WO2010027827A2 - Targeted costimulatory polypeptides and methods of use to treat cancer - Google Patents

Targeted costimulatory polypeptides and methods of use to treat cancer Download PDF

Info

Publication number
WO2010027827A2
WO2010027827A2 PCT/US2009/054969 US2009054969W WO2010027827A2 WO 2010027827 A2 WO2010027827 A2 WO 2010027827A2 US 2009054969 W US2009054969 W US 2009054969W WO 2010027827 A2 WO2010027827 A2 WO 2010027827A2
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
domain
tumor
protein
fusion
Prior art date
Application number
PCT/US2009/054969
Other languages
French (fr)
Other versions
WO2010027827A3 (en
Inventor
Solomon Langermann
Original Assignee
Amplimmune, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amplimmune, Inc. filed Critical Amplimmune, Inc.
Priority to US13/060,909 priority Critical patent/US20110223188A1/en
Priority to JP2011525157A priority patent/JP2012500652A/en
Priority to EP09791914A priority patent/EP2328920A2/en
Publication of WO2010027827A2 publication Critical patent/WO2010027827A2/en
Publication of WO2010027827A3 publication Critical patent/WO2010027827A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/664Amides of phosphorus acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70532B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7158Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for chemokines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • compositions and methods for modulating T cell activation in. particular to compositions and methods for enhancing T cell activation in tumor microenvironments and in tissues involved in immune cell activation.
  • MHC (signal 1)
  • B7-CD28 B7-1 (CD80) and B7-2 (CD86) each can engage the stimulatory CD28 receptor and the inhibitory CTLA-4 (CD 152) receptor.
  • CD28 ligation increases antigen-specific proliferation of T cells, enhances production of cytokines, stimulates differentiation and effector function, and promotes survival of T cells (Lenshow, et al, Annu. Rev. Immunol, 14:233- 258 (1996); Chambers and Allison, Curr. Opin. Immunol, 9:396-404 (1997); and Rathmell and Thompson, Annu. Rev. Immunol, 17:781-828 (1999)).
  • signaling through CTLA-4 is thought to deliver a negative signal that inhibits T cell proliferation, IL-2 production, and cell cycle progression (Krammel and Allison, J Exp.
  • B7-H1 Long, et at, Nature Med, 5:1365-1369 (1999); and Freeman, et al., J Exp. Med, 192:1-9 (2000)
  • B7-DC also Tseng, et al., J Exp.
  • B7- Hl also known as PD-Ll
  • B7-DC also known as PD-L2
  • B7-H2 is a ligand for ICOS
  • B7-H3 and B7-H4 remain orphan ligands at this time(Dong. et al., Immunol. Res., 28:39-48 (2003)).
  • Certain molecules such as those of the B7 family can enhance effector immune responses to tumor/tumor antigens. Exogenous delivery of costimulatory molecules that enhance T cell response in vivo is therefore thought to be a practical way to augment the immune response to tumors. However, reaching an effective level of costimulatory molecules in vivo may require a large amount of recombinant protein. Systemic delivery of costimulatory molecules in vivo can also result in non-specific immune activation that can be harmful to the host.
  • T cell costimulatory compositions that enhance T cell responses and are targeted to tumors or tumor- associated neovasculature and methods for their use. It is another object of the invention to provide costimulatory compositions that enhance T cell responses and can concentrate inside tumors in vivo and augment the function of tumor-infiltrating T cells.
  • compositions are provided that are targeted to tumors or tumor- associated neovasculature and enhance the function of tumor-infiltrating T cells.
  • the compositions include fusion proteins that contain a T cell binding domain, a tumor/tumor-associated neovasculature targeting domain and optionally a linker domain.
  • the linker is preferably a peptide/polypeptide.
  • the T cell binding domain is a costimulatory molecule or a variant and/or fragment thereof that binds to and activates a receptor on T cells, resulting in enhanced T cell responses.
  • Representatives of such receptor agonists include members of the B7 family, including, but not limited to, B7-1, B7-2, and B7-H5.
  • UseM fragments of said costimulatory molecules include soluble fragments, including the extracellular domain, or fragments thereof, including the IgV and/or IgC domains.
  • Agonistic single polypeptide antibodies or fragments thereof that bind to and activate costimulatory receptors and lead to enhanced T cell responses are also useful T cell activating domains.
  • the tumor/tumor-associated neovasculature targeting domain is a domain that binds to an antigen, receptor or ligand that is specific for tumors or tumor-associated neovasculature, or is overexpressed in tumors or tumor- associated neovasculature as compared to normal tissue.
  • Suitable antigens that can be targeted include, but are not limited to, tumor-specific and tumor- associated antigens and antigens overexpressed on tumor-associated neovasculature including, but not limited to, V ⁇ GF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and Ot 5 ⁇ 3 integrin/vitronectin.
  • Suitable tumor/tumor-associated neovasculature targeting domains include, but are not limited to, ligands, receptors, single polypeptide antibodies and immunoglobulin Fc domains.
  • the peptide/polypeptide linker domain can be any flexible peptide or polypeptide at least 2 amino acids in length that separates the T cell binding domain and the tumor/tumor-associated neovasculalure targeting domain and provides increased rotational freedom between these two domains.
  • Suitable polypeptides include the hinge region of immunoglobulins alone, or in combination with either immunoglobulin Fc regions or the C H I or C L regions.
  • the fusion proteins can also contain dimerization or multimerization domains that can either be separate domains or can be contained within the T cell binding domain, the tumor/tumor-associated neovasculature targeting domain or the peptide/polypeptide linker domain.
  • Preferred dimerization domains contain at least one cysteine that is capable of forming an intermolecular disulfide bond. Other suitable dimerization/multimerization domains are provided.
  • the fusion proteins can be dimerized or multimerized to form homodimers, heterodimers, homomultimers or heteromultimers. Dimerization or multimerizalion can occur either through dimerization/multimerization domains, or can be the result of chemical crosslinking. Dimerization/multimerization partners can be arranged either in parallel or antiparallel orientations.
  • Isolated nucleic acids molecules encoding the disclosed fusion proteins, vectors and host cells, and pharmaceutical and immunogenic compositions containing the fusion proteins are also provided. Immunogenic compositions contain antigens, a source of fusion proteins and, optionally, additional adjuvants.
  • compositions include the induction of tumor immunity.
  • the tumor or tumor-associated neovasculature binding domains function to effectively target the fusion proteins to the tumor microenvironment, where they can specifically enhance the activity of tumor-infiltrating T cells through their T cell binding domains.
  • the ability of the compositions to concentrate in tumors reduces the amount of costimulatory molecule that is necessary to administer in vivo to achieve an effective amount, and thereby reduces the risk of non-specific activation of the immune system.
  • Fusion proteins can be administered as monomers, dimers or multiniers. In one embodiment, fusion proteins are administered as dimers or multimers that have increased valency for T cell and/or tumor/tumor-associated neovasculature binding determinants.
  • Figure 1 is a diagram of an exemplary dosing regimen for the P815 tumor model.
  • Figures 2A-C is a line graphs of tumor volumes plotted as a function of time and treatment: A) vehicle control, B) mouse IgG control, and C) murine B7-DC-Ig.
  • Figures 3 A and B are line graphs of tumor growth (mm 3 ) versus days post tumor inoculation in mice given 100 mg/kg cyclophosphamide (CTX or Cytoxan®) alonce ( Figure 3A) and mice given the combination of CTX and dimeric murine B7-DC-Ig ( Figure 3B).
  • CTX or Cytoxan® Cytoxan®
  • FIG. 3C is a line graph of average average tumor volume versus days post tumor implanation in mice given 100 mg/kg CTX (-•-) or the combination of CTX and dimeric murine B7-DC-Ig (- ⁇ -).
  • Figure 4 shows the results of experiments wherein the combination of
  • CTX and dimeric murine B7-DC-Ig eradicated established CT26 tumors (colon carcinoma) in mice and protected against re-challenge with CT26.
  • Mice that were treated with CTX and B7-DC-Ig and found to be free of tumor growth on day 44 following tumor inoculation were rechallenged with tumors. The mice were later rechallenged again on on Day 70. None of the mice displayed tumor growth by day 100.
  • FIG. 5 shows CTX and B7-DC-Ig treatment resulted in generation of tumor specific memory CTL.
  • Mice eradicated established CT26 subcutenous tumors post CTX and B7-DC-Ig treatment were re-challenged with CT26 cells. Seven days later, splenocytes were isolated and pulsed with either ovalbumin, an irrelevant peptide, or AHl, a CT26 specific peptide. Cells were stained with anti-CD8 antibody first followed by intracellular staining with anti-IFN ⁇ antibody prior to FACS analysis.
  • FIGS 6 A and B show the results of experiments wherein Balb/C mice at age of 9 to 11 weeks of age were implanted with I X lO 5 CT26 cells subcutaneously.
  • mice were injected with 100 mg/kg of CTX, IP.
  • mice were treated with 100 ug of B7- DC-Ig.
  • Two na ⁇ ve mice and 4 mice from other groups were removed from the study on Day 11 (2 days post CTX) and Day 16 (7 days post CTX) for T cell analysis.
  • Figure 6A shows on Day 11, 2 days post CTX injection, Treg in the spleen of the mice with CTX treatment was significantly lower than the one in the mice with tumor implantation and injected with vehicle.
  • Figure 6B shows that on Day 16, 7 days post CTX and 6 days post B7-DC-Ig treatment, B7- DC-Ig significantly lowered the CD4+ T cells expressing high PD-I . This was observed in both the B7-DC-Ig treated and CTX + B7-DC-Ig treated mice. Mice implanted with tumor cells intended to have more PD-1+/CD4+ T cells in the draining LN compared with na ⁇ ve mice.
  • Figure 7 is a line graph of survival (%) versus days post tumor implantation in mice administered with the combination of CTX and B7-DC- Ig (-A-), CTX alone (dashed line), or B7-DC- ⁇ g alone (solid line).
  • SP-I cells were isolated from mouse lungs that were metastasized from TRAMP prostate tumor cell injection.
  • B10.D2 mice were first injected with 3xlO 5 SP- 1 cells via tail vein injection. On Day 5, 12 and 19, mice were injected with 50 mg/kg of CTX where was indicated. On Day 6, 13 and 20, mice were administered with 5 mg/kg of B7-DC-Ig were it was indicated.
  • NT refers to "not treated”.
  • Figure 8 is line graph of overall survival (%) versus days post tumor implantation in Balb/C mice at age of 11-13 weeks given isolated hepatic metastases using a hemispleen injection technique.
  • the spleens of anesthetized mice were divided into two halves and the halves were clipped.
  • CT26 cells (1E05) were injected into one hemispleen, and after 30 seconds, that hemispleen was resected and the splenic draining vein was clipped.
  • mice received 1 injection of CTX at 50 mg/kg, IP.
  • mice Twenty four hours later, on Day 11, mice were treated with recombinant Listeria carrying AHl peptide, an immunodominant epitope of CT26, at 0.1 x LD50 (1 xlO7 CFU), then on Day 14 and 17. Mice were also treated with B7-DC-Ig on Day 11 and then on Day 18. Mouse overall survival was monitored.
  • isolated is meant to describe a compound of interest (e.g., either a polynucleotide or a polypeptide) that is in an environment different from that in which the compound naturally occurs e.g. separated from its natural milieu such as by concentrating a peptide to a concentration at which it is not found in nature. "Isolated” is meant to include compounds that are within samples that are substantially enriched for the compound of interest and/or in which the compound of interest is partially or substantially purified.
  • polypeptide refers to a chain of amino acids of any length, regardless of modification (e.g., phosphorylation or glycosylation).
  • costimulatory polypeptide or “costimulatory molecule” is a polypeptide that, upon interaction with a cell-surface molecule on T cells, modulates the activity of the T cell. Costimulatory signaling can inhibit T cell function or enhance T cell function depending on which T cell receptor is activated or blocked.
  • amino acid sequence alteration can be, for example, a substitution, a deletion, or an insertion of one or more amino acids.
  • a "vector” is a repHcon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • the vectors described herein can be expression vectors.
  • an "expression vector” is a vector that includes one or more expression control sequences
  • an "expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
  • Operaably linked refers to an arrangement of elements wherein the components so described are configured so as to perform their usual or intended function. Thus, two different polypeptides operably linked together retain their respective biological functions while physically linked together.
  • valency refers to the number of binding sites available per molecule.
  • the term "host cell” refers to prokaryotic and eukaryotic cells into which a recombinant expression vector can be introduced.
  • transformed and transfected encompass the introduction of a nucleic acid (e.g. a vector) into a cell by a number of techniques known in the art.
  • antibody is meant to include both intact molecules as well as fragments thereof that include the antigen-binding site. These include Fab and F(ab') 2 fragments which lack the Fc fragment of an intact antibody.
  • the terms "individual”, “host”, “subject”, and “patient” are used interchangeably herein, and refer to a mammal, including, but not limited to, humans, rodents such as mice and rats, and other laboratory animals. II. Fusion proteins
  • compositions disclosed herein are fusion proteins that contain a costimulatory polypeptide domain and a domain that is an antigen-binding domain that targets the fusion protein to tumor cells, tumor cell-associated neovasculature, or to tissues involved in T cell activation.
  • the costimulatory polypeptide can either bind to a T cell receptor and enhance a T cell response
  • the fusion proteins also optionally contain a peptide or polypeptide linker domain that separates the costimulatory polypeptide domain from the antigen-binding domain.
  • Fusion proteins disclosed herein are of formula I:
  • N represents the N-terminus of the fusion protein
  • C represents the C-terminus of the fusion protein
  • Rf is a costimulatory polypeptide domain or a antigen-binding targeting domain
  • R 2 is a peptide/polypeptide linker domain
  • R 3 is a costimulatory polypeptide domain or a antigen- binding targeting domain
  • R 3 is a costimulatory polypeptide domain when "Ri” is a antigen-binding targeting domain
  • R 3 " is a antigen-binding targeting domain when "Rj” is a costimulatory polypeptide domain.
  • the fusion proteins additionally contain a domain that functions to dimerize or multimerize two or more fusion proteins.
  • the domain that functions to dimerize or multimerize the fusion proteins can either be a separate domain, or alternatively can be contained within one of one of the other domains (costimulatory polypeptide domain, antigen- binding targeting domain, or peptide/polypeptide linker domain) of the fusion protein.
  • the fusion proteins can be dimerized or multimerized. Dimerization or multimerization can occur between or among two or more fusion proteins through dimerization or multimerization domains. Alternatively, dimerization or multimerization of fusion proteins can occur by chemical crosslinking. The dimers or multimers that are formed can be homodimeric/homomultimeric or heterodimeric/heteromultimeric.
  • the modular nature of the fusion proteins and their ability to dimerize or multimerize in different combinations provides a wealth of options for targeting molecules that function to costimulate T cells to the tumor cell microenvironment or to immune regulatory tissues.
  • the fusion proteins disclosed herein include costimulatory polypeptides of the B7 family, or biologically active fragments and/or variants thereof.
  • Representative co-stimulatory polypeptides include, but are not limited to B7-1, B7-2, and B7-H5. These costimulatory polypeptides can activate T cell function.
  • the extracellular domain or a biologically active fragment thereof is used as a T cell costimulatory polypeptide.
  • B7-DC binds to PD-I, a distant member of the CD28 receptor family that is inducibly expressed on activated T cells, B cells, natural killer (NK) cells, monocytes, DC 5 and macrophages (Keir, et al Curr. Opin. Immunol. 19:309-314 (2007)).
  • PD-I-/- mice provide direct evidence for PD-I being a negative regulator of immune responses in vivo.
  • mice on the C57BL/6 background slowly develop a lupus-like glomerulonephritis and progressive arthritis (Nishimura, et al., Immunity, 11 :141—151 (1999)).
  • B7-DC acts as a costimulatory polypeptide that can activate T cell function.
  • the B7 costirnulalory polypeptide may be of any species of origin.
  • the costimulatory polypeptide is from a mammalian species.
  • the costimulatory polypeptide is of murine or human or non-human primate origin.
  • Useful human B7 costimulatory polypeptides have at least about 80, 85, 90, 95 or 100% sequence identity to the B7-DC polypeptide encoded by the nucleic acid having GenBank Accession Number NM_025239; the B7-1 polypeptide encoded by the nucleic acid having GenBank Accession Number
  • B7-H5 is also disclosed in PCT Publication No. WO 2006/012232. 1. Fragments of B7 costimulatory polypeptides
  • the B7 polypeptides disclosed herein can be full-length polypeptides, or can be a fragment of a full length B7 polypeptide.
  • a fragment of B7 polypeptides refers to any subset of the polypeptide that is a shorter polypeptide of the full length protein.
  • the fragments retain the ability to co-stimulate T cells.
  • Fragments of B7 costimulatory molecules may be useful to reduce the size of the fusion protein in order to facilitate the simultaneous association of the costimulatory molecule with a costimulatory receptor on T cells in concert with CD3/T cell receptor engagement during formation of immune synapses.
  • Useful fragments are those that retain the ability to bind to their natural ligands.
  • a costimulatory polypeptide that is a fragment of full-length costimulatory polypeptide typically has at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent of the ability to bind its natural Hgand(s) as compared to the full-length costiniulatory polypeptide.
  • a B7 polypeptide that is a fragment of a full- length B 7 polypeptide typically has at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent of the costiniulatory activity of the full-length B7 polypeptide.
  • B7 costimulatory polypeptides include soluble fragments. Soluble B7 costimulatory polypeptide fragments are fragments of B7 costimulatory polypeptides that may be shed, secreted or otherwise extracted from the producing cells.
  • Soluble fragments of B7 costimulatory polypeptides include some or all of the extracellular domain of the B7 costimulatory polypeptide, and lack some or all of the intracellular and/or transmembrane domains.
  • B7 costimulatory polypeptide fragments include the entire extracellular domain of the B7 costimulatory B7 costimulatory polypeptide.
  • the soluble fragments of B7 costimulatory polypeptides include fragments of the extracellular domain that retain B7 costimulatory biological activity.
  • the extracellular domain can include 1, 2, 3, 4, or 5 amino acids from the transmembrane domain.
  • the extracellular domain can have 1, 2, 3, 4, or 5 amino acids removed from the C-terminus, N-terminus, or both.
  • the B7 costimulatory polypeptides or fragments thereof are expressed from nucleic acids that include sequences that encode a signal sequence.
  • the signal sequence is generally cleaved from the immature polypeptide to produce the mature polypeptide lacking the signal sequence.
  • the signal sequence of B 7 costimulatory polypeptides can be replaced by the signal sequence of another polypeptide using standard molecule biology techniques to affect the expression levels, secretion, solubility, or other property of the polypeptide.
  • the signal sequence that is used to replace the B7 costimulatory polypeptide signal sequence can be any known in the art.
  • Murine B7-DC polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • Human B7-DC polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • RPVTTTKREV NSAI 254 (SEQ ID NO:4).
  • Non-human primate (Cynomolgus) B7-DC polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • SEQ ID NOs: 1, 3 and 5 each contain a signal peptide.
  • Murine B7-1 polypeptides can have at least 80%, 85%, 90% s 95%, 99% or 100% sequence identity to:
  • Human B7-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • SEQ ID NO: 10 each contain a signal peptide.
  • Murine B7-2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: MDPRCTMGLA ILI FVTVLLI SDAVSVETQA YFNGTAYLPC PFTKAQNISL SELWFWQDQ 60
  • Human B7-2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • MGLSNILFVM AFLLSGAAPL KIQAYFNETA DLPCQFANSQ NQSLSELVVF WQDQENLVLN 60 EVYLGKEKFD SVHSKYMGRT SFDSDSWTLR LHNLQIKDKG LYQCIIHHKK PTGMIRIHQM 120
  • SEQ ID NOs: 11 and 13 each contain a signal peptide.
  • B7-H5 Murine B7-H5 polypeptides can have at least 80%, 85%, 90%, 95%,
  • GRYLLSDPST PLSPPGPGDV FFPSLDPVPD SPNSEAI 277 (SEQ ID NO: 16).
  • Human B7-H5 can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • MGVPTALEAG SWRWG ⁇ LLFA LPLAASLGPV AAFKVATPYS LYVCPEGQHV TLTCRLLGPV 60 DKGHDVTFYK TWYRSSRGEV QTCSERRPIR NLTFQDLHLH HGGHQAAHTS HDLAQRHGLB 120
  • PVPDSPNFBV I 311 SEQ IDNO:17
  • SEQ ID NOs: 15 and 17 each contain a signal peptide.
  • the disclosed fusion proteins include the extracellular domain of the murine B7-DC, B7-1, B7-2 or B7-H5, proteins shown in SEQ ID NOs: 1, 2, 7, 8, 11, 12, 15 or 16, as shown below.
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgctgctcc tgctgccgat actgaacctg agcttacaac ttcatcctgt agcagcttta 60 ttcaccgtga cagcccctaa agaagtgtac accgtagacg tcggcagcag tgtgagcotg 120 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagagc cagtttgcag 180 aaggtagaaa atgatacgtc tctgcaaagt gaaagagcca ccctgctgga ggagcagctg 240 c
  • SEQ ID NO:21 provides the murine amino acid sequence of SEQ ID NO:20 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-DC.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttcaccgtga cagccctaa agaagtgtac accgtagacg tcggcagcag tgtgagcctg 60 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagagc cagtttgcag 120 aaggtagaaa atgatacgtc tctgcaaagt gaaagagcca ccctgctgga ggagcagctg 180 ccctgggaa aggctttgtt ccacatccct agtg
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagtttcc atgtccaagg 60 ctcattcttc tctttgtgct gct ctttcacaag tgtcttcaga tgttgatga 120 caactgtcca agtcagtgaa agataggta ttgctgcttt gccttt gccgttacaa ctctctcat ISO gaagatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtctcat
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • SEQ ID NO:26 provides the murine amino acid sequence of SEQ ID NO:25 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-1.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: gttgatgaac aactgtccaa gtcagtgaaa gataaggtat tgctgcottg ccgttacaac 60 tctcotcatg aagatgagtc tgaagaccga atctactggc aaaaacatga caaagtggtg 120 ctgtctgtca ttgctgggaa actaaaagtg tggcccgagt ataagaaccg gactttatat X80 gacaacacta cctactctct tatcatcctg ggcttg
  • the costiniulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atggacccca gatgcaccat gggcttggca atccttatct ttgtgacagt cttgctgatc 60 tcagatgctg tttccgtgga gacgcaagct tatttcaatg ggactgoata tctgcgtgc 120 ccatttacaa aggctcaaa cataagcctg agtgagctgg tagtattttg gcaggaccag 180 caaaagttgg tctgtacgacgacgacgacactatttg ggcacagaga aacttgatag tgtgaatgcc 240
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • I ILQQTLTEL SVIANFSEPE IKLAQNVTGH SGINLTCTSK QGHPKPKKMY FLITNSTNEY 180 GDNMQISQDK VTELFSISNS LSLSFPDGVW HMTWCVLET ESMKISSKPL NFTQEFPSPQ 240
  • SEQ ID NO: 31 provides the murine amino acid sequence of SEQ ID NO:30 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-2.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: aatgggactg catatctgcc gtgcccattt acaaaggctc aaaacataag cctgagtgag 60 ctggtagtat tttggcagga ccagcaaaag ttggttctgt acgagcacta tttgggcaca 120 gagaaacttg atagtgtgaa tgccaagtac ctgggccgca cgagcttttga caggaacaac 180 tggactctac gacttcacaa tgttcagatc
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • NGTAYLPCPF TKAQNISLSE LVVFWQDQQK LVLYEHYLGT EKtDSVNAKY LGRTSFDRNW 60 WTLRLHNVQI KDMGSYDCFI QKKPPTGSII LQQTLT 96
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggtgtcc ccgcggtccc agaggccagc agcccgct ggggaaccct gctccttgct 60 attttcctgg ctgcatc ⁇ ag aggtctggta gcagccttca aggtcaccac tccatattct 120 ctctatgtgt gtcccgaggg acagaatgcc accctcacct gcaggattct gggcccgtg 180 tccaaagggc acgatgtgac catctscaag acgtggtacc tcagctcacg aggcgg
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: MGVPAVPEAS SPRWGTLLLA IFLAASRGLV AAFKVTTPYS LYVCPEGQNA TLTCRILGPV 60
  • SEQ ID NO:35 The signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture.
  • SEQ ID NO:36 provides the murine amino acid sequence of SEQ ID NO:35 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-H5.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttcaaggtca ccactccata ttctctctat gtgtgtcccg agggacagaa tgccaccctc 60 acctgcagga ttctgggccc cgtgtccaaa gggcacgatg tgaccatcta caagacgtgg 120 tacctcagct cacgaggcga ggtccagatg tgcaaagaac accggcccat acgcaacttc 180 acattgcagc accttcagca ccacggaagc
  • the T cell receptor binding domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the disclosed fusion proteins include the extracellular domain of the human B7-DC, B7-1, B7-2 or B7-H5, proteins shown in SEQ ID NOs:3, 4, 9, 10, 13, 14, 15 or 16, as shown below.
  • B7-DC human B7-DC
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgatctttc ttctcttgat gctgtctttg gaattgcaac ttcaccaaat cgcggccctc 60 tttactgtga ccgtgccaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc 120 gaatgtaact ttgacaccgg cagccacgtt aacctggggg ccatcactgc cagcttgcaa 180 aaagttgaaaacgacacttc acctcaccgg gagagggcaa ccctcttgga ggagcaactg 240 ccattgggga a
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: MIFLLLMLSL ELQLHQIAAL FTVTVPKELY I IEHGSHVTL ECNFDTGSHV NLGAITASLQ 60
  • SEQ ID NO:40 provides the human amino acid sequence of SEQ ID NO:40 without the signal sequence: LFTVTVPKEL YIIEHGSNVT LECHFDTGSH VNLGAITASL QKV ⁇ NDTSPH RERATLLEEQ 60 LPLGKASFHI PQVQVRDEGQ YQCIIIYGVA WDYKYLTLKV KASYRKINTH ILKVPETDEV 120 ELTCQATGYP LAEVSWPNVS VPANTSHSRT PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV 180
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: tttactgtga ccgtgccaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc 60 gaatgtaact ttgacaccgg cagccacgtt aacctggggg ccatcactgc cagcttgcaa 120 aaagttgaaaacgacacttc acctcaccgg gagagggcaa ccctcttgga ggagcaactg 180 ccattgggga aggcctcttt caggt
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggccaca cacggaggca gggaacatca ccatccaagt gtccatacct caatttcttt 60 cagctcttgg tgctggctgg tctttctcac ttctgttcag gtgttatoca cgtgacoaag 120 gaagtgaaag aagtggcaac gctgtcctgt ggtcacaatg tttctgtga agagctggca 180 caaactcgca tctactggca aaaggagaag aaatggtgc tggggac 240 atgaatata
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • SEQ ID NO:46 provides the murine amino acid sequence of SEQ ID NO:45 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-1.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: gttatccacg tgaccaagga agtgaaagaa gtggcaacgc tgtcctgtgg tcacaatgtt 60 tctgttgaag agctggcaca aactcgcatc tactggcaaa aggagaagaa aatggtgctg 120 actatgatgt ctggggacat gaatatatgg cccgagtaca agaaccggac catctttgat 180 atcactaata acctctccat tgtgatcctg gcgcc catcttgactgacc
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKHRTIFD 60 ITNNLSIVIL ALRPSDEGTY ECVVLKYEKD AFKREHLAEV T 101
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggactga gtaacattct ctttgtgatg gcctt ⁇ ctgc tctctggtgc tgctcctctg 60 aagattcaag cttatttcaa tgagactgca gacctgccat gccaatttgc aaactctcaa 120 aaccaaagcc tgagtgagct agtagtattt tggcaggacc aggaaaactt ggttctgaat 180 gaggtatact taggcaaaga gaaatttgac agtgttcatt ccaagtatat gggccgcaca 240 ag
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • MGLSKILFVM AFLLSGAAPL KIQAYFNETA DLPCQFANSQ NQSLSELVVF WQDQENLVLN 60 EVYLGKEKFD SVHSKYMGRT SFDSDSWTLR LHKLQIKDKG LYQCIIHHKK PTGMIRIHQM 120
  • SEQ ID NO:51 provides the murine amino acid sequence of SEQ ID NO:50 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-2.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ccatgccaat ttgcaaactc tcaaaaccaa agcctgagtg agctagtagt atttggcag 60 gaccaggaaa acttggttct gaatgaggta tacttaggca aagagaaatt tgacagtgtt 120 cattccaagt atatgggccg cacaagttttt gattcggaca gttggaccct gagacttcac 180 aatcttcaga tcaaggacaa gggcttgtat caatgtatca tccatcaa aagcccacacaa a
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggcgtcc ccacggccct ggaggccggc agctggcgct ggggatccct gctcttcgct 60 ⁇ tcttcctgg ctgcgtccct aggtccggtg gcagccttca aggtcgccac gccgtattcc 120 ctgtatgtct gtcccgaggg gcagaacgtc accctcacct gcaggctctt gggccctgtg 180 gacaaagggc acgatgtgac cttctacaag acgtggggggggc
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • SEQ ID NO:56 provides the murine amino acid sequence of SEQ ID NO:55 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-H5.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttca ⁇ ggtcg ccacgccgta ttccctgtat gtctgtcccg aggggcagaa cgtcaccctc 60 acctgcaggc tcttgggccc tgtggacaaa gggcacgatg tgaccttcta caagacgtgg 120 taccgcagct cgaggggcga ggtgcagacc tgctcagagc gccggcccat ccgcaacctc 180 acgttccagg accttcacct gcaccatgga gg
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: FKVATPYSLY VCPEGQNVTL TCRLLGPVDK GHDVTFYKTW YRSSRGEVQT CSERRPIRNL 60 TFQDLHLHHG GHQAANTSHD LAQRHGLESA SDHHGNFSIT MRNLTLLDSG LYCCLWEIR 120 HHHSEHRVHG 130
  • the disclosed fusion proteins include the extracellular domain of the non-human primate (Cynomolgus) B7-DC, proteins shown in SEQ ID NOs: 5 or 6, as shown below.
  • the costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgatcttcc tcctgctaat gttgagcctg gaattgcagc ttcaccagat agcagcttta 60 ttcagtga cagtccctaa ggaactgtac ataatagagc atggcagcaa tgtgaccctg 120 gaatgcaact ttgacactgg aagtcatgtg aaccttggag caataacagc cagtttgcaa 180 aaggtggaaa atgatacatc cccacaccgt gaaagagcca ctttgctgga ggagcagctg 240 cccctaggga agg
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • SEQ ID NO:61 provides the non-human primate amino acid sequence of SEQ ID NO:60 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of non-human primate B7-DC.
  • the costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttcacagtga cagtccctaa ggaactgtac ataatagagc atggcagcaa tgtgaccctg 60 gaatgcaact ttgacactgg aagtcatgtg aaccttggag caataacagc cagtttgcaa 120 aaggtggaaa atgatacatc cccacaccgt gaaagagcca ctttgctgga ggagcagctg 180 ccctaggga
  • the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • B7-DC, B7-1, B7-2 and B7-H5 extracellular domains can contain one or more amino acids from the signal peptide or the putative transmembrane domain of B7-DC, B7-1, B 7-2 or B 7- H5.
  • the number of amino acids of the signal peptide that are cleaved can vary depending on the expression system and the host.
  • fragments of B7-DC, B7-1, B7-2 or B7-H5 extracellular domain missing one or more amino acids from the C-terminus or the N- terminus that retain the ability to bind to their natural receptors can be used as a fusion partner for the disclosed fusion proteins.
  • Exemplary suitable fragments of murine B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of murine B7-DC include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:1, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of human B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of human B7-DC include, but are not limited to, the following:
  • SEQ ID NO:3 optionally with one to five amino acids of a signal peptide attached to the N-terminal end.
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:3, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of non-human primate B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of non-human primate B7-DC include, but are not limited to, the following:
  • SEQ ID NO:5 optionally with one to five amino acids of a signal peptide attached to the N-terminal end.
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:5, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of murine B7-1 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of murine B 7-1 include, but are not limited to, lhe following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:7, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of human B7-1 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of human B7-1 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 9, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of murine B7-2 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of murine B7-2 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 11 , or may be any signal peptide known in the art.
  • Exemplary suitable fragments of human B 7-2 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of human B7-2 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 13, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of murine B7-H5 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of murine B7-H5 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 15, optionally with one to five amino acids of a signal peptide attached to the N-terminal end.
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:
  • Exemplary suitable fragments of human B7-H5 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of human B7-H5 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 17, or may be any signal peptide known in the art.
  • Variant B7 costimulatory polypeptides Variants of costimulatory molecules can also be used.
  • the variant B7 costimulatory polypeptide has the same activity, substantially the same activity, or different activity as a reference B7 costimulatory polypeptide, for example a non-mutated B7-DC polypeptide. Substantially the same activity means it retains the ability to costimulate T cells.
  • Exemplary variant B7 co-stimulatory polypeptides include, but are not limited to B7-1, B7-2, B7-H5 or B7-DC polypeptides that are mutated to contain a deletion, substitution, insertion, or rearrangement of one or more amino acids.
  • a variant B7 costimulatory polypeptide can have any combination of amino acid substitutions, deletions or insertions.
  • isolated B 7 variant polypeptides have an integer number of amino acid alterations such that their amino acid sequence shares at least 60, 70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with an amino acid sequence of a wild type B7 co- stimulatory polypeptide.
  • B7 variant polypeptides have an amino acid sequence sharing at least 60, 7O 5 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with the amino acid sequence of a wild type murine or wild type human B7 polypeptide (GenBank Accession Number NM_025239, NM_005191, U04343, orNP_071436).
  • Percent sequence identity can be calculated using computer programs or direct sequence comparison.
  • Preferred computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package, FASTA, BLASTP, and TBLASTN (see, e.g., D. W. Mount, 2001, Bio ⁇ nformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).
  • the BLASTP and TBLASTN programs are publicly available from NCBI and other sources.
  • the well-known Smith Waterman algorithm may also be used to determine identity.
  • Exemplary parameters for amino acid sequence comparison include the following: 1) algorithm from Needleman and Wunsch (J MoI. Biol,
  • Amino acid substitutions in B7 costimulatory polypeptides may be "conservative” or “non-conservative".
  • “conservative” amino acid substitutions are substitutions wherein the substituted amino acid has similar structural or chemical properties
  • “non-conservative” amino acid substitutions are those in which the charge, hydrophobicity, or bulk of the substituted amino acid is significantly altered.
  • Non-conservative substitutions will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • conservative amino acid substitutions include those in which the substitution is within one of the five following groups: 1) small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, GIy); 2) polar, negatively charged residues and their amides (Asp, Asn, GIu, GIn); polar, positively charged residues (His, Arg, Lys); large aliphatic, nonpolar residues (Met, Leu, lie, VaI, Cy s); and large aromatic resides (Phe, Tyr, Trp).
  • non-conservative amino acid substitutions are those where 1) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl, or alanyl; 2) a cysteine or proline is substituted for (or by) any other residue; 3) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or 4) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) a residue that does not have a side chain, e.g., glycine.
  • a hydrophilic residue e.g., seryl or threon
  • B7 family molecules are expressed at the cell surface with a membrane proximal constant IgC domain and a membrane distal IgV domain. Receptors for these ligands share a common extracellular IgV-like domain. Interactions of receptor-ligand pairs are mediated predominantly through residues in the IgV domains of the ligands and receptors.
  • IgV domains are described as having two sheets that each contain a layer of ⁇ -strands. These ⁇ -strands are referred to as A', B, C f C, C", D, E, F and G.
  • the B7 variant polypeptides contain amino acid alterations (i.e., substitutions, deletions or insertions) within one or more of these ⁇ -strands in any possible combination.
  • B7 variants contain one or more amino acid alterations (i.e., substitutions, deletions or insertions) within the A', C, C ⁇ C", D 5 E, F or G ⁇ -strands.
  • B7 variants contain one or more amino acid alterations in the G ⁇ -strand.
  • a variant B7-DC co-stimulatory polypeptide is one that is mutated so that it retains its ability to enhance T cell activity, but shows reduced PD-I binding activity.
  • a variant B7-DC polypeptide can contain, without limitation, substitutions, deletions or insertions at position 33 of the A' ⁇ -strand, positions 39 or 41 of the B ⁇ -strand, positions 56 or 58 of the C ⁇ -strand, positions 65 or 67 of the C * ⁇ -strand, positions 71 or 72 of the C" ⁇ -strand, position 84 of the D ⁇ -strand, position 88 of the E ⁇ -strand, positions 101, 103 or 105 of the F ⁇ -strand, or positions 110, 111, 113 or 116 of the G ⁇ -strand.
  • amino acid positions are relative to the full length amino acid sequences of murine and human B 7- DC provided by SEQ ID NO: 1 and SEQ ID NO:3, respectively. It will be appreciated that fragments of murine and human B7-DC polypeptides may contain substitutions, deletions or insertions at corresponding amino acid positions.
  • variant B7-DC polypeptides contain a substitution at position 33 (e.g., a serine substitution for aspartic acid at position 33), a substitution at position 39 (e.g., a tyrosine substitution for serine at position 39), a substitution at position 41 (e.g., a serine substitution for glutamic acid at position 41), a substitution at position 56 (e.g., a serine substitution for arginine at position 56), a substitution at position 58 (e.g., a tyrosine substitution for serine at position 58), a substitution at position 65 (e.g., a serine substitution for aspartic acid at position 65), a substitution at position 67 (e.g., a tyrosine substitution for serine at position 67), a substitution at position 71 (e.g., a serine substitution for glutamic acid at position 71), a substitution at position 72 (e.g., a serine substitution for arginine at position
  • substitutions at the recited amino acid positions can be made using any amino acid or amino acid analog.
  • the substitutions at the recited positions can be made with any of the naturally-occurring amino acids (e.g., alanine, aspartic acid, asparagine, arginine, cysteine, glycine, glutamic acid, glutamine, histidine, leucine, valine, isoleucine, lysine, methionine, proline, threonine, serine, phenylalanine, tryptophan, or tyrosine).
  • the naturally-occurring amino acids e.g., alanine, aspartic acid, asparagine, arginine, cysteine, glycine, glutamic acid, glutamine, histidine, leucine, valine, isoleucine, lysine, methionine, proline, threonine, serine, phenylalanine, tryptophan, or
  • the costimulatory polypeptide domain of the fusion protein includes the extracellular domain of human B7-DC with a K113S substitution provided by SEQ ID NO.64, or a fragment thereof: MI FLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL BCNFDTGSHV NLGAITASLQ 60
  • SEQ ID NO:65 provides the human amino acid sequence of SEQ ID NO:64 without the signal sequence:
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC with a Kl 13S substitution provided by SEQ ID NO: 66, or a fragment thereof:
  • the costimulatory polypeptide domain of the fusion protein includes the extracellular domain of human B7-DC with a Dl I lS substitution provided by SEQ ID NO:67, or a fragment thereof: MIFLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ 60
  • SEQ ID NO.67 provides the human amino acid sequence of SEQ ID NO:67 without the signal sequence: LFTVTVPKEL YIIEHGStgVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ 60
  • the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC with a Dl 1 IS substitution provided by SEQ ID NO: 69, or a fragment thereof:
  • nucleic acids encoding the disclosed fusion polypeptides may be optimized for expression in the expression host of choice. Codons may be substituted with alternative codons encoding the same amino acid to account for differences in codon usage between the mammal from which the nucleic acid sequence is derived and the expression host. In this manner, the nucleic acids may be synthesized using expression host-preferred codons. c. Properties of variant B 7 costimulatory polypeptides
  • the disclosed B7 costimulatory polypeptides and variants and fragments thereof are capable of activating T cells.
  • the T cell response that results from the interaction typically is greater than the response in the absence of the costimulatory polypeptide.
  • the response of the T cell in the absence of the costimulatory polypeptide can be no response or can be a response significantly lower than in the presence of the costimulatory polypeptide.
  • Exemplary variants of costimulatory polypeptides are those that have an insertion, deletion, or substitution of one or more amino acids that reduces or prevents the co- stimulatory molecule from participating in signal transduction pathways that transmit inhibitory signals in T cells.
  • Methods for measuring the binding affinity between two molecules are well known in the art
  • Methods for measuring the binding affinity of B7 variant polypeptides to receptors include, but are not limited to, fluorescence activated cell sorting (FACS) 5 surface plasmon resonance, fluorescence anisotropy, affinity chromatography and affinity selection-mass spectrometry.
  • Methods for measuring costimulation of T cells are well known in the art and include measurements of T cell proliferation and secretion of cytokines, including, but not limited to, 11-2, IL-4, IL-5, IL-6, IL-IO, IL- 13, and IFN- ⁇ .
  • Proliferation of T cells can be measured by a number of methods including, but not limited to, cell counting, measuring DNA synthesis by uptake of labeled nucleotides (such as [ 3 H] TdR and BrdU) and measuring metabolic activity with tetrazolium salts. Methods for measuring the secretion of cytokines include, but are not limited to, ELISA.
  • Antigen-binding targeting domain The fusion proteins also contain antigen-binding targeting domains. In some embodiments, the targeting domains bind to antigens, ligands or receptors that are specific to tumor cells or tumor-associated neovasculature, or are upregulated in tumor cells or tumor-associated neovasculature compared to normal tissue.
  • the targeting domains bind to antigens, ligands or receptors that are specific to immune tissue involved in the regulation of T cell activation in response to infectious disease causing agents.
  • Tumor/tumor-associated vasculature targeting domains a. Antigens, ⁇ igands and receptors to target i. Tumor-specific and tumor-associated antigens
  • the fusion proteins contain a domain that specifically binds to an antigen that is expressed by tumor cells. The antigen expressed by the tumor may be specific to the tumor, or may be expressed at a higher level on the tumor cells as compared to non-tumor cells.
  • Tumor-associated antigens may include, for example, cellular oncogene-encoded products or aberrantly expressed proto-oncogene-encoded products (e.g., products encoded by the neu, ras, trk, and kit genes), or mutated forms of growth factor receptor or receptor-like cell surface molecules (e.g., surface receptor encoded by the c-erb B gene).
  • tumor-associated antigens include molecules that may be directly involved in transformation events, or molecules that may not be directly involved in oncogenic transformation events but are expressed by tumor cells (e.g., carcinoembryonic antigen, CA- 125, melonoma associated antigens, etc.) (see, e.g., U.S. Pat. No. 6,699,475; Jager, et al., Int. J. Cancer, 106:817-20 (2003); Kennedy, et al., Int. Rev. Immunol, 22:141-72 (2003); Scanlan, et al. Cancer Immun., 4:1 (2004)).
  • tumor cells e.g., carcinoembryonic antigen, CA- 125, melonoma associated antigens, etc.
  • Genes that encode cellular tumor associated antigens include cellular oncogenes and proto-oncogenes that are aberrantly expressed.
  • cellular oncogenes encode products that are directly relevant to the transformation of the cell, and because of this, these antigens are particularly preferred targets for immunotherapy.
  • An example is the tumorigenic neu gene that encodes a cell surface molecule involved in oncogenic transformation.
  • Other examples include the ras, kit, and trk genes.
  • the products of proto-oncogenes may be aberrantly expressed (e.g., overexpressed), and this aberrant expression can be related to cellular transformation.
  • the product encoded by proto-oncogenes can be targeted.
  • Some oncogenes encode growth factor receptor molecules or growth factor receptor-like molecules that are expressed on the tumor cell surface.
  • An example is the cell surface receptor encoded by the c-erbB gene.
  • Other tumor-associated antigens may or may not be directly involved in malignant transformation. These antigens, however, are expressed by certain tumor cells and may therefore provide effective targets.
  • Some examples are carcinoembryonic antigen (CEA), CA 125 (associated with ovarian carcinoma), and melanoma specific antigens.
  • tumor associated antigens are detectable in samples of readily obtained biological fluids such as serum or mucosal secretions.
  • One such marker is CAl 25, a carcinoma associated antigen that is also shed into the bloodstream, where it is detectable in serum (e.g., Bast, et al., N. Eng. J. Med., 309:883 (1983); Lloyd, et al., Int. J. Cane, 71 :842 (1997).
  • CAl 25 levels in serum and other biological fluids have been measured along with levels of other markers, for example, carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), tissue polypeptide specific antigen (TPS), sialyl TN mucin (STN), and placental alkaline phosphatase (PLAP) 5 in efforts to provide diagnostic and/or prognostic profiles of ovarian and other carcinomas (e.g., Sarandakou, et at, Acta Oncol, 36:755 (1997); Sarandakou, et al., Eur. J. Gynaecol.
  • CEA carcinoembryonic antigen
  • SCC squamous cell carcinoma antigen
  • TPS tissue polypeptide specific antigen
  • STN sialyl TN mucin
  • PLAP placental alkaline phosphatase
  • Elevated serum CAl 25 may also accompany neuroblastoma (e.g., Hirokawa, et al., Surg. Today, 28:349 (1998), while elevated CEA and SCC, among others, may accompany colorectal cancer (Gebauer, et al., Anticancer Res., 17(4B):2939 (1997)).
  • the tumor associated antigen, raesothelin, defined by reactivity with monoclonal antibody K-I, is present on a majority of squamous cell carcinomas including epithelial ovarian, cervical, and esophageal tumors, and on mesotheliomas (Chang, et al., Cancer Res., 52:181 (1992); Chang, et al., Int. J. Cancer, 50:373 (1992); Chang, et al., Int. J Cancer, 51 :548 (1992); Chang, et al., Proc. Natl. Acad. ScI USA, 93:136 (1996); Chowdhury, et al, Proc. Natl. Acad.
  • mesothelin is detectable only as a cell-associated tumor marker and has not been found in soluble form in serum from ovarian cancer patients, or in medium conditioned by OVCAR-3 cells (Chang, et al., Int. J. Cancer, 50:373 (1992)).
  • Structurally related human mesothelin polypeptides also include tumor-associated antigen polypeptides such as the distinct mesothelin related antigen (MRA) polypeptide, which is detectable as a naturally occurring soluble antigen in biological fluids from patients having malignancies (see WO 00/50900).
  • MRA mesothelin related antigen
  • a tumor antigen may include a cell surface molecule.
  • Tumor antigens of known structure and having a known or described function include the following cell surface receptors: HERl (GenBank Accession No. U48722), HER2 (Yoshino, et al., J Immunol., 152:2393 (1994); Disis, et al., Cane. Res., 54:16 (1994); GenBank Ace. Nos. X03363 and Ml 7730), HER3 (GenBank Ace. Nos. U29339 and M34309), HER4 (Plowman, et al, Nature, 366:473 (1993); GenBank Ace. Nos.
  • GenBank Ace. Nos. X01060 and Ml 1507 Estrin receptor
  • estrogen receptor GenBank Ace. Nos. M38651, X03635, X99101, U47678 and M 12674
  • progesterone receptor GenBank Ace. Nos. X51730, X69068 and Ml 5716
  • FSH- R follicle stimulating hormone receptor
  • retinoic acid receptor GenBank Ace. Nos.
  • any of the CTA class of receptors including in particular HOM- MEL-40 antigen encoded by the SSX2 gene (GenBank Ace. Nos. X86175, U90842, U90841 and X86174), carcinoembryonic antigen (CEA, Gold and Freedman, J Exp. Med., 121 :439 (1985); GenBank Ace. Nos. M59710, M59255 and M29540), and PyLT (GenBank Ace. Nos.
  • tumor associated antigens include prostate surface antigen
  • Tumor antigens of interest include antigens regarded in the art as
  • CT antigens that are immunogenic in subjects having a malignant condition
  • Scanlan, et al., Cancer Immun., 4:1 (2004) CT antigens include at least 19 different families of antigens that contain one or more members and that are capable of inducing an immune response, including but not limited to MAGEA (CTl); BAGE (CT2); MAGEB (CT3); GAGE (CT4); SSX (CT5); NY-ESO-I (CT6); MAGEC (CT7); SYCPl (C8); SPANXBl (CTl 1.2); NA88 (CT18); CTAGE (CT21); SPA17 (CT22); OY- TES-I (CT23); CAGE (CT26); HOM-TES-85 (CT28); HCA661 (CT30); NY-SAR-35 (CT38); FATE (CT43); and TPTE (CT44).
  • MAGEA CTl
  • BAGE CT2
  • MAGEB CT3
  • GAGE CT4
  • SSX CT5
  • Additional tumor antigens that can be targeted include, but not limited to, alpha- actinin-4, Bcr-Abl fusion protein, Casp-8, beta-catenin, cdc27, cdk4, cdkn2a, coa-1, dek-can fusion protein, EF2, ET V6- AMLl fusion protein, LDLR- fucosy transferase AS fusion protein, HLA-A2, HLA-AI l 5 hsp70-2, KIAAO205, Mart2 s Mum- 1 5 2, and 3, neo-PAP, myosin class I, OS-9, pml- RAR ⁇ fusion protein, PTPRK, K-ras, N-ras, Triosephosphate isomeras, Bage-1, Gage 3,4,5,6,7, GnTV, Herv-K-mel, Lü-1, Mage- Al,2,3,4,6 9 10,12, Mage-C2,
  • tumor-associated and tumor-specific antigens are known to those of skill in the art and are suitable for targeting by the disclosed fusion proteins.
  • Antigens associated with tumor neovasculature Protein therapeutics can be ineffective in treating tumors because they are inefficient at tumor penetration. Tumor-associated neovasculature provides a readily accessible route through which protein therapeutics can access the tumor.
  • the fusion proteins contain a domain that specifically binds to an antigen that is expressed by neovasculature associated with a tumor. The antigen may be specific to tumor neovasculature or may be expressed at a higher level in tumor neovasculature when compared to normal vasculature.
  • antigens that are over-expressed by tumor- associated neovasculature as compared to normal vasculature include, but are not limited to, VEGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and ⁇ 5 ⁇ 3 integrin/vitronectin.
  • Other antigens that are over- expressed by tumor-associated neovasculature as compared to normal vasculature are known to those of skill in the art and are suitable for targeting by the disclosed fusion proteins.
  • the fusion proteins contain a domain that specifically binds to a chemokine or a chemokine receptor.
  • Chemokines are soluble, small molecular weight (8-14 kDa) proteins that bind to their cognate G-protein coupled receptors (GPCRs) to elicit a cellular response, usually directional migration or chemotaxis.
  • GPCRs G-protein coupled receptors
  • Tumor cells secrete and respond to chemokines, which facilitate growth that is achieved by increased endothelial cell recruitment and angiogenesis, subversion of immunological surveillance and maneuvering of the tumoral leukocyte profile to skew it such that the chemokine release enables the tumor growth and metastasis to distant sites.
  • chemokines are vital for tumor progression.
  • CXC conserved two N-terminal cysteine residues of the chemokines
  • CXC chemokines are classified into four groups namely CXC, CC, CX3C and C chemokines.
  • the CXC chemokines can be further classified into ELR+ and ELR- chemokines based on the presence or absence of the motif 'glu-leu-arg (ELR motif)' preceding the CXC sequence.
  • ELR motif glu-leu-arg
  • the CC chemokines act on several subsets of dendritic cells, lymphocytes, macrophages, eosinophils, natural killer cells but do not stimulate neutrophils as they lack CC chemokine receptors except murine neutrophils. There are approximately 50 chemokines and only 20 chemokine receptors, thus there is considerable redundancy in this system of HgandVreceptor interaction. Chemokines elaborated from the tumor and the stromal cells bind to the chemokine receptors present on the tumor and the stromal cells. The autocrine loop of the tumor cells and the paracrine stimulatory loop between the tumor and the stromal cells facilitate the progression of the tumor.
  • CXCR2, CXCR4, CCR2 and CCR7 play major roles in tumorigenesis and metastasis.
  • CXCR2 plays a vital role in angiogenesis and CCR2 plays a role in the recruitment of macrophages into the tumor microenvironment.
  • CCR7 is involved in metastasis of the tumor cells into the sentinel lymph nodes as the lymph nodes have the ligand for CCR7, CCL21.
  • CXCR4 is mainly involved in the metastatic spread of a wide variety of tumors.
  • tumor or tumor-associated neovasculature targeting domains are ligands that bind to cell surface antigens or receptors that are specifically expressed on tumor cells or tumor-associated neovasculature or are overexpressed on tumor cells or tumor-associated neovasculature as compared to normal tissue. Tumors also secrete a large number of ligands into the tumor microenvironment that affect tumor growth and development. Receptors that bind to ligands secreted by tumors, including, but not limited to growth factors, cytokines and chemokines., including the chemokines provided above, are suitable for use in the disclosed fusion proteins.
  • Ligands secreted by tumors can be targeted using soluble fragments of receptors that bind to the secreted ligands.
  • Soluble receptor fragments are fragments polypeptides that may be shed, secreted or otherwise extracted from the producing cells and include the entire extracellular domain, or fragments thereof.
  • tumor or tumor-associated neovasculature targeting domains are single polypeptide antibodies that bind to cell surface antigens or receptors that are specifically expressed on tumor cells or tumor- associated neovasculature or are overexpressed on tumor cells or tumor- associated neovasculature as compared to normal tissue.
  • Single domain antibodies are described above with respect to coinhibitory receptor antagonist domains.
  • Fc domains Fc domains
  • tumor or tumor-associated neovasculature targeting domains are Fc domains of immunoglobulin heavy chains that bind to Fc receptors expressed on tumor cells or on tumor-associated neovasculature.
  • the Fc region as used herein includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain.
  • Fc refers to the last two constant region immunoglobulin domains of IgA, IgD 9 and IgG 5 and the last three constant region immunoglobulin domains of IgE and IgM.
  • the Fc domain is derived from a human or murine immunoglobulin.
  • the Fc domain is derived from human IgGl or murine IgG2a including the CH2 and C H 3 regions.
  • the hinge, CH2 and C H 3 regions of a human immunoglobulin C ⁇ l chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: gagcctaagt catgtgacaa gacccatacg tgcccaccct gtcccgctcc agaactgctg 60 gggggaccta gcgttttcttt gttcccccca aagcccaagg acaccctcat gatctcacgg 120 actcccgaag taacatgcgt agtagtcgac gtgagccacg aggatcctga agtgaagttt 180 aat
  • the hinge, C H 2 and CH3 regions of a human immunoglobulin C ⁇ l chain encoded by SEQ ID NO:70 has the following amino acid sequence:
  • the hinge, C H 2 and C H 3 regions of a murine immunoglobulin C ⁇ 2a chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: gagccaagag gtcctacgat caagccctgc ccgccttgta aatgcccagc tccaaatttg 60 ctgggtggac cgtcagtcttt tatcttcccg ccaaagataaggacgtctt gatgattagt 120 ctgagcccca tcgtgacatg cgttgtggtg gatgtttcag aggatgaccc cgacgtgcaa 180 atcagttggt tcgttaacaa cgtggaggtg cataccgctc aaacccaga
  • the hinge, CH2 and CH3 regions of a murine immunoglobulin C ⁇ 2a chain encoded by SEQ ID NO:72 has the following amino acid sequence: EPRGPTIKPC PPCKCPAPNL LGGPSVFIFP PKIKDVLMIS LSPIVTCVW DVSEDDPDVQ 60
  • the Fc domain may contain one or more amino acid insertions, deletions or substitutions that enhance binding to specific Fc receptors that specifically expressed on tumors or tumor-associated neovasculature or are overexpressed on tumors or tumor-associated neovasculature relative to normal tissue.
  • Suitable amino acid substitutions include conservative and non-conservative substitutions, as described above.
  • rituximab a chimeric mouse/human IgGl monoclonal antibody against CD20
  • rituximab a chimeric mouse/human IgGl monoclonal antibody against CD20
  • Waldenstrom's macroglobulinemia correlated with the individual's expression of allelic variants of Fc ⁇ receptors with distinct intrinsic affinities for the Fc domain of human IgGl .
  • patients with high affinity alleles of the low affinity activating Fc receptor CDl 6 A (Fc ⁇ RJIIA) showed higher response rates and, in the cases of non-Hodgkin's lymphoma, improved progression-free survival.
  • the Fc domain may contain one or more amino acid insertions, deletions or substitutions that reduce binding to the low affinity inhibitory Fc receptor CD32B (Fc ⁇ RIIB) and retain wild-type levels of binding to or enhance binding to the low affinity activating Fc receptor CD16A (Fc ⁇ RIIIA).
  • the Fc domain contains amino acid insertions, deletions or substitutions that enhance binding to CD 16 A.
  • a large number of substitutions in the Fc domain of human IgGl that increase binding to CD16A and reduce binding to CD32B are known in the art and are described in Stavenhagen, et al., Cancer Res,, 57(18):8882-90 (2007).
  • Exemplary variants of human IgGl Fc domains with reduced binding to CD32B and/or increased binding to CD16A contain F243L, R929P, Y300L, V305I or P296L substitutions. These amino acid substitutions may be present in a human IgGl Fc domain in any combination.
  • the human IgGl Fc domain variant contains a F243L, R929P and Y300L substitution.
  • the human IgGl Fc domain variant contains a F243L, R929P, Y300L, V3O5I and P296L substitution. d.
  • tumor or tumor-associated neovasculature targeting domains are polypeptides that provide a signal for the posttranslational addition of a glycosylphosphatidylinositol (GPI) anchor.
  • GPI anchors are glycolipid structures that are added posttranslationally to the C-terminus of many eukaryotic proteins. This modification anchors the attached protein in the outer leaflet of cell membranes.
  • GPI anchors can be used to attach T cell receptor binding domains to the surface of cells for presentation to T cells.
  • the GPI anchor domain is C- terminal to the T cell receptor binding domain.
  • the GPI anchor domain is a polypeptide that signals for the posttranslational addition addition of a GPI anchor when the polypeptide is expressed in a eukaryotic system.
  • Anchor addition is determined by the GPI anchor signal sequence, which consists of a set of small amino acids at the site of anchor addition (the ⁇ site) followed by a hydrophilic spacer and ending in a hydrophobic stretch (Low, FASEBJ., 3:1600-1608 (1989)).
  • the glycan core can be variously modified with side chains, such as a phosphoethanolamine group, mannose, galactose, sialic acid, or other sugars.
  • side chains such as a phosphoethanolamine group, mannose, galactose, sialic acid, or other sugars.
  • the most common side chain attached to the first mannose residue is another mannose.
  • Complex side chains, such as the JV-acetylgalactosamine- containing polysaccharides attached to the third mannose of the glycan core are found in mammalian anchor structures.
  • the core glucosamine is rarely modified.
  • the lipid anchor of the phosphoinositol ring is a diacylglycerol, an alkylacylglycerol, or a ceramide.
  • the lipid species vary in length, ranging from 14 to 28 carbons, and can be either saturated or unsaturated.
  • Many GPI anchors also contain an additional fatty acid, such as palmitic acid, on the 2-hydroxyl of the inositol ring. This extra fatty acid renders the GPI anchor resistant to cleavage by PI-PLC.
  • GPI anchor attachment can be achieved by expression of a fusion protein containing a GPI anchor domain in a eukaryotic system capable of carrying out GPI posttranslational modifications.
  • GPI anchor domains can be used as the tumor or tumor vasculature targeting domain, or can be additionally added to fusion proteins already containing separate tumor or tumor vasculature targeting domains.
  • GPI anchor moieties are added directly to isolated T cell receptor binding domains through an in vitro enzymatic or chemical process.
  • GPI anchors can be added to polypeptides without the requirement for a GPI anchor domain.
  • GPI anchor moieties can be added to fusion proteins described herein having a T cell receptor binding domain and a tumor or tumor vasculature targeting domain.
  • GPI anchors can be added directly to T cell receptor binding domain polypeptides without the requirement for fusion partners encoding tumor or tumor vasculature targeting domains.
  • Fusion proteins disclosed herein optionally contain a peptide or polypeptide linker domain that separates the costimulatory polypeptide domain from the antigen-binding targeting domain.
  • the linker domain contains the hinge region of an immunoglobulin.
  • the hinge region is derived from a human immunoglobulin. Suitable human immunoglobulins that the hinge can be derived from include IgG 5 IgD and IgA. In a preferred embodiment, the hinge region is derived from human IgG.
  • the linker domain contains a hinge region of an immunoglobulin as described above, and further includes one or more additional immunoglobulin domains.
  • the additional domain includes the Fc domain of an immunoglobulin.
  • the Fc region as used herein includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain.
  • Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM.
  • the Fc domain is derived from a human immunoglobulin.
  • the Fc domain is derived from human IgG including the CH2 and CH3 regions.
  • the linker domain contains a hinge region of an immunoglobulin and either the CHI domain of an immunoglobulin heavy chain or the C L domain of an immunoglobulin light chain.
  • the CHI or C L domain is derived from a human immunoglobulin.
  • the C L domain may be derived from either a K light chain or a ⁇ light chain.
  • the CHI or C L domain is derived from human IgG.
  • Amino acid sequences of immunoglobulin hinge regions and other domains are well known in the art.
  • peptide/polypeptide linker domains include naturally occurring or non-naturally occurring peptides or polypeptides.
  • Peptide linker sequences are at least 2 amino acids in length.
  • the peptide or polypeptide domains are flexible peptides or polypeptides.
  • a "flexible linker” herein refers to a peptide or polypeptide containing two or more amino acid residues joined by peptide bond(s) that provides increased rotational freedom for two polypeptides linked thereby than the two linked polypeptides would have in the absence of the flexible linker. Such rotational freedom allows two or more antigen binding sites joined by the flexible linker to each access target antigen(s) more efficiently.
  • Exemplary flexible peptides/polypeptides include, but are not limited to, the amino acid sequences Gly-Ser, Gly-Ser-Gly-Ser (SEQ ID NO:74), Ala-Ser, Gly-Gly- Gly-Ser (SEQ ID NO:75), (Gly 4 -Ser) 3 (SEQ ID NO:76), (Gly 4 -Ser) 4 (SEQ ID NO:77), and (Gly 4 -Ser) 4 (SEQ ID NO:78). Additional flexible peptide/polypeptide sequences are well known in the art.
  • the fusion proteins disclosed herein optionally contain a dimerization or multimerization domain that functions to dimer ⁇ ze or multimerize two or more fusion proteins.
  • the domain that functions to dimerize or multimerize the fusion proteins can either be a separate domain, or alternatively can be contained within one of the other domains (T cell costimulatory/coinhibitory receptor binding domain, tumor/tumor neovasculature antigen-binding domain, or peptide/polypeptide linker domain) of the fusion protein. 1.
  • Dimerization domains A "dimerization domain" is formed by the association of at least two amino acid residues or of at least two peptides or polypeptides (which may have the same, or different, amino acid sequences). The peptides or polypeptides may interact with each other through covalent and/or non- covalent association ⁇ ).
  • Preferred dimerization domains contain at least one cysteine that is capable of forming an intermolecular disulfide bond with a cysteine on the partner fusion protein.
  • the dimerization domain can contain one or more cysteine residues such that disulfide bond(s) can form between the partner fusion proteins.
  • dimerization domains contain one, two or three to about ten cysteine residues.
  • the dimerization domain is the hinge region of an immunoglobulin. In this particular embodiment, the dimerization domain is contained within the linker peptide/polypeptide of the fusion protein.
  • Additional exemplary dimerization domain can be any known in the art and include, but not limited to, coiled coils, acid patches, zinc fingers, calcium hands, a C H I-C L pair, an "interface" with an engineered “knob” and/or “protruberance” as described in U.S. Pat. No. 5,821,333, leucine zippers (e.g., from jun and/or fos) (U.S. Pat. No.
  • SH2 src homology 2
  • SH3 src Homology 3
  • PTB phosphotyrosine binding
  • NGF nerve growth factor
  • NT-3 neurotro ⁇ hin-3
  • IL-8 interleukin-8
  • VEGF vascular endothelial growth factor
  • VEGF-C 5 VEGF-D vascular endothelial growth factor
  • PDGF PDGF members
  • BDNF brain-derived neurotrophic factor
  • polypeptide pairs can be identified by methods known in the art, including yeast two hybrid screens. Yeast two hybrid screens are described in U.S. Pat. Nos. 5,283,173 and 6,562,576, both of which are herein incorporated by reference in their entireties. Affinities between a pair of interacting domains can be determined using methods known in the art, including as described in Katahira, et al., J Biol. Chem., 277, 9242-9246 (2002)).
  • a library of peptide sequences can be screened for heterodimerization, for example, using the methods described in WO 01/00814.
  • Useful methods for protein-protein interactions are also described in U.S. Pat. No. 6,790,624.
  • a “multimerization domain” is a domain that causes three or more peptides or polypeptides to interact with each other through covalent and/or non-covalent association(s).
  • Suitable multimerization domains include, but are not limited to, coiled-coil domains.
  • a coiled-coil is a peptide sequence with a contiguous pattern of mainly hydrophobic residues spaced 3 and 4 residues apart, usually in a sequence of seven amino acids (heptad repeat) or eleven amino acids (undecad repeat), which assembles (folds) to form a multimeric bundle of helices.
  • Coiled-coils with sequences including some irregular distribution of the 3 and 4 residues spacing are also contemplated.
  • Hydrophobic residues are in particular the hydrophobic amino acids VaI, lie, Leu, Met, Tyr, Phe and Trp. Mainly hydrophobic means that at least 50% of the residues must be selected from the mentioned hydrophobic amino acids.
  • the coiled coil domain may be derived from laminin.
  • the heterotrimeric coiled coil protein laminin plays an important role in the formation of basement membranes.
  • the multifunctional oligomeric structure is required for laminin function.
  • Coiled coil domains may also be derived from the thrombospondins in which three (TSP-I and TSP-2) or five (TSP-3, TSP-4 and TSP-5) chains are connected, or from COMP (COMPcc) (Guo, et at, EMBOJ., 1998, 17: 5265-5272) which folds into a parallel five-stranded coiled coil (Malashkevich ,et al., Science, 274: 761-765 (1996)).
  • B7-DC A representative murine B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgctgctcc tgctgccgat actgaacctg agcttacaac ttcatcctgt agcagcttta 60 ttcaccgtga cagcccctaa agaagtgtac accgtagacg tcggcagcag tgtgagcctg 120 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagagc cagtttgcag 180 aaggtag
  • the murine B7-DC fusion protein encoded by SEQ ID NO:79 has the following amino acid sequence: MLLLLPILNL SLQLKPVAAL FTVTAPKEVY TVDVGSSVSL ECDFDRRECT ELEGIRASLQ 60
  • amino acid sequence of the murine B7-DC fusion protein of SEQ ID NO:80 without the signal sequence is:
  • KELTSAIIDP LSRMEPKVPR TWEPRGPTIK PCPPCKCPAP NLLGGPSVFI FPPKIKDVLM 240 ISLSPIVTCV VVDVSEDDPD VQISWFVNNV EVHTAQTQTH REDYNSTLRV VSALPIQHQD 300
  • a representative human B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgatctttc ttctcttgat gctgtctttg gaattgcaac ttcaccaaat cgcggccctc 60 tttactgtga ccgtgccaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc 120 gaatgtaact ttgacaccgg cagccacgtt aacctggggg ccatcactgc cagcttgcaa 180 aaagttgaaaacgacacttc acctcaccgg gagagggcaa ccctcttgga ggagcaactg 240 ccattgggga a
  • the human B7-DC fusion protein encoded by SEQ ID NO: 82 has the following amino acid sequence: MIFLLLMLSL ELQLHQIA ⁇ L FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ 60
  • amino acid sequence of the human B7-DC fusion protein of SEQ ID NO:83 without the signal sequence is:
  • a representative non-human primate (Cynomolgus) B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: B7-1
  • a representative murine B7-1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagtttcc atgtccaagg 60 ctcattcttc tctttgtgct gctgattcgt cttcacaag tgtcttcaga tgttgatga 120 caactgtcca agtcagtgaa agataggta ttgctgcttt gccttt gccgttacaa ctctctcat 180 gaagatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtgtc 240 attg
  • the murine B7-1 fusion protein encoded by SEQ ID NO:88 has the following amino acid sequence:
  • VQKKERGTYE VKHLALVKLS IK ⁇ DFSTPNI TESGNPSADT KRITCFASGG FPKPRFSWLE 180 NGRELPGINT TISQDPESEL YTISSQLDFN TTRNHTIKCL IKYGDAHVSE DFTWEKPPED 240
  • amino acid sequence of the murine B7-1 fusion protein of SEQ ID NO:89 without the signal sequence is:
  • TCMVTDFKPE DIYVEWTNNG KTELNYKNTE PVLDSDGSYF MYSKLRVEKK NWVERNSYSC 420 SVVHBGLHNH HTTKSFSRTP GK 442 (SEQ ID NO:90).
  • a representative human B 7-1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggccaca cacggaggca gggaacatca ccatccaagt gtccatacct caatttcttt 60 cagctcttgg tgctggctgg tctttctcac ttctgttcag gtgttatcca cgtgaccaag 120 gaagtgasag aagtggcaac gctgtcctgt ggtcacaatg tttctgtga agagctggca 180 caaactcgca tctactggca aaaggagaag aaaatggtgc tggggac 240 atgaatatat ggcccgagta caaga
  • the human B7-1 fusion protein encoded by SEQ ID NO:91 has the following amino acid sequence:
  • VKFNWYVDGV EVHKAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI 360
  • TTPPVLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HNHYTQKSLS LSPGK 475 (SEQ ID NO:92)
  • amino acid sequence of the human B7-1 fusion protein of SEQ ID NO:92 without the signal sequence is:
  • a representative murine B7-2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atggacccca gatgcaccat gggcttggca atccttatct ttgtgacagt cttgctgatc 60 tcagatgctg tttccgtgga gacgcaagct tatttcaatg ggactgcata tctgccgtgc 120 ccatttacaa aggctcaaa cataagcctg agtgagctgg tagtattttg gcaggaccag ISO caaaagttgg tctgtacgacgacactatttg ggcacagaga aacttgatag tgtgaatgcc 240 aagtacctgg gccg
  • the murine B7-2 fusion protein encoded by SEQ ID NO: 84 has the following amino acid sequence:
  • amino acid sequence of the murine B7-2 fusion protein of SEQ ID NO:95 without the signal sequence is: VSVETQAYFN GTAYLPCPFT KAQNISLSEL WFWQDQQKL VLYEHYLGTE KLDSVNAKYL 60
  • a representative human B 7-2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggactga gtaacattct ctttgtgatg gccttcctgc tctctggtgc tgctcctg 60 aagattcaag cttatttcaa tgagactgca gacctgccat gccaatttgc aaactctcaa 120 aaccaaagcc tgagtgagct agtagtattt tggcaggaco aggaaaactt ggttctgaat 180 gaggtatact taggcaaaga gaaatttgac agtgttcatt ccaagtatat gggccgcaca 240 agtttgatt cgg
  • the human B7-2 fusion protein encoded by SEQ ID NO:97 has the following amino acid sequence:
  • MGLSNILFVM AFLLSGAAPL KIQAYFMETA DLPCQFARSQ NQSLSELVVF WQDQENLVLN 60 EVYLGKEKFD SVHSKYMGRT SFDSDSWTLR LHNLQIKDKG LYQCIIHHKK PTGMIRIHQM 120
  • amino acid sequence of the human B 7-2 fusion protein of SEQ ID NO: 98 without the signal sequence is:
  • VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK 456
  • a representative murine B7-H5 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggtgtcc ccgcggtccc agaggccagc agcccgct ggggaaccct gctccttgct 60 attttcctgg ctgcatccag aggtctggta gcagccttca aggt ⁇ accac tccatattct 120 ctctatgtgt gtcccgaggg acagaatgcc accctcacct gcaggattct gggcccgtg 180 tccaaagggc acgatgtgac catctacaag acgtggtacc tcagctcacgaggtc 240 ca
  • the murine B7-H5 fusion protein encoded by SEQ ID NO: 100 has the following amino acid sequence:
  • MGVPAVPEAS SPRWGTLLLA IFLAASRGLV AAFKVTTFYS LYVCPEGQNA TLTCRILGPV 60 SKGHDVTIYK THYLSSRGEV QMCKEHRPIR NFTLQHLQHH GSHLKANASH DQPQKHGLEL 120
  • NKDLPAPIER TISKPKGSVR APQVYVLPPP EEEMTKKQVT LTCMVTDFMP EDIYVEWTNN 360 GKTELNYKNT EPVLDSDGSY FMYSKLRVEK KNWVERNSYS CSWHEGLHN HHTTKSFSRT 420
  • the amino acid sequence of the murine B7-H5 fusion protein of SEQ ID NO: 101 without the signal sequence is: FKVTTPYSLY VCPEGQNATL TCRILGPVSK GHDVTIYKTW YLSSRGEVQM CKEHRPIRNF 60
  • a representative human B7-H5 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggcgtcc ccacggccct ggaggccggc agctggcgct ggggatccct gctcttcgct 60 ctcttcctgg ctgcgtccct aggtccggtg gcagccttca aggtcgccac gccgtattcc 120 ctgtatgtct gtcccgaggg gcagaacgtc accctcacct gcaggctcttt gggccctgtg 180 gacaaagggc acgatgtgac cttctacaag acgtggtacc gcagctct
  • the human B7-H5 fusion protein encoded by SEQ ID NO: 103 has the following amino acid sequence:
  • amino acid sequence of the human B7-H5 fusion protein of SEQ ID NO: 104 without the signal sequence is:
  • the fusion proteins disclosed herein can be dimerized or multimerized. Dimerization or multimerization can occur between or among two or more fusion proteins through dimerization or multimerization domains, including those described above. Alternatively, dimerization or multimerization of fusion proteins can occur by chemical crossHnking. Fusion protein dimers can be homodimers or heterodimers. Fusion protein multimers can be homomultimers or heteromultimers.
  • Fusion protein dimers as disclosed herein are of formula II:
  • fusion proteins of the dimer provided by formula II are defined as being in a parallel orientation and the fusion proteins of the dimer provided by formula III are defined as being in an antiparallel orientation.
  • Parallel and antiparallel dimers are also referred to as cis and trans dimers, respectively.
  • N" and “C” represent the N- and C-termini of the fusion protein, respectively.
  • the fusion protein constituents "Ri”, “R 2 " and “R 3 " are as defined above with respect to formula I.
  • R 4 is a costimulatory polypeptide domain or a antigen- binding targeting domain
  • R 5 is a peptide/polypeptide linker domain
  • R 6 is a costimulatory polypeptide domain or a antigen-binding targeting domain
  • R 6 is a costimulatory polypeptidedomain when "R 4 " is a antigen-binding targeting domain
  • R 6 is a antigen-binding targeting domain when "R 4 " is a costimulatory polypeptide domain.
  • heterodimers may contain domain orientations that meet these conditions (i.e., for a dimer according to formula II, "R 1 " and “R 4 " are both costimulatory polypeptide domains, “R 2 " and “R 5 “ are both peptide/polypeptide liker domains and “R 3 " and “R 6 " are both antigen-binding targeting domains), however the species of one or more of these domains is not identical.
  • R 3 " and “R 6 " may both be antigen-binding targeting domains, they may each target a distinct antigen.
  • R 3 and R 6 may both be antigen- binding targeting domains that target the same antigen, but may be distinct classes of binding domains (i.e., "R 3 " is a natural ligand for a receptor and "R 6 " is a single chain variable fragment (scFv) that binds to the same receptor).
  • R 3 is a natural ligand for a receptor
  • R 6 is a single chain variable fragment (scFv) that binds to the same receptor).
  • Dimers of fusion proteins that contain either a CHI or C L region of an immunoglobulin as part of the polypeptide linker domain preferably form heterodimers wherein one fusion protein of the dimer contains a CHI region and the other fusion protein of the dimer contains a C L region.
  • Fusion proteins can also be used to form multimers.
  • multimers may be parallel multimers, in which all fusion proteins of the multimer are aligned in the same orientation with respect to their N- and C- termini.
  • Multimers may be antiparallel multimers, in which the fusion proteins of the multimer are alternatively aligned in opposite orientations with respect to their N- and C-termini.
  • Multimers (parallel or antiparallel) can be either homomul timers or heteromultimers.
  • the disclosed fusion proteins may be modified by chemical moieties that may be present in polypeptides in a normal cellular environment, for example, phosphorylation, methylalion, amidation, sulfation, acylation, glycosylation, sumoylation and ubiquitylation. Fusion proteins may also be modified with a label capable of providing a detectable signal, either directly or indirectly, including, but not limited to, radioisotopes and fluorescent compounds.
  • the fusion proteins disclosed herein may also be modified by chemical moieties that are not normally added to polypeptides in a cellular environment. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues. Another modification is cyclization of the protein.
  • Examples of chemical derivatives of the polypeptides include lysinyl and amino terminal residues derivatized with succinic or other carboxylic acid anhydrides. Derivatization with a cyclic carboxylic anhydride has the effect of reversing the charge of the lysinyl residues.
  • Other suitable reagents for derivatizing amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; t?-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.
  • aspartyl and glutamyl residues can be converted to asparaginyl and glutaminyl residues by reaction with ammonia.
  • Fusion proteins may also include one or more D-amino acids that are substituted for one or more L-amino acids.
  • Isolated nucleic acid sequences encoding the fusion proteins disclosed herein are also provided.
  • An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally- occurring genome is removed or absent.
  • an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule independent of other sequences (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment), as well as recombinant DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote.
  • a virus e.g., a retrovirus, lentivirus, adenovirus, or herpes virus
  • an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid.
  • an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid.
  • Nucleic acids encoding fusion polypeptides may be optimized for expression in the expression host of choice. Codons may be substituted with alternative codons encoding the same amino acid to account for differences in codon usage between the mammal from which the nucleic acid sequence is derived and the expression host. In this manner, the nucleic acids may be synthesized using expression host-preferred codons.
  • Nucleic acids can be DNA, RNA, or nucleic acid analogs. Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone. Such modification can improve, for example, stability,, hybridization, or solubility of the nucleic acid. Modifications at the base moiety can include deoxyuridine for deoxythymidine, and 5-methyl-2'- deoxycytidine or 5-bromo ⁇ 2'-deoxycytidine for deoxycytidine. Modifications of the sugar moiety can include modification of the T hydroxyl of the ribose sugar to form 2'-O-methyl or 2'-O-allyl sugars.
  • the deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six merabered, morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone and the four bases are retained. See, for example, Summerton and Weller (1997) Antisense Nucleic Acid Drug Dev. 7:187-195; and Hyrup et al (1996) Bioorgan. Med Chem. 4:5-23.
  • the deoxyphosphate backbone can be replaced with, for example, a phosphorothioate or phosphorodithioate backbone, a phosphoroamidite, or an alkyl phosphotriester backbone.
  • Nucleic acids encoding polypeptides disclosed herein can be administered to subjects in need thereof. Nucleic delivery involves introduction of "foreign" nucleic acids into a cell and ultimately, into a live animal. Compositions and methods for delivering nucleic acids to a subject are known in the art (see Understanding Gene Therapy, Lemoine, N.R., ed., BIOS Scientific Publishers, Oxford, 2008).
  • One approach includes nucleic acid transfer into primary cells in culture followed by autologous transplantation of the ex vivo transformed cells into the host, either systemically or into a particular organ or tissue.
  • vectors containing nucleic acids encoding fusion proteins are transfected into cells that are administered to a subject in need thereof.
  • Ex vivo methods can include, for example, the steps of harvesting cells from a subject, culturing the cells, transducing them with an expression vector, and maintaining the cells under conditions suitable for expression of the encoded polypeptides. These methods are known in the art of molecular biology.
  • the transduction step can be accomplished by any standard means used for ex vivo gene therapy, including, for example, calcium, phosphate, Kpofection, electroporat ⁇ on, viral infection, and biolistic gene transfer. Alternatively, liposomes or polymeric microparticles can be used. Cells that have been successfully transduced then can be selected, for example, for expression of the coding sequence or of a drag resistance gene. The cells then can be lethally irradiated (if desired) and injected or implanted into the subject. In vivo nucleic acid therapy can be accomplished by direct transfer of a functionally active DNA into mammalian somatic tissue or organ in vivo.
  • nucleic acids encoding polypeptides disclosed herein can be administered directly to lymphoid tissues or tumors.
  • victim lymphoid tissue specific targeting can be achieved using lymphoid tissue-specific transcriptional regulatory elements (TREs) such as a B lymphocyte-, T lymphocyte-, or dendritic cell-specific TRE. Lymphoid tissue specific TREs are known in the art.
  • TREs lymphoid tissue-specific transcriptional regulatory elements
  • Nucleic acids may also be administered in vivo by viral means. Nucleic acid molecules encoding fusion proteins may be packaged into retrovirus vectors using packaging cell lines that produce replication- defective retroviruses, as is well-known in the art. Other virus vectors may also be used, including recombinant adenoviruses and vaccinia virus, which can be rendered non-replicating. In addition to naked DNA or RNA, or viral vectors, engineered bacteria may be used as vectors. Nucleic acids may also be delivered by other carriers, including liposomes, polymeric micro- and nanoparticles and poly cations such as asialoglycoprotein/poly Iy sine .
  • Nucleic acids such as those described above, can be inserted into vectors for expression in cells.
  • a "vector” is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • Vectors can be expression vectors.
  • An "expression vector” is a vector that includes one or more expression control sequences, and an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
  • Nucleic acids in vectors can be operably linked to one or more expression control sequences.
  • "operably linked” means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.
  • expression control sequences include promoters, enhancers, and transcription terminating regions.
  • a promoter is an expression control sequence composed of a region of a DNA molecule, typically within 100 nucleotides upstream of the point at which transcription starts (generally near the initiation site for RNA polymerase II). To bring a coding sequence under the control of a promoter, it is necessary to position the translation initiation site of the translational reading frame of the polypeptide between one and about fifty nucleotides downstream of the promoter.
  • Enhancers provide expression specificity in terms of time, location, and level. Unlike promoters, enhancers can function when located at various distances from the transcription site.
  • An enhancer also can be located downstream from the transcription initiation site.
  • a coding sequence is "operably linked" and “under the control” of expression control sequences in a cell when RNA polymerase is able to transcribe the coding sequence into mRNA, which then can be translated into the protein encoded by the coding sequence.
  • Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalo virus, retroviruses, vaccinia viruses, adenoviruses, and adeno-associated viruses.
  • plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalo virus, retroviruses, vaccinia viruses, adenoviruses, and adeno-associated viruses.
  • Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, WI), Clontech (Palo Alto, CA), Stratagene (La Jolla, CA), and Invitrogen Life Technologies (Carlsbad, CA).
  • Vectors containing mucleic acids to be expressed can be transferred into host cells.
  • the term "host cell” is intended to include prokaryotic and eukaryotic cells into which a recombinant expression vector can be introduced.
  • transformed and “transfected” encompass the introduction of a nucleic acid molecule (e.g., a vector) into a cell by one of a number of techniques. Although not limited to a particular technique, a number of these techniques are well established within the art.
  • Prokaryotic cells can be transformed with nucleic acids by, for example, electroporation or calcium chloride mediated transformation.
  • Nucleic acids can be transfected into mammalian cells by techniques including, for example, calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, or microinjection.
  • Host cells e.g., a prokaryotic cell or a eukaryotic cell such as a CHO cell
  • a host cell e.g., an antigen presenting cell
  • a host cell e.g., an antigen presenting cell
  • Vaccines require strong T cell response to eliminate cancer cells and infected cells.
  • the fusion proteins described herein can be administered as a component of a vaccine to provide a costimulatory signal to T cells.
  • Vaccines disclosed herein include antigens, a source of fusion proteins, and optionally, adjuvants.
  • Antigens can be any substance that evokes an immunological response in a subject.
  • Representative antigens include peptides, proteins, polysaccharides, saccharides, lipids, nucleic acids, or combinations thereof.
  • the antigen can be derived from a tumor or from a transformed cell such as a cancer or leukemic cell and can be a whole cell or immunogenic component thereof, e.g., cell wall components or molecular components thereof. Suitable antigens are known in the art and are available from commercial sources.
  • the antigens may be purified or partially purified polypeptides derived from tumors or other sources.
  • the antigens can be recombinant polypeptides produced by expressing DNA encoding the polypeptide antigen in a heterologous expression system.
  • the antigens can be DNA encoding all or part of an antigenic protein.
  • the DNA may be in the form of vector DNA such as plasmid DNA.
  • Antigens may be provided as single antigens or may be provided in combination. Antigens may also be provided as complex mixtures of polypeptides or nucleic acids.
  • Fusion proteins Any of the fusion proteins disclosed herein are suitable for use in the immunogenic compositions.
  • Sources of fusion proteins include any fusion protein or nucleic acid encoding any fusion protein disclosed herein, or host cells containing vectors that express any of the fusion proteins disclosed herein.
  • the fusion proteins may be monomeric, homodimeric, heterodimeric, homomultimeric or heteromultimeric.
  • the vaccines described herein may include adjuvants.
  • the adjuvant can be, but is not limited to, one or more of the following: oil emulsions (e.g., Freund's adjuvant); saponin formulations; virosomes and viral-like particles; bacterial and microbial derivatives; immuno stimulatory oligonucleotides; ADP-ribosylating toxins and detoxified derivatives; alum; BCG; mineral-containing compositions (e.g., mineral salts, such as aluminium salts and calcium salts, hydroxides, phosphates, sulfates, etc.); bioadhesives and/or mucoadhesives; microparticles; liposomes; polyoxyethylene ether and polyoxyethylene ester formulations; polyphosphazene; muramyl peptides; imidazoquinolone compounds; and surface active substances (e.g.
  • Additional adjuvants may also include immunomodulators such as cytokines, interleukins (e.g., IL-I, IL-2, IL-4, IL-5, ⁇ L-6, IL-7, IL- 12, etc.), interferons (e.g., interferon-.gamrna.), macrophage colony stimulating factor, and tumor necrosis factor.
  • immunomodulators such as cytokines, interleukins (e.g., IL-I, IL-2, IL-4, IL-5, ⁇ L-6, IL-7, IL- 12, etc.), interferons (e.g., interferon-.gamrna.), macrophage colony stimulating factor, and tumor necrosis factor.
  • costimulatory molecules including other polypeptides of the B7 family, may be co-administered.
  • proteinaceous adjuvants may be provided as the full-length polypeptide or an active fragment thereof, or in the form of DNA, such as plasm
  • compositions including fusion polypeptides disclosed herein are provided.
  • Pharmaceutical compositions containing peptides or polypeptides may be for administration by parenteral (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), transdermal (either passively or using iontophoresis or electroporation), or transmucosal (nasal, vaginal, rectal, or sublingual) routes of administration or using bioerodible inserts and can be formulated in dosage forms appropriate for each route of administration.
  • the compositions disclosed herein are administered to a subject in a therapeutically effective amount.
  • the term "effective amount” or “therapeutically effective amount” means a dosage sufficient to treat, inhibit, or alleviate one or more symptoms of the disorder being treated or to otherwise provide a desired pharmacologic and/or physiologic effect. The precise dosage will vary according to a variety of factors such as subject-dependent variables (e.g., age, immune system health, etc.), the disease, and the treatment being effected.
  • Therapeutically effective amounts of the fusion proteins disclosed herein cause an immune response against a tumor or an infectious agent to be activated or sustained.
  • Therapeutically effective amounts of the fusion proteins disclosed herein also costimulate the subject's T cells..
  • compositions disclosed herein and nucleic acids encoding the same as further studies are conducted, information will emerge regarding appropriate dosage levels for treatment of various conditions in various patients, and the ordinary skilled worker, considering the therapeutic context, age, and general health of the recipient, will be able to ascertain proper dosing.
  • the selected dosage depends upon the desired therapeutic effect, on the route of administration, and on the duration of the treatment desired. Generally dosage levels of 0.001 to 10 mg/kg of body weight daily are administered to mammals. Generally, for intravenous injection or infusion, dosage may be lower.
  • compositions disclosed herein are administered in an aqueous solution, by parenteral injection.
  • the formulation may also be in the form of a suspension or emulsion.
  • pharmaceutical compositions are provided including effective amounts of a peptide or polypeptide, and optionally include pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers.
  • compositions include diluents sterile water, buffered saline of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength; and optionally, additives such as detergents and solubilizing agents (e.g., TWEEN 20, TWEEN 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), and preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol).
  • buffered saline of various buffer content e.g., Tris-HCl, acetate, phosphate
  • pH and ionic strength e.g., Tris-HCl, acetate, phosphate
  • additives e.g., Tris-HCl, acetate, phosphate
  • additives e.g., TWEEN 20, TWEEN 80, Poly
  • non-aqueous solvents or vehicles examples include propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and com oil, gelatin, and injectable organic esters such as ethyl oleate.
  • the formulations may be lyophilized and redissolved/resuspended immediately before use.
  • the formulation may be sterilized by, for example, filtration through a bacteria retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions.
  • Topical administration does not work well for most peptide formulations, although it can be effective especially if applied to the lungs, nasal, oral (sublingual, buccal), vaginal, or rectal mucosa.
  • Compositions can be delivered to the lungs while inhaling and traverse across the lung epithelial lining to the blood stream when delivered either as an aerosol or spray dried particles having an aerodynamic diameter of less than about 5 microns.
  • a wide range of mechanical devices designed for pulmonary delivery of therapeutic products can be used, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art.
  • Some specific examples of commercially available devices are the Ultravent nebulizer (Mallinckrodt Inc., St.
  • Nektar, Alkermes and Mannkind all have inhalable insulin powder preparations approved or in clinical trials where the technology could be applied to the formulations described herein.
  • Formulations for administration to the mucosa will typically be spray dried drug particles, which may be incorporated into a tablet, gel, capsule, suspension or emulsion. Standard pharmaceutical excipients are available from any formulator. Oral formulations may be in the form of chewing gum, gel strips, tablets or lozenges.
  • Transdermal formulations may also be prepared. These will typically be ointments, lotions, sprays, or patches, all of which can be prepared using standard technology. Transdermal formulations will require the inclusion of penetration enhancers.
  • Controlled delivery polymeric matrices Fusion proteins disclosed herein may also be administered in controlled release formulations.
  • Controlled release polymeric devices can be made for long term release systemically following implantation of a polymeric device (rod, cylinder, film, disk) or injection (microparticles).
  • the matrix can be in the form of microparticles such as microspheres, where peptides are dispersed within a solid polymeric matrix or microcapsules, where the core is of a different material than the polymeric shell, and the peptide is dispersed or suspended in the core, which may be liquid or solid in nature.
  • microparticles, microspheres, and microcapsules are used interchangeably.
  • the polymer may be cast as a thin slab or film, ranging from nanometers to four centimeters, a powder produced by grinding or other standard techniques, or even a gel such as a hydrogel.
  • Either non-biodegradable or biodegradable matrices can be used for delivery of fusion polypeptides or nucleic acids encoding the fusion polypeptides, although biodegradable matrices are preferred.
  • These may be natural or synthetic polymers, although synthetic polymers are preferred due to the better characterization of degradation and release profiles.
  • the polymer is selected based on the period over which release is desired. In some cases linear release may be most useful, although in others a pulse release or "bulk release" may provide more effective results.
  • the polymer may be in the form of a hydrogel (typically in absorbing up to about 90% by weight of water), and can optionally be crosslinked with multivalent ions or polymers.
  • the matrices can be formed by solvent evaporation, spray drying, solvent extraction and other methods known to those skilled in the art.
  • Bioerodible microspheres can be prepared using any of the methods developed for making microspheres for drug delivery, for example, as described by Mathiowitz and Langer, J Controlled Release, 5:13-22 (1987); Mathiowitz, et al, Reactive Polymers, 6:275-283 (1987); and Mathiowitz, et ⁇ ., J. Appl. Polymer Set, 35:755-774 (1988).
  • the devices can be formulated for local release to treat the area of implantation or injection - which will typically deliver a dosage that is much less than the dosage for treatment of an entire body - or systemic delivery. These can be implanted or injected subcutaneously, into the muscle, fat, or swallowed. VI. Methods of manufacture
  • Isolated fusion proteins can be obtained by, for example, chemical synthesis or by recombinant production in a host cell.
  • a nucleic acid containing a nucleotide sequence encoding the fusion protein can be used to transform, transduce, or transfect a bacterial or eukaryotic host cell (e.g., an insect, yeast, or mammalian cell).
  • nucleic acid constructs include a regulatory sequence operably linked to a nucleotide sequence encoding the fusion protein.
  • Regulatory sequences also referred to herein as expression control sequences typically do not encode a gene product, but instead affect the expression of the nucleic acid sequences to which they are operably linked.
  • Useful prokaryotic and eukaryotic systems for expressing and producing polypeptides are well know in the art include, for example, Escherichia coli strains such as BL-21 , and cultured mammalian cells such as CHO cells.
  • viral-based expression systems can be utilized to express fusion proteins.
  • Viral based expression systems are well known in the art and include, but are not limited to, baculoviral, SV40, retroviral, or vaccinia based viral vectors.
  • Mammalian cell lines that stably express variant fusion proteins can be produced using expression vectors with appropriate control elements and a selectable marker.
  • the eukaryotic expression vectors pCR3.1 (Invitrogen Life Technologies) and p91023(B) (see Wong et at (1985) Science 228 : 810-815) are suitable for expression of variant costimulatory polypeptides in, for example, Chinese hamster ovary (CHO) cells, COS-I cells, human embryonic kidney 293 cells, NIH3T3 cells, BHK21 cells, MDCK cells, and human vascular endothelial cells (HUVEC).
  • CHO Chinese hamster ovary
  • COS-I cells human embryonic kidney 293 cells
  • NIH3T3 cells NIH3T3 cells
  • BHK21 cells BHK21 cells
  • MDCK cells human vascular endothelial cells
  • transfected cells can be cultured such that the polypeptide of interest is expressed, and the polypeptide can be recovered from, for example, the cell culture supernatant or from lysed cells.
  • a fusion protein can be produced by (a) Hgating amplified sequences into a mammalian expression vector such as pcDN A3 (Invitrogen Life Technologies), and (b) transcribing and translating in vitro using wheat germ extract or rabbit reticulocyte lysate. Fusion proteins can be isolated using, for example, chromatographic methods such as DEAE ion exchange, gel filtration, and hydroxylapatite chromatography. For example, a costimulatory polypeptide in a cell culture supernatant or a cytoplasmic extract can be isolated using a protein G column. In some embodiments, fusion proteins can be engineered to contain an additional domain containing amino acid sequence that allows the polypeptides to be captured onto an affinity matrix.
  • a tag such as c-rayc, hemagglutinin, polyhistidine, or FlagTM (Kodak) can be used to aid polypeptide purification.
  • tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus.
  • Other fusions that can be useful include enzymes that aid in the detection of the polypeptide, such as alkaline phosphatase.
  • Immunoaffinity chromatography also can be used to purify costimulatory polypeptides. Fusion proteins can additionally be engineered to contain a secretory signal (if there is not a secretory signal already present) that causes the fusion protein to be secreted by the cells in which it is produced. The secreted fusion proteins can then conveniently be isolated from the cell media.
  • Isolated nucleic acid molecules can be produced by standard techniques, including, without limitation, common molecular cloning and chemical nucleic acid synthesis techniques. For example, polymerase chain reaction (PCR) techniques can be used to obtain an isolated nucleic acid encoding a variant costimulatory polypeptide. PCR is a technique in which target nucleic acids are enzymatically amplified. Typically, sequence information from the ends of the region of interest or beyond can be employed to design oligonucleotide primers that are identical in sequence to opposite strands of the template to be amplified.
  • PCR polymerase chain reaction
  • PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from total genomic DNA or total cellular RNA.
  • Primers typically are 14 to 40 nucleotides in length, but can range from 10 nucleotides to hundreds of nucleotides in length.
  • General PCR techniques are described, for example in PCR Primer: A Laboratory Manual, ed. by Dieffenbach and Dveksler, Cold Spring Harbor Laboratory Press, 1995.
  • reverse transcriptase can be used to synthesize a complementary DNA (cDNA) strand.
  • Ligase chain reaction, strand displacement amplification, self-sustained sequence replication or nucleic acid sequence- based amplification also can be used to obtain isolated nucleic acids. See, for example, Lewis (1992) Genetic Engineering News 12:1 ; Guatelli et al. (1990) Proc. Natl Acad ScL USA 87:1874-1878; and Weiss (1991) Science 254:1292-1293.
  • Isolated nucleic acids can be chemically synthesized, either as a single nucleic acid molecule or as a series of oligonucleotides (e.g., using phosphoramidite technology for automated DNA synthesis in the 3' to 5' direction).
  • oligonucleotides e.g., >100 nucleotides
  • one or more pairs of long oligonucleotides can be synthesized that contain the desired sequence, with each pair containing a short segment of complementarity (e.g., about 15 nucleotides) such that a duplex is formed when the oligonucleotide pair is annealed.
  • DNA polymerase can be used to extend the oligonucleotides, resulting in a single, double-stranded nucleic acid molecule per oligonucleotide pair, which then can be ligated into a vector.
  • Isolated nucleic acids can also obtained by mutagenesis.
  • Fusion protein-encoding nucleic acids can be mutated using standard techniques, including oligonucleotide-directed mutagenesis and/or site-directed mutagenesis through PCR. See, Short Protocols in Molecular Biology. Chapter 8, Green Publishing Associates and John Wiley & Sons, edited by Ausubel et al, 1992. Examples of amino acid positions that can be modified include those described herein. VII. Methods of use
  • the fusion proteins disclosed herein, nucleic acids encoding the fusion proteins, or cells expressing the fusion proteins can be used to activate T cells (i.e., increase antigen-specific proliferation of T cells, enhance cytokine production by T cells, stimulate differentiation and effector functions of T cells and/or promote T cell survival).
  • Methods for using fusion proteins to activate T cell responses are disclosed herein.
  • the methods include contacting a T cell with any of the molecules disclosed herein.
  • Fusion proteins are a preferred example.
  • the fusion protein or fusion protein dimer or multimer can be any of those described herein, including any of the disclosed amino acid alterations, polypeptide fragments, and combinations thereof.
  • variant costimulatory polypeptides used in the fusion proteins can have reduced or increased binding to coinhibitory receptors (i.e. PD-I) relative to wild type costimulatrory polypeptides, yet retain the ability to costimulate T cells.
  • Preferred variant costimulatory polypeptides have a enhanced ability to stimulate signaling through and activating receptor compared to a non- variant costimulatory polypeptide.
  • the contacting can be in vitro, ex vivo, or in vivo (e.g., in a mammal such as a mouse, rat, rabbit, dog, cow, pig, non-human primate, or a human).
  • fusion proteins are administered to contact T cells in vivo.
  • the contacting can occur before, during, or after activation of the T cell.
  • contacting of the T cell with fusion protein can be at substantially the same time as activation.
  • Activation can be, for example, by exposing the T cell to an antibody that binds to the T cell receptor (TCR) or one of the polypeptides of the CD3 complex that is physically associated with the TCR.
  • TCR T cell receptor
  • a T cell can be exposed to either an alloantigen (e.g., a MHC alloantigen) on, for example, an APC [e.g., an interdigitating dendritic cell (referred to herein as a dendritic cell), a macrophage, a monocyte, or a B cell] or an antigenic peptide produced by processing of a protein antigen by any of the above APC and presented to the T cell by MHC molecules on the surface of the APC.
  • the T cell can be a CD4 + T cell or a CD8 + T cell.
  • the fusion proteins can be bound to the floor of a relevant culture vessel, e.g. a well of a plastic microtiter plate.
  • a relevant culture vessel e.g. a well of a plastic microtiter plate.
  • fusion proteins disclosed herein can be added to in vitro assays (e.g., T cell proliferation assays) designed to test for immunity to an antigen of interest in a subject from which the T cells were obtained. Addition of fusion proteins to such assays would be expected to result in a more potent, and therefore more readily detectable, in vitro response.
  • fusion proteins disclosed herein or nucleic acids encoding them can be used: (a) as a positive control in an assay to test for costimulatory activity in other molecules; or (b) in screening assays for compounds useful in inhibiting T costimulation (e.g., compounds potentially useful for treating autoimmune diseases or organ graft rejection).
  • T costimulation e.g., compounds potentially useful for treating autoimmune diseases or organ graft rejection.
  • the fusion proteins provided herein are generally useful in vivo and ex vivo as immune response-stimulating therapeutics.
  • the fusion proteins are particularly useful in vivo for the induction of tumor immunity and immunity to agents that cause infectious diseases.
  • the fusion proteins disclosed herein contain a domain that binds to an antigen, ligand, or receptor on tumors or tumor- associated neovasculature in the local tumor environment.
  • the tumor or tumor-associated neovasculature binding domain functions to effectively target the fusion proteins to the local tumor microenv ⁇ ronment, where they can specifically enhance the activity of tumor-infiltrating effector T cells.
  • the fusion proteins disclosed herein contain a domain that binds to an antigen, ligand or receptor on cells in tissues involved in regulating immune cell activation in response to infectious disease causing agents. Targeting the fusion proteins to tissues involved in immune cell activation allows for efficient activation of T cells and can cause local activation of T cell, resulting in long term immunity.
  • Non-specific activation of the immune system refers to activation of T cells or other immune cells that do not specifically recognize antigens expressed by a tumor or an infectious disease causing agent to be treated or are not involved directly or indirectly in the anti-tumor or anti-infection response.
  • Non-specific activation of the immune response can lead to the development of inflammatory disorders and autoimmunity.
  • Fusion proteins can be administered as monomers or as dimers or multimers. Dimers and multimers can be homodimers/homomultimers or heterodimers/heteromultimers as described above. In a preferred embodiment, fusion proteins are administered as dimers or multimers. Administration of fusion proteins as dimers or multimers increases the valency of the fusion proteins. The increase in valency can result in an increase in the avidity of the fusion protein for its target antigen(s), receptor(s) or ligand(s) on the tumor, tumor-associated neovasculature, or tissue involved in immune cell activation, and thereby increase its retention in the tumor microenvironment or in the immune-regulating tissue. Increasing the valency of the fusion proteins can also increase their ability to cross-link costimulatory receptors on T cells. 1. Induction of tumor immunity
  • TIL tumor-infiltrating, antigen specific cytotoxic T lymphocytes
  • compositions increase or augment the functional immune response against a tumor relative to a control by costimulating T cells or by inhibiting or reducing inhibitory signals to T cells in a subject.
  • compositions are formulated to increase the number or functional activity of tumor-infiltrating, antigen specific cytotoxic T lymphocytes (TILs) in a subject in need thereof.
  • TILs tumor-infiltrating, antigen specific cytotoxic T lymphocytes
  • One embodiment provides a method for increasing the activation of tumor-infiltrating leukocytes in a subject by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to activate the subject's T cells and/or to inhibit or reduce coinhibition of the subject's T cells.
  • Another embodiment provides a method for increasing the population of tumor-infiltrating leukocytes in a subject by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to costimulate the subject's T cells and/or to inhibit or reduce coinhibition of the subject's T cells.
  • Another embodiment provides a method for stimulating or augmenting an effective anti-tumor T cell response by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to activate the subject's T cells and/or to inhibit or block inhibition of the subject's T cells.
  • Malignant tumors which may be treated are classified herein according to the embryonic origin of the tissue from which the tumor is derived.
  • Carcinomas are tumors arising from endodermal or ectodermal tissues such as skin or the epithelial lining of internal organs and glands.
  • Sarcomas which arise less frequently, are derived from mesodermal connective tissues such as bone, fat, and cartilage.
  • the leukemias and lymphomas are malignant tumors of hematopoietic cells of the bone marrow. Leukemias proliferate as single cells, whereas lymphomas tend to grow as tumor masses. Malignant tumors may show up at numerous organs or tissues of the body to establish a cancer.
  • the types of cancer that can be treated in with the provided compositions and methods include, but are not limited to, the following: bladder, brain, breast, cervical, colo-rectal, esophageal, kidney, liver, lung, nasopharangeal, pancreatic, prostate, skin, stomach and uterine.
  • Administration is not limited to the treatment of an existing tumor or infectious disease but can also be used to prevent or lower the risk of developing such diseases in an individual, i.e., for prophylactic use.
  • Potential candidates for prophylactic vaccination include individuals with a high risk of developing cancer, i.e., with a personal or familial history of certain types of cancer.
  • fusion proteins in vaccines
  • the fusion proteins disclosed herein, and/or nucleic acids encoding the same may be administered alone or in combination with any other suitable treatment.
  • fusion proteins, and/or nucleic acids encoding the same may be administered in conjunction with, or as a component of, a vaccine composition. Suitable components of vaccine compositions are described above.
  • Fusion protein compositions described herein can be administered prior to, concurrently with, or after the administration of a vaccine. In one embodiment the fusion protein composition is administered at the same time as administration of a vaccine.
  • the fusion proteins described herein may be administered in conjunction with prophylactic vaccines, which confer resistance in a subject to development of certain types of tumors, or in conjunction with therapeutic vaccines, which can be used to initiate or enhance a subject's immune response to a pre-existing antigen, such as a tumor antigen in a subject already having cancer.
  • a prophylactic or therapeutic immune response may vary according to the disease, according to principles well known in the art.
  • an immune response against cancer may completely treat the cancer or infectious disease, may alleviate symptoms, or may be one facet in an overall therapeutic intervention against the cancer or infectious disease.
  • the disclosed fusion protein compositions can be administered alone or in combination with one or more additional therapeutic agents.
  • the stimulation of an immune response against a cancer may be coupled with surgical, chemotherapeutic, radiologic, hormonal and other immunologic approaches in order to affect treatment.
  • the disclosed fusion proteins can be administered with an antibody or antigen binding fragment thereof specific for growth factor receptors or tumor specific antigens.
  • Representative growth factors receptors include, but are not limited to, epidermal growth factor receptor (EGFR; HERl ); c-erbB2 (HER2); c-erbB3 (HER3); c-erbB4 (HER4); insulin receptor; insulin-like growth factor receptor 1 (IGF-IR); insulin-like growth factor receptor 2/Mannose-6-phosphate receptor (IGF-II R/M-6-P receptor); insulin receptor related kinase (IRRK); platelet-derived growth factor receptor (PDGFR); colony-stimulating factor- 1 receptor (CSF-IR) (c-Fms); steel receptor (c-Kit); Flk2/Flt3; fibroblast growth factor receptor 1 (Flg/Cekl); fibroblast growth factor receptor 2 (Bek/Cek3/K-Sam); Fibroblast growth factor receptor 3; Fibroblast growth factor e
  • Additional therapeutic agents include conventional cancer therapeutics such as chemotherapeutic agents, cytokines, chemokines, and radiation therapy.
  • chemotherapeutic agents such as chemotherapeutic agents, cytokines, chemokines, and radiation therapy.
  • the majority of chemolherapeutic drugs can be divided into: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and other antitumour agents. All of these drugs affect cell division or DNA synthesis and function in some way.
  • Additional therapeutics include monoclonal antibodies and the tyrosine kinase inhibitors e.g. imatinib mesylate (GLEEVEC® or GLIVEC®), which directly targets a molecular abnormality in certain types of cancer (chronic myelogenous leukemia, gastrointestinal stromal tumors).
  • chemotherapeutic agents include, but are not limited to cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, vincristine, vinblastine, vinorelbine, vindesine, taxol and derivatives thereof, irinotecan, topotecan, amsacrine, etoposide, etoposide phosphate, teniposide, epipodophyllotoxins, trastuzumab (HERCEPTIN®), cetuximab, and rituximab (RITUXAN® or MABTHERA®), bevacizumab (AVASTIN®), and combinations thereof.
  • P815 mastocytoma cells were derived from DBA/2 mice after methylcholanthrene (MCA) treatment. Injection of 5 x 10 4 cells SC can result in mortality approximately 35 days post tumor inoculation.
  • mice (6 - 10 weeks of age, females) were first challenged with 5 x 10 4 live P815 cells injected SC in the flank. Six days later, the mice were treated with murine B7-DC-Ig via IP injection.
  • the dosing regimen shown in Figure 1, was 100 ⁇ g of murine B7-DC-Ig per injection (approximately 5 mg/kg), 2 times per week, up to 6 doses.
  • Control groups were treated with vehicle only or with murine IgG. Tumor size was measured with digital calipers every 2 TM 3 days.
  • mice were euthanized and defined as dead when their tumor size reached or exceeded 1000 mm 3 , according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the American Red Cross (ARC; the site of Amplimmune's vivarium). Surviving tumor free mice were re-challenged with P815 tumor cells on Day 52.
  • IACUC Institutional Animal Care and Use Committee
  • mice treated with vehicle or control mouse IgG required euthanasia by Day 38 because their tumor volumes reached the IACUC limit.
  • Figures 2A-C show tumor eradication in mice using murine B7-DC- Ig.
  • the tumor-free mice were then re-challenged with 5 * 1O 4 PSl 5 cells administered to the flank opposite the primary inoculation site on Day 52.
  • the mice remained tumor free through 74 days after the primary inoculation, while all na ⁇ ve mice challenged with P 815 cells developed tumors. This suggests that mice inoculated with P815 cells and treated with murine B7- DC-Ig developed long-term immunity against P815 mastocytoma.
  • Example 2 Combination of cyclophosphamide and B7-DC-Ig can eradicate established tumors.
  • Balb/C mice at age of 9 to 11 weeks were implanted subcutaneously with 1.0 x 105 CT26 colorectal tumor cells.
  • mice received 100 mg/kg of cyclophosphamide.
  • B7-DC-Ig treatment started 1 day later, on day 11. Mice were treated with 100 ug of B7-DC-Ig, 2 doses per week, for 4 weeks and total 8 doses.
  • Combination of cyclophosphamide and B7-DC-Ig can eradicate established tumors and protect against tumor re-challenge.
  • Combination of cyclophosphamide and B7-DC-Ig can generate tumor specific, memory cytotoxic T lymphocytes
  • mice eradiated established CT26 colorectal tumors from the above described experiment were rechallenged with 2.5x105 CT26 cells on Day 44. Seven days later, mouse spleens were isolated. Mouse splenocytes were pulsed with 5 or 50 ug/mL of ovalbumin (OVA) or AHl peptides for 6 hours in the presence of a Golgi blocker (BD BioScience). Memory T effector cells were analyzed by assessing CD8+/IFND+ T cells. Results in Figure 5 show that there were significant amount of CT26 specific T effector cells in the CT26 tumor-eradicated mice.
  • OVA ovalbumin
  • AHl peptides AHl peptides
  • Example 5 Combination of cyclophosphamide and B7-DC-Ig Regimen Leads to Reduction of Tregs in the Tumor Microenvironment
  • Figure 6 shows the results of experiments wherein Balb/C mice at age of 9 to 11 weeks of age were implanted with 1 X 105 CT26 cells subcutaneously. On Day 9, mice were injected with 100 rng/kg of CTX, IP. Twenty four hours later, on Day 10, mice were treated with 100 ug of B7-DC-Ig. There were 5 groups: na ⁇ ve mice that did not receive any tumor cells, vehicle injected, CTX alone, CTX + B7-DC-Ig or B7-DC-Ig alone.
  • mice and 4 mice from other groups were removed from the study on Day 11 (2 days post CTX) and Day 16 (7 days post CTX) for T cell analysis.
  • Left panel shows on Day 11, 2 days post CTX injection, Treg in the spleen of the mice with CTX treatment was significantly lower than the one in the mice with tumor implantation and injected with vehicle.
  • Right panel shows that on Day 16, 7 days post CTX and 6 days post B7-DC-Ig treatment, B7-DC-Ig significantly lowered the CD4+ T cells expressing high PD-I . This was observed in both the B7-DC-Ig treated and CTX + B7-DC-Ig treated mice. Mice implanted with tumor cells intended to have more PD-1+/CD4+ T cells in the draining LN compared with na ⁇ ve mice.
  • Example 6 Combination of cyclophosphamide and B7-DC-Ig can promote mouse survival in a metastatic prostate lung tumor model
  • B10.D2 mice at age of 9 to 11 weeks were injected intravenously with 3.0 x 105 SP-I mouse prostate tumor cells, which were isolated from lung metastasis post parent TRAMP prostate tumor cell injection.
  • the CTX mice received 3 doses of CTX, 50 mg/kg, on Day 5, 12 and 19.
  • the B7-DC-Ig treated mice received 3 doses of B7-DC-Ig, 5 mg/kg, on Day 6, 13 and 20.
  • Combination of Listeria cancer vaccine and B7-DC-Ig can enhance mouse survival post CT26 liver implantation
  • mice at age of 11-13 weeks were implanted with CT26 cells using a hemispleen injection technique (Yoshimura K et al., 2007, Cancer Research).
  • mice received 1 injection of CTX at 50 mg/kg, IP.
  • mice were treated with recombinant Listeria carrying AHl peptide, an immunodominant epitope of CT26, at 0.1 LD 50 (1x107 CFU), then on Day 14 and 17.
  • Mice were also treated with B7-DC-Ig on Day 11 and then on Day 18.
  • Figire 8 shows mice without any treatment or treated with CTX and Listeria cancer vaccine all died before Dady 45. There were 60% of the mice received triple combination, CTX + Listeria cancer vaccine and B7-DC-Ig survived.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Endocrinology (AREA)
  • Pulmonology (AREA)

Abstract

Compositions are provided that are targeted to tumors or tumor- associated neovasculature and enhance the function of tumor-infiltrating T cells. The compositions include fusion proteins that contain a T cell binding domain and a tumor/tumor-associated neovasculature targeting domain. The fusion proteins optionally contain a peptide/polypeptide linker domain and a domain that mediates dimerization or multimerization. The T cell binding domain can be a costimulatory molecule. Methods for using the fusion proteins to enhance an immune response are provided. Therapeutic uses for the disclosed compositions include the induction of tumor immunity.

Description

TARGETED COSTIMULATORY POLYPEPTIDES AND METHODS
OF USE TO TREAT CANCER
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to and benefit of U.S. Provisional
Application No. 61/091,502, filed on August 25, 2008, U.S. Provisional Application No. 61/091,694, filed on August 25, 2008, U.S. Provisional Application No. 61/091,709, filed on August 25, 2008, U.S. Provisional Application No. 61/091,705, filed on August 25, 2008, and U.S. Provisional Application No. 61/142,548, filed on January 5, 2009, and U.S. Provisional Application No. 61/165,652 filed on April 1, 2009, and where permissible are incorporated by reference in their entireties.
FIELD OF THE INVENTION This invention relates to compositions and methods for modulating T cell activation, in. particular to compositions and methods for enhancing T cell activation in tumor microenvironments and in tissues involved in immune cell activation.
BACKGROUND OF THE INVENTION Cancer has an enormous physiological and economic impact. For example a total of 1,437,180 new cancer cases and 565,650 deaths from cancer are projected to occur in the United States in 2008 (Jemal, A., Cancer J. Clin., 58:71-96 (2008)). The National Institutes of Health estimate overall costs of cancer in 2007 at $219.2 billion: $89.0 billion for direct medical costs (total of all health expenditures); $18.2 billion for indirect morbidity costs (cost of lost productivity due to illness); and $112.0 billion for indirect mortality costs (cost of lost productivity due to premature death). Although there are several methods for treating cancer, each method has its own degree of effectiveness as well as side-effects. Typical methods for treating cancer include surgery, chemotherapy, radiation, and immunotherapy. Stimulating the patients own immune response to target tumor cells is an attractive option for cancer therapy and many studies have demonstrated effectiveness of immunotherapy using tumor antigens to induce the immune response. However, induction of an immune response and the effective eradication of cancer often do not correlate in cancer immunotherapy trials (Cormier, et al., Cancer J. ScI Am., 3(l):37-44 (1997); Nestle, et al, Nat. Med., 4(3):328-332 (1998); Rosenberg, Nature, 411 (6835):380-384 (2001)). Thus, despite primary anti-tumor immune responses in many cases, functional, effector anti-tumor T cell responses are often weak at best. An antigen specific T cell response is mediated by two signals: 1) engagement of the TCR with antigenic peptide presented in the context of
MHC (signal 1), and 2) a second antigen-independent signal delivered by contact between different receptor/ligand pairs (signal 2). This "second signal" is critical in determining the type of T cell response (activation vs inhibition) as well as the strength and duration of that response, and is regulated by both positive and negative signals from costimulatory molecules, such as the B7 family of proteins.. The most extensively characterized T cell costimulatory pathway is B7-CD28, in which B7-1 (CD80) and B7-2 (CD86) each can engage the stimulatory CD28 receptor and the inhibitory CTLA-4 (CD 152) receptor. In conjunction with signaling through the T cell receptor, CD28 ligation increases antigen-specific proliferation of T cells, enhances production of cytokines, stimulates differentiation and effector function, and promotes survival of T cells (Lenshow, et al, Annu. Rev. Immunol, 14:233- 258 (1996); Chambers and Allison, Curr. Opin. Immunol, 9:396-404 (1997); and Rathmell and Thompson, Annu. Rev. Immunol, 17:781-828 (1999)). In contrast, signaling through CTLA-4 is thought to deliver a negative signal that inhibits T cell proliferation, IL-2 production, and cell cycle progression (Krammel and Allison, J Exp. Med, 183:2533-2540 (1996); and Walunas, et al., J Exp. Med, 183:2541-2550 (1996)). Other members of the B7 family include B7-H1 (Dong, et at, Nature Med, 5:1365-1369 (1999); and Freeman, et al., J Exp. Med, 192:1-9 (2000)), B7-DC (also Tseng, et al., J Exp. Med, 193:839-846 (2001); and Latchman, et al., Nature Immunol, 2:261-268 (2001)), B7-H2 (Wang, et al., Blood, 96:2808-2813 (2000); Swallow, et al., Immunity, 11:423-432 (1999); and Yoshinaga, et al., Nature, 402:827-832 (1999)), B7-H3 (Chapoval, et al., Nature Immunol, 2:269-274 (2001)) and B7-H4 (Choi, et al., J. Immunol, 171 :4650-4654 (2003); Sica, et al., Immunity, 18:849-861 (2003); Prasad, et al., Immunity, 18:863-873 (2003); and Zang, et al., Proc. Natl Acad ScL U.S.A., 100:10388-10392 (2003)). B7- Hl (also known as PD-Ll) and B7-DC (also known as PD-L2) are Hgands for PD-I, B7-H2 is a ligand for ICOS, and B7-H3 and B7-H4 remain orphan ligands at this time(Dong. et al., Immunol. Res., 28:39-48 (2003)).
Certain molecules such as those of the B7 family can enhance effector immune responses to tumor/tumor antigens. Exogenous delivery of costimulatory molecules that enhance T cell response in vivo is therefore thought to be a practical way to augment the immune response to tumors. However, reaching an effective level of costimulatory molecules in vivo may require a large amount of recombinant protein. Systemic delivery of costimulatory molecules in vivo can also result in non-specific immune activation that can be harmful to the host.
Therefore, it is an object of the invention to provide T cell costimulatory compositions that enhance T cell responses and are targeted to tumors or tumor- associated neovasculature and methods for their use. It is another object of the invention to provide costimulatory compositions that enhance T cell responses and can concentrate inside tumors in vivo and augment the function of tumor-infiltrating T cells.
It is another object of the invention to provide costimulatory molecule compositions that enhance T cell responses and reduce the amount of costimulatory molecule necessary to achieve effective anti-tumor T cell responses in vivo.
It is another object of the invention to provide costimulatory molecule compositions that enhance T cell responses and reduce non-specific immune activation in a host. SUMMARY OF THE INVENTION
Compositions are provided that are targeted to tumors or tumor- associated neovasculature and enhance the function of tumor-infiltrating T cells. The compositions include fusion proteins that contain a T cell binding domain, a tumor/tumor-associated neovasculature targeting domain and optionally a linker domain. The linker is preferably a peptide/polypeptide.
In one embodiment, the T cell binding domain is a costimulatory molecule or a variant and/or fragment thereof that binds to and activates a receptor on T cells, resulting in enhanced T cell responses. Representatives of such receptor agonists include members of the B7 family, including, but not limited to, B7-1, B7-2, and B7-H5. UseM fragments of said costimulatory molecules include soluble fragments, including the extracellular domain, or fragments thereof, including the IgV and/or IgC domains. Agonistic single polypeptide antibodies or fragments thereof that bind to and activate costimulatory receptors and lead to enhanced T cell responses are also useful T cell activating domains.
The tumor/tumor-associated neovasculature targeting domain is a domain that binds to an antigen, receptor or ligand that is specific for tumors or tumor-associated neovasculature, or is overexpressed in tumors or tumor- associated neovasculature as compared to normal tissue. Suitable antigens that can be targeted include, but are not limited to, tumor-specific and tumor- associated antigens and antigens overexpressed on tumor-associated neovasculature including, but not limited to, VΕGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and Ot5 β3 integrin/vitronectin. Suitable tumor/tumor-associated neovasculature targeting domains include, but are not limited to, ligands, receptors, single polypeptide antibodies and immunoglobulin Fc domains.
The peptide/polypeptide linker domain can be any flexible peptide or polypeptide at least 2 amino acids in length that separates the T cell binding domain and the tumor/tumor-associated neovasculalure targeting domain and provides increased rotational freedom between these two domains. Suitable polypeptides include the hinge region of immunoglobulins alone, or in combination with either immunoglobulin Fc regions or the CHI or CL regions. The fusion proteins can also contain dimerization or multimerization domains that can either be separate domains or can be contained within the T cell binding domain, the tumor/tumor-associated neovasculature targeting domain or the peptide/polypeptide linker domain. Preferred dimerization domains contain at least one cysteine that is capable of forming an intermolecular disulfide bond. Other suitable dimerization/multimerization domains are provided.
The fusion proteins can be dimerized or multimerized to form homodimers, heterodimers, homomultimers or heteromultimers. Dimerization or multimerizalion can occur either through dimerization/multimerization domains, or can be the result of chemical crosslinking. Dimerization/multimerization partners can be arranged either in parallel or antiparallel orientations. Isolated nucleic acids molecules encoding the disclosed fusion proteins, vectors and host cells, and pharmaceutical and immunogenic compositions containing the fusion proteins are also provided. Immunogenic compositions contain antigens, a source of fusion proteins and, optionally, additional adjuvants. Methods for using the fusion proteins to increase T cell responses and block inhibition of T cell activation, or to reverse T cell exhaustion and anergy, are also provided. Therapeutic uses for the disclosed compositions include the induction of tumor immunity. The tumor or tumor-associated neovasculature binding domains function to effectively target the fusion proteins to the tumor microenvironment, where they can specifically enhance the activity of tumor-infiltrating T cells through their T cell binding domains. The ability of the compositions to concentrate in tumors reduces the amount of costimulatory molecule that is necessary to administer in vivo to achieve an effective amount, and thereby reduces the risk of non-specific activation of the immune system. Fusion proteins can be administered as monomers, dimers or multiniers. In one embodiment, fusion proteins are administered as dimers or multimers that have increased valency for T cell and/or tumor/tumor-associated neovasculature binding determinants.
Also provided are methods for administering fusion protens in combination with other tumor therapies or as part of a prophylactic or therapeutic vaccine composition.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a diagram of an exemplary dosing regimen for the P815 tumor model. Figures 2A-C is a line graphs of tumor volumes plotted as a function of time and treatment: A) vehicle control, B) mouse IgG control, and C) murine B7-DC-Ig. Figures 3 A and B are line graphs of tumor growth (mm3) versus days post tumor inoculation in mice given 100 mg/kg cyclophosphamide (CTX or Cytoxan®) alonce (Figure 3A) and mice given the combination of CTX and dimeric murine B7-DC-Ig (Figure 3B). The combination of B7-DC-Ig and CTX resulted in eradication of established CT26 tumors (colon carcinoma) in mice. Each line in each graph represents one mouse. Black arrow stands for B7-DC-Ig administration. Figure 3C is a line graph of average average tumor volume versus days post tumor implanation in mice given 100 mg/kg CTX (-•-) or the combination of CTX and dimeric murine B7-DC-Ig (-Δ-). Figure 4 shows the results of experiments wherein the combination of
CTX and dimeric murine B7-DC-Ig eradicated established CT26 tumors (colon carcinoma) in mice and protected against re-challenge with CT26. Mice that were treated with CTX and B7-DC-Ig and found to be free of tumor growth on day 44 following tumor inoculation were rechallenged with tumors. The mice were later rechallenged again on on Day 70. None of the mice displayed tumor growth by day 100.
Figure 5 shows CTX and B7-DC-Ig treatment resulted in generation of tumor specific memory CTL. Mice eradicated established CT26 subcutenous tumors post CTX and B7-DC-Ig treatment were re-challenged with CT26 cells. Seven days later, splenocytes were isolated and pulsed with either ovalbumin, an irrelevant peptide, or AHl, a CT26 specific peptide. Cells were stained with anti-CD8 antibody first followed by intracellular staining with anti-IFNγ antibody prior to FACS analysis.
Figures 6 A and B show the results of experiments wherein Balb/C mice at age of 9 to 11 weeks of age were implanted with I X lO5 CT26 cells subcutaneously. On Day 9, mice were injected with 100 mg/kg of CTX, IP. Twenty four hours later, on Day 10, mice were treated with 100 ug of B7- DC-Ig. There were 5 groups: naive mice that did not receive any tumor cells, vehicle injected, CTX alone, CTX + B7-DC-Ig or B7-DC-Ig alone. Two naϊve mice and 4 mice from other groups were removed from the study on Day 11 (2 days post CTX) and Day 16 (7 days post CTX) for T cell analysis. Figure 6A shows on Day 11, 2 days post CTX injection, Treg in the spleen of the mice with CTX treatment was significantly lower than the one in the mice with tumor implantation and injected with vehicle. Figure 6B shows that on Day 16, 7 days post CTX and 6 days post B7-DC-Ig treatment, B7- DC-Ig significantly lowered the CD4+ T cells expressing high PD-I . This was observed in both the B7-DC-Ig treated and CTX + B7-DC-Ig treated mice. Mice implanted with tumor cells intended to have more PD-1+/CD4+ T cells in the draining LN compared with naϊve mice.
Figure 7 is a line graph of survival (%) versus days post tumor implantation in mice administered with the combination of CTX and B7-DC- Ig (-A-), CTX alone (dashed line), or B7-DC-ϊg alone (solid line). SP-I cells were isolated from mouse lungs that were metastasized from TRAMP prostate tumor cell injection. B10.D2 mice were first injected with 3xlO5 SP- 1 cells via tail vein injection. On Day 5, 12 and 19, mice were injected with 50 mg/kg of CTX where was indicated. On Day 6, 13 and 20, mice were administered with 5 mg/kg of B7-DC-Ig were it was indicated. Here, "NT" refers to "not treated". Figure 8 is line graph of overall survival (%) versus days post tumor implantation in Balb/C mice at age of 11-13 weeks given isolated hepatic metastases using a hemispleen injection technique. The spleens of anesthetized mice were divided into two halves and the halves were clipped. CT26 cells (1E05) were injected into one hemispleen, and after 30 seconds, that hemispleen was resected and the splenic draining vein was clipped. On Day 10, mice received 1 injection of CTX at 50 mg/kg, IP. Twenty four hours later, on Day 11, mice were treated with recombinant Listeria carrying AHl peptide, an immunodominant epitope of CT26, at 0.1 x LD50 (1 xlO7 CFU), then on Day 14 and 17. Mice were also treated with B7-DC-Ig on Day 11 and then on Day 18. Mouse overall survival was monitored.
DETAILED DESCRIPTION OF THE INVENTION I. Definitions
As used herein the term "isolated" is meant to describe a compound of interest (e.g., either a polynucleotide or a polypeptide) that is in an environment different from that in which the compound naturally occurs e.g. separated from its natural milieu such as by concentrating a peptide to a concentration at which it is not found in nature. "Isolated" is meant to include compounds that are within samples that are substantially enriched for the compound of interest and/or in which the compound of interest is partially or substantially purified.
As used herein, the term "polypeptide" refers to a chain of amino acids of any length, regardless of modification (e.g., phosphorylation or glycosylation).
As used herein, a "costimulatory polypeptide" or "costimulatory molecule" is a polypeptide that, upon interaction with a cell-surface molecule on T cells, modulates the activity of the T cell. Costimulatory signaling can inhibit T cell function or enhance T cell function depending on which T cell receptor is activated or blocked.
As used herein, an "amino acid sequence alteration" can be, for example, a substitution, a deletion, or an insertion of one or more amino acids.
As used herein, a "vector" is a repHcon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. The vectors described herein can be expression vectors.
As used herein, an "expression vector" is a vector that includes one or more expression control sequences As used herein, an "expression control sequence" is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
"Operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their usual or intended function. Thus, two different polypeptides operably linked together retain their respective biological functions while physically linked together.
As used herein, "valency" refers to the number of binding sites available per molecule.
As used herein, the term "host cell" refers to prokaryotic and eukaryotic cells into which a recombinant expression vector can be introduced.
As used herein, "transformed" and "transfected" encompass the introduction of a nucleic acid (e.g. a vector) into a cell by a number of techniques known in the art. As used herein, the term "antibody" is meant to include both intact molecules as well as fragments thereof that include the antigen-binding site. These include Fab and F(ab')2 fragments which lack the Fc fragment of an intact antibody. The terms "individual", "host", "subject", and "patient" are used interchangeably herein, and refer to a mammal, including, but not limited to, humans, rodents such as mice and rats, and other laboratory animals. II. Fusion proteins
The compositions disclosed herein are fusion proteins that contain a costimulatory polypeptide domain and a domain that is an antigen-binding domain that targets the fusion protein to tumor cells, tumor cell-associated neovasculature, or to tissues involved in T cell activation. The costimulatory polypeptide can either bind to a T cell receptor and enhance a T cell response
The fusion proteins also optionally contain a peptide or polypeptide linker domain that separates the costimulatory polypeptide domain from the antigen-binding domain.
Fusion proteins disclosed herein are of formula I:
N-R1-R2-R3-C
wherein "N" represents the N-terminus of the fusion protein, "C" represents the C-terminus of the fusion protein, "Rf is a costimulatory polypeptide domain or a antigen-binding targeting domain, "R2" is a peptide/polypeptide linker domain, and "R3" is a costimulatory polypeptide domain or a antigen- binding targeting domain, wherein "R3" is a costimulatory polypeptide domain when "Ri" is a antigen-binding targeting domain, and "R3" is a antigen-binding targeting domain when "Rj" is a costimulatory polypeptide domain. In a preferred embodiment, "Ri" is a costimulatory polypeptide domain and "R3" is a antigen-binding targeting domain. Optionally, the fusion proteins additionally contain a domain that functions to dimerize or multimerize two or more fusion proteins. The domain that functions to dimerize or multimerize the fusion proteins can either be a separate domain, or alternatively can be contained within one of one of the other domains (costimulatory polypeptide domain, antigen- binding targeting domain, or peptide/polypeptide linker domain) of the fusion protein.
The fusion proteins can be dimerized or multimerized. Dimerization or multimerization can occur between or among two or more fusion proteins through dimerization or multimerization domains. Alternatively, dimerization or multimerization of fusion proteins can occur by chemical crosslinking. The dimers or multimers that are formed can be homodimeric/homomultimeric or heterodimeric/heteromultimeric.
The modular nature of the fusion proteins and their ability to dimerize or multimerize in different combinations provides a wealth of options for targeting molecules that function to costimulate T cells to the tumor cell microenvironment or to immune regulatory tissues.
A. Costimulatory molecules that Enhance Immune Responses The fusion proteins disclosed herein include costimulatory polypeptides of the B7 family, or biologically active fragments and/or variants thereof. Representative co-stimulatory polypeptides include, but are not limited to B7-1, B7-2, and B7-H5. These costimulatory polypeptides can activate T cell function. In a preferred embodiment, the extracellular domain or a biologically active fragment thereof is used as a T cell costimulatory polypeptide.
It has been shown that B7-DC binds to PD-I, a distant member of the CD28 receptor family that is inducibly expressed on activated T cells, B cells, natural killer (NK) cells, monocytes, DC5 and macrophages (Keir, et al Curr. Opin. Immunol. 19:309-314 (2007)). The phenotypes of PD-I-/- mice provide direct evidence for PD-I being a negative regulator of immune responses in vivo. In the absence of PD-I, mice on the C57BL/6 background slowly develop a lupus-like glomerulonephritis and progressive arthritis (Nishimura, et al., Immunity, 11 :141—151 (1999)). PD-I-/- mice on the BALB/c background rapidly develop a fatal autoimmune dilated cardiomyopathy (Nishimura, et al., Science. 291:319-322 (2001)). Therefore, by binding to PD-I, B7-DC is a costimulatory molecule that inhbits T cell function. However, substantial evidence indicates that B7-DC can function to costimulate activate T cell responses. In the presence of suboplimal TCR signals, B7-DC causes increased proliferation and production of cytokines in vitro (Tseng, et al., J. Exp. Med. 193:839-846 (2001)). On the other hand, in vitro studies indicate a negative regulatory role for B7-DC in T cell responses. These seemingly contradictory data are best interpreted by expression of additional receptors for B7-DC on T cells other than PD-I . Therefore, in certain circumstances, B7-DC acts as a costimulatory polypeptide that can activate T cell function.
The B7 costirnulalory polypeptide may be of any species of origin. In one embodiment, the costimulatory polypeptide is from a mammalian species. In a preferred embodiment, the costimulatory polypeptide is of murine or human or non-human primate origin. Useful human B7 costimulatory polypeptides have at least about 80, 85, 90, 95 or 100% sequence identity to the B7-DC polypeptide encoded by the nucleic acid having GenBank Accession Number NM_025239; the B7-1 polypeptide encoded by the nucleic acid having GenBank Accession Number
NM_005191 ; the B7-2 polypeptide encoded by the nucleic acid having GenBank Accession Number U04343 or; the B7-H5 polypeptide encoded by the nucleic acid having GenBank Accession Number NP 071436. B7-H5 is also disclosed in PCT Publication No. WO 2006/012232. 1. Fragments of B7 costimulatory polypeptides
The B7 polypeptides disclosed herein can be full-length polypeptides, or can be a fragment of a full length B7 polypeptide. As used herein, a fragment of B7 polypeptides refers to any subset of the polypeptide that is a shorter polypeptide of the full length protein. In certain embodiments, the fragments retain the ability to co-stimulate T cells. Fragments of B7 costimulatory molecules may be useful to reduce the size of the fusion protein in order to facilitate the simultaneous association of the costimulatory molecule with a costimulatory receptor on T cells in concert with CD3/T cell receptor engagement during formation of immune synapses. Useful fragments are those that retain the ability to bind to their natural ligands. A costimulatory polypeptide that is a fragment of full-length costimulatory polypeptide typically has at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent of the ability to bind its natural Hgand(s) as compared to the full-length costiniulatory polypeptide.
One embodiment provides B7 polypeptide fragments that retain the ability to costimulate T cells. A B7 polypeptide that is a fragment of a full- length B 7 polypeptide typically has at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent of the costiniulatory activity of the full-length B7 polypeptide.
Human and mouse and non-human primate B7 proteins contain short intracytoplasmic domains, a single transmembrane domain and an extracellular domain. The extracellular domain, typically contains two Ig domains; a membrane proximal IgC domain and a membrane distal IgV domain. Useful fragments of B7 costimulatory polypeptides include soluble fragments. Soluble B7 costimulatory polypeptide fragments are fragments of B7 costimulatory polypeptides that may be shed, secreted or otherwise extracted from the producing cells. Soluble fragments of B7 costimulatory polypeptides include some or all of the extracellular domain of the B7 costimulatory polypeptide, and lack some or all of the intracellular and/or transmembrane domains. In one embodiment, B7 costimulatory polypeptide fragments include the entire extracellular domain of the B7 costimulatory B7 costimulatory polypeptide. In other embodiments, the soluble fragments of B7 costimulatory polypeptides include fragments of the extracellular domain that retain B7 costimulatory biological activity. It will be appreciated that the extracellular domain can include 1, 2, 3, 4, or 5 amino acids from the transmembrane domain. Alternatively, the extracellular domain can have 1, 2, 3, 4, or 5 amino acids removed from the C-terminus, N-terminus, or both.
Generally, the B7 costimulatory polypeptides or fragments thereof are expressed from nucleic acids that include sequences that encode a signal sequence. The signal sequence is generally cleaved from the immature polypeptide to produce the mature polypeptide lacking the signal sequence. It will be appreciated that the signal sequence of B 7 costimulatory polypeptides can be replaced by the signal sequence of another polypeptide using standard molecule biology techniques to affect the expression levels, secretion, solubility, or other property of the polypeptide. The signal sequence that is used to replace the B7 costimulatory polypeptide signal sequence can be any known in the art.
B7-DC
Murine B7-DC polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
MLLLLPILNL SLQLHPVAAL FTVTAPKEVY TVDVGSSVSL ECDFDRRECT ELEGIRASLQ 60
KVENDTSLQS ERATLLEEQL PLGKALFHIP SVQVRDSGQY RCLVICGAAW DYKYLTVKVK 120
ASYMRIDTRI LEVPGTGEVQ LTCQARGYPL AEVSWQNVSV PANTSHIRTP EGLYQVTSVL 180
RLKPQPSRNF SCMFWNAHMK ELTSAIIDPL SRMEPKVPRT KJPLHVFIPAC TIALIFLAIV 240 I IQRKRI 247
(SEQ ID NO:1) or
LFTVTAPKEV YTVDVGSSVS LECDFDRREC TELEGIRASL QKVENDTSLQ SERATLLEEQ 60
LPLGKALFHi PSVQVRDSGQ YRCLVICGAA WDYKYLTVKV KASYMRΓDTR ILEVPGTGEV 120
QLTCQARGYP LAEVSWQNVS VPANTSHIRT PEGLYQVTSV LRLKPQPSRN FSCMFMNAHH 180 KBLTSAiiDP LSRMEPKVPR TWPLHVFIPA CTIΆLIFLAI VIIQRKRI 223 (SEQ ID NO:2).
Human B7-DC polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
MIFLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ 60 KVENDTSPHR ERATLLEEQL PLGKASFHIP QVQVRDEGQY QCIIIYGVAW DYKYLTLKVK 120
ASYRKIKTHI LKVPETDEVE LTCQATGYPL ASVSWPKVSV PANTSHSRTP EGLYQVTSVL 180
RLKPPPGRHF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT WLLHIFIPFC IIAFIFIATV 240 lALRKQLCQK LYSSKDTTKR PVTTTKREVN SAI 273
(SEQ ID NO:3) or LFTVTVPKEL YIIEHGSNVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ 60
LPLGKASFHI PQVQVRDEGQ YQCIIIYGVA WDYKYLTLKV KASYRKINTH ILKVPETDEV 120
ELTCQATGYP LAEVSWPNVS VPANTSHSRT PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV 180
REIITLASIDL QSQMEPRTHP TWLLHIFIPF CIIAFIFIAT VIALRKQLCQ KLYSSKDTTK 240
RPVTTTKREV NSAI 254 (SEQ ID NO:4).
Non-human primate (Cynomolgus) B7-DC polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
MIFLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ 60
KVEMDTSPHR ERATLLEEQL PLGKASFHIP QVQVRDEGQY QCIIIYGVAW DYKYLTLKVK 120 ASYRKINTHI LKVPETDEVE LTCQATGYPL AEVSWPNVSV PANTSHSRTP EGLYQVTSVL 180
RLKPPPGRNF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT WLLHI FIPSC IIAFIFIATV 240 lALRKQLCQK LYSSKDATKR PVTTTKREVN SAI 273
(SEQ IDNO:5) or
LFTVTVPKEL YIIEHGSNVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ 60 LPLGKASFHI PQVQVRDEGQ YQCIIIYGVA WDYKYLTLKV KASYRKINTH ILKVPETDEV 120
ELTCQATGYP LAEVSWPKVS VPANTSHSRT PBGLYQVTSV LRLKPPPGRN FSCVFWNTHV ISO
RELTLASIDL QSQMEPRTHP TWLLHIFIPS CIIAFIFIAT VIALRKQLCQ KLYSSKDATK 240 RPVTTTKREV NSAI 254
(SEQ ID NO:6)
It will be appreciated that SEQ ID NOs: 1, 3 and 5 each contain a signal peptide. B 7-1
Murine B7-1 polypeptides can have at least 80%, 85%, 90%s 95%, 99% or 100% sequence identity to:
MACNCQLMQD TPLLKFPCPR LILLFVLLIR LSQVSSDVDE QLSKSVKDKV LLPCRYNSPH 60
EDESEDRIYW QKHDKWLSV IAGKLKVWPE YKNRTLYDNT TYSLIILGLV LSDRGTYSCV 120 VQKKERGTYE VKHLALVKLS IKADFSTPNI TESGNPSADT KRITCFASGG FPKPRFSWLE 130
KGRELPGINT TISQDPESEL YTISSQLDFN TTRNHTIKCL IKYGDAHVSE DFTWEKPPED 240
PPDSKNTLVL FGAGFGAVIT WVIWIIKC FCKHRSCFRR NEASRETNNS LTFGPEEALA 300
EQTVFL 306
(SEQ ID NO:7) or VDEQLSKSVK DKVLLPCRYN SPHEDESEDR IYWQKHDKVV LSVIAGKLKV WPEYKNRTLY 60
DNTTYSLIIL GLVLSDRGTY SCWQKKERG TYEVKHLALV KLSIKADFST PNITESGNPS 120
ADTKRITCFA SGGFPKPRFS WLEKGRELPG IKTTISQDPE SELYTISSQL DFNTTRNHTI ISO
KCLIKYGDAH VSEDFTSJEKP PEDPPDSKNT LVLFGΆGFGA VITWVIWI IKCFCKHRSC 240
FRRNEASRET KNSLTFGPEE ALAEQTVFL 269 (SEQ ID NO:8).
Human B7-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVIHVTK EVKEVATLSC GHKVSVEELA 60
QTRIYWQKEK KMVLTMMSGD MKIWPEYKNR TIFDITNNLS IVILALRPSD EGTYECWLK 120 YEKDAFKREH LAEVTLSVKA DFPTPSISDF EIPTΞNIRRI ICSTSGGFPE PHLSWLENGE 180
ELNAINTTVS QDPETELYAV SSKLDFNMTT NHSFMCLIKY GHLRVNQTFK WNTTKQEHFP 240
DNLLPSWAIT LISVNGIFVI CCLTYCFAPR CRERRRNERL RRESVRPV 288
(SEQ ID NO:9) or
VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKNRTIFD 60 ITNNLSIVIL ALRPSDEGTY ECWLKYEKD AFKREHLAEV TLSVKADFPT PSISDFEIPT 120
SNIRRIICST SGGFPΞPHLS WLENGEELNA INTTVSQDPE TELYAVSSKL DFNMTTNHSF 180
MCLIKYGHLR VNQTFNWNTT KQEHFPDNLL PSWAITLISV NGIFVICCLT YCFAPRCRER 240
RRNERLRRES VRPV 254
(SEQ ID NO: 10). It will be appreciated that SEQ ID NOs: 7 and 9 each contain a signal peptide.
B7-2
Murine B7-2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: MDPRCTMGLA ILI FVTVLLI SDAVSVETQA YFNGTAYLPC PFTKAQNISL SELWFWQDQ 60
QKLVLYEHYL GTEKLDSVNA KYLGRTSFDR NNWTLRLHNV QIKDMGSYDC FIQKKPPTGS 120 IILQQTLTEL SVIANFSEPE IKLAQNVTGN SGINLTCTSK QGHPKPKKMY FLITNSTNEY 180
GDNMQISQDN VTELFSISNS LSLSFPDGVW BMTWCVLET ESMKISSKPL NFTQEFPSPQ 240
TYWKEITASV TVALLLVMLL IIVCHKKPHQ PSRPSNTASK LERDSHADRE TINLKELEPQ 300
IASAKPNAS 309 (SEQ ID NO:11) or
VSVETQAYFK GTAYLPCPFf KAQNISLSEL WFWQDQQKL VLYEHYLGTE KLDSVNAKYL 60
GRTSFDRNNW TLRLHNVQIK DMGSYDCFIQ KKPPTGSIIL QQTLTBLSVI ANFSEPEIKL 120
AQNVTGNSGI NLTCTSKQGH PKPKKMYFLI TKSTNEYGDN MQISQDNVTE LFSISNSLSL 180
SFPDGVWHMT WCVLETESM KISSKPLNFT QEFPSPQTYW KEITASVTVA LLLVMLLIIV 240 CHKKPNQPSR PSNTASKLER DSNADRETIN LKELEPQIAS AKPNAE 286
(SEQ ID NO: 12).
Human B7-2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
MGLSNILFVM AFLLSGAAPL KIQAYFNETA DLPCQFANSQ NQSLSELVVF WQDQENLVLN 60 EVYLGKEKFD SVHSKYMGRT SFDSDSWTLR LHNLQIKDKG LYQCIIHHKK PTGMIRIHQM 120
NSELSVLANF SQPEIVPISN ITENVYINLT CSSIHGYPEP KKMSVLLRTK MSTIEYDGIM 180
QKSQDNVTEL YDVSISLSVS FPDVTSNMTI FCILETDKTR LLSSPFSIEL EDPQPPPDHI 240
PWITAVLPTV IICVMVFCLI LWKWKKKKRP RNSYKCGTNT MEREESEQTK KREKIHIPER 300
SDEAQRVFKS SKTSSCDKSD TCF 323 (SEQ ID NO:13) or
AYFMETADLP CQFANSQNQS LSELWFWQD QENLVLNEVY LGKEKFDSVH SKYMGRTSFD 60
SDSWTLRLHN LQIKDKGLYQ CIIHHKKPTG MIRIHQMNSE LSVLANFSQP EIVPISNITE 120
NVYINLTCSS IHGYPEPKKM SVLLRTKNST lEYDGIMQKS QDNVTELYDV SISLSVSFPD 180
VTSRMTIFCI LETDKTRLLS SPFSIELEDP QPPPDHIEWI TAVLPTVIIC VMVFCLILWK 240 WKKKKRPRNS YKCGTNTMER EESEQTKKRE KIHIPERSDE AQRVFKSSKT SSCDKSDTCF 300
(SEQ ID NO: 14).
It will be appreciated that SEQ ID NOs: 11 and 13 each contain a signal peptide.
B7-H5 Murine B7-H5 polypeptides can have at least 80%, 85%, 90%, 95%,
99% or 100% sequence identity to:
MGVPAVPEAS SPRWGTLLLA IFLAASRGLV AAFKVTTPYS LYVCPSGQNA TLTCRILGPV 60
SKGHDVTIYK TWYLSSRGEV QMCKEHRPIR NFTLQHLQHH GSHLKANASH DQPQKHGLEL 120
ASDHHGNFSI TLRNVTPRDS GLYCCLVIEL KNHHPEQRFY GSMELQVQAG KGSGSTCMAS 180 NEQDSDSITA AALATGACIV GILCLPLILL LVYKQRQVAS HRRAQELVRM DSSNTQGIEN 240
PGFETTPPFQ GMPEAKTRPP LSYVAQRQPS ESGRYLLSDP STPLSPPGPG DVFFPSLDPV 300
PDSPNSEAI 309
(SEQ ID NO:15) or
FKVTTPYSLY VCPEGQNATL TCRILGPVSK GHDVTIYKTW YLΞSRGEVQM CKEHRPIRNF 60 TLQHLQHHGS HLKANASHDQ PQKHGLELAS DHHGNFSITL RNVTPRDSGL YCCLVIELKN 120
HHPEQRFYGS MELQVQAGKG SGSTCMASNB QDSDSITAAA LATGACIVGI LCLPLILLLV 180
YKQRQVASHR RAQELVRMDS SNTQGIENPG FETTPPFQGM PEAKTRPPLS YVAQRQPSES 240
GRYLLSDPST PLSPPGPGDV FFPSLDPVPD SPNSEAI 277 (SEQ ID NO: 16).
Human B7-H5 can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
MGVPTALEAG SWRWGΞLLFA LPLAASLGPV AAFKVATPYS LYVCPEGQHV TLTCRLLGPV 60 DKGHDVTFYK TWYRSSRGEV QTCSERRPIR NLTFQDLHLH HGGHQAAHTS HDLAQRHGLB 120
SASDHHGNFS ITMRHLTLLD SGLYCCLWE IRHHHSEHRV HGAMELQVQT GKDAPSNCW 180
YPSSSQDSEN ITAAALATGA CIVGILCLPL ILLLVYKQRQ ΛASNRRAQEL VRMDSNIQGI 240
ENPGFEASPP AQGIPEAKVR HPLSYVAQRQ PSESGRHLLS BPSTPLSPPG PGDVFFPSLD 300
PVPDSPNFBV I 311 (SEQ IDNO:17) or
FKVATPYSLY VCPEGQHVTL TCRLLGPVDK GHDVTFYKTW YRSSRGEVQT CSERRPIRNL 60
TFQDLHLHHG GHQAAMTSHD LAQRHGLESA SDHHGNFSIT MRNLTLLDSG LYCCLWEIR 120
HHHSEHRVHG AHBLQVQTGK DAPSNCVVYP SSSQDSEMIT AAALATGACI VGILCLPLIL 180
LLVYKQRQAA SHRRAQELVR MDSNIQGIEH PGFEASPPAQ GIPEAKVRHP LSYVAQRQPS 240 ESGRHLLSEP STPLSPPGPG DVFFPSLDPV PDSPNFEVI 279
(SEQ ID NO: 18).
It will be appreciated that SEQ ID NOs: 15 and 17 each contain a signal peptide. a. Murine B7 costimulatory extracellular domains
In one embodiment, the disclosed fusion proteins include the extracellular domain of the murine B7-DC, B7-1, B7-2 or B7-H5, proteins shown in SEQ ID NOs: 1, 2, 7, 8, 11, 12, 15 or 16, as shown below.
B7-DC The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgctgctcc tgctgccgat actgaacctg agcttacaac ttcatcctgt agcagcttta 60 ttcaccgtga cagcccctaa agaagtgtac accgtagacg tcggcagcag tgtgagcotg 120 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagagc cagtttgcag 180 aaggtagaaa atgatacgtc tctgcaaagt gaaagagcca ccctgctgga ggagcagctg 240 cccctgggaa aggctttgtt ccacatccct agtgtccaag tgagagattc cgggcagtac 300 cgttgcctgg tcatctgcgg ggccgcctgg gactacaagt acctgacggt gaaagtcaaa 360 gcttcttaca tgaggataga cactaggatc ctggaggttc caggtacagg ggaggtgcag 420 cttacctgcc aggctagagg ttatccccta gcagaagtgt cctggcaaaa tgtcagtgtt 430 cctgccaaca ccagccacat caggaαcccc gaaggcctct accaggtcac cagtgttctg 540 cgcctcaagc ctcagcctag cagaaacttc agctgcatgt tctggaatgc tcacatgaag 600 gagctgactt cagccatcat tgaccctctg agtcggatgg aacccaaagt ccccagaacg 660 tgg 663 (SEQ ID NO:19). In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
MLLLLPILNL SLQLHPVAAL FTVTAPKEVY TVDVGSSVSL ECDFDRRECT ELEGIRASLQ 60 KVENDTSLQS ERATLLEEQL PLGKALFHIP SVQVRDSGQY RCLVICGAAW DYKYLTVKVK 120
ASYMRIDTRI LEVPGTGEVQ LTCQARGYPL AEVSWQNVSV PANTSHIRTP EGLYQVTSVL 180
RLKPQPSRNF SCMFWNAHMK ELTSAI IDPL SRMEPKVPRT W 221
(SEQ ID NO:20).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:21 provides the murine amino acid sequence of SEQ ID NO:20 without the signal sequence:
LFTVTAPKEV YTVDVGSSVS LECDFDRREC TELEGIRA3L QKVENDTSLQ SERATLLEEQ 60 LPLGKALFHI PSVQVRDSGQ YRCLVICGAA WDYKYLTVKV KASYMRIDTR ILEVPGTGEV 120
QLTCQARGYP LAEVSWQNVS VPANTSHIRT PEGLYQVTSV LRLKPQPSRN FSCMFWNAHM 180
KELTSAIIDP LSRMEPKVPR TW 202
(SEQ ID NO:21).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-DC. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttcaccgtga cagcccctaa agaagtgtac accgtagacg tcggcagcag tgtgagcctg 60 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagagc cagtttgcag 120 aaggtagaaa atgatacgtc tctgcaaagt gaaagagcca ccctgctgga ggagcagctg 180 cccctgggaa aggctttgtt ccacatccct agtgtccaag tgagagattc cgggcagtac 240 cgttgcctgg tcatctgcgg ggccgcctgg gactacaagt acctgacggt gaaa 294
(SEQ ID NO:22).
The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
FTVTAPKEVY TVDVGSSVSL ECDFDRRECT ELEGIRASLQ KVENDTSLQS ERATLLEEQL 60 PLGKALFHIP SVQVRDSGQY RCLVICGAAW DYKYLTVK 98
(SEQ ID NO:23), also referred to as B7-DCV.
B7-1 The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagtttcc atgtccaagg 60 ctcattcttc tctttgtgct gctgattcgt ctttcacaag tgtcttcaga tgttgatgaa 120 caactgtcca agtcagtgaa agataaggta ttgctgcctt gccgttacaa ctctcctcat ISO gaagatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtctgtc 240 attgctggga aactaaaagt gtggσσcgag tataagaacc ggactttata tgacaacact 300 acctactctc ttatcatcct gggcctggtc ctttcagacc ggggcacata cagctgtgtc 360 gttcaaaaga aggaaagagg aacgtatgaa gttaaacact tggctttagt aaagttgtcc 420 atcaaagctg acttctctac ccccaacata actgagtctg gaaacccatc tgcagacact 480 aaaaggatta cctgctttgc ttccgggggt ttcccaaagc ctcgcttctc ttggttggaa 540 aatggaagag aattacctgg catcaatacg acaatttccc aggatcctga atctgaattg 600 tacaccatta gtagccaact agatttcaat acgaσtcgca accacaccat taagtgtctc 660 attaaatatg gagatgctca cgtgtcagag gacttcacct gggaaaaacc cccagaagac 720 cσtcctgata gcaagaac 738
(SEQ ID NO:24).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
MACNCQLMQD TPLLKFPCPR LILLFVLLIR LSQVSSDVDE QLSKSVKDKV LLPCRYNSPH 60
EDESEDRIYW QKHDKWLSV IAGKLKVWPE YKNRTLYDNT TYSLIILGLV LSDRGTYΞCV 120
VQKKERGTYE VKHLALVKLS IKADFSTPNI TESGNPΞADT KRITCFASGG FPKPRFSWLE 180
NGRELPGINT TISQDPESEL YTISSQLDFK TTRNHTIKCL IKYGDAHVSE DFTWEKPPED 240 PPDSKN 246
(SEQ ID NO:25).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:26 provides the murine amino acid sequence of SEQ ID NO:25 without the signal sequence:
VDEQLSKSVK DKVLLPCRYtI SPHEDESBDR IYWQKHDKVV LSVΪAGKLKV WPEYKNRTLY 60
DNTTYSLiiL GLVLSDRGTY SCVVQKKERG TYEVKHLALV KLSIKΆDFST PMITESGNPS 120
ADTKRITCFA SGGFPKPRFS WjLENGRBLPG INTTISQDPE SELYTISSQL DFNTTRNHTI 180 KCLIKYGDAH VSEDFTWEKP PEDPPDSKN 209
(SEQ ID NO:26).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-1. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: gttgatgaac aactgtccaa gtcagtgaaa gataaggtat tgctgcottg ccgttacaac 60 tctcotcatg aagatgagtc tgaagaccga atctactggc aaaaacatga caaagtggtg 120 ctgtctgtca ttgctgggaa actaaaagtg tggcccgagt ataagaaccg gactttatat X80 gacaacacta cctactctct tatcatcctg ggcctggtcc tttcagaccg gggcacatac 240 agctgtgtcg ttcaaaagaa ggaaagagga acgtatgaag ttaaacactt g 291
(SEQ ID NO:27). The costiniulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
VDEQLSKSVK DKVLLPCRYN SPHSDESEDR IYWQKHDKW LSVIAGKLKV WPEYKNRTLY 60 DNTTYSLIIL GLVLSDRGTY SCWQKKERG TYEVKHL 97 (SEQ ID NO:28), also referred to as B7-1 V.
B7-2
The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atggacccca gatgcaccat gggcttggca atccttatct ttgtgacagt cttgctgatc 60 tcagatgctg tttccgtgga gacgcaagct tatttcaatg ggactgoata tctgccgtgc 120 ccatttacaa aggctcaaaa cataagcctg agtgagctgg tagtattttg gcaggaccag 180 caaaagttgg ttctgtacga gcactatttg ggcacagaga aacttgatag tgtgaatgcc 240 aagtacctgg gccgcacgag ctttgacagg aacaactgga ctctacgact tcacaatgtt 300 cagatcaagg acatgggctc gtatgattgt tttatacaaa aaaagccacc cacaggatca 360 attatcctcc aacagacatt aacagaactg tcagtgatcg ccaacttcag tgaacctgaa 420 ataaaactgg ctcagaatgt aacaggaaat tctggcataa atttgacσtg cacgtctaag 480 caaggtcacc cgaaacctaa gaagatgtat tttctgataa ctaattcaac taatgagtat 540 ggtgataaca tgcagatatc acaagataat gtcacagaac tgttcagtat ctccaacagc 600 ctctctcttt cattcccgga tggtgtgtgg catatgaccg ttgtgtgtgt tctggaaacg 660 gagtcaatga agatttcotc caaaoctctc aatttcactc aagagtttcc atctcctcaa 720 acgtattgga ag 732
(SEQ ID NO:29).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
MDPRCTMGLA ILIFVTVLLI SDAVSVETQA YFHGTAYLPC PFTKAQNISL SELWFWQDQ 60
QKLVLYEHYL GTEKLDSVNA KYLGRTSFDR KNWTLRLHKV QIKDMGSYDC PIQKKPPTGS 120
I ILQQTLTEL SVIANFSEPE IKLAQNVTGH SGINLTCTSK QGHPKPKKMY FLITNSTNEY 180 GDNMQISQDK VTELFSISNS LSLSFPDGVW HMTWCVLET ESMKISSKPL NFTQEFPSPQ 240
TYWK 244
(SEQ ID NO:30).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO: 31 provides the murine amino acid sequence of SEQ ID NO:30 without the signal sequence:
VSVETQAYFN GTAYLPCPFT KAQNISLSEL VVFWQDQQKL VLYEHYLGTE KLDSVNAKYL 60 GRTSFDRNNW TLRLHNVQIK DMGSYDCFIQ KKPPTGSIIL QQTLTELΞVI ANFSEPEIKL 120 AQNVTGNSGi NLTCTSKQGH PKPKKMYFLI TNSTNEYGDN MQISQDNVTE LFSISNSLSL ieo
SFPDGVWHMT VVCVLETESM KISSKPLNFT QEFPSPQTYW K 221 (SEQ ID NO:31).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-2. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: aatgggactg catatctgcc gtgcccattt acaaaggctc aaaacataag cctgagtgag 60 ctggtagtat tttggcagga ccagcaaaag ttggttctgt acgagcacta tttgggcaca 120 gagaaacttg atagtgtgaa tgccaagtac ctgggccgca cgagctttga caggaacaac 180 tggactctac gacttcacaa tgttcagatc aaggacatgg gctcgtatga ttgttttata 240 caaaaaaagc cacccacagg atcaattato ctccaacaga cattaaca 288
(SEQ ID NO:32).
The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
NGTAYLPCPF TKAQNISLSE LVVFWQDQQK LVLYEHYLGT EKtDSVNAKY LGRTSFDRNW 60 WTLRLHNVQI KDMGSYDCFI QKKPPTGSII LQQTLT 96
(SEQ ID NO:33), also referred to as B7-2V.
B7-H5
The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggtgtcc ccgcggtccc agaggccagc agcccgcgct ggggaaccct gctccttgct 60 attttcctgg ctgcatcσag aggtctggta gcagccttca aggtcaccac tccatattct 120 ctctatgtgt gtcccgaggg acagaatgcc accctcacct gcaggattct gggccccgtg 180 tccaaagggc acgatgtgac catctscaag acgtggtacc tcagctcacg aggcgaggtc 240 cagatgtgca aagaacaccg gcccatacgc aacttcacat tgcagcacct tcagcaccac 300 ggaagccacc tgaaagccaa cgccagccat gaccagcccc agaagcatgg gctagagcta 360 gcttctgacc accacggtaa cttctctatc accctgcgca atgtgacccc aagggacagc 420 ggcctctact gctgtctagt gatagaatta aaaaaccacc acccagaaca acggttctac 480 gggtccatgg agctacaggt acaggcaggc aaaggctcgg ggtccacatg catggcgtct 540 aatgagcagg acagtgacag catcacggct 570
(SEQ ID NO:34).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: MGVPAVPEAS SPRWGTLLLA IFLAASRGLV AAFKVTTPYS LYVCPEGQNA TLTCRILGPV 60
SKGHDVTIYK TWYLSSRGEV QMCKEHRPIR NFTLQHLQHH GSHLKANASH DQPQKHGLEL 120
ASDHHGNFSI TLRNVTPRDS GLYCCI.VIEL KNHHPEQRFY GSMELQVQAG KGSGSTCMAS 180
NEQDSDSITA 190
(SEQ ID NO:35). It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:36 provides the murine amino acid sequence of SEQ ID NO:35 without the signal sequence:
FKVTTPYSLY VCPEGQNATL TCRILGPVSK GHDVTIYKTW YLSSRGEVQM CKEHRPIRNF 60
TLQHLQHHGS HLKANASHDQ PQKHGLELAS DHHGNFSITL RNVTPRDSGL YCCLVIELKN 120
HHPEQRFYGS MELQVQAGKG SGSTCMASKE QDSDSITA 158
(SEQ ID NO:36). In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-H5. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttcaaggtca ccactccata ttctctctat gtgtgtcccg agggacagaa tgccaccctc 60 acctgcagga ttctgggccc cgtgtccaaa gggcacgatg tgaccatcta caagacgtgg 120 tacctcagct cacgaggcga ggtccagatg tgcaaagaac accggcccat acgcaacttc 180 acattgcagc accttcagca ccacggaagc cacctgaaag ccaacgccag ccatgaccag 240 ccccagaagc atgggctaga gctagcttct gaccaccacg gtaacttctc tatcaccctg 300 cgcaatgtga ccccaaggga cagcggcctc tactgctgtc tagtgataga attaaaaaac 360 caccacccag aacaacggtt ctacggg 337
(SEQ ID NO:37).
The T cell receptor binding domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
FKVTTPYSLY VCPEGQNATL TCRILGPVSK GRDVTIYKTW YLSSRGEVQM CKEHRPIRNF 60 TLQHLQHHGS HLKANASHDQ PQKHGLELAS DHHGNFSITL RNVTPRDSGL YCCLVIELKN 120
HHPEQRFYG 129
(SEQ ID NO:36), also referred to as B7-H5V. b. Human B7 costimulatory extracellular domains In one embodiment, the disclosed fusion proteins include the extracellular domain of the human B7-DC, B7-1, B7-2 or B7-H5, proteins shown in SEQ ID NOs:3, 4, 9, 10, 13, 14, 15 or 16, as shown below. B7-DC
The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgatctttc ttctcttgat gctgtctttg gaattgcaac ttcaccaaat cgcggccctc 60 tttactgtga ccgtgccaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc 120 gaatgtaact ttgacaccgg cagccacgtt aacctggggg ccatcactgc cagcttgcaa 180 aaagttgaaa acgacacttc acctcaccgg gagagggcaa ccctcttgga ggagcaactg 240 ccattgggga aggcctcctt tcatatccct caggtgcagg ttcgggatga gggacagtac 300 cagtgcatta ttatctacgg cgtggcttgg gattacaagt atctgaccct gaaggtgaaa 360 gcgtcctatc ggaaaattaa cactcacatt cttaaggtgc cagagacgga cgaggtggaa 420 ctgacatgcc aagccaccgg ctacccgttg gcagaggtca gctggcccaa cgtgagcgta 480 cctgctaaca cttctcattc taggacaccc gagggcctct accaggttac atccgtgctc 540 cgcctcaaac cgcccccagg ccggaatttt agttgcgtgt tttggaatac ccacgtgcga 600 gagctgactc ttgcatctat tgatctgcag tcccagatgg agccacggac tcatccaact 660 tgg 663
(SEQ ID NO:39).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: MIFLLLMLSL ELQLHQIAAL FTVTVPKELY I IEHGSHVTL ECNFDTGSHV NLGAITASLQ 60
KVENDTSPHR EBATLLEEQL PLGKASFHIP QVQVRDEGQY QCIIIYGVAW DYKYLTLKVK 120
ASYRKINTHI LKVPETDEVE LTCQATGYPL AEVSWPNVSV PANTSHSRTP EGLYQVTSVL 180
RLKPPPGRNP SCVPWNTHVR ELTLASIDLQ SQMEPRTHPT W 221
(SEQ ID NO:40). It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:41 provides the human amino acid sequence of SEQ ID NO:40 without the signal sequence: LFTVTVPKEL YIIEHGSNVT LECHFDTGSH VNLGAITASL QKVΞNDTSPH RERATLLEEQ 60 LPLGKASFHI PQVQVRDEGQ YQCIIIYGVA WDYKYLTLKV KASYRKINTH ILKVPETDEV 120 ELTCQATGYP LAEVSWPNVS VPANTSHSRT PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV 180
RELTLASiDL QSQMEPRTHP TW 202
(SEQ ID NO:41). In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: tttactgtga ccgtgccaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc 60 gaatgtaact ttgacaccgg cagccacgtt aacctggggg ccatcactgc cagcttgcaa 120 aaagttgaaa acgacacttc acctcaccgg gagagggcaa ccctcttgga ggagcaactg 180 ccattgggga aggcctcctt tcatatccct caggtgcagg ttcgggatga gggacagtac 240 cagtgcatta ttatctacgg cgtggcttgg gattacaagt atctgaccct gaag 294
(SEQIDNO:42). The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
FTVTVPKELY I IEHGSNVTL ECNFDTGSHV NLGAITASLQ KVENDTSPHR ERATLLEEQL 60 PLGKRSFHIP QVQVRDEGQY QCIIIYGVAW DYKYLTLK 98 (SEQ ID NO:43), also referred to as B7-DC.
B 7-1
The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggccaca cacggaggca gggaacatca ccatccaagt gtccatacct caatttcttt 60 cagctcttgg tgctggctgg tctttctcac ttctgttcag gtgttatoca cgtgacoaag 120 gaagtgaaag aagtggcaac gctgtcctgt ggtcacaatg tttctgttga agagctggca 180 caaactcgca tctactggca aaaggagaag aaaatggtgc tgactatgat gtctggggac 240 atgaatatat ggcccgagta caagaaccgg accatctttg atatcactaa taacctctcc 300 attgtgatcc tggctctgcg cccatctgac gagggcacat acgagtgtgt tgttctgaag 360 tatgaaaaag acgctttcaa gcgggaacac ctggctgaag tgacgttatc agtcaaagct 420 gacttcccta cacctagtat atctgacttt gaaattccaa cttctaatat tagaaggata 480 atttgctcaa cctctggagg ttttccagag cctcacctct cctggttgga aaatggagaa 540 gaattaaatg ccatcaacac aacagtttcc caagatcctg aaactgagct ctatgctgtt 600 agcagcaaac tggatttcaa tatgacaacc aaccacagct tcatgtgtct catcaagtat 660 ggacatttaa gagtgaatca gaccttcaac tggaatacaa ccaagcaaga gcattttcct 720 gataacctgc tc 732
(SEQ ID NO:44).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVIHVTK EVKEVATLSC GHNVSVEELA 60
QTRIYWQKEK KMVLTMMSGD MNIWPEYKNR TIFDITNNLS IVILALRPSD EGTYECWLK 120
YEKDAFKREH LAEVTLSVKA DFPTPSISDF EIPTSKIRRI ICSTSGGFPE PHLSWLESGE 180 ELNAINTTVS QDPETELYAV SSKLDFNMTT HHSFMCLIKY GHLRVNQTFN WKTTKQEHFP 240
DNL 243
(SEQ ID NO:45).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:46 provides the murine amino acid sequence of SEQ ID NO:45 without the signal sequence:
VIHVTKEVKE VATLSCGHNV SVBELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKNRTIFD 60 iTSKLSiviL ALRPSDEGTY SCVVLKYEKD AFKREHLAEV TLSVKADFPT PSISDFEIPT 120 SKiRRiicsT SGGFPEPHLS WLENGEELNA INTTVSQDPE TELYAVSSKL DFNMTTNHSF 18O
MCLIKYGHLR VKIQTFNWNTT KQEHFPDNL 209 (SEQ ID NO:4ό).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-1. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: gttatccacg tgaccaagga agtgaaagaa gtggcaacgc tgtcctgtgg tcacaatgtt 60 tctgttgaag agctggcaca aactcgcatc tactggcaaa aggagaagaa aatggtgctg 120 actatgatgt ctggggacat gaatatatgg cccgagtaca agaaccggac catctttgat 180 atcactaata acctctccat tgtgatcctg gctctgcgcc catctgacga gggcacatac 240 gagtgtgttg ttctgaagta tgaaaaagaσ gctttcaagc gggaacacct ggctgaagtg 300 acg 303
(SEQ ID NO:47).
The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKHRTIFD 60 ITNNLSIVIL ALRPSDEGTY ECVVLKYEKD AFKREHLAEV T 101
(SEQ ID NO:48), also referred to as B7-1.
B 7-2
The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggactga gtaacattct ctttgtgatg gccttσctgc tctctggtgc tgctcctctg 60 aagattcaag cttatttcaa tgagactgca gacctgccat gccaatttgc aaactctcaa 120 aaccaaagcc tgagtgagct agtagtattt tggcaggacc aggaaaactt ggttctgaat 180 gaggtatact taggcaaaga gaaatttgac agtgttcatt ccaagtatat gggccgcaca 240 agttttgatt cggacagttg gacoctgaga cttcacaatc ttcagatcaa ggacaagggc 300 ttgtatcaat gtatcatcca tcacaaaaag cccacaggaa tgattcgcat ccaccagatg 360 aattctgaac tgtcagtgct tgctaacttc agtcaacctg aaatagtacc aatttctaat 420 ataacagaaa atgtgtacat aaatttgacc tgctcatcta tacacggtta cccagaacct 480 aagaagatga gtgttttgct aagaaccaag aattcaacta tcgagtatga tggtgttatg 540 cagaaatctc aagataatgt cacagaactg tacgacgttt ccatcagctt gtctgtttca 600 ttccctgatg ttacgagcaa tatgaccatc ttctgtattc tggaaactga caagacgcgg 660 cttttatσtt cacctttctc tatagagctt gaggaccctc agcctccccc agaccacatt 720 ccttggatta cagctgtact t 741 (SEQ ID NO:49).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
MGLSKILFVM AFLLSGAAPL KIQAYFNETA DLPCQFANSQ NQSLSELVVF WQDQENLVLN 60 EVYLGKEKFD SVHSKYMGRT SFDSDSWTLR LHKLQIKDKG LYQCIIHHKK PTGMIRIHQM 120
NSELSVLANF SQPEIVPISN ITENVYINLT CSSIHGYPEP KKMSVLLRTK NSTIEYDGVM iao QKSQDNVTEL YDVSISLSVS FPDVTSNMTI FCILETDKTR LLSSPFSIEL EDPQPPPDHI 240 PWITAVL 247
(SEQ ID NO:50).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:51 provides the murine amino acid sequence of SEQ ID NO:50 without the signal sequence:
AYFNETADLP CQFANSQNQS LSELWFWQD QENLVLNEVY LGKEKFDSVH SKYMGRTSFD 60 SDSWTLRLHN LQIKDKGLYQ CIIHHKKPTG MIRIHQMNSE LSVLΆNFSQP EIVPISNITE 120
NVYINLTCSS IHGYPEPKKM SVLLRTKNST lEYDGVMQKS QDNVTELYDV SISLSVSFPD 180 VTSNMTIFCI LETDKTRLLS SPFSIELEDP QPPPDHIPWI TAVL 224
(SEQ ID NO:51).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-2. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ccatgccaat ttgcaaactc tcaaaaccaa agcctgagtg agctagtagt attttggcag 60 gaccaggaaa acttggttct gaatgaggta tacttaggca aagagaaatt tgacagtgtt 120 cattccaagt atatgggccg cacaagtttt gattcggaca gttggaccct gagacttcac 180 aatcttcaga tcaaggacaa gggcttgtat caatgtatca tccatcacaa aaagcccaca 240 ggaatgattc gcatccacca gatgaattct gaactgtcag tgcttgctaa cttc 294
(SEQ ID NO:52).
The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
PCQFANSQNQ SLSELWFHQ DQENLVLNEV YLGKEKFDSV HSKYMGRTSF DSDSWTLRLH 60 NLQIKDKGLY QCIIHHKKPT GMIRIHQMNS ELSVLANF 98
(SEQ ID NO:53), also referred to as B7-2V.
B7-H5 The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgggcgtcc ccacggccct ggaggccggc agctggcgct ggggatccct gctcttcgct 60 σtcttcctgg ctgcgtccct aggtccggtg gcagccttca aggtcgccac gccgtattcc 120 ctgtatgtct gtcccgaggg gcagaacgtc accctcacct gcaggctctt gggccctgtg 180 gacaaagggc acgatgtgac cttctacaag acgtggtacc gcagσtcgag gggcgaggtg 240 cagacctgct cagagcgccg gcccatccgc aacctcacgt tccaggacct tcacctgcac 300 catggaggcc accaggctgc caacaccagc cacgacctgg ctcagcgcca cgggctggag 360 tcggcctccg accaccatgg caacttctcc atcaccatgc gcaacctgac cctgctggat 420 agcggcctct actgctgcct ggtggtggag atcaggcacc accactcgga gcacagggtc 480 catggtgcca tggagctgca ggtgcagaca ggcaaagatg caccatccaa ctgtgtggtg 540 tacccatcct cctcccagga tagtgaaaac atcacggct 579
(SEQ ID NO:54).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
MGVPTALEAG SWRWGSLLFA LFLAASLGPV AAFKVATPYS LYVCPEGQNV TLTCRLLGPV 60
DKGHDVTFYK TWYRSSRGEV QTCSERRPIR NLTFQDLHLH HGGHQAANTS HDLAQRHGLE 120
SASDHHGNFS ITMRNLTLLD SGLYCCLWE IRHHHSEHRV HGAMELQVQT GKDAPSNCW 180 YPSSSQDSEN ITA 193
(SEQ ID NO:55).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:56 provides the murine amino acid sequence of SEQ ID NO:55 without the signal sequence:
FKVATPYSLY VCPEGQNVTL TCRLLGPVDK GHDVTFYKTW YRSSRGEVQT CSERRPIRNL 60 TFQDLHLHHG GHQAANTSHD LAQRHGLESA SDHHGNFSIT MRNLTLLDSG LYCCLWEIR 120 HHHSΞHRVHG AHELQVQTGK DAPSSCWYP SSSQDSΞNΪT A 161 (SEQ ID NO:56).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-H5. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttcaβggtcg ccacgccgta ttccctgtat gtctgtcccg aggggcagaa cgtcaccctc 60 acctgcaggc tcttgggccc tgtggacaaa gggcacgatg tgaccttcta caagacgtgg 120 taccgcagct cgaggggcga ggtgcagacc tgctcagagc gccggcccat ccgcaacctc 180 acgttccagg accttcacct gcaccatgga ggccaccagg ctgccaacac cagccacgac 240 ctggctcagc gccacgggct ggagtcggcc tccgaccacc atggσaactt ctccatcacc 300 atgcgcaacc tgaccctgct ggatagcggc ctctactgct gcctggtggt ggagatcagg 360 caccaccact cggagcacag ggtccatggt 390
(SEQ ID NO:57).
The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: FKVATPYSLY VCPEGQNVTL TCRLLGPVDK GHDVTFYKTW YRSSRGEVQT CSERRPIRNL 60 TFQDLHLHHG GHQAANTSHD LAQRHGLESA SDHHGNFSIT MRNLTLLDSG LYCCLWEIR 120 HHHSEHRVHG 130
(SEQ ID NO:58), also referred to as B7-H5V. c. Non-human primate B7-DC costimulatory extracellular domains
In one embodiment, the disclosed fusion proteins include the extracellular domain of the non-human primate (Cynomolgus) B7-DC, proteins shown in SEQ ID NOs: 5 or 6, as shown below.
B7-DC
The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: atgatcttcc tcctgctaat gttgagcctg gaattgcagc ttcaccagat agcagcttta 60 ttcacagtga cagtccctaa ggaactgtac ataatagagc atggcagcaa tgtgaccctg 120 gaatgcaact ttgacactgg aagtcatgtg aaccttggag caataacagc cagtttgcaa 180 aaggtggaaa atgatacatc cccacaccgt gaaagagcca ctttgctgga ggagcagctg 240 cccctaggga aggcctcgtt ccacatacct caagtccaag tgagggacga aggacagtac 300 caatgcataa tcatctatgg ggtcgcctgg gactacaagt acctgactct gaaagtcaaa 360 gcttcctaca ggaaaataaa cactcacatc ctaaaggttc cagaaacaga tgaggtagag 420 ctcacctgcc aggctacagg ttatcctctg gcagaagtat cctggccaaa cgtcagcgtt 480 cctgccaaca ccagccactc caggacccct gaaggcctct accaggtcac cagtgttctg 540 cgcctaaagc caccccctgg cagaaacttc agctgtgtgt tctggaatac tcacgtgagg 600 gaacttactt tggccagcat tgaccttcaa agtcagatgg aacccaggac ccatccaact 660 tgg 663
(SEQ ID NO:59).
In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
MIFLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVT1 ECNFDTGSHV NLGAITASLQ 60
KVEKDTSPKR ERATLLEEQL PLGKASFHIP QVQVRDEGQY QCIIIYGVAW DYKYLTLKVK 120
ASYRKINTHI LKVPETDEVE LTCQATGYPL AEVSWPNVSV PANTSMSRTP EGLYQVTSVL 180
RLKPPPGRNF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT W 221 (SEQ ID NO:60).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:61 provides the non-human primate amino acid sequence of SEQ ID NO:60 without the signal sequence:
LFTVTVPKEL YIIBHGSNVT LECHFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ 60
LPLGKASFHI PQVQVRDEGQ YQCIIIYGVA WDYKYLTLKV KASYRKINTH ILKVPETDEV 120
ELTCQATGYP LAEVSWPNVS VPANTSHSRT PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV 180
RELTLASIDL QSQMEPRTHP TW 202 (SEQIDNO:όl). In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of non-human primate B7-DC. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to: ttcacagtga cagtccctaa ggaactgtac ataatagagc atggcagcaa tgtgaccctg 60 gaatgcaact ttgacactgg aagtcatgtg aaccttggag caataacagc cagtttgcaa 120 aaggtggaaa atgatacatc cccacaccgt gaaagagcca ctttgctgga ggagcagctg 180 cccctaggga aggcctcgtt ccacatacct caagtccaag tgagggacga aggacagtac 240 caatgcataa tcatctatgg ggtcgcctgg gactacaagt acctgactct gaaa 294 (SEQ ID NO:62).
The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
FTVTVPKELY IIEHGSNVTL ECNFDfGSHV NLGAITASLQ KVENDTSPHR ERATLLEEQL 60
FLGKASFHip QVQVRDEGQY QCII IΎGVAW DYKYLTLK 98 (SEQ ID NO:63), also referred to as B7-DC. d. B7 costimulatory extracellular domain fragments
It will be appreciated that B7-DC, B7-1, B7-2 and B7-H5 extracellular domains can contain one or more amino acids from the signal peptide or the putative transmembrane domain of B7-DC, B7-1, B 7-2 or B 7- H5. During secretion, the number of amino acids of the signal peptide that are cleaved can vary depending on the expression system and the host. Additionally, fragments of B7-DC, B7-1, B7-2 or B7-H5 extracellular domain missing one or more amino acids from the C-terminus or the N- terminus that retain the ability to bind to their natural receptors can be used as a fusion partner for the disclosed fusion proteins. B7-DC
Exemplary suitable fragments of murine B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
24-22I5 24-22O5 24-219, 24-218, 24-217, 24-216, 24-215, 23-221, 23-220, 23-219, 23-218, 23-217, 23-216, 23-215, 22-221, 22-220, 22-219, 22-218, 22-217, 22-216, 22-215, 21-221, 21-220, 21-219, 21-218, 21-217, 21-216, 21-215, 20-221, 20-22O5 20-219, 20-218, 20-217, 20-216, 20-215,
19-221, 19-220, 19-219, 19-218, 19-217, 19-216, 19-215, 18-221, 18-220, 18-219, 18-218, 18-217, 18-216, 18-215, 17-221, 17-220, 17-219, 17-218, 17-217, 17-216, 17-215, 16-221, 16-220, 16-219, 16-218, 16-217, 16-216, 16-215, of SEQ ID NO:80. Additional suitable fragments of murine B7-DC include, but are not limited to, the following:
20-221, 33-222, 33-223, 33-224, 33-225, 33-226, 33-227, 21-221, 21-222, 21-223, 21-224, 21-225, 21-226, 21-227, 22-221, 22-222, 22-223, 22-224, 22-225, 22-226, 22-227, 23-221, 23-222, 23-223, 23-224, 23-225, 23-226, 23-227,
24-221, 24-222, 24-223, 24-224, 24-225, 24-226, 24-227, of SEQ ID NO:1, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:1, or may be any signal peptide known in the art.
Exemplary suitable fragments of human B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
24-221, 24-220, 24-219, 24-218, 24-217, 24-216, 24-215, 23-221, 23-220, 23-219, 23-218, 23-217, 23-216, 23-215,
22-221, 22-220, 22-219, 22-218, 22-217, 22-216, 22-215,
21-22I5 21-220, 21-219, 21-218, 21-217, 21-216, 21-215,
20-221, 20-220, 20-219, 20-218, 20-217, 20-216, 20-215,
19-221, 19-220, 19-219, 19-218, 19-217, 19-216, 19-215, 18-221, 18-220, 18-219, 18-218, 18-217, 18-216, 18-215,
17-221, 17-220, 17-219, 17-218, 17-217, 17-216, 17-215,
16-221, 16-220, 16-219, 16-218, 16-217, 16-216, 16-215, of SEQ ID NO:83.
Additional suitable fragments of human B7-DC include, but are not limited to, the following:
20-221, 33-222, 33-223, 33-224, 33-225, 33-226, 33-227, 21-221, 21-222, 21-223, 21-224, 21-225, 21-226, 21-227, 22-221, 22-222, 22-223, 22-224, 22-225, 22-226, 22-227, 23-221, 23-222, 23-223, 23-224, 23-225, 23-226, 23-227, 24-221, 24-222, 24-223, 24-224, 24-225, 24-226, 24-227, of SEQ ID NO:3, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:3, or may be any signal peptide known in the art.
Exemplary suitable fragments of non-human primate B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
24-221, 24-220, 24-219, 24-218, 24-217, 24-216, 24-215, 23-221, 23-220, 23-219, 23-218, 23-217, 23-216, 23-215,
22-221, 22-220, 22-219, 22-218, 22-217, 22-216, 22-215,
21-221, 21-220, 21-219, 21-218, 21-217, 21-216, 21-215,
20-221, 20-220, 20-219, 20-218, 20-217, 20-216, 20-215,
19-221, 19-22O5 19-219, 19-218, 19-217, 19-216, 19-215, 18-221, 18-220, 18-219, 18-218, 18-217, 18-216, 18-215,
17-221, 17-220, 17-219, 17-218, 17-217, 17-216, 17-215,
16-221, 16-220, 16-219, 16-218, 16-217, 16-216, 16-215, of SEQ ID NO:86.
Additional suitable fragments of non-human primate B7-DC include, but are not limited to, the following:
20-221, 33-222, 33-223, 33-224, 33-225, 33-226, 33-227, 21-221, 21-222, 21-223, 21-224, 21-225, 21-226, 21-227, 22-221, 22-222, 22-223, 22-224, 22-225, 22-226, 22-227, 23-221, 23-222, 23-223, 23-224, 23-225, 23-226, 23-227, 24-221 , 24-222, 24-223, 24-224, 24-225, 24-226, 24-227, of SEQ ID NO:5, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:5, or may be any signal peptide known in the art. B7-1
Exemplary suitable fragments of murine B7-1 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
42-246, 42-245, 42-244, 42-243, 42-242, 42-241, 42-240, 41-246, 41-245, 41-244, 41-243, 41-242, 41-241, 41-240,
40-246, 40-245, 40-244, 40-243, 40-242, 40-241, 40-240,
39-246, 39-245, 39-244, 39-243, 39-242, 39-241, 39-240,
38-246, 38-245, 38-244, 38-243, 38-242, 38-241, 38-240, 37-246, 37-245, 37-244, 37-243, 37-242, 37-241, 37-240,
36-246, 36-245, 36-244, 36-243, 36-242, 36-241, 36-240,
35-246, 35-245, 35-244, 35-243, 35-242, 35-241, 35-240,
34-246, 34-245, 34-244, 34-243, 34-242, 34-241, 34-24O5 of SEQ ID NO:89. Additional suitable fragments of murine B 7-1 include, but are not limited to, lhe following:
38-246, 38-247, 38-248, 38-249, 38-250, 38-251, 38-252, 39-246, 39-247, 39-248, 39-249, 39-250, 39-251, 39-252, 40-246, 40-247, 40-248, 40-249, 40-250, 40-251, 40-252, 41-246, 41-247, 41-248, 41-249, 41-250, 41-251, 41-252,
42-246, 42-247, 42-248, 42-249, 42-250, 42-251, 42-252, of SEQ ID NO:7, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:7, or may be any signal peptide known in the art.
Exemplary suitable fragments of human B7-1 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
39-243, 39-242, 39-241, 39-240, 39-239, 39-238, 39-237, 38-243, 38-242, 38-241, 38-240, 38-239, 38-238, 38-237,
37-243, 37-242, 37-241, 37-240, 37-239, 37-238, 37-237,
36-243, 36-242, 36-241, 36-240, 36-239, 36-238, 36-237,
35-243, 35-242, 35-241, 35-190, 35-239, 35-238, 35-237,
34-243, 34-242, 34-241, 34-240, 34-239, 34-238, 34-237, 33-243, 33-242, 33-241, 33-240, 33-239, 33-238, 33-237,
32-243, 32-242, 32-241, 32-240, 32-239, 32-238, 32-237,
31-243, 31-242, 31-241, 31-240, 31-239, 31-238, 31-237, of SEQ ID NO:92. Additional suitable fragments of human B7-1 include, but are not limited to, the following:
35-243, 35-244, 35-245, 35-246, 35-247, 35-248, 35-249, 36-243, 36-244, 36-245, 36-246, 36-247, 36-248, 36-249, 37-243, 37-244, 37-245, 37-246, 37-247, 37-248, 37-249,
38-243, 38-244, 38-245, 38-246, 38-247, 38-248, 38-249, 39-243, 39-244, 39-245, 39-246, 39-247, 39-248, 39-249, of SEQ ID NO:9, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 9, or may be any signal peptide known in the art. B 7-2
Exemplary suitable fragments of murine B7-2 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
28-244, 28-243, 28-242, 28-241, 28-240, 28-239, 28-238, 27-244, 27-243, 27-242, 27-241, 27-24O5 27-239, 27-238, 26-244, 26-243, 26-242, 26-241, 26-240, 26-239, 26-238, 25-244, 25-243, 25-242, 25-241, 25-240, 25-239, 25-238, 24-244, 24-243, 24-242, 24-241, 24-240, 24-239, 24-238,
23-244, 23-243, 23-242, 23-241, 23-240, 23-239, 23-238, 22-244, 22-243, 22-242, 22-241, 22-240, 22-239, 22-238, 21-244, 21-243, 21-242, 21-241, 21-240, 21-239, 21-238, 20-244, 20-243, 20-242, 20-241, 20-240, 20-239, 20-238, of SEQ ID NO:95.
Additional suitable fragments of murine B7-2 include, but are not limited to, the following:
24-244, 24-245, 24-246, 24-247, 24-248, 24-249, 24-250, 25-244, 25-245, 25-246, 25-247, 25-248, 25-249, 25-250, 26-244, 26-245, 26-246, 26-247, 26-248, 26-249, 26-250,
27-244, 27-245, 27-246, 27-247, 27-248, 27-249, 27-250, 28-244, 28-245, 28-246, 28-247, 28-248, 28-249, 28-250, of SEQ ID NO:11, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 11 , or may be any signal peptide known in the art.
Exemplary suitable fragments of human B 7-2 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
