WO2010023074A1 - Lightweight structure vacuum solar thermal panel - Google Patents

Lightweight structure vacuum solar thermal panel Download PDF

Info

Publication number
WO2010023074A1
WO2010023074A1 PCT/EP2009/060204 EP2009060204W WO2010023074A1 WO 2010023074 A1 WO2010023074 A1 WO 2010023074A1 EP 2009060204 W EP2009060204 W EP 2009060204W WO 2010023074 A1 WO2010023074 A1 WO 2010023074A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar thermal
plate
perimeter frame
thermal panel
vacuum solar
Prior art date
Application number
PCT/EP2009/060204
Other languages
French (fr)
Inventor
Vittorio Palmieri
Original Assignee
Tvp Solar S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tvp Solar S.A. filed Critical Tvp Solar S.A.
Priority to EP09781556A priority Critical patent/EP2274559B1/en
Priority to US13/056,532 priority patent/US8578930B2/en
Publication of WO2010023074A1 publication Critical patent/WO2010023074A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/40Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/54Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings using evacuated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/58Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by their mountings or fixing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/011Arrangements for mounting elements inside solar collectors; Spacers inside solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/017Tensioning means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/6012Joining different materials
    • F24S2025/6013Joining glass with non-glass elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/09Arrangements for reinforcement of solar collector elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/56Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by means for preventing heat loss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a lightweight structure vacuum solar thermal panel according to the preamble of the main claim.
  • Existing vacuum solar thermal panels comprise a flat vacuum tight envelope with a glass plate transparent to visible solar radiation. Inside the vacuum envelope are disposed heat absorbers and a pipe entering and exiting the envelope connected to the heat absorbers. The solar radiation enters the envelope through the glass plate, is absorbed by the heat absorbers and converted into heat, which is transferred to the pipe and to the heat transfer fluid flowing in the pipe. Vacuum is kept inside the envelope enclosing the heat absorbers and part of the pipe connected to them, in order to prevent heat from escaping to the external environment by means of convection.
  • US 4,332,241 and EP 1706678 disclose a vacuum solar thermal panel comprising a vacuum envelope defined by two parallel glass plates, a metallic support chassis and a metallic perimeter wall for supporting the glass plates in a spaced-apart arrangement.
  • US 4,332,241 discloses an outer frame disposed around the whole outer edges of the panel glass plates for pourpose of protection of said edges. This frame increases the total weight of the metal support structure.
  • the perimeter wall of an evacuated flat solar panel must be stiff enough to withstand the external atmospheric pressure without suffering a significant deformation in order not to damage the vacuum tight glass-metal seal between the glass plate and the perimeter wall itself.
  • a problem of the existing vacuum solar thermal panels is that the perimeter wall is particularly thick, in order to obtain the desired stiffness. This results in the whole panel being heavy and thus difficult to handle.
  • An object of the present invention is to overcome these limitations, by providing a vacuum solar thermal panel comprising a flat vacuum envelope peripherally defined by a perimeter wall, which is light, thin and stiff enough not to be subjected to excessive deformations when the envelope is evacuated.
  • fig. 1 represents a perspective view of a vacuum solar thermal panel according to the invention
  • fig. 2 shows an exploded view of the panel
  • fig. 3 represents a cross section of the perimeter wall of a double sided vacuum solar thermal panel
  • fig. 4 represents a cross section of the perimeter wall of a single sided vacuum solar thermal panel
  • fig. 5 shows specially shaped cut holes in a longitudinal element of the support chassis, supporting the traversing heat absorber pipe
  • fig. 6 shows a clamping fork of the transverse element of the support chassis, supporting the traversing heat absorber pipe.
  • the vacuum solar thermal panel comprises an envelope 30 defining a sealed volume, able to withstand atmospheric pressure when evacuated, heat absorbers
  • the vacuum envelope 30 comprises a first plate 1 made of glass, a second plate 2 facing the first plate 1, both plates having substantially a rectangular shape delimited by edges 10 and 11, a support chassis 18 disposed between the first and second plate 1, 2 to support them in a spaced-apart arrangement, and a perimeter wall disposed close to the edges of the first and second plates 1 and 2 and peripherally defining the vacuum envelope 30.
  • Said support chassis 18 has the role of supporting the first and second plate 1, 2 to make them resistant to atmospheric pressure, without collapsing or breaking and at the same time of hosting the heat absorbers 12 and the pipe 13 connected to them.
  • Said perimeter wall comprises a metallic perimeter frame 3 and two metallic perimeter belts 4, 5 joined to the perimeter frame 3 by means of vacuum tight soldering, brazing or welding and to the first and second plates 1 and 2 by means of a vacuum tight glass-metal seal 8, 9 obtained by fusion and subsequent solidification of glass material embedding the edge of the perimeter belt, according to MI 2008A001245.
  • the support chassis 18 comprises three equally spaced longitudinal elements 27, spot welded to one transverse element 28 and surrounded by the perimeter frame 3, forming part of the perimeter wall .
  • the perimeter frame 3 comprises a spacer 25 to keep the first and the second plate 1, 2 in a spaced-apart arrangement and a stiffener 26 joined to the spacer 25 and presenting a curved cross section, e.g. a "C" shaped cross section as in fig.
  • the vacuum solar thermal panel also comprises twelve bearing elements 21 disposed at the edges 10 and 11 of the first and second plate 1, 2, each one of them being connected to the perimeter frame 3 by a traction rod 22 to be put under tension by means of a traction mechanism 15.
  • the traction mechanism 15 comprises a threaded coupling, said traction rod being a bolt
  • the stiffener 26 can present an adequate number of threaded pits for a screw engagement with the bolts 22.
  • the bearing elements, disposed against the edges 10, 11 of the first and second plates 1,2, can be rectangular washers 21, long enough to simultaneously touch both edges of the first and second plate 1 and 2.
  • Each washer 21 presents a hole for the insertion of the bolt 22, which presents a head 29 large enough to lean against the side of the washer hole.
  • Washers 21 can also present a "C" shape with curved ends extending over the edges of the glass plates 1 and 2, to prevent an undesired rotation, which could lead to disengagement .
  • the bolt 22, inserted in a hole of the washer 21, is screw-engaged with the nut 24 and tightens to pull the perimeter frame 3 toward the washer 21 and to press the washer 21 against the edges 10, 11 of the first and second glass plate 1 and 2, thus opposing the action of the external atmospheric pressure, which is transferred to the edges of the first and second glass plate 1 and 2.
  • the deformation of the perimeter frame 3 under vacuum, because of the external atmospheric pressure, is limited or prevented, though the perimeter frame itself is thin and therefore lightweight.
  • the two shorter sides of the perimeter frame 3 are supported by the three longitudinal elements 27, while the two longer sides of the perimeter frame 3 (with bearing elements) are supported centrally by the transverse element 28.
  • the perimeter frame 3 is therefore supported on 20 different points (support points) : twelve points corresponding to the bearing elements 21 or traction rods 22, two corresponding to the contact points between the transverse element 28 and the perimeter frame 3 and six corresponding to the contact points between the longitudinal elements 27 and the perimeter frame 3.
  • an embodiment of the invention can have less or more than twelve bearing elements 21 and traction rods 22 as shown in fig. 1.
  • each support point is conveniently spaced apart from the next one by a distance D comprised between 160 and 240 mm, preferably 200 mm.
  • the vacuum solar thermal panel comprises a first glass plate 101 and a second plate 102 made of metal.
  • the perimeter frame 103 comprises a spacer 125 and a stiffener 126, said latter presenting a substantially "L" shaped cross section.
  • One end of the L is joined to the spacer 125, while the other end is joined to the metal plate 102.
  • one perimeter belt 104 is present, connecting the perimeter frame 103 to the glass plate 101 by means of a vacuum tight glass-metal seal 108, the stiffener 126 being directly vacuum tight soldered, brazed or welded to the metal plate 102.
  • the traction rod 22 and the perimeter frame 3 can evidently be formed such that the traction rod 22 is coupled to the perimeter frame 3 by a hooking device (for example a bayonet, a cotter pin or a hook coupling) and then put under tension by a traction mechanism such as a lever device, which pushes against the bearing element 21.
  • a hooking device for example a bayonet, a cotter pin or a hook coupling
  • tension in the traction rods 22 can also be created by a small deformation of the perimeter frame 3 under atmospheric pressure, when the envelope 30 is evacuated.
  • the longitudinal elements 27, the transverse element 28 and the perimeter frame 3 of the support chassis 18 are preferably made of steel (2 mm thick) with inner surfaces possibly mirror polished or coated to improve reflectivity. Steel should be chosen such as to match the Coefficient of Thermal Expansion (CTE) of the glass plates (for soda lime glass, Fe 430 steel or AISI 430 stainless steel should be used) . As shown in fig. 1, multiple evacuation holes 16 can facilitate panel evacuation, reducing pumping impedance . Longitudinal 27 and transverse 28 elements should be specially shaped to house and support the pipe 13 connected to the heat absorbers. Also one of the two sides of the perimeter frame 3 should feature pass-through holes to insert exit ports 20, for enabling the pipe 13 to enter and leave the vacuum envelope 30 with minimum heat transfer losses due to conduction and a pumping port 19, for evacuating the envelope 30.
  • CTE Coefficient of Thermal Expansion
  • the transverse element 28 is specially shaped in order to clamp the pipe 13 through clamping holes 31 in the heat absorbers 12 and lock the same pipe 13 to said transverse element 28 by means of the locking anchor 32.
  • Such holes 31 should be made long enough to accommodate heat absorber expansion with increasing temperature (which for 0.75 metre copper heat absorber 12 heated to 400 0 C corresponds to about 5 mm) .
  • both longitudinal 27 and transverse 28 elements of the support chassis 18 could be manufactured using low thermal conductivity materials, like titanium or ceramic compounds.
  • One advantage of the present invention is that the perimeter frame 3 is thin and therefore lightweight and the whole panel is thus much lighter .
  • the perimeter frame 3 being lightweight and flexible, it can be easily inserted inside the perimeter belts 4 and 5, during the panel assembly process (with the bolts 22 not yet in place) and then vacuum tight soldered, brazed or welded to the same belts without requiring strict tolerance in parts manufacturing.
  • Another advantage is that heat absorbers 12 and pipe 13 are supported and firmly held in place, while at the same time minimizing heat transfer losses due to conduction and allowing for their thermal expansion at high temperature.

Abstract

Vacuum solar thermal panel comprising a vacuum envelope (30) defining a sealed volume, able to withstand atmospheric pressure when evacuated, said vacuum envelope (30) comprising a first plate (1) made of glass, a second plate (2) facing the first plate (1), a perimeter frame (3) disposed between the first and second plate (1, 2) close to their edge, a metallic perimeter belt (4, 5) joining the perimeter frame (3) to the first plate (1), at least one bearing element (21) disposed against the edges (10, 11) of the first and second plate (1, 2), a traction rod (22) joining said bearing element (21) with said perimeter frame (3) to pull the perimeter frame (3) toward the bearing element (21), in order to limit the deformation of the perimeter frame (3) under the external atmospheric pressure, when the envelope (30) is evacuated.

Description

LIGHTWEIGHT STRUCTURE VACUUM SOLAR THERMAL PANEL
The present invention relates to a lightweight structure vacuum solar thermal panel according to the preamble of the main claim. Existing vacuum solar thermal panels comprise a flat vacuum tight envelope with a glass plate transparent to visible solar radiation. Inside the vacuum envelope are disposed heat absorbers and a pipe entering and exiting the envelope connected to the heat absorbers. The solar radiation enters the envelope through the glass plate, is absorbed by the heat absorbers and converted into heat, which is transferred to the pipe and to the heat transfer fluid flowing in the pipe. Vacuum is kept inside the envelope enclosing the heat absorbers and part of the pipe connected to them, in order to prevent heat from escaping to the external environment by means of convection.
US 4,332,241 and EP 1706678 disclose a vacuum solar thermal panel comprising a vacuum envelope defined by two parallel glass plates, a metallic support chassis and a metallic perimeter wall for supporting the glass plates in a spaced-apart arrangement. US 4,332,241 discloses an outer frame disposed around the whole outer edges of the panel glass plates for pourpose of protection of said edges. This frame increases the total weight of the metal support structure. The perimeter wall of an evacuated flat solar panel must be stiff enough to withstand the external atmospheric pressure without suffering a significant deformation in order not to damage the vacuum tight glass-metal seal between the glass plate and the perimeter wall itself.
A problem of the existing vacuum solar thermal panels is that the perimeter wall is particularly thick, in order to obtain the desired stiffness. This results in the whole panel being heavy and thus difficult to handle.
An object of the present invention is to overcome these limitations, by providing a vacuum solar thermal panel comprising a flat vacuum envelope peripherally defined by a perimeter wall, which is light, thin and stiff enough not to be subjected to excessive deformations when the envelope is evacuated.
The present invention will be more fully understood and appreciated from the following detailed description taken in conjunction with drawings, in which: fig. 1 represents a perspective view of a vacuum solar thermal panel according to the invention; fig. 2 shows an exploded view of the panel; fig. 3 represents a cross section of the perimeter wall of a double sided vacuum solar thermal panel; fig. 4 represents a cross section of the perimeter wall of a single sided vacuum solar thermal panel; fig. 5 shows specially shaped cut holes in a longitudinal element of the support chassis, supporting the traversing heat absorber pipe; fig. 6 shows a clamping fork of the transverse element of the support chassis, supporting the traversing heat absorber pipe.
Referring to the double sided embodiment of the invention represented in figures from 1 to 3, the vacuum solar thermal panel comprises an envelope 30 defining a sealed volume, able to withstand atmospheric pressure when evacuated, heat absorbers
12 disposed inside the vacuum envelope 30, a pipe
13 entering and exiting the envelope 30 through an exit port 20 minimizing the heat transfer between the pipe 13 and the vacuum envelope 30, said pipe 13 being in contact with the heat absorber 12, so that heat can easily flow from the heat absorbers to the fluid flowing through the pipe 13. The heat absorbers 12 are generally rectangular sheets of copper welded to the pipe 13 in order to obtain a good thermal contact. The vacuum envelope 30 comprises a first plate 1 made of glass, a second plate 2 facing the first plate 1, both plates having substantially a rectangular shape delimited by edges 10 and 11, a support chassis 18 disposed between the first and second plate 1, 2 to support them in a spaced-apart arrangement, and a perimeter wall disposed close to the edges of the first and second plates 1 and 2 and peripherally defining the vacuum envelope 30. Said support chassis 18 has the role of supporting the first and second plate 1, 2 to make them resistant to atmospheric pressure, without collapsing or breaking and at the same time of hosting the heat absorbers 12 and the pipe 13 connected to them. Said perimeter wall comprises a metallic perimeter frame 3 and two metallic perimeter belts 4, 5 joined to the perimeter frame 3 by means of vacuum tight soldering, brazing or welding and to the first and second plates 1 and 2 by means of a vacuum tight glass-metal seal 8, 9 obtained by fusion and subsequent solidification of glass material embedding the edge of the perimeter belt, according to MI 2008A001245.
The support chassis 18 comprises three equally spaced longitudinal elements 27, spot welded to one transverse element 28 and surrounded by the perimeter frame 3, forming part of the perimeter wall .
The perimeter frame 3 comprises a spacer 25 to keep the first and the second plate 1, 2 in a spaced-apart arrangement and a stiffener 26 joined to the spacer 25 and presenting a curved cross section, e.g. a "C" shaped cross section as in fig.
3 allowing for accommodation of a glass-metal seal meniscus close to the first and second glass plate 1, 2 surfaces.
The vacuum solar thermal panel also comprises twelve bearing elements 21 disposed at the edges 10 and 11 of the first and second plate 1, 2, each one of them being connected to the perimeter frame 3 by a traction rod 22 to be put under tension by means of a traction mechanism 15.
In fig. 3 the traction mechanism 15 comprises a threaded coupling, said traction rod being a bolt
22, screw-engaged in a nut 24 welded to the perimeter frame 3. The nut 24 presents a threaded hole 23 for a screwed connection with said bolt 22, realising said traction mechanism. Instead of nuts welded to the perimeter frame, the stiffener 26 can present an adequate number of threaded pits for a screw engagement with the bolts 22.
The bearing elements, disposed against the edges 10, 11 of the first and second plates 1,2, can be rectangular washers 21, long enough to simultaneously touch both edges of the first and second plate 1 and 2. Each washer 21 presents a hole for the insertion of the bolt 22, which presents a head 29 large enough to lean against the side of the washer hole. Washers 21 can also present a "C" shape with curved ends extending over the edges of the glass plates 1 and 2, to prevent an undesired rotation, which could lead to disengagement .
The bolt 22, inserted in a hole of the washer 21, is screw-engaged with the nut 24 and tightens to pull the perimeter frame 3 toward the washer 21 and to press the washer 21 against the edges 10, 11 of the first and second glass plate 1 and 2, thus opposing the action of the external atmospheric pressure, which is transferred to the edges of the first and second glass plate 1 and 2. In this way the deformation of the perimeter frame 3 under vacuum, because of the external atmospheric pressure, is limited or prevented, though the perimeter frame itself is thin and therefore lightweight.
Referring to fig. 1, the two shorter sides of the perimeter frame 3 (without bearing elements 21) are supported by the three longitudinal elements 27, while the two longer sides of the perimeter frame 3 (with bearing elements) are supported centrally by the transverse element 28. In fig. 1 the perimeter frame 3 is therefore supported on 20 different points (support points) : twelve points corresponding to the bearing elements 21 or traction rods 22, two corresponding to the contact points between the transverse element 28 and the perimeter frame 3 and six corresponding to the contact points between the longitudinal elements 27 and the perimeter frame 3. Obviously an embodiment of the invention can have less or more than twelve bearing elements 21 and traction rods 22 as shown in fig. 1. If the spacer 25 and the stiffener 26 are both 2 mm thick, to sufficiently reduce the deformation of the perimeter frame 3 under the external atmospheric pressure when the envelope (30) is evacuated, each support point is conveniently spaced apart from the next one by a distance D comprised between 160 and 240 mm, preferably 200 mm. In the single sided embodiment represented in fig. 4, in which elements corresponding to the first embodiment are indicated by the same numeral plus 100, the vacuum solar thermal panel comprises a first glass plate 101 and a second plate 102 made of metal. The perimeter frame 103 comprises a spacer 125 and a stiffener 126, said latter presenting a substantially "L" shaped cross section. One end of the L is joined to the spacer 125, while the other end is joined to the metal plate 102. In this case only one perimeter belt 104 is present, connecting the perimeter frame 103 to the glass plate 101 by means of a vacuum tight glass-metal seal 108, the stiffener 126 being directly vacuum tight soldered, brazed or welded to the metal plate 102.
The traction rod 22 and the perimeter frame 3 can evidently be formed such that the traction rod 22 is coupled to the perimeter frame 3 by a hooking device (for example a bayonet, a cotter pin or a hook coupling) and then put under tension by a traction mechanism such as a lever device, which pushes against the bearing element 21. In case of coupling by a hooking device, tension in the traction rods 22 can also be created by a small deformation of the perimeter frame 3 under atmospheric pressure, when the envelope 30 is evacuated.
In both embodiments the longitudinal elements 27, the transverse element 28 and the perimeter frame 3 of the support chassis 18 are preferably made of steel (2 mm thick) with inner surfaces possibly mirror polished or coated to improve reflectivity. Steel should be chosen such as to match the Coefficient of Thermal Expansion (CTE) of the glass plates (for soda lime glass, Fe 430 steel or AISI 430 stainless steel should be used) . As shown in fig. 1, multiple evacuation holes 16 can facilitate panel evacuation, reducing pumping impedance . Longitudinal 27 and transverse 28 elements should be specially shaped to house and support the pipe 13 connected to the heat absorbers. Also one of the two sides of the perimeter frame 3 should feature pass-through holes to insert exit ports 20, for enabling the pipe 13 to enter and leave the vacuum envelope 30 with minimum heat transfer losses due to conduction and a pumping port 19, for evacuating the envelope 30.
As shown in fig. 5, specially shaped cut holes in the longitudinal elements 27 support the traversing heat absorber pipe 13, with minimal surface contact, while allowing for pipe thermal expansion with increasing temperature (which for a 1.5 metre copper pipe heated to 400 0C corresponds to about 10 mm) .
As shown in fig. 6, the transverse element 28 is specially shaped in order to clamp the pipe 13 through clamping holes 31 in the heat absorbers 12 and lock the same pipe 13 to said transverse element 28 by means of the locking anchor 32. Such holes 31 should be made long enough to accommodate heat absorber expansion with increasing temperature (which for 0.75 metre copper heat absorber 12 heated to 400 0C corresponds to about 5 mm) . Also, in order to further reduce thermal losses due to conduction, both longitudinal 27 and transverse 28 elements of the support chassis 18 (or parts of the same) could be manufactured using low thermal conductivity materials, like titanium or ceramic compounds. One advantage of the present invention is that the perimeter frame 3 is thin and therefore lightweight and the whole panel is thus much lighter . Another advantage is that, the perimeter frame 3 being lightweight and flexible, it can be easily inserted inside the perimeter belts 4 and 5, during the panel assembly process (with the bolts 22 not yet in place) and then vacuum tight soldered, brazed or welded to the same belts without requiring strict tolerance in parts manufacturing.
Another advantage is that heat absorbers 12 and pipe 13 are supported and firmly held in place, while at the same time minimizing heat transfer losses due to conduction and allowing for their thermal expansion at high temperature.

Claims

1. Vacuum solar thermal panel comprising a vacuum envelope (30) defining a sealed volume, able to withstand atmospheric pressure when evacuated, at least one heat absorber (12) disposed inside the vacuum envelope (30), a pipe (13) entering and exiting the envelope (30) and in contact with the heat absorber (12), said vacuum envelope (30) comprising a first plate (1) made of glass, a second plate (2) facing the first plate (1), both plates (1, 2) being delimited by edges (10, 11), a perimeter frame (3) disposed between the first and second plate (1, 2) close to their edges, a metallic perimeter belt (4, 5) joining the perimeter frame (3) to the first plate (1), characterised by comprising at least one bearing element (21) disposed at the edges (10, 11) of the first and second plate (1, 2) and a traction rod (22) joining said bearing element (21) with said perimeter frame (3), to limit the deformation of the perimeter frame (3) under the external atmospheric pressure, when the envelope (30) is evacuated and permitting at the same time to limit the thikness and the weight of said perimeter frame 3.
2. Vacuum solar thermal panel according to claim
1, characterised in that it comprises a traction mechanism (15) putting said traction rod (22) under tension, to pull the perimeter frame (3) toward the bearing element (21) .
3. Vacuum solar thermal panel according to claim
2, characterised in that said traction mechanism comprises a threaded coupling (22, 24) .
4. Vacuum solar thermal panel according to claim 3, characterised in that said threaded coupling comprises a bolt (22) .
5. Vacuum solar thermal panel according to claim
3, characterised in that said threaded coupling comprises a nut (24) .
6. Vacuum solar thermal panel according to claim 1, characterised in that it comprises a hooking device between the traction rod (22) and the perimeter frame (3) .
7. Vacuum solar thermal panel according to claim 2, characterised in that said traction mechanism
(15) comprises a lever device.
8. Vacuum solar thermal panel according to claim 1, characterised in that said bearing element comprises a washer (21) .
9. Vacuum solar thermal panel according to claim 1, characterised in that the perimeter frame (3) comprises a spacer (25) to keep the first and the second plate (1, 2) in a spaced-apart arrangement and a stiffener (26) joined to the spacer (25) and presenting a curved cross section.
10. Vacuum solar thermal panel according to claim 9, characterised in that the second plate
(2) is made of glass and the stiffener (26) presents a substantially "C" shaped cross section.
11. Vacuum solar thermal panel according to claim 9, characterised in that the second plate
(102) is made of metal and the stiffener (126) presents a substantially "L" shaped cross section.
12. Vacuum solar thermal panel according to claim 1, characterised in that the perimeter frame
(3) presents at least two support points disposed at a distance (D) from each other comprised between 160 and 240 mm.
PCT/EP2009/060204 2008-08-26 2009-08-06 Lightweight structure vacuum solar thermal panel WO2010023074A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09781556A EP2274559B1 (en) 2008-08-26 2009-08-06 Lightweight structure vacuum solar thermal panel
US13/056,532 US8578930B2 (en) 2008-08-26 2009-08-06 Lightweight structure vacuum solar thermal panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2008A001537A IT1390985B1 (en) 2008-08-26 2008-08-26 SOLAR THERMAL PANEL WITH EMPTY STRUCTURE OF LIGHT
ITMI2008A001537 2008-08-26

Publications (1)

Publication Number Publication Date
WO2010023074A1 true WO2010023074A1 (en) 2010-03-04

Family

ID=40607166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/060204 WO2010023074A1 (en) 2008-08-26 2009-08-06 Lightweight structure vacuum solar thermal panel

Country Status (4)

Country Link
US (1) US8578930B2 (en)
EP (1) EP2274559B1 (en)
IT (1) IT1390985B1 (en)
WO (1) WO2010023074A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140688A1 (en) * 2010-05-14 2011-11-17 广州市新栋力超声电子设备有限公司 Integrated flat-plate solar collector
EP2474795A1 (en) 2010-12-30 2012-07-11 TVP Solar S.A. Vacuum solar thermal panel with pipe housing
FR2976053A1 (en) * 2011-05-31 2012-12-07 Saint Gobain Vacuum solar collector, useful for providing thermal energy to refrigeration unit to make air conditioner, comprises chamber delimited by tempered glass sheet comprising first main wall and second main wall that is connected to first wall
US20140158112A1 (en) * 2011-07-07 2014-06-12 Tvp Solar Sa Method for manufacturing a vacuum solar thermal panel and related vacuum solar thermal panel
EP3657093A1 (en) * 2018-11-26 2020-05-27 Robert Bosch GmbH Process and joining device for mounting a solar collector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2672194T3 (en) * 2012-06-06 2015-08-03 Tvp Solar Sa THERMAL SOLAR FIELD FIELD SYSTEM AND RELATED VACUUM SOLAR CELL PANEL
NO336559B1 (en) * 2014-02-12 2015-09-28 Mt Åsen As SOLAR COLLECTOR SYSTEM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2728019A1 (en) * 1977-06-22 1979-01-04 Messerschmitt Boelkow Blohm Evacuated solar heat collector - with bottom plate and cover panel bonded to absorber support frame
FR2483564A1 (en) * 1980-06-03 1981-12-04 Bourdel Jacques Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum
FR2492956A1 (en) * 1980-10-29 1982-04-30 Landex Ets Large-evacuated solar heat collector panel - formed by flat box with glass surfaces and contg. finned tube coated with heat absorbing substance such as black chromium
US4332241A (en) 1979-12-20 1982-06-01 Erno Raumfahrttechnik Gmbh Solar energy collector panel
WO2005075900A1 (en) * 2004-01-22 2005-08-18 European Organisation For Nuclear Research - Cern Evacuable flat panel solar collector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415433A (en) * 1944-05-30 1947-02-11 William S Little Celestial navigation instrument
US3961619A (en) * 1973-06-26 1976-06-08 Solarsystems Incorporated Flat plate solar collector module
GB1558986A (en) * 1976-12-10 1980-01-09 Bennett C J Spacers for vacuum enclosures
US4172311A (en) * 1977-06-15 1979-10-30 American Solar Heat Corporation Process for manufacturing solar collector panels
US4243020A (en) * 1978-10-23 1981-01-06 Mier Thomas P Solar panel and panel assembly
US4285335A (en) * 1979-07-30 1981-08-25 Reliable Metal Products, Inc. Solar energy collector panel
IT1390960B1 (en) 2008-07-09 2011-10-27 Tvp Solar Sa SOLAR VACUUM THERMAL PANEL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2728019A1 (en) * 1977-06-22 1979-01-04 Messerschmitt Boelkow Blohm Evacuated solar heat collector - with bottom plate and cover panel bonded to absorber support frame
US4332241A (en) 1979-12-20 1982-06-01 Erno Raumfahrttechnik Gmbh Solar energy collector panel
FR2483564A1 (en) * 1980-06-03 1981-12-04 Bourdel Jacques Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum
FR2492956A1 (en) * 1980-10-29 1982-04-30 Landex Ets Large-evacuated solar heat collector panel - formed by flat box with glass surfaces and contg. finned tube coated with heat absorbing substance such as black chromium
WO2005075900A1 (en) * 2004-01-22 2005-08-18 European Organisation For Nuclear Research - Cern Evacuable flat panel solar collector
EP1706678A1 (en) 2004-01-22 2006-10-04 European Organisation for Nuclear Research CERN Evacuable flat panel solar collector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140688A1 (en) * 2010-05-14 2011-11-17 广州市新栋力超声电子设备有限公司 Integrated flat-plate solar collector
EP2474795A1 (en) 2010-12-30 2012-07-11 TVP Solar S.A. Vacuum solar thermal panel with pipe housing
FR2976053A1 (en) * 2011-05-31 2012-12-07 Saint Gobain Vacuum solar collector, useful for providing thermal energy to refrigeration unit to make air conditioner, comprises chamber delimited by tempered glass sheet comprising first main wall and second main wall that is connected to first wall
US20140158112A1 (en) * 2011-07-07 2014-06-12 Tvp Solar Sa Method for manufacturing a vacuum solar thermal panel and related vacuum solar thermal panel
US9651278B2 (en) * 2011-07-07 2017-05-16 Tvp Solar Sa Method for manufacturing a vacuum solar thermal panel and related vacuum solar thermal panel
EP3657093A1 (en) * 2018-11-26 2020-05-27 Robert Bosch GmbH Process and joining device for mounting a solar collector

Also Published As

Publication number Publication date
US8578930B2 (en) 2013-11-12
EP2274559A1 (en) 2011-01-19
US20110146666A1 (en) 2011-06-23
IT1390985B1 (en) 2011-10-27
ITMI20081537A1 (en) 2010-02-27
EP2274559B1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2274559B1 (en) Lightweight structure vacuum solar thermal panel
EP1706678B1 (en) Evacuable flat panel solar collector
US8096296B2 (en) Vacuum solar thermal panel with a vacuum tight glass-metal sealing
US4332241A (en) Solar energy collector panel
JP2007518957A5 (en)
US10107522B2 (en) Solar energy collecting module using vacuum panel
US8875696B2 (en) Vacuum solar thermal panel with radiative screen
US20100206300A1 (en) Solar energy collecting system and method
KR101464869B1 (en) Solar energy collecting vacuum panel and solar energy collecting module using the same
US20100018521A1 (en) Solar collector with foil absorber
KR101899645B1 (en) Solar energy vacuum heat collecting panel
KR101948910B1 (en) Solar energy vacuum flat plate type collector
WO2007148067A2 (en) Evacuated solar panel enclosure
KR102093189B1 (en) Fastening device for high-temperature insulation to prevent deterioration of insulation performance
CN211493036U (en) Radiation-proof compression-resistant vacuum brazing composite board
KR102093191B1 (en) Fastening device for high-temperature insulation to prevent deterioration of insulation performance
CN211493032U (en) Heat-insulating compression-resistant vacuum brazing composite board
CN213931505U (en) Solar heat collecting pipe
EP2491215A2 (en) Solar collector
MXPA06003696A (en) Evacuable flat panel solar collector
IL171324A (en) Solar collector with foil absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09781556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009781556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13056532

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE