WO2010036072A2 - Micro pump using snap-through - Google Patents

Micro pump using snap-through Download PDF

Info

Publication number
WO2010036072A2
WO2010036072A2 PCT/KR2009/005520 KR2009005520W WO2010036072A2 WO 2010036072 A2 WO2010036072 A2 WO 2010036072A2 KR 2009005520 W KR2009005520 W KR 2009005520W WO 2010036072 A2 WO2010036072 A2 WO 2010036072A2
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
curved
micropump
fluid
tubular
Prior art date
Application number
PCT/KR2009/005520
Other languages
French (fr)
Korean (ko)
Other versions
WO2010036072A3 (en
Inventor
오일권
전진한
박중우
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080095483A external-priority patent/KR100931894B1/en
Priority claimed from KR1020080121305A external-priority patent/KR100931897B1/en
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2010036072A2 publication Critical patent/WO2010036072A2/en
Publication of WO2010036072A3 publication Critical patent/WO2010036072A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/14Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps

Definitions

  • the present invention relates to a micropump, and more particularly to a micropump having a larger pumping force by having a structure in which the pumping part of the micropump obtains a larger deformation amount.
  • microstructures having a micro unit size necessary for sensing or actuating are fabricated using semiconductor manufacturing process technology, and signal processing circuits are integrated therein to provide a high performance, multifunctional microelectromechanical system (Micro Electro). Mechanical System, hereinafter referred to as 'MEMS' is implemented.
  • MEMS microelectromechanical System
  • Lab-on-Chip a micro-integrator of biochips, medical and microfluidic analyzers on a few centimeters of chips, is a medical microcontroller for biological, chemical, medical and genetic engineering applications. Many studies have been conducted to utilize the diagnostic and drug injection system.
  • MEMS Micro Electro Mechanical Systems
  • iMEMS integrated MEMS
  • a micro pump has a function of allowing a small amount of fluid to flow in a desired direction.
  • a micro pump mainly includes a micro-TAS (Micro Total Analysis System), a lab-on-a-chip (LOC), and the like. It is used in trace fluid transportation and control fields related to MEMS (Bio-Micro Electro Mechanical System) field.
  • MEMS Bio-Micro Electro Mechanical System
  • micro pumps are electrostatic, piezoelectric, electrolytic, shape memory alloy, and electromagnetic force.
  • the electrostatic type is simple in structure but difficult to obtain a relatively large force
  • the piezoelectric type is driven by using the piezoelectric effect of the piezoelectric ceramic. It can be made, but it is structurally large because high applied voltage is required.
  • the electrolysis type can produce a large displacement without heat generation even with relatively low energy, but has a problem that the gas removal time generated through the chemical reverse reaction is long and the driving speed is slow.
  • the shape memory alloy can produce great force with strong tensile force, but it is difficult to manufacture due to unidirectional characteristics.
  • the electromagnetic force method has a merit that a large displacement can be obtained at a low voltage, and the frequency response is fast, but it is difficult to miniaturize.
  • IPMC ionic polymer metal composite
  • EAP electroactive polymers
  • the lightweight and flexible compact actuator is designed and applied to the micropump using the IPMC, there is still a problem that the pumping force is weak due to the small amount of deformation of the IPMC actuator.
  • micropump structures known to date have been difficult to satisfy both the small size and the large force, the large displacement and the high speed.
  • the present inventors have made efforts to develop a micropump with a large force, a large displacement, and a high speed. As a result, a structure using a dynamic snap-through phenomenon not only obtains a larger pumping force but also develops a technical configuration in which fluid does not flow back.
  • the present invention has been completed.
  • Another object of the present invention is to provide a micropump having a pumping part having a structure capable of controlling flow and backflow.
  • the present inventors have studied to develop a micropump with a large force, a large displacement, and a high speed.
  • the present invention not only obtains a larger pumping force by using a dynamic snap-through phenomenon but also a deformation mode.
  • the present invention has been completed to develop a technical configuration for controlling the flow of fluid through control.
  • an object of the present invention is to provide a micropump having excellent pumping force because it is very small and has a small loss (voltage, backflow of fluid) and a large force and a large displacement.
  • Another object of the present invention is to provide a micropump having a pumping part having a structure capable of controlling the flow of fluid through the deformation mode control of the dynamic snap-through phenomenon by applying the interlocking motion of the earthworm or the stomach.
  • the present invention includes a lower structure including an inlet hole in which fluid is introduced, a discharge hole in which the fluid is discharged, and a space in which the fluid is contained; A curved actuator formed in contact with the space portion of the substructure; And an upper structure including a space portion for accommodating the curved actuator and coupled to a lower structure.
  • the curved actuator includes a curved member and a support member for supporting the curved member.
  • the curved member is formed of a piezoelectric material or a mechanical polymer film.
  • the curved actuator has a large drive displacement through dynamic snap-through which occurs in an unstable buckling configuration.
  • the unstable buckling state of the curved actuator is made by specially treating the boundary between the curved member and the support member so that the ductility is different from the curved member or the support member.
  • the unstable buckling state of the curved actuator is such that the curved actuator is fixed to the upper support or the lower support in the form of a cantilever.
  • the curved actuator controls the flow of fluid through the second and third modes of the generated snap-through phenomenon to suppress backflow and maximize pumping force.
  • the curved actuator is a micropump, characterized in that the electrode is patterned in the form of suppressing the cracks generated during the large deformation caused by the snap-through phenomenon in the curved member.
  • the substructure and superstructure is made of a high biocompatibility polymer comprising at least one of PVC, PE, PP, PMMA, PS, PET, PTFE, PU, or nylon or coated with a surface.
  • the inlet hole for the fluid is introduced into the upper structure and the discharge hole for the fluid is further formed.
  • the curved actuator has a double curved structure.
  • the inlet hole and the discharge hole is formed to be adjusted in size and angle so that the fluid flowing in one direction.
  • the present invention also provides a tubular actuator formed to form an outer circumferential surface of the inner space having a long elliptical shape in the longitudinal cross-section, which is a flowing direction of the introduced fluid;
  • a mold structure in which a pumping space part is formed to accommodate the tubular actuator therein;
  • An inlet hole member formed at one end of the mold structure to allow fluid to flow into the tubular actuator;
  • a discharge hole member formed at the other end of the mold structure to discharge the fluid of the tubular actuator; It provides a micro pump comprising a.
  • the tubular actuator includes support members formed at both ends of the pumping space part to surround the inlet and discharge hole members; Film members formed at both ends of the support members to form an outer circumferential surface of the inner space; An electrode formed on an outer side of a portion of the surface of the support member to which the film member is fixed; And a plurality of band members fixed at both ends to the respective supporting members, and at least one of both ends formed adjacent to the surface of the film member so as to be connected to the electrodes.
  • the band member is formed of a piezoelectric material or a mechanical polymer film.
  • the tubular actuator has a large drive displacement through dynamic snap-through which occurs in an unstable buckling state of the band member.
  • the film member is a polymer film having a shrinkage force not to inhibit the displacement of the band member.
  • the tubular actuator controls the flow of fluid by causing the tubular body of the actuator to interlock through the first and second and third modes of the generated snap-through phenomenon.
  • the mold structure is made of a high biocompatible polymer or at least one surface coated with one or more selected from the group consisting of PVC, PE, PP, PMMA, PS, PET, PTFE, PU, or nylon do.
  • the inlet hole member and the discharge hole member is formed to be adjusted in size and angle so that the fluid flowing in one direction.
  • it further comprises a power supply connected to the electrode for supplying a voltage to the band member.
  • the present invention also provides an internal human implantable medical device using the micropump according to any one of claims 1 to 9.
  • the diameter of the inlet hole member and the outlet hole member of the micropump is the same size as the hose used in the medical device.
  • the present invention has the following excellent effects.
  • the micropump of the present invention is very small and has a large force and a large displacement.
  • micropump of the present invention has a pumping part having a structure capable of controlling flow and backflow.
  • micropump of the present invention is excellent in biocompatibility, and can be used for the adhesion process of uTAS, an internal human implantable medical device, and a microfactory which controls a small amount of fluid.
  • the present invention has the following excellent effects.
  • the micropump of the present invention is excellent in pumping power because it is very small and has a small loss (voltage, backflow of fluid) and a large force and a large displacement.
  • the micropump of the present invention has a pumping part having a structure capable of controlling the flow of fluid through the deformation mode control of the dynamic snap-through phenomenon by applying the interlocking motion of the earthworm or the stomach.
  • FIG. 2 is a structural diagram of a micropump according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a curved member portion showing the large deformation of the curved member in the snap-through phenomenon in the curved polymer actuator shown in FIG.
  • FIG. 4 is a schematic view of various types of electrodes patterned to prevent cracking of the electrode plate generated when a large deformation as shown in FIG.
  • Figure 5 is a schematic diagram showing the three modes by the snap-through phenomenon of the curved member of the curved polymer actuator
  • FIG. 6 is a structural diagram of a micropump according to a preferred embodiment of the present invention.
  • 7 to 10 are a perspective view, a vertical side view, a horizontal side view and a bottom view of a tubular actuator formed in the micropump shown in FIG.
  • FIG. 11 is a perspective view showing a state in which electrodes are separated in the tubular actuator shown in FIG. 7, and FIG. 12 is a perspective view of a separated electrode.
  • Figure 13 is an illustration of the various shapes of the mold structure of the micropump of the present invention.
  • FIG. 14 is a schematic diagram showing three modes by the snap-through phenomenon of the band member in the tubular actuator shown in FIG.
  • micropump 110 substructure
  • micropump 610 mold structure
  • support member 642 film member
  • electrode member 644 band member
  • FIG. 2 is a structural diagram of a micropump according to an embodiment of the present invention.
  • 3 is a cross-sectional view of a curved member portion showing a large deformation of the curved member during snap-through occurring in the curved actuator shown in FIG. 2, and
  • FIG. 5 is a schematic diagram showing three modes by snap-through phenomenon of the curved member in the curved actuator.
  • the micropump 100 includes a lower structure 110, a curved actuator 120, and an upper structure 130.
  • the lower structure 110 includes an inlet hole 111 through which the fluid is introduced, a discharge hole 112 through which the fluid is discharged, and a space portion 113 in which the fluid is contained, wherein the space portion 113 is a curved actuator 120. ) Has a size to accommodate the deformed curved actuator 120.
  • the upper structure 130 has a structure coupled to the lower structure 110, including a space portion 131 for receiving the curved actuator 120, in some cases the space portion 113 of the lower structure 110
  • the fluid contained therein may be configured to be unable to move to the space portion 131 of the upper structure 130 by the curved actuator 120 installed between the upper structure 130 and the lower structure 110.
  • the size, shape, and materials of the substructure 110 and the superstructure 130 affect the suitability for a particular environment.
  • the structure of substructure 110 and superstructure 130 can be configured to withstand environmental conditions such as temperature, chemical exposure, and mechanical stress
  • the substructure 110 and the superstructure 130 may include a feature that allows the structure to be positioned or positioned at a location required by the installation environment or a feature that enables the orientation of the location required by the installation environment.
  • the features may be size or shape features, or tethers or gripping structures that prevent movement of the micropump in the installation environment, or point the micropump to the desired location or in place of the required location. It may include targeting features (surface chemistry, shape, etc.) that allow for grasping.
  • the substructure 110 and the superstructure 130 may be manufactured using a method known to those skilled in the art of microfabrication as a component forming a micropump, which is a device that can be used for placement in an organism, in particular PVC, It is preferable to use a high biocompatibility polymer material, including any one or more of PE, PP, PMMA, PS, PET, PTFE, PU, or nylon as a mold, but various materials or not limited thereto. From combinations of materials and by various manufacturing techniques.
  • the inflow hole 111 and the discharge hole 112 formed in the lower structure 110 is a passage through which the fluid flows in a specific direction intended such as a direction in which the pumping force of the micropump 100 increases. It is preferable that the size and angle are adjusted to flow.
  • the upper structure 130 may also have the same structure as the lower structure 110, that is, the inlet and discharge holes are formed in the upper structure 130 to form the curved actuator 120.
  • the pumping force is generated not only through the flow of the fluid through the substructure 110 but also through the flow of the fluid through the upper structure 130 to increase the operating force of the micropump 100 or by using two actuators. It may be implemented to enable the driving of the micropump 100.
  • the curved actuator 120 is formed in contact with the space portion 113 of the lower structure 110 and is formed to be received by the space portion 131 of the upper structure 130, the curved member 121 and the support member (122).
  • the curved member 121 is formed of a mechanical polymer membrane such as a piezoelectric material or an ion exchange membrane.
  • a voltage is applied through a metal electrode formed on the surface of the curved member 121, that is, a surface electrode, the piezoelectric or electroactive layer is applied to the curved surface. It is a portion that provides a pumping force that can be moved up and down to induce fluid as shown, and the support member 122 is supported at both ends or one end by the lower structure 110 or the upper structure 130 while supporting the curved member 121 It is a part that is fixed so that the curved actuator 120 is installed at a predetermined position of the micropump 100.
  • the curved actuator 120 is formed of the curved member 121 and the support member 122.
  • the boundary portion of the curved member 121 and the support member 122 that is, the connection portion, is connected to the curved member 121 or the support member.
  • Treatment with the ductility different from the 122 may cause the curved polymer actuator 120 to form a structure having a more unstable buckling state.
  • the treatment may be a surface treatment such that the ductility is different from the curved member 121 or the support member 122 at the connection portion of the curved member 121 and the support member 122, the softening operation on the surface, or
  • a method of bonding a polymer such as a polymer having good expansion properties or a polymer having excellent ductility may be used.
  • the curved actuator 120 having such a structure is a dynamic snap-through phenomenon caused by having a more unstable buckling state due to the curved structure of the curved member 121 and the connecting structure of the curved member 121 and the support member 122. This results in a larger drive displacement. That is, as shown in FIG. 3, the curved actuator 120 having the upper hemispherical structure may generate a large deformation that is transformed into the lower hemispherical structure through the snap-through phenomenon.
  • the unstable buckling state of the curved polymer actuator 120 is that when the curved actuator 120 is fixed to the upper support or the lower support in the form of a cantilever, that is, only one end of the support member 122 is the upper support 130 or the lower support 110. ), It can be larger.
  • the curved actuator 120 is a pattern that suppresses the cracks generated when the large deformation caused by the snap-through phenomenon generated in the curved member 121, it is preferable that various types of electrodes are patterned as shown in FIG. Do.
  • the electrode layer is formed of metal on the upper and lower surfaces, cracks may occur in the electrode at the center of the largest deformation during large deformation, and performance may vary depending on the shape of the pattern. Likewise, the center is patterned to leave the polymer state without plating.
  • the curved actuator 120 may have a snap-through phenomenon through an unstable buckling state, and in particular, may have three modes of snap-through phenomenon by the principle shown in FIG.
  • the second mode and the third mode generate effects similar to the interlocking effect. That is, the second mode and the third mode do not constantly descend from the center but instead push down from one side, affecting the direction of the fluid. Since it is possible to control the flow of the flow, it is possible to suppress the backflow phenomenon and to maximize the pumping force more.
  • FIG. 6 is a structural diagram of a micropump according to a preferred embodiment of the present invention, and FIGS. 7 to 10 are tubular forms formed in the micropump shown in FIG. A perspective view, a vertical side view, a horizontal side view, and a bottom view of the actuator, FIG.
  • FIG. 11 is a perspective view showing a state in which an electrode is separated from the tubular actuator shown in FIG. 7,
  • FIG. 12 is a perspective view of a separated electrode, and
  • FIG. 13 is an embodiment of the present invention. Is an exemplary view of the various shapes of the mold structure of the micropump of FIG. Type actuator in a schematic diagram showing the three modes by the snap-through phenomenon of the band member.
  • a micropump 600 includes a mold structure 610, an inlet hole member 620, a discharge hole member 630, and a tubular actuator 640. It can be seen that.
  • the mold structure 610 includes a pumping space portion 611 in which the tubular actuator 640 is accommodated, in which the pumping space portion 611 has a shape in which a direction in which the flowed fluid flows forms a longitudinal direction.
  • the deformation of the actuator 640 is sized to accommodate the deformed tubular actuator 640.
  • the longitudinal section of the pumping space 611 forms a long oval similar to the shape of the tubular actuator 640.
  • the external shape of the mold structure 610 may be variously manufactured as needed, such as a rectangular parallelepiped, a cylindrical shape, and a streamlined shape, as shown in FIG. 13. , And materials influence the suitability of the specific environment.
  • the mold structure 610 when intended for use in the human body or other organisms, is generally made of a high biocompatibility polymer, which is harmless to the human body and has suitable biocompatibility properties.
  • the structure of the mold structure 610 ie the overall structure of the micropump
  • the mold structure 610 can be configured to withstand environmental conditions such as temperature, chemical exposure, and mechanical stress, and the mold structure 610 It may include features that allow the structure to be positioned or positioned at a location required by the installation environment or features that allow the device to be directed to a location required by the installation environment, such features being size and shape features, or installation environments. Tethers or gripping structures that prevent the movement of the micropump, or targeting features that allow the micropump to be directed to or positioned in the required position ( Surface chemistry, shape, etc.).
  • the mold structure 610 may be manufactured using a method known to those skilled in the art of micropump manufacture as a component forming a micropump, which is a device that can be inserted into an organism, and particularly, PVC, PE, PP, PMMA, It is desirable to prepare, using, but not limited to, high biocompatibility polymeric materials, including any one or more of PS, PET, PTFE, PU, or nylon, from various materials or combinations of these materials, and It can be formed by various manufacturing techniques.
  • the inlet hole member 620 and the discharge hole member 630 is formed in a tubular shape at both ends of the mold structure 610, one end is formed so as to be exposed to the outside of the mold structure 610 and the other end of the mold structure 610 Since it has a configuration that is connected to both ends of the tubular actuator 640 accommodated in the pumping space 611 therein, not only serves as a passage through which the fluid flows, but also performs a function of fixing the tubular actuator 640 to the mold structure 610. do.
  • the other end of the inlet hole member 620 is formed to be connected to one end of the tubular actuator 640 accommodated in the pumping space 611 to inject fluid into the inner space of the tubular actuator 640, the discharge hole member This is because the other end of the 630 is formed to be connected to the other end of the tubular actuator 640 to discharge the fluid from the inner space of the tubular actuator 640 to the outside.
  • the inlet hole member 620 and the discharge hole member 630 formed at both ends of the mold structure 610 and connected to both ends of the tubular actuator 640 flow in one direction.
  • the size and angle may be adjusted so that the fluid may flow in a specific direction intended to flow, such as a direction in which the pumping force of the micropump 600 increases or a direction in which the fluid does not flow back.
  • the angle is adjusted and formed.
  • the cross-sectional shape is not limited.
  • tubular actuator 640 is formed to be accommodated in the pumping space 611 of the mold structure 610 and has a structure that is protected by the mold structure 610, the longitudinal cross section that is the direction in which the introduced fluid flows long Since it is preferable to form the outer peripheral surface of the inner space having an elliptical shape, the overall shape is similar to the tube shape.
  • the tubular actuator 640 preferably includes a support member 641, a film member 642, an electrode 643, and a band member 644.
  • the support member 641 is formed so that the inlet hole member 620 and the discharge hole member 630 penetrates the center thereof on a flat plate, that is, to surround the inlet hole member 620 and the discharge hole member 630. Since it is formed is formed on both ends of the pumping space 611, respectively. As such, the support member 641 forms a bottom and an upper surface of the overall tubular shape, thereby connecting and fixing the inlet hole member 620 and the discharge hole member 630 and the tubular actuator 640 as a result of the tubular actuator 640. Is fixed to the mold structure 610.
  • the shape of the support member 641 is not limited, but is circular as shown.
  • the film members 642 are formed at both ends of each of the supporting members 641 to form an outer circumferential surface of the inner space.
  • the film members 642 have small diameters at both ends to be similar to the inner space of the tubular actuator 640.
  • a cylindrical film having a large diameter may be prepared, and both ends of the film may be fixed to an annular portion having a predetermined width from a central portion of the surface of each support member 641 through which the inlet hole member 620 or the discharge hole member 630 penetrates. Fixing by the width can be configured to configure the outer peripheral surface of the inner space of the tubular actuator 640 having a tubular shape as a whole.
  • the fixing of the film member 642 and the supporting member 641 may use a known fixing method such as using an adhesive.
  • the fixing means may also be biocompatible. Be careful to use what you have.
  • the film member 642 may be a polymer film, although the material is not limited as long as the film member 642 has shrinkage force that does not inhibit the displacement of the band member 644 and has biocompatibility.
  • the electrode 643 is patterned on the outside of the portion where the film member 642 is fixed so that the fluid flowing through the inlet hole member 620 of the surface of the support member 641 is not in contact with the band member 644. It is formed by a known method, preferably to form a groove to the side adjacent to the outer periphery of the support member 641 and to form an electrode 643 inside the groove.
  • Both ends of the band member 644 are fixed to each support member 641, and a plurality of band members 644 are formed adjacent to the surface of the film member 642 such that at least one of both ends thereof is connected to the electrode 643.
  • the separation width of the band member 644 is shown to be considerably wide, but a plurality of band members are fixed to both ends of the support member 641 so that there is almost no separation width, so that the surface of the film member 642 is entirely on the band member 644. It may be formed to be wrapped by.
  • the band member 644 and the support member 641 may be fixed by a known fixing method, preferably the band member 644 is connected to the electrode formed in the groove of the support member 641 and at the same time the groove It is fitted in and fixed.
  • the band member 644 is formed of an electromechanical polymer film such as a piezoelectric material or an ion exchange membrane.
  • the band member 644 may be in an unstable buckling state due to piezoelectric or electric activity.
  • the dynamic snap-through phenomenon that results from having a larger drive displacement.
  • the band member 644 is driven as described above, the band member 644 is tubular because the band member 644 transmits a driving force to the tubular film member 643 in contact with the band member 644 so that the band member 644 moves in a peristaltic motion.
  • the actuator 640 is a portion that provides a pumping force.
  • the power supply for supplying a voltage to the electrode 643 of the tubular actuator 640 is inserted into the mold structure 610 is formed integrally or formed outside the mold structure 610 tubular actuator 640 Is applied to the voltage).
  • the tubular actuator 640 may have a snap-through phenomenon through an unstable buckling state of the band member 644.
  • the tubular actuator 640 may have three modes of snap-through phenomenon by the principle shown in FIG.
  • the second mode and the third mode generate an effect similar to the interlocking effect, that is, the second mode and the third mode do not constantly descend from the center but instead push down from one side, so the direction of the fluid Influences can be used to control the flow of fluid, thereby reducing backflow and maximizing pumping power.
  • the micropump having the above-described structure can operate at low voltage to efficiently use energy, and is very small and excellent in biocompatibility, so that it is easy to provide a driving force to an internal human implantable medical device.
  • Internally insertable medical devices can be manufactured.

Abstract

The present invention is a micro pump which provides enhanced pumping ability. The structure of the present micro pump has a pumping portion which has a relatively larger deformation. According to the present invention, the disclosed pump allows for less loss of voltage and backward reflux flow of pumped fluid, and has greater pumping power and enhanced biocompatibility. The present invention is utilized with excellent potential in use with uTAS that control small amounts of fluid, medical apparatus for insertion into human bodies, and for adhesive processes in micro factories.

Description

스냅-스루를 이용한 마이크로 펌프Snap-Through Micro Pump
본 발명은 마이크로펌프에 관한 것으로, 보다 구체적으로는 마이크로 펌프의 펌핑부가 더 큰 변형량을 얻는 구조로 이루어짐으로써 보다 큰 펌핑력을 갖는 마이크로펌프에 관한 것이다.The present invention relates to a micropump, and more particularly to a micropump having a larger pumping force by having a structure in which the pumping part of the micropump obtains a larger deformation amount.
최근에는, 반도체 제조공정 기술을 이용하여 감지(sensing) 또는 구동(actuating)에 필요한 마이크로 단위 크기의 미소구조물을 제작하고, 여기에 신호처리 회로를 같이 집적화 함으로써, 고성능 다기능의 초소형 기전시스템(Micro Electro Mechanical System, 이하 'MEMS'이라 함)이 구현되고 있다. 이러한 MEMS 기술을 이용하여 수 ㎠ 크기의 칩 위에 바이오 칩, 의료 및 미량 유체 분석 장치들을 초소형으로 집적시킨 랩-온-칩(Lab On a Chip)은 생물학, 화학, 의학 및 유전공학 분야에서 의료용 마이크로 진단 및 약물 주입 시스템에 활용하기 위하여 많은 연구가 진행되고 있다. Recently, microstructures having a micro unit size necessary for sensing or actuating are fabricated using semiconductor manufacturing process technology, and signal processing circuits are integrated therein to provide a high performance, multifunctional microelectromechanical system (Micro Electro). Mechanical System, hereinafter referred to as 'MEMS' is implemented. Using this MEMS technology, Lab-on-Chip, a micro-integrator of biochips, medical and microfluidic analyzers on a few centimeters of chips, is a medical microcontroller for biological, chemical, medical and genetic engineering applications. Many studies have been conducted to utilize the diagnostic and drug injection system.
이와 같이 마이크론 단위의 극도로 소형화된 센서나 액츄 에이터에 대한 실질적인 연구는 미세기전시스템(MEMS: Micro Electro Mechanical Systems) 기술의 등장에 힘입은 바 크다. Substantial research on micron-sized sensors or actuators has been fueled by the emergence of Micro Electro Mechanical Systems (MEMS) technology.
최근 들어 이 기술로 제작된 다양한 상용 제품들의 출시와 이에 따른 급속한 시장의 팽창에 따라, 새로운 산업을 일으킬 수 있는 핵심기술로 인식되고 있다. 특히 실리콘을 기반으로 한 미세기전시스템 기술을 이용하여, 센서 또는 액츄에이터를 집적회로(IC:Integrated Circuit)와 동시에 제작한, 이른바 집적화된 미세기전시스템(iMEMS: integrated MEMS)의 출현을 가능하게 하였다. Recently, with the introduction of various commercial products manufactured by this technology and the rapid expansion of the market, it is recognized as a core technology that can bring about a new industry. In particular, the use of silicon-based micromechanical system technology has enabled the emergence of so-called integrated MEMS (iMEMS), in which sensors or actuators are fabricated simultaneously with integrated circuits (ICs).
마이크로 펌프(micro pump)란, 소량의 유체를 원하는 방향으로 흐르도록 하는 기능을 가진 것으로, 주로 μ-TAS(Micro Total Analysis System), LOC(Lab-On-a-Chip) 등을 포함하는 바이오-MEMS(Bio-Micro Electro Mechanical System) 분야와 관련되어 극미량유체수송 및 제어분야에 사용되는 것이다. A micro pump has a function of allowing a small amount of fluid to flow in a desired direction. A micro pump mainly includes a micro-TAS (Micro Total Analysis System), a lab-on-a-chip (LOC), and the like. It is used in trace fluid transportation and control fields related to MEMS (Bio-Micro Electro Mechanical System) field.
지금까지 매크로 영역에서는 모터 등의 회전력을 이용하여 압력 구배를 형성하여 유체를 이송하는 방법이 많이 사용되어 왔다. 그러나 마이크로 크기의 LOC 시스템에서는 비교적 큰 부피를 가지는 모터 등의 액츄에이터를 사용하기 곤란하다. 이를 극복하기 위해서 단순한 형상을 가지며, 마이크로 사이즈로 제작이 용이한 마이크로 펌프를 설계할 필요성이 크게 대두된다.Until now, many methods have been used in the macro area to transfer a fluid by forming a pressure gradient using a rotational force such as a motor. However, it is difficult to use an actuator such as a motor having a relatively large volume in a micro-sized LOC system. In order to overcome this, there is a great need to design a micro pump having a simple shape and easy to manufacture in a micro size.
그동안 초소형 액츄에이터의 구동을 위하여, 여러 가지 방식이 시도되었는데 이러한 마이크로 펌프는 구동방식에 따라 정전형, 압전형, 전기분해형, 형상기억합금형(shape memory alloy) 및 전자력 방식이 있다.In the meantime, various methods have been tried to drive the micro actuators. The micro pumps are electrostatic, piezoelectric, electrolytic, shape memory alloy, and electromagnetic force.
이하, 마이크로 펌프의 구동방식에 따른 문제점을 간단히 살펴보면 먼저, 정전형은 구조가 간단하나 상대적으로 큰 힘을 얻기 어려우며, 압전형은 압전 세라믹의 압전효과를 이용하여 구동하는 방식으로 상대적으로 큰 힘을 낼 수 있으나 높은 인가전압이 요구되므로 구조적으로 크게 된다. 한편, 전기분해형은 상대적으로 낮은 에너지로도 열발생 없이 큰 변위를 낼 수 있지만, 화학적 역반응을 통해 발생된 기체 제거시간이 길고 구동속도가 느린 문제를 가지고 있다. 형상기억합금형은 강한 인장력으로 큰 힘을 낼 수 있지만 단방향성 특징으로 제작이 어렵다. 또한, 전자력방식은 저전압에서 큰 변위를 얻을 수 있고, 주파수 응답이 빠르다는 장점이 있지만 소형화가 어렵다.Hereinafter, the problems of the micro pump driving method will be briefly described. First, the electrostatic type is simple in structure but difficult to obtain a relatively large force, and the piezoelectric type is driven by using the piezoelectric effect of the piezoelectric ceramic. It can be made, but it is structurally large because high applied voltage is required. On the other hand, the electrolysis type can produce a large displacement without heat generation even with relatively low energy, but has a problem that the gas removal time generated through the chemical reverse reaction is long and the driving speed is slow. The shape memory alloy can produce great force with strong tensile force, but it is difficult to manufacture due to unidirectional characteristics. In addition, the electromagnetic force method has a merit that a large displacement can be obtained at a low voltage, and the frequency response is fast, but it is difficult to miniaturize.
한편, 전기활성 고분자(electroactive polymer : EAP)의 하나인 이온성 고분자 금속 복합물(ionic polymer metal composite : IPMC)에 대한 연구가 많은 과학자들에 의해서 진행 중인데, IPMC의 간단한 구동 원리를 도 1을 참조하면, 나피온막의 양면에 입힌 금속 전극으로 전압을 인가하는 경우, 양이온(cation)과 극성용매(polar solvent)는 인가되는 전압의 방향과 반대방향으로 움직임으로써 움직이는 쪽의 막의 변형이 일어나게 된다. On the other hand, research on ionic polymer metal composite (IPMC), one of the electroactive polymers (EAP), is being conducted by many scientists. Referring to FIG. When a voltage is applied to the metal electrodes coated on both sides of the Nafion membrane, the cation and the polar solvent move in a direction opposite to the direction of the applied voltage, causing deformation of the membrane on the moving side.
이러한 IPMC를 이용하여 가볍고 유연한 소형 구동체(actuator)를 설계하고 이를 마이크로 펌프에도 응용하고 있지만, IPMC 작동기의 변형량이 적어 펌핑력이 약한 문제점이 여전히 존재하고 있다. Although the lightweight and flexible compact actuator is designed and applied to the micropump using the IPMC, there is still a problem that the pumping force is weak due to the small amount of deformation of the IPMC actuator.
이처럼 현재까지 알려진 마이크로 펌프의 구조들은 초소형이면서도 큰 힘과 큰변위 그리고 빠른 속도를 모두 만족시키기에는 어려운 점이 있었다.  As such, the micropump structures known to date have been difficult to satisfy both the small size and the large force, the large displacement and the high speed.
본 발명자들은 큰 힘과 큰변위 그리고 빠른 속도를 가진 마이크로펌프를 개발하기 위해 연구 노력한 결과 동적 스냅 스루 현상을 이용하는 구조를 통해 더 큰 펌핑력을 얻을 뿐만 아니라 유체가 역류하지 않는 기술적 구성을 개발하게 되어 본 발명을 완성하게 되었다.The present inventors have made efforts to develop a micropump with a large force, a large displacement, and a high speed. As a result, a structure using a dynamic snap-through phenomenon not only obtains a larger pumping force but also develops a technical configuration in which fluid does not flow back. The present invention has been completed.
따라서, 본 발명의 목적은 초소형이면서도 큰힘과 큰변위를 갖는 마이크로펌프를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a micropump having a very small force and a large force and a large displacement.
본 발명의 다른 목적은 흐름과 역류를 조절할 수 있는 구조의 펌핑부를 가진 마이크로펌프를 제공하는 것이다.Another object of the present invention is to provide a micropump having a pumping part having a structure capable of controlling flow and backflow.
본 발명의 또 다른 목적은 생체적합성이 우수하여 소량의 유체를 제어하는 uTAS, 인체내부삽입형 의료기기 및 마이크로팩토리의 접착공정에 이용 가능한 마이크로펌프를 제공하는 것이다.It is still another object of the present invention to provide a micropump that can be used in the adhesion process of uTAS, an internal human implantable medical device, and a microfactory, which has a good biocompatibility and controls a small amount of fluid.
또한, 본 발명자들은 큰 힘과 큰변위 그리고 빠른 속도를 가진 마이크로펌프를 개발하기 위해 연구 노력한 결과 지렁이 또는 위장의 연동운동을 적용하여 동적 스냅 스루 현상을 이용하여 더 큰 펌핑력을 얻을 뿐만 아니라 변형모드제어를 통해 유체의 흐름을 제어하는 기술적 구성을 개발하게 되어 본 발명을 완성하게 되었다.In addition, the present inventors have studied to develop a micropump with a large force, a large displacement, and a high speed. As a result, by applying the earthworm or camouflage peristalsis, the present invention not only obtains a larger pumping force by using a dynamic snap-through phenomenon but also a deformation mode. The present invention has been completed to develop a technical configuration for controlling the flow of fluid through control.
따라서, 본 발명의 목적은 초소형이면서도 손실(전압, 유체의 역류)이 적고 큰 힘과 큰 변위를 갖게 되므로 펌핑력이 우수한 마이크로펌프를 제공하는 것이다.Accordingly, an object of the present invention is to provide a micropump having excellent pumping force because it is very small and has a small loss (voltage, backflow of fluid) and a large force and a large displacement.
본 발명의 다른 목적은 지렁이 또는 위장의 연동운동을 적용한 동적 스냅 스루 현상의 변형모드제어를 통해 유체의 흐름을 제어할 수 있는 구조의 펌핑부를 가진 마이크로펌프를 제공하는 것이다.Another object of the present invention is to provide a micropump having a pumping part having a structure capable of controlling the flow of fluid through the deformation mode control of the dynamic snap-through phenomenon by applying the interlocking motion of the earthworm or the stomach.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위하여 본 발명은 유체가 유입되는 유입공, 유체가 배출되는 토출공 및 유체가 담겨지는 공간부를 포함하는 하부구조체; 상기 하부구조체의 공간부와 접하여 형성되는 곡면형 작동기; 및 상기 곡면형 작동기를 수용하는 공간부를 포함하고 하부구조체와 결합되는 상부구조체;를 포함하는 마이크로펌프를 제공한다.In order to achieve the above object, the present invention includes a lower structure including an inlet hole in which fluid is introduced, a discharge hole in which the fluid is discharged, and a space in which the fluid is contained; A curved actuator formed in contact with the space portion of the substructure; And an upper structure including a space portion for accommodating the curved actuator and coupled to a lower structure.
