WO2010029672A1 - Semiconductor device having electrostatic discharge protection circuit - Google Patents

Semiconductor device having electrostatic discharge protection circuit Download PDF

Info

Publication number
WO2010029672A1
WO2010029672A1 PCT/JP2009/003247 JP2009003247W WO2010029672A1 WO 2010029672 A1 WO2010029672 A1 WO 2010029672A1 JP 2009003247 W JP2009003247 W JP 2009003247W WO 2010029672 A1 WO2010029672 A1 WO 2010029672A1
Authority
WO
WIPO (PCT)
Prior art keywords
impurity diffusion
well
diffusion layer
terminal
external connection
Prior art date
Application number
PCT/JP2009/003247
Other languages
French (fr)
Japanese (ja)
Inventor
藪洋彰
荒井勝也
甲上歳浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010029672A1 publication Critical patent/WO2010029672A1/en
Priority to US12/771,585 priority Critical patent/US20100207163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Definitions

  • the present invention relates to a semiconductor device including an electrostatic discharge protection circuit that protects a circuit to be protected from electrostatic discharge.
  • the ESD protection circuit is required to have a high discharge capacity. In other words, it must have an amperage-order current capability with respect to a surge with an application time of several hundred nanoseconds or less and be capable of low impedance operation. On the other hand, from the viewpoint of manufacturing cost, it is required to reduce the occupation area of the ESD protection circuit.
  • a thyristor (SCR) type ESD protection circuit is used as an ESD protection circuit that satisfies these requirements and can impart high electrostatic discharge tolerance (ESD tolerance) to a semiconductor device. (For example, see Patent Document 1).
  • a P type semiconductor layer 144 is formed on a substrate, and an N type well 146 is formed in the P type semiconductor layer 144.
  • an N + region 150 and a P + region 148 are formed in the N-type semiconductor layer 144.
  • An N + region 152 and a P + region 154 are formed in the P-type semiconductor layer 144.
  • P + region 148 is connected to pad 112 and N + region 150 is connected to pad 112 to form a resistive connection between pad 112 and N-type well 146.
  • N + region 152 and P + region 154 are grounded.
  • the P + region 154 is connected to a resistance component formed by the P-type semiconductor layer 144.
  • the SCR parasitic NPN transistor breaks down. As a result, a current flows through the base of the parasitic NPN transistor, and the collector-emitter becomes conductive. Thereby, the collector current of the parasitic NPN transistor becomes the base current of the parasitic PNP transistor, and the parasitic PNP transistor is turned on. By turning on the parasitic PNP transistor, positive feedback is generated that further promotes the conduction of the parasitic NPN transistor. Therefore, a low-impedance discharge path is formed between the pad 112 and the ground, and is maintained until the voltage becomes lower than the holding voltage of the SCR. As a result, the surge current is released to the ground, so that the internal circuit can be protected.
  • the conventional SCR type ESD protection circuit has a problem that the holding voltage of the SCR is very low.
  • the SCR holding voltage is lower than the normal operating voltage of the semiconductor device, latch-up occurs during normal operation.
  • latch-up occurs, a large current continues to flow between the power source and the ground, resulting in overcurrent breakdown.
  • the SCR holding voltage needs to be higher than the normal operating voltage.
  • a method of increasing the holding voltage of the SCR a method of reducing the current amplification factor of the parasitic transistor by widening the interval between the anode and the cathode of the SCR can be considered.
  • the distance between the anode and cathode of the SCR is increased, the occupied area of the SCR increases.
  • Another method for increasing the SCR holding voltage is to increase the area of the P + region formed in the P-type layer. Increasing the area of the P + region is expected to reduce the base resistance of the parasitic NPN transistor and increase the holding voltage. However, also in this case, the area occupied by the SCR increases.
  • An object of the present disclosure is to solve the above problems and to realize a semiconductor device including an electrostatic discharge protection circuit having high latch-up resistance and a small occupied area.
  • the present disclosure provides an electrostatic discharge protection circuit for a semiconductor device in which a second conductivity type impurity diffusion layer formed in a first conductivity type well and a second conductivity type well formed in a second conductivity type well.
  • the conductive impurity diffusion layer is adjacent to the element isolation region.
  • the exemplary semiconductor device is a semiconductor device including a protected circuit and an electrostatic discharge protection circuit that protects the protected circuit from electrostatic breakdown, and the electrostatic discharge protection circuit is provided on a semiconductor substrate.
  • the first conductivity type first well and the second conductivity type second well formed in contact with each other, the first conductivity type first impurity diffusion layer formed in the first well and separated from each other, and the first well
  • the two impurity diffusion layers and the third impurity diffusion layer are formed adjacent to each other across an element isolation region provided across the boundary between the first well and the second well.
  • the second impurity diffusion layer and the fourth non-contact Things diffusion layer is characterized by being connected to the second external connection terminal of the protection circuit.
  • the second impurity diffusion layer and the third impurity diffusion layer are adjacent to each other with the same conductivity type across the element isolation region provided across the boundary between the first well and the second well. have. For this reason, the base resistance of the parasitic NPN transistor of the thyristor can be reduced without increasing the size of the thyristor. Thereby, since the holding voltage of the thyristor can be increased, an electrostatic discharge protection circuit with excellent latch-up resistance can be realized.
  • the first impurity diffusion layer is formed on the opposite side of the boundary between the first well and the second well with the third impurity diffusion layer interposed therebetween, and the fourth impurity diffusion layer is the second impurity diffusion layer. It may be formed on the opposite side of the boundary between the first well and the second well.
  • the first impurity diffusion layer has a first protrusion protruding toward the boundary between the first well and the second well
  • the second impurity diffusion layer includes the first well and the second well. You may have the 2nd convex part which protruded on the opposite side to the boundary.
  • a plurality of third impurity diffusion layers are formed spaced apart from each other in a direction parallel to the boundary between the first well and the second well, and the first protrusion is between the third impurity diffusion layers.
  • a plurality of fourth impurity diffusion layers are formed at intervals in a direction parallel to the boundary between the first well and the second well, and the second protrusions are formed between the fourth impurity diffusion layers. It may be formed in a region between.
  • the first conductivity type is N type
  • the second conductivity type is P type
  • the voltage of the first external connection terminal is higher than the voltage of the second external connection terminal. Also good.
  • the first external connection terminal may be a power supply terminal or an input / output terminal
  • the second external connection terminal may be a ground terminal
  • the first external connection terminal may be a power supply terminal
  • the second external connection terminal may be an input / output terminal
  • the first impurity diffusion layer may be connected to the first external connection terminal.
  • the electrostatic discharge protection circuit includes a first trigger circuit and a fifth impurity diffusion layer of the second conductivity type formed in the second well, and the first trigger circuit includes the first trigger circuit A trigger element in which the external connection terminal and the first terminal are connected and the second terminal is connected to the fifth impurity diffusion layer, and a resistance element connected between the second terminal of the trigger element and the second external connection terminal You may have.
  • the first trigger circuit uses the first well as a collector at a voltage lower than a breakdown voltage of a parasitic transistor having the second well as a collector, the first well as a base, and a third impurity diffusion layer as an emitter.
  • the base of the parasitic transistor having the second well as a base and the fourth impurity diffusion layer as an emitter may be electrically connected to the first external connection terminal.
  • the electrostatic discharge protection circuit includes a second trigger circuit, and the second trigger circuit has the first impurity diffusion layer and the first terminal connected, and the second terminal is the second impurity diffusion.
  • a trigger element connected to the layer and the fourth impurity diffusion layer, and a resistance element connected between the first terminal of the trigger element and the first external connection terminal may be included.
  • the second trigger circuit uses the second well at a voltage lower than the breakdown voltage of a parasitic transistor having the first well as a collector, the second well as a base, and a fourth impurity diffusion layer as an emitter.
  • the base may be electrically connected between the base of the parasitic transistor having the collector, the first well as the base, and the third impurity diffusion layer as the emitter, and the second external connection terminal.
  • the electrostatic discharge protection circuit includes a third trigger circuit, and the third trigger circuit has the first impurity diffusion layer and the first terminal connected, and the second terminal has the second impurity diffusion.
  • the switching element may be connected to the layer and the fourth impurity diffusion layer, and the third terminal may be connected to the power supply terminal.
  • the third trigger circuit when the power supply terminal is in a floating state, includes a base of a parasitic transistor having the second well as a collector, the first well as a base, and a third impurity diffusion layer as an emitter. You may conduct
  • the semiconductor device According to the semiconductor device according to the present disclosure, it is possible to realize a semiconductor device including an electrostatic discharge protection circuit having high latch-up resistance and a small occupied area.
  • FIG. 1A and 1B show an electrostatic discharge protection circuit according to the first embodiment
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along line Ib-Ib in FIG. is there.
  • FIG. 2 is an equivalent circuit diagram showing the electrostatic discharge protection circuit according to the first embodiment.
  • FIG. 3 is a graph showing a comparison between the current-voltage characteristics of the electrostatic discharge protection circuit according to the first embodiment and the current-voltage characteristics of a conventional electrostatic discharge protection circuit.
  • FIG. 4 is a graph showing the relationship between the anode-cathode interval and the holding voltage in the electrostatic discharge protection circuit according to the first embodiment in comparison with the conventional electrostatic discharge protection circuit.
  • FIG. 5A and 5B show a modification of the electrostatic discharge protection circuit according to the first embodiment, wherein FIG. 5A is a cross-sectional view, and FIG. 5B is an equivalent circuit diagram.
  • FIG. 6 is a circuit diagram illustrating an example of a trigger element used in a modified example of the electrostatic discharge protection circuit according to the first embodiment.
  • 7A and 7B show a modification of the electrostatic discharge protection circuit according to the first embodiment.
  • FIG. 7A is a cross-sectional view
  • FIG. 7B is an equivalent circuit diagram.
  • FIG. 8 is a circuit diagram illustrating an example of a trigger element used in a modified example of the electrostatic discharge protection circuit according to the first embodiment.
  • 9A and 9B show a modification of the electrostatic discharge protection circuit according to the first embodiment, wherein FIG.
  • FIG. 9A is a cross-sectional view
  • FIG. 9B is an equivalent circuit diagram
  • FIG. 10 is a circuit diagram illustrating an example of a trigger element used in a modification of the electrostatic discharge protection circuit according to the first embodiment.
  • FIG. 11 is a plan view showing an electrostatic discharge protection circuit according to the second embodiment.
  • 12A to 12D show an electrostatic discharge protection circuit according to the second embodiment of the present invention, and
  • FIGS. 12A to 12D show the XIIa-XIIa line and the XIIb-XIIb line in FIG. 11, respectively. , XIIc-XIIc line and XIId-XIId line.
  • FIG. 13 is a cross-sectional view showing an electrostatic discharge protection circuit according to a conventional example.
  • FIGS. 1A and 1B are ESD protection circuits of the semiconductor device according to the first embodiment.
  • FIG. 1A shows a planar configuration
  • FIG. 1B is a cross section taken along line Ib-Ib in FIG. The configuration is shown.
  • the ESD protection circuit of the first embodiment is an SCR type ESD protection circuit.
  • An N-type first well 12 and a P-type second well 13 are formed in contact with each other on a semiconductor substrate 11 such as a silicon substrate.
  • a semiconductor substrate 11 such as a silicon substrate.
  • an N-type first impurity diffusion layer 21A and a P-type third impurity diffusion layer 21B are formed.
  • a P-type second impurity diffusion layer 31A and an N-type fourth impurity diffusion layer 31B are formed.
  • the first impurity diffusion layer 21A, the third impurity diffusion layer 21B, the second impurity diffusion layer 31A, and the fourth impurity diffusion layer 31B are separated from each other by the element isolation region 15.
  • the third impurity diffusion layer 21B and the second impurity diffusion layer 31A are formed adjacent to each other with an element isolation region 15 provided across the boundary between the first well 12 and the second well 13 interposed therebetween.
  • the first impurity diffusion layer 21A is formed on the opposite side of the boundary between the first well 12 and the second well 13 with the third impurity diffusion layer 21B interposed therebetween
  • the fourth impurity diffusion layer 31B is the second impurity diffusion layer. It is formed on the opposite side of the boundary between the first well 12 and the second well 13 with the layer 31A interposed therebetween.
  • the first impurity diffusion layer 21A and the third impurity diffusion layer 21B are connected to a first external connection terminal 17 of a protected circuit (not shown) formed in another region of the semiconductor substrate 11.
  • the second impurity diffusion layer 31A and the fourth impurity diffusion layer 31B are connected to the second external connection terminal 18 of the protected circuit.
  • the first external connection terminal 17 is, for example, an input / output terminal
  • the second external connection terminal 18 is, for example, a ground terminal.
  • FIG. 1 shows an example in which the first external connection terminal 17 is an input / output terminal and the second external connection terminal 18 is a ground terminal.
  • any terminal may be used as long as the voltage of the first external connection terminal 17 is higher than the voltage of the second external connection terminal 18.
  • the first external connection terminal 17 may be an input terminal or an output terminal that performs only one of input and output.
  • the first external connection terminal 17 is a power supply terminal and the second external connection terminal 18 is a ground terminal
  • the connection terminal may be a second power supply terminal whose voltage is lower than that of the first power supply terminal.
  • an ESD protection circuit in which a thyristor (SCR) 41 is connected between the first external connection terminal 17 of the protected circuit and the ground is formed.
  • the thyristor 41 is equivalent to a parasitic PNP transistor 42 and a parasitic NPN transistor 43 whose base and collector are connected to each other.
  • the parasitic PNP transistor 42 has a P-type third impurity diffusion layer 21B as an emitter, an N-type first well 12 as a base, and a P-type second well 13 as a collector.
  • the parasitic NPN transistor 43 has the N-type fourth impurity diffusion layer 31B as an emitter, the P-type second well 13 as a base, and the N-type first well 12 as a collector.
  • the parasitic NPN transistor 43 breaks down, and the collector current of the parasitic NPN transistor 43 flows through the N-type first well 12.
  • the emitter base of the parasitic PNP transistor 42 is forward-biased, and the parasitic PNP transistor 42 becomes conductive.
  • the parasitic PNP transistor 42 is turned on, the collector current of the parasitic PNP transistor 42 flows through the P-type second well 13.
  • the conduction of the parasitic NPN transistor 43 is promoted by the collector current and the resistance component R2 and the resistance component R3 of the second well.
  • the base resistance of the parasitic NPN transistor 43 is determined by the values of the resistance component R2 and the resistance component R3 shown in FIG.
  • the value of the resistance component R2 becomes smaller as the distance between the boundary between the first well 12 and the second well 13 and the second impurity diffusion layer 31A is shorter when the conditions such as the impurity concentration are the same.
  • the value of the resistance component R3 decreases as the area of the second impurity diffusion layer 31A increases.
  • the current capability of the thyristor 41 becomes higher when the interval between the anode which is the emitter of the parasitic PNP transistor 42 and the cathode which is the emitter of the parasitic NPN transistor 43 is narrowed. That is, from the viewpoint of current capability, it is preferable to narrow the distance between the third impurity diffusion layer 21B and the fourth impurity diffusion layer 31B.
  • the conventional thyristor places importance on current capability, forms a P-type impurity diffusion layer of an N-type well on the boundary side between the N-type well and the P-type well, and forms an N-type impurity diffusion layer of the P-type well as an N-type well and a P-type well. It is formed on the boundary side with the mold well. That is, the P-type impurity diffusion layer of the N-type well and the N-type impurity diffusion layer of the P-type well are formed adjacent to each other with the boundary between the N-type well and the P-type well interposed therebetween.
  • the P-type second impurity diffusion layer 31A has a P-type sandwiching the element isolation region 15 provided across the boundary between the first well 12 and the second well 13. Adjacent to the third impurity diffusion layer 21B. In other words, of the N-type first impurity diffusion layer 21A and the P-type third impurity diffusion layer 21B formed in the first well 12, the P-type third impurity diffusion layer 21B is closer to the first well 12. Of the P-type second impurity diffusion layer 31A and the N-type fourth impurity diffusion layer 31B formed in the second well 13, the P-type second impurity diffusion layer 31B is formed at a position close to the boundary with the second well 13.
  • the second impurity diffusion layer 31 ⁇ / b> A is formed at a position closer to the boundary between the first well 12 and the second well 13. Therefore, the value of the resistance component R2 serving as the base resistance of the parasitic NPN transistor 43 is made smaller than that of a conventional thyristor in which the P-type impurity diffusion layer of the N-type well and the N-type impurity diffusion layer of the P-type well are adjacent to each other. be able to. Therefore, as shown in FIG. 3, the holding voltage can be made higher than the normal operating voltage of the semiconductor device to prevent the occurrence of latch-up.
  • FIG. 4 shows the relationship between the gap between the anode and the cathode and the holding voltage.
  • the amplification voltage is lowered, so that the holding voltage can be increased.
  • the P-type impurity diffusion layer of the N-type well and the N-type impurity diffusion layer of the P-type well are adjacent to each other, the P-type impurity diffusion layer of the N-type well serving as the anode and the N of the P-type well serving as the cathode
  • the holding voltage increases by increasing the distance from the type impurity diffusion layer.
  • the distance from the boundary between the N-type well and the P-type well to the P-type impurity diffusion layer of the P-type well is also increased.
  • the value of the resistance component R2 increases, the effect of increasing the holding voltage is small.
  • the size of the thyristor is also increased.
  • the second impurity diffusion layer 31A is formed on the boundary side between the first well 12 and the second well 13 rather than the fourth impurity diffusion layer 31B. Therefore, even if the distance between the third impurity diffusion layer 21B serving as the anode and the fourth impurity diffusion layer 31B serving as the cathode is increased, the value of the resistance component R2 hardly increases. In addition, since the contribution of the resistance component R2 to the holding voltage is large, even when the distance between the anode and the cathode is narrow, a holding voltage much higher than that of the conventional thyristor can be realized. That is, the ESD protection circuit of the present embodiment can realize an ESD protection circuit that is small in size and hardly causes latch-up.
  • the ESD protection circuit of this embodiment may be provided with a trigger circuit that reduces the snapback voltage at which the thyristor is turned on. By providing the trigger circuit, the turn-on voltage can be lowered without lowering the holding voltage of the thyristor.
  • the trigger circuit may be a circuit that makes the base of the parasitic NPN transistor 43 and the first external connection terminal 17 conductive at a voltage lower than the breakdown voltage of the parasitic PNP transistor 42, for example.
  • FIG. 5A shows a cross-sectional configuration of an ESD protection circuit to which the first trigger circuit 51 is connected
  • FIG. 5B shows a circuit configuration of the ESD protection circuit.
  • the first trigger circuit 51 includes a trigger element 51A and a voltage adjusting resistance element 51B.
  • the first terminal 51a of the trigger element 51A is connected to the first external connection terminal 17, and the second terminal 51b is connected to the P-type fifth impurity diffusion layer 31C formed in the P-type second well 13.
  • it is connected to the second external connection terminal 18 with a resistance element 51B interposed therebetween.
  • the fifth impurity diffusion layer 31C is formed on the opposite side of the boundary between the first well 12 and the second well 13 with the second impurity diffusion layer 31A and the fourth impurity diffusion layer 31B interposed therebetween.
  • the trigger element 51 A is connected between the first external connection terminal 17 and the second well 13 that is the base of the parasitic NPN transistor 43.
  • the trigger element 51A is turned on at a voltage lower than that of the parasitic PNP transistor 42. Therefore, when a surge enters the first external connection terminal 17, the trigger element 51 ⁇ / b> A is conducted before the thyristor 41.
  • the trigger element 51A becomes conductive, a current flows through the resistance element 51B, and the base of the parasitic NPN transistor 43 is floated above the ground level due to a current resistance (IR) drop.
  • IR current resistance
  • the base and emitter of the parasitic NPN transistor 43 are forward biased, and the parasitic NPN transistor 43 becomes conductive.
  • the surge current is released to the ground in the same manner as when the first trigger circuit 51 is not provided.
  • a MOS (metal-oxide-semiconductor) transistor may be used as shown in FIGS. 6 (a) and 6 (b).
  • MOS metal-oxide-semiconductor
  • the gate electrode is connected to the second terminal 51b as shown in FIG. 6A, and when a P-type MOS transistor is used, as shown in FIG. 6B.
  • the gate electrode is connected to the first terminal 51a.
  • the voltage at which the thyristor 41 is turned on by the first trigger circuit 51 can be set by the threshold value of the trigger element 51A, which is a MOS transistor, and the value of the resistance element 51B.
  • the trigger circuit may be a circuit that conducts between the base of the parasitic PNP transistor 42 and the ground at a voltage lower than the breakdown voltage of the parasitic NPN transistor 43.
  • FIG. 7A shows a cross-sectional configuration of the ESD protection circuit
  • FIG. 7B shows a circuit configuration of the ESD protection circuit.
  • the second trigger circuit 52 includes a trigger element 52A and a voltage adjusting resistance element 52B.
  • the first terminal 52 a of the trigger element 52 A is connected to the N-type first impurity diffusion layer 21 A formed in the N-type first well 12, and the second terminal 52 b is connected to the second external connection terminal 18.
  • the first terminal 52a of the trigger element 52A is connected to the first external connection terminal 17 with the resistance element 52B interposed.
  • the trigger element 52A is connected between the first well 12 which is the base of the parasitic PNP transistor 42 and the ground.
  • the trigger element 52A is turned on at a voltage lower than that of the parasitic NPN transistor 43. Therefore, when a surge enters the first external connection terminal 17, the trigger element 52 ⁇ / b> A becomes conductive before the thyristor 41.
  • the trigger element 52A is turned on, a current flows through the resistance element 52B, and the base-emitter of the parasitic PNP transistor 42 is forward-biased by a current resistance (IR) drop. Thereby, the parasitic PNP transistor 42 becomes conductive.
  • IR current resistance
  • the trigger element 52A may be a MOS transistor as shown in FIG.
  • the gate electrode is connected to the first terminal 52a as shown in FIG. 8A, and when an N-type MOS transistor is used, as shown in FIG. 8B. The gate electrode is connected to the second terminal 52b.
  • the trigger circuit may be activated by utilizing the fact that the power supply terminal is floating when a surge enters.
  • a specific configuration in this case may be as shown in FIG. FIG. 9A shows a cross-sectional configuration of the ESD protection circuit, and FIG. 9B shows a circuit configuration of the ESD protection circuit.
  • the third trigger circuit 53 has a trigger element 53A.
  • the first terminal 53a of the trigger element 53A is connected to the first impurity diffusion layer 21A, and the second terminal 53b is connected to the second external connection terminal 18 and grounded.
  • the third terminal 53 c is connected to the power supply terminal 19.
  • the trigger element 53A is an element that conducts between the first terminal 53a and the second terminal 53b when the third terminal 53c becomes floating.
  • the trigger element 53A is in an off state. However, in the floating state where the power supply voltage is not applied to the power supply terminal 19, the trigger element 53A is turned on. Therefore, when a surge enters the first external connection terminal 17 when the power supply terminal 19 is in a floating state, the trigger element 53A that is in an on state is turned on, and the base emitter of the parasitic PNP transistor 42 is forward-biased. Transistor 42 conducts. When the parasitic PNP transistor 42 is turned on, the parasitic NPN transistor 43 is turned on, and the surge current is released to the ground in the same manner as when the third trigger circuit 53 is not provided.
  • the trigger element 53A may be a MOS transistor as shown in FIG. When a P-type MOS transistor is used, the gate electrode and the substrate region are connected to the power supply terminal 19 as shown in FIG.
  • the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B are N-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B are P-type.
  • the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B may be P-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B may be N-type.
  • the first trigger circuit 51 and the second trigger circuit 52 an example in which a MOS transistor and a resistance element are formed is shown, and in the third trigger circuit 53, an example in which a MOS transistor is formed.
  • Any circuit may be used as long as it is a circuit.
  • a diode or the like may be used instead of the MOS transistor.
  • FIGS. 12A to 12D are ESD protection circuits according to the second embodiment
  • FIG. 11 shows a plan configuration
  • FIGS. 12A to 12D are XIIa in FIG.
  • the cross-sectional structures of the -XIIab line, XIIb-XIIb line, XIIc-XIIc line and XIId-XIId line are shown.
  • 11 and 12 the same components as those in FIG.
  • the ESD protection circuit of the second embodiment is an SCR type ESD protection circuit.
  • the first impurity diffusion layer 21 ⁇ / b> A formed in the N-type first well 12 has a first protrusion 21 a that protrudes to the boundary side between the first well 12 and the second well 13.
  • the second impurity diffusion layer 31 ⁇ / b> A formed in the P-type second well 13 has a second protrusion 31 a that protrudes on the opposite side of the boundary between the first well 12 and the second well 13.
  • a plurality of the third impurity diffusion layers 21B and the fourth impurity diffusion layers 31B are formed at intervals from each other, and the first protrusions 21a are formed in the regions between the third impurity diffusion layers 21B.
  • a second convex portion 31a is formed in a region between the four impurity diffusion layers 31B.
  • the effective well resistance between the first well 12 and the second well 13 is reduced.
  • the base resistances of the parasitic PNP transistor 42 and the parasitic NPN transistor 43 can be further reduced, and the holding voltage can be increased. Therefore, it is possible to realize an ESD protection circuit that is less prone to latch-up.
  • the area of the third impurity diffusion layer 21B that is the anode of the thyristor 41 and the area of the fourth impurity diffusion layer 31B that is the cathode of the ESD protection circuit of the present embodiment are smaller than those of the ESD protection circuit of the first embodiment. For this reason, the current capability is reduced as compared with the ESD protection circuit of the first embodiment. However, there is usually no problem because the current capability for releasing the surge is sufficient.
  • each of the third impurity diffusion layer 21B and the fourth impurity diffusion layer 31B may be one.
  • a trigger circuit may be provided in the ESD protection circuit of the second embodiment. As a result, the snapback voltage can be lowered without changing the holding voltage.
  • the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B are N-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B are P-type.
  • the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B may be P-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B may be N-type.
  • a third protrusion is formed in the third impurity diffusion layer 21B so as to protrude to the opposite side of the boundary between the first well 12 and the second well 13, and the first well 12 is formed in the fourth impurity diffusion layer 31B. What is necessary is just to form the 4th convex part which protruded in the boundary side of the 2nd well 13 and.
  • the semiconductor device can realize an electrostatic discharge protection circuit that has high latch-up resistance and a small occupation area, and is useful as a semiconductor device including an electrostatic discharge protection circuit that protects a protected circuit from electrostatic breakdown. It is.

