WO2010032830A1 - Digital phase comparator and method - Google Patents

Digital phase comparator and method Download PDF

Info

Publication number
WO2010032830A1
WO2010032830A1 PCT/JP2009/066381 JP2009066381W WO2010032830A1 WO 2010032830 A1 WO2010032830 A1 WO 2010032830A1 JP 2009066381 W JP2009066381 W JP 2009066381W WO 2010032830 A1 WO2010032830 A1 WO 2010032830A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
delay
input signal
circuit
output
Prior art date
Application number
PCT/JP2009/066381
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 東海林
正 前多
正樹 狐塚
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010529815A priority Critical patent/JP5273149B2/en
Publication of WO2010032830A1 publication Critical patent/WO2010032830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/091Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/26Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being duration, interval, position, frequency, or sequence

Definitions

  • the present invention is based on the priority claims of Japanese patent applications: Japanese Patent Application No. 2008-241171 (filed on September 19, 2008) and Japanese Patent Application No. 2009-059903 (filed on March 12, 2009), The entire contents of this application are incorporated herein by reference.
  • the present invention relates to a phase comparator, and more particularly to a digital phase comparator and method for detecting a phase difference and converting it into a digital signal.
  • CMOS Complementary MOS (Metal-Oxide-Semiconductor)
  • PLL Phase Locked Loop
  • phase difference information is output as a pulse width from a phase comparator (PD), and charge output according to the pulse width is converted into voltage information by a loop filter in a charge pump circuit (CP). Then, the oscillation frequency is controlled by inputting the voltage to a control voltage terminal of a VCO (Voltage Controlled Oscillator).
  • VCO Voltage Controlled Oscillator
  • Such an analog PLL uses resistance and capacitance elements such as a loop filter, and therefore cannot benefit from miniaturization such as circuit miniaturization and cost reduction.
  • the frequency is controlled by digitally switching the minute varactor as the VCO control.
  • phase comparator that outputs the phase difference information used in the conventional analog method as a pulse width
  • a digital phase comparator that outputs a digital value is required.
  • FIG. 20 is a timing chart for explaining the operation of the circuit of FIG.
  • Digital phase comparison that outputs the phase difference as a digital value by sequentially delaying the output CLK1 of the VCO by cascaded inverter rows and capturing the output signal of each stage of the inverter row by a flip-flop using the reference signal CLK2 as a clock Realize the vessel.
  • the results Q c (1) to Q c (8) (Q c (1: 8) in FIG. 20) obtained by sampling the output signal of each stage of the inverter train at the rising edge of CLK2 are the comparison results.
  • the logic circuit detects a change in logic of Q c (1) to Q c (8) and outputs a digital code.
  • FIG. 21 Patent Document 2
  • the reference signal CLK2 is also sequentially delayed by the second inverter train and fetched into the flip-flop.
  • the outputs D F (1), D F (2),..., D F (n) of each stage of the first inverter row are used as the outputs CK F (1), CK F (2) of each stage of the second inverter row.
  • To CK F (n) (sampled with flip-flops using odd-numbered stages such as 1, 3,... Rising edge, and even-numbered stages 2, 4,... Falling edge).
  • Q F (1), Q F (2), and Q F (n) are output. As shown in the timing chart of FIG. 22, the phase comparison is performed with the resolution of the delay time difference between the first inverter row and the second inverter row.
  • the logic circuit detects the logic change of Q F (1) to Q F (8) (Q F (1), Q F (2) is 1, Q F (3) to Q F (8) is 0) And output a digital code.
  • Non-Patent Documents 1 and 2 are incorporated herein by reference. The following is an analysis of the related art according to the present invention.
  • the signal input to the inverter train is a high-speed signal output from the VCO, power consumption in the inverter train is increased. Further, since the time resolution of the detected phase difference is determined by the delay time of the inverter, the inverter delay must be significantly reduced in order to increase the resolution.
  • the number of stages of the inverter train and flip-flop increases remarkably in order to cover a desired phase difference range, so that the circuit area and power consumption increase.
  • an object of the present invention is to provide a high-resolution digital phase comparator and method without causing an increase in circuit area and power consumption.
  • a plurality of stages of delay elements are connected in cascade to delay the first pulse input signal sequentially, and the first delay element array OR operation between the first holding circuit group composed of a plurality of holding circuits and sequentially taking the second pulse signal in accordance with the delay signal transition timing and the output of the first holding circuit group, with each delay signal as a clock input
  • a first OR operation circuit that extracts the first delay output timing output immediately after the transition timing of the second pulse input signal, and a delay having the same delay time as the first delay element array
  • the first OR circuit By performing a logical OR operation on the output of the second holding circuit group composed of a plurality of holding circuits that sequentially capture the first pulse signal and the second data holding circuit group, the first OR circuit A second OR operation circuit that outputs a signal maintaining a phase relationship between the second pulse input signal and the first delayed output immediately after the transition timing of the second pulse input signal with respect to the output; A first time-to-digital conversion circuit that outputs a digital value indicating a relative phase difference between the first pulse signal and the second pulse signal with a delay time accuracy of the first delay element; By connecting the elements in a plurality of stages in cascade, a third delay element array for sequentially delaying the output of the first OR circuit and a delay element having a delay time different from that of the third delay element array Previous by connecting in cascade A fourth delay element array for sequentially delaying the output of the second OR circuit and the delay output of the third delay element array are sequentially taken in accordance with the transition timing of the delay output of the fourth delay element array; A third holding circuit group composed
  • a second time digital conversion circuit that outputs a digital value with accuracy, wherein the second pulse input signal is used as a clock in the first time digital conversion circuit and is sequentially delayed by the first delay element array.
  • Delayed output A fourth holding circuit group including a plurality of holding circuits that are captured in accordance with the transition timing of the second pulse input signal, and the output of the fourth holding circuit is the first pulse signal and the second pulse; Output as a digital value indicating the relative phase difference of the signal.
  • the first time digital conversion circuit since the accuracy of the time resolution in the second time digital conversion circuit depends on the delay time difference between the third delay element array and the fourth delay element array, a minute phase difference can be compared.
  • the relative phase difference between the output of the first OR circuit and the output of the second OR circuit is the relative phase difference between the first pulse signal and the second pulse signal. Since the phase difference is sufficiently small, the phase comparison can be performed with high accuracy without increasing the number of stages of the delay element row and the holding circuit group of the second time digital conversion circuit, resulting in an increase in circuit area and power consumption. It is possible to provide a high-resolution digital phase comparator without any problems.
  • the digital phase comparator outputs the first holding signal and the second pulse signal to the output of the first holding circuit group. Is output as a digital value indicating the relative phase difference.
  • a resolution digital phase comparator can be provided.
  • the time digital conversion circuit of the first aspect can be obtained by a retiming operation using the second signal instead of the second pulse signal.
  • the third pulse signal synchronized with the transition timing of the second pulse signal is input.
  • the retimed third pulse signal is the first pulse signal. Therefore, an increase in power consumption of the entire digital phase comparator can be suppressed.
  • an input / output signal of at least one stage of delay elements of the first delay element array is taken out, and a plurality of delay elements having the same delay time as the third delay element array are provided.
  • a fifth delay element array that sequentially delays the output signal and a delay element having the same delay time as the fourth delay element array are used to connect the input signal.
  • a sixth delay element array that sequentially delays and a delay output of the fifth delay element array that is sequentially fetched in accordance with a transition timing of the delay output of the sixth delay element array; A relative phase difference in the input / output signals of the delay elements in the first delay element array, and the delay output of the fifth delay element array and the delay of the sixth delay element array.
  • the phase relationship of the output is A third time digital conversion circuit that outputs a digital value with a delay time difference accuracy between the fifth delay element array and the sixth delay element array based on the number of stages required until the first time
  • a first logic circuit that digitizes a digital value that is output from a digital conversion circuit and that indicates a relative phase difference between the first pulse signal and the second pulse signal, and the second time digital conversion circuit A second logic circuit that digitizes a digital value indicating a relative phase difference between the output of the first OR operation circuit and the output of the second OR operation circuit, which is output from the first OR circuit;
  • a third logic circuit that digitizes a digital value that is output from the time digital conversion circuit and that indicates a relative phase difference in the input / output signals of the delay elements in the first delay element array, and 2nd and 3rd logical times Quantified results based on the, correcting the relative phase difference of said are digitized by the first logic circuit, said first pulse signal and the second pulse signal.
  • the third time digital conversion circuit converts the delay time of the first delay element array to the third and fourth delay element arrays and the fifth and sixth delay element arrays. Since the delay time difference can be expressed, the design accuracy required for the delay time of the first delay element array is relaxed.
  • the time-to-digital conversion circuit uses the fourth pulse signal as a clock input to each delay signal of the first delay element array, and the transition timing of the delay signal.
  • a logical sum operation is performed on the output of the sixth holding circuit group composed of a plurality of holding circuits sequentially fetched in accordance with the output of the sixth data holding circuit group.
  • a third OR operation circuit for extracting the output delay output timing and a delay element having the same delay time as the first delay element array are connected in a plurality of stages, and the fourth pulse signal is sequentially delayed.
  • Each of the delay signals of the seventh delay element array to be clocked is used as a clock input, and a seventh data consisting of a plurality of stages of holding circuits for sequentially taking in the first pulse signal according to the transition timing of the delay signal.
  • a seventh data consisting of a plurality of stages of holding circuits for sequentially taking in the first pulse signal according to the transition timing of the delay signal.
  • a time-to-digital conversion circuit for further outputting a digital value indicating a relative phase difference between the first pulse signal and the fourth pulse signal, wherein a plurality of delay elements having the same delay time as the third delay element array are provided.
  • an eighth delay element array that sequentially delays the output of the third OR circuit and a delay element having the same delay time as the fourth delay element array are connected in a plurality of stages.
  • the fourth A 9th delay element array that sequentially delays the output of the logical sum operation circuit and a delay output of the 8th delay element array are fetched in accordance with the transition timing of the delay output of the 9th delay element array, and a plurality of stages are held.
  • An eighth holding circuit group composed of a circuit, and the relative phase difference between the output of the third logical sum operation circuit and the output of the fourth logical sum operation circuit is defined as the eighth delay element array.
  • the digital value with the delay time difference accuracy of the eighth delay element array and the ninth delay element array A fourth time digital conversion circuit that outputs a delay output that is sequentially delayed by the first delay element array using the fourth pulse input signal as a clock in the first time digital conversion circuit,
  • the fourth pulse input including a plurality of stages of holding circuits that captures according to the signal transition timing, and outputs the ninth holding circuit relative to the first pulse signal and the fourth pulse signal; Output as a digital value indicating phase difference.
  • the digital phase comparator outputs the output of the sixth holding circuit group as the first pulse signal and the fourth pulse. Are output as digital values indicating the relative phase difference of the pulse signals.
  • the digital phase comparator in the time-to-digital conversion circuit according to the first aspect, it is possible to serve as a circuit for comparing the phase of the fourth pulse signal and extracting a phase difference less than the delay time. It is possible to provide a high-resolution digital phase comparator that further suppresses the above.
  • the fourth pulse signal is obtained by retiming the first pulse signal from an inverted signal of the second pulse signal, and the second pulse signal is inverted.
  • the first logic circuit is a signal synchronized with the signal transition timing, and the first logic circuit outputs a relative position of the first pulse signal and the fourth pulse signal output from the first time digital conversion circuit.
  • a digital value indicating a phase difference is further digitized, and a relative phase difference between the output of the third OR operation circuit and the output of the fourth OR operation circuit, which is output from the fourth time digital conversion circuit.
  • a fourth logic circuit that digitizes a digital value indicating the first value, and is digitized by the first logic circuit based on the digitization results of the third and fourth logic circuits. Pulse signal and the fourth pulse signal , The relative phase difference between the first pulse signal and the third pulse signal, and the relative phase difference between the first pulse signal and the fourth pulse signal. The half period of the second pulse signal is obtained from the difference between the first pulse signal and the third pulse signal, or the first pulse signal and the fourth pulse signal. Normalize the relative phase difference of.
  • the retimed fourth pulse signal is also the first pulse signal. Therefore, an increase in power consumption of the entire digital phase comparator can be suppressed. Further, since normalization is performed with the period of the second pulse signal, it is not necessary to use an accurate value of the delay time in the first to ninth delay element arrays, so that the demand for design accuracy of the delay time is eased. Is done.
  • a delay signal group is generated by delaying the first input signal at equal intervals, and the second input signal is delayed by delaying the first input signal and the first input signal at equal intervals.
  • a predetermined logical operation for example, logical sum operation
  • a predetermined logical operation is performed on the plurality of sampled signals to synthesize a first signal
  • B generating a delayed signal group in which the second input signal is delayed at equal intervals by the same unit delay time as the first input signal, and the first input signal is converted to the second input signal.
  • the signal and the second input signal are respectively sampled by delay signal groups obtained by delaying at equal intervals, and a predetermined logical operation (for example, logical sum operation) is performed on the plurality of sampled signals to obtain the second signal.
  • Synthesize (C) A delayed signal group in which a delayed signal group is generated by delaying the first signal at equal intervals, and the second signal is delayed at equal intervals by a unit delay time different from that of the first signal.
  • a phase comparison method is provided which is used as a value representing a phase difference between two input signals.
  • the delay signal of each stage of the fourth delay element array of the second time-to-digital conversion circuit is changed to the transition of the delay signal of the corresponding stage of the third delay element array.
  • a fifth holding circuit group including a plurality of holding circuits that sequentially captures according to timing;
  • a third OR operation circuit receiving the output of the fifth holding circuit group;
  • a fourth OR operation circuit receiving the output of the third holding circuit group;
  • a fifth delay element array in which a plurality of delay elements are connected in cascade, the output of the third OR operation circuit is input to the first stage, and a plurality of delay signals are sequentially delayed;
  • a plurality of delay elements having a delay time different from that of the fifth delay element array are connected in cascade, and the output of the fourth OR circuit is input to the first stage to output a plurality of delay signals sequentially delayed.
  • a sixth holding circuit group including a plurality of holding circuits, which sequentially captures the delay signal of each stage of the fifth delay element array according to the transition timing of the delay signal of the corresponding stage of the sixth delay element array; , And the output of the sixth holding circuit group is used as a digital value indicating a relative phase difference between the first pulse input signal and the second pulse input signal. It is done.
  • the fifth delay element array and the sixth delay element array have a delay time difference that is smaller than the delay time difference between the third delay element array and the fourth delay element array.
  • the third time digital conversion circuit outputs a relative phase difference between the outputs of the third and fourth logical sum operation circuits as a digital value with a delay time difference accuracy of the fifth and sixth delay element arrays. .
  • the third time digital conversion circuit can compare a smaller phase than the second time digital conversion circuit, a more accurate phase comparison is possible.
  • the third time digital conversion circuit can relax the time resolution setting required for the first and second time digital conversion circuits.
  • To provide a digital phase comparator with high time resolution capable of reducing the number of stages of delay element arrays and holding circuit groups in the first and second time digital conversion circuits, resulting in further reduced circuit area and power consumption. Is possible.
  • a digital phase comparator that detects a phase difference and converts it into a digital signal, it is possible to provide a high-resolution digital phase comparator without causing an increase in circuit area and power consumption.
  • Timing chart for demonstrating the operation example of the small phase difference detector 30 and the time digital converter 60 of the digital phase comparator of the 5th Embodiment of this invention. It is a timing chart for demonstrating the operation example of the time digital converter 70 of the digital phase comparator of the 5th Embodiment of this invention. It is a figure which shows the structure of the digital phase comparator of the 6th Embodiment of this invention. It is a timing chart for demonstrating the operation example of the time digital converter 40 of the digital phase comparator of the 6th Embodiment of this invention. It is a timing chart for demonstrating the operation example of the time digital converter 50 of the digital phase comparator of the 6th Embodiment of this invention.
  • the first input signal (CLK1) is changed to the second input signal (CLK2) and the second input signal.
  • the signal (CLK2) is sampled by a second delayed input signal group (CK c (1) to CK c (n ⁇ 1)) obtained by delaying the signal (CLK2) at equal intervals.
  • a first signal (FCLK1) synthesized by performing a logical operation (for example, a logical sum operation) is output (corresponding to the “first circuit unit” in claim 1).
  • the second input signal (CLK2), the first input signal (CLK1), and the first input signal (CLK1) are unit delay of the second delayed input signal group.
  • the sampled signal (Q c (1 ) To Q c (n)) and outputs a second signal (FCLK2) synthesized by performing a predetermined logical operation (for example, a logical sum operation) (corresponding to “second circuit unit” of claim 1) ).
  • the first and second circuit units are collectively referred to as a “time digital converter”.
  • Each delay signal of (D F (1) to D F (m)) is sampled by a corresponding delay signal of the second delay signal group (CK F (1) to CK F (m)), respectively. 1 corresponding to “third circuit unit”).
  • the third circuit unit is also collectively referred to as a “time digital converter”.
  • the signals (Q c (1) to Q c (n)) sampled by the holding circuit groups (23_1 to 23_n) and the signals (Q F (1) to Q F ) sampled by the holding circuit groups (53_1 to 53_m). (M)) is used as a value representing the phase difference between the first input signal (CLK1) and the second input signal (CLK2), and is input to the logic circuit (4) and the logic circuit (5), respectively.
  • the first circuit unit includes a delay element array (21_1 to 21_n) that generates a second delayed input signal group obtained by delaying the second input signal at equal intervals.
  • the second circuit unit generates a first delay input signal group in which the first input signal is delayed at equal intervals by the same unit delay time as the second delay input signal group ( 11_1 to 11_n) (corresponding to claim 2).
  • the first circuit unit generates a second delay input signal group (second delay input signal group obtained by delaying the second input signal at equal intervals ( 21_1 to 21_n).
  • First delay input signal groups (D C (1) to D C (n)) obtained by delaying the first input signal (CLK1) at equal intervals by the delay element arrays (11_1 to 11_n ⁇ 1) are generated and held.
  • the circuit group (12_1 to 12_n) samples the first input signal (CLK1) and the delayed signal group (D c (1) to D c (n ⁇ 1)) with the second input signal (CLK2).
  • Sample results (Q c (1) to Q c (n) in the holding circuit group (12_1 to 12_n) and sample results (Q F (1) to Q F (m) in the holding circuit group (53_1 to 53_m) )) Is used as a value representing the phase difference between the first input signal (CLK1) and the first input signal (CLK2) (Claim 3) and the delay element array (11_1 to 11_n-1) and holding
  • the circuit group (12_1 to 12_n) is collectively referred to as “time digital conversion. It is also called “vessel”.
  • the second input signal (CLK2) is sampled by the first delayed input signals (D C (1) to D C (n)), respectively.
  • the OR circuit (25) outputs an OR operation result of the plurality of signals sampled by the holding circuit groups (23_1 to 23_n) as a signal (FCLK2).
  • a second delay input signal group (CK c (1) to CK c (n-1)) is generated by delaying the second input signal (CLK2) at equal intervals by the delay element array (21_1 to 21_n-1). To do.
  • the holding circuit groups (22_1 to 22_n) sample the first input signal (CLK1) by the delay signal groups (CK c (1) to CK c (n ⁇ 1)), respectively.
  • the OR circuit (24) outputs the OR operation result of the signals sampled by the holding circuit groups (22_1 to 22_n) as the first signal (FCLK1).
  • the above circuit group is also collectively referred to as a “small phase difference detector”.
  • a first delay signal group (D F (1) to D F (m)) is generated by delaying the first signal (FCLK1) at equal intervals in the delay element arrays (51_1 to 51_m ⁇ 1).
  • the second signal (FCLK2) is delayed at equal intervals by a unit delay time different from the unit delay time of the delay element array (51_1 to 51_m-1).
  • Delay signal groups (CK F (1) to CK F (m)) are generated.
  • each delay signal of the first delay signal group (D F (1) to D F (m)) is used as the second delay signal group (CK F (1) to CK F ).
  • (M)) are respectively sampled by the corresponding delay signals, and sample results (Q F (1) to Q F (m)) are output.
  • the circuit group is also collectively referred to as a “time digital converter”.
  • the reference signal (REF) is used as the first input signal (CLK1), and the first input signal is responded to the output of the oscillator (VCO) as the second input signal (CLK2).
  • the output sampled by the holding circuit (102) may be used (see claim 4 and FIG. 7).
  • the input signal (CLK1) is sampled every half cycle of the oscillation frequency of the clock oscillator to generate two signals, and one of the input signal and the two signals is obtained.
  • the first and second circuit units that are input as the first and second input signals, the set of the third circuit units, and the other of the input signal and the two signals, respectively. It is good also as a structure provided with the said 1st, 2nd circuit unit input as 2 input signals, and another group of the said 3rd circuit unit (Claim 5).
  • a small phase difference detector (20) and a time digital converter (50) for inputting one of the input signal and the two signals as the first and second input signals.
  • the first input signal (REF) is sampled every half cycle of the oscillation frequency of the clock oscillator (101) to generate the second and third input signals (REFT, REFC).
  • a delay signal group is generated by delaying the first input signal (REF) at equal intervals by the delay element arrays (11_1 to 11_n-1).
  • the first input signal (REF) and the delayed signal group obtained by delaying the first input signal at equal intervals are set as one of the second input signals (REFT). Sample in common in response to transition edges (eg rising edges).
  • the first input signal (REF) and the delayed signal group obtained by delaying the first input signal at equal intervals are used as the third input signal (REFC).
  • the delay element array (21_1 to 21_n ⁇ 1 in FIG. 1) uses the second input.
  • a delay signal group is generated by delaying the signal (REFT) at equal intervals with the same unit delay time as the first input signal.
  • the first input signal (REF) is a delayed signal group obtained by delaying the second input signal (REFT) and the second input signal at equal intervals.
  • a plurality of sampled signals are combined by an OR circuit (24 in FIG. 1) to generate a first signal (TFCLK1).
  • the holding circuit group 23_1 to 23_n in FIG.
  • the second input signal (REFT) is a delay obtained by delaying the first input signal (REF) and the first input signal at equal intervals.
  • Each sampled signal is sampled, and the plurality of sampled signals are combined with an OR circuit (25 in FIG. 1) to generate a second signal (TFCLK2).
  • a delay signal group is generated by delaying the first signal (TFCLK1) at equal intervals.
  • 52_1 to 52_m generates a delayed signal group obtained by delaying the second signal (TFCLK2) at equal intervals with a unit delay time different from that of the first signal (TFCLK1).
  • each delay signal of the delay signal group obtained by delaying the first signal (TFCLK1) at equal intervals is delayed at the second signal (TFCLK2) at equal intervals.
  • Each of the delayed signal groups is sampled by the corresponding delayed signal.
  • the delay element array (21_1 to 21_n ⁇ 1 in FIG. 1) A delay signal group is generated by delaying the input signal (REFC) at equal intervals with the same unit delay time as the first input signal.
  • the first input The signal (REF) is sampled by each of the third input signal (REFC) and a delay signal group obtained by delaying the third input signal at equal intervals, and the plurality of sampled signals are ORed (in FIG. 1). 24) to generate a third signal (CFCLK1).
  • the holding circuit group 23_1 to 23_n in FIG.
  • the third input signal (REFC) is a delay obtained by delaying the first input signal (REF) and the first input signal at equal intervals.
  • Each sampled signal is sampled, and the plurality of sampled signals are combined with an OR circuit (25 in FIG. 1) to generate a fourth signal (CFCLK2).
  • the delay element array (61_1 to 61_m in FIG. 9) generates a delay signal group obtained by delaying the third signal (CFCLK1) at equal intervals, and the delay element array (FIG. 9).
  • 62_1 to 62_m) generates a delayed signal group obtained by delaying the fourth signal (CFCLK2) at equal intervals with a unit delay time different from that of the third signal (CFCLK1).
  • each delay signal of the delay signal group obtained by delaying the third signal (CFCLK1) at equal intervals is delayed at the fourth signal (CFCLK2) at equal intervals.
  • Each of the delayed signal groups is sampled by the corresponding delayed signal.
  • the first input signal (REF) is further converted into a unit more than the delay signal group of the first input signal (delay output of the delay element arrays 11_1 to 11_n ⁇ 1).
  • a fifth signal delayed by the delay time (output D c (n) of the delay element 11 — n) and a sixth signal (output D c (n + 1) of the delay element 11 — n + 1) obtained by delaying the fifth signal by a unit delay time.
  • the fifth signal (D c (n)) is delayed by a unit delay time different from that of the sixth signal at equal intervals (CK FD (1) to CK FD (m)) are generated.
  • each of the delayed signal groups (D FD (1) to D FD (m)) obtained by delaying the sixth signal (D c (n + 1)) at equal intervals.
  • the delayed signals are sampled by the corresponding delayed signals of the delayed signal group (CK FD (1) to CK FD (m)) obtained by delaying the fifth signal (D c (n)) at equal intervals.
  • the input signal (CLK1) is sampled every half cycle of the oscillation frequency of the clock oscillator to generate two signals, and one of the input signal and the two signals is obtained.
  • First and second time digital converters that are input as the first and second input signals, and the other of the input signal and the two signals is input as the first and second input signals.
  • the second time digital converter may be provided (see claim 7 and FIG. 14). That is, a circuit is provided that generates second and third input signals (REFT, REFC) obtained by sampling the first input signal (REF) every half cycle of the oscillation frequency of the clock oscillator (for example, the voltage controlled oscillator 101). Yes.
  • the first input signal (REF) is sampled by a delay signal group obtained by delaying the second input signal (REFT) and the second input signal at equal intervals, respectively. Then, the plurality of sampled signals are combined by the OR circuit (24) to generate the first signal (TFCKL1).
  • the delay element array (11_1 to 11_n) generates a delay signal group obtained by delaying the first input signal (REF) at equal intervals, and the holding circuit group (23_1 to 23_n) generates the second input signal (REFT).
  • REF first input signal
  • REFT second input signal
  • a signal (TFCLK2) is generated.
  • TFCLK1 delay signal group delayed at regular intervals
  • the delay signal group (CK FC (1) to CKFC (1) to CKFC2) is obtained by delaying the second signal (TFCLK2) at equal intervals by a unit delay time different from that of the first signal TFCLK1).
  • CK FC (m)) is generated.
  • said first signal (TFCLK1) delay signal group delayed at equal intervals of (D FT (1) ⁇ D FT (m))
  • said second signal (TFCLK2 ) Are delayed by equal intervals and sampled by corresponding delay signals of the delay signal group (CK FC (1) to CK FC (m)).
  • the delay element array (41_1 to 41_n) delays the third input signal (REFC) at equal intervals.
  • the first input signal (REF) is delayed by delaying the third input signal (REFC) and the third input signal at equal intervals.
  • Each sampled signal is sampled, and the plurality of sampled signals are combined by an OR circuit (44) to generate a third signal (CFCLK1).
  • the third input signal (REFC) is sampled by a delay signal group obtained by delaying the first input signal (REF) and the first input signal at equal intervals.
  • the plurality of sampled signals are combined by the OR circuit (45) to generate the fourth signal (CFCLK2).
  • a delay signal group (D FC (1) to D FC (m)) obtained by delaying the third signal (CFCLK1) at equal intervals is generated.
  • the delay signals of the delay signal groups (D FC (1) to D FC (m)) obtained by delaying the third signal (CFCLK1) at equal intervals are supplied to the fourth circuit.
  • the signal (CFCLK2) is sampled by the corresponding delay signal of the delay signal group (CK FC (1) to CK FC (m)) obtained by delaying the signal (CFCLK2) at equal intervals.
  • a second time digital conversion circuit that receives signals (FCLK1, FCLK2) output from the logic circuit (OR circuits 24, 25) of FIG. (50), the delay signals (CK F (1) to CK F (m)) of the respective stages of the fourth delay element arrays (52_1 to 52_m) in the second time digital conversion circuit (50)
  • Fifth holding circuit group having a plurality of holding circuits sequentially fetching according to the transition timings of the delay signals (D F (1) to D F (m)) of the corresponding stages of the three delay element arrays (51_1 to 51_m) (54_1-54_m),
  • a third OR operation circuit (55) for receiving the outputs (Q F2 (1) to Q F2 (m)) of the fifth holding circuit group (54_1 to 54_m), and a second time digital conversion circuit (50 ) Of the third holding circuit group (53_1 to 53_m), and a fourth OR operation circuit (56).
  • a plurality of delay elements are connected in cascade, and a plurality of delay signals (D F2 (1) to D F2 (D F2 (1) to D F2 ( l)), a fifth delay element array (81_1 to 81_l), Delay elements having delay times different from those of the fifth delay element array (81_1 to 81_1) are connected in cascade, and the output (F2CLK2) of the fourth OR operation circuit (56) is input to the first stage and sequentially A sixth delay element array (82_1 to 82_l) that outputs a plurality of delayed signals (CK F2 (1) to CK F2 (l)); A plurality of holding circuits that sequentially take in the delay signals of each stage of the fifth delay element array (81_1 to 81_l) according to the transition timing of the delay signal of the corresponding stage of the sixth delay element array (82_1 to 82_l) A sixth holding circuit group (83_1 to 83_l) including: And a third time digital converter (80).
  • the outputs (Q F3 (1) to Q F3 (m)) of the sixth holding circuit group (83_1 to 83_l) are such that the output of the sixth holding circuit group is the first pulse input signal and the second pulse input signal.
  • the digital value indicating the relative phase difference of the pulse input signal is input to the logic circuit (8).
  • the delay time difference between the unit delay times in the fifth delay element array (81_1 to 81_1) and the sixth delay element array (82_1 to 82_l) is the third delay element array (51_1 to 51_m) and the fourth delay element array (51_1 to 51_m).
  • the delay element row (52_1 to 52_m) is set to be smaller than the delay time difference of the unit delay times.
  • FIG. 1 is a diagram showing a configuration of a digital phase comparator according to the first embodiment of the present invention.
  • the digital phase comparator of the present embodiment is (A) a time digital converter 10 including inverter arrays (delay element arrays) 11_1 to 11_n and a plurality of data holding circuits (holding circuit groups) 12_1 to 12_n; (B) logic circuit 1; (C) Small phase difference detector 20 including inverter rows (delay element rows) 21_1 to 21_n, a plurality of data holding circuits (holding circuit groups) 22_1 to 22_n, and a plurality of data holding circuits (holding circuit groups) 23_1 to 23_n.
  • a time digital converter 50 including inverter arrays (delay element arrays) 51_1 to 51_m + 1, inverter arrays (delay element arrays) 52_1 to 52_m + 1, and a plurality of data holding circuits (holding circuit groups) 53_1 to 53_m;
  • the first input signal CLK1 is sequentially delayed by n stages of cascaded inverter arrays 11_1 to 11_n.
  • the outputs of the first input signal CLK1 and the inverter trains 11_1, 11_2,..., 11_ (n ⁇ 1) are respectively supplied to the data input terminals of the corresponding data holding circuits 12_1, 12_2, 12_3,.
  • the first input signal CLK1 and the second input signal CLK2 that are input and taken in at the timing (rising edge) of the second input signal CLK2 that is input in common to the respective clock terminals, from the data holding circuits 12_1 to 12_n.
  • the logic circuit 1 detects changes in the values of Q C (1) to Q C (n) (changes in adjacent bits) and outputs a digital code.
  • the odd-numbered data holding circuits 12_1 to 12_n match the logic of the output signals, the odd-numbered data holding circuits 12_1 to 12_3,... Are positive logic, and the even-numbered data holding circuits 12_2, 12_4,. Takes out the output with negative logic (inverted signal of the data output terminal).
  • the first input signal CLK1 is commonly input to the data input terminals of the data holding circuits 22_1 to 22_n, and the data holding circuits 22_1 to 22_n receive the first input signal CLK1 as the second input signal CLK1.
  • the input signal CLK2 and the second input signal CLK2 are captured at the edges (rising edges) of the signals CK C (1) to CK C (n ⁇ 1) sequentially delayed by the n-stage inverter rows 21_1 to 21_n.
  • the outputs of the data holding circuits 22_1 to 22_n are input to an n-input OR circuit 24, and the output of the OR circuit 24 is output as FCLK1.
  • the second input signal CLK2 is input in common to the data input terminals of the data holding circuits 23_1 to 23_n.
  • the data holding circuits 23_1 to 23_n are input signals D of the respective stages of the inverter trains 11_1 to 11_n of the time digital converter 10.
  • C (1) to D C (n ⁇ 1) are input to the clock terminal to capture CLK2.
  • the outputs of the data holding circuits 23_1 to 23_n are input to the n-input OR circuit 25, and the output of the OR circuit 25 is output as FCLK2.
  • the data holding circuits 22_1 to 22_n and the data holding circuits 23_1 to 23_n input each clock terminal with positive logic at the odd-numbered stage and negative logic at the even-numbered stage in order to match the data fetching logic. .
  • the data holding circuits at odd stages such as the data holding circuits 22_1, 22_3,... Capture at the rising edge of CLK2 and its delay signal (output of the inverter 21_2, etc, And the data holding circuits 22_2, 22_4.
  • the even-numbered data holding circuit takes in the falling edge of CLK2 and its delay signal (output of inverter 21_1,).
  • the data holding circuits at odd stages such as the data holding circuits 23_1, 23_3,...
  • the delay time of each stage of the inverter trains 21_1 to 21_n is set to be the same as the delay time of the inverter trains 11_1 to 11_n.
  • the outputs of the final stage inverters 11_n and 21_n of the inverter rows 11_1 to 11_n and 21_1 to 21_n are opened.
  • FCLK1 is input to the first stage of the m-stage cascaded inverter strings 51_1 to 51_m
  • FCLK2 is input to the first stage of the m-stage cascaded inverter strings 52_1 to 52_m.
  • the outputs of the final stage inverters 51_m and 52_m of the inverter arrays 51_1 to 51_m and 52_1 to 52_m are opened.
  • the data holding circuits 53_1 to 53_m input FCLK1 and D F (1) to D F (m), which are input signals of the inverter arrays 51_1 to 51_m + 1, to the respective data input terminals, and input of the inverter arrays 52_1 to 52_m.
  • the signals FCLK2 and CK F (1) to CK F (m ⁇ 1) are input to the clock terminal, and the signal of the data input terminal is captured at the edge of the clock terminal.
  • the phase difference between FCLK1 and FCLK2 is input to the logic circuit 5 as output digital signals Q F (1) to Q F (m) from the data holding circuits 53_1 to 53_m.
  • the logic circuit 1 detects changes in the values of Q F (1) to Q F (m) (changes in adjacent bits) and outputs a digital code.
  • the logic of the output and the clock terminal is set to negative logic in the odd stages and positive logic in the even stages.
  • the odd-numbered data holding circuit 53_1 takes in D F (1) at the falling edge of FCLK2 and outputs the inverted output of the data output terminal as Q F (1).
  • the even-numbered data holding circuit 53_2 takes in D F (2) at the rising edge of FCLK2 and outputs the output data of the data output terminal as Q F (2).
  • phase difference ⁇ T F1 of each stage of the inverter trains 51_1 to 51_m and the phase difference ⁇ T F2 of each stage of the inverter trains 52_1 to 52_m are: ⁇ T F1 > ⁇ T F2 It has become a relationship.
  • the digital phase comparator of this embodiment includes a time digital converter 10 including inverter rows 11_1 to 11_4 and data holding circuits 12_1 to 12_4, and a small phase difference detector 20 includes inverter rows 21_1 to 21_4 and data.
  • the holding digital circuits 22_1 to 22_4 and 23_1 to 23_4 are provided, and the time digital converter 50 includes inverter rows 51_1 to 51_4, 52_1 to 52_4, and data holding circuits 53_1 to 53_4.
  • the digital phase comparator of this embodiment includes a time digital converter 10 including inverter rows 11_1 to 11_4 and data holding circuits 12_1 to 12_4, and a small phase difference detector 20 includes inverter rows 21_1 to 21_4 and data.
  • the output D C (1) of the inverter 11_1 to inverted output to input CLK1 is illustrated as a signal which rises after the rise of CLK1 of [Delta] T C, as described above, negative logic (positive This is because the logic 0 and 1 are handled as 1 and 0, respectively.
  • Falling data holding circuit 23_2 in the edge of the output D C of the inverter 11_1 (1) is a sample, the data holding circuit 12_2, a logic 1 when sampled on the rising edge of the Low CLK1 output D C of the inverter 11_1 (1) Is output. The same applies to CK F (1) to CK F (3).
  • the input signal CLK1 of the data holding circuits 12_1 ⁇ 12_4 are to the data terminal, D C (1), D C (2), D C (3), D C (4) is to clock terminal
  • the input signal CLK2 sampling clock
  • logic “1” is output.
  • the respective delay times of the inverter array 11_1 ⁇ 11_4 to [Delta] T C.
  • the output DC (1) of the inverter array 11_1 ⁇ 11_4 respectively output-DC (3), is delayed by ⁇ T C ⁇ 3 ⁇ T C, at the output point of the third-stage inverter 11_3,
  • the phase relationship with the second input signal CLK2 is reversed.
  • the logic “1” is output up to the third stage and the logic “0” is output from the fourth stage to the outputs Q C (1) to Q C (4) of the data holding circuits 12_1 to 12_4.
  • the data holding circuits 23_1 ⁇ 23_4 is input to the common second input signal CLK2 to the data terminal, the input signal CLK1 to the inverter array 11_1 ⁇ 11_4 of the time-to-digital converter 10, D C ( 1), D C (2),..., D C (n ⁇ 1) are input to the clock terminal, so the phase relationship between the input signal to the data terminal and the input signal to the clock terminal is
  • the data holding circuits 12_1 to 12_4 of the time digital converter 10 have a reverse relationship.
  • logic “1” is output in synchronization with the falling edge (rising edge in FIG. 2) of the output signal D C (3) of the third-stage inverter 11_3.
  • the outputs of the data holding circuits 23_1 to 23_4 are input to the 4-input OR circuit 25. From the output FCLK2, the inversion timing of the inverter trains 11_1 to 11_4 output immediately after the second input signal CLK2 of the time digital converter 10 is input. Will be extracted.
  • the inverter arrays 21_1 to 21_4 and the data holding circuits 22_1 to 22_4 have the same configuration as the circuit configured by the data holding circuits 23_1 to 23_4 and the inverter arrays 11_1 to 11_4 of the time digital converter 10, and input signals Is replaced. That is, in the data holding circuit 22_1, the rising edge timing of CLK2, and in the data holding circuits 22_2, 22_3, and 22_4, CLK1 is set at the rising, rising, and falling edges obtained by inverting and delaying CLK2 in the inverter rows 21_1 to 21_3. The result obtained by ORing the sampled result by the 4-input OR circuit 24 is output as FCLK1.
  • signals D F (1) to D F obtained by sequentially delaying the signal FCLK1 output from the small phase difference detector 20 via the inverter arrays 51_1 to 51_4 in the data holding circuits 53_1 to 53_4.
  • the signal CK F (1) to CK F (4) obtained by sequentially delaying the output signal FCLK2 of the small phase difference detector 20 via the inverter rows 52_1 to 52_4 is sequentially taken in as a clock signal.
  • the data holding circuits 53_1 to 53_4 are used when the phases of the input signals D F (1) to D F (4) to the data terminal are ahead of the input signals CKF (1) to CKF (4) to the clock terminal. , Output logic “1”.
  • FCLK1 The output time of the small phase difference detector 20, FCLK1 is a relationship advanced phase only T F than FCLK2, each stage of the inverter array 51_1 ⁇ phase difference [Delta] T F1 and inverter row 52_1 ⁇ 52_4 of each stage of the 51_4
  • the phase difference ⁇ T F2 of ⁇ T F1 > ⁇ T F2 It has become a relationship. For this reason, each time it passes through each stage of the inverter trains 52_1 to 52_4, the phase difference decreases by ⁇ T F1 ⁇ T F2 .
  • T C 3 ⁇ T C ⁇ T F is 3 ⁇ T c ⁇ 3 ( ⁇ T F1 ⁇ T F2 ) ⁇ T c ⁇ 3 ⁇ T c ⁇ 2 ( ⁇ T F1 ⁇ T F2 ) It can be seen that it is.
  • the time digital converter 50 in this embodiment is configured to compare only the phase difference of one stage or less of the inverter delay of the time digital converter 10, so that the other conventional configuration described in Patent Document 2 is used.
  • the power consumption and the circuit area can be significantly reduced by reducing the number of stages of the inverter array and the data holding circuit group as a whole.
  • FIG. 3 is a diagram showing the configuration of the digital phase comparator according to the second embodiment of the present invention.
  • the digital phase comparator according to the present embodiment eliminates the data holding circuits 12_1 to 12_n of the time digital converter 10 from the digital phase comparator shown in FIG.
  • the time digital converter 40 detects the phase difference between the input signals CLK1 and CLK2, and is less than the resolution due to the delay time of the inverter train. It is the structure which serves also as a detection of a phase difference.
  • the first input signal CLK1 the phase difference between the second input signal CLK2 and T C.
  • the data holding circuits 23_1 to 23_4 when the phase of the input signal to the data terminal is ahead of the input signal to the clock terminal, as in the first embodiment shown in FIG. Output logic "1".
  • the outputs Q C (1) to Q C (4) of the data holding circuits 23_1 to 23_4 output a logic “0” up to the third stage and a logic “1” at the fourth stage.
  • Outputs Q C (1) to Q C (4) of the data holding circuits 23_1 to 23_4 are connected to the logic circuit 4 and also to the OR circuit 25, and the output signal of the third-stage inverter 11_3.
  • the output FCLK2 of the OR circuit 25 receives an inverter train immediately after the rising timing of the input signal CLK2.
  • the inversion timings of the outputs 11_1 to 11_4 are extracted.
  • the output FCLK1 of the OR circuit 24 is The rising timing of the second input signal CLK2 is extracted.
  • the output signals FCLK1 and FCLK2 that maintain the phase difference TF between the second input signal CLK2 and the inverted signal of the inverter trains 11_1 to 11_4 output immediately after the CLK2 signal is input are output.
  • the time digital converter 50 Since the time digital converter 50 has the same configuration as the small phase difference detector 20 in the digital phase comparator shown in FIG. 1, the same result as the configuration shown in FIG. 2 is obtained.
  • the output of the data holding circuit after the third stage becomes logic “0”, and it can be seen that the phase difference TF is between two stages and three stages of the delay difference ⁇ T F1 - ⁇ T F2 of the inverter train. That is, 2 ( ⁇ T F1 ⁇ T F2 ) ⁇ T F ⁇ 3 ( ⁇ T F1 ⁇ T F2 ) The relationship holds.
  • T C 3 ⁇ T C ⁇ T F is 3 ⁇ T C ⁇ 3 ( ⁇ T F1 ⁇ T F2 ) ⁇ T C ⁇ 3 ⁇ T C ⁇ 2 ( ⁇ T F1 ⁇ T F2 ) It can be seen that it is.
  • the digital phase comparator according to the present embodiment it is possible to realize a high-resolution digital phase comparator in which power consumption and circuit area are greatly reduced compared to the conventional configuration. Further, in this embodiment, the power consumption and the circuit area can be further reduced by the amount not using the data holding circuits 12_1 to 12_n in the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration of a digital phase comparator according to the third embodiment of the present invention.
  • a signal CLKV from the VCO 101 and a reference signal REF are input.
  • the reference signal REF is captured by the data holding circuit 102 at the rising edge of the VCO output signal CLKV, and the retimed signal REFT is output.
  • the retiming signal REFT holds phase information of the rising edge of the output signal CLKV of the VCO 101. Therefore, by using the phase difference information of the retiming signal REFT with respect to the reference signal REF, the phase comparison between the reference signal REF and the output signal CLKV of the VCO 101 can be performed.
  • the reference signal REF and the retiming signal REFT are input to the time digital converter 10 and the same operation as the digital phase comparator described in the first embodiment shown in FIG. 1 is performed.
  • the reference signal REF since captured at the rising edge output signal CLKV of by the data holding circuit 102 VCO 101 as a clock, Li
  • the timing signal REFT is a signal synchronized with the output signal CLKV of the VCO 101, and the phase comparison between the reference signal REF and the retiming signal REFT enables the phase comparison between the reference signal REF and the output signal CLKV of the VCO 101.
  • the phase comparison operation between the reference signal REF and the retiming signal REFT after the time digital converter 10 is the same as the operation in the digital phase comparator of the first embodiment shown in FIG.
  • the digital phase comparator As described above, even with the digital phase comparator according to the present embodiment, it is possible to realize a high-resolution digital phase comparator in which power consumption and circuit area are greatly reduced compared to the conventional configuration. Even when a high-speed signal such as the signal CLKV from the VCO is compared with the reference signal REF, only the data holding circuit (FF) 102 that operates as a retiming circuit operates at high speed. Since only comparison using a low-speed signal of the reference signal REF is performed, the overall power consumption can be reduced.
  • FF data holding circuit
  • FIG. 7 is a diagram illustrating a configuration of a digital phase comparator according to the fourth embodiment of the present invention.
  • the digital phase comparator according to the present embodiment receives the output signal CLKV of the VCO 101 and the reference signal REF, similarly to the digital phase comparator according to the third embodiment shown in FIG.
  • the reference signal REF is captured by the data holding circuit 102 at the rising edge of the output signal CLKV of the VCO 101, and the retimed signal REFT is output.
  • the reference signal REF and the retiming signal REFT are input to the time digital converter 40, and the same operation as the digital phase comparator described in the second embodiment shown in FIG. 3 is performed.
  • the reference signal REF since captured at the rising edge output signal CLKV of by the data holding circuit 102 VCO 101 as a clock, Li
  • the timing signal REFT is a signal synchronized with the output signal CLKV of the VCO 101, and the phase comparison between the reference signal REF and the retiming signal REFT enables the phase comparison between the reference signal REF and the output signal CLKV of the VCO 101.
  • the phase comparison operation between the reference signal REF and the retiming signal REFT after the time digital converter 40 is the same as the operation in the digital phase comparator of the second embodiment shown in FIG.
  • the digital phase comparator As described above, even with the digital phase comparator according to the present embodiment, it is possible to realize a high-resolution digital phase comparator in which power consumption and circuit area are significantly reduced compared to the conventional configuration. Further, in the present embodiment, similarly to the second embodiment, the power consumption and the circuit area can be further reduced by the amount not using the data holding circuits 12_1 to 12_n in the third embodiment. Further, even when a high-speed signal such as the signal CLKV from the VCO is compared with the reference signal REF, only the retiming circuit 102 operates at high speed, and the entire circuit uses a low-speed signal about the reference signal REF. Therefore, the overall power consumption can be reduced.
  • a high-speed signal such as the signal CLKV from the VCO
  • FIG. 9 is a diagram illustrating a configuration of a digital phase comparator according to the fifth embodiment of the present invention.
  • a signal CLKV from the VCO 101 and a reference signal REF are input.
  • the reference signal REF is taken in at the rising and falling edges of the output signal CLKV of the VCO 101 by the data holding circuits 102 and 103, and outputs retimed signals REFT and REFC, respectively.
  • the retiming signals REFT and REFC respectively hold the rising and falling phase information of the output signal CLKV of the VCO 101, and the phase difference between the retiming signals REFT and REFC is a phase difference corresponding to a half cycle of the output signal CLKV of the VCO 101. Keep information.
  • phase difference information of the retiming signals REFT and REFC with respect to the reference signal REF, it becomes possible to compare the phase of the reference signal REF and the VCO output CLKV and normalize the phase comparison result in the VCO output signal cycle.
  • the reference signal REF and the retiming signals REFT and REFC are input to the time digital converter 10 '.
  • the time digital converter 10 ' is configured by adding data holding circuits 13_1 to 13_n to the time digital converter 10 shown in FIG.
  • the data holding circuits 12_1 to 12_n are the retiming signals REF and signals (Dc (1) to Dc (n-1)) obtained by sequentially delaying the reference signal REF by the inverter rows 11_1 to 11_ (n-1).
  • REFT is captured as a clock signal.
  • the data holding circuits 13_1 to 13_n retiming the reference signal REF and signals (Dc (1) to Dc (n-1)) obtained by sequentially delaying the reference signal REF by the inverter rows 11_1 to 11_ (n-1).
  • the signal REFC is captured as a clock signal.
  • the data holding circuits 12_1 to 12_n output the phase difference between the reference signal REF and the retiming signal REFT as digital signals TQ C (1) to TQ C (n), and the data holding circuits 13_1 to 13_n perform the retiming with the reference signal REF.
  • the phase difference of the signal REFC is output as digital signals CQ C (1) to CQ C (n), and the result is input to the logic circuit 1 ′.
  • the small phase difference detector 20 includes the reference signal REF, the retiming signal REFT, and the outputs D C (1) to D C (n ⁇ 1) of the inverter trains 11_1 to 11_ (n ⁇ 1) of the time digital converter 10 ′.
  • the small phase difference detector 30 receives the reference signal REF, the retiming signal REFC, and the outputs D C (1) to D C (n ⁇ 1) of the inverter array of the time digital converter 10 ′. Output signals CFCLK1 and CFCLK2 that maintain the phase difference between the retiming signal REFC and the inverted output signal of the inverter trains 11_1 to 11_ (n ⁇ 1) immediately after the REFC signal is input are output.
  • the small phase difference detector 20 and the small phase difference detector 30 have the same circuit configuration, and the delay time in the inverter row is the same.
  • the phase comparison between TFCLK and TFCLK2 is performed with the resolution of the delay time difference between the inverter trains 51_1 to 51_m and 52_1 to 52_m, as in the first embodiment.
  • the phase comparison between CFCLK and CFCLK2 is performed with the resolution of the delay time difference between the inverter trains 61_1 to 61_m and 62_1 to 62_m, as in the first embodiment.
  • the time digital converters 50, 60, and 70 have the same circuit configuration, and the delay time difference between the inverter trains is the same.
  • FIG. 10 shows a timing chart of the time digital converter 10 ′.
  • the phase difference between the reference signal REF and the retiming signal REFT is T C
  • the phase difference between the reference signal REF and the retiming signal REFC is T CC .
  • phase relationship of the retiming signal REFC with respect to the signals D C (1) to D C (7) sequentially delayed by the inverter rows 11_1 to 11_7 is reversed at the output time of the seventh stage inverter 11_7, and the data holding circuit In the outputs CQ C (1) to CQ C (8) of 13_1 to 13_8, logic “1” is output up to the seventh stage, and logic “0” is output from the eighth stage.
  • FIG. 11 shows a timing chart in the small phase difference detector 20 and the time digital converter 50.
  • the output signal TFCLK1 that maintains the phase difference TFT between the retiming signal REFT and the output signal D C (3) of the inverter 11_3 immediately after the input of REFT, and TFCLK2 is output.
  • the phase difference between TFCLK1 and TFCLK2 is measured with the delay time difference accuracy between the inverter trains 51_1 to 51_8 and the inverter trains 52_1 to 52_8.
  • a logic “1” is output. Since reverse rotation occurs, the output of the data holding circuit after the third stage is logic “0”, and the phase difference T FT is between the delay stage ⁇ T F1 - ⁇ T F2 of the inverter stage and the third stage. Recognize.
  • FIG. 12 shows a timing chart in the small phase difference detector 30 and the time digital converter 60.
  • the output signal CFCLK1 that maintains the phase difference TFC between the retiming signal REFC and the output signal D C (7) of the inverter 11_7 immediately after REFC input. And CFCLK2 are output.
  • the phase difference between CFCLK1 and CFCLK2 is measured with a delay time difference accuracy between the inverter trains 61_1 to 61_8 and the inverter trains 62_1 to 62_8. At this time, since the phase of the data input is advanced with respect to the clock input up to the first-stage data holding circuit 63_2, the logic “1” is output.
  • the outputs Q FC (2) to Q FC (8) of the data holding circuits 53_2,... 53_8 in the second and subsequent stages are logic “0”, and the phase difference T FC is It can be seen that the delay difference ⁇ T F1 - ⁇ T F2 of the inverter train is between one stage and two stages.
  • FIG. 13 shows a timing chart in the time digital converter 70.
  • the time to digital converter 70 is inputted time-digital converter 10 inverter row 11_8 and the output signal D C (8) and D C (9) of 11_9 of ', the delay time [Delta] T C of the inverter array is measured .
  • the phase of the data input is advanced with respect to the clock input up to the fifth-stage data holding circuit 73_5, the logic “1” is output, but the stage that has passed through the sixth-stage inverter row 11_6.
  • the outputs of the data holding circuits 73_6 and 73_7_73_8 in the sixth and subsequent stages are logic “0”, and the phase difference T FC is equal to the delay difference ⁇ T F1 ⁇ T F2 of the inverter stage and 6 stages. It turns out that it is between steps.
  • phase difference T CT between the reference signal REF and the retiming signal REFT is expressed by the following equation.
  • phase difference T CC between the reference signal REF and the retiming signal REFC is expressed by the following equation.
  • phase difference normalized by the VCO output signal period in this case is expressed as follows.
  • the phase difference between the retiming signals REFT and REFC with respect to the reference signal REF is measured, the phase comparison between the reference signal REF and the VCO output CLKV, and the VCO output signal period of the phase comparison result is performed. It can be seen that it is possible to normalize.
  • the retiming circuit (data holding circuit) 102 is operated at high speed. 103, and only the comparison using the low-speed signal of the reference signal REF is performed as a whole circuit, so that the power consumption can be reduced as a whole.
  • FIG. 14 is a diagram illustrating a configuration of a digital phase comparator according to the sixth embodiment of the present invention.
  • the digital phase comparator according to the present embodiment also receives the input of the signal CLKV from the VCO 101 and the reference signal REF as in the case of the digital phase comparator of the fifth example shown in FIG.
  • the phase difference information of the retiming signals REFT and REFC with respect to the reference signal REF, the phase comparison between the reference signal REF and the VCO output CLKV and the normalization of the phase comparison result in the VCO output signal cycle are performed.
  • the time digital converter 40 ′ has the same configuration as that of the time digital converter 40 shown in FIG. 3, and detects the phase difference between the reference signal REF and the retiming signal REFT and the REFT that is less than the resolution due to the delay time of the inverter train. An operation that also serves as detection of inversion timing in the inverter trains 11_1 to 11_n immediately after signal input is performed.
  • inverter rows 41_1 to 41_n by adding inverter rows 41_1 to 41_n, data holding circuits 42_1 to 42_n, data holding circuits 43_1 to 43_n, OR circuit 44 and OR circuit 45, phase difference detection between the reference signal REF and the retiming signal REFC, An operation that also serves as detection of the inversion timing in the inverter trains 11_1 to 11_n immediately after the REFC signal input with a resolution equal to or lower than the resolution of the train delay time is performed.
  • FIG. 15 shows a timing chart of the time digital converter 40 ′.
  • the phase difference between the reference signal REF and the retiming signal REFT is T C
  • the phase difference between the reference signal REF and the retiming signal REFC is T CC .
  • the output Q C (1) to Q C (8) of the data holding circuits 23_1 to 23_8 outputs a logic “0” until the third stage, and outputs a logic “1” after the fourth stage.
  • the OR circuits 24 and 25 maintain the phase difference T FT between the retiming signal REFT and the output signal D C (3) of the inverter 11_3 immediately after REFT input, as in the second embodiment.
  • Output signals TFCLK1 and TFCLK2 are output.
  • phase relationship of the retiming signal REFC with respect to the signals D C (1) to D C (7) sequentially delayed by the inverter rows 11_1 to 11_7 is reversed at the output time of the seventh stage inverter 11_7, and the data holding circuit In the outputs CQ C (1) to CQ C (8) of 43_1 to 43_8, logic “0” is output up to the seventh stage, and logic “1” is output from the eighth stage.
  • the OR circuits 44 and 45 output the output signals CFCLK1 and CFCLK2 that maintain the phase difference T FC between the retiming signal REFC and the output signal D C (7) of the inverter train 11_7 immediately after the REFC is input.
  • time digital conversion circuits 50, 60, and 70 show timing charts of the time digital conversion circuits 50, 60, and 70, respectively.
  • the time digital conversion circuits 50, 60 and 70 have the same configuration as that of the fifth embodiment shown in FIG. 9, and the operation thereof is the same as that shown in FIGS. Therefore, explanation is omitted.
  • the digital phase comparator of this embodiment also measures the phase difference between the retiming signals REFT and REFC with respect to the reference signal REF, compares the phase of the reference signal REF and the output signal CLKV of the VCO 101, and the phase comparison result. Can be normalized with the VCO output signal period. Even when a high-speed signal such as the output signal CLKV from the VCO 101 is compared with the reference signal REF, only the retiming circuits 102 and 103 operate at high speed, and the circuit as a whole is as low as the reference signal REF. Since only comparison using signals is performed, overall power consumption can be reduced.
  • the power consumption and the circuit area can be further reduced by the amount not using the data holding circuit (12_1 to 12_n) in the third embodiment.
  • FIG. 23 is a diagram showing the configuration of the seventh exemplary embodiment of the present invention.
  • the first time digital converter 40 of FIG. 1 or 3 is omitted
  • the second time digital converter 50 of FIG. 23 is the second time digital converter of FIG. This corresponds to the converter 50.
  • the digital phase comparator according to the present embodiment includes a second time digital converter 50 (output signals FCLK1 from OR circuits 24, 25) of the digital phase comparator shown in FIG. FCLK2 is input), and data holding circuits 54_1 to 54_m and m-input OR circuits 55 and 56 are added.
  • the output of the data holding circuits 53_1 to 53_m is input to the OR circuit 55, and the output is output as F2CLK2.
  • the data holding circuits 54_1 to 54_m input the outputs CK F (1) to CK F (m) of the inverter arrays 52_1 to 52_m to the respective data input terminals, and output the outputs D F (1) of the inverter arrays 51_1 to 51_m.
  • ⁇ D F (m) is input to the clock terminal, the signal of the data input terminal is captured at the edge of the clock terminal, the outputs of the data holding circuits 54_1 to 54_m are input to the OR circuit 56, and the output of the OR circuit 56 is F2CLK2. Is output.
  • the phase difference between the output signals F2CLK1 and F2CLK2 of the OR circuit 55 and the OR circuit 56 is the same as that of the time digital converter 50, and the inverter train 51_1 to 51_m and the inverter train having a smaller delay time difference than the inverter trains 52_1 to 52_m, It is detected and digitally encoded by a time digital converter 80 having 81_1-81_1 and 82_1-82_1.
  • the output signals of the data holding circuits 53_1 to 53_m are the normal output of the data terminal in order to match the logic. Further, in order to match the logic of the output signal and the clock terminal input signal, the data holding circuits 54_1 to 54_m set the logic of the output and the clock terminal to negative logic in the odd stages and positive logic in the even stages.
  • the odd-numbered stage i data holding circuit 53_i captures D F (i) at the falling edge of CCK F (i), and outputs the inverted output of the data output terminal as Q F1 (i).
  • the data holding circuit 53_j of the even-numbered stage j takes in D F (j) at the rising edge of CK F (j) and outputs the output data of the data output terminal as Q F1 (j).
  • FIG. 24 shows the operation of generating the signal F2CLK1 from the OR circuit 55 that receives the outputs QF2 (1) to QF2 (4) of the data holding circuits 54_1 to 54_m
  • FIG. 25 shows the output Q F1 of the data holding circuits 53_1 to 53_m.
  • An example of the operation of generating the signal F2CLK2 from the OR circuit 56 having (1) to Q F1 (4) as inputs is shown.
  • the operation of the time digital converter 80 is the same as the operation of the time digital converter 50 of the digital phase comparator of the first embodiment shown in FIG. That is, the operation of the time digital converter 80 is the same as that shown in FIG. 2 with respect to FCLK1, FCLK2, CK F (1) to CK F (4), D F (1) to D F (4), Q F (1).
  • the time digital converter 50 of FIG. 23 obtains the same results except that the output is inverted from the configuration example shown in FIGS. 1 and 2, and the first and second stage data holding circuits 53_1, 53_2 outputs (Q F1 (1), Q F1 (2)) are logic “0”, and the outputs (Q F1 (3), Q F1 (4)) of the data holding circuits 53_3, 53_4 in the third and subsequent stages are Since the logic is “1”, it can be seen that the phase difference TF is between two and three stages of the delay difference ⁇ TF1 ⁇ TF2 of the inverter train. That is, 2 ( ⁇ TF1- ⁇ TF2) ⁇ TF ⁇ 3 ( ⁇ TF1- ⁇ TF2) The relationship holds.
  • Outputs Q F2 (1) to Q F2 ( 4) of the data holding circuits 54_1 to 54_4 are connected to the OR circuit 55, and the output D F (3) of the third-stage inverter 51_3 falls (in FIG. 24).
  • the rising timing of D F (3) is extracted from the output F2CLK1 of the OR circuit 55.
  • the outputs of the data holding circuits 53_1 to 53_4 are connected to the logic circuit 5 and also to the 4-input OR circuit 56, and the output signal CK F (3) of the third-stage inverter 52_3 rises.
  • the rising timing of CK F (3) is extracted from the output F2CLK2.
  • the time digital converter 80 By comparing the two extracted outputs F2CLK1 and F2CLK2 by the time digital converter 80, it becomes possible to detect a further minute phase difference that cannot be detected by the time digital converter 50.
  • the present embodiment it is possible to relax the time resolution setting in the time digital converter 10 and the time digital converter 50 before the time digital converter 80. As a result, the circuit area can be reduced and the power consumption can be reduced.
  • the configuration of the time digital converter 80 is the same as that of the time digital converter 50 in the digital phase comparator of the present embodiment, so that even a minute phase difference that cannot be detected by the time digital converter 80 can be detected. It is obvious that a simple configuration may be used. Note that the operation of the time digital converter 80 is the same as the operation of the time digital converter 50 shown in FIG.

Abstract

A digital phase comparator of high resolution is provided without increasing the circuit area and the power consumption.  A delay circuit array (21_1 to 21_n–1) generates delayed signals (CKC(1) to CKC(n–1)) obtained by delaying an input signal (CLK2) by equal intervals.  Hold circuits (22_1 to 22_n) use the delayed signals (CKC(1) to CKC(n–1)) to sample an input signal (CLK1).  An OR circuit (24) outputs OR of output signals of the hold circuits (22_1 to 22_n) as FCLK1.  A delay circuit array (11_1 to 11_n–1) generates delayed signals (DC(1) to DC(n)) obtained by delaying CLK1 by equal intervals.  Hold circuits (23_1 to 23_n) use the delayed signals (DC(1) to DC(n)) to sample CLK2.  An OR circuit (25) outputs OR of output signals of the hold circuits (23_1 to 23_n) as FCLK2.  A delay circuit array (51_1 to 51_m) generates delayed signals (DF(1) to DF(m)) obtained by delaying FCLLK1 by equal intervals.  A delay circuit array (52_1 to 52_m) generates delayed signals (CKF(1) to CKF(m)) obtained by delaying FCLLK2 by equal intervals that are different from the delay time intervals of the delay circuit array (51_1 to 51_m).  Hold circuits (53_1 to 53_m) use the delayed signals (CKF(1) to CKF(m)) to sample the respective delayed signals (DF(1) to DF(m)).  Hold circuits (12_1 to 12_n) use CLK2 to sample CLK1 and the delayed signals thereof (DC(1) to DC(n–1)).  Sampling results (QC(1) to QC(n)) of the hold circuits (12_1 to 12_n) and sampling results (QF(1) to QF(m)) of the hold circuits (53_1 to 53_m) are outputted to logic circuits (1, 5), respectively, as values corresponding to the phase difference between CLK1 and CLK2.

Description

デジタル位相比較器と方法Digital phase comparator and method
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2008-241171号(2008年9月19日出願)及び特願2009-059903号(2009年3月12日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、位相比較器に関して、特に位相差を検知してデジタル信号に変換する、デジタル位相比較器と方法に関する。
(Description of related applications)
The present invention is based on the priority claims of Japanese patent applications: Japanese Patent Application No. 2008-241171 (filed on September 19, 2008) and Japanese Patent Application No. 2009-059903 (filed on March 12, 2009), The entire contents of this application are incorporated herein by reference.
The present invention relates to a phase comparator, and more particularly to a digital phase comparator and method for detecting a phase difference and converting it into a digital signal.
 近年、微細CMOS(Complementary MOS(Metal-Oxide-Semiconductor))プロセスを適用した無線通信用LSI(Large Scale Integrated circuit)の集積化が進められている。従来の無線通信用LSIでは、PLL(Phase Locked Loop;位相同期ループ)回路として一般的にアナログ方式のPLL回路が用いられる。 In recent years, integration of wireless communication LSIs (Large Scale Integrated Circuits) to which a fine CMOS (Complementary MOS (Metal-Oxide-Semiconductor)) process is applied has been promoted. In a conventional wireless communication LSI, an analog PLL circuit is generally used as a PLL (Phase Locked Loop) circuit.
 アナログ方式PLL回路では、位相比較器(PD)から位相差情報をパルス幅として出力し、チャージポンプ回路(CP)にてパルス幅に応じて出力される電荷をループフィルタにより電圧情報に変換した上で、VCO(Voltage Controlled Oscillator;電圧制御発振器)の制御電圧端子に入力することにより、発振周波数の制御を行う。 In an analog PLL circuit, phase difference information is output as a pulse width from a phase comparator (PD), and charge output according to the pulse width is converted into voltage information by a loop filter in a charge pump circuit (CP). Then, the oscillation frequency is controlled by inputting the voltage to a control voltage terminal of a VCO (Voltage Controlled Oscillator).
 このようなアナログ方式のPLLは、ループフィルタなどで抵抗や容量の素子を使用するため、回路の小型化や低コスト化といった微細化の恩恵を受けることができない。 Such an analog PLL uses resistance and capacitance elements such as a loop filter, and therefore cannot benefit from miniaturization such as circuit miniaturization and cost reduction.
 また、微細化による低電圧化のため、電源ノイズなどの影響による特性劣化などが課題として挙げられる。 Also, due to the reduction in voltage due to miniaturization, characteristic degradation due to the influence of power supply noise and the like can be cited as problems.
 一方、近年では、PLL回路をデジタル構成にする全デジタルPLL回路の研究開発が進められている。 On the other hand, in recent years, research and development of an all-digital PLL circuit in which the PLL circuit is configured in a digital configuration has been advanced.
 全デジタルPLL回路では、VCOの制御として、微小バラクタをデジタル的に切り替えることで周波数の制御を行う。 In the all-digital PLL circuit, the frequency is controlled by digitally switching the minute varactor as the VCO control.
 そのため、従来のアナログ方式で用いられていた位相差情報をパルス幅として出力するような位相比較器ではなく、デジタル値として出力するようなデジタル位相比較器が必要となる。 Therefore, instead of a phase comparator that outputs the phase difference information used in the conventional analog method as a pulse width, a digital phase comparator that outputs a digital value is required.
 このようなデジタル位相比較器の構成としては、例えば図19に示すような構成が知られている(例えば特許文献1参照)。図20は、図19の回路の動作を説明するタイミングチャートである。VCOの出力CLK1を縦列接続されたインバータ列で順次遅延させ、基準信号CLK2をクロックとするフリップフロップでインバータ列の各段の出力信号を取り込むことにより、位相差をデジタル値で出力するデジタル位相比較器を実現する。CLK2の立ち上がりエッジでインバータ列の各段の出力信号をサンプルした結果Q(1)~Q(8)(図20のQ(1:8))が比較結果となる。論理回路はQ(1)~Q(8)の論理の変化を検出してデジタルコードを出力する。 As a configuration of such a digital phase comparator, for example, a configuration as shown in FIG. 19 is known (see, for example, Patent Document 1). FIG. 20 is a timing chart for explaining the operation of the circuit of FIG. Digital phase comparison that outputs the phase difference as a digital value by sequentially delaying the output CLK1 of the VCO by cascaded inverter rows and capturing the output signal of each stage of the inverter row by a flip-flop using the reference signal CLK2 as a clock Realize the vessel. The results Q c (1) to Q c (8) (Q c (1: 8) in FIG. 20) obtained by sampling the output signal of each stage of the inverter train at the rising edge of CLK2 are the comparison results. The logic circuit detects a change in logic of Q c (1) to Q c (8) and outputs a digital code.
 また、デジタル位相比較器の別の構成としては、図21に示すような構成がある(特許文献2)。図21の構成では、VCOからの信号CLK1を順次遅延させる第1のインバータ列に加え、基準信号CLK2も第2のインバータ列により順次遅延させてフリップフロップに取り込む。第1のインバータ列の各段の出力D(1)、D(2)、~D(n)を第2のインバータ列の各段の出力CK(1)、CK(2)、~CK(n)のエッジ(1、3、・・・等の奇数段目は立ち上がりエッジ、2、4、・・・の偶数段目は立ち下がりエッジ)を用いてフリップフロップでサンプルしQ(1)、Q(2)、Q(n)が出力される。図22のタイミングチャートに示すように、第1のインバータ列と第2のインバータ列の遅延時間差の分解能での位相比較を行う。論理回路は、Q(1)~Q(8)の論理の変化(Q(1)、Q(2)が1、Q(3)~Q(8)が0)を検出してデジタルコードを出力する。 Further, as another configuration of the digital phase comparator, there is a configuration as shown in FIG. 21 (Patent Document 2). In the configuration of FIG. 21, in addition to the first inverter train that sequentially delays the signal CLK1 from the VCO, the reference signal CLK2 is also sequentially delayed by the second inverter train and fetched into the flip-flop. The outputs D F (1), D F (2),..., D F (n) of each stage of the first inverter row are used as the outputs CK F (1), CK F (2) of each stage of the second inverter row. , To CK F (n) (sampled with flip-flops using odd-numbered stages such as 1, 3,... Rising edge, and even- numbered stages 2, 4,... Falling edge). Q F (1), Q F (2), and Q F (n) are output. As shown in the timing chart of FIG. 22, the phase comparison is performed with the resolution of the delay time difference between the first inverter row and the second inverter row. The logic circuit detects the logic change of Q F (1) to Q F (8) (Q F (1), Q F (2) is 1, Q F (3) to Q F (8) is 0) And output a digital code.
特開2002-076886号公報JP 2002-077686 特開2007-110370号公報JP 2007-110370 A
 上記非特許文献1及び2の全開示内容はその引用をもって本書に繰込み記載する。
 以下に、本発明による関連技術の分析を与える。
The entire disclosures of Non-Patent Documents 1 and 2 are incorporated herein by reference.
The following is an analysis of the related art according to the present invention.
 図19の構成では、インバータ列に入力される信号は、VCOから出力される高速信号であるため、インバータ列での消費電力が大きくなる。また、検出される位相差の時間分解能は、インバータの遅延時間によって決定されるため、分解能を上げるためには、インバータ遅延を著しく小さくしなければならない。 In the configuration of FIG. 19, since the signal input to the inverter train is a high-speed signal output from the VCO, power consumption in the inverter train is increased. Further, since the time resolution of the detected phase difference is determined by the delay time of the inverter, the inverter delay must be significantly reduced in order to increase the resolution.
 VCOの信号周波数が高い場合には、消費電力が増大してしまう、あるいは、分解能が不十分である、といった課題がある。 When the signal frequency of the VCO is high, there is a problem that power consumption increases or the resolution is insufficient.
 また、図21の構成では、所望の位相差範囲をカバーするためには、著しくインバータ列及びフリップフロップの段数が増加してしまうため、回路面積及び消費電力が増大する。 Further, in the configuration of FIG. 21, the number of stages of the inverter train and flip-flop increases remarkably in order to cover a desired phase difference range, so that the circuit area and power consumption increase.
 したがって、本発明の目的は、回路面積及び消費電力の増大を招くことなく高分解能のデジタル位相比較器と方法を提供することにある。 Therefore, an object of the present invention is to provide a high-resolution digital phase comparator and method without causing an increase in circuit area and power consumption.
 本発明の第1の側面(aspect)においては、遅延素子を複数段縦列接続することにより、第1のパルス入力信号を順次遅延させる第1の遅延素子列と、前記第1の遅延素子列の各遅延信号をクロック入力とし、第2のパルス信号を遅延信号の遷移タイミングに従って順次取り込む複数段の保持回路からなる第1の保持回路群と、前記第1の保持回路群の出力を論理和演算することにより、第2のパルス入力信号の遷移タイミング直後に最初に出力された遅延出力タイミングを抽出する第1の論理和演算回路と、前記第1の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記第2のパルス信号を順次遅延させる第2の遅延素子列の各遅延信号をクロック入力とし、遅延信号の遷移タイミングに従って前記第1のパルス信号を順次取り込む複数段の保持回路からなる第2の保持回路群と、前記第2のデータ保持回路群の出力を論理和演算することにより、前記第1の論理和演算回路の出力に対して、前記第2のパルス入力信号と、前記第2のパルス入力信号の遷移タイミング直後の最初の遅延出力との位相関係を保った信号を出力する第2の論理和演算回路と、からなる、前記第1の遅延素子の遅延時間精度で前記第1のパルス信号と前記第2のパルス信号の相対的な位相差を示すデジタル値を出力する第1の時間デジタル変換回路と、遅延素子を複数段縦列接続することにより、前記第1の論理和演算回路の出力を順次遅延させる第3の遅延素子列と、第3の遅延素子列とは異なる遅延時間を持つ遅延素子を複数段縦列接続することにより前記第2の論理和演算回路の出力を順次遅延させる第4の遅延素子列と、前記第3の遅延素子列の遅延出力を、前記第4の遅延素子列の遅延出力の遷移タイミングに従って順次取り込む、複数段の保持回路からなる第3の保持回路群と、からなる、前記第1の論理和演算回路の出力と前記第2の論理和演算回路の出力の相対的な位相差を、前記第3の遅延素子列の遅延出力と前記第4の遅延素子列の遅延出力の位相関係が反転するまでに要した段数に基づき、前記第3の遅延素子列と前記第4の遅延素子列の遅延時間差精度でデジタル値として出力する第2の時間デジタル変換回路と、を備え、前記第1の時間デジタル変換回路において、前記第2のパルス入力信号をクロックとし、前記第1の遅延素子列により順次遅延された遅延出力を、前記第2のパルス入力信号の遷移タイミングに従って取り込む、複数段の保持回路からなる第4の保持回路群を備え、前記第4の保持回路の出力を、前記第1のパルス信号と前記第2のパルス信号の相対的な位相差を示すデジタル値として出力する。 In the first aspect of the present invention, a plurality of stages of delay elements are connected in cascade to delay the first pulse input signal sequentially, and the first delay element array OR operation between the first holding circuit group composed of a plurality of holding circuits and sequentially taking the second pulse signal in accordance with the delay signal transition timing and the output of the first holding circuit group, with each delay signal as a clock input By doing so, a first OR operation circuit that extracts the first delay output timing output immediately after the transition timing of the second pulse input signal, and a delay having the same delay time as the first delay element array By connecting the elements in a plurality of stages in cascade, each delay signal of the second delay element array for sequentially delaying the second pulse signal is used as a clock input, and the delay signal transitions in advance according to the transition timing of the delay signal. By performing a logical OR operation on the output of the second holding circuit group composed of a plurality of holding circuits that sequentially capture the first pulse signal and the second data holding circuit group, the first OR circuit A second OR operation circuit that outputs a signal maintaining a phase relationship between the second pulse input signal and the first delayed output immediately after the transition timing of the second pulse input signal with respect to the output; A first time-to-digital conversion circuit that outputs a digital value indicating a relative phase difference between the first pulse signal and the second pulse signal with a delay time accuracy of the first delay element; By connecting the elements in a plurality of stages in cascade, a third delay element array for sequentially delaying the output of the first OR circuit and a delay element having a delay time different from that of the third delay element array Previous by connecting in cascade A fourth delay element array for sequentially delaying the output of the second OR circuit and the delay output of the third delay element array are sequentially taken in accordance with the transition timing of the delay output of the fourth delay element array; A third holding circuit group composed of a plurality of holding circuits, and a relative phase difference between the output of the first OR operation circuit and the output of the second OR operation circuit, The delay time difference between the third delay element array and the fourth delay element array is based on the number of stages required until the phase relationship between the delay output of the delay element array and the delay output of the fourth delay element array is reversed. A second time digital conversion circuit that outputs a digital value with accuracy, wherein the second pulse input signal is used as a clock in the first time digital conversion circuit and is sequentially delayed by the first delay element array. Delayed output A fourth holding circuit group including a plurality of holding circuits that are captured in accordance with the transition timing of the second pulse input signal, and the output of the fourth holding circuit is the first pulse signal and the second pulse; Output as a digital value indicating the relative phase difference of the signal.
 本発明によれば、前記第2の時間デジタル変換回路における時間分解能の精度は、前記第3の遅延素子列と前記第4の遅延素子列の遅延時間差によるため、前記第1の時間デジタル変換回路の、前記第1の遅延素子列による遅延時間精度よりも、微小な位相差の比較が可能である。また、第1の論理和演算回路の出力と前記第2の論理和演算回路の出力の相対的な位相差は、前記第1のパルス信号と前記第2のパルス信号の相対的な位相差に比べ十分小さな位相差となるため、前記第2の時間デジタル変換回路の遅延素子列及び保持回路群の段数を増やすことなく、高精度な位相比較が可能となり、回路面積及び消費電力の増大を招くことなく高分解能のデジタル位相比較器を提供することが可能となる。 According to the present invention, since the accuracy of the time resolution in the second time digital conversion circuit depends on the delay time difference between the third delay element array and the fourth delay element array, the first time digital conversion circuit Compared to the delay time accuracy of the first delay element array, a minute phase difference can be compared. The relative phase difference between the output of the first OR circuit and the output of the second OR circuit is the relative phase difference between the first pulse signal and the second pulse signal. Since the phase difference is sufficiently small, the phase comparison can be performed with high accuracy without increasing the number of stages of the delay element row and the holding circuit group of the second time digital conversion circuit, resulting in an increase in circuit area and power consumption. It is possible to provide a high-resolution digital phase comparator without any problems.
 本発明の第2の側面においては、デジタル位相比較器は、前記第1の時間デジタル変換回路において、前記第1の保持回路群の出力を、前記第1のパルス信号と前記第2のパルス信号の相対的な位相差を示すデジタル値として出力する。 In the second aspect of the present invention, in the first time digital conversion circuit, the digital phase comparator outputs the first holding signal and the second pulse signal to the output of the first holding circuit group. Is output as a digital value indicating the relative phase difference.
 本発明によれば、前記第1の遅延素子列の遅延時間精度の位相比較と、遅延時間未満の位相差の抽出の回路を兼ねることが可能となり、回路面積及び消費電力をさらに抑えた、高分解能のデジタル位相比較器を提供することが可能となる。 According to the present invention, it becomes possible to serve both as a phase comparison of the delay time accuracy of the first delay element array and a circuit for extracting a phase difference less than the delay time, further reducing the circuit area and power consumption. A resolution digital phase comparator can be provided.
 本発明の第3の側面においては、前記第1の側面の時間デジタル変換回路に、前記第2のパルス信号に代わり、前記第1のパルス信号を前記第2の信号によるリタイミング動作より得られる、前記第2のパルス信号の遷移タイミングに同期した第3のパルス信号を入力する。 In the third aspect of the present invention, the time digital conversion circuit of the first aspect can be obtained by a retiming operation using the second signal instead of the second pulse signal. The third pulse signal synchronized with the transition timing of the second pulse signal is input.
 本発明によれば、前記第1のパルス信号が比較的低速な信号で、前記第2のパルス信号が高速な信号であるような場合に、リタイミングされた第3のパルス信号は、第1のパルス信号と同程度の低速信号となるため、デジタル位相比較器全体の消費電力の増加を抑えることが可能となる。 According to the present invention, when the first pulse signal is a relatively slow signal and the second pulse signal is a fast signal, the retimed third pulse signal is the first pulse signal. Therefore, an increase in power consumption of the entire digital phase comparator can be suppressed.
 本発明の第4の側面においては、前記第1の遅延素子列の少なくとも1段の遅延素子の入出力信号をとりだし、前記第3の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記出力信号を順次遅延させる第5の遅延素子列と、前記第4の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記入力信号を順次遅延させる第6の遅延素子列と、前記第5の遅延素子列の遅延出力を、前記第6の遅延素子列の遅延出力の遷移タイミングに従って順次取り込む、複数段の保持回路からなる第5の保持回路群と、からなる、前記第1の遅延素子列における遅延素子の入出力信号における相対的な位相差を、前記第5の遅延素子列の遅延出力と前記第6の遅延素子列の遅延出力の位相関係が反転するまでに要した段数に基づき、前記第5の遅延素子列と前記第6の遅延素子列の遅延時間差精度でデジタル値として出力する第3の時間デジタル変換回路を備え、前記第1の時間デジタル変換回路から出力される、前記第1のパルス信号と前記第2のパルス信号の相対的な位相差を示すデジタル値を数値化する第1の論理回路と、前記第2の時間デジタル変換回路から出力される、前記第1の論理和演算回路の出力と前記第2の論理和演算回路の出力の相対的な位相差を示すデジタル値を数値化する第2の論理回路と、前記第3の時間デジタル変換回路から出力される、前記第1の遅延素子列における遅延素子の入出力信号における相対的な位相差を示すデジタル値を数値化する第3の論理回路と、を備え、前記第2及び第3の論理回路の数値化結果を元に、前記第1の論理回路で数値化された、前記第1のパルス信号と前記第2のパルス信号の相対的な位相差を補正する。 In the fourth aspect of the present invention, an input / output signal of at least one stage of delay elements of the first delay element array is taken out, and a plurality of delay elements having the same delay time as the third delay element array are provided. By cascading a plurality of stages, a fifth delay element array that sequentially delays the output signal and a delay element having the same delay time as the fourth delay element array are used to connect the input signal. A sixth delay element array that sequentially delays and a delay output of the fifth delay element array that is sequentially fetched in accordance with a transition timing of the delay output of the sixth delay element array; A relative phase difference in the input / output signals of the delay elements in the first delay element array, and the delay output of the fifth delay element array and the delay of the sixth delay element array. The phase relationship of the output is A third time digital conversion circuit that outputs a digital value with a delay time difference accuracy between the fifth delay element array and the sixth delay element array based on the number of stages required until the first time A first logic circuit that digitizes a digital value that is output from a digital conversion circuit and that indicates a relative phase difference between the first pulse signal and the second pulse signal, and the second time digital conversion circuit A second logic circuit that digitizes a digital value indicating a relative phase difference between the output of the first OR operation circuit and the output of the second OR operation circuit, which is output from the first OR circuit; A third logic circuit that digitizes a digital value that is output from the time digital conversion circuit and that indicates a relative phase difference in the input / output signals of the delay elements in the first delay element array, and 2nd and 3rd logical times Quantified results based on the, correcting the relative phase difference of said are digitized by the first logic circuit, said first pulse signal and the second pulse signal.
 本発明によれば、前記第3の時間デジタル変換回路により、前記第1の遅延素子列の遅延時間を、前記第3と第4の遅延素子列及び前記第5と第6の遅延素子列の遅延時間差で表現することが可能となるため、前記第1の遅延素子列の遅延時間に要求される設計精度が緩和される。 According to the present invention, the third time digital conversion circuit converts the delay time of the first delay element array to the third and fourth delay element arrays and the fifth and sixth delay element arrays. Since the delay time difference can be expressed, the design accuracy required for the delay time of the first delay element array is relaxed.
 本発明の第5の側面において、前記第1の側面に係る時間デジタル変換回路が、第4のパルス信号を、前記第1の遅延素子列の各遅延信号をクロック入力として前記遅延信号の遷移タイミングに従って順次取り込む複数段の保持回路からなる第6の保持回路群と、前記第6のデータ保持回路群の出力を論理和演算することにより、前記第4のパルス入力信号の遷移タイミング直後に最初に出力された遅延出力タイミングを抽出する第3の論理和演算回路と、前記第1の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続し、前記第4のパルス信号を順次遅延させる第7の遅延素子列の各遅延信号をクロック入力とし、遅延信号の遷移タイミングに従って前記第1のパルス信号を順次取り込む複数段の保持回路からなる第7のデータ保持回路群と、前記第7のデータ保持回路群の出力を論理和演算することにより、前記第3の論理和演算回路の出力に対して、前記第4のパルス入力信号と、前記第4のパルス入力信号の遷移タイミング直後の最初の遅延出力との位相関係を保った信号を出力する第4の論理和演算回路と、をさらに備え、前記第1の遅延素子の遅延時間精度で前記第1のパルス信号と第4のパルス信号の相対的な位相差を示すデジタル値をさらに出力する時間デジタル変換回路であって、前記第3の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記第3の論理和演算回路の出力を順次遅延させる第8の遅延素子列と、前記第4の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記第4の論理和演算回路の出力を順次遅延させる第9の遅延素子列と、前記第8の遅延素子列の遅延出力を、前記第9の遅延素子列の遅延出力の遷移タイミングに従って取り込む、複数段の保持回路からなる第8の保持回路群と、からなる、前記第3の論理和演算回路の出力と前記第4の論理和演算回路の出力の相対的な位相差を、前記第8の遅延素子列の遅延出力と前記第9の遅延素子列の遅延出力の位相関係が反転するまでに要した段数に基づき、前記第8の遅延素子列と前記第9の遅延素子列の遅延時間差精度でデジタル値として出力する第4の時間デジタル変換回路を備え、前記第1の時間デジタル変換回路において、前記第4のパルス入力信号をクロックとし、前記第1の遅延素子列により順次遅延された遅延出力を、前記第4のパルス入力信号の遷移タイミングに従って取り込む、複数段の保持回路からなる第9の保持回路群を備え、前記第9の保持回路の出力を、前記第1のパルス信号と前記第4のパルス信号の相対的な位相差を示すデジタル値として出力する。 In the fifth aspect of the present invention, the time-to-digital conversion circuit according to the first aspect uses the fourth pulse signal as a clock input to each delay signal of the first delay element array, and the transition timing of the delay signal. First, immediately after the transition timing of the fourth pulse input signal, a logical sum operation is performed on the output of the sixth holding circuit group composed of a plurality of holding circuits sequentially fetched in accordance with the output of the sixth data holding circuit group. A third OR operation circuit for extracting the output delay output timing and a delay element having the same delay time as the first delay element array are connected in a plurality of stages, and the fourth pulse signal is sequentially delayed. Each of the delay signals of the seventh delay element array to be clocked is used as a clock input, and a seventh data consisting of a plurality of stages of holding circuits for sequentially taking in the first pulse signal according to the transition timing of the delay signal. By performing a logical OR operation on the output of the holding circuit group and the seventh data holding circuit group, the fourth pulse input signal and the fourth pulse input signal are output with respect to the output of the third OR circuit. A fourth OR operation circuit that outputs a signal maintaining a phase relationship with the first delay output immediately after the transition timing of the pulse input signal, and the first delay element with the delay time accuracy of the first delay element. A time-to-digital conversion circuit for further outputting a digital value indicating a relative phase difference between the first pulse signal and the fourth pulse signal, wherein a plurality of delay elements having the same delay time as the third delay element array are provided. By connecting in cascade, an eighth delay element array that sequentially delays the output of the third OR circuit and a delay element having the same delay time as the fourth delay element array are connected in a plurality of stages. The fourth A 9th delay element array that sequentially delays the output of the logical sum operation circuit and a delay output of the 8th delay element array are fetched in accordance with the transition timing of the delay output of the 9th delay element array, and a plurality of stages are held. An eighth holding circuit group composed of a circuit, and the relative phase difference between the output of the third logical sum operation circuit and the output of the fourth logical sum operation circuit is defined as the eighth delay element array. Based on the number of stages required to invert the phase relationship between the delay output of the ninth delay element array and the delay output of the ninth delay element array, the digital value with the delay time difference accuracy of the eighth delay element array and the ninth delay element array A fourth time digital conversion circuit that outputs a delay output that is sequentially delayed by the first delay element array using the fourth pulse input signal as a clock in the first time digital conversion circuit, The fourth pulse input A ninth holding circuit group including a plurality of stages of holding circuits that captures according to the signal transition timing, and outputs the ninth holding circuit relative to the first pulse signal and the fourth pulse signal; Output as a digital value indicating phase difference.
 本発明によれば、前記第1のパルス信号に対する、2つのパルス信号の位相比較を同時に行うことが可能となる。 According to the present invention, it is possible to simultaneously perform phase comparison of two pulse signals with respect to the first pulse signal.
 本発明の第6の側面においては、デジタル位相比較器は、前記第1の側面に係る時間デジタル変換回路において、前記第6の保持回路群の出力を、前記第1のパルス信号と前記第4のパルス信号の相対的な位相差を示すデジタル値として出力する。
 本発明によれば、前記第1の側面に係る時間デジタル変換回路における、第4のパルス信号の位相比較と遅延時間未満の位相差の抽出の回路を兼ねることが可能となり、回路面積及び消費電力をさらに抑えた、高分解能のデジタル位相比較器を提供することが可能となる。
 本発明の第7の側面においては、前記第4のパルス信号が、前記第1のパルス信号を前記第2のパルス信号の反転信号によるリタイミング動作から得られ、前記第2のパルス信号の反転信号の遷移タイミングに同期した信号であり、前記第1の論理回路が、前記第1の時間デジタル変換回路から出力される、前記第1のパルス信号と前記第4のパルス信号の相対的な位相差を示すデジタル値をさらに数値化し、前記第4の時間デジタル変換回路から出力される、前記第3の論理和演算回路の出力と前記第4の論理和演算回路の出力の相対的な位相差を示すデジタル値を数値化する第4の論理回路と、を備え、前記第3及び第4の論理回路の数値化結果を元に、前記第1の論理回路で数値化された、前記第1のパルス信号と前記第4のパルス信号の相対的な位相差を補正し、前記第1のパルス信号と前記第3のパルス信号の相対的な位相差と、前記第1のパルス信号と前記第4のパルス信号の相対的な位相差の差により、前記第2のパルス信号の半周期を求め、前記第1のパルス信号と前記第3のパルス信号の相対的な位相差または、前記第1のパルス信号と前記第4のパルス信号の相対的な位相差を正規化する。
According to a sixth aspect of the present invention, in the time phase conversion circuit according to the first aspect, the digital phase comparator outputs the output of the sixth holding circuit group as the first pulse signal and the fourth pulse. Are output as digital values indicating the relative phase difference of the pulse signals.
According to the present invention, in the time-to-digital conversion circuit according to the first aspect, it is possible to serve as a circuit for comparing the phase of the fourth pulse signal and extracting a phase difference less than the delay time. It is possible to provide a high-resolution digital phase comparator that further suppresses the above.
In a seventh aspect of the present invention, the fourth pulse signal is obtained by retiming the first pulse signal from an inverted signal of the second pulse signal, and the second pulse signal is inverted. The first logic circuit is a signal synchronized with the signal transition timing, and the first logic circuit outputs a relative position of the first pulse signal and the fourth pulse signal output from the first time digital conversion circuit. A digital value indicating a phase difference is further digitized, and a relative phase difference between the output of the third OR operation circuit and the output of the fourth OR operation circuit, which is output from the fourth time digital conversion circuit. A fourth logic circuit that digitizes a digital value indicating the first value, and is digitized by the first logic circuit based on the digitization results of the third and fourth logic circuits. Pulse signal and the fourth pulse signal , The relative phase difference between the first pulse signal and the third pulse signal, and the relative phase difference between the first pulse signal and the fourth pulse signal. The half period of the second pulse signal is obtained from the difference between the first pulse signal and the third pulse signal, or the first pulse signal and the fourth pulse signal. Normalize the relative phase difference of.
 本発明によれば、前記第1のパルス信号が比較的低速な信号で、前記第2のパルス信号が高速な信号であるような場合に、リタイミングされた第4のパルス信号も、第1のパルス信号と同程度の低速信号となるため、デジタル位相比較器全体の消費電力の増加を抑えることが可能となる。また、第2のパルス信号の周期で、正規化を行うため、第1から第9の遅延素子列における遅延時間の正確な値を用いる必要がないため、遅延時間の設計精度への要求が緩和される。 According to the present invention, when the first pulse signal is a relatively slow signal and the second pulse signal is a fast signal, the retimed fourth pulse signal is also the first pulse signal. Therefore, an increase in power consumption of the entire digital phase comparator can be suppressed. Further, since normalization is performed with the period of the second pulse signal, it is not necessary to use an accurate value of the delay time in the first to ninth delay element arrays, so that the demand for design accuracy of the delay time is eased. Is done.
 また、本発明のさらに別の側面においては、
 (a)第1の入力信号を等間隔に遅延させた遅延信号群を生成し、第2の入力信号を、前記第1の入力信号及び前記第1の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、前記サンプルされた複数の信号に対して所定の論理演算(例えば論理和演算)を施して第1の信号を合成し、
 (b)前記第2の入力信号を、前記第1の入力信号と同一の単位遅延時間で等間隔に遅延させた遅延信号群を生成し、前記第1の入力信号を、前記第2の入力信号及び前記第2の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、前記サンプルされた複数の信号に対して所定の論理演算(例えば論理和演算)を施して第2の信号を合成し、
 (c)前記第1の信号を等間隔に遅延させた遅延信号群を生成し、前記第2の信号を、前記第1の信号とは異なる単位遅延時間で等間隔に遅延させた遅延信号群を生成し、前記第1の信号を等間隔に遅延させた遅延信号群と、前記第2の信号を等間隔に遅延させた遅延信号群のうち、一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号によってそれぞれサンプルし、前記(a)又は(b)でサンプルされた信号と、前記(c)でサンプルされた信号を、前記第1の入力信号と前記第2の入力信号の位相差を表す値として用いる、位相比較方法が提供される。
In still another aspect of the present invention,
(A) A delay signal group is generated by delaying the first input signal at equal intervals, and the second input signal is delayed by delaying the first input signal and the first input signal at equal intervals. Each sampled by a signal group, a predetermined logical operation (for example, logical sum operation) is performed on the plurality of sampled signals to synthesize a first signal,
(B) generating a delayed signal group in which the second input signal is delayed at equal intervals by the same unit delay time as the first input signal, and the first input signal is converted to the second input signal. The signal and the second input signal are respectively sampled by delay signal groups obtained by delaying at equal intervals, and a predetermined logical operation (for example, logical sum operation) is performed on the plurality of sampled signals to obtain the second signal. Synthesize
(C) A delayed signal group in which a delayed signal group is generated by delaying the first signal at equal intervals, and the second signal is delayed at equal intervals by a unit delay time different from that of the first signal. Each of the delay signals of one delay signal group among the delay signal group obtained by delaying the first signal at equal intervals and the delay signal group obtained by delaying the second signal at equal intervals. The signal sampled by the corresponding delay signal of the other delay signal group, respectively, the signal sampled in (a) or (b) and the signal sampled in (c), the first input signal and the first A phase comparison method is provided which is used as a value representing a phase difference between two input signals.
 本発明のさらに別の側面においては、前記第2の時間デジタル変換回路の前記第4の遅延素子列の各段の遅延信号を、前記第3の遅延素子列の対応する段の遅延信号の遷移タイミングに従って順次取り込む、複数の保持回路を備えた第5の保持回路群と、
 前記第5の保持回路群の出力を受ける第3の論理和演算回路と、
 前記第3の保持回路群の出力を受ける第4の論理和演算回路と、
 を備え、さらに、
 遅延素子を複数段縦列接続し、前記第3の論理和演算回路の出力を初段に入力し順次遅延させた複数の遅延信号を出力する第5の遅延素子列と、
 前記第5の遅延素子列とは異なる遅延時間を持つ遅延素子を複数段縦列接続し、前記第4の論理和演算回路の出力を初段に入力し順次遅延させた複数の遅延信号を出力する第6の遅延素子列と、
 前記第5の遅延素子列の各段の遅延信号を、前記第6の遅延素子列の対応する段の遅延信号の遷移タイミングに従って順次取り込む、複数の保持回路を備えた第6の保持回路群と、を備える第3の時間デジタル変換器を備え、前記第6の保持回路群の出力が前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示すデジタル値として用いられる。前記第5の遅延素子列と前記第6の遅延素子列は、前記第3の遅延素子列と前記第4の遅延素子列の遅延時間差よりもさらに小さい遅延時間差を持つ。前記第3の時間デジタル変換回路は、前記第3および前記4の論理和演算回路の出力の相対的な位相差を、第5および第6の遅延素子列の遅延時間差精度でデジタル値として出力する。
In still another aspect of the present invention, the delay signal of each stage of the fourth delay element array of the second time-to-digital conversion circuit is changed to the transition of the delay signal of the corresponding stage of the third delay element array. A fifth holding circuit group including a plurality of holding circuits that sequentially captures according to timing;
A third OR operation circuit receiving the output of the fifth holding circuit group;
A fourth OR operation circuit receiving the output of the third holding circuit group;
In addition,
A fifth delay element array in which a plurality of delay elements are connected in cascade, the output of the third OR operation circuit is input to the first stage, and a plurality of delay signals are sequentially delayed;
A plurality of delay elements having a delay time different from that of the fifth delay element array are connected in cascade, and the output of the fourth OR circuit is input to the first stage to output a plurality of delay signals sequentially delayed. 6 delay element rows;
A sixth holding circuit group including a plurality of holding circuits, which sequentially captures the delay signal of each stage of the fifth delay element array according to the transition timing of the delay signal of the corresponding stage of the sixth delay element array; , And the output of the sixth holding circuit group is used as a digital value indicating a relative phase difference between the first pulse input signal and the second pulse input signal. It is done. The fifth delay element array and the sixth delay element array have a delay time difference that is smaller than the delay time difference between the third delay element array and the fourth delay element array. The third time digital conversion circuit outputs a relative phase difference between the outputs of the third and fourth logical sum operation circuits as a digital value with a delay time difference accuracy of the fifth and sixth delay element arrays. .
 本発明によれば、前記第3の時間デジタル変換回路は、前記第2の時間デジタル変換回路よりもさらに微小な位相の比較が可能であるため、より高精度な位相比較が可能となる。また、本発明による効果を言い換えれば、前記第3の時間デジタル変換回路により前記第1および第2の時間デジタル変換回路に要求される時間分解能の設定を緩和することが可能となるため、前記第1および第2の時間デジタル変換回路における遅延素子列および保持回路群の段数を減らすことが可能となり、結果として回路面積及び消費電力をさらに抑えた、高時間分解能のデジタル位相比較器を提供することが可能となる。 According to the present invention, since the third time digital conversion circuit can compare a smaller phase than the second time digital conversion circuit, a more accurate phase comparison is possible. In other words, in other words, the third time digital conversion circuit can relax the time resolution setting required for the first and second time digital conversion circuits. To provide a digital phase comparator with high time resolution capable of reducing the number of stages of delay element arrays and holding circuit groups in the first and second time digital conversion circuits, resulting in further reduced circuit area and power consumption. Is possible.