바람직한 실시예에 있어서, 상기 곡면형 작동기는 곡면부재와 상기 곡면부재를 지지하는 지지부재를 포함한다. In a preferred embodiment, the curved actuator includes a curved member and a support member for supporting the curved member.
바람직한 실시예에 있어서, 상기 곡면부재는 압전재 혹은 기전고분자막으로 형성된다.In a preferred embodiment, the curved member is formed of a piezoelectric material or a mechanical polymer film.
바람직한 실시예에 있어서, 상기 곡면형 작동기는 불안정한 좌굴형태에서 발생하는 동적 스냅-스루현상을 통해 큰 구동 변위를 갖는다.In a preferred embodiment, the curved actuator has a large drive displacement through dynamic snap-through which occurs in an unstable buckling configuration.
바람직한 실시예에 있어서, 상기 곡면형 작동기의 불안정한 좌굴상태는 곡면부재와 지지부재의 경계부분을 상기 곡면부재 또는 상기 지지부재와 연성이 상이하도록 특수처리 하여 이루어진다.In a preferred embodiment, the unstable buckling state of the curved actuator is made by specially treating the boundary between the curved member and the support member so that the ductility is different from the curved member or the support member.
바람직한 실시예에 있어서, 상기 곡면형 작동기의 불안정한 좌굴상태는 상기 곡면형 작동기가 캔틸레버형태로 상부지지체 또는 하부지지체에 고정되어 이루어진다.In a preferred embodiment, the unstable buckling state of the curved actuator is such that the curved actuator is fixed to the upper support or the lower support in the form of a cantilever.
바람직한 실시예에 있어서, 상기 곡면형 작동기는 상기 발생된 스냅-스루현상의 두 번째 모드와 세 번째 모드를 통해 유체의 흐름을 제어하여 역류현상을 억제하고 펌핑력을 극대화시킨다. In a preferred embodiment, the curved actuator controls the flow of fluid through the second and third modes of the generated snap-through phenomenon to suppress backflow and maximize pumping force.
바람직한 실시예에 있어서, 상기 곡면형 작동기는 상기 곡면부재에 상기 발생된 스냅-스루현상에 의한 대변형시 발생하는 균열을 억제하는 형태로 전극이 패터닝되는 것을 특징으로 하는 마이크로펌프.In a preferred embodiment, the curved actuator is a micropump, characterized in that the electrode is patterned in the form of suppressing the cracks generated during the large deformation caused by the snap-through phenomenon in the curved member.
바람직한 실시예에 있어서, 상기 하부구조체 및 상부구조체는 PVC, PE, PP, PMMA, PS, PET, PTFE, PU, 또는 nylon 중 하나 이상을 포함하는 생체적합성이 우수한 고분자로 제조되거나 표면이 코팅된다. In a preferred embodiment, the substructure and superstructure is made of a high biocompatibility polymer comprising at least one of PVC, PE, PP, PMMA, PS, PET, PTFE, PU, or nylon or coated with a surface.
바람직한 실시예에 있어서, 상기 상부구조체에 유체가 유입되는 유입공 및 유체가 배출되는 토출공이 더 형성된다.In a preferred embodiment, the inlet hole for the fluid is introduced into the upper structure and the discharge hole for the fluid is further formed.
상기 곡면형 작동기는 이중 곡면 구조를 갖는다.The curved actuator has a double curved structure.
바람직한 실시예에 있어서, 상기 유입공 및 상기 토출공은 유입되는 유체가 일 방향으로 흐를 수 있도록 크기 및 각도가 조절되어 형성된다.In a preferred embodiment, the inlet hole and the discharge hole is formed to be adjusted in size and angle so that the fluid flowing in one direction.
상기 목적을 달성하기 위하여 본 발명은 또한 유입된 유체가 흐르는 방향인 길이방향 단면이 긴 타원형 형상을 갖는 내부공간의 외주면을 이루도록 형성되는 튜브형 작동기; 상기 튜브형 작동기를 내부에 수용하는 펌핑공간부가 형성된 몰드구조체; 상기 몰드구조체의 일단에 형성되어 상기 튜브형작동기로 유체가 유입되도록 하는 유입공부재; 및 상기 몰드구조체의 타단에 형성되어 상기 튜브형작동기의 유체가 토출되도록 하는 토출공부재; 를 포함하는 마이크로펌프를 제공한다.In order to achieve the above object, the present invention also provides a tubular actuator formed to form an outer circumferential surface of the inner space having a long elliptical shape in the longitudinal cross-section, which is a flowing direction of the introduced fluid; A mold structure in which a pumping space part is formed to accommodate the tubular actuator therein; An inlet hole member formed at one end of the mold structure to allow fluid to flow into the tubular actuator; And a discharge hole member formed at the other end of the mold structure to discharge the fluid of the tubular actuator; It provides a micro pump comprising a.
바람직한 실시예에 있어서, 상기 튜브형 작동기는 상기 유입공부재 및 토출공부재를 감싸도록 상기 펌핑공간부의 양단부에 각각 형성되는 지지부재; 상기 각각의 지지부재에 양단부가 고정되어 상기 내부공간의 외주면을 이루도록 형성되는 필름부재; 상기 지지부재의 표면 중 상기 필름부재가 고정된 부분의 외측에 형성되는 전극; 및 상기 각각의 지지부재에 양단이 고정되고, 상기 양단 중 하나 이상이 상기 전극과 연결되도록 상기 필름부재 표면에 인접하여 형성되는 다수개의 밴드부재를 포함한다. In a preferred embodiment, the tubular actuator includes support members formed at both ends of the pumping space part to surround the inlet and discharge hole members; Film members formed at both ends of the support members to form an outer circumferential surface of the inner space; An electrode formed on an outer side of a portion of the surface of the support member to which the film member is fixed; And a plurality of band members fixed at both ends to the respective supporting members, and at least one of both ends formed adjacent to the surface of the film member so as to be connected to the electrodes.
바람직한 실시예에 있어서, 상기 밴드부재는 압전재 또는 기전고분자 막으로 형성된다.In a preferred embodiment, the band member is formed of a piezoelectric material or a mechanical polymer film.
바람직한 실시예에 있어서, 상기 튜브형 작동기는 상기 밴드부재의 불안정한 좌굴상태에서 발생하는 동적 스냅-스루현상을 통해 큰 구동 변위를 갖는다.In a preferred embodiment, the tubular actuator has a large drive displacement through dynamic snap-through which occurs in an unstable buckling state of the band member.
바람직한 실시예에 있어서, 상기 필름부재는 상기 밴드부재의 변위를 저해하지 않을 정도의 수축력을 가진 고분자필름이다.In a preferred embodiment, the film member is a polymer film having a shrinkage force not to inhibit the displacement of the band member.
바람직한 실시예에 있어서, 상기 튜브형 작동기는 상기 발생된 스냅-스루현상의 첫 번째 모드 및 두 번째 모드와 세번째 모드를 통해 상기 작동기의 튜브형 몸체가 연동운동이 일어나도록 하여 유체의 흐름을 제어한다.In a preferred embodiment, the tubular actuator controls the flow of fluid by causing the tubular body of the actuator to interlock through the first and second and third modes of the generated snap-through phenomenon.
바람직한 실시예에 있어서, 상기 몰드구조체는 PVC, PE, PP, PMMA, PS, PET, PTFE, PU, 또는 nylon으로 구성된 그룹에서 선택되는 하나 이상을 포함하는 생체적합성이 우수한 고분자로 제조되거나 표면이 코팅된다.In a preferred embodiment, the mold structure is made of a high biocompatible polymer or at least one surface coated with one or more selected from the group consisting of PVC, PE, PP, PMMA, PS, PET, PTFE, PU, or nylon do.
바람직한 실시예에 있어서, 상기 유입공부재 및 상기 토출공부재는 유입되는 유체가 일 방향으로 흐를 수 있도록 크기 및 각도가 조절되어 형성된다.In a preferred embodiment, the inlet hole member and the discharge hole member is formed to be adjusted in size and angle so that the fluid flowing in one direction.
바람직한 실시예에 있어서, 상기 전극에 연결되어 상기 밴드부재에 전압을 공급하는 전원공급부를 더 포함한다.In a preferred embodiment, it further comprises a power supply connected to the electrode for supplying a voltage to the band member.
또한, 본 발명은 제 1 항 내지 제 9 항 중 어느 한 항의 마이크로펌프를 이용하는 인체내부 삽입형 의료기기를 제공한다. The present invention also provides an internal human implantable medical device using the micropump according to any one of claims 1 to 9.
바람직한 실시예에 있어서, 상기 마이크로펌프의 유입공부재 및 토출공부재의 직경은 상기 의료기기에 사용되는 호스와 동일 규격이다.In a preferred embodiment, the diameter of the inlet hole member and the outlet hole member of the micropump is the same size as the hose used in the medical device.
본 발명은 다음과 같은 우수한 효과를 가진다.The present invention has the following excellent effects.
먼저, 본 발명의 마이크로펌프는 초소형이면서도 큰 힘과 큰 변위를 갖는다.First, the micropump of the present invention is very small and has a large force and a large displacement.
또한, 본 발명의 마이크로펌프는 흐름과 역류를 조절할 수 있는 구조의 펌핑부를 가진다.In addition, the micropump of the present invention has a pumping part having a structure capable of controlling flow and backflow.
또한, 본 발명의 마이크로펌프는 생체적합성이 우수하여 소량의 유체를 제어하는 uTAS, 인체내부삽입형 의료기기 및 마이크로팩토리의 접착공정에 이용 가능하다. In addition, the micropump of the present invention is excellent in biocompatibility, and can be used for the adhesion process of uTAS, an internal human implantable medical device, and a microfactory which controls a small amount of fluid.
또한 본 발명은 다음과 같은 우수한 효과를 가진다.In addition, the present invention has the following excellent effects.
본 발명의 마이크로펌프는 초소형이면서도 손실(전압, 유체의 역류)이 적고 큰 힘과 큰 변위를 갖게 되므로 펌핑력이 우수하다.The micropump of the present invention is excellent in pumping power because it is very small and has a small loss (voltage, backflow of fluid) and a large force and a large displacement.
또한, 본 발명의 마이크로펌프는 지렁이 또는 위장의 연동운동을 적용한 동적 스냅 스루 현상의 변형모드제어를 통해 유체의 흐름을 제어할 수 있는 구조의 펌핑부를 가진다.In addition, the micropump of the present invention has a pumping part having a structure capable of controlling the flow of fluid through the deformation mode control of the dynamic snap-through phenomenon by applying the interlocking motion of the earthworm or the stomach.
도 1은 IPMC 의 구부림 메카니즘을 나타낸 모식도1 is a schematic diagram showing the bending mechanism of IPMC
도 2는 본 발명의 일 실시예에 의한 마이크로펌프의 구조도2 is a structural diagram of a micropump according to an embodiment of the present invention;
도 3은 도 2에 도시된 곡면형 고분자 작동기에서 스냅-스루현상을 곡면부재의 대변형을 보여주는 곡면부재부분의 단면도3 is a cross-sectional view of a curved member portion showing the large deformation of the curved member in the snap-through phenomenon in the curved polymer actuator shown in FIG.
도 4는 도 3과 같은 대변형시 발생하는 전극판의 균열을 방지하기 위해 패터닝 되는 여러 형태 전극의 모식도FIG. 4 is a schematic view of various types of electrodes patterned to prevent cracking of the electrode plate generated when a large deformation as shown in FIG.
도 5는 곡면형 고분자 작동기의 곡면부재의 스냅스루현상에 의한 3 가지 모드를 나타내는 모식도 Figure 5 is a schematic diagram showing the three modes by the snap-through phenomenon of the curved member of the curved polymer actuator
도 6은 본 발명의 바람직한 일 실시예에 의한 마이크로펌프의 구조도6 is a structural diagram of a micropump according to a preferred embodiment of the present invention
도 7 내지 도 10은 도 6에 도시된 마이크로펌프에 형성된 튜브형 작동기의 사시도, 수직측면도, 수평측면도 및 저면도7 to 10 are a perspective view, a vertical side view, a horizontal side view and a bottom view of a tubular actuator formed in the micropump shown in FIG.
도 11은 도 7에 도시된 튜브형 작동기에서 전극이 분리된 상태를 나타낸 사시도이고, 도 12는 분리된 전극의 사시도FIG. 11 is a perspective view showing a state in which electrodes are separated in the tubular actuator shown in FIG. 7, and FIG. 12 is a perspective view of a separated electrode.
도 13은 본 발명의 마이크로펌프의 몰드구조체의 여러 형상에 대한 예시도Figure 13 is an illustration of the various shapes of the mold structure of the micropump of the present invention
도 14는 도 7에 도시된 튜브형 작동기에서 밴드부재의 스냅스루현상에 의한 3 가지 모드를 나타내는 모식도14 is a schematic diagram showing three modes by the snap-through phenomenon of the band member in the tubular actuator shown in FIG.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