Abstract

A semiconductor device includes a protected circuit and an electrostatic discharge protection circuit.  The electrostatic discharge protection circuit includes semiconductor substrate (11) on which the following are formed: a first conductive type first well (12) and a second conductive type second well (13) which are formed in contact with each other; a first conductive type first impurities diffusion layer (21A) and a second conductive type impurities diffusion layer (21B) which are formed separately from each other in the first well (12); and a second conductive type second impurities diffusion layer (31A) and a first conductive type fourth impurities diffusion layer (31B) which are formed separately from each other in the second well (13).  The second impurities diffusion layer (31A) and the third impurities diffusion layer (21B) are formed adjacent to each other while sandwiching an element separation region (15) formed to cross the boundary between the first well and the second well.

Description

静電放電保護回路を備えた半導体装置Semiconductor device having electrostatic discharge protection circuit
 本発明は、被保護回路を静電放電から保護する静電放電保護回路を備えた半導体装置に関する。 The present invention relates to a semiconductor device including an electrostatic discharge protection circuit that protects a circuit to be protected from electrostatic discharge.
 近年、半導体装置において、素子の微細化及び高密度化に応じて高集積化が進んでいる。高集積化に伴い、半導体装置の静電放電(以下、「サージ」と称する。)対する耐性は低下している。例えば、外部接続用端子から侵入するサージによって入力回路、出力回路及び内部回路等の素子が破壊されたり、素子の性能が低下したりするおそれが大きくなっている。このため、半導体装置には、入力回路、出力回路、入出力回路又は内部回路をサージから保護するため、外部接続用端子に接続された静電放電(Electro-Static Discharge:ESD)保護回路が設けられている。 In recent years, semiconductor devices have been highly integrated in accordance with miniaturization and high density of elements. With higher integration, the resistance of semiconductor devices to electrostatic discharge (hereinafter referred to as “surge”) is decreasing. For example, there is a high possibility that elements such as an input circuit, an output circuit, and an internal circuit are destroyed or a performance of the element is deteriorated due to a surge entering from an external connection terminal. For this reason, in order to protect the input circuit, output circuit, input / output circuit or internal circuit from a surge, the semiconductor device is provided with an electrostatic discharge (Electro-Static Discharge: ESD) protection circuit connected to the external connection terminal. It has been.
 ESD保護回路には、高い放電能力が求められる。つまり、印加時間が数百ナノ秒以下のサージに対してアンペアオーダーの電流能力を有し且つ低インピーダンス動作が可能でなければならない。一方、製造コストの観点から、ESD保護回路の占有面積を小さくすることが求められている。これらの要求を満たし、半導体装置に高い静電放電耐量(ESD耐量)を付与することができるESD保護回路としてサイリスタ(Silicon Controlled Rectifier:SCR)型ESD保護回路が利用されている。(例えば、特許文献1を参照。)。 The ESD protection circuit is required to have a high discharge capacity. In other words, it must have an amperage-order current capability with respect to a surge with an application time of several hundred nanoseconds or less and be capable of low impedance operation. On the other hand, from the viewpoint of manufacturing cost, it is required to reduce the occupation area of the ESD protection circuit. A thyristor (SCR) type ESD protection circuit is used as an ESD protection circuit that satisfies these requirements and can impart high electrostatic discharge tolerance (ESD tolerance) to a semiconductor device. (For example, see Patent Document 1).
 従来のSCR型ESD保護回路は、図13に示すように基板にP型の半導体層144が形成され、P型の半導体層144にN型ウェル146が形成されている。N型ウェル146にはN領域150とP領域148とが形成されている。P型の半導体層144には、N領域152とP領域154が形成されている。P領域148はパッド112と接続され、N領域150はパッド112とN型ウェル146との間に抵抗性接続を形成するようにパッド112と接続されている。N領域152とP領域154は接地されている。P領域154は、P型の半導体層144によって形成される抵抗成分と接続される。 In the conventional SCR type ESD protection circuit, as shown in FIG. 13, a P type semiconductor layer 144 is formed on a substrate, and an N type well 146 is formed in the P type semiconductor layer 144. In the N-type well 146, an N + region 150 and a P + region 148 are formed. An N + region 152 and a P + region 154 are formed in the P-type semiconductor layer 144. P + region 148 is connected to pad 112 and N + region 150 is connected to pad 112 to form a resistive connection between pad 112 and N-type well 146. N + region 152 and P + region 154 are grounded. The P + region 154 is connected to a resistance component formed by the P-type semiconductor layer 144.
 パッド112からサージが侵入すると、SCRの寄生NPNトランジスタがブレークダウンする。これにより寄生NPNトランジスタのベースに電流が流れ、コレクタエミッタ間が導通する。これにより、寄生NPNトランジスタのコレクタ電流が寄生PNPトランジスタのベース電流となり、寄生PNPトランジスタがオン状態となる。寄生PNPトランジスタがオン状態となることにより、寄生NPNトランジスタの導通がさらに促進される正のフィードバックが生じる。従って、パッド112と接地との間に低インピーダンスの放電経路が形成され、SCRの保持電圧以下となるまで維持される。その結果、サージ電流は接地に逃がされるため、内部回路を保護することができる。 When a surge enters from the pad 112, the SCR parasitic NPN transistor breaks down. As a result, a current flows through the base of the parasitic NPN transistor, and the collector-emitter becomes conductive. Thereby, the collector current of the parasitic NPN transistor becomes the base current of the parasitic PNP transistor, and the parasitic PNP transistor is turned on. By turning on the parasitic PNP transistor, positive feedback is generated that further promotes the conduction of the parasitic NPN transistor. Therefore, a low-impedance discharge path is formed between the pad 112 and the ground, and is maintained until the voltage becomes lower than the holding voltage of the SCR. As a result, the surge current is released to the ground, so that the internal circuit can be protected.
特公平5-065061号公報Japanese Patent Publication No. 5-065061
 しかしながら、従来のSCR型ESD保護回路は、SCRの保持電圧が非常に低いという問題がある。SCRの保持電圧が半導体装置の通常動作電圧よりも低い場合には、通常動作時にラッチアップが生じる。ラッチアップが生じると、電源と接地との間に大電流が流れ続け、過電流破壊が生じてしまう。 However, the conventional SCR type ESD protection circuit has a problem that the holding voltage of the SCR is very low. When the SCR holding voltage is lower than the normal operating voltage of the semiconductor device, latch-up occurs during normal operation. When latch-up occurs, a large current continues to flow between the power source and the ground, resulting in overcurrent breakdown.
 ラッチアップ耐性を向上させるには、SCRの保持電圧を通常動作電圧よりも高くする必要がある。SCRの保持電圧を高くする方法としては、SCRのアノードとカソードとの間隔を広げることにより寄生トランジスタの電流増幅率を低下させる方法が考えられる。しかし、SCRのアノードとカソードとの間隔を広げるとSCRの占有面積が増大する。また、電流能力が低下したり、インピーダンスが増大したりするという不具合も生じる。 ¡In order to improve the latch-up tolerance, the SCR holding voltage needs to be higher than the normal operating voltage. As a method of increasing the holding voltage of the SCR, a method of reducing the current amplification factor of the parasitic transistor by widening the interval between the anode and the cathode of the SCR can be considered. However, when the distance between the anode and cathode of the SCR is increased, the occupied area of the SCR increases. Moreover, the malfunction that current capability falls or an impedance increases arises.
 他にSCRの保持電圧を高くする方法として、P型層に形成されたP領域の面積を大きくする方法が考えられる。P領域の面積を大きくすることにより、寄生NPNトランジスタのベース抵抗が小さくなり、保持電圧が上昇することが期待される。しかし、この場合にも、SCRの占有面積が増大する。 Another method for increasing the SCR holding voltage is to increase the area of the P + region formed in the P-type layer. Increasing the area of the P + region is expected to reduce the base resistance of the parasitic NPN transistor and increase the holding voltage. However, also in this case, the area occupied by the SCR increases.
 本開示は、前記の問題を解決し、ラッチアップ耐性が高く且つ占有面積が小さい静電放電保護回路を備えた半導体装置を実現できるようにすることを目的とする。 An object of the present disclosure is to solve the above problems and to realize a semiconductor device including an electrostatic discharge protection circuit having high latch-up resistance and a small occupied area.
 前記の目的を達成するため、本開示は半導体装置の静電放電保護回路を、第1導電型ウェルに形成された第2導電型不純物拡散層と、第2導電型ウェルに形成された第2導電型不純物拡散層とが、素子分離領域を挟んで隣接する構成とする。 In order to achieve the above object, the present disclosure provides an electrostatic discharge protection circuit for a semiconductor device in which a second conductivity type impurity diffusion layer formed in a first conductivity type well and a second conductivity type well formed in a second conductivity type well. The conductive impurity diffusion layer is adjacent to the element isolation region.
 具体的に、例示の半導体装置は、被保護回路と、被保護回路を静電破壊から保護する静電放電保護回路とを備えた半導体装置を対象とし、静電放電保護回路は、半導体基板に、互いに接して形成された第1導電型の第1ウェル及び第2導電型の第2ウェルと、第1ウェル内に互いに分離して形成された第1導電型の第1不純物拡散層及び第2導電型の第3不純物拡散層と、第2ウェル内に互いに分離して形成された第2導電型の第2不純物拡散層及び第1導電型の第4不純物拡散層とを有し、第2不純物拡散層と第3不純物拡散層とは、第1ウェルと第2ウェルとの境界上に跨って設けられた素子分離領域を挟んで隣接して形成されており、第3不純物拡散層は、被保護回路の第1の外部接続端子と接続され、第2不純物拡散層及び第4不純物拡散層は、被保護回路の第2の外部接続端子と接続されていることを特徴とする。 Specifically, the exemplary semiconductor device is a semiconductor device including a protected circuit and an electrostatic discharge protection circuit that protects the protected circuit from electrostatic breakdown, and the electrostatic discharge protection circuit is provided on a semiconductor substrate. The first conductivity type first well and the second conductivity type second well formed in contact with each other, the first conductivity type first impurity diffusion layer formed in the first well and separated from each other, and the first well A second conductivity type third impurity diffusion layer, a second conductivity type second impurity diffusion layer and a first conductivity type fourth impurity diffusion layer formed separately from each other in the second well; The two impurity diffusion layers and the third impurity diffusion layer are formed adjacent to each other across an element isolation region provided across the boundary between the first well and the second well. , Connected to the first external connection terminal of the protected circuit, the second impurity diffusion layer and the fourth non-contact Things diffusion layer is characterized by being connected to the second external connection terminal of the protection circuit.
 例示の半導体装置は、第2不純物拡散層と第3不純物拡散層とが、第1ウェルと第2ウェルとの境界上に跨って設けられた素子分離領域を挟んで隣接し且つ同一の導電型を有している。このため、サイリスタのサイズを増大させることなく、サイリスタの寄生NPNトランジスタのベース抵抗を小さくすることができる。これにより、サイリスタの保持電圧を高くすることができるので、ラッチアップ耐性が優れた静電放電保護回路を実現できる。 In the illustrated semiconductor device, the second impurity diffusion layer and the third impurity diffusion layer are adjacent to each other with the same conductivity type across the element isolation region provided across the boundary between the first well and the second well. have. For this reason, the base resistance of the parasitic NPN transistor of the thyristor can be reduced without increasing the size of the thyristor. Thereby, since the holding voltage of the thyristor can be increased, an electrostatic discharge protection circuit with excellent latch-up resistance can be realized.
 例示の半導体装置において、第1不純物拡散層は、第3不純物拡散層を挟んで第1ウェルと第2ウェルとの境界と反対側に形成され、第4不純物拡散層は、第2不純物拡散層を挟んで第1ウェルと第2ウェルとの境界と反対側に形成されていてもよい。 In the exemplary semiconductor device, the first impurity diffusion layer is formed on the opposite side of the boundary between the first well and the second well with the third impurity diffusion layer interposed therebetween, and the fourth impurity diffusion layer is the second impurity diffusion layer. It may be formed on the opposite side of the boundary between the first well and the second well.
 例示の半導体装置において、第1不純物拡散層は、第1ウェルと第2ウェルとの境界側に突出した第1の凸部を有し、第2不純物拡散層は、第1ウェルと第2ウェルとの境界と反対側に突出した第2の凸部を有していてもよい。 In the illustrated semiconductor device, the first impurity diffusion layer has a first protrusion protruding toward the boundary between the first well and the second well, and the second impurity diffusion layer includes the first well and the second well. You may have the 2nd convex part which protruded on the opposite side to the boundary.
 この場合において、第3不純物拡散層は、第1ウェルと第2ウェルとの境界と平行な方向に互いに間隔をおいて複数形成され、第1の凸部は、第3不純物拡散層同士の間の領域に形成され、第4不純物拡散層は、第1ウェルと第2ウェルとの境界と平行な方向に互いに間隔をおいて複数形成され、第2の凸部は、第4不純物拡散層同士の間の領域に形成されていてもよい。 In this case, a plurality of third impurity diffusion layers are formed spaced apart from each other in a direction parallel to the boundary between the first well and the second well, and the first protrusion is between the third impurity diffusion layers. A plurality of fourth impurity diffusion layers are formed at intervals in a direction parallel to the boundary between the first well and the second well, and the second protrusions are formed between the fourth impurity diffusion layers. It may be formed in a region between.
 例示の半導体装置において、第1導電型はN型であり、第2導電型はP型であり、第1の外部接続端子の電圧は第2の外部接続端子の電圧よりも高い構成であってもよい。 In the illustrated semiconductor device, the first conductivity type is N type, the second conductivity type is P type, and the voltage of the first external connection terminal is higher than the voltage of the second external connection terminal. Also good.
 この場合において、第1の外部接続端子は、電源端子又は入出力端子であり、第2の外部接続端子は、接地端子であってもよい。また、第1の外部接続端子は、電源端子であり、第2の外部接続端子は、入出力端子であってもよい。 In this case, the first external connection terminal may be a power supply terminal or an input / output terminal, and the second external connection terminal may be a ground terminal. Further, the first external connection terminal may be a power supply terminal, and the second external connection terminal may be an input / output terminal.