 本発明によれば、位相差を検知してデジタル信号に変換する、デジタル位相比較器において、回路面積及び消費電力の増大を招くことなく高分解能のデジタル位相比較器を提供することが可能となる。 According to the present invention, in a digital phase comparator that detects a phase difference and converts it into a digital signal, it is possible to provide a high-resolution digital phase comparator without causing an increase in circuit area and power consumption. .
本発明の第1の実施の形態のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of the 1st Embodiment of this invention. 本発明の第1の実施の形態のデジタル位相比較器の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the digital phase comparator of the 1st Embodiment of this invention. 本発明の第2の実施の形態のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of the 2nd Embodiment of this invention. 本発明の第2の実施の形態のデジタル位相比較器の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the digital phase comparator of the 2nd Embodiment of this invention. 本発明の第3の実施の形態のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of the 3rd Embodiment of this invention. 本発明の第3の実施の形態のデジタル位相比較器の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the digital phase comparator of the 3rd Embodiment of this invention. 本発明の第4の実施の形態のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of the 4th Embodiment of this invention. 本発明の第4の実施の形態のデジタル位相比較器の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the digital phase comparator of the 4th Embodiment of this invention. 本発明の第5の実施の形態のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of the 5th Embodiment of this invention. 本発明の第5の実施の形態のデジタル位相比較器の時間デジタル変換器10’の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the time digital converter 10 'of the digital phase comparator of the 5th Embodiment of this invention. 本発明の第5の実施の形態のデジタル位相比較器の小位相差検出器20及び時間デジタル変換器50の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the small phase difference detector 20 and the time digital converter 50 of the digital phase comparator of the 5th Embodiment of this invention. 本発明の第5の実施の形態のデジタル位相比較器の小位相差検出器30及び時間デジタル変換器60動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the small phase difference detector 30 and the time digital converter 60 of the digital phase comparator of the 5th Embodiment of this invention. 本発明の第5の実施の形態のデジタル位相比較器の時間デジタル変換器70動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the time digital converter 70 of the digital phase comparator of the 5th Embodiment of this invention. 本発明の第6の実施の形態のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of the 6th Embodiment of this invention. 本発明の第6の実施の形態のデジタル位相比較器の時間デジタル変換器40の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the time digital converter 40 of the digital phase comparator of the 6th Embodiment of this invention. 本発明の第6の実施の形態のデジタル位相比較器の時間デジタル変換器50の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the time digital converter 50 of the digital phase comparator of the 6th Embodiment of this invention. 本発明の第6の実施の形態のデジタル位相比較器の時間デジタル変換器60の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the time digital converter 60 of the digital phase comparator of the 6th Embodiment of this invention. 本発明の第6の実施の形態のデジタル位相比較器の時間デジタル変換器70の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the time digital converter 70 of the digital phase comparator of the 6th Embodiment of this invention. 関連技術(特許文献1)のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of related technology (patent document 1). 関連技術(特許文献1)のデジタル位相比較器の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the digital phase comparator of related technology (patent document 1). 関連技術(特許文献2)のデジタル位相比較器の構成を示す図である。It is a figure which shows the structure of the digital phase comparator of related technology (patent document 2). 関連技術(特許文献2)のデジタル位相比較器の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the digital phase comparator of related technology (patent document 2). 本発明の第7の実施の形態のデジタル位相比較器の時間デジタル変換器50の構成を示す図である。It is a figure which shows the structure of the time digital converter 50 of the digital phase comparator of the 7th Embodiment of this invention. 本発明の第7の実施の形態のデジタル位相比較器時間のデジタル変換器50の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the digital converter 50 of the digital phase comparator time of the 7th Embodiment of this invention. 本発明の第7の実施の形態のデジタル位相比較器の時間デジタル変換器50の動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the time digital converter 50 of the digital phase comparator of the 7th Embodiment of this invention.
 本発明の実施の形態について図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
 まず、本発明の基本構成を説明する。本発明の1つの態様(mode)において、図3を参照すると、保持回路群(22_1~22_n)では、第1の入力信号(CLK1)を、第2の入力信号(CLK2)及び第2の入力信号(CLK2)を等間隔に遅延させた第2の遅延入力信号群(CK(1)~CK(n-1))によってそれぞれサンプルし、サンプルされた複数の信号に対して、所定の論理演算(例えば論理和演算)を施して合成した第1の信号(FCLK1)を出力する(請求項1の「第1の回路ユニット」に対応)。 First, the basic configuration of the present invention will be described. In one mode of the present invention, referring to FIG. 3, in the holding circuit group (22_1 to 22_n), the first input signal (CLK1) is changed to the second input signal (CLK2) and the second input signal. The signal (CLK2) is sampled by a second delayed input signal group (CK c (1) to CK c (n−1)) obtained by delaying the signal (CLK2) at equal intervals. A first signal (FCLK1) synthesized by performing a logical operation (for example, a logical sum operation) is output (corresponding to the “first circuit unit” in claim 1).
 保持回路群(23_1~23_n)では、第2の入力信号(CLK2)を、第1の入力信号(CLK1)及び前記第1の入力信号(CLK1)を、第2の遅延入力信号群の単位遅延時間と同一の単位遅延時間で等間隔に遅延させた第1の遅延入力信号群(D(1)~D(n-1))によってそれぞれサンプルし、サンプルされた信号(Q(1)~Q(n))に対して所定の論理演算(例えば論理和演算)を施して合成した第2の信号(FCLK2)を出力する(請求項1の「第2の回路ユニット」に対応)。上記第1、第2の回路ユニットを総称して「時間デジタル変換器」ともいう。 In the holding circuit group (23_1 to 23_n), the second input signal (CLK2), the first input signal (CLK1), and the first input signal (CLK1) are unit delay of the second delayed input signal group. Sampled by the first delayed input signal group (D c (1) to D c (n−1)) delayed at equal intervals by the same unit delay time as the time, the sampled signal (Q c (1 ) To Q c (n)) and outputs a second signal (FCLK2) synthesized by performing a predetermined logical operation (for example, a logical sum operation) (corresponding to “second circuit unit” of claim 1) ). The first and second circuit units are collectively referred to as a “time digital converter”.
 遅延素子を複数段縦列接続した遅延素子列(52_1~52_m)で、第2の信号(FCLLK2)を等間隔に遅延させた第2の遅延信号群(CK(1)~CK(m))を生成し、遅延素子列(51_1~51_m)で、第1の信号(FCLK1)を、第2の信号(FCLK2)の遅延信号群(CK(1)~CK(m))とは異なる単位遅延時間で等間隔に遅延させた第1の遅延信号群(D(1)~D(m))を生成し、保持回路群(53_1~53_m)において、第1の遅延信号群(D(1)~D(m))の各遅延信号を、第2の遅延信号群(CK(1)~CK(m))の対応する遅延信号によってそれぞれサンプルする(請求項1の「第3の回路ユニット」に対応)。上記第3の回路ユニットを総称して「時間デジタル変換器」ともいう。保持回路群(23_1~23_n)でサンプルされた信号(Q(1)~Q(n))と、保持回路群(53_1~53_m)でサンプルされた信号(Q(1)~Q(m))が、第1の入力信号(CLK1)と第2の入力信号(CLK2)の位相差を表す値として用いられ、それぞれ論理回路(4)と論理回路(5)に入力される。 A second delay signal group (CK F (1) to CK F (m)) obtained by delaying the second signal (FCLLK2) at equal intervals by delay element rows (52_1 to 52_m) in which delay elements are connected in cascade. ) And the delay element array (51_1 to 51_m), the first signal (FCLK1) and the delay signal group (CK F (1) to CK F (m)) of the second signal (FCLK2) First delay signal groups (D F (1) to D F (m)) delayed at equal intervals by different unit delay times are generated, and the first delay signal group is generated in the holding circuit groups (53_1 to 53_m). Each delay signal of (D F (1) to D F (m)) is sampled by a corresponding delay signal of the second delay signal group (CK F (1) to CK F (m)), respectively. 1 corresponding to “third circuit unit”). The third circuit unit is also collectively referred to as a “time digital converter”. The signals (Q c (1) to Q c (n)) sampled by the holding circuit groups (23_1 to 23_n) and the signals (Q F (1) to Q F ) sampled by the holding circuit groups (53_1 to 53_m). (M)) is used as a value representing the phase difference between the first input signal (CLK1) and the second input signal (CLK2), and is input to the logic circuit (4) and the logic circuit (5), respectively.
 前記第1の回路ユニットは、前記第2の入力信号を等間隔に遅延させた第2の遅延入力信号群を生成する遅延素子列(21_1~21_n)を備えている。前記第2の回路ユニットは、前記第1の入力信号を前記第2の遅延入力信号群と同一の単位遅延時間で等間隔に遅延させた第1の遅延入力信号群を生成する遅延素子列(11_1~11_n)を備えている(請求項2に対応)。 The first circuit unit includes a delay element array (21_1 to 21_n) that generates a second delayed input signal group obtained by delaying the second input signal at equal intervals. The second circuit unit generates a first delay input signal group in which the first input signal is delayed at equal intervals by the same unit delay time as the second delay input signal group ( 11_1 to 11_n) (corresponding to claim 2).
 あるいは、本発明の別の態様において、図1を参照すると、前記第1の回路ユニットは、第2の入力信号を等間隔に遅延させた第2の遅延入力信号群を生成する遅延素子列(21_1~21_n)を備えている。遅延素子列(11_1~11_n-1)で第1の入力信号(CLK1)を等間隔に遅延させた第1の遅延入力信号群(D(1)~D(n)を生成し、保持回路群(12_1~12_n)は、第1の入力信号(CLK1)とその遅延信号群(D(1)~D(n-1))を、第2の入力信号(CLK2)によってサンプルする。保持回路群(12_1~12_n)でのサンプル結果(Q(1)~Q(n)と、保持回路群(53_1~53_m)でのサンプル結果(Q(1)~Q(m))とが、第1の入力信号(CLK1)と第1の入力信号(CLK2)の位相差を表す値として用いられる(請求項3)。上記遅延素子列(11_1~11_n-1)と保持回路群(12_1~12_n)を総称して「時間デジタル変換器」ともいう。 Alternatively, in another aspect of the present invention, referring to FIG. 1, the first circuit unit generates a second delay input signal group (second delay input signal group obtained by delaying the second input signal at equal intervals ( 21_1 to 21_n). First delay input signal groups (D C (1) to D C (n)) obtained by delaying the first input signal (CLK1) at equal intervals by the delay element arrays (11_1 to 11_n−1) are generated and held. The circuit group (12_1 to 12_n) samples the first input signal (CLK1) and the delayed signal group (D c (1) to D c (n−1)) with the second input signal (CLK2). Sample results (Q c (1) to Q c (n) in the holding circuit group (12_1 to 12_n) and sample results (Q F (1) to Q F (m) in the holding circuit group (53_1 to 53_m) )) Is used as a value representing the phase difference between the first input signal (CLK1) and the first input signal (CLK2) (Claim 3) and the delay element array (11_1 to 11_n-1) and holding The circuit group (12_1 to 12_n) is collectively referred to as “time digital conversion. It is also called “vessel”.
 すなわち、図1を参照すると、保持回路群(23_1~23_n)では、第2の入力信号(CLK2)を、第1の遅延入力信号(D(1)~D(n))によってそれぞれサンプルする。OR回路(25)は、保持回路群(23_1~23_n)でそれぞれサンプルされた複数の信号のOR演算結果を、信号(FCLK2)として出力する。遅延素子列(21_1~21_n-1)で第2の入力信号(CLK2)を等間隔に遅延させた第2の遅延入力信号群(CK(1)~CK(n-1))を生成する。保持回路群(22_1~22_n)は、第1の入力信号(CLK1)を、遅延信号群(CK(1)~CK(n-1))によってそれぞれサンプルする。OR回路(24)は、保持回路群(22_1~22_n)によってそれぞれサンプルされた信号のOR演算結果を、第1の信号(FCLK1)として出力する。上記回路群を総称して「小位相差検出器」ともいう。 That is, referring to FIG. 1, in the holding circuit groups (23_1 to 23_n), the second input signal (CLK2) is sampled by the first delayed input signals (D C (1) to D C (n)), respectively. To do. The OR circuit (25) outputs an OR operation result of the plurality of signals sampled by the holding circuit groups (23_1 to 23_n) as a signal (FCLK2). A second delay input signal group (CK c (1) to CK c (n-1)) is generated by delaying the second input signal (CLK2) at equal intervals by the delay element array (21_1 to 21_n-1). To do. The holding circuit groups (22_1 to 22_n) sample the first input signal (CLK1) by the delay signal groups (CK c (1) to CK c (n−1)), respectively. The OR circuit (24) outputs the OR operation result of the signals sampled by the holding circuit groups (22_1 to 22_n) as the first signal (FCLK1). The above circuit group is also collectively referred to as a “small phase difference detector”.
 また、遅延素子列(51_1~51_m-1)で、第1の信号(FCLK1)を等間隔に遅延させた第1の遅延信号群(D(1)~D(m))を生成し、遅延素子列(52_1~52_m)で、第2の信号(FCLK2)を、遅延素子列(51_1~51_m-1)の単位遅延時間とは異なる単位遅延時間で等間隔に遅延させた第2の遅延信号群(CK(1)~CK(m))を生成する。保持回路群(53_1~53_m)では、第1の遅延信号群(D(1)~D(m))の各遅延信号を、第2の遅延信号群(CK(1)~CK(m))の対応する遅延信号によってそれぞれサンプルし、サンプル結果(Q(1)~Q(m))を出力する。上記回路群を総称して「時間デジタル変換器」ともいう。 In addition, a first delay signal group (D F (1) to D F (m)) is generated by delaying the first signal (FCLK1) at equal intervals in the delay element arrays (51_1 to 51_m−1). In the delay element array (52_1 to 52_m), the second signal (FCLK2) is delayed at equal intervals by a unit delay time different from the unit delay time of the delay element array (51_1 to 51_m-1). Delay signal groups (CK F (1) to CK F (m)) are generated. In the holding circuit group (53_1 to 53_m), each delay signal of the first delay signal group (D F (1) to D F (m)) is used as the second delay signal group (CK F (1) to CK F ). (M)) are respectively sampled by the corresponding delay signals, and sample results (Q F (1) to Q F (m)) are output. The circuit group is also collectively referred to as a “time digital converter”.
 本発明のさらに別の態様において、第1の入力信号(CLK1)として基準信号(REF)を用い、第2の入力信号(CLK2)として前記第1の入力信号を発振器(VCO)の出力に応答して保持回路(102)でサンプルした出力を用いる構成としてもよい(請求項4、図7参照)。 In still another aspect of the present invention, the reference signal (REF) is used as the first input signal (CLK1), and the first input signal is responded to the output of the oscillator (VCO) as the second input signal (CLK2). The output sampled by the holding circuit (102) may be used (see claim 4 and FIG. 7).
 あるいは、本発明のさらに別の態様において、入力信号(CLK1)をクロック発振器の発振周波数の半周期毎にサンプルし二つの信号を生成する回路を備え、前記入力信号と前記二つの信号の一方をそれぞれ前記第1、第2の入力信号として入力する第1、第2の回路ユニットと、前記第3の回路ユニットの組と、前記入力信号と前記二つの信号の他方をそれぞれ前記第1、第2の入力信号として入力する前記第1、第2の回路ユニットと、前記第3の回路ユニットの別の組と、を備えた構成としてもよい(請求項5)。 Alternatively, in still another aspect of the present invention, the input signal (CLK1) is sampled every half cycle of the oscillation frequency of the clock oscillator to generate two signals, and one of the input signal and the two signals is obtained. The first and second circuit units that are input as the first and second input signals, the set of the third circuit units, and the other of the input signal and the two signals, respectively. It is good also as a structure provided with the said 1st, 2nd circuit unit input as 2 input signals, and another group of the said 3rd circuit unit (Claim 5).
 本発明においては、図9を参照すると、前記入力信号と前記二つの信号の一方を前記第1、第2の入力信号として入力する小位相差検出器(20)と時間デジタル変換器(50)を備え、前記入力信号と前記二つの信号の他方を前記第1、第2の入力信号として入力する小位相差検出器(30)と時間デジタル変換器(60)を備え、前記二つの信号を前記第1、第2の入力信号として入力する時間デジタル変換器(10’)を備えた構成としてもよい(請求項6、図9参照)。 In the present invention, referring to FIG. 9, a small phase difference detector (20) and a time digital converter (50) for inputting one of the input signal and the two signals as the first and second input signals. A small phase difference detector (30) for inputting the other of the input signal and the two signals as the first and second input signals, and a time digital converter (60). It is good also as a structure provided with the time digital converter (10 ') input as said 1st, 2nd input signal (refer Claim 6, FIG. 9).
 すなわち、第1の入力信号(REF)をクロック発振器(101)の発振周波数の半周期毎にサンプルし、第2、第3入力信号(REFT、REFC)を生成する。時間デジタル変換器(10’)においては、遅延素子列(11_1~11_n-1)で、前記第1の入力信号(REF)を等間隔に遅延させた遅延信号群を生成する。保持回路群(12_1~12_n)では、前記第1の入力信号(REF)及び前記第1の入力信号を等間隔に遅延させた遅延信号群を、前記第2の入力信号(REFT)の一の遷移エッジ(例えば立ち上がりエッジ)に応答して、共通にサンプルする。また、保持回路群(13_1~13_n)では、前記第1の入力信号(REF)及び前記第1の入力信号を等間隔に遅延させた遅延信号群を、前記第3の入力信号(REFC)の他の遷移エッジ(例えば立ち下がりエッジ)に応答して、共通にサンプルする。 That is, the first input signal (REF) is sampled every half cycle of the oscillation frequency of the clock oscillator (101) to generate the second and third input signals (REFT, REFC). In the time digital converter (10 '), a delay signal group is generated by delaying the first input signal (REF) at equal intervals by the delay element arrays (11_1 to 11_n-1). In the holding circuit groups (12_1 to 12_n), the first input signal (REF) and the delayed signal group obtained by delaying the first input signal at equal intervals are set as one of the second input signals (REFT). Sample in common in response to transition edges (eg rising edges). In the holding circuit group (13_1 to 13_n), the first input signal (REF) and the delayed signal group obtained by delaying the first input signal at equal intervals are used as the third input signal (REFC). Sample in common in response to other transition edges (eg, falling edges).
 第1及び第2の入力信号(REF、REFT)の組に対して、小位相差検出器(20)においては、遅延素子列(図1の21_1~21_n-1)で、前記第2の入力信号(REFT)を前記第1の入力信号と同一の単位遅延時間で等間隔に遅延させた遅延信号群を生成する。保持回路群(図1の22_1~22_n)では、前記第1の入力信号(REF)を、前記第2の入力信号(REFT)及び前記第2の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、サンプルされた複数の信号をOR回路(図1の24)で合成し第1の信号(TFCLK1)を生成する。また、保持回路群(図1の23_1~23_n)では、前記第2の入力信号(REFT)を、前記第1の入力信号(REF)及び前記第1の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、サンプルされた複数の信号をOR回路(図1の25)合成し第2の信号(TFCLK2)を生成する。 For the set of the first and second input signals (REF, REFT), in the small phase difference detector (20), the delay element array (21_1 to 21_n−1 in FIG. 1) uses the second input. A delay signal group is generated by delaying the signal (REFT) at equal intervals with the same unit delay time as the first input signal. In the holding circuit group (22_1 to 22_n in FIG. 1), the first input signal (REF) is a delayed signal group obtained by delaying the second input signal (REFT) and the second input signal at equal intervals. And a plurality of sampled signals are combined by an OR circuit (24 in FIG. 1) to generate a first signal (TFCLK1). In the holding circuit group (23_1 to 23_n in FIG. 1), the second input signal (REFT) is a delay obtained by delaying the first input signal (REF) and the first input signal at equal intervals. Each sampled signal is sampled, and the plurality of sampled signals are combined with an OR circuit (25 in FIG. 1) to generate a second signal (TFCLK2).
 時間デジタル変換回路(50)において、遅延素子列(図9の51_1~51_m)では、前記第1の信号(TFCLK1)を等間隔に遅延させた遅延信号群を生成し、遅延素子列(図9の52_1~52_m)では、前記第2の信号(TFCLK2)を、前記第1の信号(TFCLK1)とは異なる単位遅延時間で等間隔に遅延させた遅延信号群を生成する。保持回路群(図9の53_1~53_m)では、前記第1の信号(TFCLK1)を等間隔に遅延させた遅延信号群の各遅延信号を、前記第2の信号(TFCLK2)を等間隔に遅延させた遅延信号群の対応する各遅延信号によってそれぞれサンプルする。 In the time digital conversion circuit (50), in the delay element array (51_1 to 51_m in FIG. 9), a delay signal group is generated by delaying the first signal (TFCLK1) at equal intervals. 52_1 to 52_m) generates a delayed signal group obtained by delaying the second signal (TFCLK2) at equal intervals with a unit delay time different from that of the first signal (TFCLK1). In the holding circuit group (53_1 to 53_m in FIG. 9), each delay signal of the delay signal group obtained by delaying the first signal (TFCLK1) at equal intervals is delayed at the second signal (TFCLK2) at equal intervals. Each of the delayed signal groups is sampled by the corresponding delayed signal.
 また、第1及び第3の入力信号(REF、REFC)の組に対して、小位相差検出器(30)において、遅延素子列(図1の21_1~21_n-1)は、前記第3の入力信号(REFC)を前記第1の入力信号と同一の単位遅延時間で等間隔に遅延させた遅延信号群を生成し、保持回路群(図1の22_1~22_n)では、前記第1の入力信号(REF)を、前記第3の入力信号(REFC)及び前記第3の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、サンプルされた複数の信号をOR回路(図1の24)で合成し第3の信号(CFCLK1)を生成する。また、保持回路群(図1の23_1~23_n)では、前記第3の入力信号(REFC)を、前記第1の入力信号(REF)及び前記第1の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、サンプルされた複数の信号をOR回路(図1の25)合成し第4の信号(CFCLK2)を生成する。 Further, in the small phase difference detector (30) with respect to the set of the first and third input signals (REF, REFC), the delay element array (21_1 to 21_n−1 in FIG. 1) A delay signal group is generated by delaying the input signal (REFC) at equal intervals with the same unit delay time as the first input signal. In the holding circuit group (22_1 to 22_n in FIG. 1), the first input The signal (REF) is sampled by each of the third input signal (REFC) and a delay signal group obtained by delaying the third input signal at equal intervals, and the plurality of sampled signals are ORed (in FIG. 1). 24) to generate a third signal (CFCLK1). In the holding circuit group (23_1 to 23_n in FIG. 1), the third input signal (REFC) is a delay obtained by delaying the first input signal (REF) and the first input signal at equal intervals. Each sampled signal is sampled, and the plurality of sampled signals are combined with an OR circuit (25 in FIG. 1) to generate a fourth signal (CFCLK2).
 時間デジタル変換回路(60)において、遅延素子列(図9の61_1~61_m)は、前記第3の信号(CFCLK1)を等間隔に遅延させた遅延信号群を生成し、遅延素子列(図9の62_1~62_m)は、前記第4の信号(CFCLK2)を、前記第3の信号(CFCLK1)とは異なる単位遅延時間で等間隔に遅延させた遅延信号群を生成する。保持回路群(図9の63_1~63_m)では、前記第3の信号(CFCLK1)を等間隔に遅延させた遅延信号群の各遅延信号を、前記第4の信号(CFCLK2)を等間隔に遅延させた遅延信号群の対応する遅延信号によってそれぞれサンプルする。 In the time digital conversion circuit (60), the delay element array (61_1 to 61_m in FIG. 9) generates a delay signal group obtained by delaying the third signal (CFCLK1) at equal intervals, and the delay element array (FIG. 9). 62_1 to 62_m) generates a delayed signal group obtained by delaying the fourth signal (CFCLK2) at equal intervals with a unit delay time different from that of the third signal (CFCLK1). In the holding circuit group (63_1 to 63_m in FIG. 9), each delay signal of the delay signal group obtained by delaying the third signal (CFCLK1) at equal intervals is delayed at the fourth signal (CFCLK2) at equal intervals. Each of the delayed signal groups is sampled by the corresponding delayed signal.
 さらに、時間デジタル変換回路(70)では、第1の入力信号(REF)を、前記第1の入力信号の前記遅延信号群(遅延素子列11_1~11_n-1の遅延出力)よりも、さらに単位遅延時間遅延させた第5の信号(遅延素子11_nの出力D(n))と、前記第5の信号を単位遅延時間遅延させた第6の信号(遅延素子11_n+1の出力D(n+1))とに対して、遅延素子列(図9の71_1~71_m)で前記第6の信号(D(n+1))を等間隔に遅延させた遅延信号群(DFD(1)~DFD(m))を生成する。遅延素子列(図9の72_1~72_m)では、前記第5の信号(D(n))を、前記第6の信号とは異なる単位遅延時間で等間隔に遅延させた遅延信号群(CKFD(1)~CKFD(m))を生成する。保持回路群(図9の73_1~73_m)では、前記第6の信号(D(n+1))を等間隔に遅延させた遅延信号群(DFD(1)~DFD(m))の各遅延信号を、前記第5の信号(D(n))を等間隔に遅延させた遅延信号群(CKFD(1)~CKFD(m))の対応する遅延信号によってそれぞれサンプルする。 Further, in the time digital conversion circuit (70), the first input signal (REF) is further converted into a unit more than the delay signal group of the first input signal (delay output of the delay element arrays 11_1 to 11_n−1). A fifth signal delayed by the delay time (output D c (n) of the delay element 11 — n) and a sixth signal (output D c (n + 1) of the delay element 11 — n + 1) obtained by delaying the fifth signal by a unit delay time. ) And a delay signal group (D FD (1) to D FD () in which the sixth signal (D c (n + 1)) is delayed at equal intervals by a delay element array (71_1 to 71_m in FIG. 9). m)). In the delay element array (72_1 to 72_m in FIG. 9), the fifth signal (D c (n)) is delayed by a unit delay time different from that of the sixth signal at equal intervals (CK FD (1) to CK FD (m)) are generated. In the holding circuit group (73_1 to 73_m in FIG. 9), each of the delayed signal groups (D FD (1) to D FD (m)) obtained by delaying the sixth signal (D c (n + 1)) at equal intervals. The delayed signals are sampled by the corresponding delayed signals of the delayed signal group (CK FD (1) to CK FD (m)) obtained by delaying the fifth signal (D c (n)) at equal intervals.
 あるいは、本発明のさらに別の態様において、入力信号(CLK1)をクロック発振器の発振周波数の半周期毎にサンプルし二つの信号を生成する回路を備え、前記入力信号と前記二つの信号の一方を前記第1、第2の入力信号として入力する第1、第2の時間デジタル変換器を備え、前記入力信号と前記二つの信号の他方を前記第1、第2の入力信号として入力する第1、第2の時間デジタル変換器を備えた構成としてもよい(請求項7、図14参照)。すなわち、第1の入力信号(REF)を、クロック発振器(例えば電圧制御発振器101)の発振周波数の半周期毎にサンプルした第2、第3入力信号(REFT、REFC)を生成する回路を備えている。さらに、前記第1及び第2の入力信号(REF、REFT)の組に対して、遅延素子列(21_1~21_n)では、第2の入力信号(REFT)を等間隔に遅延させた遅延信号群を生成する。保持回路群(22_1~22_n)では、前記第1の入力信号(REF)を、前記第2の入力信号(REFT)及び前記第2の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、サンプルされた複数の信号を、OR回路(24)で合成し第1の信号(TFCKL1)を生成する。遅延素子列(11_1~11_n)では、第1の入力信号(REF)を等間隔に遅延させた遅延信号群を生成し、保持回路群(23_1~23_n)では、前記第2の入力信号(REFT)を、前記第1の入力信号及び前記第1の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、サンプルされた複数の信号をOR回路(25)で合成し、第2の信号(TFCLK2)を生成する。遅延素子列(51_1~51_m)では、前記第1の信号(TFCLK1)を等間隔に遅延させた遅延信号群(DFT(1)~DFT(m))を生成する。遅延素子列(52_1~52_m)では、前記第2の信号(TFCLK2)を、前記第1の信号TFCLK1)とは異なる単位遅延時間で等間隔に遅延させた遅延信号群(CKFC(1)~CKFC(m))を生成する。保持回路群(53_1~53_m)では、前記第1の信号(TFCLK1)を等間隔に遅延させた遅延信号群(DFT(1)~DFT(m))を、前記第2の信号(TFCLK2)を等間隔に遅延させた遅延信号群(CKFC(1)~CKFC(m))の対応する遅延信号によってそれぞれサンプルする。 Alternatively, in still another aspect of the present invention, the input signal (CLK1) is sampled every half cycle of the oscillation frequency of the clock oscillator to generate two signals, and one of the input signal and the two signals is obtained. First and second time digital converters that are input as the first and second input signals, and the other of the input signal and the two signals is input as the first and second input signals. The second time digital converter may be provided (see claim 7 and FIG. 14). That is, a circuit is provided that generates second and third input signals (REFT, REFC) obtained by sampling the first input signal (REF) every half cycle of the oscillation frequency of the clock oscillator (for example, the voltage controlled oscillator 101). Yes. Further, with respect to the set of the first and second input signals (REF, REFT), in the delay element array (21_1 to 21_n), a delay signal group obtained by delaying the second input signal (REFT) at equal intervals. Is generated. In the holding circuit groups (22_1 to 22_n), the first input signal (REF) is sampled by a delay signal group obtained by delaying the second input signal (REFT) and the second input signal at equal intervals, respectively. Then, the plurality of sampled signals are combined by the OR circuit (24) to generate the first signal (TFCKL1). The delay element array (11_1 to 11_n) generates a delay signal group obtained by delaying the first input signal (REF) at equal intervals, and the holding circuit group (23_1 to 23_n) generates the second input signal (REFT). ) Are respectively sampled by a delay signal group obtained by delaying the first input signal and the first input signal at equal intervals, and a plurality of sampled signals are synthesized by an OR circuit (25), A signal (TFCLK2) is generated. In the delay element array (51_1 ~ 51_m), generating said first signal (TFCLK1) delay signal group delayed at regular intervals (D FT (1) ~ D FT (m)). In the delay element array (52_1 to 52_m), the delay signal group (CK FC (1) to CKFC (1) to CKFC2) is obtained by delaying the second signal (TFCLK2) at equal intervals by a unit delay time different from that of the first signal TFCLK1). CK FC (m)) is generated. In the holding circuits (53_1 ~ 53_m), said first signal (TFCLK1) delay signal group delayed at equal intervals of (D FT (1) ~ D FT (m)), said second signal (TFCLK2 ) Are delayed by equal intervals and sampled by corresponding delay signals of the delay signal group (CK FC (1) to CK FC (m)).
 さらに、前記第1及び第3の入力信号(REF、REFC)の組に対して、遅延素子列(41_1~41_n)では、前記第3の入力信号(REFC)を等間隔に遅延させた遅延信号群を生成し、保持回路群(42_1~42_n)では、前記第1の入力信号(REF)を、前記第3の入力信号(REFC)及び前記第3の入力信号を等間隔に遅延させた遅延信号群によってそれぞれサンプルし、サンプルされた複数の信号をOR回路(44)で合成し第3の信号(CFCLK1)を生成する。保持回路群(43_1~43_n)では、前記第3の入力信号(REFC)を、前記第1の入力信号(REF)及び前記第1の入力信号を等間隔に遅延させた遅延信号群によってサンプルし、サンプルされた複数の信号をOR回路(45)で合成し、第4の信号(CFCLK2)を生成する。遅延素子列(61_1~61_m)では、前記第3の信号(CFCLK1)を等間隔に遅延させた遅延信号群(DFC(1)~DFC(m))を生成する。遅延素子列(62_1~62_m)では、前記第4の信号(CFCLK2)を、前記第3の信号(CFCLK1)とは異なる単位遅延時間で等間隔に遅延させた遅延信号群(CKFC(1)~CKFC(m))を生成する。保持回路群(42_1~42_n)では、前記第3の信号(CFCLK1)を等間隔に遅延させた遅延信号群(DFC(1)~DFC(m))の各遅延信号を、前記第4の信号(CFCLK2)を等間隔に遅延させた遅延信号群(CKFC(1)~CKFC(m))の対応する遅延信号によってそれぞれサンプルする。 Further, with respect to the set of the first and third input signals (REF, REFC), the delay element array (41_1 to 41_n) delays the third input signal (REFC) at equal intervals. Group, and in the holding circuit groups (42_1 to 42_n), the first input signal (REF) is delayed by delaying the third input signal (REFC) and the third input signal at equal intervals. Each sampled signal is sampled, and the plurality of sampled signals are combined by an OR circuit (44) to generate a third signal (CFCLK1). In the holding circuit group (43_1 to 43_n), the third input signal (REFC) is sampled by a delay signal group obtained by delaying the first input signal (REF) and the first input signal at equal intervals. The plurality of sampled signals are combined by the OR circuit (45) to generate the fourth signal (CFCLK2). In the delay element array (61_1 to 61_m), a delay signal group (D FC (1) to D FC (m)) obtained by delaying the third signal (CFCLK1) at equal intervals is generated. In the delay element array (62_1 to 62_m), a delay signal group (CK FC (1)) in which the fourth signal (CFCLK2) is delayed at equal intervals by a unit delay time different from that of the third signal (CFCLK1). ~ CK FC (m)) is generated. In the holding circuit groups (42_1 to 42_n), the delay signals of the delay signal groups (D FC (1) to D FC (m)) obtained by delaying the third signal (CFCLK1) at equal intervals are supplied to the fourth circuit. The signal (CFCLK2) is sampled by the corresponding delay signal of the delay signal group (CK FC (1) to CK FC (m)) obtained by delaying the signal (CFCLK2) at equal intervals.
 あるいは、本発明の別の態様において、図23を参照すると、図1又は3の論理回路(OR回路24、25)から出力される信号(FCLK1、FCLK2)を入力する第2の時間デジタル変換回路(50)における前記第4の遅延素子列(52_1~52_m)の各段の遅延信号(CK(1)~CK(m))を、第2の時間デジタル変換回路(50)における前記第3の遅延素子列(51_1~51_m)の対応する段の遅延信号(D(1)~D(m))の遷移タイミングに従って順次取り込む、複数の保持回路を備えた第5の保持回路群(54_1~54_m)と、
 前記第5の保持回路群(54_1~54_m)の出力(QF2(1)~QF2(m))を受ける第3の論理和演算回路(55)と、第2の時間デジタル変換回路(50)の前記第3の保持回路群(53_1~53_m)の出力を受ける第4の論理和演算回路(56)と、を備えている。さらに、遅延素子を複数段縦列接続し、前記第3の論理和演算回路(55)の出力(F2CLK1)を初段に入力し順次遅延させた複数の遅延信号(DF2(1)~DF2(l))を出力する第5の遅延素子列(81_1~81_l)と、
 前記第5の遅延素子列(81_1~81_l)とは異なる遅延時間を持つ遅延素子を複数段縦列接続し、前記第4の論理和演算回路(56)の出力(F2CLK2)を初段に入力し順次遅延させた複数の遅延信号(CKF2(1)~CKF2(l))を出力する第6の遅延素子列(82_1~82_l)と、
 前記第5の遅延素子列(81_1~81_l)の各段の遅延信号を、前記第6の遅延素子列(82_1~82_l)の対応する段の遅延信号の遷移タイミングに従って順次取り込む、複数の保持回路を備えた第6の保持回路群(83_1~83_l)と、
 を備える第3の時間デジタル変換器(80)を備えている。第6の保持回路群(83_1~83_l)の出力(QF3(1)~QF3(m))は、前記第6の保持回路群の出力が前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示すデジタル値として論理回路(8)に入力される。第5の遅延素子列(81_1~81_l)と第6の遅延素子列(82_1~82_l)における各単位遅延時間の遅延時間差は、前記第3の遅延素子列(51_1~51_m)および前記第4の遅延素子列(52_1~52_m)の単位遅延時間の遅延時間差よりもさらに小さくなるように設定されている。以下、各実施の形態について図面を参照して説明する。
Alternatively, in another aspect of the present invention, referring to FIG. 23, a second time digital conversion circuit that receives signals (FCLK1, FCLK2) output from the logic circuit (OR circuits 24, 25) of FIG. (50), the delay signals (CK F (1) to CK F (m)) of the respective stages of the fourth delay element arrays (52_1 to 52_m) in the second time digital conversion circuit (50) Fifth holding circuit group having a plurality of holding circuits sequentially fetching according to the transition timings of the delay signals (D F (1) to D F (m)) of the corresponding stages of the three delay element arrays (51_1 to 51_m) (54_1-54_m),
A third OR operation circuit (55) for receiving the outputs (Q F2 (1) to Q F2 (m)) of the fifth holding circuit group (54_1 to 54_m), and a second time digital conversion circuit (50 ) Of the third holding circuit group (53_1 to 53_m), and a fourth OR operation circuit (56). Further, a plurality of delay elements are connected in cascade, and a plurality of delay signals (D F2 (1) to D F2 (D F2 (1) to D F2 ( l)), a fifth delay element array (81_1 to 81_l),
Delay elements having delay times different from those of the fifth delay element array (81_1 to 81_1) are connected in cascade, and the output (F2CLK2) of the fourth OR operation circuit (56) is input to the first stage and sequentially A sixth delay element array (82_1 to 82_l) that outputs a plurality of delayed signals (CK F2 (1) to CK F2 (l));
A plurality of holding circuits that sequentially take in the delay signals of each stage of the fifth delay element array (81_1 to 81_l) according to the transition timing of the delay signal of the corresponding stage of the sixth delay element array (82_1 to 82_l) A sixth holding circuit group (83_1 to 83_l) including:
And a third time digital converter (80). The outputs (Q F3 (1) to Q F3 (m)) of the sixth holding circuit group (83_1 to 83_l) are such that the output of the sixth holding circuit group is the first pulse input signal and the second pulse input signal. The digital value indicating the relative phase difference of the pulse input signal is input to the logic circuit (8). The delay time difference between the unit delay times in the fifth delay element array (81_1 to 81_1) and the sixth delay element array (82_1 to 82_l) is the third delay element array (51_1 to 51_m) and the fourth delay element array (51_1 to 51_m). The delay element row (52_1 to 52_m) is set to be smaller than the delay time difference of the unit delay times. Each embodiment will be described below with reference to the drawings.
[第1の実施の形態]
 図1は、本発明の第1の実施の形態のデジタル位相比較器の構成を示す図である。図1を参照すると、本実施の形態のデジタル位相比較器は、
 (A)インバータ列(遅延素子列)11_1~11_n、複数のデータ保持回路(保持回路群)12_1~12_nを備えた時間デジタル変換器10と、
 (B)論理回路1と、
 (C)インバータ列(遅延素子列)21_1~21_n、複数のデータ保持回路(保持回路群)22_1~22_n、複数のデータ保持回路(保持回路群)23_1~23_nを備えた小位相差検出器20と、
 (D)インバータ列(遅延素子列)51_1~51_m+1、インバータ列(遅延素子列)52_1~52_m+1、複数のデータ保持回路(保持回路群)53_1~53_mを備えた時間デジタル変換器50と、
 (E)論理回路5と、
 を備えている。
[First Embodiment]
FIG. 1 is a diagram showing a configuration of a digital phase comparator according to the first embodiment of the present invention. Referring to FIG. 1, the digital phase comparator of the present embodiment is
