WO2010012794A1 - Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives - Google Patents

Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives Download PDF

Info

Publication number
WO2010012794A1
WO2010012794A1 PCT/EP2009/059840 EP2009059840W WO2010012794A1 WO 2010012794 A1 WO2010012794 A1 WO 2010012794A1 EP 2009059840 W EP2009059840 W EP 2009059840W WO 2010012794 A1 WO2010012794 A1 WO 2010012794A1
Authority
WO
WIPO (PCT)
Prior art keywords
different
same
alkyl
halogen atoms
halogenoalkyl
Prior art date
Application number
PCT/EP2009/059840
Other languages
French (fr)
Inventor
Philippe Desbordes
Ralf Dunkel
Stéphanie Gary
Marie-Claire Grosjean-Cournoyer
Benoît HARTMANN
Philippe Rinolfi
Jean-Pierre Vors
Rachel Rama
Original Assignee
Bayer Cropscience Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011520512A priority Critical patent/JP2011529866A/en
Priority to PL09802524T priority patent/PL2310360T3/en
Priority to US13/876,153 priority patent/US8680127B2/en
Priority to CA2731198A priority patent/CA2731198A1/en
Priority to EA201170282A priority patent/EA018569B1/en
Priority to BRPI0911819A priority patent/BRPI0911819B1/en
Application filed by Bayer Cropscience Sa filed Critical Bayer Cropscience Sa
Priority to MX2011001066A priority patent/MX2011001066A/en
Priority to CN200980130986.1A priority patent/CN102123985B/en
Priority to EP09802524A priority patent/EP2310360B1/en
Priority to UAA201102358A priority patent/UA100291C2/en
Publication of WO2010012794A1 publication Critical patent/WO2010012794A1/en
Priority to US14/183,965 priority patent/US9320277B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/10Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with sulfur as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/761,3-Oxazoles; Hydrogenated 1,3-oxazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/16Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/34Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives, their process of preparation, preparation intermediate compounds, their use as fungicide active agents, particularly in the form of fungicide compositions and methods for the control of phytopathogenic fungi, notably of plants, using these compounds or compositions.
  • R 1 can represent C- ⁇ -C 5 -alkyl
  • R 2 can represent C- ⁇ -C 5 -alkyl or the like
  • R 3 can represent hydrogen or C- ⁇ -C 3 -alkyl
  • X can represent various substituents among which hydrogen, halogen or C- ⁇ -C 3 -alkyl.
  • this document does not claim compounds wherein the nitrogen atom of the carboxamide residue can be substituted by a cycloalkyl group.
  • R 1 , R 2 , R 3 and R 4 can represent hydrogen, C- ⁇ -C 4 -alkyl, C 3 -C 7 -cycloalkyl or the like, X can represent oxygen, Y can be a direct bond and R 5 can represent a phenyl group .
  • X can represent oxygen
  • Y can be a direct bond
  • R 5 can represent a phenyl group .
  • any compound including a non-fused 5-membered heterocyclic carboxamide or a cycloalkyl linked to the nitrogen atom of the carboxamide residue In international patent application WO-2007/087906 certain fungicidal N-benzyl-carboxamide derivatives are generically embraced in a broad disclosure of numerous compounds of the following formula:
  • A represents a carbo-linked, unsaturated or partially saturated, 5-membered heterocyclyl group
  • Z 1 represents C 3 -C 7 -cycloalkyl
  • Z 2 and Z 3 can represent hydrogen
  • Ci-C 8 - alkyl C 3 -C 7 -cycloalkyl or the like
  • n represents at least 1
  • X can represent various substituents.
  • this document does not specifically disclose nor suggest selecting such compounds wherein X can be a phenyl group.
  • the present invention provides N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives of formula (I)
  • A represents a carbo-linked, unsaturated or partially saturated, 5-membered heterocyclyl group that can be substituted by up to four groups R ;
  • Z 1 represents a non-substituted C 3 -C 7 -cycloalkyl or a C 3 -C 7 -cycloalkyl substituted by up to 10 atoms or groups that can be the same or different and that can be selected in the list consisting of halogen atoms ; cyano ; C- ⁇ -C 8 -alkyl ; C- ⁇ -C 8 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C 8 -alkoxy ; C 1 -C 8 - halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkoxycarbonyl ; d-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylaminocarbonyl ; or di-d-C 8 - alkyla
  • Z 2 and Z 3 that can be the same or different, represent a hydrogen atom ; C- ⁇ -C 8 -alkyl ; C 2 -C 8 -alkenyl ; C 2 -C 8 -alkynyl ; cyano ; nitro ; a halogen atom ; d-C 8 -alkoxy ; C 2 C 8 - alkenyloxy ; C 2 -C 8 -alkynyloxy ; C 3 -C 7 -cycloalkyl ; Ci-C 8 -alkylsulphenyl ; amino ; Ci-C 8 - alkylamino ; di-Ci-C 8 -alkylamino ; Ci-C 8 -alkoxycarbonyl ; Ci-C 8 -alkylcarbamoyl ; di-d- C 8 -alkylcarbamoyl ; N-Ci-C 8 -alkyl-Ci-C
  • Z 2 and Z 3 together with the carbon atom to that they are linked can form a substituted or non substituted C 3 -C 7 -cycloalkyl ;
  • X and Y independently represent a halogen atom ; nitro ; cyano ; isonitrile ; hydroxyl ; sulfanyl ; amino ; pentafluoro- ⁇ 6 -sulfanyl ; Ci-C 8 -alkyl ; Ci-C 8 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C 8 -alkylamino ; di-d-C 8 - alkylamino ; Ci-C 8 -alkoxy ; Ci-C 8 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; Ci-C 8 -alkoxy-Ci-C 8 -alkyl ; d-C 8 -alkoxy-d-C 8 - alkoxy ; Ci-C 8 -alkylsulphanyl ; Ci-C 8 -halogenoalkylsulphanyl
  • C 8 -halogenoalkylcarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylcarbamoyl ; di-d-Cs-alkylcarbamoyl ; N-d-Cs-alkyloxycarbamoyl ; Ci-C 8 -alkoxycarbamoyl ; N-d-C 8 -alkyl-d-C 8 -alkoxycarbamoyl ; Ci-C 8 -alkoxycarbonyl ; d-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylaminocarbonyl ; di-d-Cs-alkylaminocarbonyl ; CrC 8 - alkylcarbonyloxy ; d-Cs-halogenoalkylcarbonyloxy comprising up to 9 halogen
  • n 0, 1 , 2, 3 or 4 ;
  • R independently represents a hydrogen atom ; halogen atom ; cyano ; isonitrile ; nitro ; amino ; sulfanyl ; pentafluoro- ⁇ 6 -sulfanyl ; Ci-C 8 -alkylamino ; di-Ci-C 8 -alkylamino ; tri(Ci-C 8 -alkyl)silyl ; Ci-C 8 -alkylsulfanyl ; Ci-C 8 -halogenoalkylsulfanyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C 8 -alkyl ; Ci-C 8 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C 2 -C 8 -alkenyl ; C 2 - C 8 -halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C
  • Q independently represents a halogen atom ; cyano ; isonitrile ; nitro ; d-C 8 -alkyl ; C 2 - C 8 -alkenyl ; C 2 -C 8 -alkynyl ; d-C 8 -alkoxy ; d-C 8 -alkoxy-d-C 8 -alkyl ; d-C 8 -alkoxy-d- C 8 -alkoxy ; d-C 8 -alkylsulphanyl ; d-C 8 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C 2 -C 8 -halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C 2 -C 8 -halogenoalkynyl comprising up to 9 halogen atoms that can be the same or different ; d-C 8 -halogeno
  • any of the compounds according to the invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound.
  • the invention thus relates equally to all the optical isomers and to their racemic or scalemic mixtures (the term "scalemic” denotes a mixture of enantiomers in different proportions)and to the mixtures of all the possible stereoisomers, in all proportions.
  • scalemic denotes a mixture of enantiomers in different proportions
  • the diastereoisomers and/or the optical isomers can be separated according to the methods that are known per se by the man ordinary skilled in the art.
  • any of the compounds according to the invention can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound.
  • the invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions.
  • the geometric isomers can be separated according to general methods that are known per se by the man ordinary skilled in the art.
  • halogen means either one of fluorine, bromine, chlorine or iodine ;
  • heteroatom can be nitrogen, oxygen or sulfur ;
  • any alkyl group, alkenyl group or alkynyl group can be straight or branched ;
  • aryl means phenyl or naphthyl • in the case of an amino group or the amino moiety of any other amino-containing group, substituted by two substituents that can be the same or different, the two substituents together with the nitrogen to that they are attached can form a heterocyclyl group, preferably a 5 to 7-membered heterocyclyl group, that can be substituted and can contain other hetero atoms, for example morpholino or piperidinyl.
  • Preferred compounds according to the invention are compounds of formula (I) wherein A is selected in the list consisting of: - a heterocycle of formula (A 1 )
  • R 1 to R 3 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 -C 5 - alkyl ; C- ⁇ -C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C 5 -alkoxy or d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
  • R 4 to R 6 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 -C 5 - alkyl ; C- ⁇ -C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C 5 -alkoxy or d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
  • R 7 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C 5 -alkoxy or d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; R 8 represents a hydrogen atom or a d-C 5 -alkyl ;
  • R 9 to R 11 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 -C 5 - alkyl ; amino ; Ci-C 5 -alkoxy ; Ci-C 5 -alkylsulphanyl ; Ci-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or Ci-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; - a heterocycle of formula (A 5 )
  • R 12 and R 13 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 - C 5 -alkyl ; d-C 5 -alkoxy ; amino ; d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; R 14 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; d-C 5 -alkoxy ; amino ; C 1 -C 5 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or C 1 -C 5 - halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
  • R 15 represents a hydrogen atom ; a halogen atom ; a cyano ; d-C 5 -alkyl ; d-C 5 -alkoxy ; C 1 -C 5 - halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C 1 -C 5 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 16 and R 18 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 - C 5 -alkoxycarbonyl ; d-C 5 -alkyl ; d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R 17 represent a hydrogen atom or d-C 5 -alkyl ;
  • R 19 represents a hydrogen atom or a C- ⁇ -C 5 -alkyl
  • R 20 to R 22 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 -
  • C 5 -alkyl or C- ⁇ -C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 23 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 24 represents a hydrogen atom or d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 25 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 26 represents a hydrogen atom ; d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; - a heterocycle of formula (A 10 ⁇ )
  • R 27 represents a hydrogen atom ; a halogen atom ; C- ⁇ -C 5 -alkyl or C- ⁇ -C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 28 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C 5 -alkylamino or di(Ci-C 5 -alkyl)amino ;
  • R ,29 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; d-C 5 -alkoxy ; C 1 -C 5 - halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C 1 -C 5 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R 30 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; C- ⁇ -C 5 -alkylamino or di(C- ⁇ -C 5 -alkyl)amino ;
  • R 31 represents a hydrogen atom or a d-C 5 -alkyl
  • R 32 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 33 represents a hydrogen atom ; a halogen atom ; a nitro ; d-C 5 -alkyl ; d-C 5 -alkoxy ; C 1 -C 5 - halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C 1 -C 5 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 34 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; C3-C 5 -cycloalkyl ; C 1 -C 5 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C 1 -C 5 - alkoxy ; C 2 -C 5 -alkynyloxy or d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
  • R 35 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; a cyano ; d-C 5 -alkoxy ; C 1 -C 5 - alkylsulphanyl ; d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C 5 -alkylannino or di(d-C 5 -alkyl)annino ;
  • R 36 represents a hydrogen atom or d-C 5 -alkyl ;
  • R 37 and R 38 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C 5 -alkyl ; d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C 5 -alkoxy or a CrC 5 - alkylsulphanyl ;
  • R ,39 represents a hydrogen atom or d-C 5 -alkyl
  • R 40 and R 41 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 42 and R 43 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 - C 5 -alkyl ; d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or amino ;
  • R 44 and R 45 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 47 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 46 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl ; d-C 5 -halogen comprising up to 9 halogen atoms that can be the same or different or d-C 5 -alkylsulfanyl ;
  • R 49 and R 48 that can be the same or different represent a hydrogen atom ; a halogen atom ; C 1 - C 5 -alkyl ; d-C 5 -alkoxy ; d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 50 and R 51 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C 5 -alkyl ; d-C 5 -alkoxy ; d-C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
  • R 52 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different.
  • R 53 represents a hydrogen atom ; a halogen atom ; d-C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different.
  • R 54 and R 56 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R 55 represents a hydrogen atom or d-C 5 -alkyl ;
  • R 57 and R 59 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R 58 represents a hydrogen atom or d-C 5 -alkyl ;
  • R 60 and R 61 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C 5 -alkyl or d-C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R 62 represents a hydrogen atom or d-C 5 -alkyl ;
  • R 65 represents a hydrogen atom ; a halogen atom ; C- ⁇ -C 5 -alkyl ; C 3 -C 5 -cycloalkyl ; C 1 -C 5 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C 1 -C 5 - alkoxy ; C 2 -C 5 -alkynyloxy or C- ⁇ -C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
  • R 63 represents a hydrogen atom ; a halogen atom ; C- ⁇ -C 5 -alkyl ; a cyano ; C- ⁇ -C 5 -alkoxy ; C 1 -C 5 - alkylsulphanyl ; C- ⁇ -C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C- ⁇ -C 5 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; C- ⁇ -C 5 -alkylamino or di(C- ⁇ -C 5 -alkyl)amino ; R 64 represents a hydrogen atom or C- ⁇ -C 5 -alkyl.
  • More preferred compounds according to the invention are compounds of formula (I) wherein A is selected in the list consisting of A 2 ; A 6 ; A 10 and A 13 as herein-defined.
  • A represents A 13 wherein R 34 represents a C- ⁇ -C 5 -alkyl, C- ⁇ -C 5 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; or C- ⁇ -C 5 -alkoxy ; R 35 represents a hydrogen atom or a halogen atom and R 36 represents a C- ⁇ -C 5 -alkyl.
  • Z 1 represents a C 3 -C 7 cycloalkyl substituted by up to 10 groups or atoms that can be the same or different and that can be selected in the list consisting of halogen atoms ; C- ⁇ -C 8 -alkyl ; C 1 -C 8 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C 1 -C 8 - alkoxy or C- ⁇ -C 8 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; more preferably Z 1 represents a non-substituted C 3 -C 7 -cycloalkyl ; even more preferably Z 1 represents cyclopropyl.
  • X independently represents a halogen atom ; C- ⁇ -C 8 -alkyl ; C- ⁇ -C 8 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; tri(d-C 8 -alkyl)silyl ; Ci-C 8 -alkoxy or Ci-C 8 - halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different.
  • Other more preferred compounds according to the invention are compounds of formula (I) wherein two consecutive substituents X together with the phenyl ring form a substituted or non substituted 1 ,3-benzodioxolyl ; 1 ,2,3,4-tetrahydro-quinoxalinyl ; 3,4-dihydro-2H-1 ,4- benzoxazinyl ; 1 ,4-benzodioxanyl ; indanyl ; 2,3-dihydrobenzofuranyl ; or indolinyl.
  • Y independently represents a halogen atom ; cyano ; d-C 8 -alkyl ; d-C 8 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; or (C- ⁇ -C 8 -alkoxyimino)- d-C 8 -alkyl.
  • Other more preferred compounds according to the invention are compounds of formula (I) wherein two consecutive substituents Y together with the phenyl ring form a substituted or non substituted 1 ,3-benzodioxolyl ; 1 ,2,3,4-tetrahydro-quinoxalinyl ; 3,4-dihydro-2H-1 ,4- benzoxazinyl ; 1 ,4-benzodioxanyl ; indanyl ; 2,3-dihydrobenzofuranyl ; or indolinyl.
  • R independently represents a hydrogen atom ; halogen atom ; cyano ; Ci-C 8 -alkylamino ; di-d- C 8 -alkylamino ; tri(Ci-C 8 -alkyl)silyl ; Ci-C 8 -alkyl ; Ci-C 8 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C 8 -alkoxy ; Ci-C 8 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; Ci-C 8 -alkylsulfanyl ; amino, hydroxyl ; nitro ; Ci-C 8 -alkoxycarbonyl ; or C 2 -C 8 -alkynyloxy.
  • the said preferred features can also be selected among the more preferred features of each of A, Z 1 , Z 2 , Z 3 , X, Y, n, m, R and Q so as to form most preferred subclasses of compounds according to the invention.
  • the present invention also relates to a process for the preparation of compounds of formula (I).
  • a process P1 for the preparation of a compound of formula (I) as illustrated by the following reaction scheme:
  • U 1 represents a halogen atom or a leaving group.
  • step 1 can be performed if appropriate in the presence of a solvent and if appropriate in the presence of an acid binder.
  • N-cycloalkyl-amine derivatives of formula (II) are known or can be prepared by known processes such as reductive amination of aldehyde or ketone (Bioorganics and Medicinal Chemistry Letters, 2006, p 2014 synthesis of compounds 7 and 8), or reduction of imines (Tetrahedron, 2005, p 11689), or nucleophilic substitution of halogen, mesylate or tosylate (Journal of Medicinal Chemistry, 2002, p 3887 preparation of intermediate for compound 28).
  • Carboxylic acid derivatives of formula (III) are known or can be prepared by known processes (WO-93/11117 ; EP-545 099 ; Nucleosides & Nucleotides, 1987, p737-759, Bioorg. Med. Chem., 2002, p2105-2108).
  • Suitable acid binders for carrying out process P1 according to the invention are in each case all inorganic and organic bases that are customary for such reactions.
  • Suitable solvents for carrying out process P1 according to the invention are in each case all customary inert organic solvents.
  • reaction temperatures can independently be varied within a relatively wide range.
  • processes according to the invention are carried out at temperatures between O 0 C and 16O 0 C, preferably between 1O 0 C and 12O 0 C.
  • a way to control the temperature for the processes according to the invention is to use micro-wave technology.
  • Process P1 according to the invention is generally independently carried out under atmospheric pressure. However, in each case, it is also possible to operate under elevated or reduced pressure.
  • step 1 of process P1 When carrying out step 1 of process P1 according to the invention, generally 1 mol or other an excess of the acid derivative of formula (III) and from 1 to 3 mol of acid binder are employed per mole of amine of formula (II). It is also possible to employ the reaction components in other ratios. Work-up is carried out by customary methods. Generally, the reaction mixture is treated with water and the organic phase is separated off and, after drying, concentrated under reduced pressure. If appropriate, the remaining residue can be freed by customary methods, such as chromatography or recrystallization, from any impurities that can still be present.
  • A, Z 1 to Z 3 , X, Y, n and m are as herein-defined ;
  • U 2 represents a halogen atom such as chlorine, bromine or iodine ;
  • W represents a boron derivative such as a boronic acid, a boronic ester or a potassium trifluoroborate.
  • Process P2 can be performed in the presence of a palladium catalyst and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand and in the presence of a base and if appropriate in the presence of a solvent.
  • Compounds of formula (IV) can be prepared by known processes (WO-2007/087906) and the preparation of compounds of formula (V) is well known.
  • Process P2 according to the invention can be carried out in the presence of a catalyst, such as a metal salt or complex.
  • a catalyst such as a metal salt or complex.
  • Suitable metal derivatives for this purpose are based on palladium.
  • Suitable metal salts or complexes for this purpose are palladium chloride, palladium acetate, tetrakis(triphenylphosphine)palladium, bis(dibenzylideneacetone)palladium , bis(triphenyl phosphine)palladium dichloride or 1 ,1'-bis(diphenylphosphino) ferrocenepalladium(ll) chloride.
  • a palladium complex in the reaction mixture by separate addition to the reaction of a palladium salt and a ligand or salt, such as triethylphosphine, tri-tert- butylphosphine, tricyclohexylphosphine, 2-(dicyclohexylphosphine)biphenyl, 2-(di-tert- butylphosphine)biphenyl, 2-(dicyclohexylphosphine)-2'-(N,N-dimethylamino)biphenyl, triphenyl- phosphine, tris-(o-tolyl)phosphine, sodium 3-(diphenylphosphino)benzenesulphonate, tris-2- (methoxyphenyl)-phosphine, 2,2'-bis(diphenylphosphine)-1 , 1 '-binaphthyl, 1 ,4-bis(diphen
  • catalyst and/or ligand from commercial catalogues such as "Metal Catalysts for Organic Synthesis” by Strem Chemicals or "Phosphorous Ligands and Compounds” by Strem Chemicals.
  • Suitable bases for carrying out process P2 according to the invention can be inorganic and organic bases which are customary for such reactions.
  • alkaline earth metal or alkali metal hydroxides such as sodium hydroxide, calcium hydroxide, potassium hydroxide or other ammonium hydroxide derivatives ;
  • alkaline earth metal, alkali metal or ammonium fluorides such as potassium fluoride, cesium fluoride or tetrabutylammonium fluoride ;
  • alkaline earth metal or alkali metal carbonates such as sodium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate or cesium carbonate ;
  • alkali metal or alkaline earth metal acetates such as sodium acetate, potassium acetate or calcium acetate ;
  • alkali metal alcoholates such as potassium ter-butoxide or sodium ter-butoxide ;
  • alkali metal phosphates such as tri-potassium phosphate ; and also tertiary amines, such
  • Suitable solvents for carrying out process P2 according to the invention can be customary inert organic solvents. Preference is given to using optionally halogen atomated aliphatic, alicyclic or aromatic hydrocarbons, such as petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin ; chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichlorethane or trichlorethane ; ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1 ,2-dimethoxyethane, 1 ,2-diethoxyethane or anisole ; nitriles, such as acet
  • a co- solvent such as water or an alcohol such as methanol, ethanol, propanol, i-propanol or t-butanol.
  • reaction temperatures can independently be varied within a relatively wide range.
  • processes according to the invention are carried out at temperatures between O 0 C and 16O 0 C, preferably between 1O 0 C and 12O 0 C.
  • a way to control the temperature for the processes according to the invention is to use micro-wave technology.
  • Process P2 according to the invention is generally independently carried out under atmospheric pressure. However, in each case, it is also possible to operate under elevated or reduced pressure.
  • step 2 of process P2 When carrying out step 2 of process P2 according to the invention, 1 mol or an excess of the boron derivative of formula (V) and from 1 to 5 mol of base and from 0.01 to 20 mol percent of a palladium complex can be employed per mole of compound of formula (IV).
  • reaction components in other ratios.
  • reaction mixture is treated with water and the organic phase is separated off and, after drying, concentrated under reduced pressure. If appropriate, the remaining residue can be freed by customary methods, such as chromatography or recrystallization, from any impurities that can still be present.
  • the present invention also relates to a fungicide composition
  • a fungicide composition comprising an effective and non-phytotoxic amount of an active compound of formula (I).
  • an effective and non-phytotoxic amount means an amount of composition according to the invention that is sufficient to control or destroy the fungi present or liable to appear on the cropsand that does not entail any appreciable symptom of phytotoxicity for the said crops.
  • Such an amount can vary within a wide range depending on the fungus to be controlled, the type of crop, the climatic conditions and the compounds included in the fungicide composition according to the invention. This amount can be determined by systematic field trials, that are within the capabilities of a person skilled in the art.
  • fungicide composition comprising, as an active ingredient, an effective amount of a compound of formula (I) as herein defined and an agriculturally acceptable support, carrier or filler.
  • the term "support” denotes a natural or synthetic, organic or inorganic compound with that the active compound of formula (I) is combined or associated to make it easier to apply, notably to the parts of the plant.
  • This support is thus generally inert and should be agriculturally acceptable.
  • the support can be a solid or a liquid.
  • suitable supports include clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol, organic solvents, mineral and plant oils and derivatives thereof. Mixtures of such supports can also be used.
  • composition according to the invention can also comprise additional components.
  • the composition can further comprise a surfactant.
  • the surfactant can be an emulsifier, a dispersing agent or a wetting agent of ionic or non-ionic type or a mixture of such surfactants.
  • the presence of at least one surfactant is generally essential when the active compound and/or the inert support are water-insoluble and when the vector agent for the application is water.
  • surfactant content can be comprised from 5% to 40% by weight of the composition.
  • additional components can also be included, e.g. protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents.
  • the active compounds can be combined with any solid or liquid additive, that complies with the usual formulation techniques.
  • composition according to the invention can contain from 0.05 to 99% by weight of active compound, preferably 10 to 70% by weight.
  • compositions according to the invention can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure),gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ULV) liquid, ultra low volume (ULV) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder.
  • UUV ultra low volume
  • UAV ultra low volume
  • compositions include not only compositions that are ready to be applied to the plant or seed to be treated by means of a suitable device, such as a spraying or dusting device, but also concentrated commercial compositions that must be diluted before application to the crop.
  • the compounds according to the invention can also be mixed with one or more insecticide, fungicide, bactericide, attractant, acaricide or pheromone active substance or other compounds with biological activity.
  • the mixtures thus obtained have normally a broadened spectrum of activity.
  • the mixtures with other fungicide compounds are particularly advantageous.
  • fungicide mixing partners can be selected in the following lists:
  • Inhibitors of the nucleic acid synthesis for example benalaxyl, benalaxyl-M, bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, metalaxyl, metalaxyl-M, ofurace, oxadixyl and oxolinic acid.
  • Inhibitors of the mitosis and cell division for example benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fuberidazole, pencycuron, thiabendazole, thiophanate, thiophanate- methyl and zoxamide.
  • Inhibitors of the respiration for example diflumetorim as Cl-respiration inhibitor; bixafen, boscalid, carboxin, fenfuram, flutolanil, fluopyram, furametpyr, furmecyclox, isopyrazam (mixture of syn-epimeric racemate 1 RS, 4SR, 9RS and anti-epimeric racemate 1 RS,4SR,9SR), isopyrazam (syn epimeric racemate 1 RS,4SR,9RS), isopyrazam (syn-epimeric enantiomer 1 R,4S,9R), isopyrazam (syn-epimeric enantiomer 1S,4R,9S), isopyrazam (anti-epimeric racemate 1 RS, 4SR, 9SR), isopyrazam (anti-epimeric enantiomer 1 R,4S,9S), isopyrazam (anti- epimeric enantiomer
  • Inhibitors of the ATP production for example fentin acetate, fentin chloride, fentin hydroxide, and silthiofam.
  • Inhibitors of the amino acid and/or protein biosynthesis for example andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim and pyrimethanil.
  • Inhibitors of the signal transduction for example fenpiclonil, fludioxonil and quinoxyfen.
  • Inhibitors of the lipid and membrane synthesis for example biphenyl, chlozolinate, edifenphos, etridiazole, iodocarb, iprobenfos, iprodione, isoprothiolane, procymidone, propamocarb, propamocarb hydrochloride, pyrazophos, tolclofos-m ethyl and vinclozolin.
  • Inhibitors of the ergosterol biosynthesis for example aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifine, nuarimol, oxpoconazole, paclobutra
  • Inhibitors of the cell wall synthesis for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, prothiocarb, validamycin A, and valifenalate.
  • Inhibitors of the melanine biosynthesis for example carpropamid, diclocymet, fenoxanil, phthalide, pyroquilon and tricyclazole.
  • composition according to the invention comprising a mixture of a compound of formula (I) with a bactericide compound can also be particularly advantageous.
  • suitable bactericide mixing partners can be selected in the following list: bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.
  • the compounds of formula (I) and the fungicide composition according to the invention can be used to curatively or preventively control the phytopathogenic fungi of plants or crops.
  • a method for curatively or preventively controlling the phytopathogenic fungi of plants or crops characterised in that a compound of formula (I) or a fungicide composition according to the invention is applied to the seed, the plant or to the fruit of the plant or to the soil wherein the plant is growing or wherein it is desired to grow.
  • the method of treatment according to the invention can also be useful to treat propagation material such as tubers or rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants pricking out. This method of treatment can also be useful to treat roots.
  • the method of treatment according to the invention can also be useful to treat the overground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruit of the concerned plant.
  • cotton Among the plants that can be protected by the method according to the invention, mention can be made of cotton; flax; vine; fruit or vegetable crops such as Rosaceae sp. (for instance pip fruit such as apples and pears, but also stone fruit such as apricots, almonds and peaches), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp.
  • Rosaceae sp. for instance pip fruit such as apples and pears, but also stone fruit such as apricots, almonds and peaches
  • Rosaceae sp. for instance pip fruit such as apples and pears, but also stone fruit such as apricots, almonds and peaches
  • Rubiaceae sp. for instance banana trees and plantins
  • Rubiaceae sp. Theaceae sp., Sterculiceae sp., Rutaceae sp. (for instance lemons oranges and grapefruit); Solanaceae sp. (for instance tomatoes), Liliaceae sp., Asteraceae sp. (for instance lettuces), Umbelliferae sp., Cruciferae sp., Chenopodiaceae sp., Cucurbitaceae sp., Papilionaceae sp. (for instance peas), Rosaceae sp. (for instance strawberries); major crops such as Graminae sp.
  • Asteraceae sp. for instance sunflower
  • Cruciferae sp. for instance colza
  • Fabacae sp. for instance peanuts
  • Papilionaceae sp. for instance soybean
  • Solanaceae sp. for instance potatoes
  • Chenopodiaceae sp. for instance beetroots
  • Elaeis sp. for instance oil palm
  • the method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • the expression "heterologous gene” essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, co suppression technology or RNA interference - RNAi - technology).
  • a heterologous gene that is located in the genome is also called a transgene.
  • a transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.
  • the treatment according to the invention may also result in superadditive (“synergistic") effects.
  • superadditive for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.
  • the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted phytopathogenic fungi and/ or microorganisms and/or viruses. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi.
  • Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted phytopathogenic fungi and/ or microorganisms and/or viruses, the treated plants display a substantial degree of resistance to these unwanted phytopathogenic fungi and/ or microorganisms and/or viruses.
  • unwanted phytopathogenic fungi and/ or microorganisms and/or viruses are to be understood as meaning phytopathogenic fungi, bacteria and viruses.
  • the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment.
  • the period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
  • Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).
  • Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids. Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses.
  • Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozon exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
  • Plants and plant cultivars which may also be treated according to the invention are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation.
  • Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance.
  • Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
  • Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stress factors. Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome.
  • Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering.
  • a particularly useful means of obtaining male-sterile plants is described in WO 1989/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 1991/002069).
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
  • Herbicide-tolerant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means.
  • glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221 , 370-371 ), the CP4 gene of the bacterium Agrobacterium sp.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782.
  • Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 2001/024615 or WO 2003/013226.
  • herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition.
  • One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species).
  • Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in US 5,561 ,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7,112,665.
  • Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD).
  • HPPD hydroxyphenylpyruvatedioxygenases
  • Hydroxyphenylpyruvatedioxygenases are enzymes that catalyze the reaction in which para- hydroxyphenylpyruvate (HPP) is transformed into homogentisate.
  • Plants tolerant to HPPD- inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated HPPD enzyme as described in WO 1996/038567, WO 1999/024585 and WO 1999/024586.
  • Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787.
  • Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme prephenate dehydrogenase in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928.
  • Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors.
  • ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides.
  • ALS enzyme also known as acetohydroxyacid synthase, AHAS
  • AHAS acetohydroxyacid synthase
  • imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351 , and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 2007/024782.
  • plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5,084,082, for rice in WO 1997/41218, for sugar beet in US 5,773,702 and WO 1999/057965 , for lettuce in US 5,198,599, or for sunflower in WO 2001/065922.
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering
  • insect-resistant transgenic plants i.e. plants made resistant to attack by certain target insects.
  • Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
  • An "insect-resistant transgenic plant”, as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:
  • insecticidal portions thereof e.g., proteins of the Cry protein classes CrylAb, CryiAc, Cry1 F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof; or
  • a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al., Nat. Biotechnol. (2001 ), 19, 668-72; Schnepf et al., Applied Environm. Microbiol. (2006), 71 , 1765-1774); or
  • a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1 ) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.1O5 protein produced by corn event MON98034 (WO 2007/027777); or
  • VIP vegetative insecticidal proteins listed at: http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or ⁇ . cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 1994/21795); or
  • a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1 ) above or a hybrid of the proteins in 2) above; or
  • 8) a protein of any one of 1 ) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102.
  • an insect-resistant transgenic plant also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 8.
  • an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 8, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:
  • plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose)polymerase (PARP) gene in the plant cells or plants as described in WO 2000/004173 or WO2006/045633 or PCT/EP07/004142.
  • PARP poly(ADP-ribose)polymerase
  • plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotinamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphoribosyltransferase as described e.g. in WO2006/032469 or WO 2006/133827 or PCT/EP07/002433.