28-247, 28-246, 28-245, 28-244, 28-243, 28-242, 28-241, 27-247, 27-246, 27-245, 27-244, 27-243, 27-242, 27-241, 26-247, 26-246, 26-245, 26-244, 26-243, 26-242, 26-241, 25-247, 25-246, 25-245, 25-244, 25-243, 25-242, 25-241, 24-247, 24-246, 24-245, 24-244, 24-243, 24-242, 24-241 ,
23-247, 23-246, 23-245, 23-244, 23-243, 23-242, 23-241, 22-247, 22-246, 22-245, 22-244, 22-243, 22-242, 22-241, 21-247, 21-246, 21-245, 21-244, 21-243, 21-242, 21-241, 20-247, 20-246, 20-245, 20-244, 20-243, 20-242, 20-241, of SEQ ID NO:98.
Additional suitable fragments of human B7-2 include, but are not limited to, the following:
24-247, 24-248, 24-249, 24-250, 24-251, 24-252, 24-253, 25-247, 25-248, 25-249, 25-250, 25-251, 25-252, 25-253, 26-247, 26-248, 26-249, 26-250, 26-251 , 26-252, 26-253,
27-247, 27-248, 27-249, 27-250, 27-251, 27-252, 27-253, 28-247, 28-248, 28-249, 28-250, 28-251, 28-252, 28-253, of SEQ ID NO: 13, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 13, or may be any signal peptide known in the art. B7-HS
Exemplary suitable fragments of murine B7-H5 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
37-190, 37-189, 37-188, 37-187, 37-186, 37-185, 37-184, 36-190, 36-189, 36-188, 36-187, 36-186, 36-185, 36-184, 35-190, 35-189, 35-188, 35-187, 35-186, 35-185, 35-184, 34490, 34-189, 34-188, 34-187, 34-186, 34-185, 34-184, 33-190, 33-189, 33-188, 33-187, 33-186, 33-185, 33-184, 32-190, 32-189, 32-188, 32-187, 32-186, 32-185, 32-184, 31-190, 31-189, 31-188, 31-187, 31-186, 31-185, 31-184, 30-190, 30-189, 30-188, 30-187, 30-186, 30-185, 30-184, 29-190, 29-189, 29-188, 29-187, 29-186, 29-185, 29-184, of SEQ ID NO: 101.
Additional suitable fragments of murine B7-H5 include, but are not limited to, the following:
33-190, 33-191, 33-192, 33-193, 33-194, 33-195, 33-196, 34-190, 34-191, 34-192, 34-193, 34-194, 34-195, 34-196,
35-190, 35-191, 35-192, 35-193, 35-194, 35-195, 35-196, 36-190, 36-191, 36-192, 36-193, 36-194, 36-195, 36-196, 37-190, 37-191, 37-192, 37-193, 37-194, 37-195, 37-196, of SEQ ID NO: 15, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID
NO: 15, or may be any signal peptide known in the art.
Exemplary suitable fragments of human B7-H5 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
37-193, 37-192, 37-191, 37-190, 37-189, 37-188, 37-187, 36-193, 36-192, 36-191, 36-190, 36-189, 36-188, 36-187, 35-193, 35-192, 35-191 , 35-190, 35-189, 35-188, 35-187, 34-193, 34-192, 34-19I5 34-190, 34-189, 34-188, 34-187, 33-193, 33-192, 33-191, 33-190, 33-189, 33-188, 33-187,
32-193, 32-192, 32-191, 32-190, 32-189, 32-188, 32-187, 31-193, 31-192, 31-191, 31-190, 31-189, 31-188, 31-187, 30-193, 30-192, 30-191, 30-190, 30-189, 30-188, 30-187, 29-193, 29-192, 29-191, 29-190, 29-189, 29-188, 29-187, of SEQ ID NO: 104.
Additional suitable fragments of human B7-H5 include, but are not limited to, the following:
33-193, 33-194, 33-195, 33-196, 33-197, 33-198, 33-199, 34-193, 34-194, 34-195, 34496, 34-197, 34-198, 34-199, 35-193, 35-194, 35495, 35-196, 35-197, 35-198, 35-199, 36-193, 36-194, 36-195, 36-196, 36-197, 36-198, 36-199, 37-193, 37-194, 37-195, 37-196, 37-197, 37-198, 37-199, of SEQ ID NO: 17, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO: 17, or may be any signal peptide known in the art. b. Variant B7 costimulatory polypeptides Variants of costimulatory molecules can also be used. In one embodiment the variant B7 costimulatory polypeptide has the same activity, substantially the same activity, or different activity as a reference B7 costimulatory polypeptide, for example a non-mutated B7-DC polypeptide. Substantially the same activity means it retains the ability to costimulate T cells. Exemplary variant B7 co-stimulatory polypeptides include, but are not limited to B7-1, B7-2, B7-H5 or B7-DC polypeptides that are mutated to contain a deletion, substitution, insertion, or rearrangement of one or more amino acids. A variant B7 costimulatory polypeptide can have any combination of amino acid substitutions, deletions or insertions. In one embodiment, isolated B 7 variant polypeptides have an integer number of amino acid alterations such that their amino acid sequence shares at least 60, 70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with an amino acid sequence of a wild type B7 co- stimulatory polypeptide. In a preferred embodiment, B7 variant polypeptides have an amino acid sequence sharing at least 60, 7O5 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with the amino acid sequence of a wild type murine or wild type human B7 polypeptide (GenBank Accession Number NM_025239, NM_005191, U04343, orNP_071436).
Percent sequence identity can be calculated using computer programs or direct sequence comparison. Preferred computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package, FASTA, BLASTP, and TBLASTN (see, e.g., D. W. Mount, 2001, Bioϊnformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). The BLASTP and TBLASTN programs are publicly available from NCBI and other sources. The well-known Smith Waterman algorithm may also be used to determine identity.
Exemplary parameters for amino acid sequence comparison include the following: 1) algorithm from Needleman and Wunsch (J MoI. Biol,
48:443-453 (1970)); 2) BLOSSUM62 comparison matrix from Hentikoff and Hentikoff (Proc. Natl Acad. Set U.S.A., 89:10915-10919 (1992)) 3) gap penalty = 12; and 4) gap length penalty = 4. A program useful with these parameters is publicly available as the "gap" program (Genetics Computer Group, Madison, Wis.)- The aforementioned parameters are the default parameters for polypeptide comparisons (with no penalty for end gaps).
Alternatively, polypeptide sequence identity can be calculated using the following equation: % identity = (the number of identical residues)/(alignment length in amino acid residues)* 100. For this calculation, alignment length includes internal gaps but does not include terminal gaps.
Amino acid substitutions in B7 costimulatory polypeptides may be "conservative" or "non-conservative". As used herein, "conservative" amino acid substitutions are substitutions wherein the substituted amino acid has similar structural or chemical properties, and "non-conservative" amino acid substitutions are those in which the charge, hydrophobicity, or bulk of the substituted amino acid is significantly altered. Non-conservative substitutions will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
Examples of conservative amino acid substitutions include those in which the substitution is within one of the five following groups: 1) small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, GIy); 2) polar, negatively charged residues and their amides (Asp, Asn, GIu, GIn); polar, positively charged residues (His, Arg, Lys); large aliphatic, nonpolar residues (Met, Leu, lie, VaI, Cy s); and large aromatic resides (Phe, Tyr, Trp). Examples of non-conservative amino acid substitutions are those where 1) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl, or alanyl; 2) a cysteine or proline is substituted for (or by) any other residue; 3) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or 4) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) a residue that does not have a side chain, e.g., glycine.
B7 family molecules are expressed at the cell surface with a membrane proximal constant IgC domain and a membrane distal IgV domain. Receptors for these ligands share a common extracellular IgV-like domain. Interactions of receptor-ligand pairs are mediated predominantly through residues in the IgV domains of the ligands and receptors. In general, IgV domains are described as having two sheets that each contain a layer of β-strands. These β-strands are referred to as A', B, Cf C, C", D, E, F and G. In one embodiment the B7 variant polypeptides contain amino acid alterations (i.e., substitutions, deletions or insertions) within one or more of these β-strands in any possible combination. In another embodiment, B7 variants contain one or more amino acid alterations (i.e., substitutions, deletions or insertions) within the A', C, C\ C", D5 E, F or G β-strands. In a preferred embodiment B7 variants contain one or more amino acid alterations in the G β-strand.
An exemplary variant B7-DC co-stimulatory polypeptide is one that is mutated so that it retains its ability to enhance T cell activity, but shows reduced PD-I binding activity. Accordingly, with respect to murine human or non-human primate B7-DC co-stimulatory polypeptides, a variant B7-DC polypeptide can contain, without limitation, substitutions, deletions or insertions at position 33 of the A' β-strand, positions 39 or 41 of the B β-strand, positions 56 or 58 of the C β-strand, positions 65 or 67 of the C* β-strand, positions 71 or 72 of the C" β-strand, position 84 of the D β-strand, position 88 of the E β-strand, positions 101, 103 or 105 of the F β-strand, or positions 110, 111, 113 or 116 of the G β-strand. These amino acid positions are relative to the full length amino acid sequences of murine and human B 7- DC provided by SEQ ID NO: 1 and SEQ ID NO:3, respectively. It will be appreciated that fragments of murine and human B7-DC polypeptides may contain substitutions, deletions or insertions at corresponding amino acid positions.
In one embodiment, variant B7-DC polypeptides contain a substitution at position 33 (e.g., a serine substitution for aspartic acid at position 33), a substitution at position 39 (e.g., a tyrosine substitution for serine at position 39), a substitution at position 41 (e.g., a serine substitution for glutamic acid at position 41), a substitution at position 56 (e.g., a serine substitution for arginine at position 56), a substitution at position 58 (e.g., a tyrosine substitution for serine at position 58), a substitution at position 65 (e.g., a serine substitution for aspartic acid at position 65), a substitution at position 67 (e.g., a tyrosine substitution for serine at position 67), a substitution at position 71 (e.g., a serine substitution for glutamic acid at position 71), a substitution at position 72 (e.g., a serine substitution for arginine at position 72), a substitution at position 84 (e.g., a serine substitution for lysine at position 84), a substitution at position 88 (e.g., an alanine substitution for histidine at position 88), a substitution at position 101 (e.g., a serine substitution for arginine at position 101), a substitution at position 103 (e.g., an alanine substitution for leucine at position 103), a substitution at position 105 (e.g., an alanine substitution for isoleucine at position 105), a substituition at position 110 (e.g., an alanine substitution for tryptophan at position 110), a substitution at position 111 (e.g., a serine substitution for aspartic acid at position 111), a substitution at position 1 13 (e.g., a serine substitution for lysine at position 113), or a substitution at position 116 (e.g., a tyrosine substitution for threonine at position 116). It is understood, however, that substitutions at the recited amino acid positions can be made using any amino acid or amino acid analog. For example, the substitutions at the recited positions can be made with any of the naturally-occurring amino acids (e.g., alanine, aspartic acid, asparagine, arginine, cysteine, glycine, glutamic acid, glutamine, histidine, leucine, valine, isoleucine, lysine, methionine, proline, threonine, serine, phenylalanine, tryptophan, or tyrosine).
In one embodiment, the costimulatory polypeptide domain of the fusion protein includes the extracellular domain of human B7-DC with a K113S substitution provided by SEQ ID NO.64, or a fragment thereof: MI FLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL BCNFDTGSHV NLGAITASLQ 60
KVENDTSPHR ERATLLEEQL PLGKASFHIP QVQVRDEGQY QCIIIYGVaW DYSYLTLKVK 120
ASYRKINTHI LKVPETDEVE LTCQATGYPL AEVSWPNVSV PANTSHSRTP EGLYQVTΞVL 130
RLKPPPGRNF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT W 221 (SEQ ID NO:64).
It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:65 provides the human amino acid sequence of SEQ ID NO:64 without the signal sequence:
LFTVTVPKEL YIIEHGSNVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ 60
LPLGKASFHI PQVQVRDEGQ YQCIIIYGVA WDYSYLTLKV KASYRKINTH ILKVPETDEV 120
ELTCQATGYP LAEVSWPKVS VPAHTSHSRT PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV 180
RELTLASIDL QSQMEPRTHP TW 202 (SEQ ID NO:65).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC with a Kl 13S substitution provided by SEQ ID NO: 66, or a fragment thereof:
FTVTVPKELY I IEHGSNVTL ECNFDTGSHV NLGAITASLQ KVEHDTΞPHR ERATLLEEQL 60 PLGKASFHIP QVQVRDEGQY QCIIIYGVAW DYSYLTLK 98
(SEQ ID NO:66).
In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the extracellular domain of human B7-DC with a Dl I lS substitution provided by SEQ ID NO:67, or a fragment thereof: MIFLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ 60
KVENDTSPHR ERATLLEEQL PLGKASFHIP QVQVRDEGQY QCXI XYGVAW SYKYLTLKVK 120
ASYRKIWTHI LKVPETDEVE LTCQATGYPL ABVSWPKVSV PANTSHSRTP EGLYQVTSVL 180
RLKPPPGRNF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT W 221
(SEQ ID NO;67). It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO.68 provides the human amino acid sequence of SEQ ID NO:67 without the signal sequence: LFTVTVPKEL YIIEHGStgVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ 60
LPLGKASFHI PQVQVRDEGQ YQCIIIYGVA WSYKYLTLKV KASYRKINTH ILKVPETDEV 120
ELTCQATGYP LAEVSWPNVS VPANTSHSRT PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV 180
RELTLASIDL QSQMEPRTHP TW 202
(SEQIDNO:68). In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC with a Dl 1 IS substitution provided by SEQ ID NO: 69, or a fragment thereof:
FTVTVPKELY I IEHGSNVTL ECNFDTGSBV NLGAITASLQ KVENDTSPHR ERATLLEEQL 60 PLGKASFHIP QVQVRDEGQY QCIIIYGVAW SYKYLTLK 98
(SEQ ID NO:69).
While the substitutions described herein are with respect to mouse and human B7-DC, it is noted that one of ordinary skill in the art could readily make equivalent alterations in the corresponding polypeptides from other species (e.g.,mouse, rat, hamster, guinea pig, gerbil, rabbit, dog, cat, horse, pig, sheep, cow or non-human primate).
It will be appreciated that nucleic acids encoding the disclosed fusion polypeptides may be optimized for expression in the expression host of choice. Codons may be substituted with alternative codons encoding the same amino acid to account for differences in codon usage between the mammal from which the nucleic acid sequence is derived and the expression host. In this manner, the nucleic acids may be synthesized using expression host-preferred codons. c. Properties of variant B 7 costimulatory polypeptides
The disclosed B7 costimulatory polypeptides and variants and fragments thereof are capable of activating T cells. The T cell response that results from the interaction typically is greater than the response in the absence of the costimulatory polypeptide. The response of the T cell in the absence of the costimulatory polypeptide can be no response or can be a response significantly lower than in the presence of the costimulatory polypeptide.
Exemplary variants of costimulatory polypeptides are those that have an insertion, deletion, or substitution of one or more amino acids that reduces or prevents the co- stimulatory molecule from participating in signal transduction pathways that transmit inhibitory signals in T cells.
Methods for measuring the binding affinity between two molecules are well known in the art Methods for measuring the binding affinity of B7 variant polypeptides to receptors include, but are not limited to, fluorescence activated cell sorting (FACS)5 surface plasmon resonance, fluorescence anisotropy, affinity chromatography and affinity selection-mass spectrometry. Methods for measuring costimulation of T cells are well known in the art and include measurements of T cell proliferation and secretion of cytokines, including, but not limited to, 11-2, IL-4, IL-5, IL-6, IL-IO, IL- 13, and IFN-γ. Proliferation of T cells can be measured by a number of methods including, but not limited to, cell counting, measuring DNA synthesis by uptake of labeled nucleotides (such as [3H] TdR and BrdU) and measuring metabolic activity with tetrazolium salts. Methods for measuring the secretion of cytokines include, but are not limited to, ELISA. B. Antigen-binding targeting domain The fusion proteins also contain antigen-binding targeting domains. In some embodiments, the targeting domains bind to antigens, ligands or receptors that are specific to tumor cells or tumor-associated neovasculature, or are upregulated in tumor cells or tumor-associated neovasculature compared to normal tissue. In some embodiments, the targeting domains bind to antigens, ligands or receptors that are specific to immune tissue involved in the regulation of T cell activation in response to infectious disease causing agents. 1. Tumor/tumor-associated vasculature targeting domains a. Antigens, ϊigands and receptors to target i. Tumor-specific and tumor-associated antigens In one embodiment the fusion proteins contain a domain that specifically binds to an antigen that is expressed by tumor cells. The antigen expressed by the tumor may be specific to the tumor, or may be expressed at a higher level on the tumor cells as compared to non-tumor cells. Antigenic markers such as serologically defined markers known as tumor associated antigens, which are either uniquely expressed by cancer cells or are present at markedly higher levels (e.g., elevated in a statistically significant manner) in subjects having a malignant condition relative to appropriate controls, are contemplated for use in certain embodiments. Tumor-associated antigens may include, for example, cellular oncogene-encoded products or aberrantly expressed proto-oncogene-encoded products (e.g., products encoded by the neu, ras, trk, and kit genes), or mutated forms of growth factor receptor or receptor-like cell surface molecules (e.g., surface receptor encoded by the c-erb B gene). Other tumor- associated antigens include molecules that may be directly involved in transformation events, or molecules that may not be directly involved in oncogenic transformation events but are expressed by tumor cells (e.g., carcinoembryonic antigen, CA- 125, melonoma associated antigens, etc.) (see, e.g., U.S. Pat. No. 6,699,475; Jager, et al., Int. J. Cancer, 106:817-20 (2003); Kennedy, et al., Int. Rev. Immunol, 22:141-72 (2003); Scanlan, et al. Cancer Immun., 4:1 (2004)).
Genes that encode cellular tumor associated antigens include cellular oncogenes and proto-oncogenes that are aberrantly expressed. In general, cellular oncogenes encode products that are directly relevant to the transformation of the cell, and because of this, these antigens are particularly preferred targets for immunotherapy. An example is the tumorigenic neu gene that encodes a cell surface molecule involved in oncogenic transformation. Other examples include the ras, kit, and trk genes. The products of proto-oncogenes (the normal genes which are mutated to form oncogenes) may be aberrantly expressed (e.g., overexpressed), and this aberrant expression can be related to cellular transformation. Thus, the product encoded by proto-oncogenes can be targeted. Some oncogenes encode growth factor receptor molecules or growth factor receptor-like molecules that are expressed on the tumor cell surface. An example is the cell surface receptor encoded by the c-erbB gene. Other tumor-associated antigens may or may not be directly involved in malignant transformation. These antigens, however, are expressed by certain tumor cells and may therefore provide effective targets. Some examples are carcinoembryonic antigen (CEA), CA 125 (associated with ovarian carcinoma), and melanoma specific antigens.
In ovarian and other carcinomas, for example, tumor associated antigens are detectable in samples of readily obtained biological fluids such as serum or mucosal secretions. One such marker is CAl 25, a carcinoma associated antigen that is also shed into the bloodstream, where it is detectable in serum (e.g., Bast, et al., N. Eng. J. Med., 309:883 (1983); Lloyd, et al., Int. J. Cane, 71 :842 (1997). CAl 25 levels in serum and other biological fluids have been measured along with levels of other markers, for example, carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), tissue polypeptide specific antigen (TPS), sialyl TN mucin (STN), and placental alkaline phosphatase (PLAP)5 in efforts to provide diagnostic and/or prognostic profiles of ovarian and other carcinomas (e.g., Sarandakou, et at, Acta Oncol, 36:755 (1997); Sarandakou, et al., Eur. J. Gynaecol. Oncol, 19:73 (1998); Meier, et al., Anticancer Res., 17(4B):2945 (1997); Kudoh, et al., Gynecol Obstet. Invest, 47:52 (1999)). Elevated serum CAl 25 may also accompany neuroblastoma (e.g., Hirokawa, et al., Surg. Today, 28:349 (1998), while elevated CEA and SCC, among others, may accompany colorectal cancer (Gebauer, et al., Anticancer Res., 17(4B):2939 (1997)).
The tumor associated antigen, raesothelin, defined by reactivity with monoclonal antibody K-I, is present on a majority of squamous cell carcinomas including epithelial ovarian, cervical, and esophageal tumors, and on mesotheliomas (Chang, et al., Cancer Res., 52:181 (1992); Chang, et al., Int. J. Cancer, 50:373 (1992); Chang, et al., Int. J Cancer, 51 :548 (1992); Chang, et al., Proc. Natl. Acad. ScI USA, 93:136 (1996); Chowdhury, et al, Proc. Natl. Acad. Sci. USA, 95:669 (1998)). Using MAb K-I, mesothelin is detectable only as a cell-associated tumor marker and has not been found in soluble form in serum from ovarian cancer patients, or in medium conditioned by OVCAR-3 cells (Chang, et al., Int. J. Cancer, 50:373 (1992)). Structurally related human mesothelin polypeptides, however, also include tumor-associated antigen polypeptides such as the distinct mesothelin related antigen (MRA) polypeptide, which is detectable as a naturally occurring soluble antigen in biological fluids from patients having malignancies (see WO 00/50900).
A tumor antigen may include a cell surface molecule. Tumor antigens of known structure and having a known or described function, include the following cell surface receptors: HERl (GenBank Accession No. U48722), HER2 (Yoshino, et al., J Immunol., 152:2393 (1994); Disis, et al., Cane. Res., 54:16 (1994); GenBank Ace. Nos. X03363 and Ml 7730), HER3 (GenBank Ace. Nos. U29339 and M34309), HER4 (Plowman, et al, Nature, 366:473 (1993); GenBank Ace. Nos. L07868 and T64105), epidermal growth factor receptor (EGFR) (GenBank Ace. Nos. U48722, and KO3193), vascular endothelial cell growth factor (GenBank No. M32977), vascular endothelial cell growth factor receptor (GenBank Ace. Nos. AF022375, 1680143, U48801 and X62568), insulin-like growth factor-I (GenBank Ace. Nos. XOO 173, X56774, X56773, X06043, European Patent No. GB 2241703), insulin-like growth factor-II (GenBank Ace. Nos. X03562, X00910, M17863 and M17862), transferrin receptor (Trowbridge and
Omary, Proc. Nat. Acad. USA, 78:3039 (1981); GenBank Ace. Nos. X01060 and Ml 1507), estrogen receptor (GenBank Ace. Nos. M38651, X03635, X99101, U47678 and M 12674), progesterone receptor (GenBank Ace. Nos. X51730, X69068 and Ml 5716), follicle stimulating hormone receptor (FSH- R) (GenBank Ace. Nos. Z34260 and M65085), retinoic acid receptor (GenBank Ace. Nos. Ll 2060, M60909, X77664, X57280, X07282 and X06538), MUC-I (Barnes, et al., Proc. Nat. Acad. Set USA, 86:7159 (1989); GenBank Ace. Nos. M65132 and M64928) NY-ESO-I (GenBank Ace. Nos. AJ003149 and U87459), NA 17-A (PCT Publication No. WO 96/40039), Melan- A/MART- 1 (Kawakami, et al., Proc, Nat. Acad. ScL USA, 91:3515 (1994); GenBank Ace. Nos. U06654 and U06452), tyrosinase (Topalian, et al., Proc, Nat. Acad. ScL USA, 91 :9461 (1994); GenBank Ace. No. M26729; Weber, et al., J. Clin. Invest, 102:1258 (1998)), Gp-100 (Kawakami, et al., Proc. Nat. Acad. ScL USA, 91 :3515 (1994); GenBank Ace. No. S73003, Adema, et al., J. Biol Chem., 269:20126 (1994)), MAGE (van den Braggen, et al., Science, 254:1643 (1991)); GenBank Ace. Nos. U93163, AF064589, U66083, D32077, D32076. D32075, U10694, U10693, U10691, U10690, U10689, U10688, U10687, U10686, U10685, L18877, U10340, U10339, Ll 8920, U03735 and M77481), BAGE (GenBank Ace. No. U19180; U.S. Pat. Nos. 5,683,886 and 5,571,711), GAGE (GenBank Ace. Nos. AF055475, AF055474, AF055473, U19147, U19146, U19145, U19144, U19143 and Ul 9142), any of the CTA class of receptors including in particular HOM- MEL-40 antigen encoded by the SSX2 gene (GenBank Ace. Nos. X86175, U90842, U90841 and X86174), carcinoembryonic antigen (CEA, Gold and Freedman, J Exp. Med., 121 :439 (1985); GenBank Ace. Nos. M59710, M59255 and M29540), and PyLT (GenBank Ace. Nos. J02289 and J02038); p97 (melanotransferrin) (Brown, et al, J. Immunol, 127:539-46 (1981); Rose, et al., Proc. Natl. Acad. Set USA, 83:1261-61 (1986)). Additional tumor associated antigens include prostate surface antigen
(PSA) (U.S. Pat. Nos. 6,677,157; 6,673,545); β-human chorionic gonadotropin β-HCG) (McManus, et ah, Cancer Res., 36:3476-81 (1976); Yoshimura, et al., Cancer, 73:2745-52 (1994); Yamaguchi, et al., Br. J. Cancer, 60:382-84 (1989): Alfthan, et al., Cancer Res., 52:4628-33 (1992)); glycosyltransferase β- 1 ,4-N-acety 1 galacto saminyltransferases (GaINAc) (Hoon, et al., Int. J, Cancer, 43:857-62 (1989); Ando, et al., Int. J. Cancer, 40:12-17 (1987); Tsuchida, et al, J. Natl Cancer, 78:45-54 (1987); Tsuchida, et at, J. Natl Cancer, 78:55-60 (1987)); NUC18 (Lehmann, et al.. Proc. Natl. Acad. ScI USA, 86:9891-95 (1989); Lehmann, et al., Cancer Res. , 47:841-45 (1987)); melanoma antigen gp75 (Vijayasardahi, et al., J. Exp. Med., 171: 1375-80 (1990); GenBank Accession No. X51455); human cytokeratin 8; high molecular weight melanoma antigen (Natali, et al., Cancer, 59:55-63 (1987); keratin 19 (Darta, et al., J Clin. Oncol, 12:475-82 (1994)). Tumor antigens of interest include antigens regarded in the art as
"cancer/testis" (CT) antigens that are immunogenic in subjects having a malignant condition (Scanlan, et al., Cancer Immun., 4:1 (2004)). CT antigens include at least 19 different families of antigens that contain one or more members and that are capable of inducing an immune response, including but not limited to MAGEA (CTl); BAGE (CT2); MAGEB (CT3); GAGE (CT4); SSX (CT5); NY-ESO-I (CT6); MAGEC (CT7); SYCPl (C8); SPANXBl (CTl 1.2); NA88 (CT18); CTAGE (CT21); SPA17 (CT22); OY- TES-I (CT23); CAGE (CT26); HOM-TES-85 (CT28); HCA661 (CT30); NY-SAR-35 (CT38); FATE (CT43); and TPTE (CT44). Additional tumor antigens that can be targeted, including a tumor- associated or tumor-specific antigen, include, but not limited to, alpha- actinin-4, Bcr-Abl fusion protein, Casp-8, beta-catenin, cdc27, cdk4, cdkn2a, coa-1, dek-can fusion protein, EF2, ET V6- AMLl fusion protein, LDLR- fucosy transferase AS fusion protein, HLA-A2, HLA-AI l5 hsp70-2, KIAAO205, Mart2s Mum- 15 2, and 3, neo-PAP, myosin class I, OS-9, pml- RARα fusion protein, PTPRK, K-ras, N-ras, Triosephosphate isomeras, Bage-1, Gage 3,4,5,6,7, GnTV, Herv-K-mel, Lage-1, Mage- Al,2,3,4,6910,12, Mage-C2, NA-885 NY-Eso-l/Lage-2, SP17, SSX-2, and TRP2-Int2, MelanA (MART-I)5 gplOO (Pmel 17), tyrosinase, TRP-I, TRP-2. MAGE-I, MAGE-3, BAGE, GAGE-I5 GAGE-2, pi 5(58), CEA, RAGE, NY-ESO (LAGE), SCP-I, Hom/Mel-40, FRAME, p53, H-Ras, HER-2/neu, BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus antigens, EBNA5 human papillomavirus (HPV) antigens E6 and E7, TSP- 180, MAGE-4, MAGE-5, MAGE-6, pl85erbB2, pl80erbB-3, c-met, nm- 23Hl, PSA, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa5 K-ras, β- Catenin, CDK45 Mum-1 , pl65 TAGE5 PSMA5 PSCA5 CT7, telomerase, 43- 9F, 5T45 791Tgp72, α-fetoprotein, 13HCG, BCA225, BTAA5 CA 125, CA 15-3 (CA 27.29\BCAA), CA 195, CA 242, CA-50, CAM43, CD68\KP1, CO-029, FGF-5, G250s Ga733 (EpCAM)5 HTgp-175, M344, MA-50, MG7- Ag5 M0V18, NB\70K5 NY-CO-I, RCASl, SDCCAG16, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TAG72, TLP, and TPS. Other tumor-associated and tumor-specific antigens are known to those of skill in the art and are suitable for targeting by the disclosed fusion proteins. ii. Antigens associated with tumor neovasculature Protein therapeutics can be ineffective in treating tumors because they are inefficient at tumor penetration. Tumor-associated neovasculature provides a readily accessible route through which protein therapeutics can access the tumor. In another embodiment the fusion proteins contain a domain that specifically binds to an antigen that is expressed by neovasculature associated with a tumor. The antigen may be specific to tumor neovasculature or may be expressed at a higher level in tumor neovasculature when compared to normal vasculature. Exemplary antigens that are over-expressed by tumor- associated neovasculature as compared to normal vasculature include, but are not limited to, VEGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and α5β3 integrin/vitronectin. Other antigens that are over- expressed by tumor-associated neovasculature as compared to normal vasculature are known to those of skill in the art and are suitable for targeting by the disclosed fusion proteins.
Hi. Chemokines/chemokine receptors In another embodiment, the fusion proteins contain a domain that specifically binds to a chemokine or a chemokine receptor. Chemokines are soluble, small molecular weight (8-14 kDa) proteins that bind to their cognate G-protein coupled receptors (GPCRs) to elicit a cellular response, usually directional migration or chemotaxis. Tumor cells secrete and respond to chemokines, which facilitate growth that is achieved by increased endothelial cell recruitment and angiogenesis, subversion of immunological surveillance and maneuvering of the tumoral leukocyte profile to skew it such that the chemokine release enables the tumor growth and metastasis to distant sites. Thus, chemokines are vital for tumor progression.
Based on the positioning of the conserved two N-terminal cysteine residues of the chemokines, they are classified into four groups namely CXC, CC, CX3C and C chemokines. The CXC chemokines can be further classified into ELR+ and ELR- chemokines based on the presence or absence of the motif 'glu-leu-arg (ELR motif)' preceding the CXC sequence. The CXC chemokines bind to and activate their cognate chemokine receptors on neutrophils, lymphocytes, endothelial and epithelial cells. The CC chemokines act on several subsets of dendritic cells, lymphocytes, macrophages, eosinophils, natural killer cells but do not stimulate neutrophils as they lack CC chemokine receptors except murine neutrophils. There are approximately 50 chemokines and only 20 chemokine receptors, thus there is considerable redundancy in this system of HgandVreceptor interaction. Chemokines elaborated from the tumor and the stromal cells bind to the chemokine receptors present on the tumor and the stromal cells. The autocrine loop of the tumor cells and the paracrine stimulatory loop between the tumor and the stromal cells facilitate the progression of the tumor. Notably, CXCR2, CXCR4, CCR2 and CCR7 play major roles in tumorigenesis and metastasis. CXCR2 plays a vital role in angiogenesis and CCR2 plays a role in the recruitment of macrophages into the tumor microenvironment. CCR7 is involved in metastasis of the tumor cells into the sentinel lymph nodes as the lymph nodes have the ligand for CCR7, CCL21. CXCR4 is mainly involved in the metastatic spread of a wide variety of tumors.
2. Molecular classes of targeting domains a. Ligands and receptors In one embodiment, tumor or tumor-associated neovasculature targeting domains are ligands that bind to cell surface antigens or receptors that are specifically expressed on tumor cells or tumor-associated neovasculature or are overexpressed on tumor cells or tumor-associated neovasculature as compared to normal tissue. Tumors also secrete a large number of ligands into the tumor microenvironment that affect tumor growth and development. Receptors that bind to ligands secreted by tumors, including, but not limited to growth factors, cytokines and chemokines., including the chemokines provided above, are suitable for use in the disclosed fusion proteins. Ligands secreted by tumors can be targeted using soluble fragments of receptors that bind to the secreted ligands. Soluble receptor fragments are fragments polypeptides that may be shed, secreted or otherwise extracted from the producing cells and include the entire extracellular domain, or fragments thereof.
b. Single polypeptide antibodies
In another embodiment, tumor or tumor-associated neovasculature targeting domains are single polypeptide antibodies that bind to cell surface antigens or receptors that are specifically expressed on tumor cells or tumor- associated neovasculature or are overexpressed on tumor cells or tumor- associated neovasculature as compared to normal tissue. Single domain antibodies are described above with respect to coinhibitory receptor antagonist domains. c. Fc domains
In another embodiment, tumor or tumor-associated neovasculature targeting domains are Fc domains of immunoglobulin heavy chains that bind to Fc receptors expressed on tumor cells or on tumor-associated neovasculature. The Fc region as used herein includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus Fc refers to the last two constant region immunoglobulin domains of IgA, IgD9 and IgG5 and the last three constant region immunoglobulin domains of IgE and IgM. In a preferred embodiment, the Fc domain is derived from a human or murine immunoglobulin. In a more preferred embodiment, the Fc domain is derived from human IgGl or murine IgG2a including the CH2 and CH3 regions. In one embodiment, the hinge, CH2 and CH3 regions of a human immunoglobulin Cγl chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: gagcctaagt catgtgacaa gacccatacg tgcccaccct gtcccgctcc agaactgctg 60 gggggaccta gcgttttctt gttcccccca aagcccaagg acaccctcat gatctcacgg 120 actcccgaag taacatgcgt agtagtcgac gtgagccacg aggatcctga agtgaagttt 180 aattggtacg tggacggagt cgaggtgcat aatgccaaaa ctaaacctcg ggaggagcag 240 tataacagta cctaccgcgt ggtatccgtc ttgacagtgc tccaccagga ctggctgaat 300 ggtaaggagt ataaatgcaa ggtcagcaac aaagctcttc ccgccccaat tgaaaagact 360 atcagcaagg ccaagggaca accccgcgag ccccaggttt acacccttcc accttcacga 420 gacgagctga ccaagaacca ggtgtctctg acttgtctgg tcaaaggttt ctatccttcc 480 gacatcgcag tggagtggga gtcaaacggg cagcctgaga ataactacaa gaccacaccc 540 ccagtgcttg atagcgatgg gagctttttc ctctacagta agctgactgt ggacaaatcc 600 cgctggcagc agggaaacgt tttctcttgt agcgtcatgc atgaggccct ccacaaccat 660 tatactcaga aaagcctgag tctgagtccc ggcaaa 696
(SEQ ID NO:70)
The hinge, CH2 and CH3 regions of a human immunoglobulin Cγl chain encoded by SEQ ID NO:70 has the following amino acid sequence:
EPKSCDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMΪSR TPEVTCVWD VSHEDPEVKF 60
NWYVDGVEVH NAKTKPREEG YNSTYRWSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT 120
ISKAKGQPRE PQVYTLPPSR DELTKQVSL TCLVKGFYPS DIAVEWESNG QPEMNYKTTP 180
PVLDSDGSFF LYSKLTVDKS RHQQGNVFSC SVMHEALHKR YTQKSLSLSP GK 232 (SEQ ID NO:71)
In another embodiment, the hinge, CH2 and CH3 regions of a murine immunoglobulin Cγ2a chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: gagccaagag gtcctacgat caagccctgc ccgccttgta aatgcccagc tccaaatttg 60 ctgggtggac cgtcagtctt tatcttcccg ccaaagataa aggacgtctt gatgattagt 120 ctgagcccca tcgtgacatg cgttgtggtg gatgtttcag aggatgaccc cgacgtgcaa 180 atcagttggt tcgttaacaa cgtggaggtg cataccgctc aaacccagac ccacagagag 240 gattataaca gcaccctgcg ggtagtgtcc gccctgccga tccagcatca ggattggatg 300 agcgggaaag agttcaagtg taaggtaaac aacaaagatc tgccagcgcc gattgaacga 360 accattagca agccgaaagg gagcgtgcgc gcacctcagg tttacgtcct tcctccacca 420 gaagaggaga tgacgaaaaa gcaggtgacc ctgacatgca tggtaactga ctttatgcca 480 gaagatattt acgtggaatg gactaataac ggaaagacag agctcaatta caagaacact 540 gagcctgttc tggattctga tggcagctac tttatgtact ccaaattgag ggtcgagaag 600 aagaattggg tcgagagaaa cagttatagt tgctcagtgg tgcatgaggg cctccataat 660 catcacaσca caaagtcctt cagccgaacg cccgggaaa 699
(SEQ ID NO:72)
The hinge, CH2 and CH3 regions of a murine immunoglobulin Cγ2a chain encoded by SEQ ID NO:72 has the following amino acid sequence: EPRGPTIKPC PPCKCPAPNL LGGPSVFIFP PKIKDVLMIS LSPIVTCVW DVSEDDPDVQ 60
ISWFVNNVEV HTAQTQTHRE DYNSTLRWS ALPIQHQDWM SGKEFKCKVN NKDLPAPIER 120
TISKPKGSVR APQVYVLPPP EEEMTKKQVT LTCMVTDFMP EDIYVEWTNN GKTELNYKNT 180
BPVLDSDGSY FMYSKLRVEK KNWVERNSYS CSWHEGLHN HHTTKSFSRT PGK 233
(SEQ ID NO:73) In one embodiment, the Fc domain may contain one or more amino acid insertions, deletions or substitutions that enhance binding to specific Fc receptors that specifically expressed on tumors or tumor-associated neovasculature or are overexpressed on tumors or tumor-associated neovasculature relative to normal tissue. Suitable amino acid substitutions include conservative and non-conservative substitutions, as described above.
The therapeutic outcome in patients treated with rituximab (a chimeric mouse/human IgGl monoclonal antibody against CD20) for non- Hodgkin's lymphoma or Waldenstrom's macroglobulinemia correlated with the individual's expression of allelic variants of Fcγ receptors with distinct intrinsic affinities for the Fc domain of human IgGl . In particular, patients with high affinity alleles of the low affinity activating Fc receptor CDl 6 A (FcγRJIIA) showed higher response rates and, in the cases of non-Hodgkin's lymphoma, improved progression-free survival. In another embodiment, the Fc domain may contain one or more amino acid insertions, deletions or substitutions that reduce binding to the low affinity inhibitory Fc receptor CD32B (FcγRIIB) and retain wild-type levels of binding to or enhance binding to the low affinity activating Fc receptor CD16A (FcγRIIIA). In a preferred embodiment, the Fc domain contains amino acid insertions, deletions or substitutions that enhance binding to CD 16 A. A large number of substitutions in the Fc domain of human IgGl that increase binding to CD16A and reduce binding to CD32B are known in the art and are described in Stavenhagen, et al., Cancer Res,, 57(18):8882-90 (2007). Exemplary variants of human IgGl Fc domains with reduced binding to CD32B and/or increased binding to CD16A contain F243L, R929P, Y300L, V305I or P296L substitutions. These amino acid substitutions may be present in a human IgGl Fc domain in any combination. In one embodiment, the human IgGl Fc domain variant contains a F243L, R929P and Y300L substitution. In another embodiment, the human IgGl Fc domain variant contains a F243L, R929P, Y300L, V3O5I and P296L substitution. d. Glycophosphatidylittositol anchor domain In another embodiment, tumor or tumor-associated neovasculature targeting domains are polypeptides that provide a signal for the posttranslational addition of a glycosylphosphatidylinositol (GPI) anchor. GPI anchors are glycolipid structures that are added posttranslationally to the C-terminus of many eukaryotic proteins. This modification anchors the attached protein in the outer leaflet of cell membranes. GPI anchors can be used to attach T cell receptor binding domains to the surface of cells for presentation to T cells. In this embodiment, the GPI anchor domain is C- terminal to the T cell receptor binding domain.
In one embodiment, the GPI anchor domain is a polypeptide that signals for the posttranslational addition addition of a GPI anchor when the polypeptide is expressed in a eukaryotic system. Anchor addition is determined by the GPI anchor signal sequence, which consists of a set of small amino acids at the site of anchor addition (the ω site) followed by a hydrophilic spacer and ending in a hydrophobic stretch (Low, FASEBJ., 3:1600-1608 (1989)). Cleavage of this signal sequence occurs in the ER before the addition of an anchor with conserved central components (Low, FASEB J , 3 : 1600-1608 (1989)) but with variable peripheral moieties (Homans et al., Nature, 333:269-272 (1988)). The C-terminus of a GPI- anchored protein is linked through a phosphoethanolamine bridge to the highly conserved core glycan, mannose(α 1 -2)mannose(α 1 -6)mannose(α 1 -4)glucosamine(α 1 ~6)myo- inositol. A phospholipid tail attaches the GPI anchor to the cell membrane. The glycan core can be variously modified with side chains, such as a phosphoethanolamine group, mannose, galactose, sialic acid, or other sugars. The most common side chain attached to the first mannose residue is another mannose. Complex side chains, such as the JV-acetylgalactosamine- containing polysaccharides attached to the third mannose of the glycan core, are found in mammalian anchor structures. The core glucosamine is rarely modified. Depending on the protein and species of origin, the lipid anchor of the phosphoinositol ring is a diacylglycerol, an alkylacylglycerol, or a ceramide. The lipid species vary in length, ranging from 14 to 28 carbons, and can be either saturated or unsaturated. Many GPI anchors also contain an additional fatty acid, such as palmitic acid, on the 2-hydroxyl of the inositol ring. This extra fatty acid renders the GPI anchor resistant to cleavage by PI-PLC. GPI anchor attachment can be achieved by expression of a fusion protein containing a GPI anchor domain in a eukaryotic system capable of carrying out GPI posttranslational modifications. GPI anchor domains can be used as the tumor or tumor vasculature targeting domain, or can be additionally added to fusion proteins already containing separate tumor or tumor vasculature targeting domains.
In another embodiment, GPI anchor moieties are added directly to isolated T cell receptor binding domains through an in vitro enzymatic or chemical process. In this embodiment, GPI anchors can be added to polypeptides without the requirement for a GPI anchor domain. Thus, GPI anchor moieties can be added to fusion proteins described herein having a T cell receptor binding domain and a tumor or tumor vasculature targeting domain. Alternatively, GPI anchors can be added directly to T cell receptor binding domain polypeptides without the requirement for fusion partners encoding tumor or tumor vasculature targeting domains. C. Peptide or polypeptide linker domain
Fusion proteins disclosed herein optionally contain a peptide or polypeptide linker domain that separates the costimulatory polypeptide domain from the antigen-binding targeting domain. 1. Hinge region of antibodies
In one embodiment, the linker domain contains the hinge region of an immunoglobulin. In a preferred embodiment, the hinge region is derived from a human immunoglobulin. Suitable human immunoglobulins that the hinge can be derived from include IgG5 IgD and IgA. In a preferred embodiment, the hinge region is derived from human IgG.
In another embodiment, the linker domain contains a hinge region of an immunoglobulin as described above, and further includes one or more additional immunoglobulin domains. In one embodiment, the additional domain includes the Fc domain of an immunoglobulin. The Fc region as used herein includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM. In a preferred embodiment, the Fc domain is derived from a human immunoglobulin. In a more preferred embodiment, the Fc domain is derived from human IgG including the CH2 and CH3 regions.
In another embodiment, the linker domain contains a hinge region of an immunoglobulin and either the CHI domain of an immunoglobulin heavy chain or the CL domain of an immunoglobulin light chain. In a preferred embodiment, the CHI or CL domain is derived from a human immunoglobulin. The CL domain may be derived from either a K light chain or a λ light chain. In a more preferred embodiment, the CHI or CL domain is derived from human IgG.
Amino acid sequences of immunoglobulin hinge regions and other domains are well known in the art.
2. Other peptide/polypeptide linker domains Other suitable peptide/polypeptide linker domains include naturally occurring or non-naturally occurring peptides or polypeptides. Peptide linker sequences are at least 2 amino acids in length. Preferably the peptide or polypeptide domains are flexible peptides or polypeptides. A "flexible linker" herein refers to a peptide or polypeptide containing two or more amino acid residues joined by peptide bond(s) that provides increased rotational freedom for two polypeptides linked thereby than the two linked polypeptides would have in the absence of the flexible linker. Such rotational freedom allows two or more antigen binding sites joined by the flexible linker to each access target antigen(s) more efficiently. Exemplary flexible peptides/polypeptides include, but are not limited to, the amino acid sequences Gly-Ser, Gly-Ser-Gly-Ser (SEQ ID NO:74), Ala-Ser, Gly-Gly- Gly-Ser (SEQ ID NO:75), (Gly4-Ser)3 (SEQ ID NO:76), (Gly4-Ser)4 (SEQ ID NO:77), and (Gly4-Ser)4 (SEQ ID NO:78). Additional flexible peptide/polypeptide sequences are well known in the art.
D. Diπicrizatiυn and multimerization domains The fusion proteins disclosed herein optionally contain a dimerization or multimerization domain that functions to dimerϊze or multimerize two or more fusion proteins. The domain that functions to dimerize or multimerize the fusion proteins can either be a separate domain, or alternatively can be contained within one of the other domains (T cell costimulatory/coinhibitory receptor binding domain, tumor/tumor neovasculature antigen-binding domain, or peptide/polypeptide linker domain) of the fusion protein. 1. Dimerization domains A "dimerization domain" is formed by the association of at least two amino acid residues or of at least two peptides or polypeptides (which may have the same, or different, amino acid sequences). The peptides or polypeptides may interact with each other through covalent and/or non- covalent association^). Preferred dimerization domains contain at least one cysteine that is capable of forming an intermolecular disulfide bond with a cysteine on the partner fusion protein. The dimerization domain can contain one or more cysteine residues such that disulfide bond(s) can form between the partner fusion proteins. In one embodiment, dimerization domains contain one, two or three to about ten cysteine residues. In a preferred embodiment, the dimerization domain is the hinge region of an immunoglobulin. In this particular embodiment, the dimerization domain is contained within the linker peptide/polypeptide of the fusion protein.
Additional exemplary dimerization domain can be any known in the art and include, but not limited to, coiled coils, acid patches, zinc fingers, calcium hands, a CHI-CL pair, an "interface" with an engineered "knob" and/or "protruberance" as described in U.S. Pat. No. 5,821,333, leucine zippers (e.g., from jun and/or fos) (U.S. Pat. No. 5,932,448), SH2 (src homology 2), SH3 (src Homology 3) (Vidal, et al., Biochemistry, 43, 7336- 44 ((2004)), phosphotyrosine binding (PTB) (Zhou, et al., Nature, 378:584- 592 (1995)), WW (Sudol, Prog. Biochys. MoI. Bio., 65:113-132 (1996)), PDZ (Kim, et al., Nature, 378: 85-88 (1995); Komau, et al., Science, 269:1737-1740 (1995)) 14-3-3, WD40 (Hu, et al., J Biol Chem., 273, 33489- 33494 (1998)) EH, Lim, an isoleucine zipper, a receptor dimer pair (e.g., interleukin-8 receptor (IL- 8 R); and integrin heterodimers such as LFA-I and GPIIIb/IIIa), or the dimerization region(s) thereof, dimeric Hgand polypeptides (e.g. nerve growth factor (NGF), neurotroρhin-3 (NT-3), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), VEGF-C5 VEGF-D, PDGF members, and brain-derived neurotrophic factor (BDNF) (Arakawa, et al., J Biol. Chem., 269(45): 27833-27839 (1994) and
Radziejewski, et al., Biochem., 32(48): 1350 (1993)) and can also be variants of these domains in which the affinity is altered. The polypeptide pairs can be identified by methods known in the art, including yeast two hybrid screens. Yeast two hybrid screens are described in U.S. Pat. Nos. 5,283,173 and 6,562,576, both of which are herein incorporated by reference in their entireties. Affinities between a pair of interacting domains can be determined using methods known in the art, including as described in Katahira, et al., J Biol. Chem., 277, 9242-9246 (2002)). Alternatively, a library of peptide sequences can be screened for heterodimerization, for example, using the methods described in WO 01/00814. Useful methods for protein-protein interactions are also described in U.S. Pat. No. 6,790,624.
2. Multimerization domains
A "multimerization domain" is a domain that causes three or more peptides or polypeptides to interact with each other through covalent and/or non-covalent association(s). Suitable multimerization domains include, but are not limited to, coiled-coil domains. A coiled-coil is a peptide sequence with a contiguous pattern of mainly hydrophobic residues spaced 3 and 4 residues apart, usually in a sequence of seven amino acids (heptad repeat) or eleven amino acids (undecad repeat), which assembles (folds) to form a multimeric bundle of helices. Coiled-coils with sequences including some irregular distribution of the 3 and 4 residues spacing are also contemplated. Hydrophobic residues are in particular the hydrophobic amino acids VaI, lie, Leu, Met, Tyr, Phe and Trp. Mainly hydrophobic means that at least 50% of the residues must be selected from the mentioned hydrophobic amino acids.
The coiled coil domain may be derived from laminin. In the extracellular space, the heterotrimeric coiled coil protein laminin plays an important role in the formation of basement membranes. Apparently, the multifunctional oligomeric structure is required for laminin function. Coiled coil domains may also be derived from the thrombospondins in which three (TSP-I and TSP-2) or five (TSP-3, TSP-4 and TSP-5) chains are connected, or from COMP (COMPcc) (Guo, et at, EMBOJ., 1998, 17: 5265-5272) which folds into a parallel five-stranded coiled coil (Malashkevich ,et al., Science, 274: 761-765 (1996)). Additional coiled-coil domains derived from other proteins, and other domains that mediate polypeptide multimerization are known in the art and are suitable for use in the disclosed fusion proteins. E. Exemplary fusion proteins B7-DC A representative murine B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgctgctcc tgctgccgat actgaacctg agcttacaac ttcatcctgt agcagcttta 60 ttcaccgtga cagcccctaa agaagtgtac accgtagacg tcggcagcag tgtgagcctg 120 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagagc cagtttgcag 180 aaggtagaaa atgatacgtc tctgcaaagt gaaagagcca ccctgctgga ggagcagctg 240 cccctgggaa aggctttgtt ccacatccct agtgtccaag tgagagattc cgggcagtac 300 cgttgcctgg tcatctgcgg ggccgcctgg gactacaagt acctgacggt gaaagtcaaa 360 gcttcttaca tgaggataga cactaggatc ctggaggttc caggtacagg ggaggtgcag 420 cttacctgcc aggctagagg ttatccccta gcagaagtgt cctggcaaaa tgtcagtgtt 480 cctgccaaca ccagccacat caggaccccc gaaggcctct accaggtcac cagtgttctg 540 cgcctcaagc ctcagcctag cagaaacttc agctgcatgt tctggaatgc tcacatgaag 600 gagctgactt cagccatcat tgaccctctg agtcggatgg aacccaaagt ccccagaacg 660 tgggagccaa gaggtcctac gatcaagccc tgcccgcctt gtaaatgccc agctccaaat 720 ttgctgggtg gaccgtcagt ctttatcttc ccgccaaaga taaaggacgt cttgatgatt 780 agtctgagcc ccatcgtgac atgcgttgtg gtggatgttt cagaggatga ccccgacgtg 840 caaatcagtt ggttcgttaa caacgtggag gtgcataccg ctcaaaccca gacccacaga 900 gaggattata acagσaccct gcgggtagtg tccgccctgc cgatccagca tcaggattgg 960 atgagcggga aagagttcaa gtgtaaggta aacaacaaag atctgccagc gccgattgaa 1020 cgaaccatta gcaagccgaa agggagcgtg cgcgcacctc aggtttacgt ccttcctcca 1080 ccagaagagg agatgacgaa aaagcaggtg accctgacat gcatggtaac tgactttatg 1140 ccagaagata tttacgtgga atggactaat aacggaaaga cagagctcaa ttacaagaac 1200 actgagcctg ttctggattc tgatggcagc tactttatgt actccaaatt gagggtcgag 1260 aagaagaatt gggtcgagag aaacagttat agttgctcag tggtgcatga gggcctccat 1320 aatcatcaca ccacaaagtc cttcagccga acgcccggga aatga 1365
(SEQ ID NO:79)
The murine B7-DC fusion protein encoded by SEQ ID NO:79 has the following amino acid sequence: MLLLLPILNL SLQLKPVAAL FTVTAPKEVY TVDVGSSVSL ECDFDRRECT ELEGIRASLQ 60
KVENDTSLQS BRATLLEEQL PLGKALFHIP SVQVRDSGQY RCLVICGAAW DYKYLTVKVK 120
ASYMRIDTRI LEVPGTGEVQ LTCQARGYPL AEVSWQNVSV PANTSHIRTP EGLYQVTSVL 180
RLKPQPSRNF SCMFWEJAHMK ELTSAIIDPL SRMEPKVPRT WEPRGPTIKP CPPCKCPAPK 240
LLGGPSVFIF PPKIKDVLMI SLSPIVTCW VDVSEDDPDV QISWFVNNVE VHTAQTQTHR 300 EDYHSTLRW SALPIQHQDW MSGKEFKCKV NNKDLPAPIE RTISKPKGSV RAPQVYVLPP 360
PEEEMTKKQV TLTCMVTDFM PEDIYVEWTN NGKTELNYKN TEPVLDSDGS YFMYSKLRVE 420
KKNWVERKSY SCSWHEGLH NHHTTKSFSR TPGK 454
(SEQ ID NO:80)
The amino acid sequence of the murine B7-DC fusion protein of SEQ ID NO:80 without the signal sequence is:
LFTVTAPKEV YTVDVGSSVS LECDFDRREC TELEGIRASL QKVENDTSLQ SERATLLEEQ 60
LPLGKALFHI PSVQVRDSGQ YRCLVICGAA WDYKYLTVKV KASYMRIDTR ILEVPGTGBV 120
QLTCQARGYP LAEVSWQNVS VPΆNTSHIRT PEGLYQVTSV LRLKPQPSRN FSCMFWNAHM 180
KELTSAIIDP LSRMEPKVPR TWEPRGPTIK PCPPCKCPAP NLLGGPSVFI FPPKIKDVLM 240 ISLSPIVTCV VVDVSEDDPD VQISWFVNNV EVHTAQTQTH REDYNSTLRV VSALPIQHQD 300
WMSGKEFKCK VNNKDLPAPI ERTISKPKGS VRAPQVYVLP PPEEEMTKKQ VTLTCMVTDF 360
MPEDIYVEWT NNGKTELNYK NTEPVLDSDG SYFMYSKLRV EKKNWVERNS YSCSWHEGL 420
HNHHTTKSFS RTPGK 435
(SEQ ID NO:81). A representative human B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgatctttc ttctcttgat gctgtctttg gaattgcaac ttcaccaaat cgcggccctc 60 tttactgtga ccgtgccaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc 120 gaatgtaact ttgacaccgg cagccacgtt aacctggggg ccatcactgc cagcttgcaa 180 aaagttgaaa acgacacttc acctcaccgg gagagggcaa ccctcttgga ggagcaactg 240 ccattgggga aggcctcctt tcatatccct caggtgcagg ttcgggatga gggacagtac 300 cagtgcatta ttatctacgg cgtggcttgg gattacaagt atctgaccct gaaggtgaaa 360 gcgtcctatc ggaaaattaa cactcacatt cttaaggtgc cagagacgga cgaggtggaa 420 ctgacatgcc aagccaccgg ctacccgttg gcagaggtca gctggcccaa cgtgagcgta 480 cctgctaaca cttctcattc taggacaccc gagggcctct accaggttac atccgtgctc 540 cgcctcaaac cgcccccagg ccggaatttt agttgcgtgt tttggaatac ccacgtgcga 600 gagctgactc ttgcatctat tgatctgcag tcccagatgg agccacggac tcatccaact 660 tgggaaccta aatcttgcga taaaactcat acctgtcccc cttgcccagc ccσcgagctt 720 ctgggaggtc ccagtgtgtt tctgtttccc ccaaaaccta aggacacact tatgatatcc 780 cgaacgccgg aagtgacatg cgtggttgtg gacgtctcac acgaagaccc ggaggtgaaa 840 ttcaaσtggt acgttgacgg agttgaggtt cataacgcta agaccaagcc cagagaggag 900 caatacaatt ccacctatcg agtggttagt gtactgaccg ttttgcacca agactggctg 960 aatggaaaag aatacaagtg caaagtatca aacaaggctt tgcctgcacc catcgagaag 1020 acaatttcta aagccaaagg gcagcccagg gaaccgcagg tgtacacact cccaccatcc 1080 cgcgacgagc tgacaaagaa tcaagtatcc ctgacctgcc tggtgaaagg cttttaσcca 1X40 tctgacattg ccgtggaatg ggaatcaaat ggacaacctg agaacaacta caaaaccact 1200 ccacctgtgc ttgacagcga cgggtccttt ttcctgtaca gtaagotcac tgtcgataag 1260 tctcgσtggc agcagggcaa cgtcttttca tgtagtgtga tgcacgaagc tctgcacaac 1320 cattacaccc agaagtctct gtcactgagc ccaggtaaat ga 1362
(SEQ ID NO:82)
The human B7-DC fusion protein encoded by SEQ ID NO: 82 has the following amino acid sequence: MIFLLLMLSL ELQLHQIAΛL FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ 60
KVENDTSPHR ERaTLLEEQL PLGKASFHIP QVQVRDEGQY QCI I IYGVAW DYKYLTLKVK 120
ASYRKIHTHI LKVPETDEVE LTCQATGYPL AEVSWPNVSV PAHTSHSRTP EGLYQVTSVL 180
RLKPPPGRNF SCVFWNTHVR ELTLΆSIDLQ SQMEPRTHPT WEPKSCDKTH TCPPCPAPEL 240
LGGPSVFLFP PKPKDTLMIS RTPEVTCWV DVSHEDPEVK FNMYVDGVEV HNAKTKPREB 300 QYNSTYRWS VLTVLHQDWL NGKBYKCKVS NKALPAPIEK TISKAKGQPR EPQVYTLPPS 360
RDBLTKNQVS LTCLVKGFYP SDIAVEWESN GQPENHYKTT PPVLDSDGSF FLYSKLTVDK 420
SRWQQGHVFS CSVMHEALHN HYTQKSLSLS PGK 453
(SEQ ID NO:83)
The amino acid sequence of the human B7-DC fusion protein of SEQ ID NO:83 without the signal sequence is:
LFTVTVPKEL YIIEHGSNVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ 60 LPLGKΆSFHI PQVQVRDEGQ YQCIIIYGVA WDYKYLTLKV KASYRKIKTH ILKVPETDEV 120
ELTCQATGYP LAEVSWPNVS VPANTSHSRT PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV 180
RELTLASIDL QSQMBPRTHP TWEPKSCDKT HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI 240 SRTPEVTCW VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRW SVLTVLHQDW 300
LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP SRDELTKNQV SLTCLVKGFY 360
PSDIAVEWES NGQPENNYKT TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF SCSVMHEALH 420
NHYTQKSLSL SPGK 434
(SEQ ID NO:84). A representative non-human primate (Cynomolgus) B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: B7-1
A representative murine B7-1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagtttcc atgtccaagg 60 ctcattcttc tctttgtgct gctgattcgt ctttcacaag tgtcttcaga tgttgatgaa 120 caactgtcca agtcagtgaa agataaggta ttgctgcctt gccgttacaa ctctcctcat 180 gaagatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtctgtc 240 attgctggga aactaaaagt gtggcccgag tataagaacc ggactttata tgacaacact 300 acctactctc ttatcatcct gggcctggtc ctttcagacc ggggcacata cagctgtgtc 360 gttcaaaaga aggaaagagg aacgtatgaa gttaaacact tggctttagt aaagttgtcc 420 atcaaagctg acttctctac ccccaacata actgagtctg gaaacccatc tgcagacact 480 aaaaggatta cctgctttgc ttccgggggt ttcccaaagc ctcgcttctc ttggttggaa 540 aatggaagag aattacctgg catcaatacg acaatttccc aggatcctga atctgaattg 600 tacaccatta gtagccaact agatttcaat acgactcgca aσcacaccat taagtgtctc 660 attaaatatg gagatgctca cgtgtcagag gacttcacct gggaaaaacc cccagaagac 720 cctcctgata gcaagaacga gccaagaggt cctacgatca agccctgccc gccttgtaaa 780 tgcccagctc caaatttgct gggtggaccg tcagtcttta tcttcccgcc aaagataaag 840 gacgtcttga tgattagtct gagccccatc gtgacatgcg ttgtggtgga tgtttcagag 900 gatgaccccg acgtgcaaat cagttggttc gttaacaacg tggaggtgca taccgctcaa 960 acccagacoo acagagagga ttataacagc accctgcggg tagtgtccgc cctgccgatc 1020 cagcatcagg attggatgag cgggaaagag ttcaagtgta aggtaaacaa caaagatctg 1080 ccagcgccga ttgaacgaac cattagcaag ccgaaaggga gcgtgcgcgc acctcaggtt 1140 tacgtccttc ctccaccaga agaggagatg acgaaaaagc aggtgaccct gacatgcatg 1200 gtaactgact ttatgccaga agatatttac gtggaatgga ctaataacgg aaagacagag 1260 ctcaattaca agaacactga gcctgttctg gattctgatg gcagctactt tatgtactcc 1320 aaattgaggg tcgagaagaa gaattgggtc gagagaaaca gttatagttg ctcagtggtg 1380 catgagggcc tccataatca tcacaccaca aagtccttca gccgaacgcc cgggaaa 1437
(SEQ ID NO:88) The murine B7-1 fusion protein encoded by SEQ ID NO:88 has the following amino acid sequence:
MACNCQLMQD TPLLKFPCPR LILLFVLLIR LSQVSSDVDE QLSKSVKDKV LLPCRYNSPH 60
EDESEDRIYW QKHDKWLSV IAGKLKVWPE YKNRTLYDNT TYSLIILGLV LSDRGTYSCV 120
VQKKERGTYE VKHLALVKLS IKΆDFSTPNI TESGNPSADT KRITCFASGG FPKPRFSWLE 180 NGRELPGINT TISQDPESEL YTISSQLDFN TTRNHTIKCL IKYGDAHVSE DFTWEKPPED 240
PPDSKNEPRG PTIKPCPPCK CPAPNLLGGP SVFIFPPKIK DVLMISLSPI VTCVWDVSE 300
DDPDVQISWF VNNVEVHTAQ TQTHREDYNS TLRWSALPI QHQDWMSGKE FKCKVNNKDL 360
PAPIERTISK PKGSVRAPQV YVLPPPEEEM TKKQVTLTCM VTDFMPEDIY VEWTKNGKTB 420
LNYKNTBPVL DSDGSYFMYS KLRVEKKNWV ERNSYSCSVV HEGLHNHHTT KSFSRTPGK 479 (SEQ ID NO:89)
The amino acid sequence of the murine B7-1 fusion protein of SEQ ID NO:89 without the signal sequence is:
VDEQLSKSVK DKVLLPCRYN SPHEDESEDR IYWQKHDKVV LSVIAGKLKV WPEYKNRTLY 60
DNTTYSLIIL GLVLSDRGTY SCWQKKERG TYEVKHLALV KLSIKADFST PNITESGNPS 120 ADTKRITCFA SGGFPKPRFS WLENGRELPG INTTISQDPE SELYTISSQL DFNTTRNHTI 180
KCLIKYGDAH VSEDFTWEKP PEDPPDSKNE PRGPTIKPCP PCKCPAPNLL GGPSVFIFPP 240
KIKDVLMISL SPIVTCVWD VSBDDPDVQI SWFVNNVEVH TAQTQTHRBD YNSTLRWSA 300
LPIQHQDWMS GKEFKCKVNN KDLPAPIERT ISKPKGSVRA PQVYVLPPPE EEMTKKQVTL 360
TCMVTDFKPE DIYVEWTNNG KTELNYKNTE PVLDSDGSYF MYSKLRVEKK NWVERNSYSC 420 SVVHBGLHNH HTTKSFSRTP GK 442 (SEQ ID NO:90).
A representative human B 7-1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggccaca cacggaggca gggaacatca ccatccaagt gtccatacct caatttcttt 60 cagctcttgg tgctggctgg tctttctcac ttctgttcag gtgttatcca cgtgaccaag 120 gaagtgasag aagtggcaac gctgtcctgt ggtcacaatg tttctgttga agagctggca 180 caaactcgca tctactggca aaaggagaag aaaatggtgc tgactatgat gtctggggac 240 atgaatatat ggcccgagta caagaaccgg accatctttg atatcactaa taacctctcc 300 attgtgatcc tggctctgcg cccatctgac gagggcacat acgagtgtgt tgttctgaag 360 tatgaaaaag acgctttcaa gcgggaacac ctggctgaag tgacgttatc agtcaaagct 420 gacttcccta cacctagtat atctgacttt gaaattccaa cttctaatat tagaaggata 480 atttgctcaa cctctggagg ttttccagag cctcacctct cctggttgga aaatggagaa 540 gaattaaatg ccatcaacac aacagtttcc caagatcctg aaactgagct ctatgctgtt 600 agcagcaaac tggatttcaa tatgacaacc aaccacagct tcatgtgtct catcaagtat 660 ggacatttaa gagtgaatca gaccttcaac tggaatacaa ccaagcaaga gcattttcct 720 gataacctgg agcctaagtc atgtgacaag acccatacgt gcccaccctg tcccgctcca 780 gaactgctgg ggggacctag cgttttcttg ttcccσccaa agcccaagga caccctcatg 840 atctcacgga ctcccgaagt aacatgcgta gtagtcgacg tgagccacga ggatcctgaa 900 gtgaagttta attggtacgt ggacggagtc gaggtgcata atgccaaaac taaacctcgg 960 gaggagcagt ataacagtac ctaccgcgtg gtatccgtct tgacagtgct ccaccaggac 1020 tggctgaatg gtaaggagta taaatgcaag gtcagcaaca aagctcttcc cgccccaatt 3080 gaaaagacta tcagcaaggc caagggacaa ccccgcgagc cccaggttta cacccttcca 1140 ccttcacgag acgagctgac caagaaccag gtgtctctga cttgtctggt caaaggtttc 1200 tatccttccg acatcgcagt ggagtgggag tcaaacgggc agcctgagaa taactacaag 1260 accacacccc cagtgcttga tagcgatggg agctttttcc tctacagtaa gctgactgtg 1320 gacaaatccc gctggcagca gggaaacgtt ttctcttgta gcgtcatgca tgaggccctc 1380 cacaaccatt atactcagaa aagcctgagt ctgagtcccg gcaaa 1425
(SEQ ID NO.91) The human B7-1 fusion protein encoded by SEQ ID NO:91 has the following amino acid sequence:
MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVIHVTK EVKEVATLSC GHNVSVEELA 60
QTRIYWQKEK KMVLTMMSGD MNIWPEYKNR TIFDITHNLS IVIIALRPSD EGTYECWLK 120
YEKDAFKREH LABVTLSVKA DFPTPSISDF EIPTSNIRRI ICSTSGGFPE PHLSWLENGE 180 ELKAINTTVS QDPETELYAV SSKLDFKMTT NHSFMCLIKY GHLRVNQTFN WNTTKQEHFP 240
DMLEPKSCDK THTCPPCPAP ELLGGPSVFL FPPKPKDTLM ISRTPEVTCV WDVSHEDPE 300
VKFNWYVDGV EVHKAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI 360
EKTISKAKGQ PREPQVYTLP PSRDELTKNQ VSLTCLVKGF YPSDIAVBKE SNGQPENNYK 420
TTPPVLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HNHYTQKSLS LSPGK 475 (SEQ ID NO:92)
The amino acid sequence of the human B7-1 fusion protein of SEQ ID NO:92 without the signal sequence is:
VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKNRTIFD 60
ITNNLSIVIL ALRPSDEGTY BCWLKYEKD AFKREHLAEV TLSVKADFPT PSISDFEIPT 120 SNIRRI ICST SGGFPEPHLS WLENGEELNA IKTTVSQDPE TELYAVSSKL DFNMTTKHSF 180
MCLIKYGHLR VNQTFKWNTT KQEHFPDNLE PKSCDKTHTC PPCPAPELLG GPSVFLFPPK 240
PKDTLMISRT PEVTCVWDV SHEDPEVKFN WYVDGVEVHN AKTKPREEQY KSTYRWSVL 300
TVLHQDWLNG KEYKCKVSNK ALPAPIEKTI SKAKGQPREP QVYTLPPSRD BLTKNQVSLT 360 CLVKGFYPSD lAVEWEΞNGQ PENNYKTTPP VLDSDGSFFL YSKLTVDKSR WQQGNVFSCS 420
VMHEALHKHY TQKSLSLSPG K 441
(SEQ ID NO:93). B7-2