(A) a time digital converter 10 including inverter arrays (delay element arrays) 11_1 to 11_n and a plurality of data holding circuits (holding circuit groups) 12_1 to 12_n;
(B) logic circuit 1;
(C) Small phase difference detector 20 including inverter rows (delay element rows) 21_1 to 21_n, a plurality of data holding circuits (holding circuit groups) 22_1 to 22_n, and a plurality of data holding circuits (holding circuit groups) 23_1 to 23_n. When,
(D) a time digital converter 50 including inverter arrays (delay element arrays) 51_1 to 51_m + 1, inverter arrays (delay element arrays) 52_1 to 52_m + 1, and a plurality of data holding circuits (holding circuit groups) 53_1 to 53_m;
(E) logic circuit 5;
It has.
 時間デジタル変換器10では、第1の入力信号CLK1がn段の縦列接続されたインバータ列11_1~11_nで順次遅延される。第1の入力信号CLK1、インバータ列11_1、11_2、・・・、11_(n-1)の出力は、それぞれ、対応するデータ保持回路12_1、12_2、12_3、・・・、12_nのデータ入力端子に入力され、それぞれのクロック端子に共通に入力される第2の入力信号CLK2のタイミング(立ち上がりエッジ)で取り込まれ、データ保持回路12_1~12_nより、第1の入力信号CLK1と第2の入力信号CLK2の位相差が、デジタル信号Q(1)~Q(n)として論理回路1に入力される。論理回路1は、Q(1)~Q(n)の値の変化(隣接ビットの変化)を検出し、デジタルコードを出力する。 In the time digital converter 10, the first input signal CLK1 is sequentially delayed by n stages of cascaded inverter arrays 11_1 to 11_n. The outputs of the first input signal CLK1 and the inverter trains 11_1, 11_2,..., 11_ (n−1) are respectively supplied to the data input terminals of the corresponding data holding circuits 12_1, 12_2, 12_3,. The first input signal CLK1 and the second input signal CLK2 that are input and taken in at the timing (rising edge) of the second input signal CLK2 that is input in common to the respective clock terminals, from the data holding circuits 12_1 to 12_n. Are input to the logic circuit 1 as digital signals Q C (1) to Q C (n). The logic circuit 1 detects changes in the values of Q C (1) to Q C (n) (changes in adjacent bits) and outputs a digital code.
 なお、データ保持回路12_1~12_nは、出力信号の論理を整合させるため、奇数段のデータ保持回路12_1~12_3、・・・は正論理で、偶数段のデータ保持回路12_2、12_4、・・・は負論理(データ出力端子の反転信号)で出力を取り出している。 Since the data holding circuits 12_1 to 12_n match the logic of the output signals, the odd-numbered data holding circuits 12_1 to 12_3,... Are positive logic, and the even-numbered data holding circuits 12_2, 12_4,. Takes out the output with negative logic (inverted signal of the data output terminal).
 小位相差検出器20では、第1の入力信号CLK1がデータ保持回路22_1~22_nのデータ入力端子に共通に入力され、データ保持回路22_1~22_nは、第1の入力信号CLK1を、第2の入力信号CLK2及び第2の入力信号CLK2をn段のインバータ列21_1~21_nで順次遅延された信号CK(1)~CK(n-1)のエッジ(立ち上がりエッジ)でそれぞれ取り込む。データ保持回路22_1~22_nの出力はn入力のOR回路24に入力され、OR回路24の出力はFCLK1として出力される。 In the small phase difference detector 20, the first input signal CLK1 is commonly input to the data input terminals of the data holding circuits 22_1 to 22_n, and the data holding circuits 22_1 to 22_n receive the first input signal CLK1 as the second input signal CLK1. The input signal CLK2 and the second input signal CLK2 are captured at the edges (rising edges) of the signals CK C (1) to CK C (n−1) sequentially delayed by the n-stage inverter rows 21_1 to 21_n. The outputs of the data holding circuits 22_1 to 22_n are input to an n-input OR circuit 24, and the output of the OR circuit 24 is output as FCLK1.
 第2の入力信号CLK2は、データ保持回路23_1~23_nのデータ入力端子に共通に入力され、データ保持回路23_1~23_nは、時間デジタル変換器10のインバータ列11_1~11_nの各段の入力信号D(1)~D(n-1)をクロック端子に入力してCLK2を取り込む。データ保持回路23_1~23_nの出力はn入力OR回路25に入力され、OR回路25の出力がFCLK2として出力される。 The second input signal CLK2 is input in common to the data input terminals of the data holding circuits 23_1 to 23_n. The data holding circuits 23_1 to 23_n are input signals D of the respective stages of the inverter trains 11_1 to 11_n of the time digital converter 10. C (1) to D C (n−1) are input to the clock terminal to capture CLK2. The outputs of the data holding circuits 23_1 to 23_n are input to the n-input OR circuit 25, and the output of the OR circuit 25 is output as FCLK2.
 なお、データ保持回路22_1~22_n及びデータ保持回路23_1~23_nは、データ取り込みの論理を整合させるため、各クロック端子の入力を、奇数段は正論理で、偶数段は負論理で入力している。データ保持回路22_1、22_3・・・等奇数段目のデータ保持回路は、CLK2及びその遅延信号(インバータ21_2、・・・の出力)の立ち上がりエッジで取り込み、データ保持回路22_2、22_4・・・等偶数段目のデータ保持回路は、CLK2及びその遅延信号(インバータ21_1、・・・の出力)の立ち下がりエッジで取り込む。データ保持回路23_1、23_3・・・等奇数段目のデータ保持回路は、CLK1及びその遅延信号(インバータ11_2、・・・の出力)の立ち上がりエッジで取り込み、データ保持回路23_2、23_4・・・等偶数段目のデータ保持回路は、CLK2及びその遅延信号(インバータ11_1、・・・の出力)の立ち下がりエッジで取り込む。 The data holding circuits 22_1 to 22_n and the data holding circuits 23_1 to 23_n input each clock terminal with positive logic at the odd-numbered stage and negative logic at the even-numbered stage in order to match the data fetching logic. . The data holding circuits at odd stages such as the data holding circuits 22_1, 22_3,... Capture at the rising edge of CLK2 and its delay signal (output of the inverter 21_2,...), And the data holding circuits 22_2, 22_4. The even-numbered data holding circuit takes in the falling edge of CLK2 and its delay signal (output of inverter 21_1,...). The data holding circuits at odd stages such as the data holding circuits 23_1, 23_3,... Capture at the rising edge of CLK1 and its delay signal (output of the inverter 11_2,...), And the data holding circuits 23_2, 23_4. The even-numbered data holding circuit captures at the falling edge of CLK2 and its delay signal (output of inverter 11_1,...).
 インバータ列21_1~21_nの各段の遅延時間はインバータ列11_1~11_nの遅延時間と同一になるように設定されている。インバータ列11_1~11_n、21_1~21_nの最終段インバータ11_n、21_nの出力はオープンとされる。 The delay time of each stage of the inverter trains 21_1 to 21_n is set to be the same as the delay time of the inverter trains 11_1 to 11_n. The outputs of the final stage inverters 11_n and 21_n of the inverter rows 11_1 to 11_n and 21_1 to 21_n are opened.
 時間デジタル変換器50では、FCLK1は、m段の縦列接続されたインバータ列51_1~51_mの初段に入力され、FCLK2はm段の縦列接続されたインバータ列52_1~52_mの初段に入力される。インバータ列51_1~51_m、52_1~52_mの最終段インバータ51_m、52_mの出力はオープンとされる。 In the time digital converter 50, FCLK1 is input to the first stage of the m-stage cascaded inverter strings 51_1 to 51_m, and FCLK2 is input to the first stage of the m-stage cascaded inverter strings 52_1 to 52_m. The outputs of the final stage inverters 51_m and 52_m of the inverter arrays 51_1 to 51_m and 52_1 to 52_m are opened.
 データ保持回路53_1~53_mは、インバータ列51_1~51_m+1の各入力信号であるFCLK1及びD(1)~D(m)をそれぞれのデータ入力端子に入力し、インバータ列52_1~52_mの各入力信号であるFCLK2及びCK(1)~CK(m-1)をクロック端子に入力し、データ入力端子の信号をクロック端子のエッジで取り込む。FCLK1とFCLK2の位相差が、データ保持回路53_1~53_mからの出力デジタル信号Q(1)~Q(m)として論理回路5に入力される。論理回路1はQ(1)~Q(m)の値の変化(隣接ビットの変化)を検出し、デジタルコードを出力する。 The data holding circuits 53_1 to 53_m input FCLK1 and D F (1) to D F (m), which are input signals of the inverter arrays 51_1 to 51_m + 1, to the respective data input terminals, and input of the inverter arrays 52_1 to 52_m. The signals FCLK2 and CK F (1) to CK F (m−1) are input to the clock terminal, and the signal of the data input terminal is captured at the edge of the clock terminal. The phase difference between FCLK1 and FCLK2 is input to the logic circuit 5 as output digital signals Q F (1) to Q F (m) from the data holding circuits 53_1 to 53_m. The logic circuit 1 detects changes in the values of Q F (1) to Q F (m) (changes in adjacent bits) and outputs a digital code.
 なお、データ保持回路53_1~53_mは、出力信号及びクロック端子入力信号の論理を整合させるため、出力及びクロック端子の論理を、奇数段は負論理とし、偶数段は正論理としている。奇数段のデータ保持回路53_1は、FCLK2の立ち下がりエッジで、D(1)を取り込み、データ出力端子の反転出力をQ(1)として出力する。偶数段のデータ保持回路53_2は、FCLK2の立ち上がりエッジで、D(2)を取り込み、データ出力端子の出力データをQ(2)として出力する。 Note that in the data holding circuits 53_1 to 53_m, in order to match the logic of the output signal and the clock terminal input signal, the logic of the output and the clock terminal is set to negative logic in the odd stages and positive logic in the even stages. The odd-numbered data holding circuit 53_1 takes in D F (1) at the falling edge of FCLK2 and outputs the inverted output of the data output terminal as Q F (1). The even-numbered data holding circuit 53_2 takes in D F (2) at the rising edge of FCLK2 and outputs the output data of the data output terminal as Q F (2).
 また、このときのインバータ列51_1~51_mの各段の位相差ΔTF1とインバータ列52_1~52_mの各段の位相差ΔTF2は、
 ΔTF1>ΔTF2
の関係となっている。
At this time, the phase difference ΔT F1 of each stage of the inverter trains 51_1 to 51_m and the phase difference ΔT F2 of each stage of the inverter trains 52_1 to 52_m are:
ΔT F1 > ΔT F2
It has become a relationship.
[実施例]
 次に本発明の実施の形態に関する具体的な実施例について図面を参照して詳細に説明する。
[Example]
Next, specific examples relating to the embodiment of the present invention will be described in detail with reference to the drawings.
 図2は、図1において、n=4、m=4とした場合のタイミングチャートを示している。このとき、第1の入力信号CLK1と第2の入力信号CLK2の位相差をTとする。本実施例のデジタル位相比較器は、図1において、時間デジタル変換器10は、インバータ列11_1~11_4、データ保持回路12_1~12_4を備え、小位相差検出器20はインバータ列21_1~21_4、データ保持回路22_1~22_4、23_1~23_4を備え、時間デジタル変換器50は、インバータ列51_1~51_4、52_1~52_4、データ保持回路53_1~53_4を備えた構成とされる。なお、図2において、CLK1を入力して反転出力するインバータ11_1の出力D(1)はCLK1の立ち上がりからΔTの後に立ち上がる信号として図示されているが、前述したように、負論理(正論理の0、1を、それぞれ1、0として扱う)で扱っているためである。インバータ11_1の出力D(1)の立ち下がりエッジでデータ保持回路23_2はサンプルし、データ保持回路12_2は、インバータ11_1の出力D(1)のLowをCLK1の立ち上がりエッジでサンプルしたとき論理1を出力する。CK(1)~CK(3)も同様である。 FIG. 2 shows a timing chart when n = 4 and m = 4 in FIG. At this time, the first input signal CLK1 the phase difference between the second input signal CLK2 and T C. In FIG. 1, the digital phase comparator of this embodiment includes a time digital converter 10 including inverter rows 11_1 to 11_4 and data holding circuits 12_1 to 12_4, and a small phase difference detector 20 includes inverter rows 21_1 to 21_4 and data. The holding digital circuits 22_1 to 22_4 and 23_1 to 23_4 are provided, and the time digital converter 50 includes inverter rows 51_1 to 51_4, 52_1 to 52_4, and data holding circuits 53_1 to 53_4. In FIG. 2, the output D C (1) of the inverter 11_1 to inverted output to input CLK1 is illustrated as a signal which rises after the rise of CLK1 of [Delta] T C, as described above, negative logic (positive This is because the logic 0 and 1 are handled as 1 and 0, respectively. Falling data holding circuit 23_2 in the edge of the output D C of the inverter 11_1 (1) is a sample, the data holding circuit 12_2, a logic 1 when sampled on the rising edge of the Low CLK1 output D C of the inverter 11_1 (1) Is output. The same applies to CK F (1) to CK F (3).
 時間デジタル変換器10において、データ保持回路12_1~12_4はデータ端子への入力信号CLK1、D(1)、D(2)、D(3)、D(4)がクロック端子への入力信号CLK2(サンプリング用クロック)よりも時間的に先に遷移する場合に、論理「1」を出力する。このとき、インバータ列11_1~11_4の各遅延時間をΔTとする。第1の入力信号CLK1に対する、インバータ列11_1~11_4の各出力DC(1)~DC(3)の出力はそれぞれ、ΔT~3ΔTだけ遅延し、3段目のインバータ11_3の出力時点で、第2の入力信号CLK2との位相関係が逆転する。 In time-digital converter 10, the input signal CLK1 of the data holding circuits 12_1 ~ 12_4 are to the data terminal, D C (1), D C (2), D C (3), D C (4) is to clock terminal When the input signal CLK2 (sampling clock) transits earlier in time, logic “1” is output. At this time, the respective delay times of the inverter array 11_1 ~ 11_4 to [Delta] T C. To the first input signal CLK1, the output DC (1) of the inverter array 11_1 ~ 11_4 respectively output-DC (3), is delayed by ΔT C ~ 3ΔT C, at the output point of the third-stage inverter 11_3, The phase relationship with the second input signal CLK2 is reversed.
 よって、データ保持回路12_1~12_4の出力Q(1)~Q(4)には、3段目までは論理「1」が出力され、4段目で論理「0」が出力される。このとき、インバータ列としては、インバータ列11_1~11_4のうち、3段を経由して位相関係の逆転が起こっていることから、位相差Tは、インバータ列の遅延2段分と3段分の間であることがわかり(2ΔT<T<3ΔT)、CLK2信号と、インバータの出力D(3)との位相差TFを用いて、
 T=3ΔT-T
 と表される。
Therefore, the logic “1” is output up to the third stage and the logic “0” is output from the fourth stage to the outputs Q C (1) to Q C (4) of the data holding circuits 12_1 to 12_4. At this time, as the inverter train, the phase relationship TC is reversed through three stages of the inverter trains 11_1 to 11_4. It found to be between (2ΔT C <T C <3ΔT C), using the CLK2 signal, the phase difference TF between inverter output D C (3),
T C = 3ΔT C -T F
It is expressed.
 小位相差検出器20において、データ保持回路23_1~23_4は第2の入力信号CLK2をデータ端子に共通に入力し、時間デジタル変換器10のインバータ列11_1~11_4への入力信号CLK1、D(1)、D(2)、・・・D(n-1)をクロック端子にそれぞれ入力する構成となっているため、データ端子への入力信号とクロック端子への入力信号の位相関係は、時間デジタル変換器10のデータ保持回路12_1~12_4と逆の関係になっている。 In the small phase difference detector 20, the data holding circuits 23_1 ~ 23_4 is input to the common second input signal CLK2 to the data terminal, the input signal CLK1 to the inverter array 11_1 ~ 11_4 of the time-to-digital converter 10, D C ( 1), D C (2),..., D C (n−1) are input to the clock terminal, so the phase relationship between the input signal to the data terminal and the input signal to the clock terminal is The data holding circuits 12_1 to 12_4 of the time digital converter 10 have a reverse relationship.
 よって、3段目のインバータ11_3の出力信号D(3)の立ち下がりエッジ(図2では立ち上がり)に同期して論理「1」が出力される。データ保持回路23_1~23_4の出力は、4入力OR回路25に入力され、その出力FCLK2からは、時間デジタル変換器10の第2の入力信号CLK2入力直後のインバータ列11_1~11_4出力の反転タイミングが抽出されることになる。 Therefore, logic “1” is output in synchronization with the falling edge (rising edge in FIG. 2) of the output signal D C (3) of the third-stage inverter 11_3. The outputs of the data holding circuits 23_1 to 23_4 are input to the 4-input OR circuit 25. From the output FCLK2, the inversion timing of the inverter trains 11_1 to 11_4 output immediately after the second input signal CLK2 of the time digital converter 10 is input. Will be extracted.
 また、インバータ列21_1~21_4と、データ保持回路22_1~22_4は、データ保持回路23_1~23_4と、時間デジタル変換器10のインバータ列11_1~11_4で構成される回路と同様の構成とされ、入力信号を入れ替えたものとなっている。すなわち、データ保持回路22_1では、CLK2の立ち上がりエッジのタイミング、データ保持回路22_2、22_3、22_4では、インバータ列21_1~21_3でCLK2を反転遅延させた立ち上がり、立ち上がり、立ち下がりエッジのそれぞれタイミングでCLK1をサンプルした結果を4入力OR回路24でORした結果がFCLK1として出力される。第1の入力信号CLK1は、第2の入力信号CLK2に対し位相が進んでいるため、データ保持回路22_1~22_4からは、順次論理「1」が出力され、4入力OR回路24の出力FCLK1は、第2の入力信号CLK2の立ち上がりタイミングが抽出されることになる。このとき、経由する回路の構成や負荷の状態が等しくなることから、第2の入力信号CLK2からOR回路24で出力されるFCLK1までの遅延と、第2の入力信号CLK2の入力直後のインバータ列11_1~11_4出力の反転信号から、OR回路25で出力されるFCLK2までの回路の遅延時間は等しくなる。小位相差検出器20は、第2の入力信号CLK2とCLK2信号入力直後のインバータ列11_1~11_4出力の反転信号との位相差T(図2のCLK2の立ち上がりとD(3)の立ち上がりエッジの位相差)を保った出力信号FCLK1及びFCLK2を出力する。 Further, the inverter arrays 21_1 to 21_4 and the data holding circuits 22_1 to 22_4 have the same configuration as the circuit configured by the data holding circuits 23_1 to 23_4 and the inverter arrays 11_1 to 11_4 of the time digital converter 10, and input signals Is replaced. That is, in the data holding circuit 22_1, the rising edge timing of CLK2, and in the data holding circuits 22_2, 22_3, and 22_4, CLK1 is set at the rising, rising, and falling edges obtained by inverting and delaying CLK2 in the inverter rows 21_1 to 21_3. The result obtained by ORing the sampled result by the 4-input OR circuit 24 is output as FCLK1. Since the phase of the first input signal CLK1 is advanced with respect to the second input signal CLK2, the logic “1” is sequentially output from the data holding circuits 22_1 to 22_4, and the output FCLK1 of the 4-input OR circuit 24 is Therefore, the rising timing of the second input signal CLK2 is extracted. At this time, since the circuit configuration and the load state are equal, the delay from the second input signal CLK2 to FCLK1 output from the OR circuit 24 and the inverter train immediately after the second input signal CLK2 is input. The delay time of the circuit from the inverted signal of the outputs 11_1 to 11_4 to FCLK2 output from the OR circuit 25 becomes equal. Small phase difference detector 20, the rise of the phase difference T F of the second immediately after the input signal CLK2 and CLK2 signal input inverter row 11_1 ~ 11_4 inverted signal of the output (rising and D C (3 of CLK2 in FIG. 2) Output signals FCLK1 and FCLK2 that maintain the edge phase difference) are output.
 時間デジタル変換器50では、データ保持回路53_1~53_4で、小位相差検出器20から出力される信号FCLK1をインバータ列51_1~51_4を経由して順次遅延させた信号D(1)~D(4)を、小位相差検出器20の出力信号FCLK2をインバータ列52_1~52_4を経由して順次遅延させた信号CK(1)~CK(4)をクロック信号として、順次取り込む。データ保持回路53_1~53_4は、データ端子への入力信号D(1)~D(4)の位相がクロック端子への入力信号CKF(1)~CKF(4)よりも進んでいる場合に、論理「1」を出力する。 In the time digital converter 50, signals D F (1) to D F obtained by sequentially delaying the signal FCLK1 output from the small phase difference detector 20 via the inverter arrays 51_1 to 51_4 in the data holding circuits 53_1 to 53_4. The signal CK F (1) to CK F (4) obtained by sequentially delaying the output signal FCLK2 of the small phase difference detector 20 via the inverter rows 52_1 to 52_4 is sequentially taken in as a clock signal. The data holding circuits 53_1 to 53_4 are used when the phases of the input signals D F (1) to D F (4) to the data terminal are ahead of the input signals CKF (1) to CKF (4) to the clock terminal. , Output logic “1”.
 小位相差検出器20の出力時点で、FCLK1はFCLK2よりもTだけ位相が進んだ関係にあるが、インバータ列51_1~51_4の各段の位相差ΔTF1とインバータ列52_1~52_4の各段の位相差ΔTF2は、
 ΔTF1>ΔTF2
 の関係となっている。このため、インバータ列52_1~52_4の各段を通過するたびに、その位相差は、ΔTF1-ΔTF2ずつ小さくなっていく。
The output time of the small phase difference detector 20, FCLK1 is a relationship advanced phase only T F than FCLK2, each stage of the inverter array 51_1 ~ phase difference [Delta] T F1 and inverter row 52_1 ~ 52_4 of each stage of the 51_4 The phase difference ΔT F2 of
ΔT F1 > ΔT F2
It has become a relationship. For this reason, each time it passes through each stage of the inverter trains 52_1 to 52_4, the phase difference decreases by ΔT F1 −ΔT F2 .
 図2では、2段目のデータ保持回路53_2までは、データ入力D(2)がクロック入力C(2)に対して位相が進んでいる状態のため、論理「1」を出力するが、3段目のインバータ51_3を通過した段階で、位相関係の逆転が起こる。すなわち、D(3)はC(3)よりも位相が遅れる。このため、3段目以降のデータ保持回路の出力は論理「0」となり、位相差TFはインバータ列の遅延差ΔTF1-ΔTF2の2段分と3段分の間であることがわかる。すなわち、2(ΔTF1-ΔTF2)<T<3(ΔTF1-ΔTF2)の関係が成り立つ。 In FIG. 2, up to the second stage data holding circuit 53_2, since the phase of the data input D F (2) is advanced with respect to the clock input C F (2), logic “1” is output. The phase relationship is reversed when the third stage inverter 51_3 is passed. That is, D F (3) is delayed in phase from C F (3). For this reason, the output of the data holding circuit in the third stage and thereafter becomes logic “0”, and it can be seen that the phase difference TF is between two stages and three stages of the delay difference ΔT F1 -ΔT F2 of the inverter train. That is, the relationship of 2 (ΔT F1 −ΔT F2 ) <T F <3 (ΔT F1 −ΔT F2 ) is established.
 論理回路1、論理回路5でのデコード結果から、
 T=3ΔT-Tは、
 3ΔT-3(ΔTF1-ΔTF2)<T<3ΔT-2(ΔTF1-ΔTF2
であることがわかる。
From the decoding results in logic circuit 1 and logic circuit 5,
T C = 3ΔT C −T F is
3ΔT c −3 (ΔT F1 −ΔT F2 ) <T c <3ΔT c −2 (ΔT F1 −ΔT F2 )
It can be seen that it is.
 以上のようにして、小位相差検出器20と時間デジタル変換器50を用いることで、時間デジタル変換器10で検出しきれない微小な位相差を検出することが可能となる。特許文献1に記載の従来構成よりも高分解能なデジタル位相比較器が実現可能となる。 As described above, by using the small phase difference detector 20 and the time digital converter 50, a minute phase difference that cannot be detected by the time digital converter 10 can be detected. A digital phase comparator with higher resolution than the conventional configuration described in Patent Document 1 can be realized.
 また、本実施例における時間デジタル変換器50は、時間デジタル変換器10のインバータ遅延1段分以下の位相差のみを比較する構成となっているため、特許文献2に記載の他の従来構成に対して、全体としてインバータ列及びデータ保持回路群の段数削減による、消費電力及び回路面積の大幅な削減が可能となる。 In addition, the time digital converter 50 in this embodiment is configured to compare only the phase difference of one stage or less of the inverter delay of the time digital converter 10, so that the other conventional configuration described in Patent Document 2 is used. On the other hand, the power consumption and the circuit area can be significantly reduced by reducing the number of stages of the inverter array and the data holding circuit group as a whole.
[第2の実施の形態]
 図3は、本発明の第2の実施の形態のデジタル位相比較器の構成を示す図である。図3を参照すると、本実施の形態のデジタル位相比較器は、図1に示したデジタル位相比較器から、時間デジタル変換器10のデータ保持回路12_1~12_nをなくし、小位相差検出器20のデータ保持回路23_1~23_nからの出力を論理回路4に接続する構成とすることで、時間デジタル変換器40で、入力信号CLK1とCLK2の位相差検出と、インバータ列の遅延時間による分解能以下の微小な位相差の検出を兼ねる構成となっている。
[Second Embodiment]
FIG. 3 is a diagram showing the configuration of the digital phase comparator according to the second embodiment of the present invention. Referring to FIG. 3, the digital phase comparator according to the present embodiment eliminates the data holding circuits 12_1 to 12_n of the time digital converter 10 from the digital phase comparator shown in FIG. With the configuration in which the outputs from the data holding circuits 23_1 to 23_n are connected to the logic circuit 4, the time digital converter 40 detects the phase difference between the input signals CLK1 and CLK2, and is less than the resolution due to the delay time of the inverter train. It is the structure which serves also as a detection of a phase difference.
[実施例]
 次に、第2の実施の形態の具体的な実施例について図面を参照して詳細に説明する。図4は、図3の第2の実施の形態において、n=4、m=4とした場合のタイミングチャートを示している。このとき、第1の入力信号CLK1と第2の入力信号CLK2の位相差をTとする。時間デジタル変換器40において、データ保持回路23_1~23_4は、図1に示した第1の実施例同様、データ端子への入力信号の位相がクロック端子への入力信号よりも進んでいる場合に、論理「1」を出力する。
[Example]
Next, specific examples of the second embodiment will be described in detail with reference to the drawings. FIG. 4 shows a timing chart when n = 4 and m = 4 in the second embodiment of FIG. At this time, the first input signal CLK1 the phase difference between the second input signal CLK2 and T C. In the time digital converter 40, the data holding circuits 23_1 to 23_4, when the phase of the input signal to the data terminal is ahead of the input signal to the clock terminal, as in the first embodiment shown in FIG. Output logic "1".
 このとき、インバータ列11_1~11_4の各遅延時間をΔTとする。第1の入力信号CLK1に対する、インバータ列11_1~11_4の各出力D(1)~D(3)の出力はそれぞれ、ΔT~3ΔTだけ遅延し、3段目のインバータ11_3の出力時点で、第2の入力信号CLK2との位相関係が逆転する。 At this time, the respective delay times of the inverter array 11_1 ~ 11_4 to [Delta] T C. The outputs D C (1) to D C (3) of the inverter rows 11_1 to 11_4 with respect to the first input signal CLK1 are delayed by ΔT C to 3ΔT C , respectively, and the output time point of the third-stage inverter 11_3 Thus, the phase relationship with the second input signal CLK2 is reversed.
 即ち、データ保持回路23_1~23_4の出力Q(1)~Q(4)には、3段目までは論理「0」が出力され、4段目で論理「1」が出力される。このとき、インバータ列としては、4段のインバータ11_1~11_4のうち、3段を通過して位相関係の逆転が起こっていることから、論理「0」の段数を数えることで位相差Tはインバータ列の遅延2段分と3段分の間であることがわかり、この構成でもCLK2信号とD(3)との位相差Tを用いて、
 T=3ΔT-T
 と表される。
In other words, the outputs Q C (1) to Q C (4) of the data holding circuits 23_1 to 23_4 output a logic “0” up to the third stage and a logic “1” at the fourth stage. At this time, the inverter train, among the inverters 11_1 ~ 11_4 four stages, since it passes through the three stages is occurring reversed phase relationship, the phase difference T C by counting the number of logic "0" It can be seen that the delay is between two and three delay stages of the inverter train. Even in this configuration, the phase difference TF between the CLK2 signal and D C (3) is used,
T C = 3ΔT C -T F
It is expressed.
 データ保持回路23_1~23_4の出力Q(1)~Q(4)は、論理回路4に接続されると同時に、OR回路25にも接続されており、3段目のインバータ11_3の出力信号D(3)の立ち下がりエッジ(図4では立ち上がりエッジ)に同期して論理「1」が出力された結果として、OR回路25の出力FCLK2からは、入力信号CLK2の立ち上がりタイミング直後のインバータ列11_1~11_4の出力の反転タイミングが抽出されることになる。また、インバータ列21_1~21_4とデータ保持回路22_1~22_4は、図1に示したデジタル位相比較器における小位相差検出器20と同様の構成となっていることから、OR回路24の出力FCLK1は第2の入力信号CLK2の経ち上がりタイミングが抽出されることになる。 Outputs Q C (1) to Q C (4) of the data holding circuits 23_1 to 23_4 are connected to the logic circuit 4 and also to the OR circuit 25, and the output signal of the third-stage inverter 11_3. As a result of the output of logic “1” in synchronization with the falling edge of D C (3) (the rising edge in FIG. 4), the output FCLK2 of the OR circuit 25 receives an inverter train immediately after the rising timing of the input signal CLK2. The inversion timings of the outputs 11_1 to 11_4 are extracted. Further, since the inverter arrays 21_1 to 21_4 and the data holding circuits 22_1 to 22_4 have the same configuration as the small phase difference detector 20 in the digital phase comparator shown in FIG. 1, the output FCLK1 of the OR circuit 24 is The rising timing of the second input signal CLK2 is extracted.
 よって、本実施例の構成でも、第2の入力信号CLK2とCLK2信号入力直後のインバータ列11_1~11_4出力の反転信号との位相差Tを保った出力信号FCLK1及びFCLK2が出力される。 Therefore, also in the configuration of the present embodiment, the output signals FCLK1 and FCLK2 that maintain the phase difference TF between the second input signal CLK2 and the inverted signal of the inverter trains 11_1 to 11_4 output immediately after the CLK2 signal is input are output.
 時間デジタル変換器50は、図1に示したデジタル位相比較器における小位相差検出器20と同様の構成となっているため、図2に示した構成と同一の結果が得られる。3段目以降のデータ保持回路の出力は論理「0」となり、位相差Tはインバータ列の遅延差ΔTF1-ΔTF2の2段分と3段分の間であることがわかる。すなわち、
 2(ΔTF1-ΔTF2)<T<3(ΔTF1-ΔTF2
の関係が成り立つ。
Since the time digital converter 50 has the same configuration as the small phase difference detector 20 in the digital phase comparator shown in FIG. 1, the same result as the configuration shown in FIG. 2 is obtained. The output of the data holding circuit after the third stage becomes logic “0”, and it can be seen that the phase difference TF is between two stages and three stages of the delay difference ΔT F1 -ΔT F2 of the inverter train. That is,
2 (ΔT F1 −ΔT F2 ) <T F <3 (ΔT F1 −ΔT F2 )
The relationship holds.
 論理回路4、5でのデコード結果から、
 T=3ΔT-Tは、
 3ΔT-3(ΔTF1-ΔTF2)<T<3ΔT-2(ΔTF1-ΔTF2
であることがわかる。
From the decoding result in the logic circuits 4 and 5,
T C = 3ΔT C −T F is
3ΔT C −3 (ΔT F1 −ΔT F2 ) <T C <3ΔT C −2 (ΔT F1 −ΔT F2 )
It can be seen that it is.
 以上のようにして、本実施例によるデジタル位相比較器でも、従来構成に対して消費電力及び回路面積を大幅な削減した高分解能なデジタル位相比較器が実現可能となる。さらに、本実施例では、第1の実施例におけるデータ保持回路12_1~12_nを用いない分だけ、さらに消費電力及び回路面積の削減が可能となる。 As described above, even with the digital phase comparator according to the present embodiment, it is possible to realize a high-resolution digital phase comparator in which power consumption and circuit area are greatly reduced compared to the conventional configuration. Further, in this embodiment, the power consumption and the circuit area can be further reduced by the amount not using the data holding circuits 12_1 to 12_n in the first embodiment.
[第3の実施の形態]
 図5は、本発明の第3の実施の形態のデジタル位相比較器の構成を示す図である。図5を参照すると、本実施の形態のデジタル位相比較器では、VCO101からの信号CLKVと基準信号REFを入力する。基準信号REFはデータ保持回路102により、VCO出力信号CLKVの立ち上がりエッジでそれぞれ取り込まれ、リタイミングされた信号REFTをそれぞれ出力する。
[Third Embodiment]
FIG. 5 is a diagram illustrating a configuration of a digital phase comparator according to the third embodiment of the present invention. Referring to FIG. 5, in the digital phase comparator according to the present embodiment, a signal CLKV from the VCO 101 and a reference signal REF are input. The reference signal REF is captured by the data holding circuit 102 at the rising edge of the VCO output signal CLKV, and the retimed signal REFT is output.
 リタイミング信号REFTは、VCO101の出力信号CLKVの立ち上がりの位相情報を保持する。よって、基準信号REFに対するリタイミング信号REFTの位相差情報を用いることで、基準信号REFと、VCO101の出力信号CLKVの位相比較が可能となる。 The retiming signal REFT holds phase information of the rising edge of the output signal CLKV of the VCO 101. Therefore, by using the phase difference information of the retiming signal REFT with respect to the reference signal REF, the phase comparison between the reference signal REF and the output signal CLKV of the VCO 101 can be performed.
 この基準信号REFとリタイミング信号REFTが、時間デジタル変換器10に入力され、図1に示した第1の実施例に記載のデジタル位相比較器と同様の動作が行われる。 The reference signal REF and the retiming signal REFT are input to the time digital converter 10 and the same operation as the digital phase comparator described in the first embodiment shown in FIG. 1 is performed.
[実施例]
 次に、第3の実施の形態の具体的な実施例について図面を参照して詳細に説明する。図6は、図5の第3の実施の形態において、n=4、m=4とした場合のタイミングチャートを示している。このとき、VCO101の出力信号CLKVと基準信号REFの位相差をTとすると、基準信号REFは、データ保持回路102にてVCO101の出力信号CLKVをクロックとして立ち上がりエッジのタイミングで取り込まれるので、リタイミング信号REFTは、VCO101の出力信号CLKVに同期した信号となり、基準信号REFとリタイミング信号REFTの位相比較により、基準信号REFとVCO101の出力信号CLKVの位相比較が可能となる。時間デジタル変換器10以降における基準信号REFとリタイミング信号REFTの位相比較動作に関しては、図2に示した第1の実施例のデジタル位相比較器における動作と同様となるため省略する。
[Example]
Next, specific examples of the third embodiment will be described in detail with reference to the drawings. FIG. 6 shows a timing chart when n = 4 and m = 4 in the third embodiment of FIG. At this time, when the phase difference between the output signal CLKV and the reference signal REF of the VCO 101 and T C, the reference signal REF, since captured at the rising edge output signal CLKV of by the data holding circuit 102 VCO 101 as a clock, Li The timing signal REFT is a signal synchronized with the output signal CLKV of the VCO 101, and the phase comparison between the reference signal REF and the retiming signal REFT enables the phase comparison between the reference signal REF and the output signal CLKV of the VCO 101. The phase comparison operation between the reference signal REF and the retiming signal REFT after the time digital converter 10 is the same as the operation in the digital phase comparator of the first embodiment shown in FIG.
 以上のようにして、本実施例によるデジタル位相比較器でも、従来構成に対して消費電力及び回路面積を大幅な削減した高分解能なデジタル位相比較器が実現可能となる。また、VCOからの信号CLKVのような高速な信号と基準信号REFを比較するような場合においても、高速動作するのは、リタイミング回路として動作するデータ保持回路(FF)102のみとなり、回路全体としては、基準信号REF程度の低速信号を用いた比較しか行われないため、全体として低消費電力化が可能となる。 As described above, even with the digital phase comparator according to the present embodiment, it is possible to realize a high-resolution digital phase comparator in which power consumption and circuit area are greatly reduced compared to the conventional configuration. Even when a high-speed signal such as the signal CLKV from the VCO is compared with the reference signal REF, only the data holding circuit (FF) 102 that operates as a retiming circuit operates at high speed. Since only comparison using a low-speed signal of the reference signal REF is performed, the overall power consumption can be reduced.
[第4の実施の形態]
 図7は、本発明の第4の実施の形態のデジタル位相比較器の構成を示す図である。図7を参照すると、本実施の形態のデジタル位相比較器は、図5に示した前記第3の実施形態のデジタル位相比較器と同様に、VCO101の出力信号CLKVと基準信号REFを入力し、基準信号REFはデータ保持回路102により、VCO101の出力信号CLKVの立ち上がりエッジでそれぞれ取り込まれ、リタイミングされた信号REFTをそれぞれ出力する。この基準信号REFとリタイミング信号REFTが、時間デジタル変換器40に入力され、図3に示した第2の実施例に記載のデジタル位相比較器と同様の動作が行われる。
[Fourth Embodiment]
FIG. 7 is a diagram illustrating a configuration of a digital phase comparator according to the fourth embodiment of the present invention. Referring to FIG. 7, the digital phase comparator according to the present embodiment receives the output signal CLKV of the VCO 101 and the reference signal REF, similarly to the digital phase comparator according to the third embodiment shown in FIG. The reference signal REF is captured by the data holding circuit 102 at the rising edge of the output signal CLKV of the VCO 101, and the retimed signal REFT is output. The reference signal REF and the retiming signal REFT are input to the time digital converter 40, and the same operation as the digital phase comparator described in the second embodiment shown in FIG. 3 is performed.
[実施例]
 次に、第4の実施の形態の具体的な実施例について図面を参照して詳細に説明する。図8は、図7の第4の実施の形態において、n=4、m=4とした場合のタイミングチャートを示している。このとき、VCO101の出力信号CLKVと基準信号REFの位相差をTとすると、基準信号REFは、データ保持回路102にてVCO101の出力信号CLKVをクロックとして立ち上がりエッジのタイミングで取り込まれるので、リタイミング信号REFTは、VCO101の出力信号CLKVに同期した信号となり、基準信号REFとリタイミング信号REFTの位相比較により、基準信号REFとVCO101の出力信号CLKVの位相比較が可能となる。時間デジタル変換器40以降における基準信号REFとリタイミング信号REFTの位相比較動作に関しては、図4に示した第2の実施例のデジタル位相比較器における動作と同様となるため省略する。
[Example]
Next, specific examples of the fourth embodiment will be described in detail with reference to the drawings. FIG. 8 shows a timing chart when n = 4 and m = 4 in the fourth embodiment of FIG. At this time, when the phase difference between the output signal CLKV and the reference signal REF of the VCO 101 and T C, the reference signal REF, since captured at the rising edge output signal CLKV of by the data holding circuit 102 VCO 101 as a clock, Li The timing signal REFT is a signal synchronized with the output signal CLKV of the VCO 101, and the phase comparison between the reference signal REF and the retiming signal REFT enables the phase comparison between the reference signal REF and the output signal CLKV of the VCO 101. The phase comparison operation between the reference signal REF and the retiming signal REFT after the time digital converter 40 is the same as the operation in the digital phase comparator of the second embodiment shown in FIG.
 以上のようにして、本実施例によるデジタル位相比較器でも、従来構成に対して消費電力及び回路面積を大幅に削減した高分解能なデジタル位相比較器が実現可能となる。さらに本実施例では、第2の実施例と同様、第3の実施例におけるデータ保持回路12_1~12_nを用いない分だけ、さらに消費電力及び回路面積の削減が可能となる。また、VCOからの信号CLKVのような高速な信号と基準信号REFを比較するような場合においても、高速動作するのはリタイミング回路102のみとなり、回路全体として基準信号REF程度の低速信号を用いた比較しか行われないため、全体として低消費電力化が可能となる。 As described above, even with the digital phase comparator according to the present embodiment, it is possible to realize a high-resolution digital phase comparator in which power consumption and circuit area are significantly reduced compared to the conventional configuration. Further, in the present embodiment, similarly to the second embodiment, the power consumption and the circuit area can be further reduced by the amount not using the data holding circuits 12_1 to 12_n in the third embodiment. Further, even when a high-speed signal such as the signal CLKV from the VCO is compared with the reference signal REF, only the retiming circuit 102 operates at high speed, and the entire circuit uses a low-speed signal about the reference signal REF. Therefore, the overall power consumption can be reduced.