 例示の半導体装置において、第1不純物拡散層は、第1の外部接続端子と接続されていてもよい。 In the illustrated semiconductor device, the first impurity diffusion layer may be connected to the first external connection terminal.
 この場合において、静電放電保護回路は、第1のトリガ回路と、第2ウェルに形成された第2導電型の第5不純物拡散層とを有し、第1のトリガ回路は、第1の外部接続端子と第1端子が接続され、第2端子が第5不純物拡散層と接続されたトリガ素子と、トリガ素子の第2端子と第2の外部接続端子との間に接続された抵抗素子とを有していてもよい。 In this case, the electrostatic discharge protection circuit includes a first trigger circuit and a fifth impurity diffusion layer of the second conductivity type formed in the second well, and the first trigger circuit includes the first trigger circuit A trigger element in which the external connection terminal and the first terminal are connected and the second terminal is connected to the fifth impurity diffusion layer, and a resistance element connected between the second terminal of the trigger element and the second external connection terminal You may have.
 さらに、第1のトリガ回路は、第2ウェルをコレクタとし、第1ウェルをベースとし、第3不純物拡散層をエミッタとする寄生トランジスタのブレークダウン電圧よりも低い電圧において、第1ウェルをコレクタとし、第2ウェルをベースとし、第4不純物拡散層をエミッタとする寄生トランジスタのベースと第1の外部接続端子との間を導通させてもよい。 Further, the first trigger circuit uses the first well as a collector at a voltage lower than a breakdown voltage of a parasitic transistor having the second well as a collector, the first well as a base, and a third impurity diffusion layer as an emitter. The base of the parasitic transistor having the second well as a base and the fourth impurity diffusion layer as an emitter may be electrically connected to the first external connection terminal.
 例示の半導体装置において、静電放電保護回路は、第2のトリガ回路を有し、第2のトリガ回路は、第1不純物拡散層と第1端子が接続され、第2端子が第2不純物拡散層及び第4不純物拡散層と接続されたトリガ素子と、トリガ素子の第1端子と第1の外部接続端子との間に接続された抵抗素子とを有していてもよい。 In the exemplary semiconductor device, the electrostatic discharge protection circuit includes a second trigger circuit, and the second trigger circuit has the first impurity diffusion layer and the first terminal connected, and the second terminal is the second impurity diffusion. A trigger element connected to the layer and the fourth impurity diffusion layer, and a resistance element connected between the first terminal of the trigger element and the first external connection terminal may be included.
 この場合において、第2のトリガ回路は、第1ウェルをコレクタとし、第2ウェルをベースとし、第4不純物拡散層をエミッタとする寄生トランジスタのブレークダウン電圧よりも低い電圧において、第2ウェルをコレクタとし、第1ウェルをベースとし、第3不純物拡散層をエミッタとする寄生トランジスタのベースと第2の外部接続端子との間を導通させてもよい。 In this case, the second trigger circuit uses the second well at a voltage lower than the breakdown voltage of a parasitic transistor having the first well as a collector, the second well as a base, and a fourth impurity diffusion layer as an emitter. The base may be electrically connected between the base of the parasitic transistor having the collector, the first well as the base, and the third impurity diffusion layer as the emitter, and the second external connection terminal.
 例示の半導体装置において、静電放電保護回路は、第3のトリガ回路を有し、第3のトリガ回路は、第1不純物拡散層と第1端子が接続され、第2端子が第2不純物拡散層及び第4不純物拡散層と接続され、第3の端子が電源端子と接続されたスイッチ素子である構成としてもよい。 In the exemplary semiconductor device, the electrostatic discharge protection circuit includes a third trigger circuit, and the third trigger circuit has the first impurity diffusion layer and the first terminal connected, and the second terminal has the second impurity diffusion. The switching element may be connected to the layer and the fourth impurity diffusion layer, and the third terminal may be connected to the power supply terminal.
 この場合において、第3のトリガ回路は、電源端子がフローティング状態となった際に、第2ウェルをコレクタとし、第1ウェルをベースとし、第3不純物拡散層をエミッタとする寄生トランジスタのベースと第2の外部接続端子との間を導通させてもよい。 In this case, when the power supply terminal is in a floating state, the third trigger circuit includes a base of a parasitic transistor having the second well as a collector, the first well as a base, and a third impurity diffusion layer as an emitter. You may conduct | electrically_connect between 2nd external connection terminals.
 本開示に係る半導体装置によれば、ラッチアップ耐性が高く且つ占有面積が小さい静電放電保護回路を備えた半導体装置を実現できる。 According to the semiconductor device according to the present disclosure, it is possible to realize a semiconductor device including an electrostatic discharge protection circuit having high latch-up resistance and a small occupied area.
図1(a)及び(b)は、第1の実施形態に係る静電放電保護回路を示し(a)は平面図であり、(b)は(a)のIb-Ib線における断面図である。1A and 1B show an electrostatic discharge protection circuit according to the first embodiment, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line Ib-Ib in FIG. is there. 図2は、第1の実施形態に係る静電放電保護回路を示す等価回路図である。FIG. 2 is an equivalent circuit diagram showing the electrostatic discharge protection circuit according to the first embodiment. 図3は、第1の実施形態に係る静電放電保護回路の電流電圧特性と従来の静電放電保護回路の電流電圧特性とを比較して示すグラフである。FIG. 3 is a graph showing a comparison between the current-voltage characteristics of the electrostatic discharge protection circuit according to the first embodiment and the current-voltage characteristics of a conventional electrostatic discharge protection circuit. 図4は、第1の実施形態に係る静電放電保護回路におけるアノードカソード間隔と保持電圧との関係を従来の静電放電保護回路と比較して示すグラフである。FIG. 4 is a graph showing the relationship between the anode-cathode interval and the holding voltage in the electrostatic discharge protection circuit according to the first embodiment in comparison with the conventional electrostatic discharge protection circuit. 図5は、第1の実施形態に係る静電放電保護回路の変形例を示し(a)は断面図であり、(b)は等価回路図である。5A and 5B show a modification of the electrostatic discharge protection circuit according to the first embodiment, wherein FIG. 5A is a cross-sectional view, and FIG. 5B is an equivalent circuit diagram. 図6は、第1の実施形態に係る静電放電保護回路の変形例に用いるトリガ素子の一例を示す回路図である。FIG. 6 is a circuit diagram illustrating an example of a trigger element used in a modified example of the electrostatic discharge protection circuit according to the first embodiment. 図7は、第1の実施形態に係る静電放電保護回路の変形例を示し(a)は断面図であり、(b)は等価回路図である。7A and 7B show a modification of the electrostatic discharge protection circuit according to the first embodiment. FIG. 7A is a cross-sectional view, and FIG. 7B is an equivalent circuit diagram. 図8は、第1の実施形態に係る静電放電保護回路の変形例に用いるトリガ素子の一例を示す回路図である。FIG. 8 is a circuit diagram illustrating an example of a trigger element used in a modified example of the electrostatic discharge protection circuit according to the first embodiment. 図9は、第1の実施形態に係る静電放電保護回路の変形例を示し(a)は断面図であり、(b)は等価回路図である。9A and 9B show a modification of the electrostatic discharge protection circuit according to the first embodiment, wherein FIG. 9A is a cross-sectional view, and FIG. 9B is an equivalent circuit diagram. 図10は、第1の実施形態に係る静電放電保護回路の変形例に用いるトリガ素子の一例を示す回路図である。FIG. 10 is a circuit diagram illustrating an example of a trigger element used in a modification of the electrostatic discharge protection circuit according to the first embodiment. 図11は、第2の実施形態に係る静電放電保護回路を示す平面図である。FIG. 11 is a plan view showing an electrostatic discharge protection circuit according to the second embodiment. 図12(a)~(d)は、本発明の第2の実施形態に係る静電放電保護回路を示し、(a)~(d)はそれぞれ図11のXIIa-XIIa線、XIIb-XIIb線、XIIc-XIIc線及びXIId-XIId線における断面図である。12A to 12D show an electrostatic discharge protection circuit according to the second embodiment of the present invention, and FIGS. 12A to 12D show the XIIa-XIIa line and the XIIb-XIIb line in FIG. 11, respectively. , XIIc-XIIc line and XIId-XIId line. 図13は従来例に係る静電放電保護回路を示す断面図である。FIG. 13 is a cross-sectional view showing an electrostatic discharge protection circuit according to a conventional example.
 (第1の実施形態)
 図1(a)及び(b)は、第1の実施形態に係る半導体装置のESD保護回路であり、(a)は平面構成を示し、(b)は(a)のIb-Ib線における断面構成を示す。
(First embodiment)
FIGS. 1A and 1B are ESD protection circuits of the semiconductor device according to the first embodiment. FIG. 1A shows a planar configuration, and FIG. 1B is a cross section taken along line Ib-Ib in FIG. The configuration is shown.
 図1に示すように、第1の実施形態のESD保護回路はSCR型のESD保護回路である。シリコン基板等の半導体基板11にN型の第1ウェル12とP型の第2ウェル13とが互いに接して形成されている。第1ウェル12にはN型の第1不純物拡散層21AとP型の第3不純物拡散層21Bとが形成されている。第2ウェル13にはP型の第2不純物拡散層31AとN型の第4不純物拡散層31Bとが形成されている。 As shown in FIG. 1, the ESD protection circuit of the first embodiment is an SCR type ESD protection circuit. An N-type first well 12 and a P-type second well 13 are formed in contact with each other on a semiconductor substrate 11 such as a silicon substrate. In the first well 12, an N-type first impurity diffusion layer 21A and a P-type third impurity diffusion layer 21B are formed. In the second well 13, a P-type second impurity diffusion layer 31A and an N-type fourth impurity diffusion layer 31B are formed.
 第1不純物拡散層21A、第3不純物拡散層21B、第2不純物拡散層31A及び第4不純物拡散層31Bは、素子分離領域15により互いに分離されている。第3不純物拡散層21Bと第2不純物拡散層31Aとは、第1ウェル12と第2ウェル13との境界上に跨って設けられた素子分離領域15を介在させて互いに隣接して形成されている。第1不純物拡散層21Aは、第3不純物拡散層21Bを挟んで第1ウェル12と第2ウェル13との境界と反対側に形成されており、第4不純物拡散層31Bは、第2不純物拡散層31Aを挟んで第1ウェル12と第2ウェル13との境界と反対側に形成されている。 The first impurity diffusion layer 21A, the third impurity diffusion layer 21B, the second impurity diffusion layer 31A, and the fourth impurity diffusion layer 31B are separated from each other by the element isolation region 15. The third impurity diffusion layer 21B and the second impurity diffusion layer 31A are formed adjacent to each other with an element isolation region 15 provided across the boundary between the first well 12 and the second well 13 interposed therebetween. Yes. The first impurity diffusion layer 21A is formed on the opposite side of the boundary between the first well 12 and the second well 13 with the third impurity diffusion layer 21B interposed therebetween, and the fourth impurity diffusion layer 31B is the second impurity diffusion layer. It is formed on the opposite side of the boundary between the first well 12 and the second well 13 with the layer 31A interposed therebetween.
 第1不純物拡散層21Aと第3不純物拡散層21Bとは、半導体基板11における他の領域に形成された被保護回路(図示せず)の第1の外部接続端子17と接続されている。第2不純物拡散層31Aと第4不純物拡散層31Bとは被保護回路の第2の外部接続端子18と接続されている。第1の外部接続端子17は例えば入出力端子であり、第2の外部接続端子18は例えば接地端子である。 The first impurity diffusion layer 21A and the third impurity diffusion layer 21B are connected to a first external connection terminal 17 of a protected circuit (not shown) formed in another region of the semiconductor substrate 11. The second impurity diffusion layer 31A and the fourth impurity diffusion layer 31B are connected to the second external connection terminal 18 of the protected circuit. The first external connection terminal 17 is, for example, an input / output terminal, and the second external connection terminal 18 is, for example, a ground terminal.
 図1においては、第1の外部接続端子17が入出力端子であり、第2の外部接続端子18が接地端子である例を示している。しかし、第1の外部接続端子17の電圧が第2の外部接続端子18の電圧よりも高ければ、どのような端子であってもよい。例えば、第1の外部接続端子17は、入力又は出力の一方のみを行う入力端子又は出力端子であってもよい。また、第1の外部接続端子17が電源端子であり、第2の外部接続端子18が接地端子であっても、第1の外部接続端子17が第1の電源端子であり、第2の外部接続端子が第1の電源端子よりも電圧が低い第2の電源端子であってもよい。 FIG. 1 shows an example in which the first external connection terminal 17 is an input / output terminal and the second external connection terminal 18 is a ground terminal. However, any terminal may be used as long as the voltage of the first external connection terminal 17 is higher than the voltage of the second external connection terminal 18. For example, the first external connection terminal 17 may be an input terminal or an output terminal that performs only one of input and output. Further, even if the first external connection terminal 17 is a power supply terminal and the second external connection terminal 18 is a ground terminal, the first external connection terminal 17 is a first power supply terminal and the second external connection terminal The connection terminal may be a second power supply terminal whose voltage is lower than that of the first power supply terminal.
 このような構成とすることにより図2に示すように、被保護回路の第1の外部接続端子17と接地との間にサイリスタ(SCR)41が接続されたESD保護回路が形成される。サイリスタ41は、ベースとコレクタとが互いに接続された寄生PNPトランジスタ42及び寄生NPNトランジスタ43と等価である。図1(b)に示すように、寄生PNPトランジスタ42は、P型の第3不純物拡散層21Bをエミッタとし、N型の第1ウェル12をベースとし、P型の第2ウェル13をコレクタとする。寄生NPNトランジスタ43は、N型の第4不純物拡散層31Bをエミッタとし、P型の第2ウェル13をベースとし、N型の第1ウェル12をコレクタとする。 With this configuration, as shown in FIG. 2, an ESD protection circuit in which a thyristor (SCR) 41 is connected between the first external connection terminal 17 of the protected circuit and the ground is formed. The thyristor 41 is equivalent to a parasitic PNP transistor 42 and a parasitic NPN transistor 43 whose base and collector are connected to each other. As shown in FIG. 1B, the parasitic PNP transistor 42 has a P-type third impurity diffusion layer 21B as an emitter, an N-type first well 12 as a base, and a P-type second well 13 as a collector. To do. The parasitic NPN transistor 43 has the N-type fourth impurity diffusion layer 31B as an emitter, the P-type second well 13 as a base, and the N-type first well 12 as a collector.
