluide frigorigene
JP6887979B2 (ja) * 2018-09-28 2021-06-16 ダイキン工業株式会社 冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法
CN109323362B (zh) * 2018-09-30 2022-02-25 广东美的制冷设备有限公司 冷媒泄露故障的处理方法、处理系统和空调器
CN114364925B (zh) * 2019-09-09 2023-10-20 大金工业株式会社 制冷剂泄漏判定系统
JP6791429B1 (ja) * 2019-09-09 2020-11-25 ダイキン工業株式会社 冷媒量判定装置、方法、およびプログラム
CN112944743A (zh) * 2019-12-09 2021-06-11 杭州三花研究院有限公司 一种控制方法以及控制系统
JP7112008B1 (ja) * 2021-05-21 2022-08-03 ダイキン工業株式会社 冷凍サイクル装置
JP7197814B2 (ja) * 2021-05-21 2022-12-28 ダイキン工業株式会社 冷媒漏洩検知システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862403A (ja) * 1981-10-07 1983-04-13 株式会社日立製作所 プラントの異常診断装置
JPS61197970A (ja) * 1985-02-28 1986-09-02 ダイキン工業株式会社 冷凍機の圧縮機保護装置
JPH08128765A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機保護制御装置
JP2000052754A (ja) * 1998-08-10 2000-02-22 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP2002364951A (ja) * 2001-04-03 2002-12-18 Denso Corp 蒸気圧縮式冷凍サイクル
WO2007108537A1 (ja) * 2006-03-23 2007-09-27 Daikin Industries, Ltd. 冷凍装置、及び冷凍装置の分析装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996364A (en) * 1998-07-13 1999-12-07 Carrier Corporation Scroll compressor with unloader valve between economizer and suction
JP2000088376A (ja) 1998-09-18 2000-03-31 Hitachi Ltd ヒートポンプ装置
KR100545009B1 (ko) 1999-02-03 2006-01-24 산요덴키가부시키가이샤 공기조화기
JP4479565B2 (ja) 2005-03-29 2010-06-09 ダイキン工業株式会社 異常検知システム
JP4039462B1 (ja) 2006-03-23 2008-01-30 ダイキン工業株式会社 冷凍装置
JP5063346B2 (ja) * 2006-09-21 2012-10-31 三菱電機株式会社 冷媒漏洩検知機能を有した冷凍空調システム、冷凍空調装置および冷媒漏洩検知方法
JP5210510B2 (ja) * 2006-10-13 2013-06-12 三菱重工業株式会社 マルチ空調システムの冷媒封入量判定方法および冷媒漏洩検知方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862403A (ja) * 1981-10-07 1983-04-13 株式会社日立製作所 プラントの異常診断装置
JPS61197970A (ja) * 1985-02-28 1986-09-02 ダイキン工業株式会社 冷凍機の圧縮機保護装置
JPH08128765A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機保護制御装置
JP2000052754A (ja) * 1998-08-10 2000-02-22 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP2002364951A (ja) * 2001-04-03 2002-12-18 Denso Corp 蒸気圧縮式冷凍サイクル
WO2007108537A1 (ja) * 2006-03-23 2007-09-27 Daikin Industries, Ltd. 冷凍装置、及び冷凍装置の分析装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016071947A1 (ja) * 2014-11-04 2016-05-12 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル装置の異常検知システム
JPWO2016071947A1 (ja) * 2014-11-04 2017-04-27 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル装置の異常検知システム
GB2546657A (en) * 2014-11-04 2017-07-26 Mitsubishi Electric Corp Refrigeration cycle device and abnormality detection system for refrigeration cycle device
US10161661B2 (en) 2014-11-04 2018-12-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus, and abnormality detection system for refrigeration cycle apparatus
GB2546657B (en) * 2014-11-04 2020-09-02 Mitsubishi Electric Corp Refrigeration cycle apparatus, and abnormality detection system for refrigeration cycle apparatus
WO2018096576A1 (ja) * 2016-11-22 2018-05-31 三菱電機株式会社 空気調和装置及び空気調和システム
JPWO2018096576A1 (ja) * 2016-11-22 2019-03-22 三菱電機株式会社 空気調和装置及び空気調和システム

Also Published As

Publication number Publication date
EP2333461A4 (en) 2015-04-15
AU2009299329B2 (en) 2013-03-21
CN102149990A (zh) 2011-08-10
JP5040975B2 (ja) 2012-10-03
JP5234167B2 (ja) 2013-07-10
CN102149990B (zh) 2013-10-23
JP2010107187A (ja) 2010-05-13
AU2009299329A1 (en) 2010-04-08
ES2676541T3 (es) 2018-07-20
EP2333461B1 (en) 2018-06-06
US8555703B2 (en) 2013-10-15
JP2012047447A (ja) 2012-03-08
EP2333461A1 (en) 2011-06-15
US20110174059A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5040975B2 (ja) 漏洩診断装置
US8132419B2 (en) Refrigeration system and refrigeration system analyzer
JP5381572B2 (ja) 冷凍装置の診断方法、冷凍装置の診断装置、及び冷凍装置
WO2009150761A1 (ja) 冷凍サイクル装置、並びにその制御方法
US8205464B2 (en) Refrigeration device
US8171747B2 (en) Refrigeration device
JP6730532B2 (ja) 冷凍サイクル装置および冷凍装置
US11293647B2 (en) Air conditioner
JP2007255818A (ja) 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
WO2008032558A1 (en) Refrigeration device
JP5487831B2 (ja) 漏洩診断方法、及び漏洩診断装置
JP4039462B1 (ja) 冷凍装置
JP2019002639A (ja) 空気調和機の冷媒漏洩検知方法、および、空気調和機
JP4292525B2 (ja) 蒸気圧縮式冷凍サイクルの冷媒量検知方法
JP2006275438A (ja) 冷凍装置及びそれを備えた空気調和装置
JP6762422B2 (ja) 冷凍サイクル装置
JP7348547B2 (ja) 熱源ユニット及び冷凍装置
JP6758075B2 (ja) 空気調和機及び冷媒量判定方法
JP2019207103A (ja) 冷凍装置
JP2008157621A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135214.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13121448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009817425

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009299329

Country of ref document: AU

Date of ref document: 20090924

Kind code of ref document: A