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as :
  • transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications.
  • a modified starch which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications.
  • transgenic plants synthesizing a modified starch are disclosed, for example, in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581 , WO 1996/27674, WO 1997/11188, WO 1997/26362, WO 1997/32985, WO 1997/42328, WO 1997/44472, WO 1997/45545, WO 1998/27212, WO 1998/40503, WO99/58688, WO 1999/58690, WO 1999/58654, WO
  • WO 2006/063862 WO 2006/072603, WO 2002/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1 , EP 07090009.7, WO 2001/14569, WO 2002/79410, WO 2003/33540, WO 2004/078983, WO 2001/19975, WO 1995/26407, WO 1996/34968, WO 1998/20145, WO 1999/12950, WO 1999/66050, WO 1999/53072, US 6,734,341 , WO 2000/11 192, WO 1998/22604, WO 1998/32326, WO 2001/98509,
  • transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification.
  • Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP 0663956, WO 1996/001904, WO 1996/021023, WO 1998/039460, and WO 1999/024593, plants producing alpha 1 ,4 glucans as disclosed in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712,107, WO 1997/047806, WO 1997/047807, WO 1997/047808 and WO 2000/014249, plants producing alpha-1 ,6 branched alpha-1 ,4-glucans, as disclosed in WO 2000/73422, plants producing alternan, as disclosed in WO 2000/047727, EP 06077301.7, US 5,908,975 and EP 0728213,
  • transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006/304779, and WO 2005/012529.
  • Plants or plant cultivars which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics.
  • Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include: a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 1998/000549 b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO2004/053219 c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 2001/017333 d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO02/45485 e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g.
  • Plants such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acteylglucosaminetransferase gene including nodC and chitinsynthase genes as described in WO2006/136351
  • Plants or plant cultivars which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics.
  • Such plants can be obtained by genetic transformation or by selection of plants contain a mutation imparting such altered oil characteristics and include: a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g.
  • transgenic plants which may be treated according to the invention are plants which comprise one or more genes which encode one or more toxins, such as the following which are sold under the trade names YIELD GARD® (for example maize, cotton, soya beans), KnockOut® (for example maize), BiteGard® (for example maize), Bt-Xtra® (for example maize), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton), Nucotn 33B®(cotton), NatureGard® (for example maize), Protecta® and NewLeaf® (potato).
  • YIELD GARD® for example maize, cotton, soya beans
  • KnockOut® for example maize
  • BiteGard® for example maize
  • Bt-Xtra® for example maize
  • StarLink® for example maize
  • Bollgard® cotton
  • Nucotn® cotton
  • Nucotn 33B® cotton
  • NatureGard® for example maize
  • herbicide- tolerant plants examples include maize varieties, cotton varieties and soya bean varieties which are sold under the trade names Roundup Ready® (tolerance to glyphosate, for example maize, cotton, soya bean), Liberty Link® (tolerance to phosphinotricin, for example oilseed rape), IMI® (tolerance to imidazolinones) and STS® (tolerance to sulphonylureas, for example maize).
  • Herbicide-resistant plants plants bred in a conventional manner for herbicide tolerance
  • Clearfield® for example maize.
  • transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are listed for example in the databases from various national or regional regulatory agencies (see for example http://gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).
  • the composition according to the invention may also be used against fungal diseases liable to grow on or inside timber.
  • the term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood.
  • the method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
  • diseases of plants or crops that can be controlled by the method according to the invention mention can be made of :
  • Powdery mildew diseases such as : Blumeria diseases, caused for example by Blumeha graminis ;
  • Podosphaera diseases caused for example by Podosphaera leucothcha
  • Sphaerotheca diseases caused for example by Sphaerotheca fuliginea
  • Uncinula diseases caused for example by Uncinula necator ;
  • Rust diseases such as : Gymnosporangium diseases, caused for example by Gymnosporangium sabinae ;
  • Hemileia diseases caused for example by Hemileia vastatrix ;
  • Phakopsora diseases caused for example by Phakopsora pachyrhizi or Phakopsora meibomiae ;
  • Puccinia diseases caused for example by Puccinia recondita
  • Uromyces diseases caused for example by Uromyces appendiculatus
  • Albugo diseases caused for example by Albugo Candida
  • Bremia diseases caused for example by Bremia lactucae ;
  • Peronospora diseases caused for example by Peronospora pisior P. brassicae ;
  • Phytophthora diseases caused for example by Phytophthora infestans ;
  • Plasmopara diseases caused for example by Plasmopara viticola ;
  • Pseudoperonospora diseases caused for example by Pseudoperonospora humuli or
  • Pythium diseases caused for example by Pythium ultimum ; • Leafspot, leaf blotch and leaf blight diseases such as :
  • Alternaria diseases caused for example by Alternaria solani ;
  • Cercospora diseases caused for example by Cercospora beticola ;
  • Cladiosporum diseases caused for example by Cladiosporium cucumerinum ;
  • Cochliobolus diseases caused for example by Cochliobolus sativus
  • Colletotrichum diseases caused for example by Colletotrichum lindemuthanium ;
  • Cycloconium diseases caused for example by Cycloconium oleaginum ;
  • Diaporthe diseases caused for example by Diaporthe citri ;
  • Drechslera Syn: Helminthosporium) or Cochliobolus miyabeanus
  • Elsinoe diseases caused for example by Elsinoe fawcettii ; Gloeosporium diseases, caused for example by Gloeospohum laeticolor ; Glomerella diseases, caused for example by Glomerella cingulata ;
  • Guignardia diseases caused for example by Guignardia bidwelli ;
  • Leptosphaeria diseases caused for example by Leptosphaeria maculans ; Leptosphaeria nodorum ; Magnaporthe diseases, caused for example by Magnaporthe grisea ;
  • Mycosphaerella diseases caused for example by Mycosphaerella graminicola ;
  • Phaeosphaeria diseases caused for example by Phaeosphaeria nodorum ;
  • Pyrenophora diseases caused for example by Pyrenophora teres ;
  • Ramularia diseases caused for example by Ramularia collo-cygni ;
  • Rhynchosporium diseases caused for example by Rhynchosporium secalis ;
  • Septoria diseases caused for example by Septoria apiior Septoria lycopercisi ;
  • Typhula diseases caused for example by Typhula incarnata ;
  • Venturia diseases caused for example by Venturia inaequalis ; • Root and stem diseases such as :
  • Corticium diseases caused for example by Corticium graminearum ;
  • Fusarium diseases caused for example by Fusarium oxysporum ;
  • Gaeumannomyces diseases caused for example by Gaeumannomyces graminis ;
  • Rhizoctonia diseases caused for example by Rhizoctonia solani ;
  • Sarocladium diseases caused for example by Sarocladium oryzae;
  • Sclerotium diseases caused for example by Sclerotium oryzae
  • Tapesia diseases caused for example by Tapesia acuformis ;
  • Thielaviopsis diseases caused for example by Thielaviopsis basicola ;
  • Ear and panicle diseases including maize cob, such as : Alternaria diseases, caused for example by Alternaria spp. ;
  • Aspergillus diseases caused for example by Aspergillus flavus ; Cladosporium diseases, caused for example by Cladosporium spp. ; Claviceps diseases, caused for example by Claviceps purpurea ; Fusarium diseases, caused for example by Fusarium culmorum ; Gibberella diseases, caused for example by Gibberella zeae ;
  • Monographella diseases caused for example by Monographella nivalis ;
  • Sphacelotheca diseases caused for example by Sphacelotheca reiliana ; Tilletia diseases, caused for example by Tilletia caries ; Urocystis diseases, caused for example by Urocystis occulta ; Ustilago diseases, caused for example by Ustilago nuda ;
  • Fruit rot and mould diseases such as : Aspergillus diseases, caused for example by Aspergillus flavus ; Botrytis diseases, caused for example by Botrytis cinerea ; Penicillium diseases, caused for example by Penicillium expansum ;
  • Rhizopus diseases caused by example by Rhizopus stolonifer Sclerotinia diseases, caused for example by Sclerotinia sclerotiorum ; Verticilium diseases, caused for example by Verticilium alboatrum ;
  • Aphanomyces diseases caused for example by Aphanomyces euteiches
  • Ascochyta diseases caused for example by Ascochyta lentis
  • Cladosporium diseases caused for example by Cladosporium herbarum
  • Cochliobolus diseases caused for example by Cochliobolus sativus
  • Colletotrichum diseases caused for example by Colletotrichum coccodes
  • Fusarium diseases caused for example by Fusarium culmorum
  • Gibberella diseases caused for example by Gibberella zeae
  • Macrophomina diseases caused for example by Macrophomina phaseolina
  • Monographella diseases caused for example by Monographella nivalis
  • Penicillium diseases caused for example by Penicillium expansum
  • Phoma diseases caused for example by Phoma lingam
  • Phomopsis diseases caused for example by Phomopsis sojae
  • Phytophthora diseases caused for example by Phytophthora cactorum
  • Pyrenophora diseases caused for example by Pyrenophora graminea
  • Pyricularia diseases caused for example by Pyricularia oryzae
  • Pythium diseases caused for example by Pythium ultimum
  • Rhizoctonia diseases caused for example by Rhizoctonia solani
  • Rhizopus diseases caused for example by Rhizopus oryzae
  • Sclerotium diseases caused for example by Sclerotium rolfsii;
  • Septoria diseases caused for example by Septoria nodorum
  • Typhula diseases caused for example by Typhula incarnata
  • Verticillium diseases caused for example by Verticillium dahliae ; • Canker, broom and dieback diseases such as : Nectria diseases, caused for example by Nectria galligena ;
  • Monilinia diseases caused for example by Monilinia laxa ;
  • Leaf blister or leaf curl diseases such as : Exobasidium diseases caused for nexample by Exobasidium vexans;
  • Taphrina diseases caused for example by Taphhna deformans ;
  • Esca diseases caused for example by Phaemoniella clamydospora, Phaeomoniella clamydospora, Phaeoacremonium aleophilum and Fomitiporia mediterranea ;
  • Eutypa dyeback caused for example by Eutypa lata ;
  • Botrytis diseases caused for example by Botrytis cinerea
  • Diseases of tubers such as :
  • Rhizoctonia diseases caused for example by Rhizoctonia solani
  • Helminthosporium diseases caused for example by Helminthosporium solani.
  • Rhizoctonia diseases caused for example by Rhizoctonia solani ;
  • Helminthosporium diseases caused for example by Helminthosporium solani ;
  • Plasmodiophora diseases caused for example by Plamodiophora brassicae ;
  • Bacterial Organisms such as Xanthomanas species for example Xanthomonas campestris pv. oryzae; Pseudomonas species for example Pseudomonas syringae pv. lachrymans;
  • Erwinia species for example Erwinia amylovora.
  • the fungicide composition according to the invention can also be used against fungal diseases liable to grow on or inside timber.
  • the term "timber" means all types of species of woodand all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood and plywood.
  • the method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention, or a composition according to the invention ; this includes for example direct application, spraying, dipping, injection or any other suitable means.
  • the dose of active compound usually applied in the method of treatment according to the invention is generally and advantageously from 10 to 800 g/ha, preferably from 50 to 300 g/ha for applications in foliar treatment.
  • the dose of active substance applied is generally and advantageously from 2 to 200 g per 100 kg of seed, preferably from 3 to 15O g per 100 kg of seed in the case of seed treatment.
  • the fungicide composition according to the invention can also be used in the treatment of genetically modified organisms with the compounds according to the invention or the agrochemical compositions according to the invention.
  • Genetically modified plants are plants into genome of that a heterologous gene encoding a protein of interest has been stably integrated.
  • the expression "heterologous gene encoding a protein of interest” essentially means genes that give the transformed plant new agronomic properties, or genes for improving the agronomic quality of the modified plant.
  • the compounds or mixtures according to the invention can also be used for the preparation of composition useful to curatively or preventively treat human or animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • M+H (Apcl+) means the molecular ion peak plus 1 a.m.u. (atomic mass unit) as observed in mass spectroscopy via positive atmospheric pressure chemical ionisation.
  • logP values were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a reversed-phase column (C 18), using the method described below :
  • the lambda max values were determined in the maxima of the chromatographic signals using the UV spectra from 190nm to 400nm.
  • position denotes the point of attachment of the second phenyl ring on the first phenyl ring.
  • the watery layer is extracted three times with diethyl ether and the combined organic layers are successively washed by a 1 M solution of sodium hydroxide, brine and filtered over a phase separator filter to yield after concentration 310 mg of a brown oil.
  • Step 1 preparation of S-chlorobiphenyW-carbaldehyde
  • Step 2 preparation of N-[(3-chlorobiphenyl-4-yl)methyl]cyclopropanamine
  • the reaction mixture is stirred for 4 hrs at reflux.
  • the reaction mixture is then cooled to ambient temperature and 1.24 g (19.7 mmol) of sodium cyanoborohydride are slowly added.
  • the reaction mixture is further stirred for 2 hrs at reflux.
  • Step 3 preparation of N- ⁇ S-chlorobiphenyl ⁇ -y ⁇ methyll-N-cyclopropyl-S-fluoro-I .S-dimethyl-I H- pyrazole-4-carboxamide
  • Example A in vivo test on Alternaria brassicae (Leaf spot of crucifers)
  • the active ingredients tested are prepared by potter homogenization in a mixture of acetone/tween/water. This suspension is then diluted with water to obtain the desired active material concentration.
  • Radish plants (Pernot variety), sown on a 50/50 peat soil-pozzolana substrate in starter cups and grown at 18-2O 0 C, are treated at the cotyledon stage by spraying with the active ingredient prepared as described above.
  • Plants, used as controls, are treated with the mixture of acetone/tween/water not containing the active material.
  • Alternaria brassicae spores (40,000 spores per cm 3 ). The spores are collected from a 12 to 13 days-old culture.
  • the contaminated radish plants are incubated for 6-7 days at about 18 0 C, under a humid atmosphere.
  • Example B in vivo test on Pyrenophora teres (Barley Net blotch)
  • the active ingredients tested are prepared by homogenization in a mixture of acetone/tween/DMSO, then diluted with water to obtain the desired active material concentration.
  • Barley plants (Express variety), sown on a 50/50 peat soil-pozzolana substrate in starter cups and grown at 12 0 C, are treated at the 1-leaf stage (10 cm tall) by spraying with the active ingredient prepared as described above.
  • Plants, used as controls, are treated with the mixture of acetone/tween/DMSO/water not containing the active material. After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Pyrenophora teres spores (12,000 spores per ml).
  • the spores are collected from a 12-day-old culture.
  • the contaminated barley plants are incubated for 24 hours at about 2O 0 C and at 100% relative humidity, and then for 12 days at 80% relative humidity. Grading is carried out 12 days after the contamination, in comparison with the control plants. Under these conditions, good (at least 70%) or total protection is observed at a dose of 500ppm with the following compounds: 1 , 2, 4, 5, 11 , 12, 14, 15, 17, 19, 22, 23, 24, 25, 28, 29, 30, 31 , 33, 34, 38, 39 and 42.
  • Example C in vivo test on Sphaerotheca fuliginea (cucurbit powdery mildew).
  • the active ingredients tested are prepared by homogenization in a mixture of acetone/tween/water. This suspension is then diluted with water to obtain the desired active material concentration.
  • Gherkin plants (Vert petit de Paris variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 20°C/23°C, are treated at the 2 leaves stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.
  • Sphaerotheca fuliginea spores (100 000 spores per ml).
  • the spores are collected from a contaminated plants
  • the contaminated gherkin plants are incubated at about 20°C/25°C and at
  • Example D in vivo test on Mycosphaerella graminicola (Wheat Leaf Spot)
  • the active ingredients tested are prepared by homogenization in a mixture of acetone/tween/DMSO, then diluted with water to obtain the desired active material concentration.
  • Wheat plants (Scipion variety), sown on a 50/50 peat soil-pozzolana substrate in starter cups and grown at 12 0 C, are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material. After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Mycosphaerella graminicola spores (500 000 spores per ml). The spores are collected from a 7-day-old culture. The contaminated wheat plants are incubated for 72 hours at 18 0 C and at 100% relative humidity, and then for 21 to 28 days at 90% relative humidity. Grading (% of efficacy) is carried out 21 to 28 days after the contamination, in comparison with the control plants.
  • Example E In vivo comparative test on Peronospora parasitica (Crucifer downy mildew) Cabbage plants (Eminence variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-2O 0 C, are treated at the cotyledon stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material. After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Peronospora parasitica spores (50 000 spores per ml). The spores are collected from infected plant. The contaminated cabbage plants are incubated for 5 days at 2O 0 C, under a humid atmosphere. Grading is carried out 5 days after the contamination, in comparison with the control plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pyrrole Compounds (AREA)

Abstract

The present invention relates to N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives of formula (I) wherein A, Z1, Z2, Z3, X, n, Y and m represent various substituents, their process of preparation, preparation intermediate compounds, their use as fungicide active agents, particularly in the form of fungicide compositions and methods for the control of phytopathogenic fungi, notably of plants, using these compounds or compositions.

Description

FUNGICIDE N-CYCLOALKYL-N-BIPHENYLMETHYL-CARBOXAMIDE DERIVATIVES
DESCRIPTION
The present invention relates to N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives, their process of preparation, preparation intermediate compounds, their use as fungicide active agents, particularly in the form of fungicide compositions and methods for the control of phytopathogenic fungi, notably of plants, using these compounds or compositions.
In international patent application WO-2002/083647 certain fungicidal and insecticidal N- biphenylmethyl-carboxamide derivatives are generically embraced in a broad disclosure of numerous compounds of the following formula:
Figure imgf000002_0001
wherein R1 can represent C-ι-C5-alkyl, R2 can represent C-ι-C5-alkyl or the like, R3 can represent hydrogen or C-ι-C3-alkyl and X can represent various substituents among which hydrogen, halogen or C-ι-C3-alkyl. However, this document does not claim compounds wherein the nitrogen atom of the carboxamide residue can be substituted by a cycloalkyl group.
In international patent application WO- 1994/05642 certain fungicidal and insecticidal N- biphenylmethyl-carboxamide derivatives are generically embraced in a broad disclosure of numerous compounds of the following formula:
Figure imgf000002_0002
wherein R1, R2, R3 and R4 can represent hydrogen, C-ι-C4-alkyl, C3-C7-cycloalkyl or the like, X can represent oxygen, Y can be a direct bond and R5 can represent a phenyl group . However, there is no disclosure in this document of any compound including a non-fused 5-membered heterocyclic carboxamide or a cycloalkyl linked to the nitrogen atom of the carboxamide residue. In international patent application WO-2007/087906 certain fungicidal N-benzyl-carboxamide derivatives are generically embraced in a broad disclosure of numerous compounds of the following formula:
Figure imgf000003_0001
wherein A represents a carbo-linked, unsaturated or partially saturated, 5-membered heterocyclyl group, Z1 represents C3-C7-cycloalkyl, Z2 and Z3 can represent hydrogen, Ci-C8- alkyl, C3-C7-cycloalkyl or the like, n represents at least 1 and X can represent various substituents. However, this document does not specifically disclose nor suggest selecting such compounds wherein X can be a phenyl group.
It is always of high-interest in agriculture to use novel pesticide compounds in order to avoid or to control the development of resistant strains to the active ingredients. It is also of high-interest to use novel compounds being more active than those already known, with the aim of decreasing the amounts of active compound to be used, whilst at the same time maintaining effectiveness at least equivalent to the already known compounds. We have now found a new family of compounds that possess the above mentioned effects or advantages.
Accordingly, the present invention provides N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives of formula (I)
Figure imgf000003_0002
(I) wherein
• A represents a carbo-linked, unsaturated or partially saturated, 5-membered heterocyclyl group that can be substituted by up to four groups R ;
• Z1 represents a non-substituted C3-C7-cycloalkyl or a C3-C7-cycloalkyl substituted by up to 10 atoms or groups that can be the same or different and that can be selected in the list consisting of halogen atoms ; cyano ; C-ι-C8-alkyl ; C-ι-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkoxy ; C1-C8- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkoxycarbonyl ; d-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylaminocarbonyl ; or di-d-C8- alkylaminocarbonyl ;
• Z2 and Z3, that can be the same or different, represent a hydrogen atom ; C-ι-C8-alkyl ; C2-C8-alkenyl ; C2-C8-alkynyl ; cyano ; nitro ; a halogen atom ; d-C8-alkoxy ; C2 C8- alkenyloxy ; C2-C8-alkynyloxy ; C3-C7-cycloalkyl ; Ci-C8-alkylsulphenyl ; amino ; Ci-C8- alkylamino ; di-Ci-C8-alkylamino ; Ci-C8-alkoxycarbonyl ; Ci-C8-alkylcarbamoyl ; di-d- C8-alkylcarbamoyl ; N-Ci-C8-alkyl-Ci-C8-alkoxycarbamoyl ; or
Z2 and Z3 together with the carbon atom to that they are linked can form a substituted or non substituted C3-C7-cycloalkyl ;
• X and Y independently represent a halogen atom ; nitro ; cyano ; isonitrile ; hydroxyl ; sulfanyl ; amino ; pentafluoro-λ6-sulfanyl ; Ci-C8-alkyl ; Ci-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-alkylamino ; di-d-C8- alkylamino ; Ci-C8-alkoxy ; Ci-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-alkoxy-Ci-C8-alkyl ; d-C8-alkoxy-d-C8- alkoxy ; Ci-C8-alkylsulphanyl ; Ci-C8-halogenoalkylsulphanyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkenyl ; C2-C8-halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkynyl ; C2- C8-halogenoalkynyl comprising up to 9 halogen atoms that can be the same or different C2-C8-alkenyloxy ; C2-C8-halogenoalkenyloxy comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkynyloxy ; C2-C8-halogenoalkynyloxy comprising up to 9 halogen atoms that can be the same or different ; C3-C7-cycloalkyl ; C3-C7- cycloalkyl-d-C8-alkyl ; C3-C7-cycloalkyl-C2-C8-alkenyl ; C3-C7-cycloalkyl-C2-C8-alkynyl ; C3-C7-halogenocycloalkyl comprising up to 9 halogen atoms that can be the same or different ; C3-C7-cycloalkyl-C3-C7-cycloalkyl ; C-ι-C8-alkyl-C3-C7-cycloalkyl ; C6-C14- bicycloalkyl ; formyl ; formyloxy ; formylamino ; carboxy ; carbamoyl ; N- hydroxycarbamoyl ; carbamate ; (hydroxyimino)-Ci-C8-alkyl ; d-Cs-alkylcarbonyl ; d-
C8-halogenoalkylcarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylcarbamoyl ; di-d-Cs-alkylcarbamoyl ; N-d-Cs-alkyloxycarbamoyl ; Ci-C8-alkoxycarbamoyl ; N-d-C8-alkyl-d-C8-alkoxycarbamoyl ; Ci-C8-alkoxycarbonyl ; d-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylaminocarbonyl ; di-d-Cs-alkylaminocarbonyl ; CrC8- alkylcarbonyloxy ; d-Cs-halogenoalkylcarbonyloxy comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylcarbonylamino ; Ci-C8- halogenoalkylcarbonylamino comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylaminocarbonyloxy ; di-d-Cs-alkylaminocarbonyloxy ; Ci-C8- alkyloxycarbonyloxy, Ci-C8-alkylsulphenyl ; Ci-C8-halogenoalkylsulphenyl comprising up to 9 halogen atoms that can be the same or different; Ci-C8-alkylsulphinyl; Ci-C8- halogenoalkylsulphinyl comprising up to 9 halogen atoms that can be the same or different; Ci-C8-alkylsulphonyl; Ci-C8-halogenoalkylsulphonyl comprising up to 9 halogen atoms that can be the same or different; d-C8-alkoxyimino; (C1-C8- alkoxyimino)-d-C8-alkyl; (C2-C8-alkenyloxyimino)-d-C8-alkyl; (C2-C8-alkynyloxyimino)- d-C8-alkyl; (benzyloxyimino)-d-C8-alkyl ; tri(d-C8-alkyl)silyl ; tri(d-C8-alkyl)silyl-d-C8- alkyl ; benzyloxy that can be substituted by up to 5 groups Q ; benzylsulfanyl that can be substituted by up to 5 groups Q ; benzylamino that can be substituted by up to 5 groups Q ; aryl that can be substituted by up to 5 groups Q ; aryloxy that can be substituted by up to 5 groups Q ; arylamino that can be substituted by up to 5 groups
Q ; arylsulfanyl that can be substituted by up to 5 groups Q ; aryl-d-C8-alkyl that can be substituted by up to 5 groups Q ; aryl-C2-C8-alkenyl that can be substituted by up to 5 groups Q ; aryl-C2-C8-alkynyl that can be substituted by up to 5 groups Q ; aryl-C3-C7- cycloalkyl that can be substituted by up to 5 groups Q ; pyridinyl that can be substituted by up to 4 groups Q and pyridinyloxy that can be substituted by up to 4 groups Q ; or two substituents X together with the consecutive carbon atoms to that they are linked can form a 5- or 6-membered, saturated, carbo- or hetero-cycle comprising up to 3 heteroatoms fused with the phenyl ring to that the two substituent X are linked, that can be substituted by up to 4 groups Q that can be the same or different ; or two substituents Y together with the consecutive carbon atoms to that they are linked can form a 5- or 6-membered, saturated, carbo- or hetero-cycle comprising up to 3 heteroatoms fused with the phenyl ring to that the two substituent X are linked, that can be substituted by up to 4 groups Q that can be the same or different ;
• n represents 0, 1 , 2, 3 or 4 ;
• m represents 0, 1 , 2, 3, 4 or 5 ;
• R independently represents a hydrogen atom ; halogen atom ; cyano ; isonitrile ; nitro ; amino ; sulfanyl ; pentafluoro-λ6-sulfanyl ; Ci-C8-alkylamino ; di-Ci-C8-alkylamino ; tri(Ci-C8-alkyl)silyl ; Ci-C8-alkylsulfanyl ; Ci-C8-halogenoalkylsulfanyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-alkyl ; Ci-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkenyl ; C2- C8-halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkynyl ; C2-C8-halogenoalkynyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-alkoxy ; Ci-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; C2 C8-alkenyloxy ; C2-C8-alkynyloxy ; C3-C7-cycloalkyl ; C3-C7-cycloalkyl-Ci-C8-alkyl ; Ci-C8-alkylsulphinyl ; C1-C8- alkylsulphonyl ; d-C8alkoxyimino ; (C-ι-C8-alkoxyimino)-C-ι-C8-alkyl ; (benzyloxyimino)- d-C8-alkyl ; aryloxy ; benzyloxy ; benzylsulfanyl ; benzylamino ; aryl ; halogenoaryloxy comprising up to 9 halogen atoms that can be the same or different ; C1-C8- alkylcarbonyl ; d-Cs-halogenoalkylcarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkoxycarbonyl ; d-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; C1-C8- alkylaminocarbonyl ; di-d-Cs-alkylaminocarbonyl ;
• Q independently represents a halogen atom ; cyano ; isonitrile ; nitro ; d-C8-alkyl ; C2- C8-alkenyl ; C2-C8-alkynyl ; d-C8-alkoxy ; d-C8-alkoxy-d-C8-alkyl ; d-C8-alkoxy-d- C8-alkoxy ; d-C8-alkylsulphanyl ; d-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-halogenoalkynyl comprising up to 9 halogen atoms that can be the same or different ; d-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; d-C8-halogenoalkoxy-d-C8- alkyl comprising up to 9 halogen atoms that can be the same or different ; tri(d- C8)alkylsilyl and tri(C1-C8)alkylsilyl-C1-C8-alkyl ;
as well as salts, N-oxides, metallic complexes, metalloidic complexes and optically active or geometric isomers thereof ; with the exclusion of N-cyclopropyl-N-[(6-methoxybiphenyl-3- yl)methyl]isoxazole-5-carboxamide.
Any of the compounds according to the invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound. The invention thus relates equally to all the optical isomers and to their racemic or scalemic mixtures (the term "scalemic" denotes a mixture of enantiomers in different proportions)and to the mixtures of all the possible stereoisomers, in all proportions. The diastereoisomers and/or the optical isomers can be separated according to the methods that are known per se by the man ordinary skilled in the art.
Any of the compounds according to the invention can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound. The invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions. The geometric isomers can be separated according to general methods that are known per se by the man ordinary skilled in the art.
For the compounds according to the invention, the following generic terms are generally used with the following meanings:
• halogen means either one of fluorine, bromine, chlorine or iodine ;
• heteroatom can be nitrogen, oxygen or sulfur ;
• any alkyl group, alkenyl group or alkynyl group can be straight or branched ;
• the term aryl means phenyl or naphthyl • in the case of an amino group or the amino moiety of any other amino-containing group, substituted by two substituents that can be the same or different, the two substituents together with the nitrogen to that they are attached can form a heterocyclyl group, preferably a 5 to 7-membered heterocyclyl group, that can be substituted and can contain other hetero atoms, for example morpholino or piperidinyl.
Preferred compounds according to the invention are compounds of formula (I) wherein A is selected in the list consisting of: - a heterocycle of formula (A1)
Figure imgf000007_0001
(A1) wherein :
R1 to R3 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1-C5- alkyl ; C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C5-alkoxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A2)
Figure imgf000008_0001
wherein :
R4 to R6 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1-C5- alkyl ; C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C5-alkoxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A3)
Figure imgf000008_0002
(A3) wherein :
R7 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-alkoxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; R8 represents a hydrogen atom or a d-C5-alkyl ;
- a heterocycle of formula (A4)
Figure imgf000008_0003
wherein :
R9 to R11 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1-C5- alkyl ; amino ; Ci-C5-alkoxy ; Ci-C5-alkylsulphanyl ; Ci-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or Ci-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; - a heterocycle of formula (A5)
Figure imgf000009_0001
wherein :
R12 and R13 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl ; d-C5-alkoxy ; amino ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; R14 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-alkoxy ; amino ; C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A6)
Figure imgf000009_0002
(A6) wherein :
R15 represents a hydrogen atom ; a halogen atom ; a cyano ; d-C5-alkyl ; d-C5-alkoxy ; C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R16 and R18 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkoxycarbonyl ; d-C5-alkyl ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R17 represent a hydrogen atom or d-C5-alkyl ;
- a heterocycle of formula (A7)
Figure imgf000010_0001
wherein :
R19 represents a hydrogen atom or a C-ι-C5-alkyl
R20 to R22 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1-
C5-alkyl or C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A8)
Figure imgf000010_0002
wherein :
R23 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R24 represents a hydrogen atom or d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A9)
Figure imgf000010_0003
wherein :
R25 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R26 represents a hydrogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; - a heterocycle of formula (A 10\ )
Figure imgf000011_0001
wherein : R27 represents a hydrogen atom ; a halogen atom ; C-ι-C5-alkyl or C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R28 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C5-alkylamino or di(Ci-C5-alkyl)amino ;
- a heterocycle of formula (A 11 \ )
Figure imgf000011_0002
wherein :
R ,29 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-alkoxy ; C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R30 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; C-ι-C5-alkylamino or di(C-ι-C5-alkyl)amino ;
- a heterocycle of formula (A 12\ )
Figure imgf000011_0003
(A1O wherein :
R31 represents a hydrogen atom or a d-C5-alkyl
R32 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R33 represents a hydrogen atom ; a halogen atom ; a nitro ; d-C5-alkyl ; d-C5-alkoxy ; C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A )
Figure imgf000012_0001
wherein :
R34 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; C3-C5-cycloalkyl ; C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C1-C5- alkoxy ; C2-C5-alkynyloxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
R35 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; a cyano ; d-C5-alkoxy ; C1-C5- alkylsulphanyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C5-alkylannino or di(d-C5-alkyl)annino ;
R36 represents a hydrogen atom or d-C5-alkyl ;
-a heterocycle of formula (A14)
Figure imgf000012_0002
(A14) wherein : R37 and R38 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-alkoxy or a CrC5- alkylsulphanyl ;
R ,39 represents a hydrogen atom or d-C5-alkyl
- a heterocycle of formula (A 15\ )
Figure imgf000013_0001
(A15) wherein : R40 and R41 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A16)
Figure imgf000013_0002
(A16) wherein :
R42 and R43 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or amino ;
-a heterocycle of formula (A )
Figure imgf000013_0003
wherein : R44 and R45 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A18)
Figure imgf000014_0001
(A18) wherein : R47 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R46 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-halogen comprising up to 9 halogen atoms that can be the same or different or d-C5-alkylsulfanyl ;
- a heterocycle of formula (A19)
Figure imgf000014_0002
(A19) wherein :
R49 and R48 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl ; d-C5-alkoxy ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A20)
Figure imgf000014_0003
(A20) wherein : R50 and R51 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl ; d-C5-alkoxy ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
-a heterocycle of formula (A21)
Figure imgf000015_0001
(A21) wherein : R52 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different.
-a heterocycle of formula (A22)
Figure imgf000015_0002
(A22) wherein :
R53 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different.
-a heterocycle of formula (A23)
Figure imgf000015_0003
(A23) wherein : R54 and R56 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R55 represents a hydrogen atom or d-C5-alkyl ;
-a heterocycle of formula (A24)
Figure imgf000016_0001
(A24) wherein : R57 and R59 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R58 represents a hydrogen atom or d-C5-alkyl ;
-a heterocycle of formula (A25)
Figure imgf000016_0002
(A25) wherein :
R60 and R61 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R62 represents a hydrogen atom or d-C5-alkyl ;
-a heterocycle of formula (A26)
Figure imgf000017_0001
(A26) wherein :
R65 represents a hydrogen atom ; a halogen atom ; C-ι-C5-alkyl ; C3-C5-cycloalkyl ; C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C1-C5- alkoxy ; C2-C5-alkynyloxy or C-ι-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
R63 represents a hydrogen atom ; a halogen atom ; C-ι-C5-alkyl ; a cyano ; C-ι-C5-alkoxy ; C1-C5- alkylsulphanyl ; C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C-ι-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; C-ι-C5-alkylamino or di(C-ι-C5-alkyl)amino ; R64 represents a hydrogen atom or C-ι-C5-alkyl.
More preferred compounds according to the invention are compounds of formula (I) wherein A is selected in the list consisting of A2 ; A6 ; A10 and A13 as herein-defined.
Even more preferred compounds are compounds of formula (I) wherein A represents A13 wherein R34 represents a C-ι-C5-alkyl, C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; or C-ι-C5-alkoxy ; R35 represents a hydrogen atom or a halogen atom and R36 represents a C-ι-C5-alkyl.
Other preferred compounds according to the invention are compounds of formula (I) wherein Z1 represents a C3-C7 cycloalkyl substituted by up to 10 groups or atoms that can be the same or different and that can be selected in the list consisting of halogen atoms ; C-ι-C8-alkyl ; C1-C8- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C1-C8- alkoxy or C-ι-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; more preferably Z1 represents a non-substituted C3-C7-cycloalkyl ; even more preferably Z1 represents cyclopropyl.
Other preferred compounds according to the invention are compounds of formula (I) wherein X independently represents a halogen atom ; C-ι-C8-alkyl ; C-ι-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; tri(d-C8-alkyl)silyl ; Ci-C8-alkoxy or Ci-C8- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different. Other more preferred compounds according to the invention are compounds of formula (I) wherein two consecutive substituents X together with the phenyl ring form a substituted or non substituted 1 ,3-benzodioxolyl ; 1 ,2,3,4-tetrahydro-quinoxalinyl ; 3,4-dihydro-2H-1 ,4- benzoxazinyl ; 1 ,4-benzodioxanyl ; indanyl ; 2,3-dihydrobenzofuranyl ; or indolinyl.
Other preferred compounds according to the invention are compounds of formula (I) wherein Y independently represents a halogen atom ; cyano ; d-C8-alkyl ; d-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; or (C-ι-C8-alkoxyimino)- d-C8-alkyl. Other more preferred compounds according to the invention are compounds of formula (I) wherein two consecutive substituents Y together with the phenyl ring form a substituted or non substituted 1 ,3-benzodioxolyl ; 1 ,2,3,4-tetrahydro-quinoxalinyl ; 3,4-dihydro-2H-1 ,4- benzoxazinyl ; 1 ,4-benzodioxanyl ; indanyl ; 2,3-dihydrobenzofuranyl ; or indolinyl.
Other preferred compounds according to the invention are compounds of formula (I) wherein R independently represents a hydrogen atom ; halogen atom ; cyano ; Ci-C8-alkylamino ; di-d- C8-alkylamino ; tri(Ci-C8-alkyl)silyl ; Ci-C8-alkyl ; Ci-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-alkoxy ; Ci-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-alkylsulfanyl ; amino, hydroxyl ; nitro ; Ci-C8-alkoxycarbonyl ; or C2-C8-alkynyloxy.
The above mentioned preferences with regard to the substituents of the compounds according to the invention can be combined in various manners. These combinations of preferred features thus provide sub-classes of compounds according to the invention. Examples of such subclasses of preferred compounds according to the invention can be combined: preferred features of A with preferred features of Z1, Z2, Z3, X, Y, n, m, R and Q ; preferred features of Z1 with preferred features of A, Z2, Z3, X, Y, n, m, R and Q ; preferred features of Z2 with preferred features of A, Z1, Z3, X, Y, n, m, R and Q ; - preferred features of Z3 with preferred features of A, Z1, Z2, X, Y, n, m, R and Q ; preferred features of X with preferred features of A, Z1, Z2, Z3, Y, n, m, R and Q ; preferred features of Y with preferred features of A, Z1, Z2, Z3, X, n, m, R and Q ; preferred features of n with preferred features of A, Z1, Z2, Z3, X, Y, m, R and Q ; preferred features of m with preferred features of A, Z1, Z2, Z3, X, Y, n, R and Q ; - preferred features of R with preferred features of A, Z1, Z2, Z3, X, Y, n m and Q ; preferred features of Q with preferred features of A, Z1, Z2, Z3, X, Y, n, m and R. In these combinations of preferred features of the substituents of the compounds according to the invention, the said preferred features can also be selected among the more preferred features of each of A, Z1, Z2, Z3, X, Y, n, m, R and Q so as to form most preferred subclasses of compounds according to the invention.
The present invention also relates to a process for the preparation of compounds of formula (I). Thus according to a further aspect of the present invention, there is provided a process P1 for the preparation of a compound of formula (I) as illustrated by the following reaction scheme:
Figure imgf000019_0001
Process P1 wherein
• A, Z1 to Z3, X, Y, n and m are as herein-defined ;
• U1 represents a halogen atom or a leaving group.
In process P1 according to the invention, step 1 can be performed if appropriate in the presence of a solvent and if appropriate in the presence of an acid binder.
N-cycloalkyl-amine derivatives of formula (II) are known or can be prepared by known processes such as reductive amination of aldehyde or ketone (Bioorganics and Medicinal Chemistry Letters, 2006, p 2014 synthesis of compounds 7 and 8), or reduction of imines (Tetrahedron, 2005, p 11689), or nucleophilic substitution of halogen, mesylate or tosylate (Journal of Medicinal Chemistry, 2002, p 3887 preparation of intermediate for compound 28).
Carboxylic acid derivatives of formula (III) are known or can be prepared by known processes (WO-93/11117 ; EP-545 099 ; Nucleosides & Nucleotides, 1987, p737-759, Bioorg. Med. Chem., 2002, p2105-2108).
Suitable acid binders for carrying out process P1 according to the invention are in each case all inorganic and organic bases that are customary for such reactions. Preference is given to using alkaline earth metal, alkali metal hydride, alkali metal hydroxides or alkali metal alkoxides, such as sodium hydroxide, sodium hydride, calcium hydroxide, potassium hydroxide, potassium tert- butoxide or other ammonium hydroxide, alkali metal carbonates, such as cesium carbonate, sodium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate, alkali metal or alkaline earth metal acetates, such as sodium acetate, potassium acetate, calcium acetateand also tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, tributylamine, N,N-dimethylaniline, pyridine, N-methylpiperidine, N,N-dimethylaminopyridine, diazabicyclooctane (DABCO), diazabicyclononene (DBN) or diazabicycloundecene (DBU). It is also possible to work in the absence of an additional condensing agent or to employ an excess of the amine component, so that it simultaneously acts as acid binder agent.
Suitable solvents for carrying out process P1 according to the invention are in each case all customary inert organic solvents. Preference is given to using optionally halogenated aliphatic, alicyclic or aromatic hydrocarbons, such as petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin ; chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichlorethane or trichlorethane ; ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1 ,2-dimethoxyethane, 1 ,2-diethoxyethane or anisole ; nitriles, such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile ; amides, such as N, N- dimethylformamide, N,N-dimethylacetamide, N-methylformanilide, N-methylpyrrolidone or hexamethylphosphoric triamide ; esters, such as methyl acetate or ethyl acetate, sulphoxides, such as dimethyl sulphoxide, or sulphones, such as sulpholane.
When carrying out process P1 according to the invention, the reaction temperatures can independently be varied within a relatively wide range. Generally, processes according to the invention are carried out at temperatures between O0C and 16O0C, preferably between 1O0C and 12O0C. A way to control the temperature for the processes according to the invention is to use micro-wave technology.
Process P1 according to the invention is generally independently carried out under atmospheric pressure. However, in each case, it is also possible to operate under elevated or reduced pressure.
When carrying out step 1 of process P1 according to the invention, generally 1 mol or other an excess of the acid derivative of formula (III) and from 1 to 3 mol of acid binder are employed per mole of amine of formula (II). It is also possible to employ the reaction components in other ratios. Work-up is carried out by customary methods. Generally, the reaction mixture is treated with water and the organic phase is separated off and, after drying, concentrated under reduced pressure. If appropriate, the remaining residue can be freed by customary methods, such as chromatography or recrystallization, from any impurities that can still be present.
Thus according to a further aspect of the present invention, there is provided a second process P2 for the preparation of a compound of formula (I) as illustrated by the following reaction scheme:
Figure imgf000021_0001
(IV) (V) (I)
Process P2 wherein
A, Z1 to Z3, X, Y, n and m are as herein-defined ;
U2 represents a halogen atom such as chlorine, bromine or iodine ;
W represents a boron derivative such as a boronic acid, a boronic ester or a potassium trifluoroborate.
Process P2 can be performed in the presence of a palladium catalyst and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand and in the presence of a base and if appropriate in the presence of a solvent.
Compounds of formula (IV) can be prepared by known processes (WO-2007/087906) and the preparation of compounds of formula (V) is well known.
Process P2 according to the invention can be carried out in the presence of a catalyst, such as a metal salt or complex. Suitable metal derivatives for this purpose are based on palladium. Suitable metal salts or complexes for this purpose are palladium chloride, palladium acetate, tetrakis(triphenylphosphine)palladium, bis(dibenzylideneacetone)palladium , bis(triphenyl phosphine)palladium dichloride or 1 ,1'-bis(diphenylphosphino) ferrocenepalladium(ll) chloride. It is also possible to generate a palladium complex in the reaction mixture by separate addition to the reaction of a palladium salt and a ligand or salt, such as triethylphosphine, tri-tert- butylphosphine, tricyclohexylphosphine, 2-(dicyclohexylphosphine)biphenyl, 2-(di-tert- butylphosphine)biphenyl, 2-(dicyclohexylphosphine)-2'-(N,N-dimethylamino)biphenyl, triphenyl- phosphine, tris-(o-tolyl)phosphine, sodium 3-(diphenylphosphino)benzenesulphonate, tris-2- (methoxyphenyl)-phosphine, 2,2'-bis(diphenylphosphine)-1 , 1 '-binaphthyl, 1 ,4-bis(diphenyl- phosphine)butane, 1 ,2-bis(diphenylphosphine)ethane, 1 ,4-bis(dicyclohexylphosphine)butane, 1 ,2-bis(dicyclohexylphosphine)ethane, 2-(dicyclohexylphosphine)-2'-(N,N-dimethylamino)- biphenyl, 1 ,1 '-bis(diphenylphosphino)ferrocene, (R)-(-)-1-[(S)-2-diphenylphosphino)- ferrocenyljethyldicyclohexylphosphine, tris-(2,4-tert-butylphenyl)phosphite or 1 ,3-bis(2,4,6- trimethylphenyl)imidazolium chloride.
It is also advantageous to choose the appropriate catalyst and/or ligand from commercial catalogues such as "Metal Catalysts for Organic Synthesis" by Strem Chemicals or "Phosphorous Ligands and Compounds" by Strem Chemicals.
Suitable bases for carrying out process P2 according to the invention can be inorganic and organic bases which are customary for such reactions. Preference is given to using alkaline earth metal or alkali metal hydroxides, such as sodium hydroxide, calcium hydroxide, potassium hydroxide or other ammonium hydroxide derivatives ; alkaline earth metal, alkali metal or ammonium fluorides such as potassium fluoride, cesium fluoride or tetrabutylammonium fluoride ; alkaline earth metal or alkali metal carbonates, such as sodium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate or cesium carbonate ; alkali metal or alkaline earth metal acetates, such as sodium acetate, potassium acetate or calcium acetate ; alkali metal alcoholates, such as potassium ter-butoxide or sodium ter-butoxide ; alkali metal phosphates, such as tri-potassium phosphate ; and also tertiary amines, such as trimethylamine, triethylamine, tributylamine, N,N-dimethylaniline, pyridine, N-methylpiperidine, N,N-dimethyl- aminopyridine, diazabicyclooctane (DABCO), diazabicyclononene (DBN) or diaza- bicycloundecene (DBU).
Suitable solvents for carrying out process P2 according to the invention can be customary inert organic solvents. Preference is given to using optionally halogen atomated aliphatic, alicyclic or aromatic hydrocarbons, such as petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin ; chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichlorethane or trichlorethane ; ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1 ,2-dimethoxyethane, 1 ,2-diethoxyethane or anisole ; nitriles, such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile ; amides, such as N, N- dimethylformannide, N,N-dimethylacetannide, N-methylformanilide, N-methylpyrrolidone or hexamethylphosphoric triamide ; esters, such as methyl acetate or ethyl acetate, sulphoxides, such as dimethyl sulphoxide, or sulphones, such as sulpholane.
It can also be advantageous, to carry out process P2 according to the invention, with a co- solvent such as water or an alcohol such as methanol, ethanol, propanol, i-propanol or t-butanol.
When carrying out process P2 according to the invention, the reaction temperatures can independently be varied within a relatively wide range. Generally, processes according to the invention are carried out at temperatures between O0C and 16O0C, preferably between 1O0C and 12O0C. A way to control the temperature for the processes according to the invention is to use micro-wave technology.
Process P2 according to the invention is generally independently carried out under atmospheric pressure. However, in each case, it is also possible to operate under elevated or reduced pressure.
When carrying out step 2 of process P2 according to the invention, 1 mol or an excess of the boron derivative of formula (V) and from 1 to 5 mol of base and from 0.01 to 20 mol percent of a palladium complex can be employed per mole of compound of formula (IV).
It is also possible to employ the reaction components in other ratios.
Work-up is carried out by customary methods. Generally, the reaction mixture is treated with water and the organic phase is separated off and, after drying, concentrated under reduced pressure. If appropriate, the remaining residue can be freed by customary methods, such as chromatography or recrystallization, from any impurities that can still be present.
Compounds according to the invention can be prepared according to the above described processes. It will nevertheless be understood that, on the basis of his general knowledge and of available publications, the skilled worker will be able to adapt these processes according to the specifics of each of the compounds according to the invention that is desired to be synthesized. Still in a further aspect, the present invention relates to compounds of formula (II) useful as intermediate compounds or materials for the process of preparation according to the invention. The present invention thus provides compounds of formula (II) :
Figure imgf000024_0001
(H) wherein Z2, Z3, X, Y, n and m are as her eeiinn--cdefined with the exclusion of N-(biphenyl-4- ylmethyl)cyclopropanamine and N-[1-(biphenyl-4-yl)ethyl] cyclopropanamine.
In a further aspect, the present invention also relates to a fungicide composition comprising an effective and non-phytotoxic amount of an active compound of formula (I).
The expression "effective and non-phytotoxic amount" means an amount of composition according to the invention that is sufficient to control or destroy the fungi present or liable to appear on the cropsand that does not entail any appreciable symptom of phytotoxicity for the said crops. Such an amount can vary within a wide range depending on the fungus to be controlled, the type of crop, the climatic conditions and the compounds included in the fungicide composition according to the invention. This amount can be determined by systematic field trials, that are within the capabilities of a person skilled in the art.
Thus, according to the invention, there is provided a fungicide composition comprising, as an active ingredient, an effective amount of a compound of formula (I) as herein defined and an agriculturally acceptable support, carrier or filler.
According to the invention, the term "support" denotes a natural or synthetic, organic or inorganic compound with that the active compound of formula (I) is combined or associated to make it easier to apply, notably to the parts of the plant. This support is thus generally inert and should be agriculturally acceptable. The support can be a solid or a liquid. Examples of suitable supports include clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol, organic solvents, mineral and plant oils and derivatives thereof. Mixtures of such supports can also be used.
The composition according to the invention can also comprise additional components. In particular, the composition can further comprise a surfactant. The surfactant can be an emulsifier, a dispersing agent or a wetting agent of ionic or non-ionic type or a mixture of such surfactants. Mention can be made, for example, of polyacrylic acid salts, lignosulphonic acid salts, phenolsulphonic or naphthalenesulphonic acid salts, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (in particular alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (in particular alkyl taurates), phosphoric esters of polyoxyethylated alcohols or phenols, fatty acid esters of polyolsand derivatives of the above compounds containing sulphate, sulphonate and phosphate functions. The presence of at least one surfactant is generally essential when the active compound and/or the inert support are water-insoluble and when the vector agent for the application is water. Preferably, surfactant content can be comprised from 5% to 40% by weight of the composition.
Optionally, additional components can also be included, e.g. protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents. More generally, the active compounds can be combined with any solid or liquid additive, that complies with the usual formulation techniques.
In general, the composition according to the invention can contain from 0.05 to 99% by weight of active compound, preferably 10 to 70% by weight.
Compositions according to the invention can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure),gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ULV) liquid, ultra low volume (ULV) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder. These compositions include not only compositions that are ready to be applied to the plant or seed to be treated by means of a suitable device, such as a spraying or dusting device, but also concentrated commercial compositions that must be diluted before application to the crop. The compounds according to the invention can also be mixed with one or more insecticide, fungicide, bactericide, attractant, acaricide or pheromone active substance or other compounds with biological activity. The mixtures thus obtained have normally a broadened spectrum of activity. The mixtures with other fungicide compounds are particularly advantageous.
Examples of suitable fungicide mixing partners can be selected in the following lists:
(1 ) Inhibitors of the nucleic acid synthesis, for example benalaxyl, benalaxyl-M, bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, metalaxyl, metalaxyl-M, ofurace, oxadixyl and oxolinic acid.
(2) Inhibitors of the mitosis and cell division, for example benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fuberidazole, pencycuron, thiabendazole, thiophanate, thiophanate- methyl and zoxamide.
(3) Inhibitors of the respiration, for example diflumetorim as Cl-respiration inhibitor; bixafen, boscalid, carboxin, fenfuram, flutolanil, fluopyram, furametpyr, furmecyclox, isopyrazam (mixture of syn-epimeric racemate 1 RS, 4SR, 9RS and anti-epimeric racemate 1 RS,4SR,9SR), isopyrazam (syn epimeric racemate 1 RS,4SR,9RS), isopyrazam (syn-epimeric enantiomer 1 R,4S,9R), isopyrazam (syn-epimeric enantiomer 1S,4R,9S), isopyrazam (anti-epimeric racemate 1 RS, 4SR, 9SR), isopyrazam (anti-epimeric enantiomer 1 R,4S,9S), isopyrazam (anti- epimeric enantiomer 1S,4R,9R), mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, thifluzamide as Cll-respiration inhibitor; amisulbrom, azoxystrobin, cyazofamid, dimoxystrobin, enestroburin, famoxadone, fenamidone, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyraoxystrobin, pyrametostrobin, pyribencarb, trifloxystrobin as Clll-respiration inhibitor.
(4) Compounds capable to act as an uncoupler, like for example binapacryl, dinocap, fluazinam and meptyldinocap.
(5) Inhibitors of the ATP production, for example fentin acetate, fentin chloride, fentin hydroxide, and silthiofam.
(6) Inhibitors of the amino acid and/or protein biosynthesis, for example andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim and pyrimethanil.
(7) Inhibitors of the signal transduction, for example fenpiclonil, fludioxonil and quinoxyfen. (8) Inhibitors of the lipid and membrane synthesis, for example biphenyl, chlozolinate, edifenphos, etridiazole, iodocarb, iprobenfos, iprodione, isoprothiolane, procymidone, propamocarb, propamocarb hydrochloride, pyrazophos, tolclofos-m ethyl and vinclozolin.
(9) Inhibitors of the ergosterol biosynthesis, for example aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifine, nuarimol, oxpoconazole, paclobutrazol, pefurazoate, penconazole, piperalin, prochloraz, propiconazole, prothioconazole, pyributicarb, pyrifenox, quinconazole, simeconazole, spiroxamine, tebuconazole, terbinafine, tetraconazole, triadimefon, triadimenol, tridemorph, triflumizole, triforine, triticonazole, uniconazole, viniconazole and voriconazole.
(10) Inhibitors of the cell wall synthesis, for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, prothiocarb, validamycin A, and valifenalate.
(11 ) Inhibitors of the melanine biosynthesis, for example carpropamid, diclocymet, fenoxanil, phthalide, pyroquilon and tricyclazole.
(12) Compounds capable to induce a host defence, like for example acibenzolar-S-methyl, probenazole, and tiadinil.
(13) Compounds capable to have a multisite action, like for example bordeaux mixture, captafol, captan, chlorothalonil, copper naphthenate, copper oxide, copper oxychloride, copper preparations such as copper hydroxide, copper sulphate, dichlofluanid, dithianon, dodine, dodine free base, ferbam, fluorofolpet, folpet, guazatine, guazatine acetate, iminoctadine, iminoctadine albesilate, iminoctadine triacetate, mancopper, mancozeb, maneb, metiram, metiram zinc, oxine-copper, propamidine, propineb, sulphur and sulphur preparations including calcium polysulphide, thiram, tolylfluanid, zineb and ziram.
(14) Further compounds like for example 2,3-dibutyl-6-chlorothieno[2,3-d]pyrimidin-4(3H)-one, ethyl (2Z)-3-amino-2-cyano-3-phenylprop-2-enoate, N-[2-(1 ,3-dimethylbutyl)phenyl]-5-fluoro-1 ,3- dimethyl-1 H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-(3',4',5'-trifluorobiphenyl-2- yl)-1 H-pyrazole-4-carboxamide, 3-(difluoromethyl)-N-[4-fluoro-2-(1 ,1 ,2,3,3,3- hexafluoropropoxy)phenyl]-1-methyl-1 H-pyrazole-4-carboxamide, (2E)-2-(2-{[6-(3-chloro-2- methylphenoxy)-5-fluoropyrimidin-4-yl]oxy}phenyl)-2-(methoxyimino)-N-methylethanamide, (2E)-2-{2-[({[(2E,3E)-4-(2,6-dichlorophenyl)but-3-en-2-ylidene]amino}oxy)methyl]phenyl}-2- (methoxyinnino)-N-nnethylethanannide, 2-chloro-N-(1 ,1 ,3-trimethyl-2,3-dihydro-1 H-inden-4- yl)pyridine-3-carboxamide, N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-(formylamino)-2- hydroxybenzamide, 5-methoxy-2-nnethyl-4-(2-{[({(1 E)-1-[3-
(trifluoronnethyl)phenyl]ethylidene}annino)oxy]nnethyl}phenyl)-2,4-dihydro-3H-1 ,2,4-triazol-3-one, (2E)-2-(methoxyimino)-N-methyl-2-(2-{[({(1 E)-1-[3- (trifluoromethyl)phenyl]ethylidene}annino)oxy]nnethyl}phenyl)ethanannide, (2E)-2- (methoxyimino)-N-methyl-2-{2-[(E)-({1-[3-
(trifluoromethyl)phenyl]ethoxy}imino)methyl]phenyl}ethanamide, (2E)-2-{2-[({[(1 E)-1-(3-{[(E)-1- fluoro-2-phenylethenyl]oxy}phenyl)ethylidene]amino}oxy)nnethyl]phenyl}-2-(nnethoxyinnino)-N- methylethanamide, i^-chlorophenyl^^i H-i ^^-triazol-i-y^cycloheptanol, methyl 1-(2,2- dimethyl-2,3-dihydro-1 H-inden-1-yl)-1 H-innidazole-5-carboxylate, N-ethyl-N-methyl-N'-{2-methyl- 5-(trifluoromethyl)-4-[3-(trinnethylsilyl)propoxy]phenyl}innidofornnannide, N'-{5-(difluoromethyl)-2- methyl-4-[3-(trinnethylsilyl)propoxy]phenyl}-N-ethyl-N-nnethylinnidofornnannide, O-{1-[(4- methoxyphenoxy)methyl]-2,2-dimethylpropyl} I H-imidazole-1-carbothioate, N-[2-(4-{[3-(4- chlorophenyl)prop-2-yn-1-yl]oxy}-3-methoxyphenyl)ethyl]-N2-(nnethylsulfonyl)valinannide, 5- chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1 ,2,4]triazolo[1 ,5-a]pyrinnidine, 5- amino-1 ,3,4-thiadiazole-2-thiol, propamocarb-fosetyl, 1-[(4-methoxyphenoxy)nnethyl]-2,2- dimethylpropyl I H-imidazole-1-carboxylate, 1-methyl-N-[2-(1 ,1 ,2,2-tetrafluoroethoxy)phenyl]-3- (trifluoromethyl)-1 H-pyrazole-4-carboxannide, 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine, 2- butoxy-6-iodo-3-propyl-4H-chromen-4-one, 2-phenylphenol and salts, 3-(difluoromethyl)-1- methyl-N-[2-(1 ,1 ,2,2-tetrafluoroethoxy)phenyl]-1 H-pyrazole-4-carboxannide, 3,4,5- trichloropyridine-2,6-dicarbonitrile, 3-[5-(4-chlorophenyl)-2,3-dimethylisoxazolidin-3-yl]pyridine, 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, 4-(4-chlorophenyl)-5- (2,6-difluorophenyl)-3,6-dimethylpyridazine, quinolin-8-ol, quinolin-8-ol sulfate (2:1 ) (salt), tebufloquin, 5-methyl-6-octyl-3,7-dihydro[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-annine, 5-ethyl-6-octyl- 3,7-dihydro[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-amine, ametoctradin, benthiazole, bethoxazin, capsimycin, carvone, chinomethionat, chloroneb, cufraneb, cyflufenamid, cymoxanil, cyprosulfamide, dazomet, debacarb, dichlorophen, diclomezine, dicloran, difenzoquat, difenzoquat methylsulphate, diphenylamine, ecomate, ferimzone, flumetover, fluopicolide, fluoroimide, flusulfamide, flutianil, fosetyl-aluminium, fosetyl-calcium, fosetyl-sodium, hexachlorobenzene, irumamycin, isotianil, methasulfocarb, methyl (2E)-2-{2-[({cyclopropyl[(4- methoxyphenyl)imino]methyl}thio)methyl]phenyl}-3-methoxyacrylate, methyl isothiocyanate, metrafenone, (5-chloro-2-methoxy-4-methylpyridin-3-yl)(2,3,4-trimethoxy-6- methylphenyl)nnethanone, mildiomycin, tolnifanide, N-(4-chlorobenzyl)-3-[3-methoxy-4-(prop-2- yn-1-yloxy)phenyl]propanaimide, N-[(4-chlorophenyl)(cyano)methyl]-3-[3-nnethoxy-4-(prop-2-yn- 1-yloxy)phenyl]propanamide, N-[(5-bromo-3-chloropyridin-2-yl)methyl]-2,4-dichloropyridine-3- carboxamide, N-n-^-bromo-S-chloropyridin^-yOethyll^^-dichloropyridine-S-carboxamide, N- [1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2-fluoro-4-iodopyridine-3-carboxannide, N-{(Z)-
[(cyclopropylmethoxy)innino][6-(difluoronnethoxy)-2,3-difluorophenyl]nnethyl}-2-phenylacetannide, N-{(E)-[(cyclopropylmethoxy)innino][6-(difluoronnethoxy)-2,3-difluorophenyl]nnethyl}-2- phenylacetamide, natamycin, nickel dimethyldithiocarbamate, nitrothal-isopropyl, octhilinone, oxamocarb, oxyfenthiin, pentachlorophenol and salts, phenazine-1-carboxylic acid, phenothrin, phosphorous acid and its salts, propamocarb fosetylate, propanosine-sodium, proquinazid, pyrrolnitrine, quintozene, S-prop-2-en-1-yl 5-amino-2-(1-methylethyl)-4-(2-methylphenyl)-3-oxo- 2,3-dihydro-1 H-pyrazole-1-carbothioate, tecloftalam, tecnazene, triazoxide, trichlamide, 5- chloro-N'-phenyl-N'-prop-2-yn-1-ylthiophene-2-sulfonohydrazide, zarilamid, N-methyl-2-(1-{[5- methyl-3-(trifluoromethyl)-1 H-pyrazol-1-yl]acetyl}piperidin-4-yl)-N-[(1 R)-1 , 2,3,4- tetrahydronaphthalen-1-yl]-1 ,3-thiazole-4-carboxamide, N-methyl-2-(1-{[5-nnethyl-3-
(trifluoronnethyO-I H-pyrazol-i-yllacetylJpiperidin^-yO-N^I ^.S^-tetrahydronaphthalen-i-yO-I .S- thiazole-4-carboxamide, 3-(difluoromethyl)-N-[4-fluoro-2-(1 ,1 ,2,3,3,3-hexafluoropropoxy)phenyl]- 1-methyl-1 H-pyrazole-4-carboxannide and pentyl {6-[({[(1-methyl-1 H-tetrazol-5- yl)(phenyl)methylidene]amino}oxy)methyl]pyridin-2-yl}carbannate.
The composition according to the invention comprising a mixture of a compound of formula (I) with a bactericide compound can also be particularly advantageous. Examples of suitable bactericide mixing partners can be selected in the following list: bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.
The compounds of formula (I) and the fungicide composition according to the invention can be used to curatively or preventively control the phytopathogenic fungi of plants or crops. Thus, according to a further aspect of the invention, there is provided a method for curatively or preventively controlling the phytopathogenic fungi of plants or crops characterised in that a compound of formula (I) or a fungicide composition according to the invention is applied to the seed, the plant or to the fruit of the plant or to the soil wherein the plant is growing or wherein it is desired to grow. The method of treatment according to the invention can also be useful to treat propagation material such as tubers or rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants pricking out. This method of treatment can also be useful to treat roots. The method of treatment according to the invention can also be useful to treat the overground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruit of the concerned plant.
Among the plants that can be protected by the method according to the invention, mention can be made of cotton; flax; vine; fruit or vegetable crops such as Rosaceae sp. (for instance pip fruit such as apples and pears, but also stone fruit such as apricots, almonds and peaches), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for instance banana trees and plantins), Rubiaceae sp., Theaceae sp., Sterculiceae sp., Rutaceae sp. (for instance lemons oranges and grapefruit); Solanaceae sp. (for instance tomatoes), Liliaceae sp., Asteraceae sp. (for instance lettuces), Umbelliferae sp., Cruciferae sp., Chenopodiaceae sp., Cucurbitaceae sp., Papilionaceae sp. (for instance peas), Rosaceae sp. (for instance strawberries); major crops such as Graminae sp. (for instance maize, lawn or cereals such as wheat, rye, rice, barley and triticale), Asteraceae sp. (for instance sunflower), Cruciferae sp. (for instance colza), Fabacae sp. (for instance peanuts), Papilionaceae sp. (for instance soybean), Solanaceae sp. (for instance potatoes), Chenopodiaceae sp. (for instance beetroots), Elaeis sp. (for instance oil palm); horticultural and forest crops; as well as genetically modified homologues of these crops.
The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants in which a heterologous gene has been stably integrated into the genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, co suppression technology or RNA interference - RNAi - technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.
Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive ("synergistic") effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.
At certain application rates, the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted phytopathogenic fungi and/ or microorganisms and/or viruses. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted phytopathogenic fungi and/ or microorganisms and/or viruses, the treated plants display a substantial degree of resistance to these unwanted phytopathogenic fungi and/ or microorganisms and/or viruses. In the present case, unwanted phytopathogenic fungi and/ or microorganisms and/or viruses are to be understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).
Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids. Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozon exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stress factors. Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species (WO 1992/005251 , WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 and US 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 1989/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 1991/002069).
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
Herbicide-tolerant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221 , 370-371 ), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., Curr. Topics Plant Physiol. (1992), 7, 139-145), the genes encoding a Petunia EPSPS (Shah et al., Science (1986), 233, 478-481 ), a Tomato EPSPS (Gasser et al., J. Biol. Chem. (1988),263, 4280-4289), or an Eleusine EPSPS (WO 2001/66704). It can also be a mutated EPSPS as described in for example EP-A 0837944, WO 2000/066746, WO 2000/066747 or WO 2002/026995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 2001/024615 or WO 2003/013226. Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in US 5,561 ,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7,112,665. Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). Hydroxyphenylpyruvatedioxygenases are enzymes that catalyze the reaction in which para- hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD- inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated HPPD enzyme as described in WO 1996/038567, WO 1999/024585 and WO 1999/024586. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme prephenate dehydrogenase in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928.
Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described for example in Tranel and Wright, Weed Science (2002), 50, 700-712, but also, in US 5,605,011 , US 5,378,824, US 5,141 ,870, and US 5,013,659. The production of sulfo ny I urea- tolerant plants and imidazolinone-tolerant plants is described in US 5,605,011 ; US 5,013,659; US 5,141 ,870; US 5,767,361 ; US 5,731 ,180; US 5,304,732; US 4,761 ,373; US 5,331 ,107; US 5,928,937; and US 5,378,824; and international publication WO 1996/033270. Other imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351 , and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 2007/024782. Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5,084,082, for rice in WO 1997/41218, for sugar beet in US 5,773,702 and WO 1999/057965 , for lettuce in US 5,198,599, or for sunflower in WO 2001/065922. Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance. An "insect-resistant transgenic plant", as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:
1 ) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, updated by Crickmore et al. (2005) at the Bacillus thuringiensis toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g., proteins of the Cry protein classes CrylAb, CryiAc, Cry1 F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof; or
2) a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al., Nat. Biotechnol. (2001 ), 19, 668-72; Schnepf et al., Applied Environm. Microbiol. (2006), 71 , 1765-1774); or
3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1 ) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.1O5 protein produced by corn event MON98034 (WO 2007/027777); or
4) a protein of any one of 1 ) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604;
5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at: http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or
6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or β. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 1994/21795); or
7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1 ) above or a hybrid of the proteins in 2) above; or
8) a protein of any one of 1 ) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102.
Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 8. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 8, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:
a. plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose)polymerase (PARP) gene in the plant cells or plants as described in WO 2000/004173 or WO2006/045633 or PCT/EP07/004142.
b. plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells, as described e.g. in WO 2004/090140.
c. plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotinamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphoribosyltransferase as described e.g. in WO2006/032469 or WO 2006/133827 or PCT/EP07/002433.
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as :
1 ) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications. Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581 , WO 1996/27674, WO 1997/11188, WO 1997/26362, WO 1997/32985, WO 1997/42328, WO 1997/44472, WO 1997/45545, WO 1998/27212, WO 1998/40503, WO99/58688, WO 1999/58690, WO 1999/58654, WO
2000/008184, WO 2000/008185, WO 2000/008175, WO 2000/28052, WO 2000/77229, WO 2001/12782, WO 2001/12826, WO 2002/101059, WO 2003/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941 , WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 2000/22140,
WO 2006/063862, WO 2006/072603, WO 2002/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1 , EP 07090009.7, WO 2001/14569, WO 2002/79410, WO 2003/33540, WO 2004/078983, WO 2001/19975, WO 1995/26407, WO 1996/34968, WO 1998/20145, WO 1999/12950, WO 1999/66050, WO 1999/53072, US 6,734,341 , WO 2000/11 192, WO 1998/22604, WO 1998/32326, WO 2001/98509,
WO 2001/98509, WO 2005/002359, US 5,824,790, US 6,013,861 , WO 1994/004693, WO 1994/009144, WO 1994/11520, WO 1995/35026, WO 1997/20936.
2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP 0663956, WO 1996/001904, WO 1996/021023, WO 1998/039460, and WO 1999/024593, plants producing alpha 1 ,4 glucans as disclosed in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712,107, WO 1997/047806, WO 1997/047807, WO 1997/047808 and WO 2000/014249, plants producing alpha-1 ,6 branched alpha-1 ,4-glucans, as disclosed in WO 2000/73422, plants producing alternan, as disclosed in WO 2000/047727, EP 06077301.7, US 5,908,975 and EP 0728213,
3) transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006/304779, and WO 2005/012529.
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include: a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 1998/000549 b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO2004/053219 c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 2001/017333 d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO02/45485 e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g. through downregulation of fiberselective β 1 ,3-glucanase as described in WO2005/017157 f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acteylglucosaminetransferase gene including nodC and chitinsynthase genes as described in WO2006/136351
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation or by selection of plants contain a mutation imparting such altered oil characteristics and include: a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947 b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in US 6,270828, US 6,169,190 or US 5,965,755 c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in US 5,434,283
Particularly useful transgenic plants which may be treated according to the invention are plants which comprise one or more genes which encode one or more toxins, such as the following which are sold under the trade names YIELD GARD® (for example maize, cotton, soya beans), KnockOut® (for example maize), BiteGard® (for example maize), Bt-Xtra® (for example maize), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton), Nucotn 33B®(cotton), NatureGard® (for example maize), Protecta® and NewLeaf® (potato). Examples of herbicide- tolerant plants which may be mentioned are maize varieties, cotton varieties and soya bean varieties which are sold under the trade names Roundup Ready® (tolerance to glyphosate, for example maize, cotton, soya bean), Liberty Link® (tolerance to phosphinotricin, for example oilseed rape), IMI® (tolerance to imidazolinones) and STS® (tolerance to sulphonylureas, for example maize). Herbicide-resistant plants (plants bred in a conventional manner for herbicide tolerance) which may be mentioned include the varieties sold under the name Clearfield® (for example maize).
Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are listed for example in the databases from various national or regional regulatory agencies (see for example http://gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).
The composition according to the invention may also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means. Among the diseases of plants or crops that can be controlled by the method according to the invention, mention can be made of :
• Powdery mildew diseases such as : Blumeria diseases, caused for example by Blumeha graminis ;
Podosphaera diseases, caused for example by Podosphaera leucothcha ; Sphaerotheca diseases, caused for example by Sphaerotheca fuliginea ; Uncinula diseases, caused for example by Uncinula necator ;
• Rust diseases such as : Gymnosporangium diseases, caused for example by Gymnosporangium sabinae ;
Hemileia diseases, caused for example by Hemileia vastatrix ;
Phakopsora diseases, caused for example by Phakopsora pachyrhizi or Phakopsora meibomiae ;
Puccinia diseases, caused for example by Puccinia recondita ; Uromyces diseases, caused for example by Uromyces appendiculatus ;
• Oomycete diseases such as :
Albugo diseases caused for example by Albugo Candida;
Bremia diseases, caused for example by Bremia lactucae ;
Peronospora diseases, caused for example by Peronospora pisior P. brassicae ; Phytophthora diseases, caused for example by Phytophthora infestans ;
Plasmopara diseases, caused for example by Plasmopara viticola ;
Pseudoperonospora diseases, caused for example by Pseudoperonospora humuli or
Pseudoperonospora cubensis ;
Pythium diseases, caused for example by Pythium ultimum ; • Leafspot, leaf blotch and leaf blight diseases such as :
Alternaria diseases, caused for example by Alternaria solani ;
Cercospora diseases, caused for example by Cercospora beticola ;
Cladiosporum diseases, caused for example by Cladiosporium cucumerinum ;
Cochliobolus diseases, caused for example by Cochliobolus sativus ; Colletotrichum diseases, caused for example by Colletotrichum lindemuthanium ;
Cycloconium diseases, caused for example by Cycloconium oleaginum ;
Diaporthe diseases, caused for example by Diaporthe citri ;
Drechslera, Syn: Helminthosporium) or Cochliobolus miyabeanus;
Elsinoe diseases, caused for example by Elsinoe fawcettii ; Gloeosporium diseases, caused for example by Gloeospohum laeticolor ; Glomerella diseases, caused for example by Glomerella cingulata ;
Guignardia diseases, caused for example by Guignardia bidwelli ;
Leptosphaeria diseases, caused for example by Leptosphaeria maculans ; Leptosphaeria nodorum ; Magnaporthe diseases, caused for example by Magnaporthe grisea ;
Mycosphaerella diseases, caused for example by Mycosphaerella graminicola ;
Mycosphaerella arachidicola ; Mycosphaerella fijiensis ;
Phaeosphaeria diseases, caused for example by Phaeosphaeria nodorum ;
Pyrenophora diseases, caused for example by Pyrenophora teres ; Ramularia diseases, caused for example by Ramularia collo-cygni ;
Rhynchosporium diseases, caused for example by Rhynchosporium secalis ;
Septoria diseases, caused for example by Septoria apiior Septoria lycopercisi ;
Typhula diseases, caused for example by Typhula incarnata ;
Venturia diseases, caused for example by Venturia inaequalis ; • Root and stem diseases such as :
Corticium diseases, caused for example by Corticium graminearum ;
Fusarium diseases, caused for example by Fusarium oxysporum ;
Gaeumannomyces diseases, caused for example by Gaeumannomyces graminis ;
Rhizoctonia diseases, caused for example by Rhizoctonia solani ; Sarocladium diseases caused for example by Sarocladium oryzae;
Sclerotium diseases caused for example by Sclerotium oryzae;
Tapesia diseases, caused for example by Tapesia acuformis ;
Thielaviopsis diseases, caused for example by Thielaviopsis basicola ;
• Ear and panicle diseases including maize cob, such as : Alternaria diseases, caused for example by Alternaria spp. ;
Aspergillus diseases, caused for example by Aspergillus flavus ; Cladosporium diseases, caused for example by Cladosporium spp. ; Claviceps diseases, caused for example by Claviceps purpurea ; Fusarium diseases, caused for example by Fusarium culmorum ; Gibberella diseases, caused for example by Gibberella zeae ;
Monographella diseases, caused for example by Monographella nivalis ;
• Smut and bunt diseases such as :
Sphacelotheca diseases, caused for example by Sphacelotheca reiliana ; Tilletia diseases, caused for example by Tilletia caries ; Urocystis diseases, caused for example by Urocystis occulta ; Ustilago diseases, caused for example by Ustilago nuda ;
• Fruit rot and mould diseases such as : Aspergillus diseases, caused for example by Aspergillus flavus ; Botrytis diseases, caused for example by Botrytis cinerea ; Penicillium diseases, caused for example by Penicillium expansum ;
Rhizopus diseases caused by example by Rhizopus stolonifer Sclerotinia diseases, caused for example by Sclerotinia sclerotiorum ; Verticilium diseases, caused for example by Verticilium alboatrum ;
• Seed and soil borne decay, mould, wilt, rot and damping-off diseases such as : Alternaria diseases, caused for example by Alternaria brassicicola
Aphanomyces diseases, caused for example by Aphanomyces euteiches
Ascochyta diseases, caused for example by Ascochyta lentis
Aspergillus diseases, caused for example by Aspergillus flavus
Cladosporium diseases, caused for example by Cladosporium herbarum Cochliobolus diseases, caused for example by Cochliobolus sativus
(Conidiaform: Drechslera, Bipolaris Syn: Helminthosporium);
Colletotrichum diseases, caused for example by Colletotrichum coccodes;
Fusarium diseases, caused for example by Fusarium culmorum;
Gibberella diseases, caused for example by Gibberella zeae; Macrophomina diseases, caused for example by Macrophomina phaseolina
Monographella diseases, caused for example by Monographella nivalis;
Penicillium diseases, caused for example by Penicillium expansum
Phoma diseases, caused for example by Phoma lingam
Phomopsis diseases, caused for example by Phomopsis sojae; Phytophthora diseases, caused for example by Phytophthora cactorum;
Pyrenophora diseases, caused for example by Pyrenophora graminea
Pyricularia diseases, caused for example by Pyricularia oryzae;
Pythium diseases, caused for example by Pythium ultimum;
Rhizoctonia diseases, caused for example by Rhizoctonia solani; Rhizopus diseases, caused for example by Rhizopus oryzae
Sclerotium diseases, caused for example by Sclerotium rolfsii;
Septoria diseases, caused for example by Septoria nodorum;
Typhula diseases, caused for example by Typhula incarnata;
Verticillium diseases, caused for example by Verticillium dahliae ; • Canker, broom and dieback diseases such as : Nectria diseases, caused for example by Nectria galligena ;
• Blight diseases such as :
Monilinia diseases, caused for example by Monilinia laxa ;
• Leaf blister or leaf curl diseases such as : Exobasidium diseases caused for nexample by Exobasidium vexans;
Taphrina diseases, caused for example by Taphhna deformans ;
• Decline diseases of wooden plants such as :
Esca diseases, caused for example by Phaemoniella clamydospora, Phaeomoniella clamydospora, Phaeoacremonium aleophilum and Fomitiporia mediterranea ; Eutypa dyeback, caused for example by Eutypa lata ;
Dutch elm disease, caused for example by Ceratocystsc ulmi ; Ganoderma diseases caused by example by Ganoderma boninense;
• Diseases of flowers and Seeds such as : Botrytis diseases, caused for example by Botrytis cinerea ; • Diseases of tubers such as :
Rhizoctonia diseases, caused for example by Rhizoctonia solani Helminthosporium diseases, caused for example by Helminthosporium solani.
• Diseases of Tubers such as
Rhizoctonia diseases caused for example by Rhizoctonia solani ; Helminthosporium diseases caused for example by Helminthosporium solani ;
• Club root diseases such as
Plasmodiophora diseases, caused for example by Plamodiophora brassicae ;
• Diseases caused by Bacterial Organisms such as Xanthomanas species for example Xanthomonas campestris pv. oryzae; Pseudomonas species for example Pseudomonas syringae pv. lachrymans;
Erwinia species for example Erwinia amylovora.
The fungicide composition according to the invention can also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of woodand all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood and plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention, or a composition according to the invention ; this includes for example direct application, spraying, dipping, injection or any other suitable means. The dose of active compound usually applied in the method of treatment according to the invention is generally and advantageously from 10 to 800 g/ha, preferably from 50 to 300 g/ha for applications in foliar treatment. The dose of active substance applied is generally and advantageously from 2 to 200 g per 100 kg of seed, preferably from 3 to 15O g per 100 kg of seed in the case of seed treatment.
It is clearly understood that the doses indicated herein are given as illustrative examples of the method according to the invention. A person skilled in the art will know how to adapt the application doses, notably according to the nature of the plant or crop to be treated.
The fungicide composition according to the invention can also be used in the treatment of genetically modified organisms with the compounds according to the invention or the agrochemical compositions according to the invention. Genetically modified plants are plants into genome of that a heterologous gene encoding a protein of interest has been stably integrated. The expression "heterologous gene encoding a protein of interest" essentially means genes that give the transformed plant new agronomic properties, or genes for improving the agronomic quality of the modified plant.
The compounds or mixtures according to the invention can also be used for the preparation of composition useful to curatively or preventively treat human or animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
The various aspects of the invention will now be illustrated with reference to the following table of compound examples and the following preparation or efficacy examples.
The following table illustrates in a non-limiting manner examples of compounds of formula (I) according to the invention.
In the following table, M+H (Apcl+) means the molecular ion peak plus 1 a.m.u. (atomic mass unit) as observed in mass spectroscopy via positive atmospheric pressure chemical ionisation.
In the following table, the logP values were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a reversed-phase column (C 18), using the method described below :
Temperature: 4O0C ; Mobile phases : 0.1 % aqueous formic acid and acetonitrile ; linear gradient from 10% acetonitrile to 90% acetonitrile. Calibration was carried out using unbranched alkan-2-ones (comprising 3 to 16 carbon atoms) with known logP values (determination of the logP values by the retention times using linear interpolation between two successive alkanones).
The lambda max values were determined in the maxima of the chromatographic signals using the UV spectra from 190nm to 400nm.
In the following table, "position" denotes the point of attachment of the second phenyl ring on the first phenyl ring.
Table 1 :
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
The following examples illustrate in a non-limiting manner the preparation and efficacy of the compounds of formula (I) according to the invention.
Preparation example 1 : N-fi^biphenyl^-vπethyli-N-cvclopropyl-δ-fluoro-I .S-dimethyl-I H- pyrazole-4-carboxamide (compound 1 )
To a solution of 300 mg (0.789 mmol) of N-(2-bromobenzyl)-N-cyclopropyl-5-fluoro-1 ,3- dimethyl-1 H-pyrazole-4-carboxamide in 10 ml of tetrahydrofurane are successively added 120 mg (0.986 mmol) of phenylboronic acid, 163 mg (1.183 mmol) of potassium carbonate dissolved in 5 ml of water and 9 mg (0.01 equivalent) of tetrakis(triphenylphosphine)palladium. The reaction mixture is heated at 8O0C for 4 hrs. The reaction mixture is then cooled to ambient temperature and poured on 50 ml of brine. The watery layer is extracted three times with diethyl ether and the combined organic layers are successively washed by a 1 M solution of sodium hydroxide, brine and filtered over a phase separator filter to yield after concentration 310 mg of a brown oil. Column chromatography (gradient heptane/ethyl acetate) yielded 220 mg (68% yield) of N-ti^biphenyl^-yOethyll-N-cyclopropyl-S-fluoro-I .S-dimethyl-I H-pyrazole^- carboxamide as a white solid ; melting point [mp] = 1000C.
Preparation example 2: N-fO-chlorobiphenyl^-vDmethyli-N-cvclopropyl-δ-fluoro-I .S-dimethyl-
1 H-pyrazole-4-carboxamide (compound 33)
Step 1 : preparation of S-chlorobiphenyW-carbaldehyde
To a solution of 5 g (22.78 mmol) of 4-bromo-2-chlorobenzaldehyde in 30 ml of tetrahydrofurane are successively added 3.47 g (28.47 mmol) of phenylboronic acid, 4.72 g (34.17 mmol) of potassium carbonate dissolved in 15 ml of water and 263 mg (0.01 equivalent) of tetrakis(triphenylphosphine) palladium. The reaction mixture is heated at 8O0C for 3 hrs. The reaction mixture is then cooled to ambient temperature and poured on 150 ml of brine. The watery layer is extracted three times with dichloromethane and the combined organic layers are successively washed by a 1 M solution of sodium hydroxide, brine and filtered over a ChemElut cartridge to yield after concentration 4.6 g of a brown solid. Column chromatography (gradient heptane/chloroforme) yielded 3.29 g (65% yield) of 3-chlorobiphenyl-4-carbaldehyde as a white solid ; mp = 90-910C. Step 2: preparation of N-[(3-chlorobiphenyl-4-yl)methyl]cyclopropanamine To a cooled solution of 1.82 ml (26 mmol) of cyclopropylamine and 1.90 ml (33 mmol) of acetic acid, together with 3 g of 3A molecular sieves, in 45 ml of methanol, are added 2.85 g (13.1 mmol) of 3-chlorobiphenyl-4-carbaldehyde. The reaction mixture is stirred for 4 hrs at reflux. The reaction mixture is then cooled to ambient temperature and 1.24 g (19.7 mmol) of sodium cyanoborohydride are slowly added. The reaction mixture is further stirred for 2 hrs at reflux. The solvent is removed under vacuum and 100 ml of water are then added to the residue and the pH is ajusted to 10 with sodium hydroxyde. The watery layer is extracted three times with dichloromethane (3 x 50 ml) ; the combined organic layers are filtered over a phase separator filter to yield after concentration 11.61 g of a yellow oil. . Column chromatography (gradient heptane/ethyl acetate) yielded 2.84 g (79% yield) of N-[(3-chlorobiphenyl-4- yl)methyl]cyclopropanamine as a colourless oil (M+H = 258).
Step 3: preparation of N-^S-chlorobiphenyl^-y^methyll-N-cyclopropyl-S-fluoro-I .S-dimethyl-I H- pyrazole-4-carboxamide
At ambient temperature, a solution of 226 mg (1.28 mmol) of 5-fluoro-1 ,3-dimethyl-1 H-pyrazole-
4-carbonyl chloride in 1 ml of tetrahydrofurane is added dropwise to a solution of 300 mg (1.164 mmol) of N-[(3-chlorobiphenyl-4-yl)methyl]cyclopropanamine and 0.18 ml of triethylamine in 5 ml tetrahydrofurane. The reaction mixture is stirred for 15 hrs at room temperature. The solvent is removed under vacuum and 10 ml of water are then added to the residue. The watery layer is extracted twice with ethyl acetate (2 x 50 ml) and the combined organic layers are successively washed by a 1 M solution of HCI, a saturated solution of potassium carbonate and brine and filtered over a ChemElut cartridge to yield after concentration 350 mg (72% yield) of N-[(3- chlorobiphenyl-4-yl)methyl]-N-cyclopropyl-5-fluoro-1 ,3-dimethyl-1 H-pyrazole-4-carboxamide as a yellow oil (M+H = 398).
Example A : in vivo test on Alternaria brassicae (Leaf spot of crucifers) The active ingredients tested are prepared by potter homogenization in a mixture of acetone/tween/water. This suspension is then diluted with water to obtain the desired active material concentration.
Radish plants (Pernot variety), sown on a 50/50 peat soil-pozzolana substrate in starter cups and grown at 18-2O0C, are treated at the cotyledon stage by spraying with the active ingredient prepared as described above.
Plants, used as controls, are treated with the mixture of acetone/tween/water not containing the active material.
After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of
Alternaria brassicae spores (40,000 spores per cm3). The spores are collected from a 12 to 13 days-old culture.
The contaminated radish plants are incubated for 6-7 days at about 180C, under a humid atmosphere.
Grading is carried out 6 to 7 days after the contamination, in comparison with the control plants.
Under these conditions, good protection (at least 70%) is observed at a dose of 500ppm with the following compounds: 3, 5, 7, 8, 11 , 12, 15, 21 , 25, 26, 27, 29, 31 , 33, 34, 38, 39, 42 and 43.
Example B: in vivo test on Pyrenophora teres (Barley Net blotch)
The active ingredients tested are prepared by homogenization in a mixture of acetone/tween/DMSO, then diluted with water to obtain the desired active material concentration. Barley plants (Express variety), sown on a 50/50 peat soil-pozzolana substrate in starter cups and grown at 120C, are treated at the 1-leaf stage (10 cm tall) by spraying with the active ingredient prepared as described above. Plants, used as controls, are treated with the mixture of acetone/tween/DMSO/water not containing the active material. After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Pyrenophora teres spores (12,000 spores per ml). The spores are collected from a 12-day-old culture. The contaminated barley plants are incubated for 24 hours at about 2O0C and at 100% relative humidity, and then for 12 days at 80% relative humidity. Grading is carried out 12 days after the contamination, in comparison with the control plants. Under these conditions, good (at least 70%) or total protection is observed at a dose of 500ppm with the following compounds: 1 , 2, 4, 5, 11 , 12, 14, 15, 17, 19, 22, 23, 24, 25, 28, 29, 30, 31 , 33, 34, 38, 39 and 42.
Example C: in vivo test on Sphaerotheca fuliginea (cucurbit powdery mildew).
The active ingredients tested are prepared by homogenization in a mixture of acetone/tween/water. This suspension is then diluted with water to obtain the desired active material concentration.
Gherkin plants (Vert petit de Paris variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 20°C/23°C, are treated at the 2 leaves stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.
After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of
Sphaerotheca fuliginea spores (100 000 spores per ml). The spores are collected from a contaminated plants The contaminated gherkin plants are incubated at about 20°C/25°C and at
60/70% relative humidity.
Grading (% of efficacy) is carried out 21 days after the contamination, in comparison with the control plants.
Under these conditions, good (at least 70%) or total protection is observed at a dose of 500ppm with the following compounds: 1 , 2, 3, 5, 7, 8, 22, 25, 38, 39 and 42.
Example D: in vivo test on Mycosphaerella graminicola (Wheat Leaf Spot)
The active ingredients tested are prepared by homogenization in a mixture of acetone/tween/DMSO, then diluted with water to obtain the desired active material concentration. Wheat plants (Scipion variety), sown on a 50/50 peat soil-pozzolana substrate in starter cups and grown at 120C, are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material. After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Mycosphaerella graminicola spores (500 000 spores per ml). The spores are collected from a 7-day-old culture. The contaminated wheat plants are incubated for 72 hours at 180C and at 100% relative humidity, and then for 21 to 28 days at 90% relative humidity. Grading (% of efficacy) is carried out 21 to 28 days after the contamination, in comparison with the control plants.
Under these conditions, good (at least 70%) or total protection is observed at a dose of 500ppm with the following compounds: 1 , 2, 3, 4, 5, 8, 9, 11 , 14, 15, 17, 19, 20, 21 , 22, 23, 24, 25, 28, 29, 30, 31 , 32, 34, 35, 36, 37, 39, 40, 41 and 42.
Example E : In vivo comparative test on Peronospora parasitica (Crucifer downy mildew) Cabbage plants (Eminence variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-2O0C, are treated at the cotyledon stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material. After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Peronospora parasitica spores (50 000 spores per ml). The spores are collected from infected plant. The contaminated cabbage plants are incubated for 5 days at 2O0C, under a humid atmosphere. Grading is carried out 5 days after the contamination, in comparison with the control plants.
Under these conditions, good (at least 70% of disease control) to total protection (100% of disease control) is observed at a dose of 500ppm with the following compounds : 7, 14 and 30 according to the invention whereas weak protection (less than 30% of disease control) to no protection at all is observed at a dose of 500ppm with the compounds of examples 358 and 489 disclosed in international patent application WO-2007/087906. Examples 358 and 489 disclosed in patent application WO-2007/087906 correspond, respectively, to following compounds :
N-cyclopropyl-N-[4-(2,4-dichlorophenoxy)benzyl]-5-fluoro-1 ,3-dimethyl-1 H-pyrazole-4- carboxamide;
N-[4-(4-chlorophenoxy)benzyl]-N-cyclopropyl-3-(difluoromethyl)-1-methyl-1 H-pyrazole-4- carboxamide.
These results show that the compounds according to the invention have a much better biological activity than the structurally closest compounds disclosed in WO-2007/087906.

Claims

1. A compound of formula (I)
Figure imgf000056_0001
(I) wherein
• A represents a carbo-linked, unsaturated or partially saturated, 5-membered heterocyclyl group that can be substituted by up to four groups R ;
• Z1 represents a non-substituted C3-C7-cycloalkyl or a C3-C7-cycloalkyl substituted by up to 10 atoms or groups that can be the same or different and that can be selected in the list consisting of halogen atoms ; cyano ; C-ι-C8-alkyl ; C-ι-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C-ι-C8-alkoxy ; C1-C8- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkoxycarbonyl ; d-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-Cs-alkylaminocarbonyl ; CIi-C1-C8- alkylaminocarbonyl ;
• Z2 and Z3, that can be the same or different, represent a hydrogen atom ; d-C8-alkyl ; C2-C8-alkenyl ; C2-C8-alkynyl ; cyano ; nitro ; a halogen atom ; d-C8-alkoxy ; C2 C8- alkenyloxy ; C2-C8-alkynyloxy ; C3-C7-cycloalkyl ; d-C8-alkylsulphenyl ; amino ; C1-C8- alkylamino ; di-C-ι-C8-alkylamino ; d-C8-alkoxycarbonyl ; d-Cs-alkylcarbamoyl ; di-C-i- C8-alkylcarbamoyl ; N-d-Cs-alkyl-d-Cs-alkoxycarbamoyl ; or Z2 and Z3 together with the carbon atom to that they are linked can form a substituted or non substituted C3-C7- cycloalkyl ;
X and Y independently represent a halogen atom ; nitro ; cyano ; isonitrile ; hydroxyl ; sulfanyl ; amino ; pentafluoro-λ6-sulfanyl ; d-C8-alkyl ; d-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C-ι-C8-alkylamino ; CIi-C1-C8- alkylamino ; d-C8-alkoxy ; d-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkoxy-d-C8-alkyl ; C1 -C^aIkOXy-C1-C8- alkoxy ; d-C8-alkylsulphanyl ; d-C8-halogenoalkylsulphanyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkenyl ; C2-C8-halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkynyl ; C2- C8-halogenoalkynyl comprising up to 9 halogen atoms that can be the same or different C2-C8-alkenyloxy ; C2-C8-halogenoalkenyloxy comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkynyloxy ; C2-C8-halogenoalkynyloxy comprising up to 9 halogen atoms that can be the same or different ; C3-C7-cycloalkyl ; C3-C7- cycloalkyl-Ci-C8-alkyl ; C3-C7-cycloalkyl-C2-C8-alkenyl ; C3-C7-cycloalkyl-C2-C8-alkynyl ; C3-C7-halogenocycloalkyl comprising up to 9 halogen atoms that can be the same or different ; C3-C7-cycloalkyl-C3-C7-cycloalkyl ; C-ι-C8-alkyl-C3-C7-cycloalkyl ; C6-C14- bicycloalkyl ; formyl ; formyloxy ; formylamino ; carboxy ; carbamoyl ; N- hydroxycarbamoyl ; carbamate ; (hydroxyimino)-C-ι-C8-alkyl ; d-C8-alkylcarbonyl ; C1- C8-halogenoalkylcarbonyl comprising up to 9 halogen atoms that can be the same or different ; C-i-Cs-alkylcarbamoyl ; di-C-i-Cs-alkylcarbamoyl ; N-C-i-Cs-alkyloxycarbamoyl ; C-i-Cs-alkoxycarbamoyl ; N-C-i-Cs-alkyl-C-i-Cs-alkoxycarbamoyl ; C-rC8-alkoxycarbonyl ; C-i-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; C-i-Cs-alkylaminocarbonyl ; di-C-i-Cs-alkylaminocarbonyl ; C1-C8- alkylcarbonyloxy ; C-i-Cs-halogenoalkylcarbonyloxy comprising up to 9 halogen atoms that can be the same or different ; C-i-Cs-alkylcarbonylamino ; C1-C8- halogenoalkylcarbonylamino comprising up to 9 halogen atoms that can be the same or different ; C-i-Cs-alkylaminocarbonyloxy ; di-C-i-Cs-alkylaminocarbonyloxy ; C1-C8- alkyloxycarbonyloxy, C-ι-C8-alkylsulphenyl ; C-i-Cs-halogenoalkylsulphenyl comprising up to 9 halogen atoms that can be the same or different; C-ι-C8-alkylsulphinyl; C1-C8- halogenoalkylsulphinyl comprising up to 9 halogen atoms that can be the same or different; C-ι-C8-alkylsulphonyl; C-ι-C8-halogenoalkylsulphonyl comprising up to 9 halogen atoms that can be the same or different; C-ι-C8-alkoxyimino; (C1-C8- alkoxyimino)-C-ι-C8-alkyl; (C2-C8-alkenyloxyimino)-C-ι-C8-alkyl; (C2-C8-alkynyloxyimino)- C-rCs-alkyl; (benzyloxyimino)-C-ι-C8-alkyl ; tri(C-ι-C8-alkyl)silyl ; tri(C1-C8-alkyl)silyl-C1-C8- alkyl ; benzyloxy that can be substituted by up to 5 groups Q ; benzylsulfanyl that can be substituted by up to 5 groups Q ; benzylamino that can be substituted by up to 5 groups Q ; aryl that can be substituted by up to 5 groups Q ; aryloxy that can be substituted by up to 5 groups Q ; arylamino that can be substituted by up to 5 groups Q ; arylsulfanyl that can be substituted by up to 5 groups Q ; aryl-C-ι-C8-alkyl that can be substituted by up to 5 groups Q ; aryl-C2-C8-alkenyl that can be substituted by up to 5 groups Q ; aryl-C2-C8-alkynyl that can be substituted by up to 5 groups Q ; aryl-C3-C7- cycloalkyl that can be substituted by up to 5 groups Q ; pyridinyl that can be substituted by up to 4 groups Q and pyridinyloxy that can be substituted by up to 4 groups Q ; or two substituents X together with the consecutive carbon atoms to that they are linked can form a 5- or 6-membered, saturated, carbo- or hetero-cycle comprising up to 3 heteroatoms fused with the phenyl ring to that the two substituent X are linked, that can be substituted by up to 4 groups Q that can be the same or different ; or two substituents Y together with the consecutive carbon atoms to that they are linked can form a 5- or 6-membered, saturated, carbo- or hetero-cycle comprising up to 3 heteroatoms fused with the phenyl ring to that the two substituent X are linked, that can be substituted by up to 4 groups Q that can be the same or different ;
• n represents 0, 1 , 2, 3 or 4 ;
• m represents 0, 1 , 2, 3, 4 or 5 ;
• R independently represents a hydrogen atom ; halogen atom ; cyano ; isonitrile ; nitro ; amino ; sulfanyl ; pentafluoro-λ6-sulfanyl ; C-ι-C8-alkylamino ; di-C-ι-C8-alkylamino ; tri(C-ι-C8-alkyl)silyl ; C-ι-C8-alkylsulfanyl ; C-ι-C8-halogenoalkylsulfanyl comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkyl ; d-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkenyl ; C2-
C8-halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-alkynyl ; C2-C8-halogenoalkynyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-alkoxy ; Ci-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; C2 C8-alkenyloxy ; C2-C8-alkynyloxy ; C3-C7-cycloalkyl ; C3-C7-cycloalkyl-Ci-C8-alkyl ; Ci-C8-alkylsulphinyl ; C1-C8- alkylsulphonyl ; Ci-C8alkoxyimino ; (Ci-C8-alkoxyimino)-Ci-C8-alkyl ; (benzyloxyimino)- Ci-C8-alkyl ; aryloxy ; benzyloxy ; benzylsulfanyl ; benzylamino ; aryl ; halogenoaryloxy comprising up to 9 halogen atoms that can be the same or different ; C1-C8- alkylcarbonyl ; d-Cs-halogenoalkylcarbonyl comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkoxycarbonyl ; d-Cs-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different ; C1-C8- alkylaminocarbonyl ; di-d-Cs-alkylaminocarbonyl ;
• Q independently represents a halogen atom ; cyano ; isonitrile ; nitro ; d-C8-alkyl ; C2- C8-alkenyl ; C2-C8-alkynyl ; d-C8-alkoxy ; d-C8-alkoxy-d-C8-alkyl ; d-C8-alkoxy-d- C8-alkoxy ; Ci-C8-alkylsulphanyl ; Ci-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-halogenoalkenyl comprising up to 9 halogen atoms that can be the same or different ; C2-C8-halogenoalkynyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; Ci-C8-halogenoalkoxy-C-rC8- alkyl comprising up to 9 halogen atoms that can be the same or different ; tri(Ci- C8)alkylsilyl and tri(C1-C8)alkylsilyl-C1-C8-alkyl ;
as well as salts, N-oxides, metallic complexes, metalloidic complexes and optically active or geometric isomers thereof ; with the exclusion of N-cyclopropyl-N-[(6-methoxybiphenyl-3- yl)methyl]isoxazole-5-carboxamide.
2. A compound according to claim 1 wherein A is selected in the list consisting of: - a heterocycle of formula (A1)
Figure imgf000059_0001
(A1) wherein :
R1 to R3 that can be the same or different represent a hydrogen atom ; a halogen atom ; Ci-C5- alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C5-alkoxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A2)
Figure imgf000059_0002
(A2) wherein :
R4 to R6 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1-C5- alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; Ci-C5-alkoxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A3)
Figure imgf000060_0001
(A3) wherein :
R7 represents a hydrogen atom ; a halogen atom ; C-ι-C5-alkyl ; C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-alkoxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; R8 represents a hydrogen atom or a d-C5-alkyl ;
- a heterocycle of formula (A4)
Figure imgf000060_0002
wherein :
R9 to R11 that can be the same or different represent a hydrogen atom ; a halogen atom ; CrC5- alkyl ; amino ; d-C5-alkoxy ; d-C5-alkylsulphanyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A5)
Figure imgf000060_0003
(A5) wherein : R12 and R13 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl ; d-C5-alkoxy ; amino ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
R14 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-alkoxy ; amino ; C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A6)
Figure imgf000061_0001
wherein :
R15 represents a hydrogen atom ; a halogen atom ; a cyano ; d-C5-alkyl ; d-C5-alkoxy ; C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R16 and R18 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkoxycarbonyl ; d-C5-alkyl ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R17 represent a hydrogen atom or d-C5-alkyl ;
- a heterocycle of formula (A7)
Figure imgf000061_0002
wherein :
R ,19 represents a hydrogen atom or a d-C5-alkyl R20 to R22 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A8)
Figure imgf000062_0001
wherein :
R23 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; RR2244 rreepprreesseennttss aa hhyyddrrooggeenn aattoomm oorr dd--CC55--aallkkyyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A9)
Figure imgf000062_0002
wherein :
R25 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R26 represents a hydrogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A 10\ )
Figure imgf000062_0003
wherein : R27 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R28 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C5-alkylamino or di(Ci-C5-alkyl)amino ;
- a heterocycle of formula (A 11 \ )
Figure imgf000063_0001
wherein :
R29 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-alkoxy ; C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R30 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C5-alkylannino or di(C-ι-C5-alkyl)amino ;
- a heterocycle of formula (A 12\ )
Figure imgf000063_0002
(A12) wherein :
R31 represents a hydrogen atom or a d-C5-alkyl R32 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R33 represents a hydrogen atom ; a halogen atom ; a nitro ; d-C5-alkyl ; d-C5-alkoxy ; C1-C5- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; - a heterocycle of formula (A 13\ )
Figure imgf000064_0001
(A13) wherein :
R i34 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; C3-C5-cycloalkyl ; C1-C5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; C1-C5- alkoxy ; C2-C5-alkynyloxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
R35 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; a cyano ; d-C5-alkoxy ; C1-C5- alkylsulphanyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C5-alkylamino or di(d-C5-alkyl)amino ; R36 represents a hydrogen atom or d-C5-alkyl ;
-a heterocycle of formula (A 14\ )
Figure imgf000064_0002
(A14) wherein :
R37 and R38 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl ; Ci-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-alkoxy or a C1-C5- alkylsulphanyl ; R39 represents a hydrogen atom or d-C5-alkyl ;
- a heterocycle of formula (A )
Figure imgf000065_0001
wherein :
R40 and R41 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl or C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A16)
Figure imgf000065_0002
(A16) wherein :
R42 and R43 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or amino ;
-a heterocycle of formula (A 17\ )
Figure imgf000065_0003
(A17) wherein :
R44 and R45 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A ) wherein :
R47 represents a hydrogen atom ; a halogen atom ; C-ι-C5-alkyl or C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R46 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different or d-C5-alkylsulfanyl ;
- a heterocycle of formula (A 19\ )
Figure imgf000066_0002
(A19) wherein :
R49 and R48 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl ; d-C5-alkoxy ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
- a heterocycle of formula (A )
Figure imgf000066_0003
(A20) wherein :
R50 and R51 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl ; d-C5-alkoxy ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
-a heterocycle of formula (A 21 N )
Figure imgf000067_0001
(A21) wherein :
R52 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different.
-a heterocycle of formula (A22)
Figure imgf000067_0002
(A22) wherein :
R53 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different.
-a heterocycle of formula (A23)
Figure imgf000067_0003
(A23) wherein :
R54 and R56 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R55 represents a hydrogen atom or d-C5-alkyl ;
-a heterocycle of formula (A24)
Figure imgf000068_0001
(A24) wherein :
R57 and R59 that can be the same or different represent a hydrogen atom ; a halogen atom ; C1- C5-alkyl or C-ι-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; R58 represents a hydrogen atom or C-ι-C5-alkyl ;
-a heterocycle of formula (A25)
Figure imgf000068_0002
(A25) wherein :
R60 and R61 that can be the same or different represent a hydrogen atom ; a halogen atom ; d- C5-alkyl or d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ;
R62 represents a hydrogen atom or d-C5-alkyl ;
-a heterocycle of formula (A26)
Figure imgf000068_0003
(A26) wherein :
R65 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; C3-C5-cycloalkyl ; CrC5- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; CrC5- alkoxy ; C2-C5-alkynyloxy or d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
R63 represents a hydrogen atom ; a halogen atom ; d-C5-alkyl ; a cyano ; d-C5-alkoxy ; Ci-C5- alkylsulphanyl ; d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C5-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; amino ; d-C5-alkylamino or di(d-C5-alkyl)amino ; R64 represents a hydrogen atom or d-C5-alkyl.
3. A compound according to claim 2 wherein A is selected in the list consisting of A2 ; A6 ; A10 and A13.
4. A compound according to claim 3 wherein A represents A13 wherein R34 represents a C1- C5-alkyl, d-C5-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, or d-C5-alkoxy ; R35 represents a hydrogen atom or a halogen atom ; R36 represents a Ci-C5-alkyl.
5. A compound according to claims 1 to 4 wherein Z1 represents a C3-C7 cycloalkyl substituted by up to 10 groups or atoms that can be the same or different and that can be selected in the list consisting of halogen atoms ; d-C8-alkyl ; d-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkoxy or d-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ;
6. A compound according to claim 5 wherein Z1 represents a non-substituted C3-C7-cycloalkyl.
7. A compound according to claim 6 wherein Z1 represents cyclopropyl.
8. A compound according to claims 1 to 7 wherein X independently represents a halogen atom ; d-C8-alkyl ; d-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; tri(d-C8-alkyl)silyl ; d-C8-alkoxy or d-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different.
9. A compound according to claims 1 to 7 wherein two consecutive substituents X together with the phenyl ring form a substituted or non substituted 1 ,3-benzodioxolyl ; 1 ,2,3,4-tetrahydro- quinoxalinyl ; 3,4-dihydro-2H-1 ,4-benzoxazinyl ; 1 ,4-benzodioxanyl ; indanyl ; 2,3- dihydrobenzofuranyl ; or indolinyl.
10. A compound according to claims 1 to 9 wherein Y independently represents a halogen atom ; cyano ; Ci-C8-alkyl ; Ci-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; or (C-i-Cs-alkoxyimino)- Ci-C8-alkyl.
11. A compound according to claims 1 to 9 wherein two consecutive substituents Y together with the phenyl ring form a substituted or non substituted 1 ,3-benzodioxolyl ; 1 ,2,3,4-tetrahydro- quinoxalinyl ; 3,4-dihydro-2H-1 ,4-benzoxazinyl ; 1 ,4-benzodioxanyl ; indanyl ; 2,3- dihydrobenzofuranyl ; or indolinyl.
12. A compound according to claims 1 to 11 wherein R independently represents a hydrogen atom ; halogen atom ; cyano ; C-ι-C8-alkylamino ; di-C-ι-C8-alkylamino ; tri(C-ι-C8-alkyl)silyl ; C1- C8-alkyl ; d-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkoxy ; d-C8-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different ; d-C8-alkylsulfanyl ; amino, hydroxyl ; nitro ; d-C8-alkoxycarbonyl ; or C2-C8-alkynyloxy.
13. A compound of formula (II)
Figure imgf000070_0001
(II) wwhheerreeiinn ZZ22,, ZZ33,, XX,, YY,, nn aanndd mm aarree ddeeffiinneedd aaccccoorrcding to claims 1 to 12 with the exclusion of N- (biphenyl-4-ylmethyl)cyclopropanamine and N-[1-(biphenyl-4-yl)ethyl] cyclopropanamine.
14. A fungicide composition comprising, as an active ingredient, an effective amount of a compound of formula (I) according to claims 1 to 12 and an agriculturally acceptable support, carrier or filler.
15. A method for controlling phytopathogenic fungi of crops, characterized in that an agronomically effective and substantially non-phytotoxic quantity of a compound according to claims 1 to 12 or a composition according to claim 14 is applied to the soil where plants grow or are capable of growing, to the leaves or the fruit of plants or to the seeds of plants.
PCT/EP2009/059840 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives WO2010012794A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PL09802524T PL2310360T3 (en) 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives
US13/876,153 US8680127B2 (en) 2008-08-01 2009-07-30 Fungicide N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives
CA2731198A CA2731198A1 (en) 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives
EA201170282A EA018569B1 (en) 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives
BRPI0911819A BRPI0911819B1 (en) 2008-08-01 2009-07-30 "Compound, fungicidal composition and method for control of crop phytopathogenic fungus"
JP2011520512A JP2011529866A (en) 2008-08-01 2009-07-30 Bactericides N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives
MX2011001066A MX2011001066A (en) 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives.
CN200980130986.1A CN102123985B (en) 2008-08-01 2009-07-30 Fungicide N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives
EP09802524A EP2310360B1 (en) 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives
UAA201102358A UA100291C2 (en) 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives
US14/183,965 US9320277B2 (en) 2008-08-01 2014-02-19 Fungicide N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08356115.9 2008-08-01
EP08356115 2008-08-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/876,153 A-371-Of-International US8680127B2 (en) 2008-08-01 2009-07-30 Fungicide N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives
US14/183,965 Division US9320277B2 (en) 2008-08-01 2014-02-19 Fungicide N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives

Publications (1)

Publication Number Publication Date
WO2010012794A1 true WO2010012794A1 (en) 2010-02-04

Family

ID=40014598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059840 WO2010012794A1 (en) 2008-08-01 2009-07-30 Fungicide n-cycloalkyl-n-biphenylmethyl-carboxamide derivatives

Country Status (13)

Country Link
US (2) US8680127B2 (en)
EP (1) EP2310360B1 (en)
JP (1) JP2011529866A (en)
KR (1) KR20110042092A (en)
CN (1) CN102123985B (en)
BR (1) BRPI0911819B1 (en)
CA (1) CA2731198A1 (en)
CO (1) CO6361849A2 (en)
EA (1) EA018569B1 (en)
MX (1) MX2011001066A (en)
PL (1) PL2310360T3 (en)
UA (1) UA100291C2 (en)
WO (1) WO2010012794A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134635A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134634A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134629A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134636A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134628A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134631A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
US8686018B2 (en) 2010-09-21 2014-04-01 Eisai R&D Management Co., Ltd. Pharmaceutical composition
US8841332B2 (en) 2008-08-01 2014-09-23 Bayer Intellectual Property Gmbh Fungicidal N-(2-phenoxyethyl)carboxamide derivatives and their aza, thia and sila analogues
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
CN104334533A (en) * 2012-05-09 2015-02-04 拜耳农作物科学股份公司 5-halogenopyrazole biphenylcarboxamides

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015289827A1 (en) 2014-07-14 2017-03-09 Adjuvants Plus Usa, Inc. Clonostachys rosea inoculated plant materials with fungicides and adjuvants
CN109384722B (en) * 2017-08-14 2021-06-11 华中师范大学 N-substituted amide compound, preparation method and application thereof, and bactericide
CN109422691B (en) * 2017-08-24 2021-01-01 华中师范大学 N-substituted amide compound, preparation method and application thereof, and bactericide
US11608743B1 (en) 2022-02-04 2023-03-21 General Electric Company Low-noise blade for an open rotor
US12049306B2 (en) 2022-02-04 2024-07-30 General Electric Company Low-noise blade for an open rotor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083647A1 (en) * 2001-04-06 2002-10-24 Nihon Nohyaku Co., Ltd. Pyrazolecarboxamide derivative, intermediate therefor, and pest control agent containing the same as active ingredient
WO2007087906A1 (en) * 2006-02-01 2007-08-09 Bayer Cropscience Sa Fungicide n-cycloalkyl-benzyl-amide derivatives

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4949293A (en) * 1992-08-28 1994-03-29 Ciba-Geigy Ag Indazole derivatives
US8410157B2 (en) * 2007-07-31 2013-04-02 Bayer Cropscience Ag Fungicidal N-cycloalkyl-benzyl-thiocarboxamides or N-cycloalkyl-benzyl-N′-substituted-amidine derivatives
CN102119150B (en) 2008-08-01 2015-06-03 拜尔农科股份公司 Fungicidal N-(2-phenoxyethyl)carboxamide derivatives and their aza, thia and sila analogues

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083647A1 (en) * 2001-04-06 2002-10-24 Nihon Nohyaku Co., Ltd. Pyrazolecarboxamide derivative, intermediate therefor, and pest control agent containing the same as active ingredient
EP1384714A1 (en) * 2001-04-06 2004-01-28 Nihon Nohyaku Co., Ltd. Pyrazolecarboxamide derivative, intermediate therefor, and pest control agent containing the same as active ingredient
WO2007087906A1 (en) * 2006-02-01 2007-08-09 Bayer Cropscience Sa Fungicide n-cycloalkyl-benzyl-amide derivatives

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841332B2 (en) 2008-08-01 2014-09-23 Bayer Intellectual Property Gmbh Fungicidal N-(2-phenoxyethyl)carboxamide derivatives and their aza, thia and sila analogues
WO2010134635A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134634A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134629A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134636A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134628A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
WO2010134631A1 (en) * 2009-05-20 2010-11-25 住友化学株式会社 Amide compound and use thereof for control of plant diseases
US8686018B2 (en) 2010-09-21 2014-04-01 Eisai R&D Management Co., Ltd. Pharmaceutical composition
US9000024B2 (en) 2010-09-21 2015-04-07 Eisai R&D Management Co., Ltd. Pharmaceutical composition
CN104334533A (en) * 2012-05-09 2015-02-04 拜耳农作物科学股份公司 5-halogenopyrazole biphenylcarboxamides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
US9770022B2 (en) 2013-06-26 2017-09-26 Bayer Cropscience Ag N-cycloalkyl-N-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives

Also Published As

Publication number Publication date
BRPI0911819A2 (en) 2015-08-04
US9320277B2 (en) 2016-04-26
EA201170282A1 (en) 2011-08-30
UA100291C2 (en) 2012-12-10
CA2731198A1 (en) 2010-02-04
BRPI0911819B1 (en) 2017-03-21
US20140171474A1 (en) 2014-06-19
US8680127B2 (en) 2014-03-25
CN102123985B (en) 2014-05-28
MX2011001066A (en) 2011-03-24
US20130231375A1 (en) 2013-09-05
EP2310360A1 (en) 2011-04-20
CO6361849A2 (en) 2012-01-20
EP2310360B1 (en) 2012-08-29
JP2011529866A (en) 2011-12-15
EA018569B1 (en) 2013-08-30
KR20110042092A (en) 2011-04-22
CN102123985A (en) 2011-07-13
PL2310360T3 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US9320277B2 (en) Fungicide N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives
EP2391608B1 (en) Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
EP2310361B1 (en) Fungicidal n-(2-phenoxyethyl)carboxamide derivatives and their aza, thia and sila analogues
EP2251331A1 (en) Fungicide pyrazole carboxamides derivatives
EP2519103B1 (en) Fungicide hydroximoyl-tetrazole derivatives
EP2324011B1 (en) Fungicidal n-(2-pyridylpropyl)carboxamide derivatives and their oxa, aza and thia analogues
US20130012546A1 (en) Fungicide hydroximoyl-tetrazole derivatives
EP2218717A1 (en) Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
US20110294810A1 (en) Substituted (pyridyl)-azinylamine derivatives as plant protection agents
US20110237594A1 (en) Fungicide heretocyclyl-triazinyl-amino derivatives
WO2010015680A1 (en) Fungicide oxyalkylamide derivatives

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130986.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2731198

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/001066

Country of ref document: MX

Ref document number: 2009802524

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011520512

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 765/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11022243

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20117004527

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201170282

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201102358

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 13876153

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0911819

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110128