100: 마이크로펌프 110: 하부구조체100: micropump 110: substructure
111: 유입공 112: 토출공111: inflow hole 112: discharge hole
113: 공간부 120: 곡면형 작동기113: space portion 120: curved actuator
121: 곡면부재 122: 지지부재121: curved member 122: support member
130: 상부구조체 131: 상부공간부 130: superstructure 131: upper space
600: 마이크로펌프 610: 몰드구조체600: micropump 610: mold structure
611: 펌핑공간부 620: 유입공부재611: pumping space portion 620: inlet hole member
630: 토출공부재 640: 튜브형작동기630: discharge hole member 640: tubular actuator
641: 지지부재 642: 필름부재641: support member 642: film member
643: 전극부재 644: 밴드부재643: electrode member 644: band member
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.The terms used in the present invention were selected as general terms as widely used as possible, but in some cases, the terms arbitrarily selected by the applicant are included. In this case, the meanings described or used in the detailed description of the present invention are considered, rather than simply the names of the terms. The meaning should be grasped.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, with reference to the preferred embodiments shown in the accompanying drawings will be described in detail the technical configuration of the present invention.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like numbers refer to like elements throughout the specification.
본 발명은 쉘구조물의 스냅스루 현상이 불안정한 거동으로 매우 큰 변형력을 수반하는데서 착안된 펌핑력을 극대화한 구조를 갖는 마이크로펌프를 제공하는데, 도 2는 본 발명의 일 실시예에 의한 마이크로펌프의 구조도이고, 도 3은 도 2에 도시된 곡면형 작동기에서 발생하는 스냅-스루현상시 곡면부재의 대변형을 보여주는 곡면부재부분의 단면도이며, 도 4는 도 3과 같은 대변형시 발생하는 전극판의 균열을 방지하기 위해 패터닝 되는 여러 형태 전극의 모식도이고, 도 5는 곡면형 작동기에서 곡면부재의 스냅스루현상에 의한 3 가지 모드를 나타내는 모식도이다. The present invention provides a micropump having a structure in which the snap-through phenomenon of the shell structure is maximized by the pumping force, which is focused on accompanied by a very large deformation force. FIG. 2 is a structural diagram of a micropump according to an embodiment of the present invention. 3 is a cross-sectional view of a curved member portion showing a large deformation of the curved member during snap-through occurring in the curved actuator shown in FIG. 2, and FIG. It is a schematic diagram of various types of electrodes patterned to prevent cracking, and FIG. 5 is a schematic diagram showing three modes by snap-through phenomenon of the curved member in the curved actuator.
먼저, 도3을 참조하면 본 발명의 바람직한 실시예에 따른 마이크로펌프(100)가 하부구조체(110), 곡면형 작동기(120), 상부구조체(130)를 포함하는 것을 알 수 있다. First, referring to FIG. 3, it can be seen that the micropump 100 according to the preferred embodiment of the present invention includes a lower structure 110, a curved actuator 120, and an upper structure 130.
하부구조체(110)는 유체가 유입되는 유입공(111), 유체가 배출되는 토출공(112) 및 유체가 담겨지는 공간부(113)를 포함하는데 여기서 공간부(113)는 곡면형 작동기(120)의 변형시 변형된 곡면형 작동기(120)를 수용할 수 있는 크기를 갖는다. The lower structure 110 includes an inlet hole 111 through which the fluid is introduced, a discharge hole 112 through which the fluid is discharged, and a space portion 113 in which the fluid is contained, wherein the space portion 113 is a curved actuator 120. ) Has a size to accommodate the deformed curved actuator 120.
상부구조체(130)는 곡면형 작동기(120)를 수용하는 공간부(131)를 포함하여 하부구조체(110)와 결합되는 구조를 갖는데, 경우에 따라서는 하부구조체(110)의 공간부(113)에 담겨진 유체가 상부구조체(130)와 하부구조체(110) 사이에 설치되는 곡면형 작동기(120)에 의해 상부구조체(130)의 공간부(131)로 이동할 수 없도록 구성될 수 있다.The upper structure 130 has a structure coupled to the lower structure 110, including a space portion 131 for receiving the curved actuator 120, in some cases the space portion 113 of the lower structure 110 The fluid contained therein may be configured to be unable to move to the space portion 131 of the upper structure 130 by the curved actuator 120 installed between the upper structure 130 and the lower structure 110.
또한 하부구조체(110) 및 상부구조체(130)의 크기, 형상, 및 재료는 구체적인 환경에 대한 적합성에 영향을 미친다. In addition, the size, shape, and materials of the substructure 110 and the superstructure 130 affect the suitability for a particular environment.
예를 들면, 인간의 몸 또는 다른 유기체에서 사용하도록 의도된 경우에는 일반적으로 적절한 생체 적합성 특성을 갖는다. 임의의 환경에서 사용하기 위해, 하부구조체(110) 및 상부구조체(130)의 구조(즉 마이크로펌프의 전체구조)는 온도, 화학적 노출, 및 기계적 응력과 같은 환경 조건에 견디도록 구성될 수 있으며, 하부구조체(110) 및 상부구조체(130) 구조가 설치 환경에서 요구되는 위치에 배치되거나 위치 설정될 수 있도록 하는 특징 또는 설치 환경에서 요구되는 위치를 지향할 수 있도록 해주는 특징을 포함할 수 있는데, 이러한 특징은, 크기 및 형상 특징, 또는 설치 환경에서 마이크로펌프의 이동을 방지하는 사슬(tethers) 또는 그리핑 구조(gripping structure), 또는 마이크로펌프가 요구되는 위치로 향하도록 해주거나 혹은 요구되는 위치에 자리 잡을 수 있도록 해주는 지향 특성(targeting features)(표면 화학, 형상 등)을 포함할 수 있다. For example, when intended for use in the human body or other organisms, they generally have appropriate biocompatibility properties. For use in any environment, the structure of substructure 110 and superstructure 130 (ie, the entire structure of the micropump) can be configured to withstand environmental conditions such as temperature, chemical exposure, and mechanical stress, The substructure 110 and the superstructure 130 may include a feature that allows the structure to be positioned or positioned at a location required by the installation environment or a feature that enables the orientation of the location required by the installation environment. The features may be size or shape features, or tethers or gripping structures that prevent movement of the micropump in the installation environment, or point the micropump to the desired location or in place of the required location. It may include targeting features (surface chemistry, shape, etc.) that allow for grasping.
상기 하부구조체(110) 및 상부구조체(130)는 유기체에 배치하기 위해 사용될 수 있는 장치인 마이크로펌프를 이루는 구성부분으로 마이크로제조 분야의 당업자에게 공지된 방법을 사용하여 제조될 수 있는데, 특히 PVC, PE, PP,PMMA, PS, PET, PTFE, PU, 또는 나일론 중 어느 하나 이상을 포함하여 생체적합성이 우수한 고분자 물질을 몰드로 사용하여 제조하는 것이 바람직하지만, 이들로써 한정되는 것은 아닌 다양한 재료 또는 이들 재료의 조합으로부터, 그리고 다양한 제조 기법에 의해 형성될 수 있다.The substructure 110 and the superstructure 130 may be manufactured using a method known to those skilled in the art of microfabrication as a component forming a micropump, which is a device that can be used for placement in an organism, in particular PVC, It is preferable to use a high biocompatibility polymer material, including any one or more of PE, PP, PMMA, PS, PET, PTFE, PU, or nylon as a mold, but various materials or not limited thereto. From combinations of materials and by various manufacturing techniques.
이 때, 하부구조체(110)에 형성되는 유입공(111) 및 토출공(112)은 유체가 흐르는 통로로서 마이크로펌프(100)의 펌핑력이 커지는 방향과 같이 의도된 특정 방향으로 유입되는 유체가 흐를 수 있도록 크기 및 각도가 조절되어 형성되는 것이 바람직하다.In this case, the inflow hole 111 and the discharge hole 112 formed in the lower structure 110 is a passage through which the fluid flows in a specific direction intended such as a direction in which the pumping force of the micropump 100 increases. It is preferable that the size and angle are adjusted to flow.
도면에 도시하지는 않지만 경우에 따라서는 상부구조체(130) 또한 하부구조체(110)와 동일한 구조를 갖도록 할 수 있는데, 즉 상부구조체(130)에도 유입공과 토출공이 형성되도록 하여 곡면형 작동기(120)를 경계로 하여 하부구조체(110)를 통한 유체의 흐름뿐만 아니라 상부구조체(130)를 통한 유체의 흐름을 통해서도 펌핑력이 발생하도록 하여 마이크로펌프(100)의 작동력을 커지게 하거나 하나의 작동기로 두 개의 마이크로펌프(100)의 구동이 가능하도록 구현할 수도 있다. Although not shown in the drawings, in some cases, the upper structure 130 may also have the same structure as the lower structure 110, that is, the inlet and discharge holes are formed in the upper structure 130 to form the curved actuator 120. As a boundary, the pumping force is generated not only through the flow of the fluid through the substructure 110 but also through the flow of the fluid through the upper structure 130 to increase the operating force of the micropump 100 or by using two actuators. It may be implemented to enable the driving of the micropump 100.
즉, 상부구조체(130)와 하부구조체(110)를 통한 두 갈래의 유체 흐름을 통해 곡면형 작동기(120)의 곡면부재(121)가 하부로 내려가면 하부구조체(110)에서는 유체가 나가고 상부구조체에서는 유체가 들어오는 식으로 동시에 두 가지 흐름의 제어가 가능하기 때문이다. That is, when the curved member 121 of the curved actuator 120 descends through the two-way fluid flow through the upper structure 130 and the lower structure 110, the fluid goes out of the lower structure 110 and the upper structure. This is because the two flows can be controlled at the same time as the fluid enters.
또한, 곡면형 작동기(120)는 하부구조체(110)의 공간부(113)와 접하여 형성되고 상부구조체(130)의 공간부(131)에 의해 수용되도록 형성되는데, 곡면부재(121) 및 지지부재(122)를 포함한다. In addition, the curved actuator 120 is formed in contact with the space portion 113 of the lower structure 110 and is formed to be received by the space portion 131 of the upper structure 130, the curved member 121 and the support member (122).
여기서 곡면부재(121)는 압전재 또는 이온교환막과 같은 기전고분자 막으로 형성되는 것으로 상기 곡면부재(121)의 표면에 형성된 금속전극 즉 표면전극을 통해 전압이 인가되면 압전 또는 전기활성에 의해 도3과 같이 상하로 움직여 유체를 유도할 수 있는 펌핑력을 제공하는 부분이고, 지지부재(122)는 곡면부재(121)를 지지하면서 하부구조체(110) 또는 상부구조체(130)에 의해 양단 또는 일단이 고정되어 곡면형 작동기(120)가 마이크로펌프(100)의 일정위치에 설치되게 하는 부분이다. Here, the curved member 121 is formed of a mechanical polymer membrane such as a piezoelectric material or an ion exchange membrane. When a voltage is applied through a metal electrode formed on the surface of the curved member 121, that is, a surface electrode, the piezoelectric or electroactive layer is applied to the curved surface. It is a portion that provides a pumping force that can be moved up and down to induce fluid as shown, and the support member 122 is supported at both ends or one end by the lower structure 110 or the upper structure 130 while supporting the curved member 121 It is a part that is fixed so that the curved actuator 120 is installed at a predetermined position of the micropump 100.
이와 같이 곡면형 작동기(120)는 곡면부재(121)와 지지부재(122)로 형성되는데 특히 곡면부재(121)와 지지부재(122)의 경계부분 즉 연결부분을 곡면부재(121) 또는 지지부재(122)와 연성이 상이하도록 처리하게 되면 곡면형 고분자 작동기(120)가 보다 불안정한 좌굴상태를 갖는 구조를 형성하게 할 수 있다. As described above, the curved actuator 120 is formed of the curved member 121 and the support member 122. In particular, the boundary portion of the curved member 121 and the support member 122, that is, the connection portion, is connected to the curved member 121 or the support member. Treatment with the ductility different from the 122 may cause the curved polymer actuator 120 to form a structure having a more unstable buckling state.