 第1の外部接続端子17にサージが侵入すると、寄生NPNトランジスタ43がブレークダウンし、寄生NPNトランジスタ43のコレクタ電流がN型の第1ウェル12を流れる。このコレクタ電流と第1ウェル12の抵抗成分R1とにより、寄生PNPトランジスタ42のエミッタベース間が順バイアスされ、寄生PNPトランジスタ42が導通する。寄生PNPトランジスタ42が導通することにより寄生PNPトランジスタ42のコレクタ電流がP型の第2ウェル13を流れる。このコレクタ電流と第2ウェルの抵抗成分R2及び抵抗成分R3とにより寄生NPNトランジスタ43の導通が促進される。従って、回路に正のフィードバックがかかり、サイリスタのアノードである第3不純物拡散層21Bと、サイリスタのカソードである第4不純物拡散層31Bとの間に低インピーダンスの放電経路が形成される。これにより、サージ電流は接地端子である第2の外部接続端子に逃がされるため、被保護回路を保護することができる。 When a surge enters the first external connection terminal 17, the parasitic NPN transistor 43 breaks down, and the collector current of the parasitic NPN transistor 43 flows through the N-type first well 12. By this collector current and the resistance component R1 of the first well 12, the emitter base of the parasitic PNP transistor 42 is forward-biased, and the parasitic PNP transistor 42 becomes conductive. When the parasitic PNP transistor 42 is turned on, the collector current of the parasitic PNP transistor 42 flows through the P-type second well 13. The conduction of the parasitic NPN transistor 43 is promoted by the collector current and the resistance component R2 and the resistance component R3 of the second well. Accordingly, positive feedback is applied to the circuit, and a low-impedance discharge path is formed between the third impurity diffusion layer 21B that is the anode of the thyristor and the fourth impurity diffusion layer 31B that is the cathode of the thyristor. As a result, the surge current is released to the second external connection terminal, which is a ground terminal, so that the protected circuit can be protected.
 サイリスタ41の保持電圧を高くするには、寄生NPNトランジスタ43のベース抵抗を小さくし、寄生NPNトランジスタ43を導通しにくくすることが効果的である。寄生NPNトランジスタ43のベース抵抗は、図2に示す抵抗成分R2及び抵抗成分R3の値によって決まる。 In order to increase the holding voltage of the thyristor 41, it is effective to reduce the base resistance of the parasitic NPN transistor 43 and make the parasitic NPN transistor 43 less conductive. The base resistance of the parasitic NPN transistor 43 is determined by the values of the resistance component R2 and the resistance component R3 shown in FIG.
 抵抗成分R2の値は、不純物濃度等の条件が同じ場合には、第1ウェル12と第2ウェル13との境界と第2不純物拡散層31Aとの距離が短いほど小さくなる。抵抗成分R3の値は、第2不純物拡散層31Aの面積を大きくするほど小さくなる。 The value of the resistance component R2 becomes smaller as the distance between the boundary between the first well 12 and the second well 13 and the second impurity diffusion layer 31A is shorter when the conditions such as the impurity concentration are the same. The value of the resistance component R3 decreases as the area of the second impurity diffusion layer 31A increases.
 一方、サイリスタ41の電流能力は、寄生PNPトランジスタ42のエミッタであるアノードと寄生NPNトランジスタ43のエミッタであるカソードとの間隔を狭くした方が高くなる。つまり、電流能力の観点からは第3不純物拡散層21Bと第4不純物拡散層31Bとの間隔を狭くすることが好ましい。 On the other hand, the current capability of the thyristor 41 becomes higher when the interval between the anode which is the emitter of the parasitic PNP transistor 42 and the cathode which is the emitter of the parasitic NPN transistor 43 is narrowed. That is, from the viewpoint of current capability, it is preferable to narrow the distance between the third impurity diffusion layer 21B and the fourth impurity diffusion layer 31B.
 従来のサイリスタは電流能力を重視し、N型ウェルのP型不純物拡散層をN型ウェルとP型ウェルとの境界側に形成し、P型ウェルのN型不純物拡散層をN型ウェルとP型ウェルとの境界側に形成する。つまり、N型ウェルのP型不純物拡散層とP型ウェルのN型不純物拡散層とがN型ウェルとP型ウェルとの境界を挟んで隣接するように形成されている。 The conventional thyristor places importance on current capability, forms a P-type impurity diffusion layer of an N-type well on the boundary side between the N-type well and the P-type well, and forms an N-type impurity diffusion layer of the P-type well as an N-type well and a P-type well. It is formed on the boundary side with the mold well. That is, the P-type impurity diffusion layer of the N-type well and the N-type impurity diffusion layer of the P-type well are formed adjacent to each other with the boundary between the N-type well and the P-type well interposed therebetween.
 この場合、P型ウェルのP型不純物拡散層の面積を大きくすることにより抵抗成分R3の値を小さくし、保持電圧を高くすることが考えられる。しかし、サイリスタのサイズに制限があるため、抵抗成分R3の値を低減する効果は限られたものになる。また、抵抗成分R2の値の寄与が大きいため寄生NPNトランジスタのベース抵抗の値を大きく低下させることができない。 In this case, it is conceivable to increase the holding voltage by decreasing the value of the resistance component R3 by increasing the area of the P-type impurity diffusion layer of the P-type well. However, since the size of the thyristor is limited, the effect of reducing the value of the resistance component R3 is limited. Further, since the contribution of the value of the resistance component R2 is large, the value of the base resistance of the parasitic NPN transistor cannot be greatly reduced.
 第1の実施形態のESD保護回路は、P型の第2不純物拡散層31Aが、第1ウェル12と第2ウェル13との境界上に跨って設けられた素子分離領域15を挟んでP型の第3不純物拡散層21Bと隣接している。つまり、第1ウェル12内に形成されたN型の第1不純物拡散層21AとP型の第3不純物拡散層21Bのうち、P型の第3不純物拡散層21Bの方が第1ウェル12と第2ウェル13との境界に近い位置に形成されており、第2ウェル13内に形成されたP型の第2不純物拡散層31AとN型の第4不純物拡散層31Bのうち、P型の第2不純物拡散層31Aの方が第1ウェル12と第2ウェル13との境界に近い位置に形成されている。このため、寄生NPNトランジスタ43のベース抵抗となる抵抗成分R2の値を、N型ウェルのP型不純物拡散層とP型ウェルのN型不純物拡散層とが隣接した従来のサイリスタと比べて小さくすることができる。従って、図3に示すように、保持電圧を半導体装置の通常動作電圧より高くし、ラッチアップの発生を防止することが可能となる。 In the ESD protection circuit according to the first embodiment, the P-type second impurity diffusion layer 31A has a P-type sandwiching the element isolation region 15 provided across the boundary between the first well 12 and the second well 13. Adjacent to the third impurity diffusion layer 21B. In other words, of the N-type first impurity diffusion layer 21A and the P-type third impurity diffusion layer 21B formed in the first well 12, the P-type third impurity diffusion layer 21B is closer to the first well 12. Of the P-type second impurity diffusion layer 31A and the N-type fourth impurity diffusion layer 31B formed in the second well 13, the P-type second impurity diffusion layer 31B is formed at a position close to the boundary with the second well 13. The second impurity diffusion layer 31 </ b> A is formed at a position closer to the boundary between the first well 12 and the second well 13. Therefore, the value of the resistance component R2 serving as the base resistance of the parasitic NPN transistor 43 is made smaller than that of a conventional thyristor in which the P-type impurity diffusion layer of the N-type well and the N-type impurity diffusion layer of the P-type well are adjacent to each other. be able to. Therefore, as shown in FIG. 3, the holding voltage can be made higher than the normal operating voltage of the semiconductor device to prevent the occurrence of latch-up.
 図4は、アノードとカソードとの間隔と保持電圧との関係を示している。アノードとカソードとの間隔を広くすると、増幅率が低下するため保持電圧を上昇させることができる。N型ウェルのP型不純物拡散層とP型ウェルのN型不純物拡散層とが隣接した従来のサイリスタにおいても、アノードであるN型ウェルのP型不純物拡散層とカソードであるP型ウェルのN型不純物拡散層との間隔を広くすることにより保持電圧が上昇する。しかし、この場合にはN型ウェルとP型ウェルとの境界からP型ウェルのP型不純物拡散層までの距離も大きくなる。このため、抵抗成分R2の値が大きくなるため保持電圧を高くする効果が小さい。また、サイリスタのサイズも大きくなってしまう。 FIG. 4 shows the relationship between the gap between the anode and the cathode and the holding voltage. When the interval between the anode and the cathode is widened, the amplification voltage is lowered, so that the holding voltage can be increased. Even in the conventional thyristor in which the P-type impurity diffusion layer of the N-type well and the N-type impurity diffusion layer of the P-type well are adjacent to each other, the P-type impurity diffusion layer of the N-type well serving as the anode and the N of the P-type well serving as the cathode The holding voltage increases by increasing the distance from the type impurity diffusion layer. However, in this case, the distance from the boundary between the N-type well and the P-type well to the P-type impurity diffusion layer of the P-type well is also increased. For this reason, since the value of the resistance component R2 increases, the effect of increasing the holding voltage is small. In addition, the size of the thyristor is also increased.
 一方、本実施形態においては、第2不純物拡散層31Aが第4不純物拡散層31Bよりも第1ウェル12と第2ウェル13との境界側に形成されている。従って、アノードである第3不純物拡散層21Bとカソードである第4不純物拡散層31Bとの間隔を広くしても、抵抗成分R2の値はほとんど大きくならない。また、保持電圧に対する抵抗成分R2の寄与が大きいため、アノードとカソードとの間隔が狭い場合においても、従来のサイリスタと比べて遙かに高い保持電圧を実現することができる。つまり、本実施形態のESD保護回路は、小型で且つラッチアップが生じにくいESD保護回路を実現することを可能とする。 On the other hand, in the present embodiment, the second impurity diffusion layer 31A is formed on the boundary side between the first well 12 and the second well 13 rather than the fourth impurity diffusion layer 31B. Therefore, even if the distance between the third impurity diffusion layer 21B serving as the anode and the fourth impurity diffusion layer 31B serving as the cathode is increased, the value of the resistance component R2 hardly increases. In addition, since the contribution of the resistance component R2 to the holding voltage is large, even when the distance between the anode and the cathode is narrow, a holding voltage much higher than that of the conventional thyristor can be realized. That is, the ESD protection circuit of the present embodiment can realize an ESD protection circuit that is small in size and hardly causes latch-up.
 本実施形態のESD保護回路に、サイリスタがターンオンするスナップバック電圧を低下させるトリガ回路を設けてもよい。トリガ回路を設けることにより、サイリスタの保持電圧を低下させることなくターンオン電圧を低下させることができる。 The ESD protection circuit of this embodiment may be provided with a trigger circuit that reduces the snapback voltage at which the thyristor is turned on. By providing the trigger circuit, the turn-on voltage can be lowered without lowering the holding voltage of the thyristor.
 トリガ回路は、例えば、寄生PNPトランジスタ42のブレークダウン電圧よりも低い電圧において、寄生NPNトランジスタ43のベースと第1の外部接続端子17とを導通させる回路とすればよい。 The trigger circuit may be a circuit that makes the base of the parasitic NPN transistor 43 and the first external connection terminal 17 conductive at a voltage lower than the breakdown voltage of the parasitic PNP transistor 42, for example.
 具体例を図5(a)及び(b)に示す。図5(a)は第1のトリガ回路51を接続するESD保護回路の断面構成を示し、(b)はESD保護回路の回路構成を示している。第1のトリガ回路51はトリガ素子51Aと電圧調整用の抵抗素子51Bとを有している。トリガ素子51Aの第1端子51aは第1の外部接続端子17と接続され、第2端子51bはP型の第2ウェル13に形成されたP型の第5不純物拡散層31Cと接続されているとともに、抵抗素子51Bを介在させて第2の外部接続端子18と接続されている。第5不純物拡散層31Cは、第2不純物拡散層31A及び第4不純物拡散層31Bを挟んで第1ウェル12と第2ウェル13との境界と反対側に形成されている。 Specific examples are shown in FIGS. 5 (a) and 5 (b). FIG. 5A shows a cross-sectional configuration of an ESD protection circuit to which the first trigger circuit 51 is connected, and FIG. 5B shows a circuit configuration of the ESD protection circuit. The first trigger circuit 51 includes a trigger element 51A and a voltage adjusting resistance element 51B. The first terminal 51a of the trigger element 51A is connected to the first external connection terminal 17, and the second terminal 51b is connected to the P-type fifth impurity diffusion layer 31C formed in the P-type second well 13. At the same time, it is connected to the second external connection terminal 18 with a resistance element 51B interposed therebetween. The fifth impurity diffusion layer 31C is formed on the opposite side of the boundary between the first well 12 and the second well 13 with the second impurity diffusion layer 31A and the fourth impurity diffusion layer 31B interposed therebetween.
 つまり、第1の外部接続端子17と寄生NPNトランジスタ43のベースである第2ウェル13との間にトリガ素子51Aが接続されている。トリガ素子51Aは、寄生PNPトランジスタ42よりも低い電圧でオン状態となる。従って、第1の外部接続端子17にサージが侵入すると、サイリスタ41よりも先にトリガ素子51Aが導通する。トリガ素子51Aが導通すると、抵抗素子51Bに電流が流れ、電流抵抗(IR)ドロップにより寄生NPNトランジスタ43のベースが接地レベルよりも浮いた状態となる。これにより、寄生NPNトランジスタ43のベースエミッタ間が順バイアスされ、寄生NPNトランジスタ43が導通する。寄生NPNトランジスタ43が導通した後は、第1のトリガ回路51がない場合と同様にしてサージ電流が接地へ逃がされる。 That is, the trigger element 51 A is connected between the first external connection terminal 17 and the second well 13 that is the base of the parasitic NPN transistor 43. The trigger element 51A is turned on at a voltage lower than that of the parasitic PNP transistor 42. Therefore, when a surge enters the first external connection terminal 17, the trigger element 51 </ b> A is conducted before the thyristor 41. When the trigger element 51A becomes conductive, a current flows through the resistance element 51B, and the base of the parasitic NPN transistor 43 is floated above the ground level due to a current resistance (IR) drop. As a result, the base and emitter of the parasitic NPN transistor 43 are forward biased, and the parasitic NPN transistor 43 becomes conductive. After the parasitic NPN transistor 43 is turned on, the surge current is released to the ground in the same manner as when the first trigger circuit 51 is not provided.
 トリガ素子51Aは、例えば、図6(a)及び(b)に示すようにMOS(金属-酸化膜-半導体)トランジスタを用いればよい。N型MOSトランジスタを用いた場合には、図6(a)に示すようにゲート電極を第2端子51bに接続し、P型MOSトランジスタを用いた場合には、図6(b)に示すようにゲート電極を第1端子51aに接続する。サイリスタ41が第1のトリガ回路51によりターンオンする電圧は、MOSトランジスタであるトリガ素子51Aの閾値と、抵抗素子51Bの値とによって設定することができる。 As the trigger element 51A, for example, a MOS (metal-oxide-semiconductor) transistor may be used as shown in FIGS. 6 (a) and 6 (b). When an N-type MOS transistor is used, the gate electrode is connected to the second terminal 51b as shown in FIG. 6A, and when a P-type MOS transistor is used, as shown in FIG. 6B. The gate electrode is connected to the first terminal 51a. The voltage at which the thyristor 41 is turned on by the first trigger circuit 51 can be set by the threshold value of the trigger element 51A, which is a MOS transistor, and the value of the resistance element 51B.
 トリガ回路は、寄生NPNトランジスタ43のブレークダウン電圧よりも低い電圧において、寄生PNPトランジスタ42のベースと接地との間を導通させる回路としてもよい。 The trigger circuit may be a circuit that conducts between the base of the parasitic PNP transistor 42 and the ground at a voltage lower than the breakdown voltage of the parasitic NPN transistor 43.
 この場合の具体例を図7(a)及び(b)に示す。図7(a)はESD保護回路の断面構成を示し、(b)はESD保護回路の回路構成を示している。第2のトリガ回路52はトリガ素子52Aと電圧調整用の抵抗素子52Bとを有している。トリガ素子52Aの第1端子52aはN型の第1ウェル12に形成されたN型の第1不純物拡散層21Aと接続され、第2端子52bは第2の外部接続端子18と接続されている。さらに、トリガ素子52Aの第1端子52aは抵抗素子52Bを介在させて第1の外部接続端子17と接続されている。 Specific examples in this case are shown in FIGS. 7 (a) and 7 (b). FIG. 7A shows a cross-sectional configuration of the ESD protection circuit, and FIG. 7B shows a circuit configuration of the ESD protection circuit. The second trigger circuit 52 includes a trigger element 52A and a voltage adjusting resistance element 52B. The first terminal 52 a of the trigger element 52 A is connected to the N-type first impurity diffusion layer 21 A formed in the N-type first well 12, and the second terminal 52 b is connected to the second external connection terminal 18. . Furthermore, the first terminal 52a of the trigger element 52A is connected to the first external connection terminal 17 with the resistance element 52B interposed.
 つまり、寄生PNPトランジスタ42のベースである第1ウェル12と接地との間にトリガ素子52Aが接続されている。トリガ素子52Aは、寄生NPNトランジスタ43よりも低い電圧でオン状態となる。従って、第1の外部接続端子17にサージが侵入すると、サイリスタ41よりも先にトリガ素子52Aが導通する。トリガ素子52Aが導通すると、抵抗素子52Bに電流が流れ、電流抵抗(IR)ドロップにより寄生PNPトランジスタ42のベースエミッタ間が順バイアスされる。これにより、寄生PNPトランジスタ42が導通する。寄生PNPトランジスタ42が導通することにより寄生NPNトランジスタ43が導通し、第2のトリガ回路52がない場合と同様にしてサージ電流が接地へ逃がされる。この場合にも、図8に示すようにトリガ素子52AはMOSトランジスタとすればよい。P型MOSトランジスタを用いた場合には、図8(a)に示すようにゲート電極を第1端子52aに接続し、N型MOSトランジスタを用いた場合には、図8(b)に示すようにゲート電極を第2端子52bに接続する。 That is, the trigger element 52A is connected between the first well 12 which is the base of the parasitic PNP transistor 42 and the ground. The trigger element 52A is turned on at a voltage lower than that of the parasitic NPN transistor 43. Therefore, when a surge enters the first external connection terminal 17, the trigger element 52 </ b> A becomes conductive before the thyristor 41. When the trigger element 52A is turned on, a current flows through the resistance element 52B, and the base-emitter of the parasitic PNP transistor 42 is forward-biased by a current resistance (IR) drop. Thereby, the parasitic PNP transistor 42 becomes conductive. When the parasitic PNP transistor 42 is turned on, the parasitic NPN transistor 43 is turned on, and the surge current is released to the ground in the same manner as when the second trigger circuit 52 is not provided. Also in this case, the trigger element 52A may be a MOS transistor as shown in FIG. When a P-type MOS transistor is used, the gate electrode is connected to the first terminal 52a as shown in FIG. 8A, and when an N-type MOS transistor is used, as shown in FIG. 8B. The gate electrode is connected to the second terminal 52b.
 また、第1の外部接続端子17が被保護回路の入出力端子である場合には、トリガ回路をサージの侵入時に電源端子がフローティングになることを利用して起動する構成としてもよい。この場合の具体的な構成は図9に示すようにすればよい。図9(a)はESD保護回路の断面構成を示し、(b)はESD保護回路の回路構成を示している。第3のトリガ回路53はトリガ素子53Aを有している。トリガ素子53Aの第1端子53aは、第1不純物拡散層21Aと接続され、第2端子53bは第2の外部接続端子18に接続され接地されている。第3端子53cは電源端子19と接続されている。トリガ素子53Aは、第3端子53cがフローティングになると第1端子53aと第2端子53bとの間が導通する素子である。 In addition, when the first external connection terminal 17 is an input / output terminal of a protected circuit, the trigger circuit may be activated by utilizing the fact that the power supply terminal is floating when a surge enters. A specific configuration in this case may be as shown in FIG. FIG. 9A shows a cross-sectional configuration of the ESD protection circuit, and FIG. 9B shows a circuit configuration of the ESD protection circuit. The third trigger circuit 53 has a trigger element 53A. The first terminal 53a of the trigger element 53A is connected to the first impurity diffusion layer 21A, and the second terminal 53b is connected to the second external connection terminal 18 and grounded. The third terminal 53 c is connected to the power supply terminal 19. The trigger element 53A is an element that conducts between the first terminal 53a and the second terminal 53b when the third terminal 53c becomes floating.
 通常は、電源端子19に電源電圧が印加されているため、トリガ素子53Aはオフ状態である。しかし、電源端子19に電源電圧が印加されていないフローティング状態ではトリガ素子53Aがオン状態となる。そのため、電源端子19がフローティング状態の時に、第1の外部接続端子17にサージが侵入すると、オン状態であるトリガ素子53Aが導通し、寄生PNPトランジスタ42のベースエミッタ間が順バイアスされ、寄生PNPトランジスタ42が導通する。寄生PNPトランジスタ42が導通することにより寄生NPNトランジスタ43が導通し、第3のトリガ回路53がない場合と同様にしてサージ電流が接地へ逃がされる。この場合には、トリガ素子53Aを図10に示すようなMOSトランジスタとすればよい。P型MOSトランジスタを用いた場合には、図10に示すようにゲート電極及び基板領域を電源端子19に接続する。 Normally, since the power supply voltage is applied to the power supply terminal 19, the trigger element 53A is in an off state. However, in the floating state where the power supply voltage is not applied to the power supply terminal 19, the trigger element 53A is turned on. Therefore, when a surge enters the first external connection terminal 17 when the power supply terminal 19 is in a floating state, the trigger element 53A that is in an on state is turned on, and the base emitter of the parasitic PNP transistor 42 is forward-biased. Transistor 42 conducts. When the parasitic PNP transistor 42 is turned on, the parasitic NPN transistor 43 is turned on, and the surge current is released to the ground in the same manner as when the third trigger circuit 53 is not provided. In this case, the trigger element 53A may be a MOS transistor as shown in FIG. When a P-type MOS transistor is used, the gate electrode and the substrate region are connected to the power supply terminal 19 as shown in FIG.
 第1の実施形態において、第1不純物拡散層21A及び第4不純物拡散層31BをN型とし、第2不純物拡散層31A及び第3不純物拡散層21BをP型とする例を示した。しかし、第1不純物拡散層21A及び第4不純物拡散層31BをP型とし、第2不純物拡散層31A及び第3不純物拡散層21BをN型としてもよい。 In the first embodiment, the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B are N-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B are P-type. However, the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B may be P-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B may be N-type.
 第1のトリガ回路51及び第2のトリガ回路52ではMOSトランジスタと抵抗素子とにより形成する例を示し、第3のトリガ回路53ではMOSトランジスタにより形成する例を示したが、所定の電圧において導通する回路であればどのような回路であってもよい。例えば、MOSトランジスタに代えてダイオード等を用いてもよい。 In the first trigger circuit 51 and the second trigger circuit 52, an example in which a MOS transistor and a resistance element are formed is shown, and in the third trigger circuit 53, an example in which a MOS transistor is formed. Any circuit may be used as long as it is a circuit. For example, a diode or the like may be used instead of the MOS transistor.
 (第2の実施形態)
 以下に、第2の実施形態について図面を参照して説明する。図11及び図12(a)~(d)は、第2の実施形態に係るESD保護回路であり、図11は平面構成を示し、図12(a)~(d)はそれぞれ図11のXIIa-XIIab線、XIIb-XIIb線、XIIc-XIIc線及びXIId-XIId線における断面構成を示す。図11及び12において図1と同一の構成要素には同一の符号を附すことにより説明を省略する。
(Second Embodiment)
Hereinafter, a second embodiment will be described with reference to the drawings. 11 and FIGS. 12A to 12D are ESD protection circuits according to the second embodiment, FIG. 11 shows a plan configuration, and FIGS. 12A to 12D are XIIa in FIG. The cross-sectional structures of the -XIIab line, XIIb-XIIb line, XIIc-XIIc line and XIId-XIId line are shown. 11 and 12, the same components as those in FIG.
 図11及び12に示すように、第2の実施形態のESD保護回路は、SCR型のESD保護回路である。N型の第1ウェル12に形成された第1不純物拡散層21Aが第1ウェル12と第2ウェル13との境界側に突出した第1の凸部21aを有している。P型の第2ウェル13に形成された第2不純物拡散層31Aは、第1ウェル12と第2ウェル13との境界と反対側に突出した第2の凸部31aを有している。第3不純物拡散層21B及び第4不純物拡散層31Bは、それぞれ互いに間隔をおいて複数形成されており、第3不純物拡散層21B同士の間の領域に第1の凸部21aが形成され、第4不純物拡散層31B同士の間の領域に第2の凸部31aが形成されている。 As shown in FIGS. 11 and 12, the ESD protection circuit of the second embodiment is an SCR type ESD protection circuit. The first impurity diffusion layer 21 </ b> A formed in the N-type first well 12 has a first protrusion 21 a that protrudes to the boundary side between the first well 12 and the second well 13. The second impurity diffusion layer 31 </ b> A formed in the P-type second well 13 has a second protrusion 31 a that protrudes on the opposite side of the boundary between the first well 12 and the second well 13. A plurality of the third impurity diffusion layers 21B and the fourth impurity diffusion layers 31B are formed at intervals from each other, and the first protrusions 21a are formed in the regions between the third impurity diffusion layers 21B. A second convex portion 31a is formed in a region between the four impurity diffusion layers 31B.
 このような構成とすることにより、第1ウェル12と第2ウェル13との実効的なウェル抵抗が小さくなる。これにより、寄生PNPトランジスタ42及び寄生NPNトランジスタ43のベース抵抗をさらに低下させ、保持電圧を上昇させることが可能となる。従って、さらにラッチアップが生じにくいESD保護回路が実現できる。 With this configuration, the effective well resistance between the first well 12 and the second well 13 is reduced. As a result, the base resistances of the parasitic PNP transistor 42 and the parasitic NPN transistor 43 can be further reduced, and the holding voltage can be increased. Therefore, it is possible to realize an ESD protection circuit that is less prone to latch-up.
 本実施形態のESD保護回路は、第1の実施形態のESD保護回路と比べて、サイリスタ41のアノードである第3不純物拡散層21B及びカソードである第4不純物拡散層31Bの面積が小さくなる。このため、電流能力が第1の実施形態のESD保護回路と比べて低下する。しかし、通常はサージを逃がすための電流能力には余裕があるため、何ら問題はない。 The area of the third impurity diffusion layer 21B that is the anode of the thyristor 41 and the area of the fourth impurity diffusion layer 31B that is the cathode of the ESD protection circuit of the present embodiment are smaller than those of the ESD protection circuit of the first embodiment. For this reason, the current capability is reduced as compared with the ESD protection circuit of the first embodiment. However, there is usually no problem because the current capability for releasing the surge is sufficient.
 なお、第1の凸部21a及び第2の凸部31aを複数形成する例を示したが、第1の凸部21a及び第2の凸部31aを1つだけ形成してもよい。この場合、第3不純物拡散層21B及び第4不純物拡散層31Bは、それぞれ1つであってもよい。 In addition, although the example which forms the 1st convex part 21a and the 2nd convex part 31a was shown, you may form only the 1st convex part 21a and the 2nd convex part 31a. In this case, each of the third impurity diffusion layer 21B and the fourth impurity diffusion layer 31B may be one.
 第2の実施形態のESD保護回路にも第1の実施形態のESD保護回路と同様に、トリガ回路を設けてもよい。これにより、保持電圧を変化させることなく、スナップバック電圧を低くすることができる。 As with the ESD protection circuit of the first embodiment, a trigger circuit may be provided in the ESD protection circuit of the second embodiment. As a result, the snapback voltage can be lowered without changing the holding voltage.
 第2の実施形態において、第1不純物拡散層21A及び第4不純物拡散層31BをN型とし、第2不純物拡散層31A及び第3不純物拡散層21BをP型とする例を示した。しかし、第1不純物拡散層21A及び第4不純物拡散層31BをP型とし、第2不純物拡散層31A及び第3不純物拡散層21BをN型としてもよい。この場合には、第3不純物拡散層21Bに第1ウェル12と第2ウェル13との境界と反対側に突出した第3の凸部を形成し、第4不純物拡散層31Bに第1ウェル12と第2ウェル13との境界側に突出した第4の凸部を形成すればよい。 In the second embodiment, the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B are N-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B are P-type. However, the first impurity diffusion layer 21A and the fourth impurity diffusion layer 31B may be P-type, and the second impurity diffusion layer 31A and the third impurity diffusion layer 21B may be N-type. In this case, a third protrusion is formed in the third impurity diffusion layer 21B so as to protrude to the opposite side of the boundary between the first well 12 and the second well 13, and the first well 12 is formed in the fourth impurity diffusion layer 31B. What is necessary is just to form the 4th convex part which protruded in the boundary side of the 2nd well 13 and.
 本開示に係る半導体装置は、ラッチアップ耐性が高く且つ占有面積が小さい静電放電保護回路を実現でき、被保護回路を静電破壊から保護する静電放電保護回路を備えた半導体装置等として有用である。 The semiconductor device according to the present disclosure can realize an electrostatic discharge protection circuit that has high latch-up resistance and a small occupation area, and is useful as a semiconductor device including an electrostatic discharge protection circuit that protects a protected circuit from electrostatic breakdown. It is.
11   半導体基板
12   第1ウェル
13   第2ウェル
15   素子分離領域
17   第1の外部接続端子
18   第2の外部接続端子
19   電源端子
21A  第1不純物拡散層
21B  第3不純物拡散層
21a  第1の凸部
31A  第2不純物拡散層
31B  第4不純物拡散層
31C  第5不純物拡散層
31a  第2の凸部
41   サイリスタ
42   寄生PNPトランジスタ
43   寄生NPNトランジスタ
51   第1のトリガ回路
51A  トリガ素子
51B  抵抗素子
51a  第1端子
51b  第2端子
52   第2のトリガ回路
52A  トリガ素子
52B  抵抗素子
52a  第1端子
52b  第2端子
53   第3のトリガ回路
53A  トリガ素子
53a  第1端子
53b  第2端子
53c  第3端子
DESCRIPTION OF SYMBOLS 11 Semiconductor substrate 12 1st well 13 2nd well 15 Element isolation region 17 1st external connection terminal 18 2nd external connection terminal 19 Power supply terminal 21A 1st impurity diffusion layer 21B 3rd impurity diffusion layer 21a 1st convex part 31A Second impurity diffusion layer 31B Fourth impurity diffusion layer 31C Fifth impurity diffusion layer 31a Second protrusion 41 Thyristor 42 Parasitic PNP transistor 43 Parasitic NPN transistor 51 First trigger circuit 51A Trigger element 51B Resistance element 51a First terminal 51b Second terminal 52 Second trigger circuit 52A Trigger element 52B Resistance element 52a First terminal 52b Second terminal 53 Third trigger circuit 53A Trigger element 53a First terminal 53b Second terminal 53c Third terminal

Claims (14)

  1.  半導体装置は、
     被保護回路と、該被保護回路を静電破壊から保護する静電放電保護回路とを備えた半導体装置であって、
     前記静電放電保護回路は、
     半導体基板に、互いに接して形成された第1導電型の第1ウェル及び第2導電型の第2ウェルと、
     前記第1ウェル内に互いに分離して形成された第1導電型の第1不純物拡散層及び第2導電型の第3不純物拡散層と、
     前記第2ウェル内に互いに分離して形成された第2導電型の第2不純物拡散層及び第1導電型の第4不純物拡散層とを有し、
     前記第2不純物拡散層と前記第3不純物拡散層とは、前記第1ウェルと前記第2ウェルとの境界上に跨って設けられた素子分離領域を挟んで隣接して形成されており、
     前記第3不純物拡散層は、前記被保護回路の第1の外部接続端子と接続され、
     前記第2不純物拡散層及び前記第4不純物拡散層は、前記被保護回路の第2の外部接続端子と接続されている。
    Semiconductor devices
    A semiconductor device comprising a protected circuit and an electrostatic discharge protection circuit that protects the protected circuit from electrostatic breakdown,
    The electrostatic discharge protection circuit is:
    A first well of a first conductivity type and a second well of a second conductivity type formed in contact with each other on a semiconductor substrate;
    A first impurity diffusion layer of a first conductivity type and a third impurity diffusion layer of a second conductivity type formed separately from each other in the first well;
    A second conductivity type second impurity diffusion layer and a first conductivity type fourth impurity diffusion layer formed separately from each other in the second well;
    The second impurity diffusion layer and the third impurity diffusion layer are formed adjacent to each other across an element isolation region provided across the boundary between the first well and the second well,
    The third impurity diffusion layer is connected to a first external connection terminal of the protected circuit;
    The second impurity diffusion layer and the fourth impurity diffusion layer are connected to a second external connection terminal of the protected circuit.
  2.  請求項1に記載の半導体装置において、
     前記第1不純物拡散層は、前記第3不純物拡散層を挟んで前記第1ウェルと前記第2ウェルとの境界と反対側に形成され、
     前記第4不純物拡散層は、前記第2不純物拡散層を挟んで前記第1ウェルと前記第2ウェルとの境界と反対側に形成されている。
    The semiconductor device according to claim 1,
    The first impurity diffusion layer is formed on the opposite side of the boundary between the first well and the second well with the third impurity diffusion layer interposed therebetween.
    The fourth impurity diffusion layer is formed on the opposite side of the boundary between the first well and the second well with the second impurity diffusion layer interposed therebetween.
  3.  請求項1に記載の半導体装置において、
     前記第1不純物拡散層は、前記第1ウェルと前記第2ウェルとの境界側に突出した第1の凸部を有し、
     前記第2不純物拡散層は、前記第1ウェルと前記第2ウェルとの境界と反対側に突出した第2の凸部を有している。
    The semiconductor device according to claim 1,
    The first impurity diffusion layer has a first protrusion protruding to a boundary side between the first well and the second well,
    The second impurity diffusion layer has a second convex portion that protrudes on the opposite side of the boundary between the first well and the second well.
  4.  請求項3に記載の半導体装置において、
     前記第3不純物拡散層は、前記第1ウェルと前記第2ウェルとの境界と平行な方向に互いに間隔をおいて複数形成され、
     前記第1の凸部は、前記第3不純物拡散層同士の間の領域に形成され、
     前記第4不純物拡散層は、前記第1ウェルと前記第2ウェルとの境界と平行な方向に互いに間隔をおいて複数形成され、
     前記第2の凸部は、前記第4不純物拡散層同士の間の領域に形成されている。
    The semiconductor device according to claim 3.
    A plurality of the third impurity diffusion layers are formed spaced apart from each other in a direction parallel to a boundary between the first well and the second well,
    The first protrusion is formed in a region between the third impurity diffusion layers,
    A plurality of the fourth impurity diffusion layers are formed at intervals in a direction parallel to the boundary between the first well and the second well,
    The second convex portion is formed in a region between the fourth impurity diffusion layers.
  5.  請求項1に記載の半導体装置において、
     前記第1導電型はN型であり、
     前記第2導電型はP型であり、
     前記第1の外部接続端子の電圧は前記第2の外部接続端子の電圧よりも高い。
    The semiconductor device according to claim 1,
    The first conductivity type is N-type;
    The second conductivity type is P type,
    The voltage of the first external connection terminal is higher than the voltage of the second external connection terminal.
  6.  請求項5に記載の半導体装置において、
     前記第1の外部接続端子は、電源端子又は入出力端子であり、
     前記第2の外部接続端子は、接地端子である。
    The semiconductor device according to claim 5,
    The first external connection terminal is a power supply terminal or an input / output terminal,
    The second external connection terminal is a ground terminal.
  7.  請求項5に記載の半導体装置において、
     前記第1の外部接続端子は、電源端子であり、
     前記第2の外部接続端子は、入出力端子である。
    The semiconductor device according to claim 5,
    The first external connection terminal is a power supply terminal;
    The second external connection terminal is an input / output terminal.
  8.  請求項1に記載の半導体装置において、
     前記第1不純物拡散層は、前記第1の外部接続端子と接続されている。
    The semiconductor device according to claim 1,
    The first impurity diffusion layer is connected to the first external connection terminal.
  9.  請求項8に記載の半導体装置において、
     前記静電放電保護回路は、第1のトリガ回路と、前記第2ウェルに形成された第2導電型の第5不純物拡散層とを有し、
     前記第1のトリガ回路は、
     前記第1の外部接続端子と第1端子が接続され、第2端子が前記第5不純物拡散層と接続されたトリガ素子と、
     前記トリガ素子の第2端子と前記第2の外部接続端子との間に接続された抵抗素子とを有している。
    The semiconductor device according to claim 8,
    The electrostatic discharge protection circuit includes a first trigger circuit and a second impurity diffusion layer of a second conductivity type formed in the second well,
    The first trigger circuit includes:
    A trigger element in which the first external connection terminal and the first terminal are connected, and the second terminal is connected to the fifth impurity diffusion layer;
    A resistance element connected between the second terminal of the trigger element and the second external connection terminal;
  10.  請求項9に記載の半導体装置において、
     前記第1のトリガ回路は、前記第2ウェルをコレクタとし、前記第1ウェルをベースとし、前記第3不純物拡散層をエミッタとする寄生トランジスタのブレークダウン電圧よりも低い電圧において、前記第1ウェルをコレクタとし、前記第2ウェルをベースとし、前記第4不純物拡散層をエミッタとする寄生トランジスタのベースと前記第1の外部接続端子との間を導通させる。
    The semiconductor device according to claim 9.
    The first trigger circuit includes the first well at a voltage lower than a breakdown voltage of a parasitic transistor having the second well as a collector, the first well as a base, and the third impurity diffusion layer as an emitter. As a collector, the second well as a base, and the base of a parasitic transistor having the fourth impurity diffusion layer as an emitter, and the first external connection terminal.
  11.  請求項1に記載の半導体装置において、
     前記静電放電保護回路は、第2のトリガ回路を有し、
     前記第2のトリガ回路は、
     前記第1不純物拡散層と第1端子が接続され、第2端子が前記第2不純物拡散層及び前記第4不純物拡散層と接続されたトリガ素子と、
     前記トリガ素子の第1端子と前記第1の外部接続端子との間に接続された抵抗素子とを有している。
    The semiconductor device according to claim 1,
    The electrostatic discharge protection circuit has a second trigger circuit,
    The second trigger circuit includes:
    A trigger element having a first terminal connected to the first impurity diffusion layer and a second terminal connected to the second impurity diffusion layer and the fourth impurity diffusion layer;
    A resistor element connected between the first terminal of the trigger element and the first external connection terminal;
  12.  請求項11に記載の半導体装置において、
     前記第2のトリガ回路は、前記第1ウェルをコレクタとし、前記第2ウェルをベースとし、前記第4不純物拡散層をエミッタとする寄生トランジスタのブレークダウン電圧よりも低い電圧において、前記第2ウェルをコレクタとし、前記第1ウェルをベースとし、前記第3不純物拡散層をエミッタとする寄生トランジスタのベースと前記第2の外部接続端子との間を導通させる。
    The semiconductor device according to claim 11,
    The second trigger circuit includes the second well at a voltage lower than a breakdown voltage of a parasitic transistor having the first well as a collector, the second well as a base, and the fourth impurity diffusion layer as an emitter. As a collector, the first well as a base, and the base of a parasitic transistor having the third impurity diffusion layer as an emitter, and the second external connection terminal.
  13.  請求項1に記載の半導体装置において、
     前記静電放電保護回路は、第3のトリガ回路を有し、
     前記第3のトリガ回路は、前記第1不純物拡散層と第1端子が接続され、第2端子が前記第2不純物拡散層及び前記第4不純物拡散層と接続され、第3の端子が電源端子と接続されたスイッチ素子である。
    The semiconductor device according to claim 1,
    The electrostatic discharge protection circuit has a third trigger circuit,
    In the third trigger circuit, the first impurity diffusion layer and the first terminal are connected, the second terminal is connected to the second impurity diffusion layer and the fourth impurity diffusion layer, and the third terminal is a power supply terminal. Is a switch element connected to
  14.  請求項13に記載の半導体装置において、
     前記第3のトリガ回路は、前記電源端子がフローティング状態となった際に、前記第2ウェルをコレクタとし、前記第1ウェルをベースとし、前記第3不純物拡散層をエミッタとする寄生トランジスタのベースと前記第2の外部接続端子との間を導通させる。
    The semiconductor device according to claim 13,
    The third trigger circuit includes a base of a parasitic transistor having the second well as a collector, the first well as a base, and the third impurity diffusion layer as an emitter when the power supply terminal is in a floating state. And the second external connection terminal.
PCT/JP2009/003247 2008-09-11 2009-07-10 Semiconductor device having electrostatic discharge protection circuit WO2010029672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/771,585 US20100207163A1 (en) 2008-09-11 2010-04-30 Semiconductor device including electrostatic-discharge protection circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-233678 2008-09-11
JP2008233678A JP2010067846A (en) 2008-09-11 2008-09-11 Semiconductor device with electrostatic discharge protection circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/771,585 Continuation US20100207163A1 (en) 2008-09-11 2010-04-30 Semiconductor device including electrostatic-discharge protection circuit

Publications (1)

Publication Number Publication Date
WO2010029672A1 true WO2010029672A1 (en) 2010-03-18

Family

ID=42004938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003247 WO2010029672A1 (en) 2008-09-11 2009-07-10 Semiconductor device having electrostatic discharge protection circuit

Country Status (3)

Country Link
US (1) US20100207163A1 (en)
JP (1) JP2010067846A (en)
WO (1) WO2010029672A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749566B (en) * 2019-05-30 2021-12-11 美商美國亞德諾半導體公司 Semiconductor die, resistive thyristor, and stacked thyristor protection device
US11362203B2 (en) 2019-09-26 2022-06-14 Analog Devices, Inc. Electrical overstress protection for electronic systems subject to electromagnetic compatibility fault conditions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390024B2 (en) * 2010-04-09 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Electrostatic discharge (ESD) protection circuit
JP5662257B2 (en) * 2011-06-15 2015-01-28 株式会社東芝 Semiconductor device
TWI548060B (en) * 2014-04-23 2016-09-01 立錡科技股份有限公司 Silicon controlled rectifier for providing electrostatic discharge protection for high voltage integrated circuits
CN105023913A (en) * 2014-04-24 2015-11-04 立锜科技股份有限公司 Silicon controlled rectifier
US9997510B2 (en) * 2015-09-09 2018-06-12 Vanguard International Semiconductor Corporation Semiconductor device layout structure
US9679888B1 (en) * 2016-08-30 2017-06-13 Globalfoundries Inc. ESD device for a semiconductor structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313110A (en) * 1996-12-20 1998-11-24 Texas Instr Inc <Ti> Laminated scr esp protection with holding voltage adjustable to low trigger voltage
JP2003092357A (en) * 2001-09-17 2003-03-28 Yamaha Corp Input protecting circuit
JP2004006743A (en) * 2002-03-25 2004-01-08 Nec Electronics Corp Electrostatic discharge protection element and semiconductor device
JP2004047959A (en) * 2002-05-24 2004-02-12 Nec Electronics Corp Electrostatic discharge protection element
JP2006523032A (en) * 2003-04-10 2006-10-05 サーノフ コーポレーション Silicon controlled rectifier electrostatic discharge protection device for power supply line with power down operation mode
JP2006319330A (en) * 2005-05-10 2006-11-24 Samsung Electronics Co Ltd Device for protecting from electrostatic discharge
WO2007044843A2 (en) * 2005-10-11 2007-04-19 Texas Instruments Incorporated Low capacitance scr with trigger element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012317A (en) * 1986-04-11 1991-04-30 Texas Instruments Incorporated Electrostatic discharge protection circuit
TW299495B (en) * 1996-05-03 1997-03-01 Winbond Electronics Corp Electrostatic discharge protection circuit
EP1348236B1 (en) * 2000-11-06 2007-08-15 Sarnoff Corporation Silicon controlled rectifier electrostatic discharge protection device with external on-chip triggering and compact internal dimensions for fast triggering
EP1368875A1 (en) * 2001-03-16 2003-12-10 Sarnoff Corporation Electrostatic discharge protection structures having high holding current for latch-up immunity
US7109533B2 (en) * 2002-03-25 2006-09-19 Nec Electronics Corporation Electrostatic discharge protection device
TWI258838B (en) * 2004-04-23 2006-07-21 Nec Electronics Corp Electrostatic protection device
JP4303761B2 (en) * 2007-03-07 2009-07-29 Necエレクトロニクス株式会社 Semiconductor circuit and operation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313110A (en) * 1996-12-20 1998-11-24 Texas Instr Inc <Ti> Laminated scr esp protection with holding voltage adjustable to low trigger voltage
JP2003092357A (en) * 2001-09-17 2003-03-28 Yamaha Corp Input protecting circuit
JP2004006743A (en) * 2002-03-25 2004-01-08 Nec Electronics Corp Electrostatic discharge protection element and semiconductor device
JP2004047959A (en) * 2002-05-24 2004-02-12 Nec Electronics Corp Electrostatic discharge protection element
JP2006523032A (en) * 2003-04-10 2006-10-05 サーノフ コーポレーション Silicon controlled rectifier electrostatic discharge protection device for power supply line with power down operation mode
JP2006319330A (en) * 2005-05-10 2006-11-24 Samsung Electronics Co Ltd Device for protecting from electrostatic discharge
WO2007044843A2 (en) * 2005-10-11 2007-04-19 Texas Instruments Incorporated Low capacitance scr with trigger element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749566B (en) * 2019-05-30 2021-12-11 美商美國亞德諾半導體公司 Semiconductor die, resistive thyristor, and stacked thyristor protection device
US11342323B2 (en) 2019-05-30 2022-05-24 Analog Devices, Inc. High voltage tolerant circuit architecture for applications subject to electrical overstress fault conditions
US11362203B2 (en) 2019-09-26 2022-06-14 Analog Devices, Inc. Electrical overstress protection for electronic systems subject to electromagnetic compatibility fault conditions

Also Published As

Publication number Publication date
US20100207163A1 (en) 2010-08-19
JP2010067846A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US8039899B2 (en) Electrostatic discharge protection device
US7106562B2 (en) Protection circuit section for semiconductor circuit system
JP4854934B2 (en) Electrostatic discharge protection element
WO2010029672A1 (en) Semiconductor device having electrostatic discharge protection circuit
JP2006303110A (en) Semiconductor device
US7750439B2 (en) ESD protection device
US5780905A (en) Asymmetrical, bidirectional triggering ESD structure
US20070069310A1 (en) Semiconductor controlled rectifiers for electrostatic discharge protection
US20030234405A1 (en) Silicon controlled rectifier structure with guard ring controlled circuit
US6861711B2 (en) Thick gate oxide transistor and electrostatic discharge protection utilizing thick gate oxide transistors
US8030683B2 (en) Protection circuit
KR19990078148A (en) Semiconductor device having a protective circuit
US7123054B2 (en) Semiconductor integrated circuit device having an ESD protection unit
JP4209433B2 (en) ESD protection device
TWI414066B (en) Semiconductor devices structure and integrated circuit therefor and electronic device comprising the same
JP2008078361A (en) Semiconductor integrated circuit device
WO2013038616A1 (en) Semiconductor integrated circuit device
US7782579B2 (en) Semiconductor integrated circuit
EP2846359A1 (en) LVTSCR device
JP2012094565A (en) Esd protection element of semiconductor integrated circuit and esd protection circuit using the same
JP4403292B2 (en) Semiconductor device
JP5010158B2 (en) Semiconductor device
US7843009B2 (en) Electrostatic discharge protection device for an integrated circuit
JP4457620B2 (en) ESD protection circuit
JP7392237B2 (en) semiconductor integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812821

Country of ref document: EP

Kind code of ref document: A1