A representative murine B7-2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atggacccca gatgcaccat gggcttggca atccttatct ttgtgacagt cttgctgatc 60 tcagatgctg tttccgtgga gacgcaagct tatttcaatg ggactgcata tctgccgtgc 120 ccatttacaa aggctcaaaa cataagcctg agtgagctgg tagtattttg gcaggaccag ISO caaaagttgg ttctgtacga gcactatttg ggcacagaga aacttgatag tgtgaatgcc 240 aagtacctgg gccgcacgag ctttgacagg aacaactgga ctctacgact tcacaatgtt 300 cagatcaagg acatgggctc gtatgattgt tttatacaaa aaaagccacc cacaggatca 360 attatcctcc aacagacatt aacagaaσtg tcagtgatcg ccaacttcag tgaacctgaa 420 ataaaactgg ctcagaatgt aacaggaaat tctggcataa atttgacctg cacgtctaag 480 caaggtcacc cgaaacctaa gaagatgtat tttctgataa ctaattcaac taatgagtat 540 ggtgataaca tgcagatatc acaagataat gtcacagaac tgttcagtat ctccaacagc 600 ctctctcttt cattcccgga tggtgtgtgg catatgaccg ttgtgtgtgt tctggaaacg 660 gagtcaatga agatttcctc caaacctctc aatttcactc aagagtttcc atctcctcaa 720 acgtattgga aggagccaag aggtcctacg atcaagccct gcccgccttg taaatgccca 780 gctccaaatt tgctgggtgg accgtcagtc tttatcttcc cgccaaagat aaaggacgtc 840 ttgatgatta gtctgagccc catcgtgaca tgcgttgtgg tggatgtttc agaggatgac 900 cccgacgtgc aaatcagttg gttcgttaac aacgtggagg tgcataccgc tcaaacccag 960 acccacagag aggattataa cagcaccctg cgggtagtgt ccgccctgcc gatccagcat 1020 caggattgga tgagcgggaa agagttcaag tgtaaggtaa acaacaaaga tctgccagcg 1080 ccgattgaac gaaccattag caagccgaaa gggagcgtgσ gcgcacctca ggtttacgtc 1140 cttcctccac cagaagagga gatgacgaaa aagcaggtga ccctgacatg catggtaact 1200 gactttatgc cagaagatat ttacgtggaa tggactaata acggaaagac agagctcaat 1260 tacaagaaca ctgagcctgt tctggattct gatggcagct actttatgta ctccaaattg 1320 agggtcgaga agaagaattg ggtcgagaga aacagttata gttgctcagt ggtgcatgag 1380 ggcctccata atcatcacac cacaaagtcc ttcagccgaa cgcccgggaa a 1431
(SEQ ID NO:94)
The murine B7-2 fusion protein encoded by SEQ ID NO: 84 has the following amino acid sequence:
MDPRCTMGLA ILIFVTVLLI SDAVSVETQA YPNGTAYLPC PFTKAQNISL SELWFWQDQ 60 QKLVLYEHYL GTEKLDSVNA KYLGRTSFDR NNWTLRLHNV QIKDMGSYDC FIQKKPPTGS 120
IILQQTLTEL SVIANFSEPΞ IKLAQNVTGK SGINLTCTSK QGHPKPKKMY FLITNSTNEY 180
GDNMQISQDN VTELFSISNS LSLSFPDGVW HMTWCVLET ESMKISSKPL NFTQEFPSPQ 240
TYWKEPRGPT IKPCPPCKCP APNLLGGPSV FIFPPKIKDV LMISLSPIVT CWVDVSEDD 300
PDVQISWFVN NVEVHTAQTQ THREDYNSTL RWSALPIQH QDWMSGKEFK CKVNHKDLPA 360 PIERTISKPK GSVRAPQVYV LPPPEEEMTK KQVTLTCMVT DFMPEDIYVE WTNKGKTELN 420 YKNTEPVLDS DGSYFMYSKL RVEKKNWVER NSYSCSVVHE GLHHHHTTKS FSRTPGK 477
(SEQ ID NO:95)
The amino acid sequence of the murine B7-2 fusion protein of SEQ ID NO:95 without the signal sequence is: VSVETQAYFN GTAYLPCPFT KAQNISLSEL WFWQDQQKL VLYEHYLGTE KLDSVNAKYL 60
GRTSFDRNNW TLRLHNVQIK DMGSYDCFIQ KKPPTGSIIL QQTLTELSVI ANFSBPEIKL 120
AQMVTGNSGI NLTCTSKQGH PKPKKMYFLI TNSTNEYGDW MQISQDMVTE LFSISNSLSL 180
SFPDGVWHMT WCVtETESM KISSKPLNFT QEFPΞPQTYW KEPRGPTIKP CPPCKCPAPN 240
LLGGPSVFIF PPKIKDVLMI SLSPIVTCW VDVSEDDPDV QISWFVNHVE VHTAQTQTHR 300 EDYNSTLRW SALPIQHQDW MSGKEFKCKV NNKDLPAPIE RTISKPKGSV RAPQVYVLPP 360
PEEEMTKKQV TLTCMVTDFM PEDIYVEWTN NGKTELNYKN TEPVLDSDGS YFMYSKLRVE 420
KKNWVERNSY SCSWHEGLH NHHTTKSFSR TPGK 454
(SEQ ID NO:96).
A representative human B 7-2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggactga gtaacattct ctttgtgatg gccttcctgc tctctggtgc tgctcctctg 60 aagattcaag cttatttcaa tgagactgca gacctgccat gccaatttgc aaactctcaa 120 aaccaaagcc tgagtgagct agtagtattt tggcaggaco aggaaaactt ggttctgaat 180 gaggtatact taggcaaaga gaaatttgac agtgttcatt ccaagtatat gggccgcaca 240 agttttgatt cggacagttg gaccctgaga cttcacaatc ttcagatcaa ggacaagggc 300 ttgtatcaat gtatcatcca tcacaaaaag cccacaggaa tgattcgcat ccaccagatg 360 aattctgaac tgtcagtgct tgctaacttc agtcaacctg aaatagtacc aatttctaat 420 ataacagaaa atgtgtacat aaatttgacc tgctcatcta tacacggtta cccagaacct 430 aagaagatga gtgttttgct aagaaccaag aattcaacta tcgagtatga tggtgttatg 540 cagaaatctc aagataatgt cacagaactg tacgacgttt ccatcagctt gtctgtttca 600 ttccctgatg ttacgagcaa tatgaccatc ttctgtattc tggaaactga caagacgcgg 660 cttttatctt cacctttctc tatagagctt gaggaccctc agcctccccc agaccacatt 720 ccttggatta cagctgtact tgagcctaag tcatgtgaca agacccatac gtgcccaccc 780 tgtcccgctc cagaactgct ggggggacct agcgttttct tgttcccccc aaagcccaag 840 gacaccctca tgatctcacg gactcccgaa gtaacatgcg tagtagtcga cgtgagccac 900 gaggatcctg aagtgaagtt taattggtac gtggacggag tcgaggtgca taatgccaaa 960 actaaacctc gggaggagca gtataacagt acctaccgcg tggtatccgt cttgacagtg 1020 ctccaccagg actggctgaa tggtaaggag tataaatgca aggtcagcaa caaagctctt 1080 cccgccccaa ttgaaaagac tatcagcaag gccaagggac aaccccgcga gocccaggtt 1140 tacacccttc caccttcacg agacgagctg accaagaacc aggtgtctct gacttgtctg 1200 gtcaaaggtt tctatccttc cgacatcgca gtggagtggg agtcaaacgg gcagcctgag 1260 aataactaca agaccacacc cccagtgctt gatagcgatg ggagcttttt cctctacagt 1320 aagctgactg tggacaaatc ccgctggcag cagggaaacg ttttctcttg tagcgtcatg 1380 catgaggccc tccacaacca ttatactcag aaaagcctga gtctgagtcc cggcaaa 1437
(SEQ ID NO:97)
The human B7-2 fusion protein encoded by SEQ ID NO:97 has the following amino acid sequence:
MGLSNILFVM AFLLSGAAPL KIQAYFMETA DLPCQFARSQ NQSLSELVVF WQDQENLVLN 60 EVYLGKEKFD SVHSKYMGRT SFDSDSWTLR LHNLQIKDKG LYQCIIHHKK PTGMIRIHQM 120
NSELSVLANF SQPEIVPISN ITENVYIKLT CSSIHGYPEP KKMSVLLRTK NSTIEYDGVM 180
QKSQDNVTEL YDVSISLSVS FPDVTSNMTI FCILETDKTR LLSSPFSIEL EDPQPPPDHI 240
PWITAVLEPK SCDKTHTCPP CPAPELLGGP SVFLFPPKPK DTLMΪSRTPE VTCWVDVSH 300 EDPEVKFNWY VDGVEVHNAK TKPREEQYNS TYRWSVLTV LHQDWLNGKE YKCKVSNKΆL 360
PAPIEKTISK AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDm VEWESNGQPE 420
NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK 479
(SEQ ID NO:98)
The amino acid sequence of the human B 7-2 fusion protein of SEQ ID NO: 98 without the signal sequence is:
AYFNETADLP CQFAKSQNQS LSELWFWQD QENLVLNEVY LGKEKFDSVH SKYMGRTSFD 60
SDSWTLRLHN LQIKDKGLYQ CIIHHKKPTG MIRIHQMWSE LSVLANFSQP EIVPISNITE 120
KVYINLTCSS IHGYPEPKKM SVLLRTKNST lEYDGVMQKS QDNVTELYDV SISLSVSFPD 180
VTSNMTIFCI LETDKTRLLS SPFSIELEDP QPPPDHIPWI TAVLEPKSCD KTHTCPPCPA 240 PELLGGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP 300
REEQYNSTYR WSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG QPREPQVYTL 360
PPSRDELTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSKLT 420
VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK 456
(SEQ ID NO:99) B7-H5
A representative murine B7-H5 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggtgtcc ccgcggtccc agaggccagc agcccgcgct ggggaaccct gctccttgct 60 attttcctgg ctgcatccag aggtctggta gcagccttca aggtσaccac tccatattct 120 ctctatgtgt gtcccgaggg acagaatgcc accctcacct gcaggattct gggccccgtg 180 tccaaagggc acgatgtgac catctacaag acgtggtacc tcagctcacg aggcgaggtc 240 cagatgtgca aagaacaccg gcccatacgc aacttcacat tgcagcacct tcagcaccac 300 ggaagccacc tgaaagccaa cgccagccat gaccagcccc agaagcatgg gctagagcta 360 gcttctgacc accacggtaa cttctctatc accctgcgca atgtgacccc aagggacagc 420 ggcctctact gctgtctagt gatagaatta aaaaaccacc acccagaaca acggttctac 480 gggtccatgg agctacaggt acaggcaggc aaaggctcgg ggtccacatg catggcgtct 540 aatgagcagg acagtgacag catcacggct gagccaagag gtcctacgat caagccctgc 600 ccgccttgta aatgcccagc tccaaatttg ctgggtggac ogtcagtctt tatcttcccg 660 ccaaagataa aggacgtctt gatgattagt ctgagcccca tcgtgacatg cgttgtggtg 720 gatgtttcag aggatgaccc cgacgtgcaa atcagttggt tcgttaacaa cgtggaggtg 780 cataccgctc aaacccagac ccacagagag gattataaca gcaccctgcg ggtagtgtcσ 840 gccctgccga tccagcatca ggattggatg agcgggaaag agttcaagtg taaggtaaac 900 aacaaagatc tgccagcgcc gattgaacga accattagca agccgaaagg gagcgtgcgc 960 gcacctcagg tttacgtcct tcctccacca gaagaggaga tgacgaaaaa gcaggtgacc 1020 ctgacatgca tggtaactga ctttatgcca gaagatattt acgtggaatg gactaataac 1080 ggaaagacag agctcaatta caagaacact gagcctgttc tggattctga tggcagctac 1140 tttatgtact ccaaattgag ggtcgagaag aagaattggg tcgagagaaa cagttatagt 1200 tgctcagtgg tgcatgaggg cctccataat catcacacca caaagtcctt cagccgaacg 1260 cccgggaaa 1269 (SEQ ID NO: 100)
The murine B7-H5 fusion protein encoded by SEQ ID NO: 100 has the following amino acid sequence:
MGVPAVPEAS SPRWGTLLLA IFLAASRGLV AAFKVTTFYS LYVCPEGQNA TLTCRILGPV 60 SKGHDVTIYK THYLSSRGEV QMCKEHRPIR NFTLQHLQHH GSHLKANASH DQPQKHGLEL 120
ASDHHGNFSI TLRNVTPRDS GLΎCCLVIEL KNHHPEQRFY GSMELQVQAG KGSGSTCMAS 180
NEQDSDSITA BPRGPTIKPC PPCKCPAPNL LGGPSVFIFP PKIKDVLMIS LSPIVTCWV 240
DVSEDDPDVQ ISWFVNNVEV HTAQTQTHRE DYNSTLRWS ALPIQHQDWM SGKEFKCKVN 300
NKDLPAPIER TISKPKGSVR APQVYVLPPP EEEMTKKQVT LTCMVTDFMP EDIYVEWTNN 360 GKTELNYKNT EPVLDSDGSY FMYSKLRVEK KNWVERNSYS CSWHEGLHN HHTTKSFSRT 420
PGK 423
(SEQIDNO:101)
The amino acid sequence of the murine B7-H5 fusion protein of SEQ ID NO: 101 without the signal sequence is: FKVTTPYSLY VCPEGQNATL TCRILGPVSK GHDVTIYKTW YLSSRGEVQM CKEHRPIRNF 60
TLQHLQHHGS HLKANASHDQ PQKHGLELAS DHHGNFSITL RNVTPRDSGL YCCLVIELKN 120
HHPEQRFYGS MELQVQAGKG SGSTCMASNE QDSDSITAEP RGPTIKPCPP CKCPAPNLLG 180
GPSVFIFPPK IKDVLMISLS PIVTCVWDV SEDDPDVQIS WFVNNVEVHT AQTQTHREDY 240
NSTLRWSAL PIQHQDWMSG KEFKCKVNNK DLPAPIERTI SKPKGSVRAP QVYVLPPPEE 300 EMTKKQVTLT CMVTDFMPED IYVEWTRNGK TELNYKNTEP VLDSDGSYFM YSKLRVEKKN 360
WVERNSYSCS WHEGLHNHH TTKSFSRTPG K 391
(SEQ ID NO: 102).
A representative human B7-H5 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to: atgggcgtcc ccacggccct ggaggccggc agctggcgct ggggatccct gctcttcgct 60 ctcttcctgg ctgcgtccct aggtccggtg gcagccttca aggtcgccac gccgtattcc 120 ctgtatgtct gtcccgaggg gcagaacgtc accctcacct gcaggctctt gggccctgtg 180 gacaaagggc acgatgtgac cttctacaag acgtggtacc gcagctcgag gggcgaggtg 240 cagacctgct cagagcgccg gcccatccgc aacctcacgt tccaggacct tcacctgcac 300 catggaggcc accaggctgc caacaccagc cacgacctgg σtcagcgcca cgggctggag 360 tcggcctccg accaccatgg caaσttctcc atcaccatgc gcaacctgac cctgctggat 420 agcggcctct actgctgcct ggtggtggag atcaggcacc accactcgga gcacagggtc 480 catggtgcca tggagctgca ggtgcagaca ggcaaagatg caccatccaa ctgtgtggtg 540 taccσatcct cctcccagga tagtgaaaac atcacggctg agcctaagtc atgtgacaag 600 acccatacgt gcccaccctg tcccgctcca gaactgctgg ggggacctag αgttttcttg 660 ttccccccaa agcccaagga caccctcatg atctcacgga ctcccgaagt aacatgcgta 720 gtagtcgacg tgagccacga ggatcctgaa gtgaagttta attggtβcgt ggacggagtc 780 gaggtgcata atgccaaaac taaacctcgg gaggagcagt ataacagtac ctaccgcgtg 840 gtatccgtct tgacagtgct ccaccaggac tggctgaatg gtaaggagta taaatgcaag 900 gtcagcaaca aagctcttcc cgccccaatt gaaaagacta tcagcaaggc caagggacaa 960 ccccgcgagc cccaggttta cacccttcca ccttcacgag acgagctgac caagaaccag 1020 gtgtctctga cttgtctggt caaaggtttc tatccttccg acatcgcagt ggagtgggag 1080 tcaaacgggc agcctgagaa taactacaag accacacccc cagtgcttga tagcgatggg 1140 agctttttcc tctacagtaa gctgactgtg gacaaatccc gctggcagca gggaaacgtt 1200 ttctcttgta gcgtcatgca tgaggccctc cacaaccatt atactcagaa aagcctgagt 1260 ctgagtcccg gcaaa 1275
(SEQ ID NO: 103) The human B7-H5 fusion protein encoded by SEQ ID NO: 103 has the following amino acid sequence:
MGVPTALEAG ΞWRWGSLLFA LFLAASLGPV AAFKVATPYS LYVCPEGQNV TLTCRLLGPV 60
DKGHDVTFYK TWYRSSRGEV QTCSERRPIR NLTFQDLHLH HGGHQAANTS HDLAQRHGLE 120
SASDHHGNFS ITMRNLTLLD SGLYCCLVVE IRHHHSEHRV HGAMELQVQT GKDAPSNCW 180 YPSSSQDSER ITAEPKSCDK THTCPPCPAP ELLGGPSVFL FPPKPKDTLM ISRTPEVTCV 240
WDVSHEDPE VKFNWYVDGV EVHNAKTKPR EEQYHSTYRV VSVLTVLHQD WLNGKEYKCK 300
VSNKALPAPI EKTISKAKGQ PREPQVYTLP PSRDELTKNQ VSLTCLVKGF YPSDIAVEWE 360
SNGQPENNYK TTPPVLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HWHYTQKSLS 420
LSPGK 425 (SEQ ID NO:104)
The amino acid sequence of the human B7-H5 fusion protein of SEQ ID NO: 104 without the signal sequence is:
FKVATPYSLY VCPEGQNVTL TCRLLGPVDK GHDVTFYKTW YRSSRGEVQT CSERRPIRNL 60
TFQDLHLHHG GHQAANTSHD LAQRHGLESA SDHHGNFSIT MRNLTLLDSG LYCCLWEIR 120 HHHSEHRVHG AMELQVQTGK DAPSNCWYP SSSQDSENIT AEPKSCDKTH TCPPCPAPEL 180
LGGPSVFLFP PKPKDTLMIS RTPEVTCWV DVSHEDPEVK FNWYVDGVEV HNAKTKPREE 240
QYNSTYRWS VLTVLHQDWL NGKEYKCKVS NKALPAPIEK TISKAKGQPR EPQVYTLPPS 300
RDELTKNQVS LTCLVKGFYP SDIAVEWESN GQPENMYKTT PPVLDSDGΞF FLYSKLTVDK 360
SRWQQGNVFS CSVMHEALHN HYTQKSLSLS PGK 393 (SEQ ID NO: 105).
F. Fusion protein dimers and multimers
The fusion proteins disclosed herein can be dimerized or multimerized. Dimerization or multimerization can occur between or among two or more fusion proteins through dimerization or multimerization domains, including those described above. Alternatively, dimerization or multimerization of fusion proteins can occur by chemical crossHnking. Fusion protein dimers can be homodimers or heterodimers. Fusion protein multimers can be homomultimers or heteromultimers.
Fusion protein dimers as disclosed herein are of formula II:
N-Ri-R2-R3-C N-R4-R5-R6-C
or, alternatively, are of formula III: N-R1-R2-R3-C C-R4-R5-Re-N
wherein the fusion proteins of the dimer provided by formula II are defined as being in a parallel orientation and the fusion proteins of the dimer provided by formula III are defined as being in an antiparallel orientation. Parallel and antiparallel dimers are also referred to as cis and trans dimers, respectively. "N" and "C" represent the N- and C-termini of the fusion protein, respectively. The fusion protein constituents "Ri", "R2" and "R3" are as defined above with respect to formula I. With respect to both formula II and formula III, "R4" is a costimulatory polypeptide domain or a antigen- binding targeting domain, "R5" is a peptide/polypeptide linker domain, and "R6" is a costimulatory polypeptide domain or a antigen-binding targeting domain, wherein "R6" is a costimulatory polypeptidedomain when "R4" is a antigen-binding targeting domain, and "R6" is a antigen-binding targeting domain when "R4" is a costimulatory polypeptide domain. In one embodiment, when "Ri" is a costimulatory polypeptide domain, "R4" is also a costimulatory polypeptidedomain, and "R3" and "R6" are both antigen- binding targeting domains. In another embodiment, when "R1" is a antigen- binding targeting domains, "R4" is also a antigen-binding targeting domains, and "R3" and "R^" are both costimulatory polypeptide domains. In a preferred embodiment, "R1" and "R4" are costimulatory polypeptide domains, and "R3" and "Re" are antigen-binding targeting domains. Fusion protein dimers of formula II are defined as homodimers when
"Ri" = "R4", "R2" = "R5" and "R3" = "R6". Similarly, fusion protein dimers of formula III are defined as homodimers when "R1" = "R6", "R2" = "R5" and "R3" = "R4". Fusion protein dimers are defined as heterodimers when these conditions are not met for any reason. For example, heterodimers may contain domain orientations that meet these conditions (i.e., for a dimer according to formula II, "R1" and "R4" are both costimulatory polypeptide domains, "R2" and "R5" are both peptide/polypeptide liker domains and "R3" and "R6" are both antigen-binding targeting domains), however the species of one or more of these domains is not identical. For example, although "R3" and "R6" may both be antigen-binding targeting domains, they may each target a distinct antigen. Alternatively, "R3" and "R6" may both be antigen- binding targeting domains that target the same antigen, but may be distinct classes of binding domains (i.e., "R3" is a natural ligand for a receptor and "R6" is a single chain variable fragment (scFv) that binds to the same receptor).
Dimers of fusion proteins that contain either a CHI or CL region of an immunoglobulin as part of the polypeptide linker domain preferably form heterodimers wherein one fusion protein of the dimer contains a CHI region and the other fusion protein of the dimer contains a CL region.
Fusion proteins can also be used to form multimers. As with dimers, multimers may be parallel multimers, in which all fusion proteins of the multimer are aligned in the same orientation with respect to their N- and C- termini. Multimers may be antiparallel multimers, in which the fusion proteins of the multimer are alternatively aligned in opposite orientations with respect to their N- and C-termini. Multimers (parallel or antiparallel) can be either homomul timers or heteromultimers.
G. Peptide and polypeptide modifications
The disclosed fusion proteins may be modified by chemical moieties that may be present in polypeptides in a normal cellular environment, for example, phosphorylation, methylalion, amidation, sulfation, acylation, glycosylation, sumoylation and ubiquitylation. Fusion proteins may also be modified with a label capable of providing a detectable signal, either directly or indirectly, including, but not limited to, radioisotopes and fluorescent compounds.
The fusion proteins disclosed herein may also be modified by chemical moieties that are not normally added to polypeptides in a cellular environment. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues. Another modification is cyclization of the protein.
Examples of chemical derivatives of the polypeptides include lysinyl and amino terminal residues derivatized with succinic or other carboxylic acid anhydrides. Derivatization with a cyclic carboxylic anhydride has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; t?-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate. Carboxyl side groups, aspartyl or glutamyl, may be selectively modified by reaction with carbodiimides (R-N=C=N-R') such as l-cyclohexyl-3-(2-morρholinyl-(4- ethyl)carbodiimide or l~ethyl-3-(4-azonia-454-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues can be converted to asparaginyl and glutaminyl residues by reaction with ammonia. Fusion proteins may also include one or more D-amino acids that are substituted for one or more L-amino acids. III. Isolated nucleic acid molecules
Isolated nucleic acid sequences encoding the fusion proteins disclosed herein are also provided. An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally- occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule independent of other sequences (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment), as well as recombinant DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, a cDNA library or a genomic library, or a gel slice containing a genomic DNA restriction digest, is not to be considered an isolated nucleic acid.
Nucleic acids encoding fusion polypeptides may be optimized for expression in the expression host of choice. Codons may be substituted with alternative codons encoding the same amino acid to account for differences in codon usage between the mammal from which the nucleic acid sequence is derived and the expression host. In this manner, the nucleic acids may be synthesized using expression host-preferred codons.
Nucleic acids can be DNA, RNA, or nucleic acid analogs. Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone. Such modification can improve, for example, stability,, hybridization, or solubility of the nucleic acid. Modifications at the base moiety can include deoxyuridine for deoxythymidine, and 5-methyl-2'- deoxycytidine or 5-bromo~2'-deoxycytidine for deoxycytidine. Modifications of the sugar moiety can include modification of the T hydroxyl of the ribose sugar to form 2'-O-methyl or 2'-O-allyl sugars. The deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six merabered, morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone and the four bases are retained. See, for example, Summerton and Weller (1997) Antisense Nucleic Acid Drug Dev. 7:187-195; and Hyrup et al (1996) Bioorgan. Med Chem. 4:5-23. In addition, the deoxyphosphate backbone can be replaced with, for example, a phosphorothioate or phosphorodithioate backbone, a phosphoroamidite, or an alkyl phosphotriester backbone.
Nucleic acids encoding polypeptides disclosed herein can be administered to subjects in need thereof. Nucleic delivery involves introduction of "foreign" nucleic acids into a cell and ultimately, into a live animal. Compositions and methods for delivering nucleic acids to a subject are known in the art (see Understanding Gene Therapy, Lemoine, N.R., ed., BIOS Scientific Publishers, Oxford, 2008).
One approach includes nucleic acid transfer into primary cells in culture followed by autologous transplantation of the ex vivo transformed cells into the host, either systemically or into a particular organ or tissue. In one embodiment, vectors containing nucleic acids encoding fusion proteins are transfected into cells that are administered to a subject in need thereof. Ex vivo methods can include, for example, the steps of harvesting cells from a subject, culturing the cells, transducing them with an expression vector, and maintaining the cells under conditions suitable for expression of the encoded polypeptides. These methods are known in the art of molecular biology. The transduction step can be accomplished by any standard means used for ex vivo gene therapy, including, for example, calcium, phosphate, Kpofection, electroporatϊon, viral infection, and biolistic gene transfer. Alternatively, liposomes or polymeric microparticles can be used. Cells that have been successfully transduced then can be selected, for example, for expression of the coding sequence or of a drag resistance gene. The cells then can be lethally irradiated (if desired) and injected or implanted into the subject. In vivo nucleic acid therapy can be accomplished by direct transfer of a functionally active DNA into mammalian somatic tissue or organ in vivo. For example, nucleic acids encoding polypeptides disclosed herein can be administered directly to lymphoid tissues or tumors. Alternatively „ lymphoid tissue specific targeting can be achieved using lymphoid tissue-specific transcriptional regulatory elements (TREs) such as a B lymphocyte-, T lymphocyte-, or dendritic cell-specific TRE. Lymphoid tissue specific TREs are known in the art.
Nucleic acids may also be administered in vivo by viral means. Nucleic acid molecules encoding fusion proteins may be packaged into retrovirus vectors using packaging cell lines that produce replication- defective retroviruses, as is well-known in the art. Other virus vectors may also be used, including recombinant adenoviruses and vaccinia virus, which can be rendered non-replicating. In addition to naked DNA or RNA, or viral vectors, engineered bacteria may be used as vectors. Nucleic acids may also be delivered by other carriers, including liposomes, polymeric micro- and nanoparticles and poly cations such as asialoglycoprotein/poly Iy sine .
In addition to virus- and carrier-mediated gene transfer in vivo, physical means well-known in the art can be used for direct transfer of DNA5 including administration of plasmid DNA and particle-bombardment mediated gene transfer.
C. Vectors and host cells
Nucleic acids, such as those described above, can be inserted into vectors for expression in cells. As used herein, a "vector" is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Vectors can be expression vectors. An "expression vector" is a vector that includes one or more expression control sequences, and an "expression control sequence" is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
Nucleic acids in vectors can be operably linked to one or more expression control sequences. As used herein, "operably linked" means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest. Examples of expression control sequences include promoters, enhancers, and transcription terminating regions. A promoter is an expression control sequence composed of a region of a DNA molecule, typically within 100 nucleotides upstream of the point at which transcription starts (generally near the initiation site for RNA polymerase II). To bring a coding sequence under the control of a promoter, it is necessary to position the translation initiation site of the translational reading frame of the polypeptide between one and about fifty nucleotides downstream of the promoter. Enhancers provide expression specificity in terms of time, location, and level. Unlike promoters, enhancers can function when located at various distances from the transcription site.
An enhancer also can be located downstream from the transcription initiation site. A coding sequence is "operably linked" and "under the control" of expression control sequences in a cell when RNA polymerase is able to transcribe the coding sequence into mRNA, which then can be translated into the protein encoded by the coding sequence.
Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalo virus, retroviruses, vaccinia viruses, adenoviruses, and adeno-associated viruses. Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, WI), Clontech (Palo Alto, CA), Stratagene (La Jolla, CA), and Invitrogen Life Technologies (Carlsbad, CA).
Vectors containing mucleic acids to be expressed can be transferred into host cells. The term "host cell" is intended to include prokaryotic and eukaryotic cells into which a recombinant expression vector can be introduced. As used herein, "transformed" and "transfected" encompass the introduction of a nucleic acid molecule (e.g., a vector) into a cell by one of a number of techniques. Although not limited to a particular technique, a number of these techniques are well established within the art. Prokaryotic cells can be transformed with nucleic acids by, for example, electroporation or calcium chloride mediated transformation. Nucleic acids can be transfected into mammalian cells by techniques including, for example, calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, or microinjection. Host cells (e.g., a prokaryotic cell or a eukaryotic cell such as a CHO cell) can be used to, for example, produce the fusion proteins described herein. In some embodiments, a host cell (e.g., an antigen presenting cell) can be used to express the fusion proteins disclosed herein for presentation to a T cell. IV. Immunogenic compositions
Vaccines require strong T cell response to eliminate cancer cells and infected cells. The fusion proteins described herein can be administered as a component of a vaccine to provide a costimulatory signal to T cells. Vaccines disclosed herein include antigens, a source of fusion proteins, and optionally, adjuvants.
A. Antigens
Antigens can be any substance that evokes an immunological response in a subject. Representative antigens include peptides, proteins, polysaccharides, saccharides, lipids, nucleic acids, or combinations thereof. The antigen can be derived from a tumor or from a transformed cell such as a cancer or leukemic cell and can be a whole cell or immunogenic component thereof, e.g., cell wall components or molecular components thereof. Suitable antigens are known in the art and are available from commercial sources. The antigens may be purified or partially purified polypeptides derived from tumors or other sources. The antigens can be recombinant polypeptides produced by expressing DNA encoding the polypeptide antigen in a heterologous expression system. The antigens can be DNA encoding all or part of an antigenic protein. The DNA may be in the form of vector DNA such as plasmid DNA. Antigens may be provided as single antigens or may be provided in combination. Antigens may also be provided as complex mixtures of polypeptides or nucleic acids.
B. Fusion proteins Any of the fusion proteins disclosed herein are suitable for use in the immunogenic compositions. Sources of fusion proteins include any fusion protein or nucleic acid encoding any fusion protein disclosed herein, or host cells containing vectors that express any of the fusion proteins disclosed herein. The fusion proteins may be monomeric, homodimeric, heterodimeric, homomultimeric or heteromultimeric.
C. Adjuvants
Optionally, the vaccines described herein may include adjuvants. The adjuvant can be, but is not limited to, one or more of the following: oil emulsions (e.g., Freund's adjuvant); saponin formulations; virosomes and viral-like particles; bacterial and microbial derivatives; immuno stimulatory oligonucleotides; ADP-ribosylating toxins and detoxified derivatives; alum; BCG; mineral-containing compositions (e.g., mineral salts, such as aluminium salts and calcium salts, hydroxides, phosphates, sulfates, etc.); bioadhesives and/or mucoadhesives; microparticles; liposomes; polyoxyethylene ether and polyoxyethylene ester formulations; polyphosphazene; muramyl peptides; imidazoquinolone compounds; and surface active substances (e.g. lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol). Additional adjuvants may also include immunomodulators such as cytokines, interleukins (e.g., IL-I, IL-2, IL-4, IL-5, ΪL-6, IL-7, IL- 12, etc.), interferons (e.g., interferon-.gamrna.), macrophage colony stimulating factor, and tumor necrosis factor. In addition to the fusion proteins disclosed herein, other costimulatory molecules, including other polypeptides of the B7 family, may be co-administered. Such proteinaceous adjuvants may be provided as the full-length polypeptide or an active fragment thereof, or in the form of DNA, such as plasmid DNA. V. Pharmaceutical compositions
Pharmaceutical compositions including fusion polypeptides disclosed herein are provided. Pharmaceutical compositions containing peptides or polypeptides may be for administration by parenteral (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), transdermal (either passively or using iontophoresis or electroporation), or transmucosal (nasal, vaginal, rectal, or sublingual) routes of administration or using bioerodible inserts and can be formulated in dosage forms appropriate for each route of administration.
In some in vivo approaches, the compositions disclosed herein are administered to a subject in a therapeutically effective amount. As used herein the term "effective amount" or "therapeutically effective amount" means a dosage sufficient to treat, inhibit, or alleviate one or more symptoms of the disorder being treated or to otherwise provide a desired pharmacologic and/or physiologic effect. The precise dosage will vary according to a variety of factors such as subject-dependent variables (e.g., age, immune system health, etc.), the disease, and the treatment being effected. Therapeutically effective amounts of the fusion proteins disclosed herein cause an immune response against a tumor or an infectious agent to be activated or sustained. Therapeutically effective amounts of the fusion proteins disclosed herein also costimulate the subject's T cells..
For the compositions disclosed herein and nucleic acids encoding the same, as further studies are conducted, information will emerge regarding appropriate dosage levels for treatment of various conditions in various patients, and the ordinary skilled worker, considering the therapeutic context, age, and general health of the recipient, will be able to ascertain proper dosing. The selected dosage depends upon the desired therapeutic effect, on the route of administration, and on the duration of the treatment desired. Generally dosage levels of 0.001 to 10 mg/kg of body weight daily are administered to mammals. Generally, for intravenous injection or infusion, dosage may be lower.
1. Formulations for parenteral administration In a preferred embodiment, compositions disclosed herein, including those containing peptides and polypeptides, are administered in an aqueous solution, by parenteral injection. The formulation may also be in the form of a suspension or emulsion. In general, pharmaceutical compositions are provided including effective amounts of a peptide or polypeptide, and optionally include pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents sterile water, buffered saline of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength; and optionally, additives such as detergents and solubilizing agents (e.g., TWEEN 20, TWEEN 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), and preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol). Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and com oil, gelatin, and injectable organic esters such as ethyl oleate. The formulations may be lyophilized and redissolved/resuspended immediately before use. The formulation may be sterilized by, for example, filtration through a bacteria retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions.
2. Formulations for topical administration Fusion proteins disclosed herein can be applied topically. Topical administration does not work well for most peptide formulations, although it can be effective especially if applied to the lungs, nasal, oral (sublingual, buccal), vaginal, or rectal mucosa.
Compositions can be delivered to the lungs while inhaling and traverse across the lung epithelial lining to the blood stream when delivered either as an aerosol or spray dried particles having an aerodynamic diameter of less than about 5 microns. A wide range of mechanical devices designed for pulmonary delivery of therapeutic products can be used, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art. Some specific examples of commercially available devices are the Ultravent nebulizer (Mallinckrodt Inc., St. Louis, Mo.); the Acorn II nebulizer (Marquest Medical Products, Englewood, Colo.); the Ventolin metered dose inhaler (Glaxo Inc., Research Triangle Park, N.C.); and the Spinhaler powder inhaler (Fisons Corp., Bedford, Mass.). Nektar, Alkermes and Mannkind all have inhalable insulin powder preparations approved or in clinical trials where the technology could be applied to the formulations described herein.
Formulations for administration to the mucosa will typically be spray dried drug particles, which may be incorporated into a tablet, gel, capsule, suspension or emulsion. Standard pharmaceutical excipients are available from any formulator. Oral formulations may be in the form of chewing gum, gel strips, tablets or lozenges.
Transdermal formulations may also be prepared. These will typically be ointments, lotions, sprays, or patches, all of which can be prepared using standard technology. Transdermal formulations will require the inclusion of penetration enhancers.
3. Controlled delivery polymeric matrices Fusion proteins disclosed herein may also be administered in controlled release formulations. Controlled release polymeric devices can be made for long term release systemically following implantation of a polymeric device (rod, cylinder, film, disk) or injection (microparticles). The matrix can be in the form of microparticles such as microspheres, where peptides are dispersed within a solid polymeric matrix or microcapsules, where the core is of a different material than the polymeric shell, and the peptide is dispersed or suspended in the core, which may be liquid or solid in nature. Unless specifically defined herein, microparticles, microspheres, and microcapsules are used interchangeably. Alternatively, the polymer may be cast as a thin slab or film, ranging from nanometers to four centimeters, a powder produced by grinding or other standard techniques, or even a gel such as a hydrogel.
Either non-biodegradable or biodegradable matrices can be used for delivery of fusion polypeptides or nucleic acids encoding the fusion polypeptides, although biodegradable matrices are preferred. These may be natural or synthetic polymers, although synthetic polymers are preferred due to the better characterization of degradation and release profiles. The polymer is selected based on the period over which release is desired. In some cases linear release may be most useful, although in others a pulse release or "bulk release" may provide more effective results. The polymer may be in the form of a hydrogel (typically in absorbing up to about 90% by weight of water), and can optionally be crosslinked with multivalent ions or polymers.
The matrices can be formed by solvent evaporation, spray drying, solvent extraction and other methods known to those skilled in the art. Bioerodible microspheres can be prepared using any of the methods developed for making microspheres for drug delivery, for example, as described by Mathiowitz and Langer, J Controlled Release, 5:13-22 (1987); Mathiowitz, et al, Reactive Polymers, 6:275-283 (1987); and Mathiowitz, et ύ., J. Appl. Polymer Set, 35:755-774 (1988). The devices can be formulated for local release to treat the area of implantation or injection - which will typically deliver a dosage that is much less than the dosage for treatment of an entire body - or systemic delivery. These can be implanted or injected subcutaneously, into the muscle, fat, or swallowed. VI. Methods of manufacture
A. Methods for producing fusion proteins Isolated fusion proteins can be obtained by, for example, chemical synthesis or by recombinant production in a host cell. To recombinantly produce a fusion protein, a nucleic acid containing a nucleotide sequence encoding the fusion protein can be used to transform, transduce, or transfect a bacterial or eukaryotic host cell (e.g., an insect, yeast, or mammalian cell). In general, nucleic acid constructs include a regulatory sequence operably linked to a nucleotide sequence encoding the fusion protein. Regulatory sequences (also referred to herein as expression control sequences) typically do not encode a gene product, but instead affect the expression of the nucleic acid sequences to which they are operably linked.
Useful prokaryotic and eukaryotic systems for expressing and producing polypeptides are well know in the art include, for example, Escherichia coli strains such as BL-21 , and cultured mammalian cells such as CHO cells.
In eukaryotic host cells, a number of viral-based expression systems can be utilized to express fusion proteins. Viral based expression systems are well known in the art and include, but are not limited to, baculoviral, SV40, retroviral, or vaccinia based viral vectors. Mammalian cell lines that stably express variant fusion proteins can be produced using expression vectors with appropriate control elements and a selectable marker. For example, the eukaryotic expression vectors pCR3.1 (Invitrogen Life Technologies) and p91023(B) (see Wong et at (1985) Science 228 : 810-815) are suitable for expression of variant costimulatory polypeptides in, for example, Chinese hamster ovary (CHO) cells, COS-I cells, human embryonic kidney 293 cells, NIH3T3 cells, BHK21 cells, MDCK cells, and human vascular endothelial cells (HUVEC). Following introduction of an expression vector by electroporation, lipofection, calcium phosphate, or calcium chloride co-precipitation, DEAE dextran, or other suitable transfection method, stable cell lines can be selected (e.g., by antibiotic resistance to G418, kanamycin, or hygromycin). The transfected cells can be cultured such that the polypeptide of interest is expressed, and the polypeptide can be recovered from, for example, the cell culture supernatant or from lysed cells. Alternatively, a fusion protein can be produced by (a) Hgating amplified sequences into a mammalian expression vector such as pcDN A3 (Invitrogen Life Technologies), and (b) transcribing and translating in vitro using wheat germ extract or rabbit reticulocyte lysate. Fusion proteins can be isolated using, for example, chromatographic methods such as DEAE ion exchange, gel filtration, and hydroxylapatite chromatography. For example, a costimulatory polypeptide in a cell culture supernatant or a cytoplasmic extract can be isolated using a protein G column. In some embodiments, fusion proteins can be engineered to contain an additional domain containing amino acid sequence that allows the polypeptides to be captured onto an affinity matrix. For example, a tag such as c-rayc, hemagglutinin, polyhistidine, or Flag™ (Kodak) can be used to aid polypeptide purification. Such tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus. Other fusions that can be useful include enzymes that aid in the detection of the polypeptide, such as alkaline phosphatase. Immunoaffinity chromatography also can be used to purify costimulatory polypeptides. Fusion proteins can additionally be engineered to contain a secretory signal (if there is not a secretory signal already present) that causes the fusion protein to be secreted by the cells in which it is produced. The secreted fusion proteins can then conveniently be isolated from the cell media.
B. Methods for producing isolated nucleic acid molecules Isolated nucleic acid molecules can be produced by standard techniques, including, without limitation, common molecular cloning and chemical nucleic acid synthesis techniques. For example, polymerase chain reaction (PCR) techniques can be used to obtain an isolated nucleic acid encoding a variant costimulatory polypeptide. PCR is a technique in which target nucleic acids are enzymatically amplified. Typically, sequence information from the ends of the region of interest or beyond can be employed to design oligonucleotide primers that are identical in sequence to opposite strands of the template to be amplified. PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from total genomic DNA or total cellular RNA. Primers typically are 14 to 40 nucleotides in length, but can range from 10 nucleotides to hundreds of nucleotides in length. General PCR techniques are described, for example in PCR Primer: A Laboratory Manual, ed. by Dieffenbach and Dveksler, Cold Spring Harbor Laboratory Press, 1995. When using RNA as a source of template, reverse transcriptase can be used to synthesize a complementary DNA (cDNA) strand. Ligase chain reaction, strand displacement amplification, self-sustained sequence replication or nucleic acid sequence- based amplification also can be used to obtain isolated nucleic acids. See, for example, Lewis (1992) Genetic Engineering News 12:1 ; Guatelli et al. (1990) Proc. Natl Acad ScL USA 87:1874-1878; and Weiss (1991) Science 254:1292-1293.
Isolated nucleic acids can be chemically synthesized, either as a single nucleic acid molecule or as a series of oligonucleotides (e.g., using phosphoramidite technology for automated DNA synthesis in the 3' to 5' direction). For example, one or more pairs of long oligonucleotides (e.g., >100 nucleotides) can be synthesized that contain the desired sequence, with each pair containing a short segment of complementarity (e.g., about 15 nucleotides) such that a duplex is formed when the oligonucleotide pair is annealed. DNA polymerase can be used to extend the oligonucleotides, resulting in a single, double-stranded nucleic acid molecule per oligonucleotide pair, which then can be ligated into a vector. Isolated nucleic acids can also obtained by mutagenesis. Fusion protein-encoding nucleic acids can be mutated using standard techniques, including oligonucleotide-directed mutagenesis and/or site-directed mutagenesis through PCR. See, Short Protocols in Molecular Biology. Chapter 8, Green Publishing Associates and John Wiley & Sons, edited by Ausubel et al, 1992. Examples of amino acid positions that can be modified include those described herein. VII. Methods of use
A. Activation of T cells
The fusion proteins disclosed herein, nucleic acids encoding the fusion proteins, or cells expressing the fusion proteins can be used to activate T cells (i.e., increase antigen-specific proliferation of T cells, enhance cytokine production by T cells, stimulate differentiation and effector functions of T cells and/or promote T cell survival).
Methods for using fusion proteins to activate T cell responses are disclosed herein. The methods include contacting a T cell with any of the molecules disclosed herein. Fusion proteins are a preferred example. An isolated fusion protein or a dimer or multimer of fusion proteins. The fusion protein or fusion protein dimer or multimer can be any of those described herein, including any of the disclosed amino acid alterations, polypeptide fragments, and combinations thereof.
With respect to variant costimulatory polypeptides used in the fusion proteins, the variants described herein can have reduced or increased binding to coinhibitory receptors (i.e. PD-I) relative to wild type costimulatrory polypeptides, yet retain the ability to costimulate T cells. Preferred variant costimulatory polypeptides have a enhanced ability to stimulate signaling through and activating receptor compared to a non- variant costimulatory polypeptide.
The contacting can be in vitro, ex vivo, or in vivo (e.g., in a mammal such as a mouse, rat, rabbit, dog, cow, pig, non-human primate, or a human). In a preferred embodiment, fusion proteins are administered to contact T cells in vivo. The contacting can occur before, during, or after activation of the T cell. In one embodiment, contacting of the T cell with fusion protein can be at substantially the same time as activation. Activation can be, for example, by exposing the T cell to an antibody that binds to the T cell receptor (TCR) or one of the polypeptides of the CD3 complex that is physically associated with the TCR. Alternatively, a T cell can be exposed to either an alloantigen (e.g., a MHC alloantigen) on, for example, an APC [e.g., an interdigitating dendritic cell (referred to herein as a dendritic cell), a macrophage, a monocyte, or a B cell] or an antigenic peptide produced by processing of a protein antigen by any of the above APC and presented to the T cell by MHC molecules on the surface of the APC. The T cell can be a CD4+ T cell or a CD8+ T cell.
If the activation is in vitro, the fusion proteins can be bound to the floor of a relevant culture vessel, e.g. a well of a plastic microtiter plate. In vitro application of the isolated variant co stimulatory polypeptides can be useful, for example, in basic scientific studies of immune mechanisms or for production of activated T cells for use in studies of T cell function or, for example, passive immunotherapy. Furthermore, fusion proteins disclosed herein can be added to in vitro assays (e.g., T cell proliferation assays) designed to test for immunity to an antigen of interest in a subject from which the T cells were obtained. Addition of fusion proteins to such assays would be expected to result in a more potent, and therefore more readily detectable, in vitro response. Moreover, a fusion proteins disclosed herein or nucleic acids encoding them, can be used: (a) as a positive control in an assay to test for costimulatory activity in other molecules; or (b) in screening assays for compounds useful in inhibiting T costimulation (e.g., compounds potentially useful for treating autoimmune diseases or organ graft rejection). B. Therapeutic uses of fusion proteins
1. Activation of T cell-mediated immune responses to cancer The fusion proteins provided herein are generally useful in vivo and ex vivo as immune response-stimulating therapeutics. The fusion proteins are particularly useful in vivo for the induction of tumor immunity and immunity to agents that cause infectious diseases. In some embodiments, the fusion proteins disclosed herein contain a domain that binds to an antigen, ligand, or receptor on tumors or tumor- associated neovasculature in the local tumor environment. The tumor or tumor-associated neovasculature binding domain functions to effectively target the fusion proteins to the local tumor microenvϊronment, where they can specifically enhance the activity of tumor-infiltrating effector T cells.
In other embodiments, the fusion proteins disclosed herein contain a domain that binds to an antigen, ligand or receptor on cells in tissues involved in regulating immune cell activation in response to infectious disease causing agents. Targeting the fusion proteins to tissues involved in immune cell activation allows for efficient activation of T cells and can cause local activation of T cell, resulting in long term immunity.
The ability of the fusion proteins to concentrate in tumors or immune tissues involved in immune cell activation also reduces the amount of costimulatory molecule that is necessary to administer in vivo to achieve therapeutic efficacy. The ability of the fusion proteins to concentrate in tumors or immune tissues involved in immune cell activation and the resulting reduction in the amount of costimulatory molecule that is necessary to administer in vivo to achieve therapeutic efficacy also reduces non- specific activation of the immune system. Non-specific activation of the immune system refers to activation of T cells or other immune cells that do not specifically recognize antigens expressed by a tumor or an infectious disease causing agent to be treated or are not involved directly or indirectly in the anti-tumor or anti-infection response. Non-specific activation of the immune response can lead to the development of inflammatory disorders and autoimmunity.
Fusion proteins can be administered as monomers or as dimers or multimers. Dimers and multimers can be homodimers/homomultimers or heterodimers/heteromultimers as described above. In a preferred embodiment, fusion proteins are administered as dimers or multimers. Administration of fusion proteins as dimers or multimers increases the valency of the fusion proteins. The increase in valency can result in an increase in the avidity of the fusion protein for its target antigen(s), receptor(s) or ligand(s) on the tumor, tumor-associated neovasculature, or tissue involved in immune cell activation, and thereby increase its retention in the tumor microenvironment or in the immune-regulating tissue. Increasing the valency of the fusion proteins can also increase their ability to cross-link costimulatory receptors on T cells. 1. Induction of tumor immunity
Some cancer patients have tumor-infiltrating, antigen specific cytotoxic T lymphocytes (TIL) that are able to kill tumor cells and reduce tumor burden. However, the frequency of patients with such responses and the number of TILs within the tumor is extremely low. Consequently, they are unable to eradicate the tumors. Human clinical trials in melanoma patients demonstrated that when these patients were treated with passive administration of high doses of antigen specific TIL expanded ex vivo, a significant number of tumors, including large tumors, were eradicated (Dudley, Science, 298:850-4 (2002)). Compositions that are targeted to tumors or tumor-associated neo vasculature and contain molecules that enhance the function of tumor- infiltrating T cells are provided herein. In certain embodiments it is believed that the compositions increase or augment the functional immune response against a tumor relative to a control by costimulating T cells or by inhibiting or reducing inhibitory signals to T cells in a subject. In a preferred embodiment, the compositions are formulated to increase the number or functional activity of tumor-infiltrating, antigen specific cytotoxic T lymphocytes (TILs) in a subject in need thereof.
One embodiment provides a method for increasing the activation of tumor-infiltrating leukocytes in a subject by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to activate the subject's T cells and/or to inhibit or reduce coinhibition of the subject's T cells.
Another embodiment provides a method for increasing the population of tumor-infiltrating leukocytes in a subject by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to costimulate the subject's T cells and/or to inhibit or reduce coinhibition of the subject's T cells. Another embodiment provides a method for stimulating or augmenting an effective anti-tumor T cell response by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to activate the subject's T cells and/or to inhibit or block inhibition of the subject's T cells.
Malignant tumors which may be treated are classified herein according to the embryonic origin of the tissue from which the tumor is derived. Carcinomas are tumors arising from endodermal or ectodermal tissues such as skin or the epithelial lining of internal organs and glands. Sarcomas, which arise less frequently, are derived from mesodermal connective tissues such as bone, fat, and cartilage. The leukemias and lymphomas are malignant tumors of hematopoietic cells of the bone marrow. Leukemias proliferate as single cells, whereas lymphomas tend to grow as tumor masses. Malignant tumors may show up at numerous organs or tissues of the body to establish a cancer.
The types of cancer that can be treated in with the provided compositions and methods include, but are not limited to, the following: bladder, brain, breast, cervical, colo-rectal, esophageal, kidney, liver, lung, nasopharangeal, pancreatic, prostate, skin, stomach and uterine. Administration is not limited to the treatment of an existing tumor or infectious disease but can also be used to prevent or lower the risk of developing such diseases in an individual, i.e., for prophylactic use. Potential candidates for prophylactic vaccination include individuals with a high risk of developing cancer, i.e., with a personal or familial history of certain types of cancer.
2. Use of fusion proteins in vaccines The fusion proteins disclosed herein, and/or nucleic acids encoding the same may be administered alone or in combination with any other suitable treatment. In one embodiment, fusion proteins, and/or nucleic acids encoding the same may be administered in conjunction with, or as a component of, a vaccine composition. Suitable components of vaccine compositions are described above. Fusion protein compositions described herein can be administered prior to, concurrently with, or after the administration of a vaccine. In one embodiment the fusion protein composition is administered at the same time as administration of a vaccine.
The fusion proteins described herein may be administered in conjunction with prophylactic vaccines, which confer resistance in a subject to development of certain types of tumors, or in conjunction with therapeutic vaccines, which can be used to initiate or enhance a subject's immune response to a pre-existing antigen, such as a tumor antigen in a subject already having cancer.
The desired outcome of a prophylactic or therapeutic immune response may vary according to the disease, according to principles well known in the art. For example, an immune response against cancer, may completely treat the cancer or infectious disease, may alleviate symptoms, or may be one facet in an overall therapeutic intervention against the cancer or infectious disease. C. Combination therapy
The disclosed fusion protein compositions can be administered alone or in combination with one or more additional therapeutic agents. For example, the stimulation of an immune response against a cancer may be coupled with surgical, chemotherapeutic, radiologic, hormonal and other immunologic approaches in order to affect treatment.
For example, the disclosed fusion proteins can be administered with an antibody or antigen binding fragment thereof specific for growth factor receptors or tumor specific antigens. Representative growth factors receptors include, but are not limited to, epidermal growth factor receptor (EGFR; HERl ); c-erbB2 (HER2); c-erbB3 (HER3); c-erbB4 (HER4); insulin receptor; insulin-like growth factor receptor 1 (IGF-IR); insulin-like growth factor receptor 2/Mannose-6-phosphate receptor (IGF-II R/M-6-P receptor); insulin receptor related kinase (IRRK); platelet-derived growth factor receptor (PDGFR); colony-stimulating factor- 1 receptor (CSF-IR) (c-Fms); steel receptor (c-Kit); Flk2/Flt3; fibroblast growth factor receptor 1 (Flg/Cekl); fibroblast growth factor receptor 2 (Bek/Cek3/K-Sam); Fibroblast growth factor receptor 3; Fibroblast growth factor eceptor 4; nerve growth factor receptor (NGFR) (TrkA); BDNF receptor (TrkB); NT-3- receptor (TrkC); vascular endothelial growth factor receptor 1 (Fltl); vascular endothelial growth factor receptor 2/FIkl/KDR; hepatocyte growth factor receptor (HGF-R/Met); Eph; Eck; Eek; Cek4/Mek4/HEK; Cek5; Elk/Cek6; Cek7; Sek/Cek8; Cek9; CeklO; HEKl 1 ; 9 Rorl ; Ror2; Ret; AxI; RYK; DDR; and Tie. Additional therapeutic agents include conventional cancer therapeutics such as chemotherapeutic agents, cytokines, chemokines, and radiation therapy. The majority of chemolherapeutic drugs can be divided into: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and other antitumour agents. All of these drugs affect cell division or DNA synthesis and function in some way. Additional therapeutics include monoclonal antibodies and the tyrosine kinase inhibitors e.g. imatinib mesylate (GLEEVEC® or GLIVEC®), which directly targets a molecular abnormality in certain types of cancer (chronic myelogenous leukemia, gastrointestinal stromal tumors). Representative chemotherapeutic agents include, but are not limited to cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, vincristine, vinblastine, vinorelbine, vindesine, taxol and derivatives thereof, irinotecan, topotecan, amsacrine, etoposide, etoposide phosphate, teniposide, epipodophyllotoxins, trastuzumab (HERCEPTIN®), cetuximab, and rituximab (RITUXAN® or MABTHERA®), bevacizumab (AVASTIN®), and combinations thereof.
EXAMAPLES Example 1: P815 Mastocytoma Model
The in vivo activity of murine B7-DC-Ig was tested in the P815 mastocytoma tumor model. P815 mastocytoma cells were derived from DBA/2 mice after methylcholanthrene (MCA) treatment. Injection of 5 x 104 cells SC can result in mortality approximately 35 days post tumor inoculation.
DBA/2 mice (6 - 10 weeks of age, females) were first challenged with 5 x 104 live P815 cells injected SC in the flank. Six days later, the mice were treated with murine B7-DC-Ig via IP injection. The dosing regimen, shown in Figure 1, was 100 μg of murine B7-DC-Ig per injection (approximately 5 mg/kg), 2 times per week, up to 6 doses. Control groups were treated with vehicle only or with murine IgG. Tumor size was measured with digital calipers every 2 ™ 3 days. Mice were euthanized and defined as dead when their tumor size reached or exceeded 1000 mm3, according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the American Red Cross (ARC; the site of Amplimmune's vivarium). Surviving tumor free mice were re-challenged with P815 tumor cells on Day 52.
As shown in Table 1 and Figure 1 Error! Reference source not found., all of the mice treated with vehicle or control mouse IgG required euthanasia by Day 38 because their tumor volumes reached the IACUC limit. Four of 5 murine B7-DC-Ig treated mice responded to treatment: tumor was eradicated in two mice and two additional mice showed delayed tumor growth during murine B7-DC-Ig treatment.
Table 1. P815 tumor model results.
Figure imgf000088_0001
Figures 2A-C show tumor eradication in mice using murine B7-DC- Ig. The tumor-free mice were then re-challenged with 5 * 1O4PSl 5 cells administered to the flank opposite the primary inoculation site on Day 52. The mice remained tumor free through 74 days after the primary inoculation, while all naϊve mice challenged with P 815 cells developed tumors. This suggests that mice inoculated with P815 cells and treated with murine B7- DC-Ig developed long-term immunity against P815 mastocytoma.
Example 2 Combination of cyclophosphamide and B7-DC-Ig can eradicate established tumors. Balb/C mice at age of 9 to 11 weeks were implanted subcutaneously with 1.0 x 105 CT26 colorectal tumor cells. On day 10 post tumor implantation, mice received 100 mg/kg of cyclophosphamide. B7-DC-Ig treatment started 1 day later, on day 11. Mice were treated with 100 ug of B7-DC-Ig, 2 doses per week, for 4 weeks and total 8 doses. 75% of the mice that received the CTX + B7-DC-Ig treatment regimen eradicated the established tumors by Day 44, whereas all mice in the control CTX alone group died as a result of tumor growth or were euthanized because tumors exceeded the sizes approved by IACUC (results shown in Figure 3). These results demonstrate the effectiveness of the treatment regimen on established tumors and not mere prophylaxis.
Example 3
Combination of cyclophosphamide and B7-DC-Ig can eradicate established tumors and protect against tumor re-challenge.
Mice eradicated established CT26 colorectal tumors from the above described experiment were rechallenged with 1x105 CT26 cells on Day 44 and Day 70. No tumors grew out from the rechallenge suggesting they had developed long term anti-tumor immunity from the cyclophosphamide and B7-DC-Ig combination treatment. All mice in the vehicle control group developed tumors (results shown in Figure 4). These results show the effectiveness of the treatment regimen on established tumors and that the cyclophosphamide and B 7-DCIg combination treatment resulted in memory responses to tumor antigens.
Example 4
Combination of cyclophosphamide and B7-DC-Ig can generate tumor specific, memory cytotoxic T lymphocytes
Mice eradiated established CT26 colorectal tumors from the above described experiment were rechallenged with 2.5x105 CT26 cells on Day 44. Seven days later, mouse spleens were isolated. Mouse splenocytes were pulsed with 5 or 50 ug/mL of ovalbumin (OVA) or AHl peptides for 6 hours in the presence of a Golgi blocker (BD BioScience). Memory T effector cells were analyzed by assessing CD8+/IFND+ T cells. Results in Figure 5 show that there were significant amount of CT26 specific T effector cells in the CT26 tumor-eradicated mice.
Example 5 Combination of cyclophosphamide and B7-DC-Ig Regimen Leads to Reduction of Tregs in the Tumor Microenvironment Figure 6 shows the results of experiments wherein Balb/C mice at age of 9 to 11 weeks of age were implanted with 1 X 105 CT26 cells subcutaneously. On Day 9, mice were injected with 100 rng/kg of CTX, IP. Twenty four hours later, on Day 10, mice were treated with 100 ug of B7-DC-Ig. There were 5 groups: naϊve mice that did not receive any tumor cells, vehicle injected, CTX alone, CTX + B7-DC-Ig or B7-DC-Ig alone. Two naive mice and 4 mice from other groups were removed from the study on Day 11 (2 days post CTX) and Day 16 (7 days post CTX) for T cell analysis. Left panel shows on Day 11, 2 days post CTX injection, Treg in the spleen of the mice with CTX treatment was significantly lower than the one in the mice with tumor implantation and injected with vehicle. Right panel shows that on Day 16, 7 days post CTX and 6 days post B7-DC-Ig treatment, B7-DC-Ig significantly lowered the CD4+ T cells expressing high PD-I . This was observed in both the B7-DC-Ig treated and CTX + B7-DC-Ig treated mice. Mice implanted with tumor cells intended to have more PD-1+/CD4+ T cells in the draining LN compared with naϊve mice.
Example 6 Combination of cyclophosphamide and B7-DC-Ig can promote mouse survival in a metastatic prostate lung tumor model
B10.D2 mice at age of 9 to 11 weeks were injected intravenously with 3.0 x 105 SP-I mouse prostate tumor cells, which were isolated from lung metastasis post parent TRAMP prostate tumor cell injection. The CTX mice received 3 doses of CTX, 50 mg/kg, on Day 5, 12 and 19. The B7-DC-Ig treated mice received 3 doses of B7-DC-Ig, 5 mg/kg, on Day 6, 13 and 20. On Day 100, 17% of mice in the control groups, no-treated, CTX alone, B7- DC-Ig alone survived while 43% of the mice received combination of CTX and B7-DC-Ig survived. Results are shown in Figure 7.
90 Example 7
Combination of Listeria cancer vaccine and B7-DC-Ig can enhance mouse survival post CT26 liver implantation
Balb/C mice at age of 11-13 weeks were implanted with CT26 cells using a hemispleen injection technique (Yoshimura K et al., 2007, Cancer Research). On Day 10, mice received 1 injection of CTX at 50 mg/kg, IP. Twenty four hours later, on Day 1 1 , mice were treated with recombinant Listeria carrying AHl peptide, an immunodominant epitope of CT26, at 0.1 LD 50 (1x107 CFU), then on Day 14 and 17. Mice were also treated with B7-DC-Ig on Day 11 and then on Day 18. Figire 8 shows mice without any treatment or treated with CTX and Listeria cancer vaccine all died before Dady 45. There were 60% of the mice received triple combination, CTX + Listeria cancer vaccine and B7-DC-Ig survived.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims

We claim:
1. A fusion protein comprising a first fusion partner comprising a T cell costimulatory polypeptide, or a fragment and/or variant thereof, fused (i) directly to a second fusion partner and, (ii) optionally fused to a linker peptide or polypeptide sequence that is fused to the second fusion partner, wherein the costimulatory molecule or costimulatory fragment and/or variant thereof increases antigen-specific proliferation of T cells, enhances production of cytokines by T cells, stimulated differentiation or effector function of T cells, or promotes the survival of T cells, and wherein the second fusion partner comprises a polypeptide that targets the fusion protein to cells of a tumor, tumor vasculature, or tissue involved in activation of an immune response.
2. The fusion protein of claim 1, wherein the costimulatory polypeptide comprises a B7 family costimulatory molecule or a fragment and/or variant thereof.
3. The fusion protein of claim 2, wherein the costimulatory molecule comprises a soluble fragment of a B7 family costimulatory molecule.
4. The fusion protein of claim 3, wherein the costimulatory molecule comprises the extracellular domain of a B7 family costimulatory molecule.
5. The fusion protein of any of claims 2-4, wherein the costimulatory molecule is selected from the group consisting of B7-DC, B7- 1, B7-2, B7-H5, and fragments and/or variants thereof.
6. The fusion protein of claim 5, wherein the costimulatory molecule is a variant costimulatory molecule or fragment thereof, wherein the costimulatory molecule or fragment thereof is a variant of a wild-type costimulatory molecule, wherein the variant costimulatory molecule or fragment thereof comprises a substitution, deletion or insertion of one or more amino acids.
7. The fusion protein of claim 5, wherein the B7-DC polypeptide is murine B7-DC.
8. The fusion protein of claim 5, wherein the B7-DC polypeptide is human B7-DC.
9. The fusion protein of claim 5, wherein the B7-DC polypeptide is non-human primate B7-DC.
10. The fusion protein of any of claim 6, wherein the substitution, deletion or insertion of one or more amino acids is in the A', B, C, C, C", D, E, F, or G strand of B7-DC, or any combination thereof.
11. The fusion protein of any of claims 1-10, wherein the second fusion partner comprises a polypeptide that binds to an antigen on a tumor or on tumor-associated neovasculature.
12. The fusion protein of claim 11 , wherein the second fusion partner comprises a polypeptide that binds to a tumor-specific or a tumor- associated antigen.
13. The fusion protein of claim 12, wherein the tumor-specific or tumor-associated antigen is selected from the group consisting of alpha- actmin-4, Bcr-Abl fusion protein, Casp-8, beta-catenin, cdc27, cdk4, cdkn2a, coa-1, dek-can fusion protein, EF2, ETV6-AML1 fusion protein, LDLR- fucosyltransferaseAS fusion protein, HLA- A2, HLA-Al I5 hsp70-2, KIAAO205, Mart2, Mum-1, 2, and 3, neo-PAP, myosin class I, OS-9, pml- RARα fusion protein, PTPRK, K-ras, N-ras, Triosephosphate isomeras, Bage-1, Gage 3,4,5,6,7, GnTV, Herv-K-mel, Lage-15 Mage-
Al, 2,3,4,6,10,12, Mage-C2, NA-88, NY-Eso-l/Lage-2, SP17, SSX-2, and TRP2-M2, MelanA (MART-I), gplOO (Pmel 17), tyrosinase, TRP-I, TRP-2, MAGE-I, MAGE-3, BAGE, GAGE-I, GAGE-2, pi 5(58), CEA, RAGE5 NY-ESO (LAGE), SCP-I, Hom/Mel-40, PRAME, p53, H-Ras, HER-2/neu, BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus antigens, EBNA, human papillomavirus (HPV) antigens E6 and E7, TSP- 180, MAGE-4, MAGE-5, MAGE-6, pl85erbB2, pl80erbB-3, c-met5 nm- 23Hl, PSA, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, β- Catenin, CDK4, Mum-1, pi 6, TAGE, PSMA, PSCA, CT7, telomerase, 43- 9F, 5T4f 791Tgp72, α-fetoprotein, 13HCG, BCA225, BTAA, CA 125, CA 15-3 (CA 27.29\BCAA)> CA 195, CA 242, CA-50, CAM43, CD68\KP1, CO-029, FGF-5, G250, Ga733 (EpCAM), HTgp-175, M344, MA-50, MG7- Ag, MOV 18, NB\70K, NY-CO-I, RCASl, SDCCAGl 6, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TAG72, TLP, and TPS.
14. The fusion protein of claim 11 , wherein the second fusion partner comprises a polypeptide that binds to an antigen that is specific to tumor-associated neovasculature or is more highly expressed in tumor neovasculature relative to normal vasculature.
15. The fusion protein of claim 14, wherein the antigen is selected from the group consisting of VEGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and 0,5 β 3 integrin/vitronectin.
16. The fusion protein of any of claims 1-12, wherein the second fusion partner comprises a chemokine or a chemokine receptor or a soluble fragment thereof.
17. The fusion protein of claim 16, wherein the second fusion partner comprises a soluble fragment of a chemokine receptor selected from the group consisting of CXCR2, CXCR4, CCR2 and CCR7, wherein the soluble fragment binds to a chemokine.
18. The fusion protein of claim 17, wherein the second fusion partner comprises a chemokine selected from the group consisting of CXC, CC, CX3C and C chemokines or a fragment thereof.
19. The fusion protein of any ofclaims l-18, wherein the linker peptide or polypeptide comprises a flexible peptide or polypeptide, wherein the peptide or polypeptide comprises 2 or more amino acids, and wherein the peptide or polypeptide comprises an amino acid sequence selected from the group consisting of Gly-Ser, Gly-Ser-Gly-Ser, Ala-Ser, Gly-Gly-Gly-Ser, (Gly4-Ser)3, (Gly4-Ser)4, and (Gly4-Ser)4.
20. The fusion protein of any of claims 1-19, wherein the linker peptide or polypeptide comprises the hinge region of a human immunoglobulin, and optionally, further comprises an additional region of an immunoglobulin selected from the group consisting of the Fc domain, the CH 1 region or the CL region.
21. The fusion protein of any of claims 1-19, further comprising a domain that mediates dimerization or multimerization of the fusion protein to form homodimers, heterodimers, homomultimers, or heteromultimers.
22. The fusion protein of claim 21, wherein the domain that mediates dimerization or multimerization is selected from the group consisting of one or more cysteines that are capable of forming an intermolecular disulfide bond with a cysteine on the partner fusion protein, a coiled-coil domain, an acid patch, a zinc finger domain, a calcium hand domain , a CHI region, a CL region, a leucine zipper domain, an SH2 (src homology 2) domain, an SH3 (src Homology 3) domain, a PTB (phosphotyrosine binding) domain, a WW domain, a PDZ domain, a 14-3-3 domain, a WD40 domain, an EH domain, a Lim domain, an isoleucine zipper domain, and a dimerization domain of a receptor dimer pair.
23. The fusion protein of claim 22, wherein the dimerization or multimerization domain is contained within the first fusion partner, the second fusion partner, or the linker peptide or polypeptide.
24. The fusion protein of claim 22, wherein the dimerization or multimerization domain is separate from and not contained within the first fusion partner, the second fusion partner, or the linker peptide or polypeptide.
25. A dimeric protein comprising a first and a second fusion protein, wherein the first and the second fusion proteins comprise the fusion protein of any of claims 1-27, wherein the first and the second fusion proteins are bound to one another by covalent or noncovalent bonds to form a dimer.
26. The dimeric protein of claim 25, wherein the dimer is a homodimer.
27. The dimeric protein of claim 25, wherein the dimer is a heterodimer.
28. A multimeric protein comprising more than two fusion proteins, wherein each of the fusion proteins comprise the fusion protein of any of claims 1-24, wherein the fusion proteins are bound to one another by covalent or noncovalent bonds to form a multimer.
29. The multimeric protein of claim 28, wherein the multimer is a homomultimer.
30. The multimeric protein of claim 29, wherein the multimer is a heteromultirner.
31. The dirneric or multimeric protein of any of claims 25-30 wherein the fusion proteins are bound together by disulfide bonds.
32. The dimeric or multimeric protein of claim 31 wherein the disulfide bonds are formed between cysteines in the linker peptide sequence.
33. An isolated nucleic acid molecule comprising a nucleic acid sequence that encodes the fusion protein of any of claims 1-24.
34. A vector comprising the nucleic acid of claim 33.
35. The vector of claim 34, wherein said nucleic acid sequence is operably linked to an expression control sequence.
36. A host cell comprising the vector of claim 35.
37. A pharmaceutical composition for use with an antigen or a vaccine to increase the immunogenJcity of the antigen or vaccine comprising: a) the isolated fusion protein, dimeric protein, or multimeric protein of any of claims 1-24, and b) a pharmaceutically and immunologically acceptable excipient or carrier.
38. An immunogenic composition useful for inducing a T cell immune response against a tumor, comprising
(a) a source of antigen to which an immune response is desired;
(b) a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32,
(c) optionally, a general immunostimulatory agent or adjuvant; and
(d) a pharmaceutically and immunologically acceptable excipient or carrier for (a),(b) and, optionally, (c).
39. A method for costimulatmg T cells comprising contacting a T cell with the fusion protein, dimeric protein, or multimeric polypeptide of any of claims 1-32.
40. The method of claim 39, wherein the method comprises administering the fusion protein to a mammal.
41. A method for increasing the activation of tumor-infiltrating T cells in a subject by administering to a mammal in need thereof an effective amount of a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, to activate the mammal's T cells.
42. A method for increasing the population of tumor-infiltrating T cells in a subject by administering to a mammal in need thereof an effective amount of a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, to activate the mammal's T cells.
43. A method for stimulating or augmenting an effective antitumor T cell response by administering to a mammal in need thereof an effective amount of a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, to activate the mammal's T cells.
44. A method for potentiating an immune response to an antigen or a vaccine in a mammalian subject, comprising administering to the mammal, in combination with the antigen or vaccine, the fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, in an effective amount to activate the subject's T cells.
PCT/US2009/054969 2008-08-25 2009-08-25 Targeted costimulatory polypeptides and methods of use to treat cancer WO2010027827A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/060,909 US20110223188A1 (en) 2008-08-25 2009-08-25 Targeted costimulatory polypeptides and methods of use to treat cancer
JP2011525157A JP2012500652A (en) 2008-08-25 2009-08-25 Targeted costimulatory polypeptides and methods of use for treating cancer
EP09791914A EP2328920A2 (en) 2008-08-25 2009-08-25 Targeted costimulatory polypeptides and methods of use to treat cancer

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US9150208P 2008-08-25 2008-08-25
US9169408P 2008-08-25 2008-08-25
US9170508P 2008-08-25 2008-08-25
US9170908P 2008-08-25 2008-08-25
US61/091,502 2008-08-25
US61/091,709 2008-08-25
US61/091,694 2008-08-25
US61/091,705 2008-08-25
US14254809P 2009-01-05 2009-01-05
US61/142,548 2009-01-05
US16565209P 2009-04-01 2009-04-01
US61/165,652 2009-04-01

Publications (2)

Publication Number Publication Date
WO2010027827A2 true WO2010027827A2 (en) 2010-03-11
WO2010027827A3 WO2010027827A3 (en) 2010-05-06

Family

ID=41349286

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2009/054971 WO2010027828A2 (en) 2008-08-25 2009-08-25 Pd-1 antagonists and methods of use thereof
PCT/US2009/054969 WO2010027827A2 (en) 2008-08-25 2009-08-25 Targeted costimulatory polypeptides and methods of use to treat cancer
PCT/US2009/054970 WO2010098788A2 (en) 2008-08-25 2009-08-25 Pd-i antagonists and methods for treating infectious disease

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2009/054971 WO2010027828A2 (en) 2008-08-25 2009-08-25 Pd-1 antagonists and methods of use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2009/054970 WO2010098788A2 (en) 2008-08-25 2009-08-25 Pd-i antagonists and methods for treating infectious disease

Country Status (13)

Country Link
US (4) US20110195068A1 (en)
EP (4) EP2662383A1 (en)
JP (4) JP2012500652A (en)
KR (1) KR20110074850A (en)
CN (2) CN102203125A (en)
AU (1) AU2009288289B2 (en)
BR (1) BRPI0917891A2 (en)
CA (1) CA2735006A1 (en)
EA (1) EA201170375A1 (en)
IL (1) IL211299A (en)
MX (1) MX2011002250A (en)
WO (3) WO2010027828A2 (en)
ZA (1) ZA201101119B (en)