상기 처리는 예를 들면 곡면부재(121)와 지지부재(122)의 연결부분에 곡면부재(121) 또는 지지부재(122)와 연성이 상이하도록 표면처리하거나, 표면에 대한 연화작업을 하거나, 특정고분자 예를 들어 팽창 특성이 좋은 고분자나 연성이 뛰어난 고분자 등과 같은 특정고분자를 본딩 하는 등의 방법을 포함한다. For example, the treatment may be a surface treatment such that the ductility is different from the curved member 121 or the support member 122 at the connection portion of the curved member 121 and the support member 122, the softening operation on the surface, or For example, a method of bonding a polymer such as a polymer having good expansion properties or a polymer having excellent ductility may be used.
이러한 구조를 가진 곡면형 작동기(120)는 곡면부재(121)의 곡면구조 및 곡면부재(121)와 지지부재(122)의 연결구조로 인해 보다 불안정한 좌굴상태를 갖게 됨으로써 발생하는 동적 스냅-스루현상을 통해 보다 큰 구동 변위를 갖게 된다. 즉 도3과 같이 상부 반구형 구조를 가진 곡면형 작동기(120)가 스냅-스루현상을 통해 하부 반구형 구조로 변형되는 대변형을 발생시킬 수 있는 것이다. The curved actuator 120 having such a structure is a dynamic snap-through phenomenon caused by having a more unstable buckling state due to the curved structure of the curved member 121 and the connecting structure of the curved member 121 and the support member 122. This results in a larger drive displacement. That is, as shown in FIG. 3, the curved actuator 120 having the upper hemispherical structure may generate a large deformation that is transformed into the lower hemispherical structure through the snap-through phenomenon.
곡면형 고분자 작동기(120)의 불안정한 좌굴상태는 곡면형 작동기(120)가 캔틸레버형태로 상부지지체 또는 하부지지체에 고정되면 즉 지지부재(122)의 일단부만 상부지지체(130) 또는 하부지지체(110)에 고정되면 보다 커질 수 있다. The unstable buckling state of the curved polymer actuator 120 is that when the curved actuator 120 is fixed to the upper support or the lower support in the form of a cantilever, that is, only one end of the support member 122 is the upper support 130 or the lower support 110. ), It can be larger.
또한, 곡면형 작동기(120)는 곡면부재(121)에 발생된 스냅-스루현상에 의한 대변형시 발생하는 균열을 억제하는 형태로 도4에 도시된 바와 같이 다양한 형태의 전극이 패터닝되는 것이 바람직하다. In addition, the curved actuator 120 is a pattern that suppresses the cracks generated when the large deformation caused by the snap-through phenomenon generated in the curved member 121, it is preferable that various types of electrodes are patterned as shown in FIG. Do.
즉, 상하 전면에 메탈로 전극층을 형성하게 되면 대변형시 변형량이 가장 큰 중심부의 전극에 균열이 생길수도 있고 패터닝하는 모양에 따라 성능이 달라질 수 있으므로 무전해도금시 패터닝하여 도4에 도시된 바와 같이 중심부는 도금하지 않고 고분자 상태로 남겨두도록 패터닝 하는 것이다. That is, when the electrode layer is formed of metal on the upper and lower surfaces, cracks may occur in the electrode at the center of the largest deformation during large deformation, and performance may vary depending on the shape of the pattern. Likewise, the center is patterned to leave the polymer state without plating.
이러한 구성을 통해, 곡면형 작동기(120)는 불안정한 좌굴상태를 통해 스냅-스루현상이 발생할 수 있는데, 특히 도 5에 도시된 원리에 의해 스냅-스루현상의 3가지 모드를 가질 수 있고, 바람직하게는 두 번째 모드와 세 번째 모드를 통해 연동효과와 유사한 효과를 발생시켜 즉 두 번째 모드와 세 번째 모드는 일정하게 가운데부터 내려가는 것이 아니라 한쪽부터 밀어내듯 내려가게 되므로 유체의 방향에 영향을 미치게 되어 유체의 흐름을 제어할 수 있게 되기 때문에, 역류현상을 억제하고 좀더 펌핑력을 극대화시킬 수 있다.Through this configuration, the curved actuator 120 may have a snap-through phenomenon through an unstable buckling state, and in particular, may have three modes of snap-through phenomenon by the principle shown in FIG. The second mode and the third mode generate effects similar to the interlocking effect. That is, the second mode and the third mode do not constantly descend from the center but instead push down from one side, affecting the direction of the fluid. Since it is possible to control the flow of the flow, it is possible to suppress the backflow phenomenon and to maximize the pumping force more.
또한, 본 발명은 쉘구조물의 스냅스루 현상이 불안정한 거동으로 매우 큰 변형력을 수반하는데서 착안되었으나 펌핑력을 극대화하고 역류하지 않도록 지렁이 또는 위장의 연동운동과 유사한 바이오미메틱을 적용하기 위해 기존 마이크로펌프와 같이 플레이트 형태가 아니라 튜브형상의 펌핑부를 갖는 마이크로펌프를 제공하는데, 도 6은 본 발명의 바람직한 일 실시예에 의한 마이크로펌프의 구조도이고, 도 7 내지 도 10은 도 6에 도시된 마이크로펌프에 형성된 튜브형 작동기의 사시도, 수직측면도, 수평측면도 및 저면도이며, 도 11는 도 7에 도시된 튜브형 작동기에서 전극이 분리된 상태를 나타낸 사시도이고, 도 12는 분리된 전극의 사시도이며, 도 13는 본 발명의 마이크로펌프의 몰드구조체의 여러 형상에 대한 예시도이고, 도 14은 도 7에 도시된 튜브형 작동기에서 밴드부재의 스냅스루현상에 의한 3 가지 모드를 나타내는 모식도이다. In addition, the present invention was conceived in that the snap-through phenomenon of the shell structure is accompanied by a very large deformation force due to the unstable behavior, but in order to maximize the pumping force and to prevent the backflow of the earthworm or camouflage peristalsis similar to the conventional micropump to apply a biomematic A micropump having a tubular pumping portion, not a plate form, as shown in FIG. 6 is a structural diagram of a micropump according to a preferred embodiment of the present invention, and FIGS. 7 to 10 are tubular forms formed in the micropump shown in FIG. A perspective view, a vertical side view, a horizontal side view, and a bottom view of the actuator, FIG. 11 is a perspective view showing a state in which an electrode is separated from the tubular actuator shown in FIG. 7, FIG. 12 is a perspective view of a separated electrode, and FIG. 13 is an embodiment of the present invention. Is an exemplary view of the various shapes of the mold structure of the micropump of FIG. Type actuator in a schematic diagram showing the three modes by the snap-through phenomenon of the band member.
먼저, 도6을 참조하면 본 발명의 바람직한 실시예에 따른 마이크로펌프(600)가 몰드구조체(610), 유입공부재(620), 토출공부재(630), 및 튜브형 작동기(640)를 포함하는 것을 알 수 있다. First, referring to FIG. 6, a micropump 600 according to a preferred embodiment of the present invention includes a mold structure 610, an inlet hole member 620, a discharge hole member 630, and a tubular actuator 640. It can be seen that.
몰드구조체(610)는 그 내부에 튜브형작동기(640)가 수용되는 펌핑공간부(611)를 포함하는데 여기서 펌핑공간부(611)는 유입된 유체가 흐르는 방향이 길이방향을 형성하는 형상을 갖고 튜브형 작동기(640)의 변형시 변형된 튜브형 작동기(640)를 수용할 수 있는 크기를 갖는다. 바람직하게는 펌핑공간부(611)의 길이방향단면이 튜브형작동기(640)의 형상과 유사하게 긴 타원형을 형성하는 것이다. The mold structure 610 includes a pumping space portion 611 in which the tubular actuator 640 is accommodated, in which the pumping space portion 611 has a shape in which a direction in which the flowed fluid flows forms a longitudinal direction. The deformation of the actuator 640 is sized to accommodate the deformed tubular actuator 640. Preferably, the longitudinal section of the pumping space 611 forms a long oval similar to the shape of the tubular actuator 640.
또한, 몰드구조체(610)의 외부형상은 도 13에 도시된 바와 같이 직육면체, 원통형, 유선형 등 필요에 따라 다양하게 제조할 수 있는데, 마이크로 펌프의 외형을 구성하므로 몰드구조체(610)의 크기, 형상, 및 재료는 구체적인 환경에 대한 적합성에 영향을 미친다. In addition, the external shape of the mold structure 610 may be variously manufactured as needed, such as a rectangular parallelepiped, a cylindrical shape, and a streamlined shape, as shown in FIG. 13. , And materials influence the suitability of the specific environment.
예를 들면, 인간의 몸 또는 다른 유기체에서 사용하도록 의도된 경우에는 일반적으로 몰드구조체(610)는 생체적합성이 우수한 고분자로 만들어져 인체에 무해하며 적절한 생체 적합 특성을 갖는다. 또한 임의의 환경에서 사용하기 위해, 몰드구조체(610)의 구조(즉 마이크로펌프의 전체구조)는 온도, 화학적 노출, 및 기계적 응력과 같은 환경 조건에 견디도록 구성될 수 있으며, 몰드구조체(610) 구조가 설치 환경에서 요구되는 위치에 배치되거나 위치 설정될 수 있도록 하는 특징 또는 설치 환경에서 요구되는 위치를 지향할 수 있도록 해주는 특징을 포함할 수 있는데, 이러한 특징은, 크기 및 형상 특징, 또는 설치 환경에서 마이크로펌프의 이동을 방지하는 사슬(tethers) 또는 그리핑 구조(gripping structure), 또는 마이크로펌프가 요구되는 위치로 향하도록 해주거나 혹은 요구되는 위치에 자리 잡을 수 있도록 해주는 지향 특성(targeting features)(표면 화학, 형상 등)을 포함할 수 있다. For example, when intended for use in the human body or other organisms, the mold structure 610 is generally made of a high biocompatibility polymer, which is harmless to the human body and has suitable biocompatibility properties. Also for use in any environment, the structure of the mold structure 610 (ie the overall structure of the micropump) can be configured to withstand environmental conditions such as temperature, chemical exposure, and mechanical stress, and the mold structure 610 It may include features that allow the structure to be positioned or positioned at a location required by the installation environment or features that allow the device to be directed to a location required by the installation environment, such features being size and shape features, or installation environments. Tethers or gripping structures that prevent the movement of the micropump, or targeting features that allow the micropump to be directed to or positioned in the required position ( Surface chemistry, shape, etc.).
상기 몰드구조체(610)는 유기체에 삽입되어 사용될 수 있는 장치인 마이크로펌프를 이루는 구성부분으로 마이크로펌프제조 분야의 당업자에게 공지된 방법을 사용하여 제조될 수 있는데, 특히 PVC, PE, PP, PMMA, PS, PET, PTFE, PU, 또는 나일론 중 어느 하나 이상을 포함하여 생체적합성이 우수한 고분자 물질을 소재로 사용하여 제조하는 것이 바람직하지만, 이들로써 한정되는 것은 아니고 다양한 재료 또는 이들 재료의 조합으로부터, 그리고 다양한 제조 기법에 의해 형성될 수 있다.The mold structure 610 may be manufactured using a method known to those skilled in the art of micropump manufacture as a component forming a micropump, which is a device that can be inserted into an organism, and particularly, PVC, PE, PP, PMMA, It is desirable to prepare, using, but not limited to, high biocompatibility polymeric materials, including any one or more of PS, PET, PTFE, PU, or nylon, from various materials or combinations of these materials, and It can be formed by various manufacturing techniques.
또한, 유입공부재(620)와 토출공부재(630)는 몰드구조체(610)의 양단에서 관상으로 형성되는데, 일단부가 몰드구조체(610) 외부로 노출되도록 형성되고 타단부는 몰드구조체(610) 내부의 펌핑공간부(611)에 수용된 튜브형작동기(640)의 양단과 연결되는 구성을 가지므로, 유체가 흐르는 통로로 작용할 뿐만 아니라 몰드구조체(610)에 튜브형작동기(640)를 고정하는 기능을 수행한다. In addition, the inlet hole member 620 and the discharge hole member 630 is formed in a tubular shape at both ends of the mold structure 610, one end is formed so as to be exposed to the outside of the mold structure 610 and the other end of the mold structure 610 Since it has a configuration that is connected to both ends of the tubular actuator 640 accommodated in the pumping space 611 therein, not only serves as a passage through which the fluid flows, but also performs a function of fixing the tubular actuator 640 to the mold structure 610. do.
즉, 상기 유입공부재(620)의 타단부가 펌핑공간부(611)에 수용된 튜브형작동기(640)의 일단과 연결되도록 형성되어 튜브형작동기(640)의 내부공간으로 유체를 유입시키고, 토출공부재(630)의 타단부가 튜브형작동기(640)의 타단과 연결되도록 형성되어 튜브형작동기(640)의 내부공간으로부터 유체를 외부로 배출하도록 형성되기 때문이다. That is, the other end of the inlet hole member 620 is formed to be connected to one end of the tubular actuator 640 accommodated in the pumping space 611 to inject fluid into the inner space of the tubular actuator 640, the discharge hole member This is because the other end of the 630 is formed to be connected to the other end of the tubular actuator 640 to discharge the fluid from the inner space of the tubular actuator 640 to the outside.
이와 같이 몰드구조체(610) 양단에 형성되어 튜브형작동기(640)의 양단과 연결되도록 형성되는 유입공부재(620) 및 토출공부재(630)는 유체가 흐르는 통로로서 유입되는 유체가 일 방향으로 흐를 수 있도록 크기 및 각도가 조절되어 형성될 수 있는데, 바람직하게는 마이크로펌프(600)의 펌핑력이 커지는 방향 또는 유체가 역류하지 않는 방향과 같이 의도된 특정 방향으로 유입되는 유체가 흐를 수 있도록 크기 및 각도가 조절되어 형성된다. 또한 유입공부재(620) 및 토출공부재(630)는 관상이기만 하면 단면의 형상은 제한되지 않는다. As described above, the inlet hole member 620 and the discharge hole member 630 formed at both ends of the mold structure 610 and connected to both ends of the tubular actuator 640 flow in one direction. The size and angle may be adjusted so that the fluid may flow in a specific direction intended to flow, such as a direction in which the pumping force of the micropump 600 increases or a direction in which the fluid does not flow back. The angle is adjusted and formed. In addition, as long as the inlet hole member 620 and the discharge hole member 630 are tubular, the cross-sectional shape is not limited.
또한, 튜브형작동기(640)는 몰드구조체(610)의 펌핑공간부(611)에 수용되도록 형성되어 몰드구조체(610)에 의해 보호되는 구조를 갖는데, 유입된 유체가 흐르는 방향인 길이방향 단면이 긴 타원형 형상을 갖는 내부공간의 외주면을 이루도록 형성되는 것이 바람직하므로, 그 전체적인 형상이 튜브형상과 유사하다. In addition, the tubular actuator 640 is formed to be accommodated in the pumping space 611 of the mold structure 610 and has a structure that is protected by the mold structure 610, the longitudinal cross section that is the direction in which the introduced fluid flows long Since it is preferable to form the outer peripheral surface of the inner space having an elliptical shape, the overall shape is similar to the tube shape.
이러한 튜브형작동기(640)는 지지부재(641), 필름부재(642), 전극(643) 및 밴드부재(644)를 포함하는 것이 바람직하다. The tubular actuator 640 preferably includes a support member 641, a film member 642, an electrode 643, and a band member 644.
먼저, 지지부재(641)는 평판상으로 그 중심부를 유입공부재(620) 및 토출공부재(630)가 관통하도록 형성되므로 즉, 유입공부재(620) 및 토출공부재(630)를 감싸도록 형성되므로 펌핑공간부(611)의 양단부에 각각 형성되게 된다. 이와 같이, 지지부재(641)는 전체적인 튜브형상의 저면과 상면을 형성하는 것으로 유입공부재(620) 및 토출공부재(630)와 튜브형작동기(640)를 연결하고 고정함으로써 결과적으로 튜브형작동기(640)가 몰드구조체(610)와 고정되도록 한다. 지지부재(641)의 형상은 제한되지 않으나 도시된 바와 같이 원형이 바람직하다.First, the support member 641 is formed so that the inlet hole member 620 and the discharge hole member 630 penetrates the center thereof on a flat plate, that is, to surround the inlet hole member 620 and the discharge hole member 630. Since it is formed is formed on both ends of the pumping space 611, respectively. As such, the support member 641 forms a bottom and an upper surface of the overall tubular shape, thereby connecting and fixing the inlet hole member 620 and the discharge hole member 630 and the tubular actuator 640 as a result of the tubular actuator 640. Is fixed to the mold structure 610. The shape of the support member 641 is not limited, but is circular as shown.
필름부재(642)는 각각의 지지부재(641)에 양단부가 고정되어 상기 내부공간의 외주면을 이루도록 형성되는데, 예를 들어 튜브형작동기(640)의 내부공간과 유사하도록 양 단부의 직경이 작고 중심부의 직경이 큰 원통형상의 필름을 준비하여 각 지지부재(641)의 표면 중 유입공부재(620) 또는 토출공부재(630)가 관통하는 중심부로부터 일정 넓이의 고리형 부분에 상기 필름의 양단부를 각각 일정 넓이만큼 고정시키게 되면 전체적으로 튜브형상을 갖는 튜브형작동기(640)의 내부공간의 외주면을 구성하게 할 수 있다.  The film members 642 are formed at both ends of each of the supporting members 641 to form an outer circumferential surface of the inner space. For example, the film members 642 have small diameters at both ends to be similar to the inner space of the tubular actuator 640. A cylindrical film having a large diameter may be prepared, and both ends of the film may be fixed to an annular portion having a predetermined width from a central portion of the surface of each support member 641 through which the inlet hole member 620 or the discharge hole member 630 penetrates. Fixing by the width can be configured to configure the outer peripheral surface of the inner space of the tubular actuator 640 having a tubular shape as a whole.
여기서 필름부재(642)와 지지부재(641)의 고정은 접착제를 이용하는 등 공지된 고정방법을 사용할 수 있으나, 마이크로펌프(600)를 인체 등 유기체 내부에서 사용하고자 하는 경우에는 고정수단도 생체적합성을 가진 것을 사용하도록 유의해야한다. 그리고, 필름부재(642)는 밴드부재(644)의 변위를 저해하지 않을 정도의 수축력을 갖고 생체적합성을 갖기만 하면 그 소재가 제한되지는 않으나 고분자필름인 것이 바람직하다. Here, the fixing of the film member 642 and the supporting member 641 may use a known fixing method such as using an adhesive. However, when the micropump 600 is to be used inside an organism such as a human body, the fixing means may also be biocompatible. Be careful to use what you have. In addition, the film member 642 may be a polymer film, although the material is not limited as long as the film member 642 has shrinkage force that does not inhibit the displacement of the band member 644 and has biocompatibility.
전극(643)은 지지부재(641)의 표면 중 유입공부재(620)를 통해 유입되는 유체가 접하지 않고 밴드부재(644)와 연결되도록 필름부재(642)가 고정된 부분의 외측에 패터닝 등 공지된 방법으로 형성되는데, 바람직하게는 지지부재(641)의 외주연에 인접한 측으로 홈을 형성하고 그 홈 내부에 전극(643)을 형성하는 것이다. The electrode 643 is patterned on the outside of the portion where the film member 642 is fixed so that the fluid flowing through the inlet hole member 620 of the surface of the support member 641 is not in contact with the band member 644. It is formed by a known method, preferably to form a groove to the side adjacent to the outer periphery of the support member 641 and to form an electrode 643 inside the groove.
밴드부재(644)는 각각의 지지부재(641)에 양단이 고정되고, 상기 양단 중 하나 이상이 전극(643)과 연결되도록 필름부재(642) 표면에 인접하여 다수개가 형성된다. 도면에서는 밴드부재(644)의 이격 폭이 상당히 넓게 도시되고 있지만 다수개의 밴드부재가 이격폭이 거의 없도록 지지부재(641)의 양단에 고정되어 필름부재(642)표면이 모두 밴드부재(644)에 의해 감싸지도록 형성될 수도 있다. 또한 밴드부재(644)와 지지부재(641)는 공지된 고정방법에 의해 고정될 수 있는데, 바람직하게는 밴드부재(644)가 지지부재(641)의 홈에 형성된 전극에 접하여 연결되면서 동시에 상기 홈에 끼워져서 고정되는 것이다. Both ends of the band member 644 are fixed to each support member 641, and a plurality of band members 644 are formed adjacent to the surface of the film member 642 such that at least one of both ends thereof is connected to the electrode 643. In the drawing, the separation width of the band member 644 is shown to be considerably wide, but a plurality of band members are fixed to both ends of the support member 641 so that there is almost no separation width, so that the surface of the film member 642 is entirely on the band member 644. It may be formed to be wrapped by. In addition, the band member 644 and the support member 641 may be fixed by a known fixing method, preferably the band member 644 is connected to the electrode formed in the groove of the support member 641 and at the same time the groove It is fitted in and fixed.
여기서 밴드부재(644)는 압전재 또는 이온교환막과 같은 기전고분자 막으로 형성되는 것으로 연결된 전극(643)을 통해 전압이 인가되면 압전 또는 전기활성에 의해 선형의 밴드부재(644)가 불안정한 좌굴상태를 갖게 됨으로써 발생하는 동적 스냅-스루현상을 통해 보다 큰 구동 변위를 갖게 된다. 이와 같이 밴드부재(644)가 구동하게 되면 밴드부재(644)가 접하고 있는 튜브형상의 필름부재(643)에 구동력을 전달하여 연동운동 하듯이 움직여서 유체를 유도할 수 있게 되므로 밴드부재(644)는 튜브형작동기(640)에서 펌핑력을 제공하는 부분이다. Here, the band member 644 is formed of an electromechanical polymer film such as a piezoelectric material or an ion exchange membrane. When voltage is applied through the connected electrode 643, the band member 644 may be in an unstable buckling state due to piezoelectric or electric activity. The dynamic snap-through phenomenon that results from having a larger drive displacement. When the band member 644 is driven as described above, the band member 644 is tubular because the band member 644 transmits a driving force to the tubular film member 643 in contact with the band member 644 so that the band member 644 moves in a peristaltic motion. In the actuator 640 is a portion that provides a pumping force.
한편, 도시하지는 않았으나 튜브형작동기(640)의 전극(643)에 전압을 공급하는 전원공급부가 몰드구조체(610)의 내부에 삽입되어 일체형으로 형성되거나 몰드구조체(610) 외부에 형성되어 튜브형작동기(640)에 전압을 인가하도록 구성된다. On the other hand, although not shown, the power supply for supplying a voltage to the electrode 643 of the tubular actuator 640 is inserted into the mold structure 610 is formed integrally or formed outside the mold structure 610 tubular actuator 640 Is applied to the voltage).
이러한 구성을 통해, 튜브형 작동기(640)는 밴드부재(644)의 불안정한 좌굴상태를 통해 스냅-스루현상이 발생할 수 있는데, 특히 도 14에 도시된 원리에 의해 스냅-스루현상의 3가지 모드를 가질 수 있고, 바람직하게는 두 번째 모드와 세 번째 모드를 통해 연동효과와 유사한 효과를 발생시켜 즉 두 번째 모드와 세 번째 모드는 일정하게 가운데부터 내려가는 것이 아니라 한쪽부터 밀어내듯 내려가게 되므로 유체의 방향에 영향을 미치게 되어 유체의 흐름을 제어할 수 있게 되기 때문에, 역류현상을 억제하고 좀더 펌핑력을 극대화시킬 수 있다.Through such a configuration, the tubular actuator 640 may have a snap-through phenomenon through an unstable buckling state of the band member 644. In particular, the tubular actuator 640 may have three modes of snap-through phenomenon by the principle shown in FIG. Preferably, the second mode and the third mode generate an effect similar to the interlocking effect, that is, the second mode and the third mode do not constantly descend from the center but instead push down from one side, so the direction of the fluid Influences can be used to control the flow of fluid, thereby reducing backflow and maximizing pumping power.
또한, 상술된 구조의 마이크로펌프는 저전압에서 작동하여 에너지를 효율적으로 사용할 수 있을 뿐만 아니라 초소형이고 생체적합성이 뛰어나서 인체내부 삽입형 의료기기에 구동력을 제공하기 용이하므로, 본 발명의 마이크로펌프를 포함하는 인체내부 삽입형 의료기기를 제조할 수 있다. In addition, the micropump having the above-described structure can operate at low voltage to efficiently use energy, and is very small and excellent in biocompatibility, so that it is easy to provide a driving force to an internal human implantable medical device. Internally insertable medical devices can be manufactured.
이 때, 상기 의료장치를 포함하여 일반적으로 알려진 초소형 의료기기에 사용되는 호스와 마이크로펌프의 유입공부재 및 토출공부재의 직경을 동일 규격으로 하게 되면 호환성이 매우 우수하다. At this time, when the diameter of the inlet hole and the discharge hole member of the hose and the micropump generally used in the micro medical equipment, including the medical device to the same standard is very excellent compatibility.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As described above, the present invention has been illustrated and described with reference to preferred embodiments, but is not limited to the above-described embodiments, and is provided to those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.

Claims (22)

  1. 유체가 유입되는 유입공, 유체가 배출되는 토출공 및 유체가 담겨지는 공간부를 포함하는 하부구조체;A lower structure including an inlet hole through which the fluid is introduced, a discharge hole through which the fluid is discharged, and a space in which the fluid is contained;
    상기 하부구조체의 공간부와 접하여 형성되는 곡면형 작동기; 및 A curved actuator formed in contact with the space portion of the substructure; And
    상기 곡면형 작동기를 수용하는 공간부를 포함하고 하부구조체와 결합되는 상부구조체;를 포함하는 마이크로펌프.And an upper structure including a space portion accommodating the curved actuator and coupled to a lower structure.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 곡면형 작동기는 곡면부재와 상기 곡면부재를 지지하는 지지부재를 포함하는 것을 특징으로 하는 마이크로펌프.The curved actuator includes a curved member and a support member for supporting the curved member.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 곡면부재는 압전재 또는 기전고분자 막으로 형성되는 것을 특징으로 하는 마이크로펌프. The curved member is a micropump, characterized in that formed of a piezoelectric material or a mechanical polymer film.
  4. 제 2 항에 있어서 The method of claim 2
    상기 곡면형 작동기는 불안정한 좌굴상태에서 발생하는 동적 스냅-스루현상을 통해 큰 구동 변위를 갖는 것을 특징으로 하는 마이크로펌프.And said curved actuator has a large drive displacement through dynamic snap-through that occurs in an unstable buckling state.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 곡면형 작동기의 불안정한 좌굴상태는 곡면부재와 지지부재의 연결부분을 상기 곡면부재 또는 상기 지지부재와 연성이 상이하도록 처리 하여 이루어지는 것을 특징으로 하는 마이크로펌프. The unstable buckling state of the curved actuator is characterized in that the connection portion between the curved member and the support member is made so that the ductility is different from the curved member or the support member.
  6. 제 4 항에 있어서, The method of claim 4, wherein
    상기 곡면형 작동기의 불안정한 좌굴상태는 상기 곡면형 작동기가 캔틸레버형태로 상부지지체 또는 하부지지체에 고정되어 이루어지는 것을 특징으로 하는 마이크로펌프. The unstable buckling state of the curved actuator is a micropump, characterized in that the curved actuator is fixed to the upper support or the lower support in the form of a cantilever.
  7. 제 4 항에 있어서, The method of claim 4, wherein
    상기 곡면형 작동기는 상기 발생된 스냅-스루현상의 두 번째 모드와 세번째 모드를 통해 유체의 흐름을 제어하여 역류현상을 억제하고 펌핑력을 극대화시키는 것을 특징으로 하는 마이크로펌프.The curved actuator is a micropump, characterized in that to control the flow of the fluid through the second mode and the third mode of the generated snap-through phenomenon to suppress the backflow phenomenon and to maximize the pumping force.
  8. 제 4 항에 있어서,The method of claim 4, wherein
    상기 곡면형 작동기는 상기 곡면부재에 발생된 스냅-스루현상에 의한 대변형시 발생하는 균열을 억제하는 형태로 전극이 패터닝되는 것을 특징으로 하는 마이크로펌프.The curved actuator is a micropump, characterized in that the electrode is patterned in the form of suppressing the crack generated when the large deformation caused by the snap-through phenomenon generated in the curved member.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 하부구조체 및 상부구조체는 PVC, PE, PP, PMMA, PS, PET, PTFE, PU, 또는 nylon 중 어느 하나 이상을 포함하는 생체적합성이 우수한 고분자로 제조되거나 표면이 코팅되는 것을 특징으로 하는 마이크로펌프. The substructure and the superstructure are made of PVC, PE, PP, PMMA, PS, PET, PTFE, PU, or a micropump characterized in that the surface is made of a high biocompatible polymer containing any one or more of nylon .
  10. 제 1 항에 있어서, The method of claim 1,
    상기 상부구조체에 유체가 유입되는 유입공 및 유체가 배출되는 토출공이 더 형성되는 것을 특징으로 하는 마이크로펌프.Micro-pump characterized in that the inlet hole in which the fluid is introduced into the upper structure and the discharge hole is discharged from the fluid is formed.
  11. 제 1 항에 있어서, The method of claim 1,
    상기 유입공 및 상기 토출공은 유입되는 유체가 일 방향으로 흐를 수 있도록 크기 및 각도가 조절되어 형성되는 것을 특징으로 하는 마이크로펌프.The inflow hole and the discharge hole is a micropump, characterized in that the size and the angle is adjusted so that the fluid flows in one direction.
  12. 유입된 유체가 흐르는 방향인 길이방향 단면이 긴 타원형 형상을 갖는 내부공간의 외주면을 이루도록 형성되는 튜브형 작동기; A tubular actuator configured to form an outer circumferential surface of an inner space having a long oval shape having a longitudinal cross section which is a flowing direction of the introduced fluid;
    상기 튜브형 작동기를 내부에 수용하는 펌핑공간부가 형성된 몰드구조체;A mold structure in which a pumping space part is formed to accommodate the tubular actuator therein;
    상기 몰드구조체의 일단에 형성되어 상기 튜브형작동기로 유체가 유입되도록 하는 유입공부재; 및An inlet hole member formed at one end of the mold structure to allow fluid to flow into the tubular actuator; And
    상기 몰드구조체의 타단에 형성되어 상기 튜브형작동기의 유체가 토출되도록 하는 토출공부재; 를 포함하는 마이크로펌프.A discharge hole member formed at the other end of the mold structure to discharge the fluid of the tubular actuator; Micro pump comprising a.
  13. 제 12 항에 있어서, 상기 튜브형 작동기는 13. The tubular actuator of claim 12, wherein
    상기 유입공부재 및 토출공부재를 감싸도록 상기 펌핑공간부의 양단부에 각각 형성되는 지지부재; Support members respectively formed at both ends of the pumping space part to surround the inflow hole member and the discharge hole member;
    상기 각각의 지지부재에 양단부가 고정되어 상기 내부공간의 외주면을 이루도록 형성되는 필름부재; Film members formed at both ends of the support members to form an outer circumferential surface of the inner space;
    상기 지지부재의 표면 중 상기 필름부재가 고정된 부분의 외측에 형성되는 전극; 및An electrode formed on an outer side of a portion of the surface of the support member to which the film member is fixed; And
    상기 각각의 지지부재에 양단이 고정되고, 상기 양단 중 하나 이상이 상기 전극과 연결되도록 상기 필름부재 표면에 인접하여 형성되는 다수개의 밴드부재를 포함하는 것을 특징으로 하는 마이크로펌프. And a plurality of band members fixed to both ends of each of the supporting members, the band members being formed adjacent to the surface of the film member such that at least one of the two ends is connected to the electrode.
  14. 제 13 항에 있어서, The method of claim 13,
    상기 밴드부재는 압전재 또는 기전고분자 막으로 형성되는 것을 특징으로 하는 마이크로펌프. The band member is a micropump, characterized in that formed of a piezoelectric material or a mechanical polymer film.
  15. 제 13 항에 있어서, The method of claim 13,
    상기 튜브형 작동기는 상기 밴드부재의 불안정한 좌굴상태에서 발생하는 동적 스냅-스루현상을 통해 큰 구동 변위를 갖는 것을 특징으로 하는 마이크로펌프.And said tubular actuator has a large drive displacement through a dynamic snap-through phenomenon occurring in an unstable buckling state of said band member.
  16. 제 15 항에 있어서, The method of claim 15,
    상기 필름부재는 상기 밴드부재의 변위를 저해하지 않을 정도의 수축력을 가진 고분자필름인 것을 특징으로 하는 마이크로펌프. The film member is a micropump, characterized in that the polymer film having a shrinkage force not to inhibit the displacement of the band member.
  17. 제 15 항에 있어서, The method of claim 15,
    상기 튜브형 작동기는 상기 발생된 스냅-스루현상의 첫 번째 모드 및 두 번째 모드와 세번째 모드를 통해 상기 작동기의 튜브형 몸체가 연동운동이 일어나도록 하여 유체의 흐름을 제어하는 것을 특징으로 하는 마이크로펌프.And the tubular actuator controls the flow of fluid by causing the tubular body of the actuator to interlock through the first and second and third modes of the generated snap-through phenomenon.
  18. 제 12 항에 있어서, The method of claim 12,
    상기 몰드구조체는 PVC, PE, PP, PMMA, PS, PET, PTFE, PU, 또는 nylon으로 구성된 그룹에서 선택되는 하나 이상을 포함하는 생체적합성이 우수한 고분자로 제조되거나 표면이 코팅되는 것을 특징으로 하는 마이크로펌프. The mold structure is made of PVC, PE, PP, PMMA, PS, PET, PTFE, PU, or a micro-organic, characterized in that the surface is made of a high biocompatible polymer comprising at least one selected from the group consisting of nylon Pump.
  19. 제 12 항에 있어서, The method of claim 12,
    상기 유입공부재 및 상기 토출공부재는 유입되는 유체가 일 방향으로 흐를 수 있도록 크기 및 각도가 조절되어 형성되는 것을 특징으로 하는 마이크로펌프.The inlet hole member and the discharge hole member is a micropump, characterized in that the size and the angle is adjusted so that the fluid flowing in one direction is formed.
  20. 제 13 항에 있어서, The method of claim 13,
    상기 전극에 연결되어 상기 밴드부재에 전압을 공급하는 전원공급부를 더 포함하는 것을 특징으로 하는 마이크로펌프.And a power supply unit connected to the electrode to supply a voltage to the band member.
  21. 제 12항 내지 제 20 항 중 어느 한 항의 마이크로펌프를 이용하는 인체내부 삽입형 의료기기. An internal human implantable medical device using the micropump according to any one of claims 12 to 20.
  22. 제 21 항에 있어서, 상기 마이크로펌프의 유입공부재 및 토출공부재의 직경은 상기 의료기기에 사용되는 호스와 동일 규격인 것을 특징으로 하는 인체내부 삽입형 의료기기. The medical device of claim 21, wherein the diameters of the inlet and outlet members of the micropump are the same as those of the hose used in the medical device.
PCT/KR2009/005520 2008-09-29 2009-09-28 Micro pump using snap-through WO2010036072A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0095483 2008-09-29
KR1020080095483A KR100931894B1 (en) 2008-09-29 2008-09-29 Snap-through micro-pump
KR1020080121305A KR100931897B1 (en) 2008-12-02 2008-12-02 Snap-through micro-pump
KR10-2008-0121305 2008-12-02

Publications (2)

Publication Number Publication Date
WO2010036072A2 true WO2010036072A2 (en) 2010-04-01
WO2010036072A3 WO2010036072A3 (en) 2010-07-29

Family

ID=42060305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005520 WO2010036072A2 (en) 2008-09-29 2009-09-28 Micro pump using snap-through

Country Status (1)

Country Link
WO (1) WO2010036072A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824233A (en) * 2012-12-21 2018-03-23 精密公司 Low elasticity film for microfluidic applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071088A (en) * 1997-04-15 2000-06-06 Face International Corp. Piezoelectrically actuated piston pump
KR20020024365A (en) * 2000-09-25 2002-03-30 정명식 Actuator for generating flow from a surface of an object in multi-direction
JP2002106470A (en) * 2000-09-29 2002-04-10 Matsushita Electric Works Ltd Diaphragm pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071088A (en) * 1997-04-15 2000-06-06 Face International Corp. Piezoelectrically actuated piston pump
KR20020024365A (en) * 2000-09-25 2002-03-30 정명식 Actuator for generating flow from a surface of an object in multi-direction
JP2002106470A (en) * 2000-09-29 2002-04-10 Matsushita Electric Works Ltd Diaphragm pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IL-KWON OH ET AL.: 'Snap-through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates' JOURNAL OF ASTRONOMY AND SPACE SCIENCES vol. 30, no. 1, 01 February 2002, *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824233A (en) * 2012-12-21 2018-03-23 精密公司 Low elasticity film for microfluidic applications
US10518262B2 (en) 2012-12-21 2019-12-31 Perkinelmer Health Sciences, Inc. Low elasticity films for microfluidic use
CN107824233B (en) * 2012-12-21 2020-06-30 珀金埃尔默健康科学有限公司 Low elasticity membranes for microfluidic applications
US11181105B2 (en) 2012-12-21 2021-11-23 Perkinelmer Health Sciences, Inc. Low elasticity films for microfluidic use

Also Published As

Publication number Publication date
WO2010036072A3 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2012138035A1 (en) Micropump
Abhari et al. A comprehensive study of micropumps technologies
US7052594B2 (en) Devices and methods for controlling fluid flow using elastic sheet deflection
US6951632B2 (en) Microfluidic devices for introducing and dispensing fluids from microfluidic systems
WO2018043927A1 (en) Electroosmotic pump
ES2383689T3 (en) Photocurable perfluoropolyethers for use as novel materials in microfluidic devices
KR20050063358A (en) Microfluidic control device and method for controlling microfluidic
US20030205632A1 (en) Electrowetting-driven micropumping
Murray et al. Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators
EP2554843A2 (en) An integrated microfluidic device with actuator
Krulevitch et al. Polymer-based packaging platform for hybrid microfluidic systems
JP2005140333A (en) Electrostatic sealing device and method of use thereof
US20060056997A1 (en) Electrically driven microfluidic pumping for actuation
WO2010036072A2 (en) Micro pump using snap-through
WO2012034270A1 (en) Microdevice strucrure of microchannel chip
EP1925364A1 (en) Multiple microfluidic connector
Tony et al. Toward a soft microfluidic system: concept and preliminary developments
CN112855490B (en) Electroosmosis micropump device and electroosmosis micropump device group
CN113769807A (en) Diaphragm type micro-fluidic control device
KR100444751B1 (en) Device of Controlling Fluid using Surface Tension
JP2004351309A (en) Microchemical chip and its production method
Matsubara et al. A Microfabricated Pistonless Syringe Pump Driven by Electro‐Conjugate Fluid with Leakless On/Off Microvalves
Mottet et al. A technique to design complex 3D lab on a chip involving multilayered fluidics, embedded thick electrodes and hard packaging—application to dielectrophoresis and electroporation of cells
KR100931894B1 (en) Snap-through micro-pump
Jaffer et al. Polymer mechanically interlocking structures as interconnects for microfluidic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816465

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816465

Country of ref document: EP

Kind code of ref document: A2