[第5の実施の形態]
 図9は、本発明の第5の実施の形態のデジタル位相比較器の構成を示す図である。図9を参照すると、本実施の形態のデジタル位相比較器では、VCO101からの信号CLKVと基準信号REFを入力する。基準信号REFはデータ保持回路102及び103により、VCO101の出力信号CLKVの立ち上がり及び立ち下がりエッジでそれぞれ取り込まれ、リタイミングされた信号REFT及びREFCをそれぞれ出力する。リタイミング信号REFT及びREFCはそれぞれVCO101の出力信号CLKVの立ち上がり及び立ち下がりの位相情報を保持しており、リタイミング信号REFTとREFCの位相差は、VCO101の出力信号CLKVの半周期分の位相差情報を保持する。
[Fifth Embodiment]
FIG. 9 is a diagram illustrating a configuration of a digital phase comparator according to the fifth embodiment of the present invention. Referring to FIG. 9, in the digital phase comparator according to the present embodiment, a signal CLKV from the VCO 101 and a reference signal REF are input. The reference signal REF is taken in at the rising and falling edges of the output signal CLKV of the VCO 101 by the data holding circuits 102 and 103, and outputs retimed signals REFT and REFC, respectively. The retiming signals REFT and REFC respectively hold the rising and falling phase information of the output signal CLKV of the VCO 101, and the phase difference between the retiming signals REFT and REFC is a phase difference corresponding to a half cycle of the output signal CLKV of the VCO 101. Keep information.
 よって基準信号REFに対するリタイミング信号REFT及びREFCの位相差情報を用いることで、基準信号REFとVCO出力CLKVの位相比較及び、位相比較結果のVCO出力信号周期での正規化することが可能となる。 Therefore, by using the phase difference information of the retiming signals REFT and REFC with respect to the reference signal REF, it becomes possible to compare the phase of the reference signal REF and the VCO output CLKV and normalize the phase comparison result in the VCO output signal cycle. .
 基準信号REF及びリタイミング信号REFT、REFCは時間デジタル変換器10’に入力される。時間デジタル変換器10’は、図1に示した時間デジタル変換器10に、データ保持回路13_1~13_nを追加した構成となっている。データ保持回路12_1~12_nは、基準信号REF、及び基準信号REFをインバータ列11_1~11_(n-1)で順次遅延させた信号(Dc(1)~Dc(n-1))をリタイミング信号REFTをクロック信号として取り込む。データ保持回路13_1~13_nは、基準信号REF、及び基準信号REFをインバータ列11_1~11_(n-1)で順次遅延させた信号(Dc(1)~Dc(n-1))を、リタイミング信号REFCをクロック信号として取り込む。 The reference signal REF and the retiming signals REFT and REFC are input to the time digital converter 10 '. The time digital converter 10 'is configured by adding data holding circuits 13_1 to 13_n to the time digital converter 10 shown in FIG. The data holding circuits 12_1 to 12_n are the retiming signals REF and signals (Dc (1) to Dc (n-1)) obtained by sequentially delaying the reference signal REF by the inverter rows 11_1 to 11_ (n-1). REFT is captured as a clock signal. The data holding circuits 13_1 to 13_n retiming the reference signal REF and signals (Dc (1) to Dc (n-1)) obtained by sequentially delaying the reference signal REF by the inverter rows 11_1 to 11_ (n-1). The signal REFC is captured as a clock signal.
 データ保持回路12_1~12_nでは、基準信号REFとリタイミング信号REFTの位相差をデジタル信号TQ(1)~TQ(n)として出力し、データ保持回路13_1~13_nでは基準信号REFとリタイミング信号REFCの位相差をデジタル信号CQ(1)~CQ(n)として出力し、その結果は、それぞれ論理回路1’に入力される。 The data holding circuits 12_1 to 12_n output the phase difference between the reference signal REF and the retiming signal REFT as digital signals TQ C (1) to TQ C (n), and the data holding circuits 13_1 to 13_n perform the retiming with the reference signal REF. The phase difference of the signal REFC is output as digital signals CQ C (1) to CQ C (n), and the result is input to the logic circuit 1 ′.
 小位相差検出器20には、基準信号REF、リタイミング信号REFT及び時間デジタル変換器10’のインバータ列11_1~11_(n-1)の出力D(1)~D(n-1)が入力され、リタイミング信号REFTとREFT信号入力直後のインバータ列11_1~11_(n-1)での反転出力との位相差を保った出力信号TFCLK1及びTFCLK2を出力する。 The small phase difference detector 20 includes the reference signal REF, the retiming signal REFT, and the outputs D C (1) to D C (n−1) of the inverter trains 11_1 to 11_ (n−1) of the time digital converter 10 ′. Are output, and output signals TFCLK1 and TFCLK2 that maintain the phase difference between the retiming signal REFT and the inverted output of the inverter trains 11_1 to 11_ (n−1) immediately after the input of the REFT signal are output.
 同様にして、小位相差検出器30には、基準信号REF、リタイミング信号REFC及び時間デジタル変換器10’のインバータ列の出力D(1)~D(n-1)が入力され、リタイミング信号REFCとREFC信号入力直後のインバータ列11_1~11_(n-1)での反転出力信号との位相差を保った出力信号CFCLK1及びCFCLK2を出力する。なお、小位相差検出器20と小位相差検出器30は同一の回路構成となっており、インバータ列における遅延時間が同一となっている。 Similarly, the small phase difference detector 30 receives the reference signal REF, the retiming signal REFC, and the outputs D C (1) to D C (n−1) of the inverter array of the time digital converter 10 ′. Output signals CFCLK1 and CFCLK2 that maintain the phase difference between the retiming signal REFC and the inverted output signal of the inverter trains 11_1 to 11_ (n−1) immediately after the REFC signal is input are output. The small phase difference detector 20 and the small phase difference detector 30 have the same circuit configuration, and the delay time in the inverter row is the same.
 時間デジタル変換器50では、第1の実施例と同様にインバータ列51_1~51_mと52_1~52_mの遅延時間差の分解能でTFCLKとTFCLK2の位相比較が行われる。 In the time digital converter 50, the phase comparison between TFCLK and TFCLK2 is performed with the resolution of the delay time difference between the inverter trains 51_1 to 51_m and 52_1 to 52_m, as in the first embodiment.
 同様に、時間デジタル変換器60では、第1の実施例と同様にインバータ列61_1~61_mと62_1~62_mの遅延時間差の分解能でCFCLKとCFCLK2の位相比較が行われる。 Similarly, in the time digital converter 60, the phase comparison between CFCLK and CFCLK2 is performed with the resolution of the delay time difference between the inverter trains 61_1 to 61_m and 62_1 to 62_m, as in the first embodiment.
 また、時間デジタル変換器70では、時間デジタル変換器10’におけるインバータ列11_nと11_n+1の出力信号が入力され、インバータ列1段分の遅延時間差の計測が行われる。なお、時間デジタル変換器50、60、70は同一の回路構成となっており、インバータ列の遅延時間差が同一となっている。 Also, in the time digital converter 70, the output signals of the inverter trains 11_n and 11_n + 1 in the time digital converter 10 'are input, and the delay time difference for one stage of the inverter train is measured. The time digital converters 50, 60, and 70 have the same circuit configuration, and the delay time difference between the inverter trains is the same.
[実施例]
 次に、第5の実施の形態の具体的な実施例について図面を参照して詳細に説明する。図10乃至図13は、図9の第5の実施の形態において、n=8、m=8とした場合のタイミングチャートを示している。
[Example]
Next, specific examples of the fifth embodiment will be described in detail with reference to the drawings. 10 to 13 show timing charts when n = 8 and m = 8 in the fifth embodiment of FIG.
 図10は、時間デジタル変換器10’のタイミングチャートを示している。このとき、基準信号REFとリタイミング信号REFTとの位相差をT、基準信号REFとリタイミング信号REFCとの位相差をTCCとする。 FIG. 10 shows a timing chart of the time digital converter 10 ′. At this time, the phase difference between the reference signal REF and the retiming signal REFT is T C , and the phase difference between the reference signal REF and the retiming signal REFC is T CC .
 時間デジタル変換器10’におけるインバータ列11_1~11_8の各遅延時間をΔTとすると、インバータ列11_1~11_7における入出力信号の位相は、インバータを通過するごとにΔTだけ遅延していく。インバータ列11_1~11_7で順次遅延された信号D(1)~D(7)に対するリタイミング信号REFTの位相関係は3段目のインバータ11_3の出力時点で逆転し、データ保持回路12_1~12_8の出力TQ(1)~TQ(8)には、3段目までは論理「1」が出力され、4段目以降は論理「0」が出力される。 When the delay times of the inverter array 11_1 ~ 11_8 in the time-digital converter 10 'and [Delta] T C, the phase of the input and output signals in the inverter array 11_1 ~ 11_7 is gradually delayed by [Delta] T C during each pass through the inverter. The phase relationship of the retiming signal REFT with respect to the signals D C (1) to D C (7) sequentially delayed by the inverter rows 11_1 to 11_7 is reversed at the output time of the third-stage inverter 11_3, and the data holding circuits 12_1 to 12_8. In the outputs TQ C (1) to TQ C (8), logic “1” is output until the third stage, and logic “0” is output after the fourth stage.
 即ち、位相差TCTはインバータ列の遅延2段分と3段分の間であることがわかり、リタイミング信号REFTとD(3)との位相差TFTを用いて、
 TCT=3ΔT-TFT
と表される。
That is, it can be seen that the phase difference T CT is between two and three delay stages of the inverter train, and using the phase difference T FT between the retiming signals REFT and D C (3),
T CT = 3ΔT C -T FT
It is expressed.
 同様に、インバータ列11_1~11_7で順次遅延された信号D(1)~D(7)に対するリタイミング信号REFCの位相関係は7段目のインバータ11_7の出力時点で逆転し、データ保持回路13_1~13_8の出力CQ(1)~CQ(8)には、7段目までは論理「1」が出力され、8段目は論理「0」が出力される。 Similarly, the phase relationship of the retiming signal REFC with respect to the signals D C (1) to D C (7) sequentially delayed by the inverter rows 11_1 to 11_7 is reversed at the output time of the seventh stage inverter 11_7, and the data holding circuit In the outputs CQ C (1) to CQ C (8) of 13_1 to 13_8, logic “1” is output up to the seventh stage, and logic “0” is output from the eighth stage.
 即ち、位相差TCCはインバータ列の遅延6段分と7段分の間であることがわかり、リタイミング信号REFTとD(7)との位相差TFCを用いて、
 TCT=7ΔT-TFC
と表される。
That is, it can be seen that the phase difference T CC is between the delay stage 6 and 7 stages of the inverter train, and using the phase difference T FC between the retiming signals REFT and D C (7),
T CT = 7ΔT C -T FC
It is expressed.
 図11は、小位相差検出器20及び時間デジタル変換器50におけるタイミングチャートを示している。 FIG. 11 shows a timing chart in the small phase difference detector 20 and the time digital converter 50.
 小位相差検出器20においては、第1の実施例と同様にして、リタイミング信号REFTとREFT入力直後のインバータ11_3の出力信号D(3)との位相差TFTを保った出力信号TFCLK1及びTFCLK2を出力する。 In the small phase difference detector 20, as in the first embodiment, the output signal TFCLK1 that maintains the phase difference TFT between the retiming signal REFT and the output signal D C (3) of the inverter 11_3 immediately after the input of REFT, and TFCLK2 is output.
 時間デジタル変換器50では、TFCLK1とTFCLK2の位相差がインバータ列51_1~51_8と、インバータ列52_1~52_8の遅延時間差精度で計測される。このとき2段目のデータ保持回路53_2まではデータ入力がクロック入力に対し位相が進んでいる状態のため、論理「1」を出力するが、3段目のインバータを通過した段階で位相関係の逆転が起こるため、3段目以降のデータ保持回路の出力は論理「0」となり、位相差TFTはインバータ列の遅延差ΔTF1-ΔTF22段分と3段分の間であることがわかる。 In the time digital converter 50, the phase difference between TFCLK1 and TFCLK2 is measured with the delay time difference accuracy between the inverter trains 51_1 to 51_8 and the inverter trains 52_1 to 52_8. At this time, since the phase of the data input is advanced with respect to the clock input up to the second stage data holding circuit 53_2, a logic “1” is output. Since reverse rotation occurs, the output of the data holding circuit after the third stage is logic “0”, and the phase difference T FT is between the delay stage ΔT F1 -ΔT F2 of the inverter stage and the third stage. Recognize.
 図12は、小位相差検出器30及び時間デジタル変換器60におけるタイミングチャートを示している。 FIG. 12 shows a timing chart in the small phase difference detector 30 and the time digital converter 60.
 小位相差検出器30では、小位相差検出器20と同様にして、リタイミング信号REFCと、REFC入力直後のインバータ11_7の出力信号D(7)との位相差TFCを保った出力信号CFCLK1及びCFCLK2を出力する。時間デジタル変換器60では、CFCLK1とCFCLK2の位相差が、インバータ列61_1~61_8と、インバータ列62_1~62_8の遅延時間差精度で計測される。このとき、1段目のデータ保持回路63_2までは、データ入力がクロック入力に対し位相が進んでいる状態のため、論理「1」を出力するが、2段目のインバータ列を通過した段階で、位相関係の逆転が起こるため、2段目以降のデータ保持回路53_2、・・・53_8の出力QFC(2)~QFC(8)は、論理「0」となり、位相差TFCは、インバータ列の遅延差ΔTF1-ΔTF21段分と2段分の間であることがわかる。 In the small phase difference detector 30, as in the small phase difference detector 20, the output signal CFCLK1 that maintains the phase difference TFC between the retiming signal REFC and the output signal D C (7) of the inverter 11_7 immediately after REFC input. And CFCLK2 are output. In the time digital converter 60, the phase difference between CFCLK1 and CFCLK2 is measured with a delay time difference accuracy between the inverter trains 61_1 to 61_8 and the inverter trains 62_1 to 62_8. At this time, since the phase of the data input is advanced with respect to the clock input up to the first-stage data holding circuit 63_2, the logic “1” is output. Since the phase relationship is reversed, the outputs Q FC (2) to Q FC (8) of the data holding circuits 53_2,... 53_8 in the second and subsequent stages are logic “0”, and the phase difference T FC is It can be seen that the delay difference ΔT F1 -ΔT F2 of the inverter train is between one stage and two stages.
 図13は、時間デジタル変換器70におけるタイミングチャートを示している。 FIG. 13 shows a timing chart in the time digital converter 70.
 時間デジタル変換器70には、時間デジタル変換器10’のインバータ列11_8と11_9の出力信号D(8)とD(9)が入力され、該インバータ列の遅延時間ΔTが計測される。このとき、5段目のデータ保持回路73_5までは、データ入力がクロック入力に対し位相が進んでいる状態のため、論理「1」を出力するが、6段目のインバータ列11_6を通過した段階で、位相関係の逆転が起こるため、6段目以降のデータ保持回路73_6、73_7_73_8の出力は論理「0」となり、位相差TFCはインバータ列の遅延差ΔTF1-ΔTF25段分と6段分の間であることがわかる。 The time to digital converter 70, is inputted time-digital converter 10 inverter row 11_8 and the output signal D C (8) and D C (9) of 11_9 of ', the delay time [Delta] T C of the inverter array is measured . At this time, since the phase of the data input is advanced with respect to the clock input up to the fifth-stage data holding circuit 73_5, the logic “1” is output, but the stage that has passed through the sixth-stage inverter row 11_6. Since the phase relationship is reversed, the outputs of the data holding circuits 73_6 and 73_7_73_8 in the sixth and subsequent stages are logic “0”, and the phase difference T FC is equal to the delay difference ΔT F1 −ΔT F2 of the inverter stage and 6 stages. It turns out that it is between steps.
 以上より、基準信号REFとリタイミング信号REFTとの位相差TCTは以下のような式で表される。 From the above, the phase difference T CT between the reference signal REF and the retiming signal REFT is expressed by the following equation.
 TCT=3ΔT-TFT
    =3×5(ΔTF1-ΔTF2)-2(ΔTF1-ΔTF2
    =13(ΔTF1-ΔTF2)   ・・・(式1)
T CT = 3ΔT C -T FT
= 3 × 5 (ΔT F1 −ΔT F2 ) −2 (ΔT F1 −ΔT F2 )
= 13 (ΔT F1 −ΔT F2 ) (Formula 1)
 同様に、基準信号REFとリタイミング信号REFCとの位相差TCCは以下のような式で表される。 Similarly, the phase difference T CC between the reference signal REF and the retiming signal REFC is expressed by the following equation.
 TCC=7ΔT-TFC
    =7×5(ΔTF1-ΔTF2)-(ΔTF1-ΔTF2
    =34(ΔTF1-ΔTF2)   ・・・(式2)
T CC = 7ΔT C -T FC
= 7 × 5 (ΔT F1 −ΔT F2 ) − (ΔT F1 −ΔT F2 )
= 34 (ΔT F1 −ΔT F2 ) (Expression 2)
 よって、この場合のVCO出力信号周期で正規化した位相差は、以下のように表される。 Therefore, the phase difference normalized by the VCO output signal period in this case is expressed as follows.
 TCT-2×(TCC-TCT)=13/34   ・・・(式3) T CT −2 × (T CC −T CT ) = 13/34 (Formula 3)
 よって、本実施例のデジタル位相比較器では、基準信号REFに対するリタイミング信号REFT及びREFCの位相差を計測し、基準信号REFとVCO出力CLKVの位相比較及び、位相比較結果のVCO出力信号周期での正規化することが可能であることがわかる。 Therefore, in the digital phase comparator of the present embodiment, the phase difference between the retiming signals REFT and REFC with respect to the reference signal REF is measured, the phase comparison between the reference signal REF and the VCO output CLKV, and the VCO output signal period of the phase comparison result is performed. It can be seen that it is possible to normalize.
 さらに、このような構成を用いることで、VCO101からの信号CLKVのような高速な信号と基準信号REFを比較するような場合においても、高速動作するのは、リタイミング回路(データ保持回路)102、103のみとなり、回路全体として基準信号REF程度の低速信号を用いた比較しか行われないため、全体として低消費電力化が可能となる。 Further, by using such a configuration, even when a high-speed signal such as the signal CLKV from the VCO 101 is compared with the reference signal REF, the retiming circuit (data holding circuit) 102 is operated at high speed. 103, and only the comparison using the low-speed signal of the reference signal REF is performed as a whole circuit, so that the power consumption can be reduced as a whole.
[第6の実施の形態]
 図14は、本発明の第6の実施の形態のデジタル位相比較器の構成を示す図である。図7を参照すると、本実施の形態のデジタル位相比較器も、図10に示した第5の実施例のデジタル位相比較器と同様、VCO101からの信号CLKVと基準信号REFが入力とを入力し、基準信号REFに対するリタイミング信号REFT及びREFCの位相差情報を用いることで、基準信号REFとVCO出力CLKVの位相比較及び、位相比較結果のVCO出力信号周期での正規化を行う。
[Sixth Embodiment]
FIG. 14 is a diagram illustrating a configuration of a digital phase comparator according to the sixth embodiment of the present invention. Referring to FIG. 7, the digital phase comparator according to the present embodiment also receives the input of the signal CLKV from the VCO 101 and the reference signal REF as in the case of the digital phase comparator of the fifth example shown in FIG. By using the phase difference information of the retiming signals REFT and REFC with respect to the reference signal REF, the phase comparison between the reference signal REF and the VCO output CLKV and the normalization of the phase comparison result in the VCO output signal cycle are performed.
 また、時間デジタル変換器40’では、図3に示した時間デジタル変換器40と同様の構成により、基準信号REFとリタイミング信号REFTの位相差検出と、インバータ列の遅延時間による分解能以下のREFT信号入力直後のインバータ列11_1~11_nでの反転タイミングの検出を兼ねた動作を行う。さらに、インバータ列41_1~41_n、データ保持回路42_1~42_n及びデータ保持回路43_1~43_n、OR回路44及びOR回路45を追加することにより、基準信号REFとリタイミング信号REFCの位相差検出と、インバータ列の遅延時間による分解能以下のREFC信号入力直後のインバータ列11_1~11_nでの反転タイミングの検出を兼ねた動作を行う。 Further, the time digital converter 40 ′ has the same configuration as that of the time digital converter 40 shown in FIG. 3, and detects the phase difference between the reference signal REF and the retiming signal REFT and the REFT that is less than the resolution due to the delay time of the inverter train. An operation that also serves as detection of inversion timing in the inverter trains 11_1 to 11_n immediately after signal input is performed. Further, by adding inverter rows 41_1 to 41_n, data holding circuits 42_1 to 42_n, data holding circuits 43_1 to 43_n, OR circuit 44 and OR circuit 45, phase difference detection between the reference signal REF and the retiming signal REFC, An operation that also serves as detection of the inversion timing in the inverter trains 11_1 to 11_n immediately after the REFC signal input with a resolution equal to or lower than the resolution of the train delay time is performed.
[実施例]
 次に、第6の実施の形態の具体的な実施例について図面を参照して詳細に説明する。図15乃至図18は、図14に示した第6の実施の形態において、n=8、m=8とした場合のタイミングチャートを示している。
[Example]
Next, specific examples of the sixth embodiment will be described in detail with reference to the drawings. 15 to 18 show timing charts when n = 8 and m = 8 in the sixth embodiment shown in FIG.
 図15は、時間デジタル変換器40’のタイミングチャートを示している。このとき、基準信号REFとリタイミング信号REFTとの位相差をT、基準信号REFとリタイミング信号REFCとの位相差をTCCとする。時間デジタル変換器10’におけるインバータ列11_1~11_8の各遅延時間をΔTとすると、時間デジタル変換器40’において、データ保持回路23_1~23_8は、データ端子への入力信号の位相がクロック端子への入力信号よりも遅れている場合に、論理「1」を出力するので、インバータ列11_1~11_8の各遅延時間をΔTとすると、基準信号REFに対する、インバータ列11_1~11_7の各出力D(1)~D(7)の出力は、それぞれ、ΔT~7ΔTだけ遅延し、3段目のインバータ11_3の出力時点で、リタイミング信号REFTとの位相関係が逆転する。 FIG. 15 shows a timing chart of the time digital converter 40 ′. At this time, the phase difference between the reference signal REF and the retiming signal REFT is T C , and the phase difference between the reference signal REF and the retiming signal REFC is T CC . 'If the delay times of the inverter array 11_1 ~ 11_8 in the [Delta] T C, the time to digital converter 40' time-to-digital converter 10 in the data holding circuits 23_1 ~ 23_8, the phase of the input signal to the data terminal to the clock terminal If you are delayed from the input signal, since the output a logic "1", when the delay times of the inverter array 11_1 ~ 11_8 to [Delta] T C, with respect to the reference signal REF, the outputs D C of the inverter array 11_1 ~ 11_7 (1) to the output of the D C (7), respectively, delayed by ΔT C ~ 7ΔT C, at the output point of the third-stage inverter 11_3, the phase relationship between the retiming signal REFT is reversed.
 即ち、データ保持回路23_1~23_8の出力Q(1)~Q(8)には、3段目までは論理「0」が出力され、4段目以降は論理「1」が出力される。このとき、インバータ列としては、7段のインバータ11_1~11_7のうち、3段を通過して位相関係の逆転が起こっていることから、論理「0」の段数を数えることで位相差TCTはインバータ列の遅延2段分と3段分の間であることがわかり、リタイミング信号REFTとDC(3)との位相差TFTを用いて
 TCT=3ΔT-TFT
 と表される。
That is, the output Q C (1) to Q C (8) of the data holding circuits 23_1 to 23_8 outputs a logic “0” until the third stage, and outputs a logic “1” after the fourth stage. . At this time, the phase difference T CT is calculated by counting the number of stages of logic “0” because the phase relationship is reversed through three stages of the seven stages of inverters 11_1 to 11_7. It can be seen that the delay is between two and three stages of delay of the inverter train, and the phase difference TFT between the retiming signal REFT and DC (3) is used. T CT = 3ΔT C -T FT
It is expressed.
 それと同時に、OR回路24及び25からは、第2の実施構成と同様にして、リタイミング信号REFTと、REFT入力直後のインバータ11_3の出力信号D(3)との位相差TFTを保った出力信号TFCLK1及びTFCLK2が出力される。 At the same time, the OR circuits 24 and 25 maintain the phase difference T FT between the retiming signal REFT and the output signal D C (3) of the inverter 11_3 immediately after REFT input, as in the second embodiment. Output signals TFCLK1 and TFCLK2 are output.
 同様に、インバータ列11_1~11_7で順次遅延された信号D(1)~D(7)に対するリタイミング信号REFCの位相関係は7段目のインバータ11_7の出力時点で逆転し、データ保持回路43_1~43_8の出力CQ(1)~CQ(8)には、7段目までは論理「0」が出力され、8段目は論理「1」が出力される。 Similarly, the phase relationship of the retiming signal REFC with respect to the signals D C (1) to D C (7) sequentially delayed by the inverter rows 11_1 to 11_7 is reversed at the output time of the seventh stage inverter 11_7, and the data holding circuit In the outputs CQ C (1) to CQ C (8) of 43_1 to 43_8, logic “0” is output up to the seventh stage, and logic “1” is output from the eighth stage.
 即ち、位相差TCCはインバータ列の遅延6段分と7段分の間であることがわかり、リタイミング信号REFTとDC(7)との位相差TFCを用いて、
 TCT=7ΔT-TFC
 と表される。
That is, it can be seen that the phase difference T CC is between the delay stage 6 stages and 7 stages of the inverter row, and using the phase difference T FC between the retiming signal REFT and DC (7),
T CT = 7ΔT C -T FC
It is expressed.
 また、OR回路44、45からはリタイミング信号REFCとREFC入力直後のインバータ列11_7の出力信号D(7)との位相差TFCを保った出力信号CFCLK1及びCFCLK2が出力される。 The OR circuits 44 and 45 output the output signals CFCLK1 and CFCLK2 that maintain the phase difference T FC between the retiming signal REFC and the output signal D C (7) of the inverter train 11_7 immediately after the REFC is input.
 図16乃至図18はそれぞれ時間デジタル変換回路50、60、70のタイミングチャートを示している。時間デジタル変換回路50、60、70は、図9に示した第5の実施例と同様の構成となっており、その動作については、図11乃至図13に示したものと同様になっているため、説明は省略する。 16 to 18 show timing charts of the time digital conversion circuits 50, 60, and 70, respectively. The time digital conversion circuits 50, 60 and 70 have the same configuration as that of the fifth embodiment shown in FIG. 9, and the operation thereof is the same as that shown in FIGS. Therefore, explanation is omitted.
 以上の動作により、本実施例のデジタル位相比較器でも、基準信号REFに対するリタイミング信号REFT及びREFCの位相差を計測し、基準信号REFとVCO101の出力信号CLKVの位相比較、及び、位相比較結果のVCO出力信号周期での正規化が可能である。VCO101からの出力信号CLKVのような高速な信号と基準信号REFを比較するような場合においても、高速動作するのは、リタイミング回路102、103のみとなり、回路全体として、基準信号REF程度の低速信号を用いた比較しか行われないため、全体として低消費電力化が可能となる。 With the above operation, the digital phase comparator of this embodiment also measures the phase difference between the retiming signals REFT and REFC with respect to the reference signal REF, compares the phase of the reference signal REF and the output signal CLKV of the VCO 101, and the phase comparison result. Can be normalized with the VCO output signal period. Even when a high-speed signal such as the output signal CLKV from the VCO 101 is compared with the reference signal REF, only the retiming circuits 102 and 103 operate at high speed, and the circuit as a whole is as low as the reference signal REF. Since only comparison using signals is performed, overall power consumption can be reduced.
 さらに、本実施例では、前記第3の実施例における、データ保持回路(12_1~12_n)を用いない分だけ、さらに消費電力及び回路面積の削減が可能となる。 Furthermore, in this embodiment, the power consumption and the circuit area can be further reduced by the amount not using the data holding circuit (12_1 to 12_n) in the third embodiment.
[第7の実施の形態]
 図23は、本発明の第7の実施の形態の構成を示す図である。なお、図23において、図1又は図3の第1の時間デジタル変換器40は省略されており、図23の第2の時間デジタル変換器50は、図1又は図3の第2の時間デジタル変換器50に対応している。図23を参照すると、本実施の形態のデジタル位相比較器は、図1又は図3に示したデジタル位相比較器の第2の時間デジタル変換器50(OR回路24、25からの出力信号FCLK1、FCLK2を入力する)において、データ保持回路54_1~54_m、m入力のOR回路55および56を追加した構成となっている。OR回路55には、データ保持回路53_1~53_mの出力が入力され、その出力がF2CLK2として出力される。データ保持回路54_1~54_mは、インバータ列52_1~52_mの各出力CK(1)~CK(m)をそれぞれのデータ入力端子に入力し、インバータ列51_1~51_mの各出力D(1)~D(m)をクロック端子に入力し、データ入力端子の信号をクロック端子のエッジで取り込み、データ保持回路54_1~54_mの出力はOR回路56に入力され、OR回路56の出力がF2CLK2として出力される。OR回路55とOR回路56の出力信号F2CLK1、F2CLK2の位相差は、時間デジタル変換器50と同様の構成で、インバータ列51_1~51_mとインバータ列52_1~52_mよりもさらに遅延時間差の小さいインバータ列、81_1~81_lおよび82_1~82_lを持つ時間デジタル変換器80により検出され、デジタルコード化される。
[Seventh Embodiment]
FIG. 23 is a diagram showing the configuration of the seventh exemplary embodiment of the present invention. In FIG. 23, the first time digital converter 40 of FIG. 1 or 3 is omitted, and the second time digital converter 50 of FIG. 23 is the second time digital converter of FIG. This corresponds to the converter 50. Referring to FIG. 23, the digital phase comparator according to the present embodiment includes a second time digital converter 50 (output signals FCLK1 from OR circuits 24, 25) of the digital phase comparator shown in FIG. FCLK2 is input), and data holding circuits 54_1 to 54_m and m-input OR circuits 55 and 56 are added. The output of the data holding circuits 53_1 to 53_m is input to the OR circuit 55, and the output is output as F2CLK2. The data holding circuits 54_1 to 54_m input the outputs CK F (1) to CK F (m) of the inverter arrays 52_1 to 52_m to the respective data input terminals, and output the outputs D F (1) of the inverter arrays 51_1 to 51_m. ˜D F (m) is input to the clock terminal, the signal of the data input terminal is captured at the edge of the clock terminal, the outputs of the data holding circuits 54_1 to 54_m are input to the OR circuit 56, and the output of the OR circuit 56 is F2CLK2. Is output. The phase difference between the output signals F2CLK1 and F2CLK2 of the OR circuit 55 and the OR circuit 56 is the same as that of the time digital converter 50, and the inverter train 51_1 to 51_m and the inverter train having a smaller delay time difference than the inverter trains 52_1 to 52_m, It is detected and digitally encoded by a time digital converter 80 having 81_1-81_1 and 82_1-82_1.
 なお、データ保持回路53_1~53_mの出力信号は、論理を整合させるため、データ端子の正転出力としている。また、データ保持回路54_1~54_mは、出力信号及びクロック端子入力信号の論理を整合させるため、出力及びクロック端子の論理を、奇数段は負論理とし、偶数段は正論理としている。奇数段iのデータ保持回路53_iは、CCK(i)の立ち下がりエッジで、D(i)を取り込み、データ出力端子の反転出力をQF1(i)として出力する。偶数段jのデータ保持回路53_jは、CK(j)の立ち上がりエッジで、D(j)を取り込み、データ出力端子の出力データをQF1(j)として出力する。 Note that the output signals of the data holding circuits 53_1 to 53_m are the normal output of the data terminal in order to match the logic. Further, in order to match the logic of the output signal and the clock terminal input signal, the data holding circuits 54_1 to 54_m set the logic of the output and the clock terminal to negative logic in the odd stages and positive logic in the even stages. The odd-numbered stage i data holding circuit 53_i captures D F (i) at the falling edge of CCK F (i), and outputs the inverted output of the data output terminal as Q F1 (i). The data holding circuit 53_j of the even-numbered stage j takes in D F (j) at the rising edge of CK F (j) and outputs the output data of the data output terminal as Q F1 (j).
[実施例]
 次に、第7の実施の形態の具体的な実施例について図面を参照して詳細に説明する。図24、図25は、図23に示した本発明の第7の実施の形態において、n=4、m=4、l=4とした場合のタイミングチャートを示している。図24は、データ保持回路54_1~54_mの出力QF2(1)~QF2(4)を入力とするOR回路55から信号F2CLK1を生成する動作、図25は、データ保持回路53_1~53_mの出力QF1(1)~QF1(4)を入力とするOR回路56から信号F2CLK2を生成する動作の一例が示されている。
[Example]
Next, specific examples of the seventh embodiment will be described in detail with reference to the drawings. 24 and 25 show timing charts when n = 4, m = 4, and l = 4 in the seventh embodiment of the present invention shown in FIG. 24 shows the operation of generating the signal F2CLK1 from the OR circuit 55 that receives the outputs QF2 (1) to QF2 (4) of the data holding circuits 54_1 to 54_m, and FIG. 25 shows the output Q F1 of the data holding circuits 53_1 to 53_m. An example of the operation of generating the signal F2CLK2 from the OR circuit 56 having (1) to Q F1 (4) as inputs is shown.
 図24、図25のタイミング動作において、時間デジタル変換器80の動作は、図2に示した第1の実施形態のデジタル位相比較器の時間デジタル変換器50における動作と同様となるため省略する。すなわち、時間デジタル変換器80の動作は、図2において、図1のFCLK1、FCLK2、CK(1)~CK(4)、D(1)~D(4)、Q(1)~Q(4)のタイミング波形を、図23のF2CLK1、F2CLK2、CKF2(1)~CKF2(4)、DF2(1)~DF2(4)、QF3(1)~QF3(4)に置き換えればよい。 24 and 25, the operation of the time digital converter 80 is the same as the operation of the time digital converter 50 of the digital phase comparator of the first embodiment shown in FIG. That is, the operation of the time digital converter 80 is the same as that shown in FIG. 2 with respect to FCLK1, FCLK2, CK F (1) to CK F (4), D F (1) to D F (4), Q F (1). ) To Q F (4), the timing waveforms of F2CLK1, F2CLK2, CK F2 (1) to CK F2 (4), D F2 (1) to D F2 (4), and Q F3 (1) to Q in FIG. It may be replaced with F3 (4).
 図23の時間デジタル変換器50は、図1、図2に示した構成例と出力が反転している以外は、同一の結果が得られ、1段目及び2段目のデータ保持回路53_1、53_2の出力(QF1(1)、QF1(2))は論理「0」となり、3段目以降のデータ保持回路53_3、53_4の出力(QF1(3)、QF1(4))は論理「1」となりことから、位相差TFはインバータ列の遅延差ΔTF1-ΔTF2の2段分と3段分の間であることがわかる。すなわち、
 2(ΔTF1-ΔTF2)<TF<3(ΔTF1-ΔTF2)
の関係が成り立つ。
The time digital converter 50 of FIG. 23 obtains the same results except that the output is inverted from the configuration example shown in FIGS. 1 and 2, and the first and second stage data holding circuits 53_1, 53_2 outputs (Q F1 (1), Q F1 (2)) are logic “0”, and the outputs (Q F1 (3), Q F1 (4)) of the data holding circuits 53_3, 53_4 in the third and subsequent stages are Since the logic is “1”, it can be seen that the phase difference TF is between two and three stages of the delay difference ΔTF1−ΔTF2 of the inverter train. That is,
2 (ΔTF1-ΔTF2) <TF <3 (ΔTF1-ΔTF2)
The relationship holds.
 データ保持回路54_1~54_4の出力QF2(1)~QF2(4)は、OR回路55に接続されており、3段目のインバータ51_3の出力D(3)の立ち下がり(図24では立ち上がりエッジ)に同期して論理「1」が出力された結果として、OR回路55の出力F2CLK1からは、D(3)の立ち上がりタイミングが抽出されることになる。また、データ保持回路53_1~53_4の出力は、論理回路5に接続されるとともに、4入力のOR回路56にも接続されており、3段目のインバータ52_3の出力信号CK(3)の立ち下がりエッジ(図24では立ち上がりエッジ)に同期して論理「1」が出力された結果として、出力F2CLK2はCK(3)の経ち上がりタイミングが抽出されることになる。これら2つの抽出された出力F2CLK1、F2CLK2を時間デジタル変換器80により比較を行うことで、時間デジタル変換器50で検出しきれないさらに微小な位相差を検出することが可能となる。 Outputs Q F2 (1) to Q F2 ( 4) of the data holding circuits 54_1 to 54_4 are connected to the OR circuit 55, and the output D F (3) of the third-stage inverter 51_3 falls (in FIG. 24). As a result of the logic “1” being output in synchronization with the rising edge), the rising timing of D F (3) is extracted from the output F2CLK1 of the OR circuit 55. The outputs of the data holding circuits 53_1 to 53_4 are connected to the logic circuit 5 and also to the 4-input OR circuit 56, and the output signal CK F (3) of the third-stage inverter 52_3 rises. As a result of the output of logic “1” in synchronization with the falling edge (rising edge in FIG. 24), the rising timing of CK F (3) is extracted from the output F2CLK2. By comparing the two extracted outputs F2CLK1 and F2CLK2 by the time digital converter 80, it becomes possible to detect a further minute phase difference that cannot be detected by the time digital converter 50.
 また、言い換えれば、本実施の形態により、時間デジタル変換器80より前段の、時間デジタル変換器10、時間デジタル変換器50における時間分解能の設定を緩和することが可能となるため、インバータ列およびフリップフロップの段数を減らすことが可能となり、結果として回路面積の低減および消費電力化が可能となる。 In other words, according to the present embodiment, it is possible to relax the time resolution setting in the time digital converter 10 and the time digital converter 50 before the time digital converter 80. As a result, the circuit area can be reduced and the power consumption can be reduced.
 さらに、時間デジタル変換器80の構成を本実施の形態のデジタル位相比較器における時間デジタル変換器50と同様の構成として、時間デジタル変換器80で検出しきれないさらに微小な位相差を、検出可能な構成としてもよいことは明らかである。なお、時間デジタル変換器80の動作は、位相関係の逆転が起こる段数が異なる以外は、図2に示した時間デジタル変換器50の動作と同様となるため省略する。 Furthermore, the configuration of the time digital converter 80 is the same as that of the time digital converter 50 in the digital phase comparator of the present embodiment, so that even a minute phase difference that cannot be detected by the time digital converter 80 can be detected. It is obvious that a simple configuration may be used. Note that the operation of the time digital converter 80 is the same as the operation of the time digital converter 50 shown in FIG.
 なお、上記の特許文献、非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施例ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。 It should be noted that the disclosures of the above patent documents and non-patent documents are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the examples and the examples can be changed and adjusted based on the basic technical concept. Various combinations and selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
1、1’、4、4’、5、6、7、8 論理回路
10、10’、40、40’、50、60、70、80 時間デジタル変換器
20、30 小位相差検出器
11_1~11_n、11_n+1、11_n+2、21_1~21_n、41_
1~41_n、51_1~51_m+1、52_1~52_m+1、61_1~6
1_m+1、62_1~62_m+1、71_1~71_m+1、72_1~72_m+1、81_1~81_l+1、82_1~82_l+1 インバータ(遅延素子)
12_1~12_n、13_1~13_n、22_1~22_n、23_1~23
_n、42_1~42_n、43_1~43_n、53_1~53_m、54_1
~54_m、63_1~63_m、73_1~73_m、83_1~83_l データ保持回路(フリップフロップ)
24、25、44、45、55、56  OR回路(論理和演算回路)
101 VCO(電圧制御発振器)
102、103 リタイミング回路(データ保持回路)
1, 1 ′, 4, 4 ′, 5, 6, 7, 8 Logic circuit 10, 10 ′, 40, 40 ′, 50, 60, 70, 80 Time digital converter 20, 30 Small phase difference detector 11_1˜ 11_n, 11_n + 1, 11_n + 2, 21_1 to 21_n, 41_
1-41_n, 51_1-51_m + 1, 52_1-52_m + 1, 61_1-6
1_m + 1, 62_1 to 62_m + 1, 71_1 to 71_m + 1, 72_1 to 72_m + 1, 81_1 to 81_l + 1, 82_1 to 82_l + 1 Inverter (delay element)
12_1 to 12_n, 13_1 to 13_n, 22_1 to 22_n, 23_1 to 23
_N, 42_1 to 42_n, 43_1 to 43_n, 53_1 to 53_m, 54_1
54_m, 63_1-63_m, 73_1-73_m, 83_1-83_l Data holding circuit (flip-flop)
24, 25, 44, 45, 55, 56 OR circuit (OR operation circuit)
101 VCO (Voltage Controlled Oscillator)
102, 103 Retiming circuit (data holding circuit)

Claims (29)

  1.  第1の入力信号を、第2の入力信号及び前記第2の入力信号を等間隔に遅延させた第2の遅延入力信号群によって、それぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第1の信号を生成する第1の回路ユニットと、
     前記第2の入力信号を、前記第1の入力信号及び前記第1の入力信号を前記第2の遅延入力信号群と同一の単位遅延時間で等間隔に遅延させた第1の遅延入力信号群によって、それぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第2の信号を生成する第2の回路ユニットと、
     前記第1、第2の回路ユニットでそれぞれ生成された前記第1、第2の信号を受け、前記第1の信号を等間隔に遅延させた第1の遅延信号群を生成し、前記第2の信号を前記第1の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第2の遅延信号群を生成し、前記第1の遅延信号群と、前記第2の遅延信号群とのうち一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号によって、それぞれサンプルする第3の回路ユニットと、
     を備え、
     前記第1の回路ユニット又は前記第2の回路ユニットにおいてサンプルされた信号と、前記第3の回路ユニットにおいてサンプルされた信号とが、前記第1の入力信号と前記第2の入力信号の位相差に対応する値として用いられる、デジタル位相比較器。
    The first input signal is sampled by each of the second input signal and the second delayed input signal group obtained by delaying the second input signal at equal intervals. A first circuit unit that performs a logical operation to generate a first signal;
    A first delayed input signal group obtained by delaying the second input signal at equal intervals by the same unit delay time as the second delayed input signal group, the first input signal and the first input signal. A second circuit unit that samples each of the plurality of sampled signals and performs a predetermined logical operation on the sampled signals to generate a second signal;
    Receiving the first and second signals generated by the first and second circuit units, respectively, and generating a first delayed signal group obtained by delaying the first signal at equal intervals; Are generated at equal intervals with a unit delay time different from that of the first delay signal group, and the first delay signal group, the second delay signal group, A third circuit unit that samples each delay signal of one of the delay signal groups by a corresponding delay signal of the other delay signal group;
    With
    The phase difference between the first input signal and the second input signal is the signal sampled in the first circuit unit or the second circuit unit and the signal sampled in the third circuit unit. A digital phase comparator used as a value corresponding to.
  2.  前記第1の回路ユニットは、前記第2の入力信号を入力し、前記第2の入力信号を等間隔に遅延させた前記第2の遅延入力信号群を生成する回路を備え、
     前記第2の回路ユニットは、前記第1の入力信号を入力し、前記第1の入力信号を前記第2の遅延入力信号群と同一の単位遅延時間で等間隔に遅延させた前記第1の遅延入力信号群を生成する回路を備えている、請求項1記載のデジタル位相比較器。
    The first circuit unit includes a circuit that receives the second input signal and generates the second delayed input signal group obtained by delaying the second input signal at equal intervals.
    The second circuit unit receives the first input signal, and delays the first input signal at equal intervals by the same unit delay time as the second delayed input signal group. The digital phase comparator according to claim 1, further comprising a circuit that generates a group of delayed input signals.
  3.  前記第1の回路ユニットは、前記第2の入力信号を入力し、前記第2の入力信号を等間隔に遅延させた第2の遅延入力信号群を生成する回路を備え、
     前記第1の入力信号を入力し、前記第1の入力信号を前記第2の遅延入力信号群と同一の単位遅延時間で等間隔に遅延させた第1の遅延入力信号群を生成し、前記第1の入力信号及び前記第1の遅延入力信号群を、前記第2の入力信号で共通にサンプルする第4の回路ユニットをさらに備え、
     前記第1の入力信号と前記第2の入力信号の位相差に対応する値として、前記第1又は第2の回路ユニットにおいてサンプルされた信号の代わりに、前記第4の回路ユニットにおいてサンプルされた信号と、前記第3の回路ユニットにおいてサンプルされた信号とが用いられる、請求項1記載のデジタル位相比較器。
    The first circuit unit includes a circuit that receives the second input signal and generates a second delayed input signal group obtained by delaying the second input signal at equal intervals.
    The first input signal is input, and a first delayed input signal group is generated by delaying the first input signal at equal intervals by the same unit delay time as the second delayed input signal group, A fourth circuit unit that samples the first input signal and the first delayed input signal group in common with the second input signal;
    As a value corresponding to the phase difference between the first input signal and the second input signal, the signal sampled in the fourth circuit unit instead of the signal sampled in the first or second circuit unit. The digital phase comparator according to claim 1, wherein a signal and a signal sampled in the third circuit unit are used.
  4.  前記第3の回路ユニットにおいて前記一方の遅延信号群の各遅延信号のサンプリング信号として用いられた前記他方の遅延信号群の各遅延信号を、前記一方の遅延信号群の対応する遅延信号によって、それぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第3の信号を生成する第5の回路ユニットと、
     前記第3の回路ユニットにおいてサンプルされた複数の信号に対して所定の論理演算を施して第4の信号を生成する回路と、
     前記第3、第4の信号を受け、前記第3の信号を等間隔に遅延させた第3の遅延信号群を生成し、前記第4の信号を前記第3の回路ユニットにおける前記第1、第2の遅延信号群の単位遅延時間の差よりも単位遅延時間の差が小さい、前記第3の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第4の遅延信号群を生成し、前記第3の遅延信号群と、前記第4の遅延信号群とのうち一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号によってそれぞれサンプルする第6の回路ユニットと、
     を備え、
     前記第1の入力信号と前記第2の入力信号の位相差に対応する値として、さらに前記第6の回路ユニットにおいてサンプルされた信号がさらに用いられる、請求項1乃至3のいずれか1項に記載のデジタル位相比較器。
    In the third circuit unit, each delay signal of the other delay signal group used as a sampling signal of each delay signal of the one delay signal group is changed by a corresponding delay signal of the one delay signal group, respectively. A fifth circuit unit that samples and performs a predetermined logic operation on the plurality of sampled signals to generate a third signal;
    A circuit that performs a predetermined logical operation on the plurality of signals sampled in the third circuit unit to generate a fourth signal;
    The third and fourth signals are received, a third delayed signal group is generated by delaying the third signal at equal intervals, and the fourth signal is generated in the first circuit unit in the third circuit unit. A fourth delay signal group is generated in which the unit delay time difference is smaller than the unit delay time difference of the second delay signal group and is delayed at equal intervals by a unit delay time different from that of the third delay signal group. And a sixth circuit for sampling each delay signal of one of the third delay signal group and the fourth delay signal group by a corresponding delay signal of the other delay signal group, respectively. Unit,
    With
    The signal sampled in the sixth circuit unit is further used as a value corresponding to the phase difference between the first input signal and the second input signal, according to any one of claims 1 to 3. The digital phase comparator described.
  5.  前記第1の入力信号として基準信号を用い、
     前記第2の入力信号として、前記第1の入力信号を発振器の出力に応答して保持回路でサンプルした出力信号を用いる、請求項1乃至3のいずれか1項に記載のデジタル位相比較器。
    Using a reference signal as the first input signal,
    4. The digital phase comparator according to claim 1, wherein an output signal obtained by sampling the first input signal by a holding circuit in response to an output of an oscillator is used as the second input signal. 5.
  6.  入力信号をクロック発振器の発振周波数の半周期毎にサンプルし二つの信号を生成する回路を備え、
     前記入力信号と前記二つの信号の一方をそれぞれ前記第1、第2の入力信号として入力する前記第1、第2の回路ユニットと、前記第3の回路ユニットの組と、
     前記入力信号と前記二つの信号の他方をそれぞれ前記第1、第2の入力信号として入力する前記第1、第2の回路ユニットと、前記第3の回路ユニットの別の組と、
     を備えている、請求項1乃至3のいずれか1項に記載のデジタル位相比較器。
    A circuit that samples the input signal every half cycle of the oscillation frequency of the clock oscillator and generates two signals,
    A set of the first and second circuit units that inputs one of the input signal and the two signals as the first and second input signals, respectively, and the third circuit unit;
    The first and second circuit units for inputting the other of the input signal and the two signals as the first and second input signals, respectively, and another set of the third circuit unit;
    The digital phase comparator according to claim 1, further comprising:
  7.  入力信号をクロック発振器の発振周波数の半周期毎にサンプルし二つの信号を生成する回路を備え、
     前記入力信号を第1の入力信号とし、前記二つの信号の一方を第2の入力信号とし、前記二つの信号の他方を第3の入力信号として、
     前記第1の入力信号を等間隔に遅延させた第1の遅延入力信号群を生成し、前記第1の入力信号及び前記第1の遅延入力信号群を、前記第2の入力信号の第1の遷移エッジで共通にサンプルする回路と、
     前記第1の入力信号及び前記第1の遅延入力信号群を、前記第3の入力信号の第2の遷移エッジで共通にサンプルする回路と、
     を備え、
     前記第1及び第2の入力信号の組に対して、
     前記第2の入力信号を、前記第1の遅延入力信号群と同一の単位遅延時間で等間隔に遅延させた第2の遅延入力信号群を生成し、前記第1の入力信号を、前記第2の入力信号及び前記第2の遅延入力信号群によって、それぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第1の信号を生成する回路と、
     前記第2の入力信号を、前記第1の入力信号及び前記第1の遅延入力信号群によって、それぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第2の信号を生成する回路と、
     前記第1の信号を等間隔に遅延させた第1の遅延信号群を生成し、前記第2の信号を、前記第1の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第2の遅延信号群を生成し、前記第1の遅延信号群と、前記第2の遅延信号群のうち、一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号によってそれぞれサンプルする回路と
     を備え、
     前記第1及び第3の入力信号の組に対して、
     前記第3の入力信号を、前記第1の遅延入力信号群と同一の単位遅延時間で等間隔に遅延させた第3の遅延入力信号群を生成し、前記第1の入力信号を、前記第3の入力信号及び前記第3の遅延入力信号群によってそれぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第3の信号を生成する回路と、
     前記第3の入力信号を、前記第1の入力信号及び前記第1の遅延入力信号群によってそれぞれサンプルし、サンプルされた複数の信号に所定の論理演算を施して第4の信号を生成する回路と、
     前記第3の信号を等間隔に遅延させた第3の遅延信号群を生成し、前記第4の信号を、前記第3の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第4の遅延信号群を生成し、前記第3の遅延信号群と、前記第4の遅延信号群のうち、一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号によってそれぞれサンプルする回路と
     を備えている、請求項1記載のデジタル位相比較器。
    A circuit that samples the input signal every half cycle of the oscillation frequency of the clock oscillator and generates two signals,
    The input signal is a first input signal, one of the two signals is a second input signal, and the other of the two signals is a third input signal,
    A first delayed input signal group is generated by delaying the first input signal at equal intervals, and the first input signal and the first delayed input signal group are set to the first of the second input signals. A circuit that samples in common at the transition edges of
    A circuit for commonly sampling the first input signal and the first delayed input signal group at a second transition edge of the third input signal;
    With
    For the set of first and second input signals,
    A second delayed input signal group is generated by delaying the second input signal at equal intervals by the same unit delay time as the first delayed input signal group, and the first input signal is A circuit that samples each of the two input signals and the second delayed input signal group, and performs a predetermined logical operation on the plurality of sampled signals to generate a first signal;
    The second input signal is sampled by the first input signal and the first delayed input signal group, respectively, and a predetermined logical operation is performed on the plurality of sampled signals to obtain the second signal. A circuit to generate,
    A first delay signal group is generated by delaying the first signal at equal intervals, and the second signal is delayed at equal intervals by a unit delay time different from that of the first delay signal group. Two delay signal groups are generated, and each delay signal of one delay signal group among the first delay signal group and the second delay signal group is represented by a corresponding delay signal of the other delay signal group. Each with a circuit to sample,
    For the set of first and third input signals,
    A third delayed input signal group is generated by delaying the third input signal at equal intervals with the same unit delay time as the first delayed input signal group, and the first input signal is A circuit that samples each of the three input signals and the third delay input signal group, and performs a predetermined logical operation on the plurality of sampled signals to generate a third signal;
    A circuit that samples the third input signal by the first input signal and the first delayed input signal group, respectively, and performs a predetermined logical operation on the plurality of sampled signals to generate a fourth signal. When,
    A third delay signal group is generated by delaying the third signal at equal intervals, and the fourth signal is delayed at equal intervals by a unit delay time different from that of the third delay signal group. 4 delay signal groups are generated, and among the third delay signal group and the fourth delay signal group, each delay signal of one delay signal group is represented by a corresponding delay signal of the other delay signal group. The digital phase comparator according to claim 1, further comprising a circuit for sampling.
  8.  入力信号をクロック発振器の発振周波数の半周期毎にサンプルし二つの信号を生成する回路を備え、
     前記入力信号を第1の入力信号とし、前記二つの信号の一方を第2の入力信号とし、前記二つの信号の他方を第3の入力信号として、
     前記第1及び第2の入力信号の組に対して、
     前記第2の入力信号を等間隔に遅延させた第2の遅延入力信号群を生成し、前記第1の入力信号を、前記第2の入力信号及び前記第2の遅延入力信号群によってそれぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第1の信号を生成する回路と、
     前記第1の入力信号を等間隔に遅延させた第1の遅延入力信号群を生成し、前記第2の入力信号を、前記第1の入力信号及び前記第1の遅延入力信号群によってそれぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第2の信号を生成する回路と、
     前記第1の信号を等間隔に遅延させた第1の遅延信号群を生成し、前記第2の信号を、前記第1の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第2の遅延信号群を生成し、前記第1の遅延信号群と、前記第2の遅延信号群のうち、一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号でそれぞれサンプルする回路と、
     を備え、
     前記第1及び第3の入力信号の組に対して、
     前記第3の入力信号を等間隔に遅延させた第3の遅延入力信号群を生成し、前記第1の入力信号を、前記第3の入力信号及び前記第3の遅延入力信号群によってそれぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第3の信号を生成する回路と、
     前記第3の入力信号を、前記第1の入力信号及び前記第1の遅延入力信号群によってそれぞれサンプルし、サンプルされた複数の信号に対して所定の論理演算を施して第4の信号を生成する回路と、
     前記第3の信号を等間隔に遅延させた第3の遅延信号群を生成し、前記第4の信号を、前記第3の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第4の遅延信号群を生成し、前記第3の遅延信号群と、前記第4の遅延信号群のうち、一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号によってそれぞれサンプルする回路と
     を備えている、請求項1記載のデジタル位相比較器。
    A circuit that samples the input signal every half cycle of the oscillation frequency of the clock oscillator and generates two signals,
    The input signal is a first input signal, one of the two signals is a second input signal, and the other of the two signals is a third input signal,
    For the set of first and second input signals,
    A second delayed input signal group is generated by delaying the second input signal at equal intervals, and the first input signal is sampled by the second input signal and the second delayed input signal group, respectively. A circuit that performs a predetermined logical operation on the plurality of sampled signals to generate a first signal;
    A first delayed input signal group is generated by delaying the first input signal at equal intervals, and the second input signal is sampled by the first input signal and the first delayed input signal group, respectively. A circuit that performs a predetermined logical operation on the plurality of sampled signals to generate a second signal;
    A first delay signal group is generated by delaying the first signal at equal intervals, and the second signal is delayed at equal intervals by a unit delay time different from that of the first delay signal group. Two delay signal groups are generated, and each delay signal of one delay signal group among the first delay signal group and the second delay signal group is replaced with a corresponding delay signal of the other delay signal group. Each circuit to sample,
    With
    For the set of first and third input signals,
    A third delayed input signal group is generated by delaying the third input signal at equal intervals, and the first input signal is sampled by the third input signal and the third delayed input signal group, respectively. A circuit that performs a predetermined logical operation on the plurality of sampled signals to generate a third signal;
    The third input signal is sampled by the first input signal and the first delayed input signal group, respectively, and a predetermined logical operation is performed on the plurality of sampled signals to generate a fourth signal. A circuit to
    A third delay signal group is generated by delaying the third signal at equal intervals, and the fourth signal is delayed at equal intervals by a unit delay time different from that of the third delay signal group. 4 delay signal groups are generated, and among the third delay signal group and the fourth delay signal group, each delay signal of one delay signal group is represented by a corresponding delay signal of the other delay signal group. The digital phase comparator according to claim 1, further comprising a circuit for sampling.
  9.  前記第1の入力信号を、前記第1の入力信号の前記遅延信号群よりもさらに単位遅延時間遅延させた第5の信号と、前記第5の信号を単位遅延時間遅延させた第6の信号と、を受け、前記第5の信号を等間隔に遅延させた第5の遅延信号群を生成し、前記第6の信号を、前記第5の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第6の遅延信号群を生成し、前記第5の遅延信号群と、前記第6の遅延信号群のうち、一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号でそれぞれサンプルする回路を備えている、請求項7又は8に記載のデジタル位相比較器。 A fifth signal obtained by further delaying the first input signal by a unit delay time than the delayed signal group of the first input signal, and a sixth signal obtained by delaying the fifth signal by a unit delay time. And generate a fifth delay signal group obtained by delaying the fifth signal at equal intervals, and the sixth signal is equally spaced at a unit delay time different from that of the fifth delay signal group. A sixth delay signal group that is delayed in the first delay signal group, the fifth delay signal group, and the sixth delay signal group. 9. A digital phase comparator according to claim 7 or 8, comprising a circuit for sampling each with a corresponding delay signal.
  10.  (a)第1の入力信号を等間隔に遅延させた第1の遅延入力信号群を生成し、第2の入力信号を、前記第1の入力信号及び前記第1の入力信号を等間隔に遅延させた第1の遅延入力信号群によってそれぞれサンプルし、前記サンプルされた複数の信号に対して所定の論理演算を施して第1の信号を生成し、
     (b)前記第2の入力信号を、前記第1の遅延入力信号群と同一の単位遅延時間で等間隔に遅延させた第2の遅延入力信号群を生成し、前記第1の入力信号を、前記第2の入力信号及び前記第2の遅延入力信号群によってそれぞれサンプルし、前記サンプルされた複数の信号に対して所定の論理演算を施して第2の信号を生成し、
     (c)前記第1の信号を等間隔に遅延させた第1の遅延信号群を生成し、前記第2の信号を、前記第1の遅延信号群とは異なる単位遅延時間で等間隔に遅延させた第2の遅延信号群を生成し、前記第1の遅延信号群と、前記第2の遅延信号群のうち、一方の遅延信号群の各遅延信号を、他方の遅延信号群の対応する遅延信号でそれぞれサンプルし、
     (d)前記(a)又は(b)でサンプルされた信号と、前記(c)でサンプルされた信号を、前記第1の入力信号と前記第2の入力信号の位相差を表す値として用いる、位相比較方法。
    (A) A first delayed input signal group obtained by delaying the first input signal at equal intervals is generated, and the second input signal is set at equal intervals from the first input signal and the first input signal. Each sampled by the delayed first delayed input signal group, and a predetermined logic operation is performed on the plurality of sampled signals to generate a first signal;
    (B) generating a second delayed input signal group in which the second input signal is delayed at equal intervals by the same unit delay time as the first delayed input signal group, and the first input signal is Each sampled by the second input signal group and the second delayed input signal group, and a predetermined logical operation is performed on the plurality of sampled signals to generate a second signal,
    (C) generating a first delay signal group obtained by delaying the first signal at equal intervals, and delaying the second signal at equal intervals with a unit delay time different from that of the first delay signal group A second delayed signal group is generated, and each of the delayed signal groups of the first delayed signal group and the second delayed signal group corresponds to the other delayed signal group. Each sampled with a delayed signal,
    (D) The signal sampled in (a) or (b) and the signal sampled in (c) are used as values representing the phase difference between the first input signal and the second input signal. Phase comparison method.
  11.  遅延素子を複数段縦列接続し、第1のパルス入力信号を初段に入力し各段で順次遅延させた複数の遅延信号からなる第1の遅延信号群を出力する第1の遅延素子列と、
     前記第1の遅延素子列から出力される前記第1の遅延信号群をそれぞれクロック入力とし、第1のパルス入力信号を、前記第1の遅延信号群の遷移タイミングに従って順次取り込む複数の保持回路を備えた第1の保持回路群と、
     前記第1の保持回路群の出力を受ける第1の論理和演算回路と、
     前記第1の遅延素子列の遅延素子と同一の遅延時間を持つ遅延素子を複数段縦列接続し、第2のパルス入力信号を初段に入力し順次遅延させた複数の遅延信号からなる第2の遅延信号群を出力する第2の遅延素子列と、
     前記第2の遅延素子列から出力される第2の遅延信号群をそれぞれクロック入力とし、前記第1のパルス入力信号を、前記第2の遅延信号群の遷移タイミングに従って順次取り込む複数の保持回路を備えた第2の保持回路群と、
     前記第2のデータ保持回路群の出力を受ける第2の論理和演算回路と、
     を備え、
     前記第1の保持回路群の出力を、前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示す値として出力する第1の時間デジタル変換回路と、
     遅延素子を複数段縦列接続し、前記第1の論理和演算回路の出力を初段に入力し順次遅延させた複数の遅延信号からなる第3の遅延信号群を出力する第3の遅延素子列と、
     前記第3の遅延素子列とは異なる遅延時間を持つ遅延素子を複数段縦列接続し、前記第2の論理和演算回路の出力を初段に入力し順次遅延させた複数の遅延信号からなる第4の遅延信号群を出力する第4の遅延素子列と、
     前記第3の遅延素子列からの前記第3の遅延信号群の各段の遅延信号を、前記第4の遅延素子列からの前記第4の遅延信号群の対応する段の遅延信号の遷移タイミングに従って順次取り込む、複数の保持回路を備えた第3の保持回路群と、
     を備え、
     前記第3の保持回路群の出力から、前記第1の論理和演算回路の出力と前記第2の論理和演算回路の出力の相対的な位相差を、前記第3の遅延素子列の遅延信号と前記第4の遅延素子列の遅延信号の位相関係が反転するまでに要した段数に基づき、前記第3の遅延素子列と前記第4の遅延素子列の遅延時間差精度で出力する第2の時間デジタル変換回路と、
     を備える、ことを特徴とするデジタル位相比較器。
    A first delay element array in which a plurality of delay elements are connected in cascade, a first pulse input signal is input to the first stage, and a first delay signal group composed of a plurality of delay signals sequentially delayed at each stage is output;
    A plurality of holding circuits that sequentially take in the first pulse input signal according to the transition timing of the first delay signal group, using the first delay signal group output from the first delay element array as a clock input, respectively. A first holding circuit group comprising:
    A first OR operation circuit receiving the output of the first holding circuit group;
    A plurality of delay elements having the same delay time as the delay elements of the first delay element array are connected in cascade, and a second pulse input signal is input to the first stage, and a second delay signal is sequentially delayed. A second delay element array that outputs a delay signal group;
    A plurality of holding circuits which sequentially take in the first pulse input signal according to the transition timing of the second delay signal group, each of which has a second delay signal group output from the second delay element array as a clock input; A second holding circuit group provided;
    A second OR operation circuit that receives the output of the second data holding circuit group;
    With
    A first time digital conversion circuit that outputs an output of the first holding circuit group as a value indicating a relative phase difference between the first pulse input signal and the second pulse input signal;
    A third delay element array in which a plurality of delay elements are connected in cascade, and an output of the first OR operation circuit is input to the first stage and a third delay signal group including a plurality of delay signals sequentially delayed is output; ,
    A delay element having a delay time different from that of the third delay element array is connected in a plurality of stages, and the output of the second OR circuit is input to the first stage and a fourth delay signal is sequentially delayed. A fourth delay element array that outputs a delay signal group of:
    The delay signal of each stage of the third delay signal group from the third delay element array is the transition timing of the delay signal of the corresponding stage of the fourth delay signal group from the fourth delay element array. A third holding circuit group including a plurality of holding circuits, which are sequentially captured according to
    With
    The relative phase difference between the output of the first logical sum operation circuit and the output of the second logical sum operation circuit is determined from the output of the third holding circuit group as a delay signal of the third delay element array. And the delay time difference accuracy between the third delay element array and the fourth delay element array is output based on the number of stages required until the phase relationship between the delay signals of the fourth delay element array and the fourth delay element array is inverted. A time digital conversion circuit;
    A digital phase comparator comprising:
  12.  前記第1の論理和演算回路は、前記第1の保持回路群の出力の論理和演算により、前記第2のパルス入力信号の遷移タイミング直後に最初に前記第1の遅延素子列から出力された遅延信号の出力タイミングを抽出し、
     前記第2の論理和演算回路は、前記第2のデータ保持回路群の出力の論理和演算により、前記第1の論理和演算回路の出力に対して、前記第2のパルス入力信号と、前記第2のパルス入力信号の遷移タイミング直後の最初の遅延信号の出力タイミングとの位相関係を保った信号を出力する、ことを特徴とする請求項11に記載のデジタル位相比較器。
    The first OR circuit is first output from the first delay element array immediately after the transition timing of the second pulse input signal by the OR operation of the output of the first holding circuit group. Extract the output timing of the delay signal,
    The second logical sum operation circuit performs the logical sum operation on the output of the second data holding circuit group and outputs the second pulse input signal to the output of the first logical sum operation circuit, 12. The digital phase comparator according to claim 11, wherein a signal maintaining a phase relationship with the output timing of the first delay signal immediately after the transition timing of the second pulse input signal is output.
  13.  前記第1の時間デジタル変換回路において、
     前記第2のパルス入力信号をクロックとし、前記第1の遅延素子列により順次遅延された第1の遅延信号群を、前記第2のパルス入力信号の遷移タイミングに従って取り込む、複数段の保持回路を含む第4の保持回路群を備え、前記第4の保持回路群の出力を、前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示すデジタル値として出力する、ことを特徴とする請求項11に記載のデジタル位相比較器。
    In the first time digital conversion circuit,
    A holding circuit having a plurality of stages, wherein the second pulse input signal is used as a clock, and a first delay signal group sequentially delayed by the first delay element array is fetched in accordance with a transition timing of the second pulse input signal; A fourth holding circuit group including the output of the fourth holding circuit group as a digital value indicating a relative phase difference between the first pulse input signal and the second pulse input signal. The digital phase comparator according to claim 11.
  14.  前記第1の時間デジタル変換回路において、
     前記第1の保持回路群の出力を、前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示すデジタル値として出力する、ことを特徴とする請求項11に記載のデジタル位相比較器。
    In the first time digital conversion circuit,
    The output of the first holding circuit group is output as a digital value indicating a relative phase difference between the first pulse input signal and the second pulse input signal. Digital phase comparator.
  15.  前記第1の時間デジタル変換回路は、前記第2のパルス入力信号に代わり、前記第1のパルス入力信号を前記第2の信号によるリタイミング動作より得られる、前記第2のパルス入力信号の遷移タイミングに同期した第3のパルス入力信号を入力する、ことを特徴とする請求項11乃至14のいずれか1項に記載のデジタル位相比較器。 The first time-to-digital conversion circuit has a transition of the second pulse input signal obtained by a retiming operation of the first pulse input signal instead of the second pulse input signal. 15. The digital phase comparator according to claim 11, wherein a third pulse input signal synchronized with timing is input.
  16.  前記第2の時間デジタル変換回路の前記第4の遅延素子列の各段の遅延信号を、前記第3の遅延素子列の対応する段の遅延信号の遷移タイミングに従って順次取り込む、複数の保持回路を備えた第5の保持回路群と、
     前記第5の保持回路群の出力を受ける第3の論理和演算回路と、
     前記第3の保持回路群の出力を受ける第4の論理和演算回路と、
     を備え、さらに、
     遅延素子を複数段縦列接続し、前記第3の論理和演算回路の出力を初段に入力し順次遅延させた複数の遅延信号からなる第5の遅延信号群を出力する第5の遅延素子列と、
     前記第5の遅延素子列とは異なる遅延時間を持つ遅延素子を複数段縦列接続し、前記第4の論理和演算回路の出力を初段に入力し順次遅延させた複数の遅延信号からなる第6の遅延信号群を出力する第6の遅延素子列と、
     前記第5の遅延素子列からの前記第5の遅延信号群の各段の遅延信号を、前記第6の遅延素子列からの前記第6の遅延信号群の対応する段の遅延信号の遷移タイミングに従って順次取り込む、複数の保持回路を備えた第6の保持回路群と、
     を備える第3のデジタル時間変換回路を備え、
     前記第6の保持回路群の出力が前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示すデジタル値として用いられる、ことを特徴とする請求項11記載のデジタル位相比較器。
    A plurality of holding circuits for sequentially taking in the delay signals of the respective stages of the fourth delay element array of the second time digital conversion circuit according to the transition timing of the delay signals of the corresponding stages of the third delay element array; A fifth holding circuit group provided;
    A third OR operation circuit receiving the output of the fifth holding circuit group;
    A fourth OR operation circuit receiving the output of the third holding circuit group;
    In addition,
    A fifth delay element array in which a plurality of delay elements are connected in cascade, and an output of the third OR operation circuit is input to the first stage and a fifth delay signal group including a plurality of delay signals sequentially delayed is output; ,
    A delay element having a delay time different from that of the fifth delay element array is connected in a plurality of stages, and the output of the fourth logical sum operation circuit is input to the first stage, and a sixth delay signal is sequentially delayed. A sixth delay element array that outputs a delay signal group of:
    The delay signal of each stage of the fifth delay signal group from the fifth delay element array is the transition timing of the delay signal of the corresponding stage of the sixth delay signal group from the sixth delay element array. A sixth holding circuit group including a plurality of holding circuits, which are sequentially captured according to
    A third digital time conversion circuit comprising:
    12. The digital device according to claim 11, wherein an output of the sixth holding circuit group is used as a digital value indicating a relative phase difference between the first pulse input signal and the second pulse input signal. Phase comparator.
  17.  前記第5、第6の遅延素子列の単位遅延時間は、前記第3の遅延素子列と前記第4の遅延素子列の遅延時間差よりもさらに小さい遅延時間差を持つことを特徴とする請求項11乃至14のいずれか1項に記載のデジタル位相比較器。 12. The unit delay times of the fifth and sixth delay element arrays have a delay time difference smaller than the delay time difference between the third delay element array and the fourth delay element array. 15. The digital phase comparator according to any one of 1 to 14.
  18.  前記第1の遅延素子列の少なくとも1段の遅延素子の入出力信号を取り出し、
     前記第3の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記出力信号を順次遅延させる第5の遅延素子列と、
     前記第4の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記入力信号を順次遅延させる第6の遅延素子列と、
     前記第5の遅延素子列の遅延出力を、前記第6の遅延素子列の遅延出力の遷移タイミングに従って順次取り込む、複数段の保持回路を含む第5の保持回路群と、
     を備え、
     前記第1の遅延素子列における遅延素子の入出力信号における相対的な位相差を、
     前記第5の遅延素子列の遅延出力と前記第6の遅延素子列の遅延出力の位相関係が反転するまでに要した段数に基づき、前記第5の遅延素子列と前記第6の遅延素子列の遅延時間差精度でデジタル値として出力する第3の時間デジタル変換回路を備える、ことを特徴とする請求項11乃至15のいずれか1項に記載のデジタル位相比較器。
    Extracting input / output signals of at least one delay element of the first delay element array;
    A fifth delay element array that sequentially delays the output signal by connecting a plurality of delay elements having the same delay time as the third delay element array;
    A delay element having the same delay time as the fourth delay element array, and a plurality of stages of cascaded delay elements, thereby delaying the input signal sequentially;
    A fifth holding circuit group including a plurality of holding circuits, which sequentially captures the delay output of the fifth delay element array in accordance with the transition timing of the delay output of the sixth delay element array;
    With
    The relative phase difference in the input / output signals of the delay elements in the first delay element array is
    Based on the number of stages required until the phase relationship between the delay output of the fifth delay element array and the delay output of the sixth delay element array is reversed, the fifth delay element array and the sixth delay element array 16. The digital phase comparator according to claim 11, further comprising a third time digital conversion circuit that outputs a digital value with a delay time difference accuracy of.
  19.  前記第1の時間デジタル変換回路から出力される、前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示すデジタル値を数値化する第1の論理回路と、
     前記第2の時間デジタル変換回路から出力される、前記第1の論理和演算回路の出力と前記第2の論理和演算回路の出力の相対的な位相差を示すデジタル値を数値化する第2の論理回路と、
     前記第3の時間デジタル変換回路から出力される、前記第1の遅延素子列における遅延素子の入出力信号における相対的な位相差を示すデジタル値を数値化する第3の論理回路と、
     を備え、
     前記第2及び第3の論理回路の数値化結果を基に、前記第1の論理回路で数値化された、前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を補正する、ことを特徴とする請求項11乃至15、17のいずれか1項に記載のデジタル位相比較器。
    A first logic circuit that digitizes a digital value that is output from the first time digital conversion circuit and that indicates a relative phase difference between the first pulse input signal and the second pulse input signal;
    A second digital value that is output from the second time digital conversion circuit and that represents a relative phase difference between the output of the first OR operation circuit and the output of the second OR operation circuit; And the logic circuit of
    A third logic circuit that digitizes a digital value that is output from the third time digital conversion circuit and that indicates a relative phase difference in the input / output signals of the delay elements in the first delay element array;
    With
    Relative phase difference between the first pulse input signal and the second pulse input signal, which is quantified by the first logic circuit, based on the quantification results of the second and third logic circuits. The digital phase comparator according to claim 11, wherein the digital phase comparator is corrected.
  20.  前記第1の時間デジタル変換回路が、
     第4のパルス入力信号を、前記第1の遅延素子列の各遅延信号をクロック入力として前記遅延信号の遷移タイミングに従って順次取り込む複数段の保持回路を含む第6の保持回路群と、
     前記第6のデータ保持回路群の出力を論理和演算することにより、前記第4のパルス入力信号の遷移タイミング直後に最初に出力された遅延出力タイミングを抽出する第3の論理和演算回路と、
     前記第1の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続し、前記第4のパルス入力信号を順次遅延させる第7の遅延素子列の各遅延信号をクロック入力とし、遅延信号の遷移タイミングに従って前記第1のパルス入力信号を順次取り込む複数段の保持回路を含む第7のデータ保持回路群と、
     前記第7のデータ保持回路群からの複数の出力を論理和演算することにより、前記第3の論理和演算回路の出力に対して、前記第4のパルス入力信号と、前記第4のパルス入力信号の遷移タイミング直後の最初の遅延出力との位相関係を保った信号を出力する第4の論理和演算回路と、
     をさらに備え、
     前記第1の遅延素子の遅延時間精度で前記第1のパルス入力信号と第4のパルス入力信号の相対的な位相差を示すデジタル値を出力し、
     前記第3の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記第3の論理和演算回路の出力を順次遅延させる第8の遅延素子列と、
     前記第4の遅延素子列と同一の遅延時間を持つ遅延素子を複数段縦列接続することにより、前記第4の論理和演算回路の出力を順次遅延させる第9の遅延素子列と、
     前記第8の遅延素子列の遅延出力を、前記第9の遅延素子列の遅延出力の遷移タイミングに従って取り込む、複数段の保持回路を含む第8の保持回路群と、
     前記第3の論理和演算回路の出力と前記第4の論理和演算回路の出力の相対的な位相差を、前記第8の遅延素子列の遅延出力と前記第9の遅延素子列の遅延出力の位相関係が反転するまでに要した段数に基づき、前記第8の遅延素子列と前記第9の遅延素子列の遅延時間差精度でデジタル値として出力する第4の時間デジタル変換回路と、
     を備える、ことを特徴とする請求項11乃至15、17のいずれか1項に記載のデジタル位相比較器。
    The first time digital conversion circuit comprises:
    A sixth holding circuit group including a plurality of holding circuits that sequentially take in the fourth pulse input signal according to the transition timing of the delay signal using each delay signal of the first delay element array as a clock input;
    A third OR operation circuit for extracting a delay output timing first output immediately after a transition timing of the fourth pulse input signal by performing an OR operation on the output of the sixth data holding circuit group;
    A plurality of delay elements having the same delay time as the first delay element array are connected in cascade, and each delay signal of the seventh delay element array that sequentially delays the fourth pulse input signal is used as a clock input. A seventh data holding circuit group including a plurality of holding circuits that sequentially take in the first pulse input signal according to a signal transition timing;
    By performing a logical OR operation on a plurality of outputs from the seventh data holding circuit group, the fourth pulse input signal and the fourth pulse input are output with respect to the output of the third OR circuit. A fourth OR operation circuit that outputs a signal maintaining a phase relationship with the first delay output immediately after the signal transition timing;
    Further comprising
    Outputting a digital value indicating a relative phase difference between the first pulse input signal and the fourth pulse input signal with a delay time accuracy of the first delay element;
    An eighth delay element array for sequentially delaying the output of the third OR operation circuit by cascading a plurality of delay elements having the same delay time as the third delay element array;
    A delay element having the same delay time as that of the fourth delay element array, and a ninth delay element array for sequentially delaying the output of the fourth OR circuit by connecting a plurality of stages in cascade;
    An eighth holding circuit group including a plurality of holding circuits that captures the delay output of the eighth delay element array in accordance with the transition timing of the delay output of the ninth delay element array;
    The relative phase difference between the output of the third logical sum operation circuit and the output of the fourth logical sum operation circuit is expressed as the delay output of the eighth delay element array and the delay output of the ninth delay element array. A fourth time digital conversion circuit that outputs a digital value with a delay time difference accuracy between the eighth delay element array and the ninth delay element array based on the number of stages required until the phase relationship of
    The digital phase comparator according to claim 11, further comprising:
  21.  前記第1の時間デジタル変換回路において、
     前記第4のパルス入力信号をクロックとし、前記第1の遅延素子列により順次遅延された遅延出力を、前記第4のパルス入力信号の遷移タイミングに従って取り込む、複数段の保持回路を含む第9の保持回路群を備え、前記第9の保持回路の出力を、前記第1のパルス入力信号と前記第4のパルス入力信号の相対的な位相差を示すデジタル値として出力する、ことを特徴とする請求項19に記載のデジタル位相比較器。
    In the first time digital conversion circuit,
    A ninth stage including a holding circuit having a plurality of stages, wherein the fourth pulse input signal is used as a clock, and a delay output sequentially delayed by the first delay element array is fetched in accordance with a transition timing of the fourth pulse input signal; A holding circuit group, and outputs the output of the ninth holding circuit as a digital value indicating a relative phase difference between the first pulse input signal and the fourth pulse input signal. The digital phase comparator according to claim 19.
  22.  前記第1の時間デジタル変換回路において、
     前記第6の保持回路群の出力を、前記第1のパルス入力信号と前記第4のパルス入力信号との相対的な位相差を示すデジタル値として出力する、ことを特徴とする請求項19に記載のデジタル位相比較器。
    In the first time digital conversion circuit,
    The output of the sixth holding circuit group is output as a digital value indicating a relative phase difference between the first pulse input signal and the fourth pulse input signal. The digital phase comparator described.
  23.  前記第4のパルス入力信号が、前記第1のパルス入力信号を前記第2のパルス入力信号の反転信号によるリタイミング動作から得られ、前記第2のパルス入力信号の反転信号の遷移タイミングに同期した信号である、ことを特徴とする請求項19乃至21のいずれか1項に記載のデジタル位相比較器。 The fourth pulse input signal is obtained from the retiming operation of the first pulse input signal by the inverted signal of the second pulse input signal, and is synchronized with the transition timing of the inverted signal of the second pulse input signal. The digital phase comparator according to any one of claims 19 to 21, wherein the digital phase comparator is a digital signal.
  24.  前記第1の論理回路が、
     前記第1の時間デジタル変換回路から出力される、前記第1のパルス入力信号と前記第4のパルス入力信号の相対的な位相差を示すデジタル値をさらに数値化し、
     前記第4の時間デジタル変換回路から出力される、前記第3の論理和演算回路の出力と前記第4の論理和演算回路の出力の相対的な位相差を示すデジタル値を数値化する第4の論理回路と、
     を備え、
     前記第3及び第4の論理回路の数値化結果を基に、前記第1の論理回路で数値化された、前記第1のパルス入力信号と前記第4のパルス入力信号との相対的な位相差を補正する、ことを特徴とする請求項19乃至22のいずれか1項に記載のデジタル位相比較器。
    The first logic circuit comprises:
    A digital value indicating a relative phase difference between the first pulse input signal and the fourth pulse input signal output from the first time digital conversion circuit is further quantified;
    A digital value representing a relative phase difference between the output of the third logical sum operation circuit and the output of the fourth logical sum operation circuit, which is output from the fourth time digital conversion circuit; And the logic circuit of
    With
    Based on the quantification results of the third and fourth logic circuits, the relative positions of the first pulse input signal and the fourth pulse input signal that are quantified by the first logic circuit. The digital phase comparator according to any one of claims 19 to 22, wherein a phase difference is corrected.
  25.  前記第1のパルス入力信号と前記第3のパルス入力信号との相対的な位相差と、前記第1のパルス入力信号と前記第4のパルス入力信号との相対的な位相差の差により、前記第2のパルス入力信号の半周期を求め、
     前記第1のパルス入力信号と前記第3のパルス入力信号との相対的な位相差、又は、前記第1のパルス入力信号と前記第4のパルス入力信号との相対的な位相差を正規化する、ことを特徴とする請求項23記載のデジタル位相比較器。
    Due to the relative phase difference between the first pulse input signal and the third pulse input signal and the relative phase difference between the first pulse input signal and the fourth pulse input signal, Obtaining a half period of the second pulse input signal;
    Normalizing a relative phase difference between the first pulse input signal and the third pulse input signal, or a relative phase difference between the first pulse input signal and the fourth pulse input signal 24. The digital phase comparator according to claim 23, wherein:
  26.  前記第1の時間デジタル変換回路から出力される、前記第1のパルス入力信号と前記第2のパルス入力信号の相対的な位相差を示すデジタル値を数値化する第1の論理回路と、
     前記第2の時間デジタル変換回路から出力される、前記第1の論理和演算回路の出力と前記第2の論理和演算回路の出力の相対的な位相差を示すデジタル値を数値化する第2の論理回路と、
     前記第3の時間デジタル変換回路から出力される、前記第3の論理和演算回路の出力と前記第4の論理和演算回路の出力の相対的な位相差を示すデジタル値を数値化する第3の論理回路と、
     を備えている、ことを特徴とする請求項17に記載のデジタル位相比較器。
    A first logic circuit that digitizes a digital value that is output from the first time digital conversion circuit and that indicates a relative phase difference between the first pulse input signal and the second pulse input signal;
    A second digital value that is output from the second time digital conversion circuit and that represents a relative phase difference between the output of the first OR operation circuit and the output of the second OR operation circuit; And the logic circuit of
    A third digital value that is output from the third time digital conversion circuit and that indicates a relative phase difference between the output of the third OR operation circuit and the output of the fourth OR operation circuit; And the logic circuit of
    The digital phase comparator according to claim 17, comprising:
  27.  前記遅延素子列における遅延素子がインバータである、ことを特徴とする請求項11乃至25のいずれか1項に記載のデジタル位相比較器。 The digital phase comparator according to any one of claims 11 to 25, wherein a delay element in the delay element array is an inverter.
  28.  前記保持回路群における保持回路がフリップフロップである、ことを特徴とする請求項11乃至26のいずれか1項に記載のデジタル位相比較器。 The digital phase comparator according to any one of claims 11 to 26, wherein the holding circuit in the holding circuit group is a flip-flop.
  29.  請求項1乃至28のいずれか1項に記載のデジタル位相比較器を備えた半導体装置。 A semiconductor device comprising the digital phase comparator according to any one of claims 1 to 28.
PCT/JP2009/066381 2008-09-19 2009-09-18 Digital phase comparator and method WO2010032830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529815A JP5273149B2 (en) 2008-09-19 2009-09-18 Digital phase comparator and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-241171 2008-09-19
JP2008241171 2008-09-19
JP2009059903 2009-03-12
JP2009-059903 2009-03-12

Publications (1)

Publication Number Publication Date
WO2010032830A1 true WO2010032830A1 (en) 2010-03-25

Family

ID=42039651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066381 WO2010032830A1 (en) 2008-09-19 2009-09-18 Digital phase comparator and method

Country Status (2)

Country Link
JP (1) JP5273149B2 (en)
WO (1) WO2010032830A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066700A1 (en) * 2010-11-18 2012-05-24 パナソニック株式会社 Frequency synthesizer and time-to-digital converter
JP2014525575A (en) * 2011-08-29 2014-09-29 旭化成エレクトロニクス株式会社 Device for measuring the duration of the level of an electrical signal
JP2015154444A (en) * 2014-02-19 2015-08-24 株式会社メガチップス Time digital converter and calibration method used therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104148A (en) * 2006-07-06 2008-05-01 National Semiconductor Germany Ag Digital phase detector and method for generation of digital phase detection signal
JP2008160594A (en) * 2006-12-25 2008-07-10 Sharp Corp Time digital converter and digital phase locked loop device, receiver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659594B2 (en) * 1989-10-11 1997-09-30 株式会社日本自動車部品総合研究所 Physical quantity detector
US6429693B1 (en) * 2000-06-30 2002-08-06 Texas Instruments Incorporated Digital fractional phase detector
JP4850473B2 (en) * 2005-10-13 2012-01-11 富士通セミコンダクター株式会社 Digital phase detector
JP4420094B2 (en) * 2007-09-26 2010-02-24 ソニー株式会社 PLL circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104148A (en) * 2006-07-06 2008-05-01 National Semiconductor Germany Ag Digital phase detector and method for generation of digital phase detection signal
JP2008160594A (en) * 2006-12-25 2008-07-10 Sharp Corp Time digital converter and digital phase locked loop device, receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066700A1 (en) * 2010-11-18 2012-05-24 パナソニック株式会社 Frequency synthesizer and time-to-digital converter
JP2014525575A (en) * 2011-08-29 2014-09-29 旭化成エレクトロニクス株式会社 Device for measuring the duration of the level of an electrical signal
JP2015154444A (en) * 2014-02-19 2015-08-24 株式会社メガチップス Time digital converter and calibration method used therefor

Also Published As

Publication number Publication date
JPWO2010032830A1 (en) 2012-02-16
JP5273149B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5321864B2 (en) Digital phase comparator
JP4850473B2 (en) Digital phase detector
US9092013B2 (en) Time-to-digital converter
EP2972598B1 (en) Mixed signal tdc with embedded t2v adc
Henzler et al. Time-to-digital converter basics
US7629915B2 (en) High resolution time-to-digital converter and method thereof
US7791377B2 (en) Hierarchical time to digital converter
JP4824316B2 (en) Delay synchronization circuit and clock synchronization method using oscillator and counter
JP4756954B2 (en) Clock and data recovery circuit
US7522084B2 (en) Cycle time to digital converter
US9054681B2 (en) High speed duty cycle correction and double to single ended conversion circuit for PLL
US9405275B2 (en) Time-to-digital converter and related method
WO2012120569A1 (en) Phase-to-digital conversion circuit and phase-to-digital converter provided therewith
JP5273149B2 (en) Digital phase comparator and method
US6639958B1 (en) Circuit configuration for the interference-free initialization of delay locked loop circuits with fast lock
US9793914B2 (en) Analog-to-digital converter, electronic device, and method of controlling analog-to-digital converter
US11777515B2 (en) Column analog-to-digital converter and local counting method thereof
CN115933352A (en) Low-power-consumption time-to-digital converter circuit based on delayed multi-sampling
US11239849B2 (en) Locked loop circuit and method with multi-phase synchronization
El-Shafie et al. An all-digital DLL using novel harmonic-free and multi-bit SAR techniques
Hong et al. A loading effect insensitive and high precision clock synchronization circuit
Liu et al. A New Multilevel Interpolated TDC Method Based on a Two-Step Synchronizer
CN114690611A (en) Time-to-digital converter with low power consumption and conversion method
Cai et al. A wide-range and ultra fast-locking all-digital SAR DLL without harmonic-locking
Gao et al. A low-jitter multiphase digital delay-locked loop for nuclear instruments and biomedical imaging applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529815

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814674

Country of ref document: EP

Kind code of ref document: A1