Cited By (662)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919585B2 (en) 2004-06-24 2011-04-05 Mayo Foundation For Medical Education And Research B7-H5, a costimulatory polypeptide
KR20130010906A (en) * 2010-03-26 2013-01-29 트러스티스 오브 다트마우스 칼리지 Vista regulatory t cell mediator protein, vista binding agents and use thereof
WO2013019906A1 (en) 2011-08-01 2013-02-07 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors
US8460927B2 (en) 1999-11-30 2013-06-11 Mayo Foundation For Medical Education And Research B7-H1 antibodies and method of use
US20130259879A1 (en) * 2011-02-21 2013-10-03 Curevac Gmbh Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
WO2013181452A1 (en) 2012-05-31 2013-12-05 Genentech, Inc. Methods of treating cancer using pd-l1 axis binding antagonists and vegf antagonists
JP2013543855A (en) * 2010-11-12 2013-12-09 ユーティーアイ リミテッド パートナーシップ Compositions and methods for the prevention and treatment of cancer
WO2014008218A1 (en) 2012-07-02 2014-01-09 Bristol-Myers Squibb Company Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof
US8709416B2 (en) 2008-08-25 2014-04-29 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US8747833B2 (en) 2004-10-06 2014-06-10 Mayo Foundation For Medical Education And Research B7-H1 and methods of diagnosis, prognosis, and treatment of cancer
WO2014130635A1 (en) 2013-02-20 2014-08-28 Novartis Ag Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells
WO2014130657A1 (en) 2013-02-20 2014-08-28 The Trustees Of The University Of Pennsylvania Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor
WO2014153270A1 (en) 2013-03-16 2014-09-25 Novartis Ag Treatment of cancer using humanized anti-cd19 chimeric antigen receptor
WO2015026634A1 (en) 2013-08-20 2015-02-26 Merck Sharp & Dohme Corp. Treating cancer with a combination of a pd-1 antagonist and dinaciclib
WO2015066413A1 (en) 2013-11-01 2015-05-07 Novartis Ag Oxazolidinone hydroxamic acid compounds for the treatment of bacterial infections
WO2015073644A1 (en) 2013-11-13 2015-05-21 Novartis Ag Mtor inhibitors for enhancing the immune response
WO2015075725A1 (en) 2013-11-25 2015-05-28 Ccam Biotherapeutics Ltd. Compositions comprising anti-ceacam1 and anti-pd antibodies for cancer therapy
WO2015095423A2 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2015095410A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
WO2015095418A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
WO2015090230A1 (en) 2013-12-19 2015-06-25 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
WO2015094992A1 (en) 2013-12-17 2015-06-25 Merck Sharp & Dohme Corp. Ifn-gamma gene signature biomarkers of tumor response to pd-1 antagonists
WO2015107495A1 (en) 2014-01-17 2015-07-23 Novartis Ag N-azaspirocycloalkane substituted n-heteroaryl compounds and compositions for inhibiting the activity of shp2
WO2015119944A1 (en) 2014-02-04 2015-08-13 Incyte Corporation Combination of a pd-1 antagonist and an ido1 inhibitor for treating cancer
WO2015138920A1 (en) 2014-03-14 2015-09-17 Novartis Ag Antibody molecules to lag-3 and uses thereof
WO2015142675A2 (en) 2014-03-15 2015-09-24 Novartis Ag Treatment of cancer using chimeric antigen receptor
WO2015148379A1 (en) 2014-03-24 2015-10-01 Novartis Ag Monobactam organic compounds for the treatment of bacterial infections
WO2015153514A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
WO2015153513A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Anti-ox40 antibodies and methods of use
WO2015157252A1 (en) 2014-04-07 2015-10-15 BROGDON, Jennifer Treatment of cancer using anti-cd19 chimeric antigen receptor
WO2015181624A2 (en) 2014-05-28 2015-12-03 Idenix Pharmaceuticals, Inc Nucleoside derivatives for the treatment of cancer
US9217035B2 (en) 2005-04-25 2015-12-22 The Trustees Of Dartmouth College Regulatory T cell mediator proteins and uses thereof
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
WO2016007235A1 (en) 2014-07-11 2016-01-14 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
WO2016011160A1 (en) 2014-07-15 2016-01-21 Genentech, Inc. Compositions for treating cancer using pd-1 axis binding antagonists and mek inhibitors
WO2016014530A1 (en) 2014-07-21 2016-01-28 Novartis Ag Combinations of low, immune enhancing. doses of mtor inhibitors and cars
WO2016014553A1 (en) 2014-07-21 2016-01-28 Novartis Ag Sortase synthesized chimeric antigen receptors
WO2016020836A1 (en) 2014-08-06 2016-02-11 Novartis Ag Quinolone derivatives as antibacterials
WO2016025880A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using gfr alpha-4 chimeric antigen receptor
WO2016033555A1 (en) 2014-08-28 2016-03-03 Halozyme, Inc. Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
WO2016040892A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies
WO2016044605A1 (en) 2014-09-17 2016-03-24 Beatty, Gregory Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
WO2016054555A2 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
WO2016057846A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
WO2016057705A1 (en) 2014-10-08 2016-04-14 Novartis Ag Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof
WO2016061286A2 (en) 2014-10-14 2016-04-21 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
WO2016061142A1 (en) 2014-10-14 2016-04-21 Novartis Ag Antibody molecules to pd-l1 and uses thereof
WO2016073378A1 (en) 2014-11-03 2016-05-12 Genentech, Inc. Assays for detecting t cell immune subsets and methods of use thereof
WO2016075670A1 (en) 2014-11-14 2016-05-19 Novartis Ag Antibody drug conjugates
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2016086200A1 (en) 2014-11-27 2016-06-02 Genentech, Inc. 4,5,6,7-tetrahydro-1 h-pyrazolo[4,3-c]pyridin-3-amine compounds as cbp and/or ep300 inhibitors
WO2016089833A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
WO2016089797A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
WO2016089830A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
WO2016090300A1 (en) 2014-12-05 2016-06-09 Genentech, Inc. Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists
WO2016090034A2 (en) 2014-12-03 2016-06-09 Novartis Ag Methods for b cell preconditioning in car therapy
WO2016094377A1 (en) 2014-12-09 2016-06-16 Merck Sharp & Dohme Corp. System and methods for deriving gene signature biomarkers of response to pd-1 antagonists
WO2016100882A1 (en) 2014-12-19 2016-06-23 Novartis Ag Combination therapies
WO2016097995A1 (en) 2014-12-16 2016-06-23 Novartis Ag Isoxazole hydroxamic acid compounds as lpxc inhibitors
US9381244B2 (en) 2012-09-07 2016-07-05 King's College London VISTA modulators for diagnosis and treatment of cancer
WO2016126608A1 (en) 2015-02-02 2016-08-11 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
WO2016141218A1 (en) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer
WO2016141209A1 (en) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and eribulin for treating cancer
EP3067062A1 (en) 2015-03-13 2016-09-14 Ipsen Pharma S.A.S. Combination of tasquinimod or a pharmaceutically acceptable salt thereof and a pd1 and/or pdl1 inhibitor, for use as a medicament
WO2016145102A1 (en) 2015-03-10 2016-09-15 Aduro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene" -dependent signalling
US9463227B2 (en) 2011-03-11 2016-10-11 Advaxis, Inc. Listeria-based adjuvants
WO2016164580A1 (en) 2015-04-07 2016-10-13 Novartis Ag Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives
WO2016164480A1 (en) 2015-04-07 2016-10-13 Genentech, Inc. Antigen binding complex having agonistic activity and methods of use
WO2016168133A1 (en) 2015-04-17 2016-10-20 Merck Sharp & Dohme Corp. Blood-based biomarkers of tumor sensitivity to pd-1 antagonists
WO2016168595A1 (en) 2015-04-17 2016-10-20 Barrett David Maxwell Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
WO2016172583A1 (en) 2015-04-23 2016-10-27 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2016189055A1 (en) 2015-05-27 2016-12-01 Idenix Pharmaceuticals Llc Nucleotides for the treatment of cancer
WO2016196298A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Therapeutic and diagnolstic methods for cancer
WO2016196173A1 (en) 2015-05-29 2016-12-08 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and cpg-c type oligonucleotide for treating cancer
WO2016200836A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies
WO2016205320A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
WO2016203432A1 (en) 2015-06-17 2016-12-22 Novartis Ag Antibody drug conjugates
WO2016207646A1 (en) 2015-06-24 2016-12-29 Immodulon Therapeutics Limited A checkpoint inhibitor and a whole cell mycobacterium for use in cancer therapy
WO2017007700A1 (en) 2015-07-06 2017-01-12 Iomet Pharma Ltd. Pharmaceutical compound
WO2017009842A2 (en) 2015-07-16 2017-01-19 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
WO2017015427A1 (en) 2015-07-21 2017-01-26 Novartis Ag Methods for improving the efficacy and expansion of immune cells
WO2017017624A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination of pd-1 antagonist with an egfr inhibitor
WO2017017623A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combined use of anti pd-1 and anti m-csf antibodies in the treatment of cancer
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
WO2017019894A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to lag-3
WO2017027646A1 (en) 2015-08-13 2017-02-16 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as sting agonists
WO2017040990A1 (en) 2015-09-03 2017-03-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
WO2017040930A2 (en) 2015-09-03 2017-03-09 The Trustees Of The University Of Pennsylvania Biomarkers predictive of cytokine release syndrome
US9605070B2 (en) 2014-01-31 2017-03-28 Novartis Ag Antibody molecules to TIM-3 and uses thereof
WO2017058780A1 (en) 2015-09-30 2017-04-06 Merck Patent Gmbh Combination of a pd-1 axis binding antagonist and an alk inhibitor for treating alk-negative cancer
WO2017066561A2 (en) 2015-10-16 2017-04-20 President And Fellows Of Harvard College Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
WO2017069291A1 (en) 2015-10-23 2017-04-27 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
WO2017072662A1 (en) 2015-10-29 2017-05-04 Novartis Ag Antibody conjugates comprising toll-like receptor agonist
WO2017075440A1 (en) 2015-10-30 2017-05-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Targeted cancer therapy
US9644212B2 (en) 2008-05-19 2017-05-09 Advaxis, Inc. Dual delivery system for heterologous antigens
WO2017077382A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
WO2017079202A1 (en) 2015-11-02 2017-05-11 Board Of Regents, The University Of Texas System Methods of cd40 activation and immune checkpoint blockade
WO2017079746A2 (en) 2015-11-07 2017-05-11 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
WO2017087851A1 (en) 2015-11-19 2017-05-26 Genentech, Inc. Methods of treating cancer using b-raf inhibitors and immune checkpoint inhibitors
WO2017093933A1 (en) 2015-12-03 2017-06-08 Glaxosmithkline Intellectual Property Development Limited Cyclic purine dinucleotides as modulators of sting
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
WO2017098421A1 (en) 2015-12-08 2017-06-15 Glaxosmithkline Intellectual Property Development Limited Benzothiadiazine compounds
US9683048B2 (en) 2014-01-24 2017-06-20 Novartis Ag Antibody molecules to PD-1 and uses thereof
WO2017106656A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
WO2017106062A1 (en) 2015-12-15 2017-06-22 Merck Sharp & Dohme Corp. Novel compounds as indoleamine 2,3-dioxygenase inhibitors
WO2017103895A1 (en) 2015-12-18 2017-06-22 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2017112741A1 (en) 2015-12-22 2017-06-29 Novartis Ag Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy
EP3087099A4 (en) * 2013-12-23 2017-07-19 Oncomed Pharmaceuticals, Inc. Immunotherapy with binding agents
WO2017122130A1 (en) 2016-01-11 2017-07-20 Novartis Ag Immune-stimulating humanized monoclonal antibodies against human interleukin-2, and fusion proteins thereof
WO2017129763A1 (en) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer
WO2017134305A1 (en) 2016-02-05 2017-08-10 Orionis Biosciences Nv Bispecific signaling agents and uses thereof
WO2017140821A1 (en) 2016-02-19 2017-08-24 Novartis Ag Tetracyclic pyridone compounds as antivirals
WO2017141208A1 (en) 2016-02-17 2017-08-24 Novartis Ag Tgfbeta 2 antibodies
WO2017151502A1 (en) 2016-02-29 2017-09-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2017149515A1 (en) 2016-03-04 2017-09-08 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
WO2017153952A1 (en) 2016-03-10 2017-09-14 Glaxosmithkline Intellectual Property Development Limited 5-sulfamoyl-2-hydroxybenzamide derivatives
WO2017159699A1 (en) 2016-03-15 2017-09-21 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
WO2017160599A1 (en) 2016-03-14 2017-09-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Use of cd300b antagonists to treat sepsis and septic shock
WO2017165742A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in anti-ctla4 anti-pd-1 combination treatments
WO2017163186A1 (en) 2016-03-24 2017-09-28 Novartis Ag Alkynyl nucleoside analogs as inhibitors of human rhinovirus
WO2017165412A2 (en) 2016-03-21 2017-09-28 Dana-Farber Cancer Institute, Inc. T-cell exhaustion state-specific gene expression regulators and uses thereof
WO2017165778A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments
WO2017173091A1 (en) 2016-03-30 2017-10-05 Musc Foundation For Research Development Methods for treatment and diagnosis of cancer by targeting glycoprotein a repetitions predominant (garp) and for providing effective immunotherapy alone or in combination
WO2017175156A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175147A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017181111A2 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
WO2017181079A2 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
WO2017178572A1 (en) 2016-04-13 2017-10-19 Vivia Biotech, S.L Ex vivo bite-activated t cells
WO2017192874A1 (en) 2016-05-04 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Albumin-binding immunomodulatory compositions and methods of use thereof
WO2017191545A1 (en) 2016-05-05 2017-11-09 Glaxosmithkline Intellectual Property (No.2) Limited Enhancer of zeste homolog 2 inhibitors
WO2017194782A2 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Therapeutic targeting of non-cellular structures
WO2017194783A1 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Targeted mutant interferon-beta and uses thereof
WO2017205538A1 (en) 2016-05-24 2017-11-30 Genentech, Inc. Pyrazolopyridine derivatives for the treatment of cancer
WO2017205536A2 (en) 2016-05-24 2017-11-30 Genentech, Inc. Therapeutic compounds and uses thereof
WO2017212423A1 (en) 2016-06-08 2017-12-14 Glaxosmithkline Intellectual Property Development Limited Chemcical compounds
WO2017212425A1 (en) 2016-06-08 2017-12-14 Glaxosmithkline Intellectual Property Development Limited Chemical compounds as atf4 pathway inhibitors
WO2017218533A1 (en) 2016-06-13 2017-12-21 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
WO2017216686A1 (en) 2016-06-16 2017-12-21 Novartis Ag 8,9-fused 2-oxo-6,7-dihydropyrido-isoquinoline compounds as antivirals
WO2017216685A1 (en) 2016-06-16 2017-12-21 Novartis Ag Pentacyclic pyridone compounds as antivirals
WO2017216705A1 (en) 2016-06-14 2017-12-21 Novartis Ag Crystalline form of (r)-4-(5-(cyclopropylethynyl)isoxazol-3-yl)-n-hydroxy-2-methyl-2-(methylsulfonyl)butanamide as an antibacterial agent
EP3269799A1 (en) * 2009-03-04 2018-01-17 The Trustees of the University of Pennsylvania Compositions comprising angiogenic factors and uses thereof
WO2018015879A1 (en) 2016-07-20 2018-01-25 Glaxosmithkline Intellectual Property Development Limited Isoquinoline derivatives as perk inhibitors
WO2018026606A1 (en) 2016-08-01 2018-02-08 Threshold Pharmaceuticals, Inc. Administration of hypoxia activated prodrugs in combination with immune modulatory agents for treating cancer
WO2018027204A1 (en) 2016-08-05 2018-02-08 Genentech, Inc. Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
WO2018031865A1 (en) 2016-08-12 2018-02-15 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor
WO2018029124A1 (en) 2016-08-08 2018-02-15 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
US9907849B2 (en) 2014-07-18 2018-03-06 Advaxis, Inc. Combination of a PD-1 antagonist and a listeria-based vaccine for treating prostate cancer
WO2018047109A1 (en) 2016-09-09 2018-03-15 Novartis Ag Polycyclic pyridone compounds as antivirals
WO2018049263A1 (en) 2016-09-09 2018-03-15 Tg Therapeutics, Inc. Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor, and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
WO2018055145A1 (en) 2016-09-26 2018-03-29 F. Hoffmann-La Roche Ag Predicting response to pd-1 axis inhibitors
WO2018057585A1 (en) 2016-09-21 2018-03-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric antigen receptor (car) that targets chemokine receptor ccr4 and its use
WO2018057955A1 (en) 2016-09-23 2018-03-29 Elstar Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
WO2018060926A1 (en) 2016-09-28 2018-04-05 Novartis Ag Beta-lactamase inhibitors
WO2018064165A2 (en) 2016-09-27 2018-04-05 Board Of Regents, The University Of Texas System Methods for enhancing immune checkpoint blockade therapy by modulating the microbiome
WO2018064299A1 (en) 2016-09-29 2018-04-05 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a taxane
WO2018060323A1 (en) 2016-09-30 2018-04-05 Boehringer Ingelheim International Gmbh Cyclic dinucleotide compounds
WO2018067423A1 (en) 2016-10-04 2018-04-12 Merck Sharp & Dohme Corp. BENZO[b]THIOPHENE COMPOUNDS AS STING AGONISTS
WO2018067992A1 (en) 2016-10-07 2018-04-12 Novartis Ag Chimeric antigen receptors for the treatment of cancer
WO2018068028A1 (en) 2016-10-06 2018-04-12 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2018071792A1 (en) 2016-10-14 2018-04-19 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and eribulin for treating urothelial cancer
WO2018071668A1 (en) 2016-10-12 2018-04-19 Board Of Regents, The University Of Texas System Methods and compositions for tusc2 immunotherapy
WO2018071576A1 (en) 2016-10-14 2018-04-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Treatment of tumors by inhibition of cd300f
WO2018073753A1 (en) 2016-10-18 2018-04-26 Novartis Ag Fused tetracyclic pyridone compounds as antivirals
WO2018077629A1 (en) * 2016-10-27 2018-05-03 Herlev Hospital New pdl2 compounds
WO2018081648A2 (en) 2016-10-29 2018-05-03 Genentech, Inc. Anti-mic antibidies and methods of use
WO2018077893A1 (en) 2016-10-24 2018-05-03 Orionis Biosciences Nv Targeted mutant interferon-gamma and uses thereof
WO2018083204A1 (en) 2016-11-02 2018-05-11 Engmab Sàrl Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma
WO2018089423A1 (en) 2016-11-09 2018-05-17 Musc Foundation For Research Development Cd38-nad+ regulated metabolic axis in anti-tumor immunotherapy
WO2018093821A1 (en) 2016-11-15 2018-05-24 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
WO2018091542A1 (en) 2016-11-21 2018-05-24 Idenix Pharmaceuticals Llc Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
WO2018102786A1 (en) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Methods for modulation of car-t cells
WO2018100535A1 (en) 2016-12-01 2018-06-07 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2018100534A1 (en) 2016-12-01 2018-06-07 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2018111890A1 (en) 2016-12-12 2018-06-21 Genentech, Inc. Methods of treating cancer using anti-pd-l1 antibodies and antiandrogens
WO2018111902A1 (en) 2016-12-12 2018-06-21 Multivir Inc. Methods and compositions comprising viral gene therapy and an immune checkpoint inhibitor for treatment and prevention of cancer and infectious diseases
WO2018112360A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating cancer
WO2018112364A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating melanoma
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
WO2018129497A1 (en) 2017-01-09 2018-07-12 Bioxcel Therapeutics, Inc. Predictive and diagnostic methods for prostate cancer
WO2018144999A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
WO2018142322A1 (en) 2017-02-03 2018-08-09 Novartis Ag Anti-ccr7 antibody drug conjugates
WO2018141964A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences Nv Targeted chimeric proteins and uses thereof
WO2018146612A1 (en) 2017-02-10 2018-08-16 Novartis Ag 1-(4-amino-5-bromo-6-(1 h-pyrazol-1-yl)pyrimidin-2-yl)-1 h-pyrazol-4-ol and use thereof in the treatment of cancer
WO2018151820A1 (en) 2017-02-16 2018-08-23 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
US10058599B2 (en) 2012-03-12 2018-08-28 Advaxis, Inc. Suppressor cell function inhibition following Listeria vaccine treatment
WO2018154520A1 (en) 2017-02-27 2018-08-30 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
WO2018156973A1 (en) 2017-02-24 2018-08-30 Board Of Regents, The University Of Texas System Assay for detection of early stage pancreatic cancer
WO2018154529A1 (en) 2017-02-27 2018-08-30 Novartis Ag Dosing schedule for a combination of ceritinib and an anti-pd-1 antibody molecule
US10064898B2 (en) 2011-03-11 2018-09-04 Advaxis, Inc. Listeria-based adjuvants
WO2018160841A1 (en) 2017-03-01 2018-09-07 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2018170023A1 (en) * 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Pd-l2 variant immunomodulatory proteins and uses thereof
WO2018167147A1 (en) 2017-03-15 2018-09-20 F. Hoffmann-La Roche Ag Azaindoles as inhibitors of hpk1
US10080808B2 (en) 2012-10-11 2018-09-25 Uti Limited Partnership Methods and compositions for treating multiple sclerosis and related disorders
WO2018172206A1 (en) 2017-03-22 2018-09-27 Boehringer Ingelheim International Gmbh Modified cyclic dinucleotide compounds
WO2018177220A1 (en) 2017-03-25 2018-10-04 信达生物制药(苏州)有限公司 Anti-ox40 antibody and use thereof
WO2018183964A1 (en) 2017-03-30 2018-10-04 Genentech, Inc. Isoquinolines as inhibitors of hpk1
WO2018183956A1 (en) 2017-03-30 2018-10-04 Genentech, Inc. Naphthyridines as inhibitors of hpk1
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
WO2018189220A1 (en) 2017-04-13 2018-10-18 F. Hoffmann-La Roche Ag An interleukin-2 immunoconjugate, a cd40 agonist, and optionally a pd-1 axis binding antagonist for use in methods of treating cancer
WO2018191660A1 (en) 2017-04-14 2018-10-18 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2018195283A1 (en) 2017-04-19 2018-10-25 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
WO2018198076A1 (en) 2017-04-28 2018-11-01 Aduro Biotech, Inc. Bis 2'-5'-rr-(3'f-a)(3'f-a) cyclic dinucleotide compound and uses thereof
WO2018198091A1 (en) 2017-04-28 2018-11-01 Novartis Ag Antibody conjugates comprising toll-like receptor agonist and combination therapies
WO2018198079A1 (en) 2017-04-27 2018-11-01 Novartis Ag Fused indazole pyridone compounds as antivirals
WO2018201047A1 (en) 2017-04-28 2018-11-01 Elstar Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
WO2018201056A1 (en) 2017-04-28 2018-11-01 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
WO2018203302A1 (en) 2017-05-05 2018-11-08 Novartis Ag Tricyclic 2-quinolinones as antibacterials
US10124045B2 (en) 2013-11-04 2018-11-13 Uti Limited Partnership Methods and compositions for sustained immunotherapy
WO2018211453A1 (en) 2017-05-19 2018-11-22 Novartis Ag Compositions comprising naphthyridine derivatives and aluminium adjuvant for use in treating solid tumors
WO2018222901A1 (en) 2017-05-31 2018-12-06 Elstar Therapeutics, Inc. Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof
WO2018220546A1 (en) 2017-05-31 2018-12-06 Novartis Ag Crystalline forms of 5-bromo-2,6-di(1 h-pyrazol-1-yl)pyrimidin-4-amine and new salts
WO2018222685A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
WO2018223101A1 (en) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
WO2018223002A1 (en) 2017-06-01 2018-12-06 Xencor, Inc. Bispecific antibodies that bind cd 123 cd3
WO2018223004A1 (en) 2017-06-01 2018-12-06 Xencor, Inc. Bispecific antibodies that bind cd20 and cd3
WO2018226336A1 (en) 2017-06-09 2018-12-13 Providence Health & Services - Oregon Utilization of cd39 and cd103 for identification of human tumor reactive cells for treatment of cancer
WO2018225033A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2018225093A1 (en) 2017-06-07 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds as atf4 pathway inhibitors
WO2018226671A1 (en) 2017-06-06 2018-12-13 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
WO2018235056A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018237157A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018234879A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
US10167336B2 (en) 2013-03-14 2019-01-01 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
WO2019006427A1 (en) 2017-06-29 2019-01-03 Juno Therapeutics, Inc. Mouse model for assessing toxicities associated with immunotherapies
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
WO2019008506A1 (en) 2017-07-03 2019-01-10 Glaxosmithkline Intellectual Property Development Limited N-(3-(2-(4-chlorophenoxy)acetamido)bicyclo[1.1.1]pentan-1-yl)-2-cyclobutane-1-carboxamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases
WO2019008507A1 (en) 2017-07-03 2019-01-10 Glaxosmithkline Intellectual Property Development Limited 2-(4-chlorophenoxy)-n-((1 -(2-(4-chlorophenoxy)ethynazetidin-3-yl)methyl)acetamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
WO2019016174A1 (en) 2017-07-18 2019-01-24 Institut Gustave Roussy Method for assessing the response to pd-1/pdl-1 targeting drugs
WO2019018757A1 (en) 2017-07-21 2019-01-24 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2019021208A1 (en) 2017-07-27 2019-01-31 Glaxosmithkline Intellectual Property Development Limited Indazole derivatives useful as perk inhibitors
EP3444271A1 (en) 2013-08-08 2019-02-20 Cytune Pharma Il-15 and il-15raplha sushi domain based modulokines
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. Multispecific molecules that bind to bcma and uses thereof
WO2019049061A1 (en) 2017-09-07 2019-03-14 Glaxosmithkline Intellectual Property Development Limited 5-(1 h-benzo[d]imidazo-2-yl)-pyridin-2-amine and 5-(3h-imidazo[4,5-b]pyridin-6-yl)-pyridin-2-amine derivatives as c-myc and p300/cbp histone acetyltransferase inhibitors for treating cancer
WO2019053617A1 (en) 2017-09-12 2019-03-21 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
US10241115B2 (en) 2013-12-10 2019-03-26 Merck Sharp & Dohme Corp. Immunohistochemical proximity assay for PD-1 positive cells and PD-ligand positive cells in tumor tissue
WO2019059411A1 (en) 2017-09-20 2019-03-28 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
WO2019069269A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited Modulators of stimulator of interferon genes (sting) useful in treating hiv
WO2019069270A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited Modulators of stimulator of interferon genes (sting)
US10259875B2 (en) 2013-10-01 2019-04-16 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of BIM
WO2019077062A1 (en) 2017-10-18 2019-04-25 Vivia Biotech, S.L. Bite-activated car-t cells
WO2019077053A1 (en) 2017-10-20 2019-04-25 Biontech Rna Pharmaceuticals Gmbh Preparation and storage of liposomal rna formulations suitable for therapy
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
US20190127474A1 (en) * 2014-07-14 2019-05-02 The Council Of The Queensland Institute Of Medical Research Galectin immunotherapy
WO2019090003A1 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Chimeric antigen receptors specific for b-cell maturation antigen (bcma)
WO2019090263A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2019089412A1 (en) 2017-11-01 2019-05-09 Merck Sharp & Dohme Corp. Novel substituted tetrahydroquinolin compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019089858A2 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Methods of assessing or monitoring a response to a cell therapy
WO2019089969A2 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for b-cell maturation antigen
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
WO2019094360A1 (en) 2017-11-07 2019-05-16 The Board Of Regents Of The University Of Texas System Targeting lilrb4 with car-t or car-nk cells in the treatment of cancer
WO2019099838A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
WO2019099314A1 (en) 2017-11-14 2019-05-23 Merck Sharp & Dohme Corp. Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019097479A1 (en) 2017-11-17 2019-05-23 Novartis Ag Novel dihydroisoxazole compounds and their use for the treatment of hepatitis b
WO2019099597A2 (en) 2017-11-17 2019-05-23 Merck Sharp & Dohme Corp. Antibodies specific for immunoglobulin-like transcript 3 (ilt3) and uses thereof
WO2019099294A1 (en) 2017-11-14 2019-05-23 Merck Sharp & Dohme Corp. Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019097369A1 (en) 2017-11-14 2019-05-23 Pfizer Inc. Ezh2 inhibitor combination therapies
US10302653B2 (en) 2014-05-22 2019-05-28 Mayo Foundation For Medical Education And Research Distinguishing antagonistic and agonistic anti B7-H1 antibodies
WO2019108900A1 (en) 2017-11-30 2019-06-06 Novartis Ag Bcma-targeting chimeric antigen receptor, and uses thereof
WO2019113464A1 (en) 2017-12-08 2019-06-13 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
EP3498734A1 (en) 2014-02-04 2019-06-19 Pfizer Inc Combination of a pd-1 antagonist and a vegfr inhibitor for treating cancer
WO2019118839A1 (en) 2017-12-15 2019-06-20 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
WO2019118937A1 (en) 2017-12-15 2019-06-20 Juno Therapeutics, Inc. Anti-cct5 binding molecules and methods of use thereof
WO2019123285A1 (en) 2017-12-20 2019-06-27 Novartis Ag Fused tricyclic pyrazolo-dihydropyrazinyl-pyridone compounds as antivirals
WO2019129137A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
US10344090B2 (en) 2013-12-12 2019-07-09 Shanghai Hangrui Pharmaceutical Co., Ltd. PD-1 antibody, antigen-binding fragment thereof, and medical application thereof
WO2019136432A1 (en) 2018-01-08 2019-07-11 Novartis Ag Immune-enhancing rnas for combination with chimeric antigen receptor therapy
US10370455B2 (en) 2014-12-05 2019-08-06 Immunext, Inc. Identification of VSIG8 as the putative VISTA receptor (V-R) and use thereof to produce VISTA/VSIG8 agonists and antagonists
WO2019152743A1 (en) 2018-01-31 2019-08-08 Celgene Corporation Combination therapy using adoptive cell therapy and checkpoint inhibitor
WO2019152660A1 (en) 2018-01-31 2019-08-08 Novartis Ag Combination therapy using a chimeric antigen receptor
WO2019160956A1 (en) 2018-02-13 2019-08-22 Novartis Ag Chimeric antigen receptor therapy in combination with il-15r and il15
WO2019166951A1 (en) 2018-02-28 2019-09-06 Novartis Ag Indole-2-carbonyl compounds and their use for the treatment of hepatitis b
WO2019178269A2 (en) 2018-03-14 2019-09-19 Surface Oncology, Inc. Antibodies that bind cd39 and uses thereof
WO2019175113A1 (en) 2018-03-12 2019-09-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of caloric restriction mimetics for potentiating chemo-immunotherapy for the treatment of cancers
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
WO2019178362A1 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2019185476A1 (en) 2018-03-27 2019-10-03 Boehringer Ingelheim International Gmbh Modified cyclic dinucleotide compounds
WO2019185477A1 (en) 2018-03-27 2019-10-03 Boehringer Ingelheim International Gmbh Cyclic dinucleotide compounds containing 2-aza-hypoxanthine or 6h-pytazolo[1,5-d][1,2,4]triazin-7-one as sting agonists
WO2019185551A1 (en) 2018-03-25 2019-10-03 Snipr Biome Aps. Treating & preventing microbial infections
WO2019191279A2 (en) 2018-03-27 2019-10-03 Board Of Regents, The University Of Texas System Compounds with anti-tumor activity against cancer cells bearing her2 exon 19 mutations
WO2019193541A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors
WO2019195124A1 (en) 2018-04-03 2019-10-10 Merck Sharp & Dohme Corp. Benzothiophenes and related compounds as sting agonists
WO2019193540A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Heteroaryl derivatives of formula (i) as atf4 inhibitors
EP3368077A4 (en) * 2015-10-30 2019-10-16 Aleta Biotherapeutics Inc. Compositions and methods for tumor transduction
WO2019200229A1 (en) 2018-04-13 2019-10-17 Novartis Ag Dosage regimens for anti-pd-l1 antibodies and uses thereof
US10449227B2 (en) * 2014-06-27 2019-10-22 H. Lee Moffitt Cancer Center And Research Institute, Inc. Conjugates for immunotherapy
WO2019204743A1 (en) 2018-04-19 2019-10-24 Checkmate Pharmaceuticals, Inc. Synthetic rig-i-like receptor agonists
WO2019204665A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
WO2019204592A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
US10463049B2 (en) 2015-05-06 2019-11-05 Snipr Technologies Limited Altering microbial populations and modifying microbiota
WO2019213282A1 (en) 2018-05-01 2019-11-07 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
WO2019211489A1 (en) 2018-05-04 2019-11-07 Merck Patent Gmbh COMBINED INHIBITION OF PD-1/PD-L1, TGFβ AND DNA-PK FOR THE TREATMENT OF CANCER
WO2019219820A1 (en) 2018-05-16 2019-11-21 Ctxt Pty Limited Substituted condensed thiophenes as modulators of sting
US10485882B2 (en) 2015-05-06 2019-11-26 Uti Limited Partnership Nanoparticle compositions for sustained therapy
WO2019232528A1 (en) 2018-06-01 2019-12-05 Xencor, Inc. Dosing of a bispecific antibody that bind cd123 and cd3
WO2019229701A2 (en) 2018-06-01 2019-12-05 Novartis Ag Binding molecules against bcma and uses thereof
WO2019232244A2 (en) 2018-05-31 2019-12-05 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019232319A1 (en) 2018-05-31 2019-12-05 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2019229699A1 (en) 2018-05-31 2019-12-05 Novartis Ag Hepatitis b antibodies
WO2019231870A1 (en) 2018-05-31 2019-12-05 Merck Sharp & Dohme Corp. Novel substituted [1.1.1] bicyclo compounds as indoleamine 2,3-dioxygenase inhibitors
WO2019234576A1 (en) 2018-06-03 2019-12-12 Lamkap Bio Beta Ltd. Bispecific antibodies against ceacam5 and cd47
US10508143B1 (en) 2015-10-30 2019-12-17 Aleta Biotherapeutics Inc. Compositions and methods for treatment of cancer
WO2019241426A1 (en) 2018-06-13 2019-12-19 Novartis Ag Bcma chimeric antigen receptors and uses thereof
WO2019246557A1 (en) 2018-06-23 2019-12-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
US10517875B2 (en) 2014-07-23 2019-12-31 Mayo Foundation for Medical Engineering and Research Targeting DNA-PKcs and B7-H1 to treat cancer
WO2020002905A1 (en) 2018-06-25 2020-01-02 Immodulon Therapeutics Limited Cancer therapy
WO2020005068A2 (en) 2018-06-29 2020-01-02 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Gene signatures and method for predicting response to pd-1 antagonists and ctla-4 antagonists, and combination thereof
WO2020010250A2 (en) 2018-07-03 2020-01-09 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and uses thereof
EP3497134A4 (en) * 2016-08-11 2020-01-15 The Council of the Queensland Institute of Medical Research Immune-modulating compounds
WO2020012339A1 (en) 2018-07-09 2020-01-16 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
WO2020012334A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of ikaros family zinc finger 2 (ikzf2)-dependent diseases
WO2020012337A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases
WO2020018789A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
US10543189B2 (en) 2013-04-09 2020-01-28 Boston Biomedical, Inc. 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer
WO2020020894A1 (en) 2018-07-24 2020-01-30 Biontech Rna Pharmaceuticals Gmbh Individualized vaccines for cancer
WO2020023560A1 (en) 2018-07-24 2020-01-30 F. Hoffmann-La Roche Ag Isoquinoline compounds and uses thereof
WO2020023268A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Combination of lilrb1/2 pathway inhibitors and pd-1 pathway inhibitors
WO2020023551A1 (en) 2018-07-24 2020-01-30 Genentech, Inc. Naphthyridine compounds and uses thereof
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
WO2020031107A1 (en) 2018-08-08 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
WO2020036635A2 (en) 2018-03-19 2020-02-20 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and cd122/cd132 agonists for the treatment of cancer
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
WO2020039321A2 (en) 2018-08-20 2020-02-27 Pfizer Inc. Anti-gdf15 antibodies, compositions and methods of use
WO2020044206A1 (en) 2018-08-29 2020-03-05 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors for use in the treatment cancer
WO2020044252A1 (en) 2018-08-31 2020-03-05 Novartis Ag Dosage regimes for anti-m-csf antibodies and uses thereof
WO2020049534A1 (en) 2018-09-07 2020-03-12 Novartis Ag Sting agonist and combination therapy thereof for the treatment of cancer
WO2020048942A1 (en) 2018-09-04 2020-03-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses
WO2020051099A1 (en) 2018-09-03 2020-03-12 Genentech, Inc. Carboxamide and sulfonamide derivatives useful as tead modulators
WO2020051333A1 (en) 2018-09-07 2020-03-12 Pfizer Inc. Anti-avb8 antibodies and compositions and uses thereof
US10588984B2 (en) 2013-09-18 2020-03-17 Aura Biosciences, Inc. Virus-like particle conjugates for diagnosis and treatment of tumors
WO2020055702A1 (en) 2018-09-13 2020-03-19 Merck Sharp & Dohme Corp. Combination of pd-1 antagonist and lag3 antagonist for treating non-microsatellite instablity-high/proficient mismatch repair colorectal cancer
WO2020053654A1 (en) 2018-09-12 2020-03-19 Novartis Ag Antiviral pyridopyrazinedione compounds
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
US10596257B2 (en) 2016-01-08 2020-03-24 Hoffmann-La Roche Inc. Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
WO2020061060A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2020058372A1 (en) 2018-09-19 2020-03-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of cancers resistant to immune checkpoint therapy
WO2020061377A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Spirocyclic 2,3-dihydro-7-azaindole compounds and uses thereof
WO2020061376A2 (en) 2018-09-19 2020-03-26 Alpine Immune Sciences, Inc. Methods and uses of variant cd80 fusion proteins and related constructs
WO2020061349A1 (en) 2018-09-21 2020-03-26 Genentech, Inc. Diagnostic methods for triple-negative breast cancer
WO2020069372A1 (en) 2018-09-27 2020-04-02 Elstar Therapeutics, Inc. Csf1r/ccr2 multispecific antibodies
WO2020065453A1 (en) 2018-09-29 2020-04-02 Novartis Ag Process of manufacture of a compound for inhibiting the activity of shp2
WO2020069402A1 (en) 2018-09-30 2020-04-02 Genentech, Inc. Cinnoline compounds and for the treatment of hpk1-dependent disorders such as cancer
WO2020069405A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd22 chimeric antigen receptor (car) therapies
WO2020069409A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
WO2020072695A1 (en) 2018-10-03 2020-04-09 Genentech, Inc. 8-aminoisoquinoline compounds and uses thereof
WO2020070053A1 (en) 2018-10-01 2020-04-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of inhibitors of stress granule formation for targeting the regulation of immune responses
WO2020072627A1 (en) 2018-10-02 2020-04-09 Genentech, Inc. Isoquinoline compounds for the treatment of cancer
WO2020072821A2 (en) 2018-10-03 2020-04-09 Xencor, Inc. Il-12 heterodimeric fc-fusion proteins
WO2020077276A2 (en) 2018-10-12 2020-04-16 Xencor, Inc. Pd-1 targeted il-15/il-15ralpha fc fusion proteins and uses in combination therapies thereof
WO2020081767A1 (en) 2018-10-18 2020-04-23 Genentech, Inc. Diagnostic and therapeutic methods for sarcomatoid kidney cancer
WO2020079581A1 (en) 2018-10-16 2020-04-23 Novartis Ag Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy
WO2020086479A1 (en) 2018-10-22 2020-04-30 Glaxosmithkline Intellectual Property Development Limited Dosing
WO2020092848A2 (en) 2018-11-01 2020-05-07 Juno Therapeutics, Inc. Methods for treatment using chimeric antigen receptors specific for b-cell maturation antigen
WO2020089811A1 (en) 2018-10-31 2020-05-07 Novartis Ag Dc-sign antibody drug conjugates
WO2020092854A2 (en) 2018-11-01 2020-05-07 Juno Therapeutics, Inc. Chimeric antigen receptors specific for g protein-coupled receptor class c group 5 member d (gprc5d)
WO2020092304A1 (en) 2018-10-29 2020-05-07 Wisconsin Alumni Research Foundation Dendritic polymers complexed with immune checkpoint inhibitors for enhanced cancer immunotherapy
WO2020092183A1 (en) 2018-11-01 2020-05-07 Merck Sharp & Dohme Corp. Novel substituted pyrazole compounds as indoleamine 2,3-dioxygenase inhibitors
US10646464B2 (en) 2017-05-17 2020-05-12 Boston Biomedical, Inc. Methods for treating cancer
WO2020096871A1 (en) 2018-11-06 2020-05-14 Merck Sharp & Dohme Corp. Novel substituted tricyclic compounds as indoleamine 2,3-dioxygenase inhibitors
WO2020102770A1 (en) 2018-11-16 2020-05-22 Juno Therapeutics, Inc. Methods of dosing engineered t cells for the treatment of b cell malignancies
WO2020102804A2 (en) 2018-11-16 2020-05-22 Arqule, Inc. Pharmaceutical combination for treatment of cancer
WO2020106558A1 (en) 2018-11-20 2020-05-28 Merck Sharp & Dohme Corp. Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use
WO2020106621A1 (en) 2018-11-19 2020-05-28 Board Of Regents, The University Of Texas System A modular, polycistronic vector for car and tcr transduction
WO2020106560A1 (en) 2018-11-20 2020-05-28 Merck Sharp & Dohme Corp. Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use
EP3660042A1 (en) 2014-07-31 2020-06-03 Novartis AG Subset-optimized chimeric antigen receptor-containing t-cells
EP3659622A1 (en) 2013-08-08 2020-06-03 Cytune Pharma Combined pharmaceutical composition
WO2020109328A1 (en) 2018-11-26 2020-06-04 Debiopharm International S.A. Combination treatment of hiv infections
WO2020109355A1 (en) 2018-11-28 2020-06-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kit for assaying lytic potential of immune effector cells
WO2020110056A1 (en) 2018-11-30 2020-06-04 Glaxosmithkline Intellectual Property Development Limited Compounds useful in hiv therapy
WO2020113029A2 (en) 2018-11-28 2020-06-04 Board Of Regents, The University Of Texas System Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment
WO2020113194A2 (en) 2018-11-30 2020-06-04 Juno Therapeutics, Inc. Methods for treatment using adoptive cell therapy
WO2020112493A1 (en) 2018-11-29 2020-06-04 Board Of Regents, The University Of Texas System Methods for ex vivo expansion of natural killer cells and use thereof
WO2020112581A1 (en) 2018-11-28 2020-06-04 Merck Sharp & Dohme Corp. Novel substituted piperazine amide compounds as indoleamine 2, 3-dioxygenase (ido) inhibitors
WO2020112700A1 (en) 2018-11-30 2020-06-04 Merck Sharp & Dohme Corp. 9-substituted amino triazolo quinazoline derivatives as adenosine receptor antagonists, pharmaceutical compositions and their use
WO2020117988A1 (en) 2018-12-04 2020-06-11 Tolero Pharmaceuticals, Inc. Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020117952A2 (en) 2018-12-05 2020-06-11 Genentech, Inc. Diagnostic methods and compositions for cancer immunotherapy
WO2020115262A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes
WO2020123453A2 (en) 2018-12-11 2020-06-18 Theravance Biopharma R&D Ip, Llc Alk5 inhibitors
US10688172B2 (en) 2009-04-13 2020-06-23 INSERM (Institut National de la Santé et de la Recherche Médicale) HPV particles and uses thereof
WO2020128972A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020128637A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 binding antibodies in the treatment of a msi-h cancer
WO2020127059A1 (en) 2018-12-17 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sulconazole as a furin inhibitor
WO2020128612A2 (en) 2018-12-21 2020-06-25 Novartis Ag Antibodies to pmel17 and conjugates thereof
WO2020128620A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020127965A1 (en) 2018-12-21 2020-06-25 Onxeo New conjugated nucleic acid molecules and their uses
WO2020132646A1 (en) 2018-12-20 2020-06-25 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains
WO2020128613A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020128636A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 beta antibodies in the treatment or prevention of myelodysplastic syndrome
US10695426B2 (en) 2014-08-25 2020-06-30 Pfizer Inc. Combination of a PD-1 antagonist and an ALK inhibitor for treating cancer
WO2020150152A1 (en) 2019-01-14 2020-07-23 Genentech, Inc. Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2020148338A1 (en) 2019-01-15 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy
EP3689910A2 (en) 2014-09-23 2020-08-05 F. Hoffmann-La Roche AG Method of using anti-cd79b immunoconjugates
WO2020160050A1 (en) 2019-01-29 2020-08-06 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1)
WO2020163589A1 (en) 2019-02-08 2020-08-13 Genentech, Inc. Diagnostic and therapeutic methods for cancer
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
WO2020167990A1 (en) 2019-02-12 2020-08-20 Tolero Pharmaceuticals, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2020165833A1 (en) 2019-02-15 2020-08-20 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020165834A1 (en) 2019-02-15 2020-08-20 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020165733A1 (en) 2019-02-12 2020-08-20 Novartis Ag Pharmaceutical combination comprising tno155 and a pd-1 inhibitor
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
US10767232B2 (en) 2014-11-03 2020-09-08 Genentech, Inc. Methods and biomarkers for predicting efficacy and evaluation of an OX40 agonist treatment
WO2020182869A1 (en) 2019-03-12 2020-09-17 Biontech Rna Pharmaceuticals Gmbh Therapeutic rna for prostate cancer
WO2020186176A1 (en) 2019-03-14 2020-09-17 Genentech, Inc. Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab
EP3712171A1 (en) 2014-08-19 2020-09-23 Novartis AG Treatment of cancer using a cd123 chimeric antigen receptor
WO2020187998A1 (en) 2019-03-19 2020-09-24 Fundació Privada Institut D'investigació Oncològica De Vall Hebron Combination therapy with omomyc and an antibody binding pd-1 or ctla-4 for the treatment of cancer
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
WO2020205688A1 (en) 2019-04-04 2020-10-08 Merck Sharp & Dohme Corp. Inhibitors of histone deacetylase-3 useful for the treatment of cancer, inflammation, neurodegeneration diseases and diabetes
WO2020200472A1 (en) 2019-04-05 2020-10-08 Biontech Rna Pharmaceuticals Gmbh Preparation and storage of liposomal rna formulations suitable for therapy
WO2020201362A2 (en) 2019-04-02 2020-10-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
WO2020205626A1 (en) 2019-03-29 2020-10-08 Genentech, Inc. Modulators of cell surface protein interactions and methods and compositions related to same
US10800846B2 (en) 2015-02-26 2020-10-13 Merck Patent Gmbh PD-1/PD-L1 inhibitors for the treatment of cancer
EP3722316A1 (en) 2014-07-21 2020-10-14 Novartis AG Treatment of cancer using a cd33 chimeric antigen receptor
WO2020208060A1 (en) 2019-04-09 2020-10-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer
WO2020212484A1 (en) 2019-04-17 2020-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders
WO2020214995A1 (en) 2019-04-19 2020-10-22 Genentech, Inc. Anti-mertk antibodies and their methods of use
WO2020223233A1 (en) 2019-04-30 2020-11-05 Genentech, Inc. Prognostic and therapeutic methods for colorectal cancer
WO2020227711A1 (en) 2019-05-09 2020-11-12 FUJIFILM Cellular Dynamics, Inc. Methods for the production of hepatocytes
WO2020232378A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use
WO2020232375A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Oxoacridinyl acetic acid derivatives and methods of use
WO2020234410A1 (en) 2019-05-20 2020-11-26 Biontech Rna Pharmaceuticals Gmbh Therapeutic rna for ovarian cancer
WO2020236562A1 (en) 2019-05-17 2020-11-26 Cancer Prevention Pharmaceuticals, Inc. Methods for treating familial adenomatous polyposis
WO2020247973A1 (en) 2019-06-03 2020-12-10 The University Of Chicago Methods and compositions for treating cancer with cancer-targeted adjuvants
WO2020247974A1 (en) 2019-06-03 2020-12-10 The University Of Chicago Methods and compositions for treating cancer with collagen binding drug carriers
US10869924B2 (en) 2015-06-16 2020-12-22 Merck Patent Gmbh PD-L1 antagonist combination treatments
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
US10875923B2 (en) 2015-10-30 2020-12-29 Mayo Foundation For Medical Education And Research Antibodies to B7-H1
WO2020260547A1 (en) 2019-06-27 2020-12-30 Rigontec Gmbh Design method for optimized rig-i ligands
US10882914B2 (en) 2016-04-15 2021-01-05 Alpine Immune Sciences, Inc. ICOS ligand variant immunomodulatory proteins and uses thereof
WO2021003417A1 (en) 2019-07-03 2021-01-07 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
WO2021009362A1 (en) 2019-07-18 2021-01-21 Ctxt Pty Limited Benzothiophene, thienopyridine and thienopyrimidine derivatives for the modulation of sting
WO2021009365A1 (en) 2019-07-18 2021-01-21 Ctxt Pty Limited Benzothiophene, thienopyridine and thienopyrimidine derivatives for the modulation of sting
US10899840B2 (en) 2014-02-04 2021-01-26 Pfizer Inc. Combination of a PD-1 antagonist and a 4-1BB agonist for treating cancer
US10899836B2 (en) 2016-02-12 2021-01-26 Janssen Pharmaceutica Nv Method of identifying anti-VISTA antibodies
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021023698A1 (en) 2019-08-02 2021-02-11 Lanthiopep B.V Angiotensin type 2 (at2) receptor agonists for use in the treatment of cancer
WO2021030251A1 (en) 2019-08-12 2021-02-18 Purinomia Biotech, Inc. Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells
EP3783029A1 (en) 2015-05-12 2021-02-24 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
US10933115B2 (en) 2012-06-22 2021-03-02 The Trustees Of Dartmouth College VISTA antagonist and methods of use
EP3789402A1 (en) 2014-11-20 2021-03-10 F. Hoffmann-La Roche AG Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
EP3789036A1 (en) 2013-07-16 2021-03-10 F. Hoffmann-La Roche AG Methods of treating cancer using pd-1 axis binding antagonists and tigit inhibitors
WO2021053556A1 (en) 2019-09-18 2021-03-25 Novartis Ag Nkg2d fusion proteins and uses thereof
WO2021053560A1 (en) 2019-09-18 2021-03-25 Novartis Ag Combination therapy with entpd2 and cd73 antibodies
WO2021053587A1 (en) 2019-09-18 2021-03-25 Klaus Strein Bispecific antibodies against ceacam5 and cd3
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021058711A2 (en) 2019-09-27 2021-04-01 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins
WO2021062244A1 (en) 2019-09-25 2021-04-01 Surface Oncology, Inc. Anti-il-27 antibodies and uses thereof
EP3800201A1 (en) 2019-10-01 2021-04-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd28h stimulation enhances nk cell killing activities
WO2021067863A2 (en) 2019-10-03 2021-04-08 Xencor, Inc. Targeted il-12 heterodimeric fc-fusion proteins
WO2021064184A1 (en) 2019-10-04 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer
WO2021072298A1 (en) 2019-10-11 2021-04-15 Genentech, Inc. Pd-1 targeted il-15/il-15ralpha fc fusion proteins with improved properties
US10988516B2 (en) 2012-03-26 2021-04-27 Uti Limited Partnership Methods and compositions for treating inflammation
WO2021079195A1 (en) 2019-10-21 2021-04-29 Novartis Ag Tim-3 inhibitors and uses thereof
WO2021081353A1 (en) 2019-10-23 2021-04-29 Checkmate Pharmaceuticals, Inc. Synthetic rig-i-like receptor agonists
WO2021079188A1 (en) 2019-10-21 2021-04-29 Novartis Ag Combination therapies with venetoclax and tim-3 inhibitors
WO2021087458A2 (en) 2019-11-02 2021-05-06 Board Of Regents, The University Of Texas System Targeting nonsense-mediated decay to activate p53 pathway for the treatment of cancer
WO2021086909A1 (en) 2019-10-29 2021-05-06 Eisai R&D Managment Co., Ltd. Combination of a pd-1 antagonist, a vegfr/fgfr/ret tyrosine kinase inhibitor and a cbp/beta-catenin inhibitor for treating cancer
WO2021083060A1 (en) 2019-10-28 2021-05-06 中国科学院上海药物研究所 Five-membered heterocyclic oxocarboxylic acid compound and medical use thereof
WO2021092171A1 (en) 2019-11-06 2021-05-14 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
US11009509B2 (en) 2015-06-24 2021-05-18 Janssen Pharmaceutica Nv Anti-VISTA antibodies and fragments
WO2021097110A1 (en) 2019-11-13 2021-05-20 Genentech, Inc. Therapeutic compounds and methods of use
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
WO2021102468A1 (en) 2019-11-22 2021-05-27 Theravance Biopharma R&D Ip, Llc Substituted 1,5-naphthyridines or quinolines as alk5 inhibitors
WO2021102343A1 (en) 2019-11-22 2021-05-27 Sumitomo Dainippon Pharma Oncology, Inc. Solid dose pharmaceutical composition
US11021511B2 (en) 2017-01-27 2021-06-01 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
WO2021108613A1 (en) 2019-11-26 2021-06-03 Novartis Ag Cd19 and cd22 chimeric antigen receptors and uses thereof
EP3831849A1 (en) 2019-12-02 2021-06-09 LamKap Bio beta AG Bispecific antibodies against ceacam5 and cd47
WO2021113679A1 (en) 2019-12-06 2021-06-10 Mersana Therapeutics, Inc. Dimeric compounds as sting agonists
WO2021113777A2 (en) 2019-12-04 2021-06-10 Orna Therapeutics, Inc. Circular rna compositions and methods
WO2021113644A1 (en) 2019-12-05 2021-06-10 Multivir Inc. Combinations comprising a cd8+ t cell enhancer, an immune checkpoint inhibitor and radiotherapy for targeted and abscopal effects for the treatment of cancer
WO2021123902A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
WO2021129872A1 (en) 2019-12-27 2021-07-01 高诚生物医药(香港)有限公司 Anti-ox40 antibody and use thereof
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US11078282B2 (en) 2016-04-15 2021-08-03 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2021155042A1 (en) 2020-01-28 2021-08-05 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the treatment of cancer
WO2021155149A1 (en) 2020-01-31 2021-08-05 Genentech, Inc. Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
US11083705B2 (en) 2019-07-26 2021-08-10 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
US11098077B2 (en) 2016-07-05 2021-08-24 Chinook Therapeutics, Inc. Locked nucleic acid cyclic dinucleotide compounds and uses thereof
US11096988B2 (en) 2017-03-16 2021-08-24 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2021167908A1 (en) 2020-02-17 2021-08-26 Board Of Regents, The University Of Texas System Methods for expansion of tumor infiltrating lymphocytes and use thereof
WO2021171264A1 (en) 2020-02-28 2021-09-02 Novartis Ag Dosing of a bispecific antibody that binds cd123 and cd3
WO2021171260A2 (en) 2020-02-28 2021-09-02 Novartis Ag A triple pharmaceutical combination comprising dabrafenib, an erk inhibitor and a raf inhibitor or a pd-1 inhibitor
WO2021176330A1 (en) 2020-03-03 2021-09-10 Array Biopharma Inc. Methods to treat cancer using (r)-n-(3-fluoro-4-((3-((1-hydroxypropan-2-yl)amino)-1h-pyrazolo[3,4-b]pyridin-4-yl)oxy)phenyl)-3-(4-fluorophenyl)-1-isopropyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
US11123426B2 (en) 2014-06-11 2021-09-21 The Trustees Of Dartmouth College Use of vista agonists and antagonists to suppress or enhance humoral immunity
WO2021189059A2 (en) 2020-03-20 2021-09-23 Orna Therapeutics, Inc. Circular rna compositions and methods
WO2021203131A1 (en) 2020-03-31 2021-10-07 Theravance Biopharma R&D Ip, Llc Substituted pyrimidines and methods of use
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2021207689A2 (en) 2020-04-10 2021-10-14 Juno Therapeutics, Inc. Methods and uses related to cell therapy engineered with a chimeric antigen receptor targeting b-cell maturation antigen
WO2021209357A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer involving anti-icos and anti-pd1 antibodies, optionally further involving anti-tim3 antibodies
WO2021209356A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer
WO2021222188A1 (en) 2020-04-27 2021-11-04 Seagen Inc. Anti-cd40 antibody combination treatment for cancer
WO2021220199A1 (en) 2020-04-30 2021-11-04 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
WO2021222167A1 (en) 2020-04-28 2021-11-04 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
WO2021226003A1 (en) 2020-05-06 2021-11-11 Merck Sharp & Dohme Corp. Il4i1 inhibitors and methods of use
WO2021224215A1 (en) 2020-05-05 2021-11-11 F. Hoffmann-La Roche Ag Predicting response to pd-1 axis inhibitors
WO2021237068A2 (en) 2020-05-21 2021-11-25 Board Of Regents, The University Of Texas System T cell receptors with vgll1 specificity and uses thereof
WO2021239838A2 (en) 2020-05-26 2021-12-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) polypeptides and uses thereof for vaccine purposes
WO2021247836A1 (en) 2020-06-03 2021-12-09 Board Of Regents, The University Of Texas System Methods for targeting shp-2 to overcome resistance
WO2021253041A1 (en) 2020-06-10 2021-12-16 Theravance Biopharma R&D Ip, Llc Naphthyridine derivatives useful as alk5 inhibitors
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
WO2021255223A1 (en) 2020-06-19 2021-12-23 Onxeo New conjugated nucleic acid molecules and their uses
WO2021257503A1 (en) 2020-06-16 2021-12-23 Genentech, Inc. Methods and compositions for treating triple-negative breast cancer
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2022008519A1 (en) 2020-07-07 2022-01-13 BioNTech SE Therapeutic rna for hpv-positive cancer
WO2022020716A1 (en) 2020-07-24 2022-01-27 Genentech, Inc. Heterocyclic inhibitors of tead for treating cancer
US11242392B2 (en) 2013-12-24 2022-02-08 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2022036146A1 (en) 2020-08-12 2022-02-17 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022047046A1 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Methods of detecting trbc1 or trbc2
WO2022049526A1 (en) 2020-09-02 2022-03-10 Pharmabcine Inc. Combination therapy of a pd-1 antagonist and an antagonist for vegfr-2 for treating patients with cancer
US11274154B2 (en) 2016-10-06 2022-03-15 Pfizer Inc. Dosing regimen of avelumab for the treatment of cancer
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
US11285131B2 (en) 2017-08-04 2022-03-29 Merck Sharp & Dohme Corp. Benzo[b]thiophene STING agonists for cancer treatment
WO2022069632A1 (en) 2020-10-01 2022-04-07 BioNTech SE Preparation and storage of liposomal rna formulations suitable for therapy
US11299469B2 (en) 2016-11-29 2022-04-12 Sumitomo Dainippon Pharma Oncology, Inc. Naphthofuran derivatives, preparation, and methods of use thereof
US11312772B2 (en) 2017-08-04 2022-04-26 Merck Sharp & Dohme Corp. Combinations of PD-1 antagonists and benzo [b] thiophene STING agonists for cancer treatment
WO2022084210A1 (en) 2020-10-20 2022-04-28 F. Hoffmann-La Roche Ag Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
WO2022086957A1 (en) 2020-10-20 2022-04-28 Genentech, Inc. Peg-conjugated anti-mertk antibodies and methods of use
US11319359B2 (en) 2015-04-17 2022-05-03 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
WO2022097060A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
WO2022098638A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
WO2022098628A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
WO2022098648A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
US11332524B2 (en) 2018-03-22 2022-05-17 Surface Oncology, Inc. Anti-IL-27 antibodies and uses thereof
WO2022101619A1 (en) 2020-11-10 2022-05-19 Immodulon Therapeutics Limited A mycobacterium for use in cancer therapy
WO2022101463A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the last c-terminal residues m31/41 of zikv m ectodomain for triggering apoptotic cell death
WO2022101302A1 (en) 2020-11-12 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies conjugated or fused to the receptor-binding domain of the sars-cov-2 spike protein and uses thereof for vaccine purposes
WO2022104109A1 (en) 2020-11-13 2022-05-19 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
US11351252B2 (en) 2016-06-05 2022-06-07 Snipr Technologies Limited Selectively altering microbiota for immune modulation
WO2022119830A1 (en) 2020-12-02 2022-06-09 Genentech, Inc. Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy
WO2022125497A1 (en) 2020-12-08 2022-06-16 Infinity Pharmaceuticals, Inc. Eganelisib for use in the treatment of pd-l1 negative cancer
US11365252B2 (en) 2016-07-20 2022-06-21 University Of Utah Research Foundation CD229 CAR T cells and methods of use thereof
WO2022130348A1 (en) 2020-12-18 2022-06-23 Lamkap Bio Beta Ag Bispecific antibodies against ceacam5 and cd47
WO2022136257A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022136255A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022136266A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
EP4026848A1 (en) 2015-12-09 2022-07-13 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing the cytokine release syndrome
EP4029950A1 (en) 2016-04-29 2022-07-20 Board of Regents, The University of Texas System Targeted measure of transcriptional activity related to hormone receptors
US11396647B2 (en) 2020-01-07 2022-07-26 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
WO2022159492A1 (en) 2021-01-19 2022-07-28 William Marsh Rice University Bone-specific delivery of polypeptides
US11401333B2 (en) 2009-03-25 2022-08-02 Genentech, Inc. Anti-FGFR3 antibodies and methods using same
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
WO2022169997A1 (en) 2021-02-03 2022-08-11 Genentech, Inc. Lactams as cbl-b inhibitors
WO2022169998A1 (en) 2021-02-03 2022-08-11 Genentech, Inc. Amides as cbl-b inhibitors
WO2022185160A1 (en) 2021-03-02 2022-09-09 Glaxosmithkline Intellectual Property Development Limited Substituted pyridines as dnmt1 inhibitors
WO2022195551A1 (en) 2021-03-18 2022-09-22 Novartis Ag Biomarkers for cancer and methods of use thereof
US11453697B1 (en) 2015-08-13 2022-09-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
WO2022203090A1 (en) 2021-03-25 2022-09-29 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
WO2022208353A1 (en) 2021-03-31 2022-10-06 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins and combinations thereof
US11466047B2 (en) 2017-05-12 2022-10-11 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
WO2022217123A2 (en) 2021-04-08 2022-10-13 Nurix Therapeutics, Inc. Combination therapies with cbl-b inhibitor compounds
WO2022216993A2 (en) 2021-04-08 2022-10-13 Marengo Therapeutics, Inc. Multifuntional molecules binding to tcr and uses thereof
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
WO2022216898A1 (en) 2021-04-09 2022-10-13 Genentech, Inc. Combination therapy with a raf inhibitor and a pd-1 axis inhibitor
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
WO2022221227A1 (en) 2021-04-13 2022-10-20 Nuvalent, Inc. Amino-substituted heterocycles for treating cancers with egfr mutations
WO2022221720A1 (en) 2021-04-16 2022-10-20 Novartis Ag Antibody drug conjugates and methods for making thereof
WO2022228705A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022232333A1 (en) 2021-04-30 2022-11-03 Merck Sharp & Dohme Llc Il4i1 inhibitors and methods of use
WO2022232503A1 (en) 2021-04-30 2022-11-03 Genentech, Inc. Therapeutic and diagnostic methods and compositions for cancer
US11492367B2 (en) 2017-01-27 2022-11-08 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
WO2022236134A1 (en) 2021-05-07 2022-11-10 Surface Oncology, Inc. Anti-il-27 antibodies and uses thereof
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
WO2022243846A1 (en) 2021-05-18 2022-11-24 Novartis Ag Combination therapies
WO2022251359A1 (en) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Bicyclic inhibitors of alk5 and methods of use
WO2022254337A1 (en) 2021-06-01 2022-12-08 Novartis Ag Cd19 and cd22 chimeric antigen receptors and uses thereof
US11525000B2 (en) 2016-04-15 2022-12-13 Immunext, Inc. Anti-human VISTA antibodies and use thereof
WO2022261018A1 (en) 2021-06-07 2022-12-15 Providence Health & Services - Oregon Cxcr5, pd-1, and icos expressing tumor reactive cd4 t cells and their use
US11542505B1 (en) 2018-04-20 2023-01-03 Merck Sharp & Dohme Llc Substituted RIG-I agonists: compositions and methods thereof
WO2023279092A2 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
WO2023280790A1 (en) 2021-07-05 2023-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Gene signatures for predicting survival time in patients suffering from renal cell carcinoma
WO2023285552A1 (en) 2021-07-13 2023-01-19 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
US11564995B2 (en) 2018-10-29 2023-01-31 Wisconsin Alumni Research Foundation Peptide-nanoparticle conjugates
WO2023010095A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
WO2023007107A1 (en) 2021-07-27 2023-02-02 Immodulon Therapeutics Limited A mycobacterium for use in cancer therapy
WO2023010080A1 (en) 2021-07-30 2023-02-02 Seagen Inc. Treatment for cancer
WO2023010094A2 (en) 2021-07-28 2023-02-02 Genentech, Inc. Methods and compositions for treating cancer
WO2023015198A1 (en) 2021-08-04 2023-02-09 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the expansion of nk cells in the treatment of solid tumours
WO2023014922A1 (en) 2021-08-04 2023-02-09 The Regents Of The University Of Colorado, A Body Corporate Lat activating chimeric antigen receptor t cells and methods of use thereof
US11578372B2 (en) 2012-11-05 2023-02-14 Foundation Medicine, Inc. NTRK1 fusion molecules and uses thereof
WO2023039089A1 (en) 2021-09-08 2023-03-16 Twentyeight-Seven, Inc. Papd5 and/or papd7 inhibiting 4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives
US11607453B2 (en) 2017-05-12 2023-03-21 Harpoon Therapeutics, Inc. Mesothelin binding proteins
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2023060136A1 (en) 2021-10-05 2023-04-13 Cytovia Therapeutics, Llc Natural killer cells and methods of use thereof
WO2023057534A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
WO2023061930A1 (en) 2021-10-11 2023-04-20 BioNTech SE Therapeutic rna for lung cancer
WO2023068382A2 (en) 2021-10-20 2023-04-27 Takeda Pharmaceutical Company Limited Compositions targeting bcma and methods of use thereof
WO2023076880A1 (en) 2021-10-25 2023-05-04 Board Of Regents, The University Of Texas System Foxo1-targeted therapy for the treatment of cancer
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023079430A1 (en) 2021-11-02 2023-05-11 Pfizer Inc. Methods of treating mitochondrial myopathies using anti-gdf15 antibodies
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023084445A1 (en) 2021-11-12 2023-05-19 Novartis Ag Combination therapy for treating lung cancer
US11655303B2 (en) 2019-09-16 2023-05-23 Surface Oncology, Inc. Anti-CD39 antibody compositions and methods
WO2023088968A1 (en) 2021-11-17 2023-05-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Universal sarbecovirus vaccines
WO2023097194A2 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic compounds and methods of use
WO2023097195A1 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic indazole compounds and methods of use in the treatment of cancer
US11667613B2 (en) 2019-09-26 2023-06-06 Novartis Ag Antiviral pyrazolopyridinone compounds
WO2023111203A1 (en) 2021-12-16 2023-06-22 Onxeo New conjugated nucleic acid molecules and their uses
US11685761B2 (en) 2017-12-20 2023-06-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
WO2023129438A1 (en) 2021-12-28 2023-07-06 Wisconsin Alumni Research Foundation Hydrogel compositions for use for depletion of tumor associated macrophages
US11702430B2 (en) 2018-04-03 2023-07-18 Merck Sharp & Dohme Llc Aza-benzothiophene compounds as STING agonists
WO2023154799A1 (en) 2022-02-14 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination immunotherapy for treating cancer
WO2023154905A1 (en) 2022-02-14 2023-08-17 Gilead Sciences, Inc. Antiviral pyrazolopyridinone compounds
US11732044B2 (en) 2017-12-27 2023-08-22 Innovent Biologics (Suzhou) Co., Ltd. Anti-LAG-3 antibody and use thereof
US11739125B2 (en) 2013-08-21 2023-08-29 Cure Vac SE Respiratory syncytial virus (RSV) vaccine
US11746103B2 (en) 2020-12-10 2023-09-05 Sumitomo Pharma Oncology, Inc. ALK-5 inhibitors and uses thereof
US11771698B2 (en) 2013-01-18 2023-10-03 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
WO2023211972A1 (en) 2022-04-28 2023-11-02 Medical University Of South Carolina Chimeric antigen receptor modified regulatory t cells for treating cancer
US11807692B2 (en) 2018-09-25 2023-11-07 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023230541A1 (en) 2022-05-27 2023-11-30 Viiv Healthcare Company Piperazine derivatives useful in hiv therapy
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023242351A1 (en) 2022-06-16 2023-12-21 Lamkap Bio Beta Ag Combination therapy of bispecific antibodies against ceacam5 and cd47 and bispecific antibodies against ceacam5 and cd3
WO2023250400A1 (en) 2022-06-22 2023-12-28 Juno Therapeutics, Inc. Treatment methods for second line therapy of cd19-targeted car t cells
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024031091A2 (en) 2022-08-05 2024-02-08 Juno Therapeutics, Inc. Chimeric antigen receptors specific for gprc5d and bcma
WO2024028794A1 (en) 2022-08-02 2024-02-08 Temple Therapeutics BV Methods for treating endometrial and ovarian hyperproliferative disorders
US11896643B2 (en) 2018-02-05 2024-02-13 Orionis Biosciences, Inc. Fibroblast binding agents and use thereof
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024052356A1 (en) 2022-09-06 2024-03-14 Institut National de la Santé et de la Recherche Médicale Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer
US11931354B2 (en) 2013-04-09 2024-03-19 Lixte Biotechnology, Inc. Formulations of oxabicycloheptanes and oxabicycloheptenes
US11939343B2 (en) 2019-08-02 2024-03-26 Mersana Therapeutics, Inc. Sting agonist compounds and methods of use
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
US11976125B2 (en) 2017-10-13 2024-05-07 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins
EP4378957A2 (en) 2015-07-29 2024-06-05 Novartis AG Combination therapies comprising antibody molecules to pd-1
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
WO2024129778A2 (en) 2022-12-13 2024-06-20 Juno Therapeutics, Inc. Chimeric antigen receptors specific for baff-r and cd19 and methods and uses thereof
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
US12029724B2 (en) 2016-04-28 2024-07-09 Eisai R&D Management Co., Ltd. Method for inhibiting tumor growth
US12036204B2 (en) 2019-07-26 2024-07-16 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
US12042560B2 (en) 2009-03-30 2024-07-23 Eisai R&D Management Co., Ltd. Liposome composition
WO2024163477A1 (en) 2023-01-31 2024-08-08 University Of Rochester Immune checkpoint blockade therapy for treating staphylococcus aureus infections
US12076375B2 (en) 2022-06-29 2024-09-03 Snipr Biome Aps Treating and preventing E coli infections
US12084518B2 (en) 2015-05-21 2024-09-10 Harpoon Therapeutics, Inc. Trispecific binding proteins and methods of use
WO2024206357A1 (en) 2023-03-29 2024-10-03 Merck Sharp & Dohme Llc Il4i1 inhibitors and methods of use
WO2024209072A1 (en) 2023-04-06 2024-10-10 Genmab A/S Multispecific binding agents against pd-l1 and cd137 for treating cancer
US12123003B2 (en) 2020-12-23 2024-10-22 Checkmate Pharmaceuticals, Inc. Synthetic RIG-I-like receptor agonists

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030219B2 (en) 2000-04-28 2006-04-18 Johns Hopkins University B7-DC, Dendritic cell co-stimulatory molecules
US7432351B1 (en) 2002-10-04 2008-10-07 Mayo Foundation For Medical Education And Research B7-H1 variants
WO2009029342A2 (en) 2007-07-13 2009-03-05 The Johns Hopkins University B7-dc variants
CN102203125A (en) * 2008-08-25 2011-09-28 安普利穆尼股份有限公司 Pd-1 antagonists and methods of use thereof
US20130017199A1 (en) * 2009-11-24 2013-01-17 AMPLIMMUNE ,Inc. a corporation Simultaneous inhibition of pd-l1/pd-l2
RU2677140C1 (en) * 2010-05-05 2019-01-15 Нью-Йорк Юниверсити Staphylococcus aureus leukocidins, therapeutic compositions and their application
EP2910572B1 (en) * 2010-11-11 2017-09-06 Versitech Limited Soluble pd-1 variants, fusion constructs, and uses thereof
JP2014525904A (en) 2011-06-28 2014-10-02 ホワイトヘッド・インスティテュート・フォー・バイオメディカル・リサーチ Using sortase to install click chemistry handles for protein ligation
EP4079319A1 (en) * 2011-10-17 2022-10-26 IO Biotech ApS Pd-l1 based immunotherapy
WO2013192504A1 (en) * 2012-06-22 2013-12-27 The Trustees Of Dartmouth College Novel vista-ig constructs and the use of vista-ig for treatment of autoimmune, allergic and inflammatory disorders
WO2014059403A1 (en) * 2012-10-12 2014-04-17 University Of Miami Chimeric proteins, compositions and methods for restoring cholinesterase function at neuromuscular synapses
KR101968637B1 (en) 2012-12-07 2019-04-12 삼성전자주식회사 Flexible semiconductor device and method of manufacturing the same
CN103965363B (en) * 2013-02-06 2021-01-15 上海白泽生物科技有限公司 Fusion protein efficiently combined with PD-1 and VEGF, coding sequence and application thereof
WO2014124217A1 (en) * 2013-02-07 2014-08-14 Albert Einstein College Of Medicine Of Yeshiva University A selective high-affinity immune stimulatory reagent and uses thereof
US9308236B2 (en) 2013-03-15 2016-04-12 Bristol-Myers Squibb Company Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions
JP6603209B2 (en) 2013-05-10 2019-11-06 ホワイトヘッド・インスティテュート・フォー・バイオメディカル・リサーチ Protein modification of living cells using sortase
EP2994491A4 (en) 2013-05-10 2016-12-07 Whitehead Inst Biomedical Res In vitro production of red blood cells with sortaggable proteins
KR102186363B1 (en) 2013-09-06 2020-12-04 삼성전자주식회사 Pharmaceutical composition for combination therapy containing c-Met inhibitor and beta-catenin inhibitor
CN112457403B (en) 2013-09-13 2022-11-29 广州百济神州生物制药有限公司 anti-PD 1 antibodies and their use as therapeutic and diagnostic agents
US10556024B2 (en) 2013-11-13 2020-02-11 Whitehead Institute For Biomedical Research 18F labeling of proteins using sortases
EP3071697B1 (en) 2013-11-22 2019-10-16 DNAtrix, Inc. Adenovirus expressing immune cell stimulatory receptor agonist(s)
CA2935375C (en) 2014-01-06 2023-08-08 The Trustees Of The University Of Pennsylvania Pd1 and pdl1 antibodies and vaccine combinations and use of same for immunotherapy
US10682400B2 (en) * 2014-04-30 2020-06-16 President And Fellows Of Harvard College Combination vaccine devices and methods of killing cancer cells
CN103965364B (en) * 2014-05-19 2016-06-08 亚飞(上海)生物医药科技有限公司 A kind of people source PDL2HSA series fusion protein and preparation and application thereof
KR102130600B1 (en) 2014-07-03 2020-07-08 베이진 엘티디 Anti-PD-L1 Antibodies and Their Use as Therapeutics and Diagnostics
RU2711141C2 (en) 2014-07-22 2020-01-15 СиБи ТЕРЕПЬЮТИКС, ИНК. Anti-pd-1 antibodies
SG10201901057UA (en) 2014-08-05 2019-03-28 Cb Therapeutics Inc Anti-pd-l1 antibodies
JP6245622B2 (en) 2014-08-07 2017-12-13 学校法人兵庫医科大学 Cancer therapeutic agent using IL-18 and molecular target antibody in combination
WO2016022994A2 (en) 2014-08-08 2016-02-11 The Board Of Trustees Of The Leland Stanford Junior University High affinity pd-1 agents and methods of use
CA2960778C (en) 2014-09-11 2023-03-07 Bristol-Myers Squibb Company Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions
US10053683B2 (en) 2014-10-03 2018-08-21 Whitehead Institute For Biomedical Research Intercellular labeling of ligand-receptor interactions
CN107428825A (en) * 2014-10-10 2017-12-01 创祐生技股份有限公司 Treatment and/or prevention tumour growth, the method for invasion and attack and/or transfer
US9732119B2 (en) 2014-10-10 2017-08-15 Bristol-Myers Squibb Company Immunomodulators
US20160176962A1 (en) * 2014-10-31 2016-06-23 Oncomed Pharmaceuticals, Inc. Combination Therapy For Treatment Of Disease
US9856292B2 (en) 2014-11-14 2018-01-02 Bristol-Myers Squibb Company Immunomodulators
US11220545B2 (en) * 2014-12-08 2022-01-11 Dana-Farber Cancer Institute, Inc. Methods for upregulating immune responses using combinations of anti-RGMb and anti-PD-1 agents
US9861680B2 (en) 2014-12-18 2018-01-09 Bristol-Myers Squibb Company Immunomodulators
US9944678B2 (en) 2014-12-19 2018-04-17 Bristol-Myers Squibb Company Immunomodulators
US20160222060A1 (en) 2015-02-04 2016-08-04 Bristol-Myers Squibb Company Immunomodulators
US10584157B2 (en) * 2015-03-16 2020-03-10 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Isolated peptides derived from the B7 ligand dimer interface and uses thereof
US9809625B2 (en) 2015-03-18 2017-11-07 Bristol-Myers Squibb Company Immunomodulators
BR112017020491A2 (en) * 2015-03-25 2018-07-17 The Regents Of The University Of Michigan compositions and methods for delivery of biomacromolecule agents.
US11933786B2 (en) 2015-03-30 2024-03-19 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
JP2018517708A (en) 2015-06-05 2018-07-05 ニューヨーク・ユニバーシティ Compositions and methods for anti-staphylococcal biological agents
MX2017015811A (en) * 2015-06-12 2018-04-10 Squibb Bristol Myers Co Treatment of cancer by combined blockade of the pd-1 and cxcr4 signaling pathways.
AR105654A1 (en) 2015-08-24 2017-10-25 Lilly Co Eli ANTIBODIES PD-L1 (LINKING 1 OF PROGRAMMED CELL DEATH)
ES2941968T3 (en) 2015-10-01 2023-05-29 The Whitehead Institute For Biomedical Res Antibody labeling
UA124925C2 (en) 2015-10-02 2021-12-15 Hoffmann La Roche Bispecific antibodies specific for pd1 and tim3
SI3356404T1 (en) 2015-10-02 2021-11-30 F. Hoffmann-La Roche Ag Anti-pd1 antibodies and methods of use
CN106565836B (en) * 2015-10-10 2020-08-18 中国科学院广州生物医药与健康研究院 High affinity soluble PDL-1 molecules
RU2771533C2 (en) 2015-10-16 2022-05-05 Канзас Стейт Юниверсити Рисерч Фаундейшн Immunogenic compositions for immunising pigs against type 3 circovirus and methods for production and application thereof
EA201891106A1 (en) 2015-11-02 2018-12-28 Файв Прайм Терапьютикс, Инк. POLYPEPTIDES OF CD80 OUT-CELL DOMAIN AND THEIR APPLICATION IN CANCER TREATMENT
GEP20217220B (en) 2015-11-18 2021-02-10 Merck Sharp & Dohme Pd1 and/or lag3 binders
JP7003036B2 (en) 2015-12-02 2022-02-04 エスティーキューブ,インコーポレイテッド Antibodies specific for glycosylated PD-1 and how to use them
CN109072197A (en) 2016-02-06 2018-12-21 哈佛学院校长同事会 It is immune to rebuild to remold hematopoiesis nest
US10143746B2 (en) 2016-03-04 2018-12-04 Bristol-Myers Squibb Company Immunomodulators
US10358463B2 (en) 2016-04-05 2019-07-23 Bristol-Myers Squibb Company Immunomodulators
CN105906715A (en) * 2016-04-26 2016-08-31 中国人民解放军第四军医大学 Application of PDL2-IgGFc fusion protein in inhibiting severe malaria morbidity
TWI794171B (en) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-l1 inhibitors
TWI808055B (en) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-1 inhibitors
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
AU2017268291B2 (en) 2016-05-19 2022-09-29 Bristol-Myers Squibb Company PET-imaging immunomodulators
CN106084042B (en) * 2016-06-24 2020-01-14 安徽未名细胞治疗有限公司 Fully human anti-MAGEA 1 full-molecular IgG antibody and application thereof
CN109475536B (en) 2016-07-05 2022-05-27 百济神州有限公司 Combination of a PD-l antagonist and a RAF inhibitor for the treatment of cancer
US11555177B2 (en) 2016-07-13 2023-01-17 President And Fellows Of Harvard College Antigen-presenting cell-mimetic scaffolds and methods for making and using the same
US12084495B2 (en) * 2016-08-03 2024-09-10 Nextcure, Inc. Compositions and methods for modulating LAIR signal transduction
CN118252927A (en) 2016-08-19 2024-06-28 百济神州有限公司 Treatment of cancer using combination products comprising BTK inhibitors
WO2018081531A2 (en) 2016-10-28 2018-05-03 Ariad Pharmaceuticals, Inc. Methods for human t-cell activation
WO2018085750A2 (en) 2016-11-07 2018-05-11 Bristol-Myers Squibb Company Immunomodulators
HRP20230937T1 (en) 2017-01-05 2023-11-24 Kahr Medical Ltd. A pd1-41bbl fusion protein and methods of use thereof
US11299530B2 (en) 2017-01-05 2022-04-12 Kahr Medical Ltd. SIRP alpha-CD70 fusion protein and methods of use thereof
WO2018127916A1 (en) 2017-01-05 2018-07-12 Kahr Medical Ltd. A pd1-cd70 fusion protein and methods of use thereof
HRP20220230T1 (en) 2017-01-05 2022-04-29 Kahr Medical Ltd. A sirp1 alpha-41bbl fusion protein and methods of use thereof
CN110461847B (en) 2017-01-25 2022-06-07 百济神州有限公司 Crystalline forms of (S) -7- (1- (but-2-alkynoyl) piperidin-4-yl) -2- (4-phenoxyphenyl) -4,5,6, 7-tetrahydropyrazolo [1,5-a ] pyrimidine-3-carboxamide, preparation and use thereof
EP3573657A4 (en) * 2017-01-29 2021-04-14 Zequn Tang Methods of immune modulation against foreign and/or auto antigens
US20200150125A1 (en) 2017-03-12 2020-05-14 Yeda Research And Development Co., Ltd. Methods of diagnosing and prognosing cancer
WO2018167780A1 (en) 2017-03-12 2018-09-20 Yeda Research And Development Co. Ltd. Methods of prognosing and treating cancer
JP7247097B2 (en) * 2017-03-17 2023-03-28 バクシム アクチェンゲゼルシャフト A novel PD-L1-targeted DNA vaccine for cancer immunotherapy
CA3056942A1 (en) * 2017-03-29 2018-10-04 Sunnybrook Research Institute Engineered t-cell modulating molecules and methods of using same
PE20191494A1 (en) 2017-04-03 2019-10-21 Hoffmann La Roche IMMUNOCONJUGATES OF AN ANTI-PD-1 ANTIBODY WITH A MUTANT IL-2 OR IL-15
TWI690538B (en) 2017-04-05 2020-04-11 瑞士商赫孚孟拉羅股份公司 Bispecific antibodies specifically binding to pd1 and lag3
US11789010B2 (en) 2017-04-28 2023-10-17 Five Prime Therapeutics, Inc. Methods of treatment with CD80 extracellular domain polypeptides
US11066445B2 (en) 2017-06-23 2021-07-20 Bristol-Myers Squibb Company Immunomodulators acting as antagonists of PD-1
AU2018290532A1 (en) 2017-06-26 2019-11-21 Beigene, Ltd. Immunotherapy for hepatocellular carcinoma
WO2019025545A1 (en) 2017-08-04 2019-02-07 Genmab A/S Binding agents binding to pd-l1 and cd137 and use thereof
CN109456405B (en) * 2017-09-06 2022-02-08 上海交通大学医学院附属仁济医院 Depalmitoylation PD-L1 protein and preparation method and application thereof
CA3074839A1 (en) * 2017-09-07 2019-03-14 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptide with conjugation sites and methods of use thereof
US11492375B2 (en) 2017-10-03 2022-11-08 Bristol-Myers Squibb Company Cyclic peptide immunomodulators
WO2019108795A1 (en) 2017-11-29 2019-06-06 Beigene Switzerland Gmbh Treatment of indolent or aggressive b-cell lymphomas using a combination comprising btk inhibitors
US11246908B2 (en) * 2018-01-10 2022-02-15 The Johns Hopkins University Compositions comprising albumin-FMS-like tyrosine kinase 3 ligand fusion proteins and uses thereof
US11518808B2 (en) * 2018-01-12 2022-12-06 Amgen Inc. Anti-PD-1 antibodies and methods of treatment
CN111655730A (en) 2018-01-31 2020-09-11 豪夫迈·罗氏有限公司 Bispecific antibodies comprising an antigen binding site that binds to LAG3
CN108530537B (en) * 2018-03-29 2019-07-02 中国人民解放军军事科学院军事医学研究院 PD-1/PD-L1 signal pathway inhibitor
BR112020021271A2 (en) 2018-04-17 2021-01-26 Celldex Therapeutics, Inc. bispecific constructs and anti-cd27 and anti-pd-l1 antibodies
WO2019241758A1 (en) 2018-06-15 2019-12-19 Alpine Immune Sciences, Inc. Pd-1 variant immunomodulatory proteins and uses thereof
CN112543642A (en) * 2018-08-29 2021-03-23 戊瑞治疗有限公司 CD80 ectodomain Fc fusion protein dosing regimen
US20220010016A1 (en) 2018-10-17 2022-01-13 Biolinerx Ltd. Treatment of metastatic pancreatic adenocarcinoma
US20220177912A1 (en) * 2019-04-12 2022-06-09 The Methodist Hospital Therapeutic particles that enable antigen presenting cells to attack cancer cells
MA56523A (en) 2019-06-18 2022-04-27 Janssen Sciences Ireland Unlimited Co COMBINATION OF HEPATITIS B VIRUS (HBV) VACCINES AND ANTI-PD-1 OR ANTI-PD-L1 ANTIBODIES
CA3143634A1 (en) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combination of hepatitis b virus (hbv) vaccines and anti-pd-1 antibody
EP3999079A4 (en) * 2019-07-19 2024-04-03 Memorial Sloan Kettering Cancer Center Fusion polypeptide for immunotherapy
CA3164910A1 (en) * 2020-01-23 2021-07-29 Young Chul Sung Fusion protein comprising pd-l1 protein and use thereof
CA3173257A1 (en) 2020-02-26 2021-09-02 Biograph 55, Inc. C19 c38 bispecific antibodies
US20230293530A1 (en) 2020-06-24 2023-09-21 Yeda Research And Development Co. Ltd. Agents for sensitizing solid tumors to treatment
JP2023536100A (en) * 2020-07-27 2023-08-23 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティー オブ アリゾナ Multifunctional Immunoglobulin Fold Polypeptides Derived from Alternative Translation Initiation and Translation Termination
EP4380980A1 (en) 2021-08-03 2024-06-12 F. Hoffmann-La Roche AG Bispecific antibodies and methods of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033914A1 (en) * 1997-01-31 1998-08-06 University Of Rochester Chimeric antibody fusion proteins for the recruitment and stimulation of an antitumor immune response
WO1999064597A1 (en) * 1998-06-10 1999-12-16 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services β2 MICROGLOBULIN FUSION PROTEINS AND HIGH AFFINITY VARIANTS
US20020091246A1 (en) * 2000-04-28 2002-07-11 Pardoll Drew M. Dendritic cell co-stimulatory molecules
US20030142359A1 (en) * 2002-01-29 2003-07-31 Bean Heather N. Method and apparatus for the automatic generation of image capture device control marks
WO2006050172A2 (en) * 2004-10-29 2006-05-11 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
WO2008037080A1 (en) * 2006-09-29 2008-04-03 Universite De Montreal Methods and compositions for immune response modulation and uses thereof
WO2009114110A1 (en) * 2008-03-08 2009-09-17 Immungene, Inc. Engineered fusion molecules immunotherapy in cancer and inflammatory diseases

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272398A (en) * 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
US4376110A (en) * 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4650764A (en) * 1983-04-12 1987-03-17 Wisconsin Alumni Research Foundation Helper cell
US4861719A (en) * 1986-04-25 1989-08-29 Fred Hutchinson Cancer Research Center DNA constructs for retrovirus packaging cell lines
AU610083B2 (en) * 1986-08-18 1991-05-16 Clinical Technologies Associates, Inc. Delivery systems for pharmacological agents
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US4861627A (en) * 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US6699475B1 (en) * 1987-09-02 2004-03-02 Therion Biologics Corporation Recombinant pox virus for immunization against tumor-associated antigens
US6018026A (en) * 1988-01-22 2000-01-25 Zymogenetics, Inc. Biologically active dimerized and multimerized polypeptide fusions
US5750375A (en) * 1988-01-22 1998-05-12 Zymogenetics, Inc. Methods of producing secreted receptor analogs and biologically active dimerized polypeptide fusions
US5278056A (en) * 1988-02-05 1994-01-11 The Trustees Of Columbia University In The City Of New York Retroviral packaging cell lines and process of using same
US5190929A (en) * 1988-05-25 1993-03-02 Research Corporation Technologies, Inc. Cyclophosphamide analogs useful as anti-tumor agents
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5124263A (en) * 1989-01-12 1992-06-23 Wisconsin Alumni Research Foundation Recombination resistant retroviral helper cell and products produced thereby
US5225538A (en) * 1989-02-23 1993-07-06 Genentech, Inc. Lymphocyte homing receptor/immunoglobulin fusion proteins
US5225336A (en) * 1989-03-08 1993-07-06 Health Research Incorporated Recombinant poxvirus host range selection system
US5240846A (en) * 1989-08-22 1993-08-31 The Regents Of The University Of Michigan Gene therapy vector for cystic fibrosis
US5013556A (en) * 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5283173A (en) * 1990-01-24 1994-02-01 The Research Foundation Of State University Of New York System to detect protein-protein interactions
US5204243A (en) * 1990-02-14 1993-04-20 Health Research Incorporated Recombinant poxvirus internal cores
US5580756A (en) * 1990-03-26 1996-12-03 Bristol-Myers Squibb Co. B7Ig fusion protein
CA2100681A1 (en) * 1991-01-24 1992-07-25 Elisabeth Wayner Monoclonal antibodies to elam-1 and their uses
AU643141B2 (en) * 1991-03-15 1993-11-04 Amgen, Inc. Pulmonary administration of granulocyte colony stimulating factor
US5637481A (en) * 1993-02-01 1997-06-10 Bristol-Myers Squibb Company Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell
US5932448A (en) 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers
US5521184A (en) * 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
US5861310A (en) * 1993-11-03 1999-01-19 Dana-Farber Cancer Institute Tumor cells modified to express B7-2 with increased immunogenicity and uses therefor
US5942607A (en) * 1993-07-26 1999-08-24 Dana-Farber Cancer Institute B7-2: a CTLA4/CD28 ligand
AU8083594A (en) * 1993-10-19 1995-05-08 Scripps Research Institute, The Synthetic human neutralizing monoclonal antibodies to human immunodeficiency virus
US5632983A (en) * 1994-11-17 1997-05-27 University Of South Florida Method for treating secondary immunodeficiency
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US6750334B1 (en) * 1996-02-02 2004-06-15 Repligen Corporation CTLA4-immunoglobulin fusion proteins having modified effector functions and uses therefor
US7411051B2 (en) * 1997-03-07 2008-08-12 Human Genome Sciences, Inc. Antibodies to HDPPA04 polypeptide
US7368531B2 (en) * 1997-03-07 2008-05-06 Human Genome Sciences, Inc. Human secreted proteins
US6468546B1 (en) * 1998-12-17 2002-10-22 Corixa Corporation Compositions and methods for therapy and diagnosis of ovarian cancer
WO2001000814A2 (en) 1999-06-25 2001-01-04 Universität Zürich Hetero-associating coiled-coil peptides and screenign method therefor
AU6058500A (en) 1999-06-30 2001-01-31 Center For Blood Research, The Fusion protein and uses thereof
IL147972A0 (en) * 1999-08-23 2002-09-12 Dana Farber Cancer Inst Inc Ge Pd-1, a receptor for b7-4 and uses therefor
ME00415B (en) * 2000-02-15 2011-10-10 Pharmacia & Upjohn Co Llc Pyrrole substituted 2-indolinone protein kinase inhibitors
US6926898B2 (en) * 2000-04-12 2005-08-09 Human Genome Sciences, Inc. Albumin fusion proteins
US20030031675A1 (en) * 2000-06-06 2003-02-13 Mikesell Glen E. B7-related nucleic acids and polypeptides useful for immunomodulation
JP2004500863A (en) * 2000-06-06 2004-01-15 ブリストル−マイヤーズ スクイブ カンパニー B7-related nucleic acids and polypeptides useful for immunomodulation
JP2004501631A (en) * 2000-06-28 2004-01-22 ジェネティックス・インスチチュート・リミテッド・ライアビリティ・カンパニー PD-L2 molecule: novel PD-1 ligand and use thereof
US6635750B1 (en) * 2000-07-20 2003-10-21 Millennium Pharmaceuticals, Inc. B7-H2 nucleic acids, members of the B7 family
MXPA03002413A (en) * 2000-09-20 2003-06-19 Amgen Inc B7-like molecules and uses thereof.
US7182942B2 (en) * 2000-10-27 2007-02-27 Irx Therapeutics, Inc. Vaccine immunotherapy for immune suppressed patients
US7408041B2 (en) * 2000-12-08 2008-08-05 Alexion Pharmaceuticals, Inc. Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof
WO2002048617A2 (en) * 2000-12-16 2002-06-20 Lg Electronics Inc. Air conditioner
US6911311B2 (en) 2001-01-04 2005-06-28 Myriad Genetics, Inc. Method of detecting protein-protein interactions
US6743619B1 (en) * 2001-01-30 2004-06-01 Nuvelo Nucleic acids and polypeptides
AR036993A1 (en) * 2001-04-02 2004-10-20 Wyeth Corp USE OF AGENTS THAT MODULATE THE INTERACTION BETWEEN PD-1 AND ITS LINKS IN THE SUBMODULATION OF IMMUNOLOGICAL ANSWERS
US20060084794A1 (en) * 2001-04-12 2006-04-20 Human Genome Sciences, Inc. Albumin fusion proteins
WO2002086083A2 (en) * 2001-04-20 2002-10-31 Mayo Foundation For Medical Education And Research Methods of enhancing cell responsiveness
US20020194246A1 (en) * 2001-06-14 2002-12-19 International Business Machines Corporation Context dependent calendar
CA2455387A1 (en) * 2001-06-15 2002-12-27 Tanox, Inc. Fce fusion proteins for treatment of allergy and asthma
EP1456652A4 (en) * 2001-11-13 2005-11-02 Dana Farber Cancer Inst Inc Agents that modulate immune cell activation and methods of use thereof
DE10161767T1 (en) * 2002-07-03 2018-06-07 Honjo Tasuku Immunopotentiating compositions containing an anti-PD-L1 antibody
US7052694B2 (en) * 2002-07-16 2006-05-30 Mayo Foundation For Medical Education And Research Dendritic cell potentiation
CN100471486C (en) * 2002-08-12 2009-03-25 戴纳伐克斯技术股份有限公司 Immunomodulatory compositions, methods of making, and methods of use thereof
ATE514713T1 (en) * 2002-12-23 2011-07-15 Wyeth Llc ANTIBODIES TO PD-1 AND THEIR USE
US7563869B2 (en) * 2003-01-23 2009-07-21 Ono Pharmaceutical Co., Ltd. Substance specific to human PD-1
WO2004076479A2 (en) * 2003-02-27 2004-09-10 Theravision Gmbh Soluble ctla4 polypeptides and methods for making the same
EP1927600A1 (en) * 2003-08-07 2008-06-04 Zymogenetics, Inc. Homogeneous preparations of IL-28 and IL-29
EP1660128A4 (en) * 2003-08-08 2009-01-21 Univ New York State Res Found Anti-fcrn antibodies for treatment of auto/allo immune conditions
US7381794B2 (en) * 2004-03-08 2008-06-03 Zymogenetics, Inc. Dimeric fusion proteins and materials and methods for producing them
US20060099203A1 (en) * 2004-11-05 2006-05-11 Pease Larry R B7-DC binding antibody
US20070166281A1 (en) * 2004-08-21 2007-07-19 Kosak Kenneth M Chloroquine coupled antibodies and other proteins with methods for their synthesis
PT1810026T (en) * 2004-10-06 2018-06-11 Mayo Found Medical Education & Res B7-h1 and pd-1 in treatment of renal cell carcinoma
WO2006108035A1 (en) * 2005-04-06 2006-10-12 Bristol-Myers Squibb Company Methods for treating immune disorders associated with graft transplantation with soluble ctla4 mutant molecules
NZ563193A (en) * 2005-05-09 2010-05-28 Ono Pharmaceutical Co Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
PT2397156T (en) * 2005-06-08 2016-12-23 The President And Fellows Of Harvard College Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway
DK1907424T3 (en) * 2005-07-01 2015-11-09 Squibb & Sons Llc HUMAN MONOCLONAL ANTIBODIES TO PROGRAMMED death ligand 1 (PD-L1)
TW200811289A (en) * 2005-08-19 2008-03-01 Cerus Corp Listeria-mediated immunorecruitment and activation, and methods of use thereof
GB0519303D0 (en) * 2005-09-21 2005-11-02 Oxford Biomedica Ltd Chemo-immunotherapy method
US20070231344A1 (en) * 2005-10-28 2007-10-04 The Brigham And Women's Hospital, Inc. Conjugate vaccines for non-proteinaceous antigens
ATE552837T1 (en) * 2005-12-02 2012-04-15 Univ Johns Hopkins USE OF HIGH DOSE OXAZAPHOSPHORINE DRUGS TO TREAT IMMUNE DISORDERS
NZ568016A (en) * 2005-12-07 2011-12-22 Medarex Inc CTLA-4 antibody dosage escalation regimens
KR20080090412A (en) * 2005-12-08 2008-10-08 유니버시티 오브 루이빌 리서치 파운데이션, 인코포레이티드 In vivo cell surface engineering
EP2061504A4 (en) * 2006-09-20 2010-01-27 Univ Johns Hopkins Combinatorieal therapy of cancer and infectious diseases with anti-b7-h1 antibodies
TWI361919B (en) * 2006-10-27 2012-04-11 Ind Tech Res Inst Driving method of liquid crystal display panel
CN101663323A (en) * 2006-12-27 2010-03-03 埃默里大学 The composition and the method that are used for the treatment of transmissible disease and tumour
CA2673771A1 (en) * 2007-01-17 2008-07-24 Merck Serono S.A. Process for the purification of fc-containing proteins
EP2122042A1 (en) * 2007-01-19 2009-11-25 Basf Se Method for the production of a coated textile
WO2008100562A2 (en) * 2007-02-14 2008-08-21 Medical College Of Georgia Research Institute, Inc. Indoleamine 2,3-dioxygenase, pd-1/pd-l pathways, and ctla4 pathways in the activation of regulatory t cells
WO2009029342A2 (en) * 2007-07-13 2009-03-05 The Johns Hopkins University B7-dc variants
EP2185689A2 (en) * 2007-08-09 2010-05-19 Genzyme Corporation Method of treating autoimmune disease with mesenchymal stem cells
US8892455B2 (en) * 2007-09-28 2014-11-18 Walk Score Management, LLC Systems, techniques, and methods for providing location assessments
CA2704038A1 (en) * 2007-10-31 2009-05-07 The Scripps Research Institute Combination therapy to treat persistent viral infections
US8168757B2 (en) * 2008-03-12 2012-05-01 Merck Sharp & Dohme Corp. PD-1 binding proteins
ATE462442T1 (en) * 2008-04-30 2010-04-15 Immatics Biotechnologies Gmbh NOVEL FORMULATIONS OF TUMOR-ASSOCIATED PEPTIDES THAT BIND TO HUMAN LEUKOCYTE ANTIGENS CLASS I OR II FOR VACCINATIONS
US20100040105A1 (en) * 2008-08-15 2010-02-18 XUV, Inc. High repetition-rate, all laser diode-pumped extreme ultraviolet/soft x-ray laser and pump system
CN102203125A (en) * 2008-08-25 2011-09-28 安普利穆尼股份有限公司 Pd-1 antagonists and methods of use thereof
SI2350129T1 (en) * 2008-08-25 2015-11-30 Amplimmune, Inc. Compositions of pd-1 antagonists and methods of use
JP5493729B2 (en) * 2009-11-06 2014-05-14 株式会社リコー Imaging system, main unit and external electronic device connected thereto
US20130017199A1 (en) * 2009-11-24 2013-01-17 AMPLIMMUNE ,Inc. a corporation Simultaneous inhibition of pd-l1/pd-l2

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033914A1 (en) * 1997-01-31 1998-08-06 University Of Rochester Chimeric antibody fusion proteins for the recruitment and stimulation of an antitumor immune response
US20030171551A1 (en) * 1997-01-31 2003-09-11 Joseph D. Rosenblatt Chimeric antibody fusion proteins for the recruitment and stimulation of an antitumor immune response
WO1999064597A1 (en) * 1998-06-10 1999-12-16 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services β2 MICROGLOBULIN FUSION PROTEINS AND HIGH AFFINITY VARIANTS
US20020091246A1 (en) * 2000-04-28 2002-07-11 Pardoll Drew M. Dendritic cell co-stimulatory molecules
US20030142359A1 (en) * 2002-01-29 2003-07-31 Bean Heather N. Method and apparatus for the automatic generation of image capture device control marks
WO2006050172A2 (en) * 2004-10-29 2006-05-11 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
WO2008037080A1 (en) * 2006-09-29 2008-04-03 Universite De Montreal Methods and compositions for immune response modulation and uses thereof
WO2009114110A1 (en) * 2008-03-08 2009-09-17 Immungene, Inc. Engineered fusion molecules immunotherapy in cancer and inflammatory diseases

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GERSTMAYER ET AL: "Costimulation of T cell proliferation by a chimeric B7-2 antibody fusion protein specifically targeted to cells expressing the erbB2 proto-oncogene" JOURNAL OF IMMUNOLOGY, AMERICAN ASSOCIATION OF IMMUNOLOGISTS, US, vol. 158, no. 10, 15 May 1997 (1997-05-15) , pages 4584-4590, XP002116142 ISSN: 0022-1767 *
GUO J-Q ET AL: "A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, vol. 320, no. 2, 23 July 2004 (2004-07-23) , pages 506-513, XP004516660 ISSN: 0006-291X *
LEWINSKI MARY K ET AL: "Retroviral DNA integration: viral and cellular determinants of target-site selection" PLOS PATHOGENS, PUBLIC LIBRARY OF SCIENCE, SAN FRANCISCO, CA, US, vol. 2, no. 6, 1 June 2006 (2006-06-01), pages E60-1, XP002510754 ISSN: 1553-7366 [retrieved on 2006-06-23] *
LU ET AL: "EGF-IL-18 fusion protein as a potential anti-tumor reagent by induction of immune response and apoptosis in cancer cells" CANCER LETTERS, NEW YORK, NY, US, vol. 260, no. 1-2, 21 December 2007 (2007-12-21), pages 187-197, XP022424291 ISSN: 0304-3835 *
See also references of EP2328920A2 *

Cited By (923)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460927B2 (en) 1999-11-30 2013-06-11 Mayo Foundation For Medical Education And Research B7-H1 antibodies and method of use
US9884903B2 (en) 2004-06-24 2018-02-06 Mayo Foundation For Medical Education And Research B7-H5, a costimulatory polypeptide
US8426563B2 (en) 2004-06-24 2013-04-23 Mayo Foundation For Medical Education And Research Antibody specific for B7-H5, a costimulatory polypeptide
US10501520B2 (en) 2004-06-24 2019-12-10 Mayo Foundation For Medical Education And Research B7-H5, a costimulatory polypeptide
US9012409B2 (en) 2004-06-24 2015-04-21 Mayo Foundation For Medical Education And Research B7-H5, a costimulatory polypeptide
US7919585B2 (en) 2004-06-24 2011-04-05 Mayo Foundation For Medical Education And Research B7-H5, a costimulatory polypeptide
US11760787B2 (en) 2004-06-24 2023-09-19 Mayo Foundation For Medical Education And Research B7-H5, a costimulatory polypeptide
US8747833B2 (en) 2004-10-06 2014-06-10 Mayo Foundation For Medical Education And Research B7-H1 and methods of diagnosis, prognosis, and treatment of cancer
US11242387B2 (en) 2004-10-06 2022-02-08 Mayo Foundation For Medical Education And Research Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target
US9803015B2 (en) 2004-10-06 2017-10-31 Mayo Foundation For Medical Education And Research Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target
US11939378B2 (en) 2004-10-06 2024-03-26 Mayo Foundation For Medical Education And Research Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target
US9217035B2 (en) 2005-04-25 2015-12-22 The Trustees Of Dartmouth College Regulatory T cell mediator proteins and uses thereof
US10035857B2 (en) 2005-04-25 2018-07-31 The Trustees Of Dartmouth College Regulatory T cell mediator proteins and uses thereof
US11414490B2 (en) 2005-04-25 2022-08-16 The Trustees Of Dartmouth College Regulatory T cell mediator proteins and uses thereof
US9644212B2 (en) 2008-05-19 2017-05-09 Advaxis, Inc. Dual delivery system for heterologous antigens
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
US8709416B2 (en) 2008-08-25 2014-04-29 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
EP3269799A1 (en) * 2009-03-04 2018-01-17 The Trustees of the University of Pennsylvania Compositions comprising angiogenic factors and uses thereof
US10695410B2 (en) 2009-03-04 2020-06-30 The Trustees Of The University Of Pennsylvania Compositions comprising angiogenic factors and methods of use thereof
US11401333B2 (en) 2009-03-25 2022-08-02 Genentech, Inc. Anti-FGFR3 antibodies and methods using same
US12042560B2 (en) 2009-03-30 2024-07-23 Eisai R&D Management Co., Ltd. Liposome composition
US10688172B2 (en) 2009-04-13 2020-06-23 INSERM (Institut National de la Santé et de la Recherche Médicale) HPV particles and uses thereof
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
JP2018029578A (en) * 2010-03-26 2018-03-01 トラスティーズ・オブ・ダートマス・カレッジ Vista regulatory t cell mediator protein, vista binding agents and use thereof
KR20130010906A (en) * 2010-03-26 2013-01-29 트러스티스 오브 다트마우스 칼리지 Vista regulatory t cell mediator protein, vista binding agents and use thereof
EP3153521A1 (en) * 2010-03-26 2017-04-12 Trustees of Dartmouth College Vista regulatory t cell mediator protein, vista binding agents and use thereof
CN107098958B (en) * 2010-03-26 2021-11-05 达特茅斯大学理事会 VISTA regulatory T cell mediator protein, VISTA binding agent and uses thereof
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
AU2011230537C1 (en) * 2010-03-26 2018-08-02 Trustees Of Dartmouth College Vista regulatory T cell mediator protein, vista binding agents and use thereof
JP2020128381A (en) * 2010-03-26 2020-08-27 トラスティーズ・オブ・ダートマス・カレッジ VISTA regulatory T cell mediator proteins, VISTA binding agents, and uses thereof
US10781254B2 (en) 2010-03-26 2020-09-22 The Trustees Of Dartmouth College VISTA regulatory T cell mediator protein, VISTA binding agents and use thereof
JP2016222702A (en) * 2010-03-26 2016-12-28 トラスティーズ・オブ・ダートマス・カレッジ Vista regulatory t cell mediator protein, vista binding agents and uses thereof
JP2013527144A (en) * 2010-03-26 2013-06-27 トラスティーズ・オブ・ダートマス・カレッジ VISTA-regulated T cell mediator protein, VISTA binding agent, and uses thereof
CN107098958A (en) * 2010-03-26 2017-08-29 达特茅斯大学理事会 VISTA regulatory T cells amboceptors albumen, VISTA bonding agents and application thereof
KR101882523B1 (en) * 2010-03-26 2018-07-26 트러스티스 오브 다트마우스 칼리지 Vista regulatory t cell mediator protein, vista binding agents and use thereof
US12071473B2 (en) 2010-03-26 2024-08-27 The Trustees Of Darmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
US9631018B2 (en) 2010-03-26 2017-04-25 The Trustees Of Dartmouth College Vista regulatory T cell mediator protein, vista binding agents and use thereof
EP2552947A2 (en) * 2010-03-26 2013-02-06 Trustees of Dartmouth College Vista regulatory t cell mediator protein, vista binding agents and use thereof
CN103119054A (en) * 2010-03-26 2013-05-22 达特茅斯大学理事会 VISTA regulatory T cell mediator protein, VISTA binding agents and use thereof
AU2011230537B2 (en) * 2010-03-26 2016-01-07 Trustees Of Dartmouth College Vista regulatory T cell mediator protein, vista binding agents and use thereof
EP2552947A4 (en) * 2010-03-26 2013-11-13 Dartmouth College Vista regulatory t cell mediator protein, vista binding agents and use thereof
US9943590B2 (en) 2010-10-01 2018-04-17 The Trustees Of The University Of Pennsylvania Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
US10172955B2 (en) 2010-11-12 2019-01-08 Uti Limited Partnership Compositions and methods for the prevention and treatment of cancer
JP2013543855A (en) * 2010-11-12 2013-12-09 ユーティーアイ リミテッド パートナーシップ Compositions and methods for the prevention and treatment of cancer
US9511151B2 (en) 2010-11-12 2016-12-06 Uti Limited Partnership Compositions and methods for the prevention and treatment of cancer
US11000596B2 (en) 2010-11-12 2021-05-11 UTI Limited Parttiership Compositions and methods for the prevention and treatment of cancer
US9421255B2 (en) * 2011-02-21 2016-08-23 Curevac Ag Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
US10568958B2 (en) 2011-02-21 2020-02-25 Curevac Ag Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
US20130259879A1 (en) * 2011-02-21 2013-10-03 Curevac Gmbh Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
US9463227B2 (en) 2011-03-11 2016-10-11 Advaxis, Inc. Listeria-based adjuvants
US10064898B2 (en) 2011-03-11 2018-09-04 Advaxis, Inc. Listeria-based adjuvants
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
JP2014525918A (en) * 2011-08-01 2014-10-02 ジェネンテック, インコーポレイテッド Method for treating cancer using PD-1 axis binding antagonist and MEK inhibitor
US10646567B2 (en) 2011-08-01 2020-05-12 Genentech, Inc. Methods of treating cancer using PD-1 axis binding antagonists and MEK inhibitors
WO2013019906A1 (en) 2011-08-01 2013-02-07 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors
US9724413B2 (en) 2011-08-01 2017-08-08 Genentech, Inc. Methods of treating cancer using PD-1 axis binding antagonists and MEK inhibitors
US10058599B2 (en) 2012-03-12 2018-08-28 Advaxis, Inc. Suppressor cell function inhibition following Listeria vaccine treatment
US10988516B2 (en) 2012-03-26 2021-04-27 Uti Limited Partnership Methods and compositions for treating inflammation
EP3556776A1 (en) 2012-05-31 2019-10-23 F. Hoffmann-La Roche AG Methods of treating cancer using pd-1 axis binding antagonists and vegf antagonists
WO2013181452A1 (en) 2012-05-31 2013-12-05 Genentech, Inc. Methods of treating cancer using pd-l1 axis binding antagonists and vegf antagonists
US10933115B2 (en) 2012-06-22 2021-03-02 The Trustees Of Dartmouth College VISTA antagonist and methods of use
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
US11180557B2 (en) 2012-06-22 2021-11-23 King's College London Vista modulators for diagnosis and treatment of cancer
US12064463B2 (en) 2012-06-22 2024-08-20 King's College London Vista antagonist and methods of use
US11752189B2 (en) 2012-06-22 2023-09-12 The Trustees Of Dartmouth College Vista antagonist and methods of use
EP3795592A1 (en) 2012-07-02 2021-03-24 Bristol-Myers Squibb Company Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof
WO2014008218A1 (en) 2012-07-02 2014-01-09 Bristol-Myers Squibb Company Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof
EP3275899A1 (en) 2012-07-02 2018-01-31 Bristol-Myers Squibb Company Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof
US9381244B2 (en) 2012-09-07 2016-07-05 King's College London VISTA modulators for diagnosis and treatment of cancer
US11529416B2 (en) 2012-09-07 2022-12-20 Kings College London Vista modulators for diagnosis and treatment of cancer
US10080808B2 (en) 2012-10-11 2018-09-25 Uti Limited Partnership Methods and compositions for treating multiple sclerosis and related disorders
US10905773B2 (en) 2012-10-11 2021-02-02 Uti Limited Partnership Methods and compositions for treating multiple sclerosis and related disorders
US11578372B2 (en) 2012-11-05 2023-02-14 Foundation Medicine, Inc. NTRK1 fusion molecules and uses thereof
US11771698B2 (en) 2013-01-18 2023-10-03 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
EP3744736A1 (en) 2013-02-20 2020-12-02 Novartis AG Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells
WO2014130657A1 (en) 2013-02-20 2014-08-28 The Trustees Of The University Of Pennsylvania Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor
WO2014130635A1 (en) 2013-02-20 2014-08-28 Novartis Ag Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells
EP3626741A1 (en) 2013-02-20 2020-03-25 The Trustees Of The University Of Pennsylvania Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor
US10167336B2 (en) 2013-03-14 2019-01-01 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
EP3539986A1 (en) 2013-03-16 2019-09-18 Novartis AG Treatment of cancer using humanized anti-cd19 chimeric antigen receptor
EP4067382A1 (en) 2013-03-16 2022-10-05 Novartis AG Treatment of cancer using humanized anti-cd19 chimeric antigen receptor
WO2014153270A1 (en) 2013-03-16 2014-09-25 Novartis Ag Treatment of cancer using humanized anti-cd19 chimeric antigen receptor
US10543189B2 (en) 2013-04-09 2020-01-28 Boston Biomedical, Inc. 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer
US11931354B2 (en) 2013-04-09 2024-03-19 Lixte Biotechnology, Inc. Formulations of oxabicycloheptanes and oxabicycloheptenes
EP3789036A1 (en) 2013-07-16 2021-03-10 F. Hoffmann-La Roche AG Methods of treating cancer using pd-1 axis binding antagonists and tigit inhibitors
EP3659622A1 (en) 2013-08-08 2020-06-03 Cytune Pharma Combined pharmaceutical composition
EP3995507A1 (en) 2013-08-08 2022-05-11 Cytune Pharma Il-15 and il-15ralpha sushi domain based on modulokines
EP4269441A2 (en) 2013-08-08 2023-11-01 Cytune Pharma Il-15 and il-15ralpha sushi domain based on modulokines
EP3444271A1 (en) 2013-08-08 2019-02-20 Cytune Pharma Il-15 and il-15raplha sushi domain based modulokines
US9827309B2 (en) 2013-08-20 2017-11-28 Merck Sharp & Dohme Corp. Treating cancer with a combination of a PD-1 antagonist and dinaciclib
WO2015026634A1 (en) 2013-08-20 2015-02-26 Merck Sharp & Dohme Corp. Treating cancer with a combination of a pd-1 antagonist and dinaciclib
US11739125B2 (en) 2013-08-21 2023-08-29 Cure Vac SE Respiratory syncytial virus (RSV) vaccine
US11965000B2 (en) 2013-08-21 2024-04-23 CureVac SE Respiratory syncytial virus (RSV) vaccine
US11110181B2 (en) 2013-09-18 2021-09-07 Aura Biosciences, Inc. Virus-like particle conjugates for diagnosis and treatment of tumors
US10588984B2 (en) 2013-09-18 2020-03-17 Aura Biosciences, Inc. Virus-like particle conjugates for diagnosis and treatment of tumors
US11806406B2 (en) 2013-09-18 2023-11-07 Aura Biosciences, Inc. Virus-like particle conjugates for diagnosis and treatment of tumors
US12029794B2 (en) 2013-09-18 2024-07-09 Biosciences, Inc. Virus-like particle conjugates for diagnosis and treatment of tumors
US11708412B2 (en) 2013-09-26 2023-07-25 Novartis Ag Methods for treating hematologic cancers
EP3757130A1 (en) 2013-09-26 2020-12-30 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
US10259875B2 (en) 2013-10-01 2019-04-16 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of BIM
US11136393B2 (en) 2013-10-01 2021-10-05 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of Bim
WO2015066413A1 (en) 2013-11-01 2015-05-07 Novartis Ag Oxazolidinone hydroxamic acid compounds for the treatment of bacterial infections
US11338024B2 (en) 2013-11-04 2022-05-24 Uti Limited Partnership Methods and compositions for sustained immunotherapy
US10124045B2 (en) 2013-11-04 2018-11-13 Uti Limited Partnership Methods and compositions for sustained immunotherapy
WO2015073644A1 (en) 2013-11-13 2015-05-21 Novartis Ag Mtor inhibitors for enhancing the immune response
EP3763387A1 (en) 2013-11-25 2021-01-13 FameWave Ltd Compositions comprising anti-ceacam1 and anti-pd antibodies for cancer therapy
US10081679B2 (en) 2013-11-25 2018-09-25 Ccam Biotherapeutics Ltd. Compositions comprising anti-CEACAM1 and anti-PD antibodies for cancer therapy
WO2015075725A1 (en) 2013-11-25 2015-05-28 Ccam Biotherapeutics Ltd. Compositions comprising anti-ceacam1 and anti-pd antibodies for cancer therapy
US10241115B2 (en) 2013-12-10 2019-03-26 Merck Sharp & Dohme Corp. Immunohistochemical proximity assay for PD-1 positive cells and PD-ligand positive cells in tumor tissue
US10344090B2 (en) 2013-12-12 2019-07-09 Shanghai Hangrui Pharmaceutical Co., Ltd. PD-1 antibody, antigen-binding fragment thereof, and medical application thereof
US11365255B2 (en) 2013-12-12 2022-06-21 Suzhou Suncadia Biopharmaceuticals Co., Ltd. PD-1 antibody, antigen-binding fragment thereof, and medical application thereof
WO2015094992A1 (en) 2013-12-17 2015-06-25 Merck Sharp & Dohme Corp. Ifn-gamma gene signature biomarkers of tumor response to pd-1 antagonists
WO2015095418A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
EP3647324A1 (en) 2013-12-17 2020-05-06 F. Hoffmann-La Roche AG Methods of treating cancers using pd-1 axis binding antagonists and taxanes
WO2015095410A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
EP3680254A1 (en) 2013-12-17 2020-07-15 F. Hoffmann-La Roche AG Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
EP3527587A1 (en) 2013-12-17 2019-08-21 F. Hoffmann-La Roche AG Combination therapy comprising ox40 binding agonists and pd-l1 binding antagonists
WO2015095423A2 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2015090230A1 (en) 2013-12-19 2015-06-25 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
EP4026909A1 (en) 2013-12-19 2022-07-13 Novartis AG Human mesothelin chimeric antigen receptors and uses thereof
EP3087099A4 (en) * 2013-12-23 2017-07-19 Oncomed Pharmaceuticals, Inc. Immunotherapy with binding agents
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
US11242392B2 (en) 2013-12-24 2022-02-08 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
WO2015107495A1 (en) 2014-01-17 2015-07-23 Novartis Ag N-azaspirocycloalkane substituted n-heteroaryl compounds and compositions for inhibiting the activity of shp2
US10752687B2 (en) 2014-01-24 2020-08-25 Novartis Ag Antibody molecules to PD-1 and uses thereof
US9683048B2 (en) 2014-01-24 2017-06-20 Novartis Ag Antibody molecules to PD-1 and uses thereof
EP3514179A1 (en) 2014-01-24 2019-07-24 Dana-Farber Cancer Institute, Inc. Antibody molecules to pd-1 and uses thereof
US9815898B2 (en) 2014-01-24 2017-11-14 Novartis Ag Antibody molecules to PD-1 and uses thereof
US11827704B2 (en) 2014-01-24 2023-11-28 Novartis Ag Antibody molecules to PD-1 and uses thereof
US9884913B2 (en) 2014-01-31 2018-02-06 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US11155620B2 (en) 2014-01-31 2021-10-26 Novartis Ag Method of detecting TIM-3 using antibody molecules to TIM-3
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US9605070B2 (en) 2014-01-31 2017-03-28 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US10981990B2 (en) 2014-01-31 2021-04-20 Novartis Ag Antibody molecules to TIM-3 and uses thereof
EP4324518A2 (en) 2014-01-31 2024-02-21 Novartis AG Antibody molecules to tim-3 and uses thereof
US10899840B2 (en) 2014-02-04 2021-01-26 Pfizer Inc. Combination of a PD-1 antagonist and a 4-1BB agonist for treating cancer
EP3971209A1 (en) 2014-02-04 2022-03-23 Pfizer Inc. Combination of a pd-1 antagonist and a vegfr inhibitor for treating cancer
WO2015119944A1 (en) 2014-02-04 2015-08-13 Incyte Corporation Combination of a pd-1 antagonist and an ido1 inhibitor for treating cancer
EP3498734A1 (en) 2014-02-04 2019-06-19 Pfizer Inc Combination of a pd-1 antagonist and a vegfr inhibitor for treating cancer
US10570202B2 (en) 2014-02-04 2020-02-25 Pfizer Inc. Combination of a PD-1 antagonist and a VEGFR inhibitor for treating cancer
WO2015138920A1 (en) 2014-03-14 2015-09-17 Novartis Ag Antibody molecules to lag-3 and uses thereof
EP3660050A1 (en) 2014-03-14 2020-06-03 Novartis AG Antibody molecules to lag-3 and uses thereof
WO2015142675A2 (en) 2014-03-15 2015-09-24 Novartis Ag Treatment of cancer using chimeric antigen receptor
WO2015148379A1 (en) 2014-03-24 2015-10-01 Novartis Ag Monobactam organic compounds for the treatment of bacterial infections
EP3511328A1 (en) 2014-03-24 2019-07-17 Novartis AG Monobactam organic compounds for the treatment of bacterial infections
EP3632934A1 (en) 2014-03-31 2020-04-08 F. Hoffmann-La Roche AG Anti-ox40 antibodies and methods of use
US9975957B2 (en) 2014-03-31 2018-05-22 Genentech, Inc. Anti-OX40 antibodies and methods of use
WO2015153513A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Anti-ox40 antibodies and methods of use
WO2015153514A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
US10730951B2 (en) 2014-03-31 2020-08-04 Genentech, Inc. Anti-OX40 antibodies and methods of use
EP4406610A2 (en) 2014-04-07 2024-07-31 Novartis AG Treatment of cancer using anti-cd19 chimeric antigen receptor
EP3888674A1 (en) 2014-04-07 2021-10-06 Novartis AG Treatment of cancer using anti-cd19 chimeric antigen receptor
WO2015157252A1 (en) 2014-04-07 2015-10-15 BROGDON, Jennifer Treatment of cancer using anti-cd19 chimeric antigen receptor
US10302653B2 (en) 2014-05-22 2019-05-28 Mayo Foundation For Medical Education And Research Distinguishing antagonistic and agonistic anti B7-H1 antibodies
WO2015181624A2 (en) 2014-05-28 2015-12-03 Idenix Pharmaceuticals, Inc Nucleoside derivatives for the treatment of cancer
US11123426B2 (en) 2014-06-11 2021-09-21 The Trustees Of Dartmouth College Use of vista agonists and antagonists to suppress or enhance humoral immunity
US10449227B2 (en) * 2014-06-27 2019-10-22 H. Lee Moffitt Cancer Center And Research Institute, Inc. Conjugates for immunotherapy
WO2016007235A1 (en) 2014-07-11 2016-01-14 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
EP3309174A1 (en) 2014-07-11 2018-04-18 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
US20190127474A1 (en) * 2014-07-14 2019-05-02 The Council Of The Queensland Institute Of Medical Research Galectin immunotherapy
US10946093B2 (en) 2014-07-15 2021-03-16 Genentech, Inc. Methods of treating cancer using PD-1 axis binding antagonists and MEK inhibitors
EP3563870A1 (en) 2014-07-15 2019-11-06 F. Hoffmann-La Roche AG Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors
WO2016011160A1 (en) 2014-07-15 2016-01-21 Genentech, Inc. Compositions for treating cancer using pd-1 axis binding antagonists and mek inhibitors
US9907849B2 (en) 2014-07-18 2018-03-06 Advaxis, Inc. Combination of a PD-1 antagonist and a listeria-based vaccine for treating prostate cancer
EP3722316A1 (en) 2014-07-21 2020-10-14 Novartis AG Treatment of cancer using a cd33 chimeric antigen receptor
WO2016014553A1 (en) 2014-07-21 2016-01-28 Novartis Ag Sortase synthesized chimeric antigen receptors
WO2016014530A1 (en) 2014-07-21 2016-01-28 Novartis Ag Combinations of low, immune enhancing. doses of mtor inhibitors and cars
US10517875B2 (en) 2014-07-23 2019-12-31 Mayo Foundation for Medical Engineering and Research Targeting DNA-PKcs and B7-H1 to treat cancer
US11504376B2 (en) 2014-07-23 2022-11-22 Mayo Foundation For Medical Education And Research Targeting DNA-PKCS and B7-H1 to treat cancer
EP4205749A1 (en) 2014-07-31 2023-07-05 Novartis AG Subset-optimized chimeric antigen receptor-containing cells
EP3660042A1 (en) 2014-07-31 2020-06-03 Novartis AG Subset-optimized chimeric antigen receptor-containing t-cells
WO2016020836A1 (en) 2014-08-06 2016-02-11 Novartis Ag Quinolone derivatives as antibacterials
WO2016025880A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using gfr alpha-4 chimeric antigen receptor
EP3712171A1 (en) 2014-08-19 2020-09-23 Novartis AG Treatment of cancer using a cd123 chimeric antigen receptor
US10695426B2 (en) 2014-08-25 2020-06-30 Pfizer Inc. Combination of a PD-1 antagonist and an ALK inhibitor for treating cancer
WO2016033555A1 (en) 2014-08-28 2016-03-03 Halozyme, Inc. Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
US11414489B2 (en) 2014-08-28 2022-08-16 Halozyme, Inc. Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
EP3659621A1 (en) 2014-09-13 2020-06-03 Novartis AG Combination therapies for cancer
WO2016040880A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies of alk inhibitors
EP3925622A1 (en) 2014-09-13 2021-12-22 Novartis AG Combination therapies
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
WO2016040892A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies
EP3967709A1 (en) 2014-09-17 2022-03-16 Novartis AG Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
WO2016044605A1 (en) 2014-09-17 2016-03-24 Beatty, Gregory Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US11981731B2 (en) 2014-09-17 2024-05-14 The Trustees Of The University Of Pennsylvania Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
EP3689910A2 (en) 2014-09-23 2020-08-05 F. Hoffmann-La Roche AG Method of using anti-cd79b immunoconjugates
WO2016054555A2 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
EP3662903A2 (en) 2014-10-03 2020-06-10 Novartis AG Combination therapies
WO2016057846A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
WO2016057841A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
WO2016057705A1 (en) 2014-10-08 2016-04-14 Novartis Ag Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof
US10851165B2 (en) 2014-10-14 2020-12-01 Novartis Ag Antibody molecules to PD-L1 and methods of treating cancer
US11584923B2 (en) 2014-10-14 2023-02-21 Halozyme, Inc. Compositions of adenosine deaminase-2 (ADA2), variants thereof and methods of using same
EP4245376A2 (en) 2014-10-14 2023-09-20 Novartis AG Antibody molecules to pd-l1 and uses thereof
US9969998B2 (en) 2014-10-14 2018-05-15 Halozyme, Inc. Compositions of adenosine deaminase-2 (ADA2), variants thereof and methods of using same
WO2016061142A1 (en) 2014-10-14 2016-04-21 Novartis Ag Antibody molecules to pd-l1 and uses thereof
WO2016061286A2 (en) 2014-10-14 2016-04-21 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
US9988452B2 (en) 2014-10-14 2018-06-05 Novartis Ag Antibody molecules to PD-L1 and uses thereof
US10845364B2 (en) 2014-11-03 2020-11-24 Genentech, Inc. Assays for detecting T cell immune subsets and methods of use thereof
WO2016073378A1 (en) 2014-11-03 2016-05-12 Genentech, Inc. Assays for detecting t cell immune subsets and methods of use thereof
US10767232B2 (en) 2014-11-03 2020-09-08 Genentech, Inc. Methods and biomarkers for predicting efficacy and evaluation of an OX40 agonist treatment
WO2016075670A1 (en) 2014-11-14 2016-05-19 Novartis Ag Antibody drug conjugates
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
EP4141032A1 (en) 2014-11-20 2023-03-01 F. Hoffmann-La Roche AG Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
EP3789402A1 (en) 2014-11-20 2021-03-10 F. Hoffmann-La Roche AG Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
EP3632915A1 (en) 2014-11-27 2020-04-08 Genentech, Inc. 4,5,6,7-tetrahydro-1 h-pyrazolo[4,3-c]pyridin-3-amine compounds as cbp and/or ep300 inhibitors
WO2016086200A1 (en) 2014-11-27 2016-06-02 Genentech, Inc. 4,5,6,7-tetrahydro-1 h-pyrazolo[4,3-c]pyridin-3-amine compounds as cbp and/or ep300 inhibitors
WO2016090034A2 (en) 2014-12-03 2016-06-09 Novartis Ag Methods for b cell preconditioning in car therapy
WO2016090300A1 (en) 2014-12-05 2016-06-09 Genentech, Inc. Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists
WO2016089830A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
WO2016089797A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
WO2016089833A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
US10370455B2 (en) 2014-12-05 2019-08-06 Immunext, Inc. Identification of VSIG8 as the putative VISTA receptor (V-R) and use thereof to produce VISTA/VSIG8 agonists and antagonists
WO2016094377A1 (en) 2014-12-09 2016-06-16 Merck Sharp & Dohme Corp. System and methods for deriving gene signature biomarkers of response to pd-1 antagonists
WO2016097995A1 (en) 2014-12-16 2016-06-23 Novartis Ag Isoxazole hydroxamic acid compounds as lpxc inhibitors
WO2016100882A1 (en) 2014-12-19 2016-06-23 Novartis Ag Combination therapies
WO2016126608A1 (en) 2015-02-02 2016-08-11 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
US10800846B2 (en) 2015-02-26 2020-10-13 Merck Patent Gmbh PD-1/PD-L1 inhibitors for the treatment of cancer
US11547705B2 (en) 2015-03-04 2023-01-10 Merck Sharp & Dohme Llc Combination of a PD-1 antagonist and a VEGF-R/FGFR/RET tyrosine kinase inhibitor for treating cancer
US12083112B2 (en) 2015-03-04 2024-09-10 Eisai R&D Management Co., Ltd. Combination of a PD-1 antagonist and a VEGFR/FGFR/RET tyrosine kinase inhibitor for treating cancer
US10945990B2 (en) 2015-03-04 2021-03-16 Eisai R&D Management Co., Ltd. Combination of a PD-1 antagonist and eribulin for treating cancer
WO2016141209A1 (en) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and eribulin for treating cancer
WO2016140717A1 (en) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer
WO2016141218A1 (en) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer
US10449211B2 (en) 2015-03-10 2019-10-22 Aduro Biotech, Inc. Compositions and methods for activating “stimulator of interferon gene”—dependent signalling
US11040053B2 (en) 2015-03-10 2021-06-22 Chinook Therapeutics, Inc. Compositions and methods for activating “stimulator of interferon gene”13 dependent signalling
WO2016145102A1 (en) 2015-03-10 2016-09-15 Aduro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene" -dependent signalling
EP3067062A1 (en) 2015-03-13 2016-09-14 Ipsen Pharma S.A.S. Combination of tasquinimod or a pharmaceutically acceptable salt thereof and a pd1 and/or pdl1 inhibitor, for use as a medicament
WO2016164480A1 (en) 2015-04-07 2016-10-13 Genentech, Inc. Antigen binding complex having agonistic activity and methods of use
WO2016164580A1 (en) 2015-04-07 2016-10-13 Novartis Ag Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives
US10865248B2 (en) 2015-04-07 2020-12-15 Genentech, Inc. Antigen binding complex having agonistic activity and methods of use
EP3839510A2 (en) 2015-04-17 2021-06-23 Merck Sharp & Dohme Corp. Blood-based biomarkers of tumor sensitivity to pd-1 antagonists
EP4234685A2 (en) 2015-04-17 2023-08-30 Novartis AG Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
US11326211B2 (en) 2015-04-17 2022-05-10 Merck Sharp & Dohme Corp. Blood-based biomarkers of tumor sensitivity to PD-1 antagonists
WO2016168595A1 (en) 2015-04-17 2016-10-20 Barrett David Maxwell Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
WO2016168133A1 (en) 2015-04-17 2016-10-20 Merck Sharp & Dohme Corp. Blood-based biomarkers of tumor sensitivity to pd-1 antagonists
US11319359B2 (en) 2015-04-17 2022-05-03 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
WO2016172583A1 (en) 2015-04-23 2016-10-27 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
US10463049B2 (en) 2015-05-06 2019-11-05 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10485882B2 (en) 2015-05-06 2019-11-26 Uti Limited Partnership Nanoparticle compositions for sustained therapy
US11517582B2 (en) 2015-05-06 2022-12-06 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11400110B2 (en) 2015-05-06 2022-08-02 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11147830B2 (en) 2015-05-06 2021-10-19 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10582712B2 (en) 2015-05-06 2020-03-10 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10561148B2 (en) 2015-05-06 2020-02-18 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11844760B2 (en) 2015-05-06 2023-12-19 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10524477B2 (en) 2015-05-06 2020-01-07 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11612617B2 (en) 2015-05-06 2023-03-28 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11547716B2 (en) 2015-05-06 2023-01-10 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10506812B2 (en) 2015-05-06 2019-12-17 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10624349B2 (en) 2015-05-06 2020-04-21 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11642363B2 (en) 2015-05-06 2023-05-09 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US12011480B2 (en) 2015-05-06 2024-06-18 Uti Limited Partnership Nanoparticle compositions for sustained therapy
EP3783029A1 (en) 2015-05-12 2021-02-24 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
US12084518B2 (en) 2015-05-21 2024-09-10 Harpoon Therapeutics, Inc. Trispecific binding proteins and methods of use
WO2016189055A1 (en) 2015-05-27 2016-12-01 Idenix Pharmaceuticals Llc Nucleotides for the treatment of cancer
US10815264B2 (en) 2015-05-27 2020-10-27 Southern Research Institute Nucleotides for the treatment of cancer
US10751412B2 (en) 2015-05-29 2020-08-25 Merck Sharp & Dohme Corp. Combination of a PD-1 antagonist and CPG-C type oligonucleotide for treating cancer
EP3892284A1 (en) 2015-05-29 2021-10-13 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and cpg-c type oligonucleotide for treating cancer
WO2016196173A1 (en) 2015-05-29 2016-12-08 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and cpg-c type oligonucleotide for treating cancer
EP3708681A1 (en) 2015-05-29 2020-09-16 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
WO2016196298A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Therapeutic and diagnolstic methods for cancer
EP4335931A2 (en) 2015-05-29 2024-03-13 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
US11918648B2 (en) 2015-05-29 2024-03-05 Merck Sharp & Dohme Llc Combination of a PD-1 antagonist and CpG-C type oligonucleotide for treating cancer
WO2016200836A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies
US10869924B2 (en) 2015-06-16 2020-12-22 Merck Patent Gmbh PD-L1 antagonist combination treatments
WO2016203432A1 (en) 2015-06-17 2016-12-22 Novartis Ag Antibody drug conjugates
WO2016205320A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
US11009509B2 (en) 2015-06-24 2021-05-18 Janssen Pharmaceutica Nv Anti-VISTA antibodies and fragments
EP3868406A1 (en) 2015-06-24 2021-08-25 Immodulon Therapeutics Limited A checkpoint inhibitor and a whole cell mycobacterium for use in cancer therapy
WO2016207646A1 (en) 2015-06-24 2016-12-29 Immodulon Therapeutics Limited A checkpoint inhibitor and a whole cell mycobacterium for use in cancer therapy
WO2017007700A1 (en) 2015-07-06 2017-01-12 Iomet Pharma Ltd. Pharmaceutical compound
EP3744340A2 (en) 2015-07-16 2020-12-02 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
EP3943098A2 (en) 2015-07-16 2022-01-26 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
WO2017009842A2 (en) 2015-07-16 2017-01-19 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
WO2017015427A1 (en) 2015-07-21 2017-01-26 Novartis Ag Methods for improving the efficacy and expansion of immune cells
EP4378957A2 (en) 2015-07-29 2024-06-05 Novartis AG Combination therapies comprising antibody molecules to pd-1
WO2017017624A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination of pd-1 antagonist with an egfr inhibitor
WO2017019894A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to lag-3
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
WO2017017623A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combined use of anti pd-1 and anti m-csf antibodies in the treatment of cancer
EP3878465A1 (en) 2015-07-29 2021-09-15 Novartis AG Combination therapies comprising antibody molecules to tim-3
EP3964528A1 (en) 2015-07-29 2022-03-09 Novartis AG Combination therapies comprising antibody molecules to lag-3
US10766919B2 (en) 2015-08-13 2020-09-08 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as sting agonists
US10738074B2 (en) 2015-08-13 2020-08-11 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as STING agonists
US10106574B2 (en) 2015-08-13 2018-10-23 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as sting agonists
WO2017027645A1 (en) 2015-08-13 2017-02-16 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as sting agonists
US10759825B2 (en) 2015-08-13 2020-09-01 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as STING agonists
WO2017027646A1 (en) 2015-08-13 2017-02-16 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as sting agonists
US11453697B1 (en) 2015-08-13 2022-09-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
WO2017040930A2 (en) 2015-09-03 2017-03-09 The Trustees Of The University Of Pennsylvania Biomarkers predictive of cytokine release syndrome
WO2017040990A1 (en) 2015-09-03 2017-03-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
WO2017058780A1 (en) 2015-09-30 2017-04-06 Merck Patent Gmbh Combination of a pd-1 axis binding antagonist and an alk inhibitor for treating alk-negative cancer
WO2017066561A2 (en) 2015-10-16 2017-04-20 President And Fellows Of Harvard College Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
WO2017069291A1 (en) 2015-10-23 2017-04-27 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
EP3797797A1 (en) 2015-10-29 2021-03-31 Novartis AG Antibody conjugates comprising toll-like receptor agonist
WO2017072662A1 (en) 2015-10-29 2017-05-04 Novartis Ag Antibody conjugates comprising toll-like receptor agonist
EP3368077A4 (en) * 2015-10-30 2019-10-16 Aleta Biotherapeutics Inc. Compositions and methods for tumor transduction
EP3368656A4 (en) * 2015-10-30 2019-07-17 The United States of America, as represented by the secretary, Department of Health and Human Services Targeted cancer therapy
US10508143B1 (en) 2015-10-30 2019-12-17 Aleta Biotherapeutics Inc. Compositions and methods for treatment of cancer
US10875923B2 (en) 2015-10-30 2020-12-29 Mayo Foundation For Medical Education And Research Antibodies to B7-H1
US11207339B2 (en) 2015-10-30 2021-12-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Targeted cancer therapy
WO2017075440A1 (en) 2015-10-30 2017-05-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Targeted cancer therapy
CN108473950A (en) * 2015-10-30 2018-08-31 美国政府卫生与公众服务部 Targeted cancer therapy
US11059904B2 (en) 2015-10-30 2021-07-13 Aleta Biotherapeutics Inc. Compositions and methods for tumor transduction
US11807691B2 (en) 2015-10-30 2023-11-07 Aleta Biotherapeutics Inc. Compositions and methods for treatment of cancer
US10669349B2 (en) 2015-10-30 2020-06-02 Aleta Biotherapeutics Inc. Compositions and methods for treatment of cancer
WO2017079202A1 (en) 2015-11-02 2017-05-11 Board Of Regents, The University Of Texas System Methods of cd40 activation and immune checkpoint blockade
WO2017077382A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
WO2017079746A2 (en) 2015-11-07 2017-05-11 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer
WO2017087851A1 (en) 2015-11-19 2017-05-26 Genentech, Inc. Methods of treating cancer using b-raf inhibitors and immune checkpoint inhibitors
EP3366691A1 (en) 2015-12-03 2018-08-29 GlaxoSmithKline Intellectual Property Development Limited Cyclic purine dinucleotides as modulators of sting
WO2017093933A1 (en) 2015-12-03 2017-06-08 Glaxosmithkline Intellectual Property Development Limited Cyclic purine dinucleotides as modulators of sting
WO2017098421A1 (en) 2015-12-08 2017-06-15 Glaxosmithkline Intellectual Property Development Limited Benzothiadiazine compounds
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
EP4026848A1 (en) 2015-12-09 2022-07-13 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing the cytokine release syndrome
WO2017106062A1 (en) 2015-12-15 2017-06-22 Merck Sharp & Dohme Corp. Novel compounds as indoleamine 2,3-dioxygenase inhibitors
EP4424322A2 (en) 2015-12-17 2024-09-04 Novartis AG Antibody molecules to pd-1 and uses thereof
WO2017106656A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
WO2017103895A1 (en) 2015-12-18 2017-06-22 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2017112741A1 (en) 2015-12-22 2017-06-29 Novartis Ag Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy
US10596257B2 (en) 2016-01-08 2020-03-24 Hoffmann-La Roche Inc. Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
EP3862365A1 (en) 2016-01-08 2021-08-11 F. Hoffmann-La Roche AG Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
WO2017122130A1 (en) 2016-01-11 2017-07-20 Novartis Ag Immune-stimulating humanized monoclonal antibodies against human interleukin-2, and fusion proteins thereof
WO2017129763A1 (en) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer
WO2017134302A2 (en) 2016-02-05 2017-08-10 Orionis Biosciences Nv Targeted therapeutic agents and uses thereof
EP3998281A1 (en) 2016-02-05 2022-05-18 Orionis Biosciences BV Cd8 binding agents
EP3909978A1 (en) 2016-02-05 2021-11-17 Orionis Biosciences BV Clec9a binding agents and use thereof
EP4421094A2 (en) 2016-02-05 2024-08-28 Orionis Biosciences BV Targeted therapeutic agents and uses thereof
EP4059957A1 (en) 2016-02-05 2022-09-21 Orionis Biosciences BV Bispecific signaling agents and uses thereof
WO2017134305A1 (en) 2016-02-05 2017-08-10 Orionis Biosciences Nv Bispecific signaling agents and uses thereof
US10899836B2 (en) 2016-02-12 2021-01-26 Janssen Pharmaceutica Nv Method of identifying anti-VISTA antibodies
US11987630B2 (en) 2016-02-12 2024-05-21 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
WO2017141208A1 (en) 2016-02-17 2017-08-24 Novartis Ag Tgfbeta 2 antibodies
WO2017140821A1 (en) 2016-02-19 2017-08-24 Novartis Ag Tetracyclic pyridone compounds as antivirals
WO2017151502A1 (en) 2016-02-29 2017-09-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
EP4155415A1 (en) 2016-02-29 2023-03-29 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2017149515A1 (en) 2016-03-04 2017-09-08 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
WO2017153952A1 (en) 2016-03-10 2017-09-14 Glaxosmithkline Intellectual Property Development Limited 5-sulfamoyl-2-hydroxybenzamide derivatives
WO2017160599A1 (en) 2016-03-14 2017-09-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Use of cd300b antagonists to treat sepsis and septic shock
EP4112641A1 (en) 2016-03-15 2023-01-04 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
WO2017159699A1 (en) 2016-03-15 2017-09-21 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
WO2017165412A2 (en) 2016-03-21 2017-09-28 Dana-Farber Cancer Institute, Inc. T-cell exhaustion state-specific gene expression regulators and uses thereof
WO2017165742A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in anti-ctla4 anti-pd-1 combination treatments
WO2017163186A1 (en) 2016-03-24 2017-09-28 Novartis Ag Alkynyl nucleoside analogs as inhibitors of human rhinovirus
EP4292658A2 (en) 2016-03-24 2023-12-20 Novartis AG Alkynyl nucleoside analogs as inhibitors of human rhinovirus
WO2017165778A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments
WO2017173091A1 (en) 2016-03-30 2017-10-05 Musc Foundation For Research Development Methods for treatment and diagnosis of cancer by targeting glycoprotein a repetitions predominant (garp) and for providing effective immunotherapy alone or in combination
EP4032885A1 (en) 2016-04-07 2022-07-27 GlaxoSmithKline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175147A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175156A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017178572A1 (en) 2016-04-13 2017-10-19 Vivia Biotech, S.L Ex vivo bite-activated t cells
US11078282B2 (en) 2016-04-15 2021-08-03 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11525000B2 (en) 2016-04-15 2022-12-13 Immunext, Inc. Anti-human VISTA antibodies and use thereof
US12110339B2 (en) 2016-04-15 2024-10-08 Alpine Immune Sciences, Inc. ICOS ligand variant immunomodulatory proteins and uses thereof
WO2017181111A2 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
US11603403B2 (en) 2016-04-15 2023-03-14 Immunext, Inc. Anti-human vista antibodies and use thereof
US11479609B2 (en) 2016-04-15 2022-10-25 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11603402B2 (en) 2016-04-15 2023-03-14 Immunext, Inc. Anti-human vista antibodies and use thereof
WO2017181079A2 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
US11359022B2 (en) 2016-04-15 2022-06-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US10882914B2 (en) 2016-04-15 2021-01-05 Alpine Immune Sciences, Inc. ICOS ligand variant immunomodulatory proteins and uses thereof
US11498967B2 (en) 2016-04-15 2022-11-15 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11649283B2 (en) 2016-04-15 2023-05-16 Immunext, Inc. Anti-human vista antibodies and use thereof
US12029724B2 (en) 2016-04-28 2024-07-09 Eisai R&D Management Co., Ltd. Method for inhibiting tumor growth
EP4029950A1 (en) 2016-04-29 2022-07-20 Board of Regents, The University of Texas System Targeted measure of transcriptional activity related to hormone receptors
WO2017192874A1 (en) 2016-05-04 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Albumin-binding immunomodulatory compositions and methods of use thereof
WO2017191545A1 (en) 2016-05-05 2017-11-09 Glaxosmithkline Intellectual Property (No.2) Limited Enhancer of zeste homolog 2 inhibitors
WO2017194782A2 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Therapeutic targeting of non-cellular structures
WO2017194783A1 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Targeted mutant interferon-beta and uses thereof
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2017205538A1 (en) 2016-05-24 2017-11-30 Genentech, Inc. Pyrazolopyridine derivatives for the treatment of cancer
WO2017205536A2 (en) 2016-05-24 2017-11-30 Genentech, Inc. Therapeutic compounds and uses thereof
EP4067347A1 (en) 2016-05-24 2022-10-05 Genentech, Inc. Heterocyclic inhibitors of cbp/ep300 for the treatment of cancer
US11351252B2 (en) 2016-06-05 2022-06-07 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US11471530B2 (en) 2016-06-05 2022-10-18 Snipr Technologies Limited Selectively altering microbiota for immune modulation
WO2017212423A1 (en) 2016-06-08 2017-12-14 Glaxosmithkline Intellectual Property Development Limited Chemcical compounds
WO2017212425A1 (en) 2016-06-08 2017-12-14 Glaxosmithkline Intellectual Property Development Limited Chemical compounds as atf4 pathway inhibitors
WO2017218533A1 (en) 2016-06-13 2017-12-21 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
US10071973B2 (en) 2016-06-14 2018-09-11 Novartis Ag Crystalline isoxazole hydroxamic acid compounds
WO2017216705A1 (en) 2016-06-14 2017-12-21 Novartis Ag Crystalline form of (r)-4-(5-(cyclopropylethynyl)isoxazol-3-yl)-n-hydroxy-2-methyl-2-(methylsulfonyl)butanamide as an antibacterial agent
WO2017216686A1 (en) 2016-06-16 2017-12-21 Novartis Ag 8,9-fused 2-oxo-6,7-dihydropyrido-isoquinoline compounds as antivirals
WO2017216685A1 (en) 2016-06-16 2017-12-21 Novartis Ag Pentacyclic pyridone compounds as antivirals
US11098077B2 (en) 2016-07-05 2021-08-24 Chinook Therapeutics, Inc. Locked nucleic acid cyclic dinucleotide compounds and uses thereof
US11365252B2 (en) 2016-07-20 2022-06-21 University Of Utah Research Foundation CD229 CAR T cells and methods of use thereof
WO2018015879A1 (en) 2016-07-20 2018-01-25 Glaxosmithkline Intellectual Property Development Limited Isoquinoline derivatives as perk inhibitors
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
WO2018026606A1 (en) 2016-08-01 2018-02-08 Threshold Pharmaceuticals, Inc. Administration of hypoxia activated prodrugs in combination with immune modulatory agents for treating cancer
WO2018027204A1 (en) 2016-08-05 2018-02-08 Genentech, Inc. Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
US11046776B2 (en) 2016-08-05 2021-06-29 Genentech, Inc. Multivalent and multiepitopic antibodies having agonistic activity and methods of use
US12030946B2 (en) 2016-08-08 2024-07-09 Hoffmann-La Roche Inc. Therapeutic and diagnostic methods for cancer
WO2018029124A1 (en) 2016-08-08 2018-02-15 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
AU2016419048B2 (en) * 2016-08-11 2024-02-15 The Council Of The Queensland Institute Of Medical Research Immune-modulating compounds
US11725041B2 (en) 2016-08-11 2023-08-15 The Council Of The Queensland Institute Of Medical Research Immune-modulating compounds
EP3497134A4 (en) * 2016-08-11 2020-01-15 The Council of the Queensland Institute of Medical Research Immune-modulating compounds
WO2018031865A1 (en) 2016-08-12 2018-02-15 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor
WO2018049263A1 (en) 2016-09-09 2018-03-15 Tg Therapeutics, Inc. Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor, and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers
WO2018047109A1 (en) 2016-09-09 2018-03-15 Novartis Ag Polycyclic pyridone compounds as antivirals
WO2018057585A1 (en) 2016-09-21 2018-03-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric antigen receptor (car) that targets chemokine receptor ccr4 and its use
US11673971B2 (en) 2016-09-23 2023-06-13 Marengo Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
WO2018057955A1 (en) 2016-09-23 2018-03-29 Elstar Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
WO2018055145A1 (en) 2016-09-26 2018-03-29 F. Hoffmann-La Roche Ag Predicting response to pd-1 axis inhibitors
US11513122B2 (en) 2016-09-26 2022-11-29 Hoffmann-La Roche Inc. Predicting response to PD-1 axis inhibitors
WO2018064165A2 (en) 2016-09-27 2018-04-05 Board Of Regents, The University Of Texas System Methods for enhancing immune checkpoint blockade therapy by modulating the microbiome
KR20230066654A (en) 2016-09-27 2023-05-16 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 The method for making the immunity check point blockade therapy reinforced by regulating the microbial genus whole
US11395838B2 (en) 2016-09-27 2022-07-26 Board Of Regents, The University Of Texas System Methods for enhancing immune checkpoint blockade therapy by modulating the microbiome
EP3698796A1 (en) 2016-09-28 2020-08-26 Novartis AG Pharmaceutical combination of a tricyclic beta-lactamase inhibitor with specific beta-lactam antibiotics
WO2018060926A1 (en) 2016-09-28 2018-04-05 Novartis Ag Beta-lactamase inhibitors
WO2018064299A1 (en) 2016-09-29 2018-04-05 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a taxane
WO2018060323A1 (en) 2016-09-30 2018-04-05 Boehringer Ingelheim International Gmbh Cyclic dinucleotide compounds
US10730849B2 (en) 2016-10-04 2020-08-04 Merck Sharp & Dohme Corp. Benzo[b]thiophene compounds as STING agonists
WO2018067423A1 (en) 2016-10-04 2018-04-12 Merck Sharp & Dohme Corp. BENZO[b]THIOPHENE COMPOUNDS AS STING AGONISTS
US10703738B2 (en) 2016-10-04 2020-07-07 Merck Sharp & Dohme Corp. Benzo[b]thiophene compounds as STING agonists
US10414747B2 (en) 2016-10-04 2019-09-17 Merck Sharp & Dohme Corp. Benzo[b]thiophene compounds as sting agonists
WO2018068028A1 (en) 2016-10-06 2018-04-12 Genentech, Inc. Therapeutic and diagnostic methods for cancer
US11274154B2 (en) 2016-10-06 2022-03-15 Pfizer Inc. Dosing regimen of avelumab for the treatment of cancer
WO2018067992A1 (en) 2016-10-07 2018-04-12 Novartis Ag Chimeric antigen receptors for the treatment of cancer
US11278592B2 (en) 2016-10-12 2022-03-22 Board Of Regents, The University Of Texas System Methods and compositions for TUSC2 immunotherapy
WO2018071668A1 (en) 2016-10-12 2018-04-19 Board Of Regents, The University Of Texas System Methods and compositions for tusc2 immunotherapy
WO2018071792A1 (en) 2016-10-14 2018-04-19 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and eribulin for treating urothelial cancer
WO2018071576A1 (en) 2016-10-14 2018-04-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Treatment of tumors by inhibition of cd300f
WO2018073753A1 (en) 2016-10-18 2018-04-26 Novartis Ag Fused tetracyclic pyridone compounds as antivirals
WO2018077893A1 (en) 2016-10-24 2018-05-03 Orionis Biosciences Nv Targeted mutant interferon-gamma and uses thereof
US11447537B2 (en) 2016-10-27 2022-09-20 Io Biotech Aps PDL2 compounds
CN109890838A (en) * 2016-10-27 2019-06-14 Io生物技术公司 New PDL2 compound
WO2018077629A1 (en) * 2016-10-27 2018-05-03 Herlev Hospital New pdl2 compounds
WO2018081648A2 (en) 2016-10-29 2018-05-03 Genentech, Inc. Anti-mic antibidies and methods of use
US11124577B2 (en) 2016-11-02 2021-09-21 Engmab Sàrl Bispecific antibody against BCMA and CD3 and an immunological drug for combined use in treating multiple myeloma
WO2018083204A1 (en) 2016-11-02 2018-05-11 Engmab Sàrl Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma
EP4295918A2 (en) 2016-11-02 2023-12-27 Bristol-Myers Squibb Company Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma
WO2018089423A1 (en) 2016-11-09 2018-05-17 Musc Foundation For Research Development Cd38-nad+ regulated metabolic axis in anti-tumor immunotherapy
WO2018093821A1 (en) 2016-11-15 2018-05-24 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
WO2018091542A1 (en) 2016-11-21 2018-05-24 Idenix Pharmaceuticals Llc Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases
US11730748B2 (en) 2016-11-21 2023-08-22 Msd International Gmbh Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11299469B2 (en) 2016-11-29 2022-04-12 Sumitomo Dainippon Pharma Oncology, Inc. Naphthofuran derivatives, preparation, and methods of use thereof
WO2018100535A1 (en) 2016-12-01 2018-06-07 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2018100534A1 (en) 2016-12-01 2018-06-07 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2018102786A1 (en) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Methods for modulation of car-t cells
WO2018111902A1 (en) 2016-12-12 2018-06-21 Multivir Inc. Methods and compositions comprising viral gene therapy and an immune checkpoint inhibitor for treatment and prevention of cancer and infectious diseases
WO2018111890A1 (en) 2016-12-12 2018-06-21 Genentech, Inc. Methods of treating cancer using anti-pd-l1 antibodies and antiandrogens
WO2018112364A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating melanoma
WO2018112360A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating cancer
WO2018129497A1 (en) 2017-01-09 2018-07-12 Bioxcel Therapeutics, Inc. Predictive and diagnostic methods for prostate cancer
US11492367B2 (en) 2017-01-27 2022-11-08 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
US11021511B2 (en) 2017-01-27 2021-06-01 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
WO2018142322A1 (en) 2017-02-03 2018-08-09 Novartis Ag Anti-ccr7 antibody drug conjugates
WO2018144999A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
WO2018141964A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences Nv Targeted chimeric proteins and uses thereof
WO2018146612A1 (en) 2017-02-10 2018-08-16 Novartis Ag 1-(4-amino-5-bromo-6-(1 h-pyrazol-1-yl)pyrimidin-2-yl)-1 h-pyrazol-4-ol and use thereof in the treatment of cancer
WO2018151820A1 (en) 2017-02-16 2018-08-23 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
WO2018156973A1 (en) 2017-02-24 2018-08-30 Board Of Regents, The University Of Texas System Assay for detection of early stage pancreatic cancer
WO2018154529A1 (en) 2017-02-27 2018-08-30 Novartis Ag Dosing schedule for a combination of ceritinib and an anti-pd-1 antibody molecule
WO2018154520A1 (en) 2017-02-27 2018-08-30 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
WO2018160841A1 (en) 2017-03-01 2018-09-07 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2018167147A1 (en) 2017-03-15 2018-09-20 F. Hoffmann-La Roche Ag Azaindoles as inhibitors of hpk1
US11117949B2 (en) 2017-03-16 2021-09-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11096988B2 (en) 2017-03-16 2021-08-24 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11230588B2 (en) 2017-03-16 2022-01-25 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11732022B2 (en) 2017-03-16 2023-08-22 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
WO2018170023A1 (en) * 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Pd-l2 variant immunomodulatory proteins and uses thereof
US11639375B2 (en) 2017-03-16 2023-05-02 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11117950B2 (en) 2017-03-16 2021-09-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11117948B2 (en) 2017-03-16 2021-09-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2018172206A1 (en) 2017-03-22 2018-09-27 Boehringer Ingelheim International Gmbh Modified cyclic dinucleotide compounds
US11498972B2 (en) 2017-03-25 2022-11-15 Innovent Biologics (Suzhou) Co., Ltd. Anti-OX40 antibody and use thereof
WO2018177220A1 (en) 2017-03-25 2018-10-04 信达生物制药(苏州)有限公司 Anti-ox40 antibody and use thereof
WO2018183956A1 (en) 2017-03-30 2018-10-04 Genentech, Inc. Naphthyridines as inhibitors of hpk1
WO2018183964A1 (en) 2017-03-30 2018-10-04 Genentech, Inc. Isoquinolines as inhibitors of hpk1
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
WO2018189220A1 (en) 2017-04-13 2018-10-18 F. Hoffmann-La Roche Ag An interleukin-2 immunoconjugate, a cd40 agonist, and optionally a pd-1 axis binding antagonist for use in methods of treating cancer
WO2018191660A1 (en) 2017-04-14 2018-10-18 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2018195283A1 (en) 2017-04-19 2018-10-25 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
EP3998269A1 (en) 2017-04-27 2022-05-18 Novartis AG Fused indazole pyridone compounds as antivirals
WO2018198079A1 (en) 2017-04-27 2018-11-01 Novartis Ag Fused indazole pyridone compounds as antivirals
US10301312B2 (en) 2017-04-27 2019-05-28 Novartis Ag Fused indazole pyridone compounds as antivirals
US10975078B2 (en) 2017-04-27 2021-04-13 Novartis Ag Fused indazole pyridone compounds as antivirals
WO2018198091A1 (en) 2017-04-28 2018-11-01 Novartis Ag Antibody conjugates comprising toll-like receptor agonist and combination therapies
EP4328241A2 (en) 2017-04-28 2024-02-28 Marengo Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
WO2018201056A1 (en) 2017-04-28 2018-11-01 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
WO2018201047A1 (en) 2017-04-28 2018-11-01 Elstar Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
WO2018198076A1 (en) 2017-04-28 2018-11-01 Aduro Biotech, Inc. Bis 2'-5'-rr-(3'f-a)(3'f-a) cyclic dinucleotide compound and uses thereof
US10975114B2 (en) 2017-04-28 2021-04-13 Chinook Therapeutics, Inc. Bis 2′-5′-RR-(3′F-A)(3′F-A) cyclic dinucleotide compound and uses thereof
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
WO2018203302A1 (en) 2017-05-05 2018-11-08 Novartis Ag Tricyclic 2-quinolinones as antibacterials
US11607453B2 (en) 2017-05-12 2023-03-21 Harpoon Therapeutics, Inc. Mesothelin binding proteins
US11466047B2 (en) 2017-05-12 2022-10-11 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
US10646464B2 (en) 2017-05-17 2020-05-12 Boston Biomedical, Inc. Methods for treating cancer
WO2018211453A1 (en) 2017-05-19 2018-11-22 Novartis Ag Compositions comprising naphthyridine derivatives and aluminium adjuvant for use in treating solid tumors
WO2018222685A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
WO2018220546A1 (en) 2017-05-31 2018-12-06 Novartis Ag Crystalline forms of 5-bromo-2,6-di(1 h-pyrazol-1-yl)pyrimidin-4-amine and new salts
WO2018222901A1 (en) 2017-05-31 2018-12-06 Elstar Therapeutics, Inc. Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof
WO2018223002A1 (en) 2017-06-01 2018-12-06 Xencor, Inc. Bispecific antibodies that bind cd 123 cd3
WO2018223004A1 (en) 2017-06-01 2018-12-06 Xencor, Inc. Bispecific antibodies that bind cd20 and cd3
US11944647B2 (en) 2017-06-02 2024-04-02 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
US11413310B2 (en) 2017-06-02 2022-08-16 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
WO2018223101A1 (en) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
WO2018226671A1 (en) 2017-06-06 2018-12-13 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands
US11542331B2 (en) 2017-06-06 2023-01-03 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to BTN1A1 or BTN1A1-ligands
WO2018225093A1 (en) 2017-06-07 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds as atf4 pathway inhibitors
WO2018226336A1 (en) 2017-06-09 2018-12-13 Providence Health & Services - Oregon Utilization of cd39 and cd103 for identification of human tumor reactive cells for treatment of cancer
WO2018225033A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
WO2018234879A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
WO2018237157A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018235056A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
WO2019006427A1 (en) 2017-06-29 2019-01-03 Juno Therapeutics, Inc. Mouse model for assessing toxicities associated with immunotherapies
WO2019008506A1 (en) 2017-07-03 2019-01-10 Glaxosmithkline Intellectual Property Development Limited N-(3-(2-(4-chlorophenoxy)acetamido)bicyclo[1.1.1]pentan-1-yl)-2-cyclobutane-1-carboxamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases
WO2019008507A1 (en) 2017-07-03 2019-01-10 Glaxosmithkline Intellectual Property Development Limited 2-(4-chlorophenoxy)-n-((1 -(2-(4-chlorophenoxy)ethynazetidin-3-yl)methyl)acetamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases
WO2019016174A1 (en) 2017-07-18 2019-01-24 Institut Gustave Roussy Method for assessing the response to pd-1/pdl-1 targeting drugs
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
WO2019018757A1 (en) 2017-07-21 2019-01-24 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2019021208A1 (en) 2017-07-27 2019-01-31 Glaxosmithkline Intellectual Property Development Limited Indazole derivatives useful as perk inhibitors
US11285131B2 (en) 2017-08-04 2022-03-29 Merck Sharp & Dohme Corp. Benzo[b]thiophene STING agonists for cancer treatment
US11312772B2 (en) 2017-08-04 2022-04-26 Merck Sharp & Dohme Corp. Combinations of PD-1 antagonists and benzo [b] thiophene STING agonists for cancer treatment
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. Multispecific molecules that bind to bcma and uses thereof
WO2019049061A1 (en) 2017-09-07 2019-03-14 Glaxosmithkline Intellectual Property Development Limited 5-(1 h-benzo[d]imidazo-2-yl)-pyridin-2-amine and 5-(3h-imidazo[4,5-b]pyridin-6-yl)-pyridin-2-amine derivatives as c-myc and p300/cbp histone acetyltransferase inhibitors for treating cancer
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
WO2019053617A1 (en) 2017-09-12 2019-03-21 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
WO2019059411A1 (en) 2017-09-20 2019-03-28 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
WO2019069270A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited Modulators of stimulator of interferon genes (sting)
WO2019069269A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited Modulators of stimulator of interferon genes (sting) useful in treating hiv
US11976125B2 (en) 2017-10-13 2024-05-07 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins
WO2019077062A1 (en) 2017-10-18 2019-04-25 Vivia Biotech, S.L. Bite-activated car-t cells
WO2019077053A1 (en) 2017-10-20 2019-04-25 Biontech Rna Pharmaceuticals Gmbh Preparation and storage of liposomal rna formulations suitable for therapy
EP3858333A1 (en) 2017-10-20 2021-08-04 BioNTech RNA Pharmaceuticals GmbH Preparation and storage of liposomal rna formulations suitable for therapy
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
WO2019090003A1 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Chimeric antigen receptors specific for b-cell maturation antigen (bcma)
US12031975B2 (en) 2017-11-01 2024-07-09 Juno Therapeutics, Inc. Methods of assessing or monitoring a response to a cell therapy
US11623961B2 (en) 2017-11-01 2023-04-11 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for B-cell maturation antigen
WO2019089412A1 (en) 2017-11-01 2019-05-09 Merck Sharp & Dohme Corp. Novel substituted tetrahydroquinolin compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019089858A2 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Methods of assessing or monitoring a response to a cell therapy
WO2019089969A2 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for b-cell maturation antigen
WO2019090263A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2019094360A1 (en) 2017-11-07 2019-05-16 The Board Of Regents Of The University Of Texas System Targeting lilrb4 with car-t or car-nk cells in the treatment of cancer
WO2019099314A1 (en) 2017-11-14 2019-05-23 Merck Sharp & Dohme Corp. Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019097369A1 (en) 2017-11-14 2019-05-23 Pfizer Inc. Ezh2 inhibitor combination therapies
WO2019099294A1 (en) 2017-11-14 2019-05-23 Merck Sharp & Dohme Corp. Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019099838A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
US11111297B2 (en) 2017-11-17 2021-09-07 Merck Sharp & Dohme Corp. Antibodies specific for immunoglobulin-like transcript 3 (ILT3) and uses thereof
WO2019097479A1 (en) 2017-11-17 2019-05-23 Novartis Ag Novel dihydroisoxazole compounds and their use for the treatment of hepatitis b
WO2019099597A2 (en) 2017-11-17 2019-05-23 Merck Sharp & Dohme Corp. Antibodies specific for immunoglobulin-like transcript 3 (ilt3) and uses thereof
WO2019108900A1 (en) 2017-11-30 2019-06-06 Novartis Ag Bcma-targeting chimeric antigen receptor, and uses thereof
WO2019113464A1 (en) 2017-12-08 2019-06-13 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
US12006356B2 (en) 2017-12-15 2024-06-11 Juno Therapeutics, Inc. Anti-CCT5 binding molecules and chimeric antigen receptors comprising the same
WO2019118839A1 (en) 2017-12-15 2019-06-20 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
WO2019118937A1 (en) 2017-12-15 2019-06-20 Juno Therapeutics, Inc. Anti-cct5 binding molecules and methods of use thereof
US11234977B2 (en) 2017-12-20 2022-02-01 Novartis Ag Fused tricyclic pyrazolo-dihydropyrazinyl-pyridone compounds as antivirals
US11685761B2 (en) 2017-12-20 2023-06-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
WO2019123285A1 (en) 2017-12-20 2019-06-27 Novartis Ag Fused tricyclic pyrazolo-dihydropyrazinyl-pyridone compounds as antivirals
US11732044B2 (en) 2017-12-27 2023-08-22 Innovent Biologics (Suzhou) Co., Ltd. Anti-LAG-3 antibody and use thereof
WO2019129137A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
WO2019136432A1 (en) 2018-01-08 2019-07-11 Novartis Ag Immune-enhancing rnas for combination with chimeric antigen receptor therapy
WO2019152660A1 (en) 2018-01-31 2019-08-08 Novartis Ag Combination therapy using a chimeric antigen receptor
WO2019152743A1 (en) 2018-01-31 2019-08-08 Celgene Corporation Combination therapy using adoptive cell therapy and checkpoint inhibitor
US11896643B2 (en) 2018-02-05 2024-02-13 Orionis Biosciences, Inc. Fibroblast binding agents and use thereof
WO2019160956A1 (en) 2018-02-13 2019-08-22 Novartis Ag Chimeric antigen receptor therapy in combination with il-15r and il15
WO2019166951A1 (en) 2018-02-28 2019-09-06 Novartis Ag Indole-2-carbonyl compounds and their use for the treatment of hepatitis b
WO2019175113A1 (en) 2018-03-12 2019-09-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of caloric restriction mimetics for potentiating chemo-immunotherapy for the treatment of cancers
WO2019178362A1 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
US10738128B2 (en) 2018-03-14 2020-08-11 Surface Oncology, Inc. Antibodies that bind CD39 and uses thereof
US10793637B2 (en) 2018-03-14 2020-10-06 Surface Oncology, Inc. Antibodies that bind CD39 and uses thereof
WO2019178269A2 (en) 2018-03-14 2019-09-19 Surface Oncology, Inc. Antibodies that bind cd39 and uses thereof
EP4043496A1 (en) 2018-03-14 2022-08-17 Surface Oncology, Inc. Antibodies that bind cd39 and uses thereof
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
WO2020036635A2 (en) 2018-03-19 2020-02-20 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and cd122/cd132 agonists for the treatment of cancer
US11332524B2 (en) 2018-03-22 2022-05-17 Surface Oncology, Inc. Anti-IL-27 antibodies and uses thereof
EP4066851A1 (en) 2018-03-25 2022-10-05 SNIPR Biome ApS. Treating & preventing microbial infections
WO2019185551A1 (en) 2018-03-25 2019-10-03 Snipr Biome Aps. Treating & preventing microbial infections
EP4085923A1 (en) 2018-03-25 2022-11-09 SNIPR Biome ApS. Treating and preventing microbial infections
WO2019185476A1 (en) 2018-03-27 2019-10-03 Boehringer Ingelheim International Gmbh Modified cyclic dinucleotide compounds
WO2019191279A2 (en) 2018-03-27 2019-10-03 Board Of Regents, The University Of Texas System Compounds with anti-tumor activity against cancer cells bearing her2 exon 19 mutations
WO2019185477A1 (en) 2018-03-27 2019-10-03 Boehringer Ingelheim International Gmbh Cyclic dinucleotide compounds containing 2-aza-hypoxanthine or 6h-pytazolo[1,5-d][1,2,4]triazin-7-one as sting agonists
US11702430B2 (en) 2018-04-03 2023-07-18 Merck Sharp & Dohme Llc Aza-benzothiophene compounds as STING agonists
WO2019195124A1 (en) 2018-04-03 2019-10-10 Merck Sharp & Dohme Corp. Benzothiophenes and related compounds as sting agonists
US10793557B2 (en) 2018-04-03 2020-10-06 Merck Sharp & Dohme Corp. Sting agonist compounds
WO2019193541A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors
WO2019193540A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Heteroaryl derivatives of formula (i) as atf4 inhibitors
WO2019200229A1 (en) 2018-04-13 2019-10-17 Novartis Ag Dosage regimens for anti-pd-l1 antibodies and uses thereof
WO2019204665A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
WO2019204592A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof
WO2019204743A1 (en) 2018-04-19 2019-10-24 Checkmate Pharmaceuticals, Inc. Synthetic rig-i-like receptor agonists
US11542505B1 (en) 2018-04-20 2023-01-03 Merck Sharp & Dohme Llc Substituted RIG-I agonists: compositions and methods thereof
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
US10920222B2 (en) 2018-04-30 2021-02-16 Snipr Biome Aps Treating and preventing microbial infections
US11485973B2 (en) 2018-04-30 2022-11-01 Snipr Biome Aps Treating and preventing microbial infections
US11788085B2 (en) 2018-04-30 2023-10-17 Snipr Biome Aps Treating and preventing microbial infections
US11421227B2 (en) 2018-04-30 2022-08-23 Snipr Biome Aps Treating and preventing microbial infections
US11643653B2 (en) 2018-04-30 2023-05-09 Snipr Biome Aps Treating and preventing microbial infections
WO2019213282A1 (en) 2018-05-01 2019-11-07 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
WO2019211489A1 (en) 2018-05-04 2019-11-07 Merck Patent Gmbh COMBINED INHIBITION OF PD-1/PD-L1, TGFβ AND DNA-PK FOR THE TREATMENT OF CANCER
WO2019219820A1 (en) 2018-05-16 2019-11-21 Ctxt Pty Limited Substituted condensed thiophenes as modulators of sting
US11613525B2 (en) 2018-05-16 2023-03-28 Ctxt Pty Limited Substituted condensed thiophenes as modulators of sting
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2019232244A2 (en) 2018-05-31 2019-12-05 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019232319A1 (en) 2018-05-31 2019-12-05 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
US11932681B2 (en) 2018-05-31 2024-03-19 Novartis Ag Hepatitis B antibodies
WO2019231870A1 (en) 2018-05-31 2019-12-05 Merck Sharp & Dohme Corp. Novel substituted [1.1.1] bicyclo compounds as indoleamine 2,3-dioxygenase inhibitors
WO2019229699A1 (en) 2018-05-31 2019-12-05 Novartis Ag Hepatitis b antibodies
WO2019232528A1 (en) 2018-06-01 2019-12-05 Xencor, Inc. Dosing of a bispecific antibody that bind cd123 and cd3
WO2019229701A2 (en) 2018-06-01 2019-12-05 Novartis Ag Binding molecules against bcma and uses thereof
WO2019234576A1 (en) 2018-06-03 2019-12-12 Lamkap Bio Beta Ltd. Bispecific antibodies against ceacam5 and cd47
US11555071B2 (en) 2018-06-03 2023-01-17 Lamkap Bio Beta Ltd. Bispecific antibodies against CEACAM5 and CD47
WO2019241426A1 (en) 2018-06-13 2019-12-19 Novartis Ag Bcma chimeric antigen receptors and uses thereof
WO2019246557A1 (en) 2018-06-23 2019-12-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
WO2020002905A1 (en) 2018-06-25 2020-01-02 Immodulon Therapeutics Limited Cancer therapy
WO2020005068A2 (en) 2018-06-29 2020-01-02 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Gene signatures and method for predicting response to pd-1 antagonists and ctla-4 antagonists, and combination thereof
US11965025B2 (en) 2018-07-03 2024-04-23 Marengo Therapeutics, Inc. Method of treating solid cancers with bispecific interleukin-anti-TCRß molecules
DE202019005887U1 (en) 2018-07-03 2023-06-14 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
WO2020010250A2 (en) 2018-07-03 2020-01-09 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and uses thereof
US11845797B2 (en) 2018-07-03 2023-12-19 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
WO2020012339A1 (en) 2018-07-09 2020-01-16 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
EP4306111A2 (en) 2018-07-10 2024-01-17 Novartis AG 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020012334A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of ikaros family zinc finger 2 (ikzf2)-dependent diseases
WO2020012337A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases
WO2020018789A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
WO2020020894A1 (en) 2018-07-24 2020-01-30 Biontech Rna Pharmaceuticals Gmbh Individualized vaccines for cancer
WO2020023560A1 (en) 2018-07-24 2020-01-30 F. Hoffmann-La Roche Ag Isoquinoline compounds and uses thereof
WO2020023268A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Combination of lilrb1/2 pathway inhibitors and pd-1 pathway inhibitors
WO2020023551A1 (en) 2018-07-24 2020-01-30 Genentech, Inc. Naphthyridine compounds and uses thereof
WO2020020444A1 (en) 2018-07-24 2020-01-30 Biontech Rna Pharmaceuticals Gmbh Individualized vaccines for cancer
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
WO2020031107A1 (en) 2018-08-08 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
US11566066B2 (en) 2018-08-20 2023-01-31 Pfizer Inc. Anti-GDF15 antibodies, compositions and methods of use
WO2020039321A2 (en) 2018-08-20 2020-02-27 Pfizer Inc. Anti-gdf15 antibodies, compositions and methods of use
WO2020044206A1 (en) 2018-08-29 2020-03-05 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors for use in the treatment cancer
WO2020044252A1 (en) 2018-08-31 2020-03-05 Novartis Ag Dosage regimes for anti-m-csf antibodies and uses thereof
WO2020051099A1 (en) 2018-09-03 2020-03-12 Genentech, Inc. Carboxamide and sulfonamide derivatives useful as tead modulators
WO2020048942A1 (en) 2018-09-04 2020-03-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses
WO2020051333A1 (en) 2018-09-07 2020-03-12 Pfizer Inc. Anti-avb8 antibodies and compositions and uses thereof
WO2020049534A1 (en) 2018-09-07 2020-03-12 Novartis Ag Sting agonist and combination therapy thereof for the treatment of cancer
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
WO2020053654A1 (en) 2018-09-12 2020-03-19 Novartis Ag Antiviral pyridopyrazinedione compounds
US11072610B2 (en) 2018-09-12 2021-07-27 Novartis Ag Antiviral pyridopyrazinedione compounds
WO2020055702A1 (en) 2018-09-13 2020-03-19 Merck Sharp & Dohme Corp. Combination of pd-1 antagonist and lag3 antagonist for treating non-microsatellite instablity-high/proficient mismatch repair colorectal cancer
WO2020061060A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2020058372A1 (en) 2018-09-19 2020-03-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of cancers resistant to immune checkpoint therapy
WO2020061377A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Spirocyclic 2,3-dihydro-7-azaindole compounds and uses thereof
WO2020061376A2 (en) 2018-09-19 2020-03-26 Alpine Immune Sciences, Inc. Methods and uses of variant cd80 fusion proteins and related constructs
WO2020061349A1 (en) 2018-09-21 2020-03-26 Genentech, Inc. Diagnostic methods for triple-negative breast cancer
EP4249917A2 (en) 2018-09-21 2023-09-27 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
US11807692B2 (en) 2018-09-25 2023-11-07 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
WO2020069372A1 (en) 2018-09-27 2020-04-02 Elstar Therapeutics, Inc. Csf1r/ccr2 multispecific antibodies
WO2020069409A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
WO2020069405A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd22 chimeric antigen receptor (car) therapies
WO2020065453A1 (en) 2018-09-29 2020-04-02 Novartis Ag Process of manufacture of a compound for inhibiting the activity of shp2
EP4282416A2 (en) 2018-09-29 2023-11-29 Novartis AG Process of manufacture of a compound for inhibiting the activity of shp2
WO2020069402A1 (en) 2018-09-30 2020-04-02 Genentech, Inc. Cinnoline compounds and for the treatment of hpk1-dependent disorders such as cancer
WO2020070053A1 (en) 2018-10-01 2020-04-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of inhibitors of stress granule formation for targeting the regulation of immune responses
WO2020072627A1 (en) 2018-10-02 2020-04-09 Genentech, Inc. Isoquinoline compounds for the treatment of cancer
WO2020072821A2 (en) 2018-10-03 2020-04-09 Xencor, Inc. Il-12 heterodimeric fc-fusion proteins
WO2020072695A1 (en) 2018-10-03 2020-04-09 Genentech, Inc. 8-aminoisoquinoline compounds and uses thereof
WO2020077276A2 (en) 2018-10-12 2020-04-16 Xencor, Inc. Pd-1 targeted il-15/il-15ralpha fc fusion proteins and uses in combination therapies thereof
WO2020079581A1 (en) 2018-10-16 2020-04-23 Novartis Ag Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy
WO2020081767A1 (en) 2018-10-18 2020-04-23 Genentech, Inc. Diagnostic and therapeutic methods for sarcomatoid kidney cancer
WO2020086479A1 (en) 2018-10-22 2020-04-30 Glaxosmithkline Intellectual Property Development Limited Dosing
WO2020086476A1 (en) 2018-10-22 2020-04-30 Glaxosmithkline Intellectual Property Development Limited Dosing
WO2020092304A1 (en) 2018-10-29 2020-05-07 Wisconsin Alumni Research Foundation Dendritic polymers complexed with immune checkpoint inhibitors for enhanced cancer immunotherapy
US11564995B2 (en) 2018-10-29 2023-01-31 Wisconsin Alumni Research Foundation Peptide-nanoparticle conjugates
WO2020089811A1 (en) 2018-10-31 2020-05-07 Novartis Ag Dc-sign antibody drug conjugates
WO2020092848A2 (en) 2018-11-01 2020-05-07 Juno Therapeutics, Inc. Methods for treatment using chimeric antigen receptors specific for b-cell maturation antigen
WO2020092854A2 (en) 2018-11-01 2020-05-07 Juno Therapeutics, Inc. Chimeric antigen receptors specific for g protein-coupled receptor class c group 5 member d (gprc5d)
WO2020092183A1 (en) 2018-11-01 2020-05-07 Merck Sharp & Dohme Corp. Novel substituted pyrazole compounds as indoleamine 2,3-dioxygenase inhibitors
WO2020096871A1 (en) 2018-11-06 2020-05-14 Merck Sharp & Dohme Corp. Novel substituted tricyclic compounds as indoleamine 2,3-dioxygenase inhibitors
WO2020102804A2 (en) 2018-11-16 2020-05-22 Arqule, Inc. Pharmaceutical combination for treatment of cancer
WO2020102770A1 (en) 2018-11-16 2020-05-22 Juno Therapeutics, Inc. Methods of dosing engineered t cells for the treatment of b cell malignancies
WO2020106621A1 (en) 2018-11-19 2020-05-28 Board Of Regents, The University Of Texas System A modular, polycistronic vector for car and tcr transduction
WO2020106558A1 (en) 2018-11-20 2020-05-28 Merck Sharp & Dohme Corp. Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use
WO2020106560A1 (en) 2018-11-20 2020-05-28 Merck Sharp & Dohme Corp. Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use
WO2020109328A1 (en) 2018-11-26 2020-06-04 Debiopharm International S.A. Combination treatment of hiv infections
WO2020109355A1 (en) 2018-11-28 2020-06-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kit for assaying lytic potential of immune effector cells
WO2020113029A2 (en) 2018-11-28 2020-06-04 Board Of Regents, The University Of Texas System Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment
WO2020112581A1 (en) 2018-11-28 2020-06-04 Merck Sharp & Dohme Corp. Novel substituted piperazine amide compounds as indoleamine 2, 3-dioxygenase (ido) inhibitors
WO2020112493A1 (en) 2018-11-29 2020-06-04 Board Of Regents, The University Of Texas System Methods for ex vivo expansion of natural killer cells and use thereof
WO2020110056A1 (en) 2018-11-30 2020-06-04 Glaxosmithkline Intellectual Property Development Limited Compounds useful in hiv therapy
WO2020112700A1 (en) 2018-11-30 2020-06-04 Merck Sharp & Dohme Corp. 9-substituted amino triazolo quinazoline derivatives as adenosine receptor antagonists, pharmaceutical compositions and their use
WO2020113194A2 (en) 2018-11-30 2020-06-04 Juno Therapeutics, Inc. Methods for treatment using adoptive cell therapy
EP4342473A2 (en) 2018-11-30 2024-03-27 GlaxoSmithKline Intellectual Property Development Limited Compounds useful in hiv therapy
EP4427810A2 (en) 2018-11-30 2024-09-11 Juno Therapeutics, Inc. Methods for treatment using adoptive cell therapy
US12077554B2 (en) 2018-12-04 2024-09-03 Sumitomo Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020117988A1 (en) 2018-12-04 2020-06-11 Tolero Pharmaceuticals, Inc. Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11530231B2 (en) 2018-12-04 2022-12-20 Sumitomo Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11034710B2 (en) 2018-12-04 2021-06-15 Sumitomo Dainippon Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020117952A2 (en) 2018-12-05 2020-06-11 Genentech, Inc. Diagnostic methods and compositions for cancer immunotherapy
EP4198057A1 (en) 2018-12-05 2023-06-21 F. Hoffmann-La Roche AG Diagnostic methods and compositions for cancer immunotherapy
WO2020115262A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes
WO2020123453A2 (en) 2018-12-11 2020-06-18 Theravance Biopharma R&D Ip, Llc Alk5 inhibitors
WO2020127059A1 (en) 2018-12-17 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sulconazole as a furin inhibitor
WO2020128972A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020132646A1 (en) 2018-12-20 2020-06-25 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains
WO2020127965A1 (en) 2018-12-21 2020-06-25 Onxeo New conjugated nucleic acid molecules and their uses
WO2020128613A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020128637A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 binding antibodies in the treatment of a msi-h cancer
EP4406555A2 (en) 2018-12-21 2024-07-31 Novartis AG Antibodies to pmel17 and conjugates thereof
WO2020128636A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 beta antibodies in the treatment or prevention of myelodysplastic syndrome
WO2020128612A2 (en) 2018-12-21 2020-06-25 Novartis Ag Antibodies to pmel17 and conjugates thereof
WO2020128620A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020150152A1 (en) 2019-01-14 2020-07-23 Genentech, Inc. Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2020148338A1 (en) 2019-01-15 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy
WO2020160050A1 (en) 2019-01-29 2020-08-06 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1)
WO2020163589A1 (en) 2019-02-08 2020-08-13 Genentech, Inc. Diagnostic and therapeutic methods for cancer
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2020167990A1 (en) 2019-02-12 2020-08-20 Tolero Pharmaceuticals, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2020165733A1 (en) 2019-02-12 2020-08-20 Novartis Ag Pharmaceutical combination comprising tno155 and a pd-1 inhibitor
WO2020165833A1 (en) 2019-02-15 2020-08-20 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020165834A1 (en) 2019-02-15 2020-08-20 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
WO2020182869A1 (en) 2019-03-12 2020-09-17 Biontech Rna Pharmaceuticals Gmbh Therapeutic rna for prostate cancer
WO2020186176A1 (en) 2019-03-14 2020-09-17 Genentech, Inc. Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab
WO2020187998A1 (en) 2019-03-19 2020-09-24 Fundació Privada Institut D'investigació Oncològica De Vall Hebron Combination therapy with omomyc and an antibody binding pd-1 or ctla-4 for the treatment of cancer
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
US11712433B2 (en) 2019-03-22 2023-08-01 Sumitomo Pharma Oncology, Inc. Compositions comprising PKM2 modulators and methods of treatment using the same
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
WO2020205626A1 (en) 2019-03-29 2020-10-08 Genentech, Inc. Modulators of cell surface protein interactions and methods and compositions related to same
WO2020201362A2 (en) 2019-04-02 2020-10-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
WO2020205688A1 (en) 2019-04-04 2020-10-08 Merck Sharp & Dohme Corp. Inhibitors of histone deacetylase-3 useful for the treatment of cancer, inflammation, neurodegeneration diseases and diabetes
WO2020200472A1 (en) 2019-04-05 2020-10-08 Biontech Rna Pharmaceuticals Gmbh Preparation and storage of liposomal rna formulations suitable for therapy
WO2020201383A1 (en) 2019-04-05 2020-10-08 Biontech Rna Pharmaceuticals Gmbh Preparation and storage of liposomal rna formulations suitable for therapy
WO2020208060A1 (en) 2019-04-09 2020-10-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer
WO2020212484A1 (en) 2019-04-17 2020-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders
WO2020214995A1 (en) 2019-04-19 2020-10-22 Genentech, Inc. Anti-mertk antibodies and their methods of use
WO2020223233A1 (en) 2019-04-30 2020-11-05 Genentech, Inc. Prognostic and therapeutic methods for colorectal cancer
WO2020227711A1 (en) 2019-05-09 2020-11-12 FUJIFILM Cellular Dynamics, Inc. Methods for the production of hepatocytes
WO2020232375A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Oxoacridinyl acetic acid derivatives and methods of use
WO2020232378A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use
WO2020236562A1 (en) 2019-05-17 2020-11-26 Cancer Prevention Pharmaceuticals, Inc. Methods for treating familial adenomatous polyposis
WO2020234410A1 (en) 2019-05-20 2020-11-26 Biontech Rna Pharmaceuticals Gmbh Therapeutic rna for ovarian cancer
WO2020247973A1 (en) 2019-06-03 2020-12-10 The University Of Chicago Methods and compositions for treating cancer with cancer-targeted adjuvants
WO2020247974A1 (en) 2019-06-03 2020-12-10 The University Of Chicago Methods and compositions for treating cancer with collagen binding drug carriers
WO2020260547A1 (en) 2019-06-27 2020-12-30 Rigontec Gmbh Design method for optimized rig-i ligands
WO2021003417A1 (en) 2019-07-03 2021-01-07 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
US11529350B2 (en) 2019-07-03 2022-12-20 Sumitomo Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof
WO2021009365A1 (en) 2019-07-18 2021-01-21 Ctxt Pty Limited Benzothiophene, thienopyridine and thienopyrimidine derivatives for the modulation of sting
WO2021009362A1 (en) 2019-07-18 2021-01-21 Ctxt Pty Limited Benzothiophene, thienopyridine and thienopyrimidine derivatives for the modulation of sting
US11083705B2 (en) 2019-07-26 2021-08-10 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
US12036204B2 (en) 2019-07-26 2024-07-16 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
WO2021023698A1 (en) 2019-08-02 2021-02-11 Lanthiopep B.V Angiotensin type 2 (at2) receptor agonists for use in the treatment of cancer
US11939343B2 (en) 2019-08-02 2024-03-26 Mersana Therapeutics, Inc. Sting agonist compounds and methods of use
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021025177A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021030251A1 (en) 2019-08-12 2021-02-18 Purinomia Biotech, Inc. Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells
US11655303B2 (en) 2019-09-16 2023-05-23 Surface Oncology, Inc. Anti-CD39 antibody compositions and methods
WO2021053587A1 (en) 2019-09-18 2021-03-25 Klaus Strein Bispecific antibodies against ceacam5 and cd3
WO2021053556A1 (en) 2019-09-18 2021-03-25 Novartis Ag Nkg2d fusion proteins and uses thereof
WO2021053560A1 (en) 2019-09-18 2021-03-25 Novartis Ag Combination therapy with entpd2 and cd73 antibodies
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021062244A1 (en) 2019-09-25 2021-04-01 Surface Oncology, Inc. Anti-il-27 antibodies and uses thereof
US11667613B2 (en) 2019-09-26 2023-06-06 Novartis Ag Antiviral pyrazolopyridinone compounds
WO2021058711A2 (en) 2019-09-27 2021-04-01 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins
EP3800201A1 (en) 2019-10-01 2021-04-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd28h stimulation enhances nk cell killing activities
WO2021067863A2 (en) 2019-10-03 2021-04-08 Xencor, Inc. Targeted il-12 heterodimeric fc-fusion proteins
WO2021064184A1 (en) 2019-10-04 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer
WO2021072298A1 (en) 2019-10-11 2021-04-15 Genentech, Inc. Pd-1 targeted il-15/il-15ralpha fc fusion proteins with improved properties
WO2021079188A1 (en) 2019-10-21 2021-04-29 Novartis Ag Combination therapies with venetoclax and tim-3 inhibitors
WO2021079195A1 (en) 2019-10-21 2021-04-29 Novartis Ag Tim-3 inhibitors and uses thereof
WO2021081353A1 (en) 2019-10-23 2021-04-29 Checkmate Pharmaceuticals, Inc. Synthetic rig-i-like receptor agonists
WO2021083060A1 (en) 2019-10-28 2021-05-06 中国科学院上海药物研究所 Five-membered heterocyclic oxocarboxylic acid compound and medical use thereof
WO2021086909A1 (en) 2019-10-29 2021-05-06 Eisai R&D Managment Co., Ltd. Combination of a pd-1 antagonist, a vegfr/fgfr/ret tyrosine kinase inhibitor and a cbp/beta-catenin inhibitor for treating cancer
WO2021087458A2 (en) 2019-11-02 2021-05-06 Board Of Regents, The University Of Texas System Targeting nonsense-mediated decay to activate p53 pathway for the treatment of cancer
WO2021092171A1 (en) 2019-11-06 2021-05-14 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
WO2021097110A1 (en) 2019-11-13 2021-05-20 Genentech, Inc. Therapeutic compounds and methods of use
WO2021102468A1 (en) 2019-11-22 2021-05-27 Theravance Biopharma R&D Ip, Llc Substituted 1,5-naphthyridines or quinolines as alk5 inhibitors
WO2021102343A1 (en) 2019-11-22 2021-05-27 Sumitomo Dainippon Pharma Oncology, Inc. Solid dose pharmaceutical composition
WO2021108613A1 (en) 2019-11-26 2021-06-03 Novartis Ag Cd19 and cd22 chimeric antigen receptors and uses thereof
EP3831849A1 (en) 2019-12-02 2021-06-09 LamKap Bio beta AG Bispecific antibodies against ceacam5 and cd47
WO2021110647A1 (en) 2019-12-02 2021-06-10 Lamkap Bio Beta Ag Bispecific antibodies against ceacam5 and cd47
EP4289951A2 (en) 2019-12-04 2023-12-13 Orna Therapeutics, Inc. Circular rna compositions and methods
WO2021113777A2 (en) 2019-12-04 2021-06-10 Orna Therapeutics, Inc. Circular rna compositions and methods
WO2021113644A1 (en) 2019-12-05 2021-06-10 Multivir Inc. Combinations comprising a cd8+ t cell enhancer, an immune checkpoint inhibitor and radiotherapy for targeted and abscopal effects for the treatment of cancer
WO2021113679A1 (en) 2019-12-06 2021-06-10 Mersana Therapeutics, Inc. Dimeric compounds as sting agonists
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
WO2021123902A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
WO2021129872A1 (en) 2019-12-27 2021-07-01 高诚生物医药(香港)有限公司 Anti-ox40 antibody and use thereof
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
US11591579B2 (en) 2020-01-07 2023-02-28 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
US11396647B2 (en) 2020-01-07 2022-07-26 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
WO2021155042A1 (en) 2020-01-28 2021-08-05 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the treatment of cancer
WO2021155149A1 (en) 2020-01-31 2021-08-05 Genentech, Inc. Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
WO2021167908A1 (en) 2020-02-17 2021-08-26 Board Of Regents, The University Of Texas System Methods for expansion of tumor infiltrating lymphocytes and use thereof
WO2021171260A2 (en) 2020-02-28 2021-09-02 Novartis Ag A triple pharmaceutical combination comprising dabrafenib, an erk inhibitor and a raf inhibitor or a pd-1 inhibitor
WO2021171264A1 (en) 2020-02-28 2021-09-02 Novartis Ag Dosing of a bispecific antibody that binds cd123 and cd3
WO2021176330A1 (en) 2020-03-03 2021-09-10 Array Biopharma Inc. Methods to treat cancer using (r)-n-(3-fluoro-4-((3-((1-hydroxypropan-2-yl)amino)-1h-pyrazolo[3,4-b]pyridin-4-yl)oxy)phenyl)-3-(4-fluorophenyl)-1-isopropyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
WO2021189059A2 (en) 2020-03-20 2021-09-23 Orna Therapeutics, Inc. Circular rna compositions and methods
WO2021203131A1 (en) 2020-03-31 2021-10-07 Theravance Biopharma R&D Ip, Llc Substituted pyrimidines and methods of use
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2021207689A2 (en) 2020-04-10 2021-10-14 Juno Therapeutics, Inc. Methods and uses related to cell therapy engineered with a chimeric antigen receptor targeting b-cell maturation antigen
WO2021209356A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer
WO2021209357A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer involving anti-icos and anti-pd1 antibodies, optionally further involving anti-tim3 antibodies
WO2021222188A1 (en) 2020-04-27 2021-11-04 Seagen Inc. Anti-cd40 antibody combination treatment for cancer
WO2021222167A1 (en) 2020-04-28 2021-11-04 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
WO2021220199A1 (en) 2020-04-30 2021-11-04 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
WO2021224215A1 (en) 2020-05-05 2021-11-11 F. Hoffmann-La Roche Ag Predicting response to pd-1 axis inhibitors
WO2021226003A1 (en) 2020-05-06 2021-11-11 Merck Sharp & Dohme Corp. Il4i1 inhibitors and methods of use
WO2021237068A2 (en) 2020-05-21 2021-11-25 Board Of Regents, The University Of Texas System T cell receptors with vgll1 specificity and uses thereof
WO2021239838A2 (en) 2020-05-26 2021-12-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) polypeptides and uses thereof for vaccine purposes
WO2021247836A1 (en) 2020-06-03 2021-12-09 Board Of Regents, The University Of Texas System Methods for targeting shp-2 to overcome resistance
WO2021253041A1 (en) 2020-06-10 2021-12-16 Theravance Biopharma R&D Ip, Llc Naphthyridine derivatives useful as alk5 inhibitors
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
WO2021257503A1 (en) 2020-06-16 2021-12-23 Genentech, Inc. Methods and compositions for treating triple-negative breast cancer
WO2021255223A1 (en) 2020-06-19 2021-12-23 Onxeo New conjugated nucleic acid molecules and their uses
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2022008519A1 (en) 2020-07-07 2022-01-13 BioNTech SE Therapeutic rna for hpv-positive cancer
WO2022020716A1 (en) 2020-07-24 2022-01-27 Genentech, Inc. Heterocyclic inhibitors of tead for treating cancer
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2022036146A1 (en) 2020-08-12 2022-02-17 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2022047046A1 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Methods of detecting trbc1 or trbc2
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022049526A1 (en) 2020-09-02 2022-03-10 Pharmabcine Inc. Combination therapy of a pd-1 antagonist and an antagonist for vegfr-2 for treating patients with cancer
WO2022069632A1 (en) 2020-10-01 2022-04-07 BioNTech SE Preparation and storage of liposomal rna formulations suitable for therapy
WO2022084210A1 (en) 2020-10-20 2022-04-28 F. Hoffmann-La Roche Ag Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
WO2022086957A1 (en) 2020-10-20 2022-04-28 Genentech, Inc. Peg-conjugated anti-mertk antibodies and methods of use
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
WO2022098638A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
WO2022098628A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
WO2022098648A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
WO2022097060A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
WO2022101619A1 (en) 2020-11-10 2022-05-19 Immodulon Therapeutics Limited A mycobacterium for use in cancer therapy
WO2022101302A1 (en) 2020-11-12 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies conjugated or fused to the receptor-binding domain of the sars-cov-2 spike protein and uses thereof for vaccine purposes
WO2022104109A1 (en) 2020-11-13 2022-05-19 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
WO2022101463A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the last c-terminal residues m31/41 of zikv m ectodomain for triggering apoptotic cell death
WO2022119830A1 (en) 2020-12-02 2022-06-09 Genentech, Inc. Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy
WO2022125497A1 (en) 2020-12-08 2022-06-16 Infinity Pharmaceuticals, Inc. Eganelisib for use in the treatment of pd-l1 negative cancer
US11746103B2 (en) 2020-12-10 2023-09-05 Sumitomo Pharma Oncology, Inc. ALK-5 inhibitors and uses thereof
WO2022130348A1 (en) 2020-12-18 2022-06-23 Lamkap Bio Beta Ag Bispecific antibodies against ceacam5 and cd47
US11753481B2 (en) 2020-12-18 2023-09-12 Lamkap Bio Beta Ltd Bispecific antibodies against CEACAM5 and CD47
WO2022136255A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022136257A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022136266A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
US12123003B2 (en) 2020-12-23 2024-10-22 Checkmate Pharmaceuticals, Inc. Synthetic RIG-I-like receptor agonists
WO2022159492A1 (en) 2021-01-19 2022-07-28 William Marsh Rice University Bone-specific delivery of polypeptides
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
WO2022169997A1 (en) 2021-02-03 2022-08-11 Genentech, Inc. Lactams as cbl-b inhibitors
WO2022169998A1 (en) 2021-02-03 2022-08-11 Genentech, Inc. Amides as cbl-b inhibitors
WO2022185160A1 (en) 2021-03-02 2022-09-09 Glaxosmithkline Intellectual Property Development Limited Substituted pyridines as dnmt1 inhibitors
WO2022195551A1 (en) 2021-03-18 2022-09-22 Novartis Ag Biomarkers for cancer and methods of use thereof
WO2022203090A1 (en) 2021-03-25 2022-09-29 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
WO2022208353A1 (en) 2021-03-31 2022-10-06 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins and combinations thereof
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
WO2022217123A2 (en) 2021-04-08 2022-10-13 Nurix Therapeutics, Inc. Combination therapies with cbl-b inhibitor compounds
WO2022216993A2 (en) 2021-04-08 2022-10-13 Marengo Therapeutics, Inc. Multifuntional molecules binding to tcr and uses thereof
WO2022216898A1 (en) 2021-04-09 2022-10-13 Genentech, Inc. Combination therapy with a raf inhibitor and a pd-1 axis inhibitor
WO2022221227A1 (en) 2021-04-13 2022-10-20 Nuvalent, Inc. Amino-substituted heterocycles for treating cancers with egfr mutations
EP4427590A2 (en) 2021-04-16 2024-09-11 Novartis AG Antibody drug conjugates and methods for making thereof
WO2022221720A1 (en) 2021-04-16 2022-10-20 Novartis Ag Antibody drug conjugates and methods for making thereof
WO2022232333A1 (en) 2021-04-30 2022-11-03 Merck Sharp & Dohme Llc Il4i1 inhibitors and methods of use
WO2022228705A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022232503A1 (en) 2021-04-30 2022-11-03 Genentech, Inc. Therapeutic and diagnostic methods and compositions for cancer
WO2022236134A1 (en) 2021-05-07 2022-11-10 Surface Oncology, Inc. Anti-il-27 antibodies and uses thereof
WO2022243846A1 (en) 2021-05-18 2022-11-24 Novartis Ag Combination therapies
WO2022251359A1 (en) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Bicyclic inhibitors of alk5 and methods of use
WO2022254337A1 (en) 2021-06-01 2022-12-08 Novartis Ag Cd19 and cd22 chimeric antigen receptors and uses thereof
WO2022261018A1 (en) 2021-06-07 2022-12-15 Providence Health & Services - Oregon Cxcr5, pd-1, and icos expressing tumor reactive cd4 t cells and their use
WO2023279092A2 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
WO2023280790A1 (en) 2021-07-05 2023-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Gene signatures for predicting survival time in patients suffering from renal cell carcinoma
WO2023285552A1 (en) 2021-07-13 2023-01-19 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
WO2023007107A1 (en) 2021-07-27 2023-02-02 Immodulon Therapeutics Limited A mycobacterium for use in cancer therapy
WO2023010095A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
WO2023010094A2 (en) 2021-07-28 2023-02-02 Genentech, Inc. Methods and compositions for treating cancer
WO2023010080A1 (en) 2021-07-30 2023-02-02 Seagen Inc. Treatment for cancer
WO2023015198A1 (en) 2021-08-04 2023-02-09 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the expansion of nk cells in the treatment of solid tumours
WO2023014922A1 (en) 2021-08-04 2023-02-09 The Regents Of The University Of Colorado, A Body Corporate Lat activating chimeric antigen receptor t cells and methods of use thereof
WO2023039089A1 (en) 2021-09-08 2023-03-16 Twentyeight-Seven, Inc. Papd5 and/or papd7 inhibiting 4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023052531A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023060136A1 (en) 2021-10-05 2023-04-13 Cytovia Therapeutics, Llc Natural killer cells and methods of use thereof
WO2023057534A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
WO2023061930A1 (en) 2021-10-11 2023-04-20 BioNTech SE Therapeutic rna for lung cancer
WO2023068382A2 (en) 2021-10-20 2023-04-27 Takeda Pharmaceutical Company Limited Compositions targeting bcma and methods of use thereof
WO2023076880A1 (en) 2021-10-25 2023-05-04 Board Of Regents, The University Of Texas System Foxo1-targeted therapy for the treatment of cancer
WO2023079430A1 (en) 2021-11-02 2023-05-11 Pfizer Inc. Methods of treating mitochondrial myopathies using anti-gdf15 antibodies
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023083868A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023084445A1 (en) 2021-11-12 2023-05-19 Novartis Ag Combination therapy for treating lung cancer
WO2023088968A1 (en) 2021-11-17 2023-05-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Universal sarbecovirus vaccines
WO2023097195A1 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic indazole compounds and methods of use in the treatment of cancer
US12110276B2 (en) 2021-11-24 2024-10-08 Genentech, Inc. Pyrazolo compounds and methods of use thereof
WO2023097194A2 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic compounds and methods of use
WO2023111203A1 (en) 2021-12-16 2023-06-22 Onxeo New conjugated nucleic acid molecules and their uses
WO2023129438A1 (en) 2021-12-28 2023-07-06 Wisconsin Alumni Research Foundation Hydrogel compositions for use for depletion of tumor associated macrophages
WO2023154799A1 (en) 2022-02-14 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination immunotherapy for treating cancer
WO2023154905A1 (en) 2022-02-14 2023-08-17 Gilead Sciences, Inc. Antiviral pyrazolopyridinone compounds
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023211972A1 (en) 2022-04-28 2023-11-02 Medical University Of South Carolina Chimeric antigen receptor modified regulatory t cells for treating cancer
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023230541A1 (en) 2022-05-27 2023-11-30 Viiv Healthcare Company Piperazine derivatives useful in hiv therapy
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023242351A1 (en) 2022-06-16 2023-12-21 Lamkap Bio Beta Ag Combination therapy of bispecific antibodies against ceacam5 and cd47 and bispecific antibodies against ceacam5 and cd3
WO2023250400A1 (en) 2022-06-22 2023-12-28 Juno Therapeutics, Inc. Treatment methods for second line therapy of cd19-targeted car t cells
US12076375B2 (en) 2022-06-29 2024-09-03 Snipr Biome Aps Treating and preventing E coli infections
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024028794A1 (en) 2022-08-02 2024-02-08 Temple Therapeutics BV Methods for treating endometrial and ovarian hyperproliferative disorders
WO2024031091A2 (en) 2022-08-05 2024-02-08 Juno Therapeutics, Inc. Chimeric antigen receptors specific for gprc5d and bcma
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024052356A1 (en) 2022-09-06 2024-03-14 Institut National de la Santé et de la Recherche Médicale Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
WO2024129778A2 (en) 2022-12-13 2024-06-20 Juno Therapeutics, Inc. Chimeric antigen receptors specific for baff-r and cd19 and methods and uses thereof
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2024163477A1 (en) 2023-01-31 2024-08-08 University Of Rochester Immune checkpoint blockade therapy for treating staphylococcus aureus infections
WO2024206357A1 (en) 2023-03-29 2024-10-03 Merck Sharp & Dohme Llc Il4i1 inhibitors and methods of use
WO2024209072A1 (en) 2023-04-06 2024-10-10 Genmab A/S Multispecific binding agents against pd-l1 and cd137 for treating cancer

Also Published As

Publication number Publication date
WO2010027828A3 (en) 2010-08-26
EA201170375A1 (en) 2012-03-30
US20140227262A1 (en) 2014-08-14
WO2010098788A2 (en) 2010-09-02
EP2662383A1 (en) 2013-11-13
MX2011002250A (en) 2011-08-17
JP2012510429A (en) 2012-05-10
JP2012500855A (en) 2012-01-12
BRPI0917891A2 (en) 2015-11-24
JP2015129172A (en) 2015-07-16
KR20110074850A (en) 2011-07-04
AU2009288289B2 (en) 2012-11-08
EP2324055A2 (en) 2011-05-25
EP2328920A2 (en) 2011-06-08
WO2010027827A3 (en) 2010-05-06
US20110195068A1 (en) 2011-08-11
AU2009288289A1 (en) 2010-03-11
ZA201101119B (en) 2011-10-26
CA2735006A1 (en) 2010-03-11
JP2012500652A (en) 2012-01-12
WO2010098788A3 (en) 2010-12-02
WO2010027828A2 (en) 2010-03-11
US20110223188A1 (en) 2011-09-15
IL211299A (en) 2014-01-30
CN104740610A (en) 2015-07-01
EP2328919A2 (en) 2011-06-08
IL211299A0 (en) 2011-04-28
US20110159023A1 (en) 2011-06-30
CN102203125A (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US20110223188A1 (en) Targeted costimulatory polypeptides and methods of use to treat cancer
US20130017199A1 (en) Simultaneous inhibition of pd-l1/pd-l2
EP2514762B1 (en) B7-DC variants
He et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine
DK2350129T3 (en) PREPARATIONS WITH PD-1 ANTAGONISTS AND PROCEDURES FOR USE THEREOF
US8039589B1 (en) B7-DC variants
KR102186180B1 (en) Cells responsible for immunity and expression vectors expressing immune function control factors
CN107557337B (en) anti-ROR1 safe chimeric antigen receptor modified immune cell and application thereof
WO2000019988A1 (en) NOVEL Th2-SPECIFIC MOLECULES AND USES THEREOF
CN106459991B (en) Novel agents and uses thereof
US20170232062A1 (en) Polypeptides and uses thereof as a drug for treatment of multiple sclerosis, rheumatoid arthritis and other autoimmune disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09791914

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011525157

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009791914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13060909

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE