WO2010012190A1 - 一种网络节点的保护协议装置及其保护倒换处理方法 - Google Patents

一种网络节点的保护协议装置及其保护倒换处理方法 Download PDF

Info

Publication number
WO2010012190A1
WO2010012190A1 PCT/CN2009/072718 CN2009072718W WO2010012190A1 WO 2010012190 A1 WO2010012190 A1 WO 2010012190A1 CN 2009072718 W CN2009072718 W CN 2009072718W WO 2010012190 A1 WO2010012190 A1 WO 2010012190A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
signaling
protection signaling
node
unit
Prior art date
Application number
PCT/CN2009/072718
Other languages
English (en)
French (fr)
Inventor
罗亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP09802383.1A priority Critical patent/EP2312792B1/en
Publication of WO2010012190A1 publication Critical patent/WO2010012190A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery

Definitions

  • Protection protocol device for network node and protection switching processing method thereof
  • the present invention relates to the field of optical communication technologies, and in particular, to a protection protocol device for a network node that can improve a ring network protection switching processing time and a protection switching processing method thereof.
  • I-TUT ITU
  • the standard protection switching mechanism ensures that when the resources of the network fiber or device are abnormal, the service can be automatically switched to the standby resource for normal transmission.
  • a common protection networking method is to use a ring network structure.
  • a set of standard protection signaling is passed between the remaining devices to complete the establishment of protection switching.
  • the standard also specifies the time for protection switching. It is required that for the ring network structure, all nodes are idle when there is no additional service on the ring (ie no failure is detected, no activity). In the case of automatic or external commands, only receiving null protection signaling) and the fiber length is less than 1200 km, the switching completion time should be less than 50 ms in the case of a single sector failure.
  • Node D detects the fault first and sends the switch in both directions.
  • the requested protection signaling is sent to the node E.
  • the node E After receiving the protection signaling request sent by the short-path direction of the node D (in the direction close to the fault), the node E also sends the bridge switching or reverse from the two directions.
  • the requested protection signaling is sent to the node D point, and the node E receives the protection signaling of the bridge switching request sent by the node D point from the long-path direction (the opposite direction to the failure), and then completes the bridge switching of the node, node D After receiving the switching signaling sent by the long-path from the node E, the node completes the bridge switching of the node. After receiving the long-path protection information, the other intermediate nodes enter the bidirectional punch-through state as shown in FIG. 2 .
  • the protection switching processing time is mainly affected by Tl (ie, The long-path switching signaling from the node D is sent to the node E to complete the processing time of the bridge switching) and T2 (that is, the short-path switching signaling is sent from the node D to the node E, and the long-path switching signaling is sent to the node D.
  • Tl The long-path switching signaling from the node D is sent to the node E to complete the processing time of the bridge switching
  • T2 that is, the short-path switching signaling is sent from the node D to the node E, and the long-path switching signaling is sent to the node D.
  • the processing time of the bridge switching is completed. Since the two paths to the two directions can generally be performed in parallel, the switching time is mainly determined by T2.
  • the model of the protection protocol of a single network node is as shown in FIG. 3, which mainly includes: (1) a fault information detecting unit, configured to detect whether a new alarm is generated on both sides of the network element node, and if so, send to the protection switching The protocol unit performs protocol calculation; (2) a protection signaling detection unit, configured to detect whether a new protection signaling byte is generated on both sides of the network element node, and if yes, send to the protection switching protocol unit to perform protocol calculation; (3) The protection switching protocol unit is configured to calculate a current network condition by using a standard protection protocol algorithm according to the input alarm and protection signaling information, and output the status of the local element node and the protection signaling byte to be sent; a protection signaling sending unit, configured to transmit to the other network element node according to the protection signaling byte output by the protection protocol unit; (5) a cross configuration unit, configured to perform, according to the state of the local network element node output by the protection switching protocol unit Specific business cross configuration.
  • the processing time of the above units for each network element node is not much different.
  • the above T2 time can be subdivided into: 1 X fault information detection unit processing time + 6 ⁇ protection signaling detection unit processing time + 7 ⁇ protection protocol unit processing time + 6 ⁇ protection signaling sending unit processing time + lx cross configuration unit processing time, extended to N nodes, can be derived:
  • Switching processing time of N nodes lx fault information detecting unit processing time + ⁇ (protection signaling detection unit processing time + protection signaling transmission unit processing time) + ( ⁇ +1 ) X protection switching protocol unit processing time + 1 cross Hive processing time.
  • the processing time of the general protection protocol unit is generally about 3 milliseconds, and even when the hardware configuration (such as the CPU frequency) is not high, it is even about 3 to 6 milliseconds.
  • 1200km fiber transmission signaling information will require at least 6 milliseconds, and the switching time can not meet the standard requirements.
  • An object of the present invention is to provide a protection protocol device for a network node and a protection switching processing method thereof, which improve the processing efficiency of the protection switching, and can ensure that the ring protection switching time meets the requirements of the standard.
  • the present invention provides a protection protocol device for a network node, where the protection protocol device includes: a protection switching protocol unit for performing protection protocol calculation, and a failure information detecting unit for detecting alarm information generated on both sides of the network element node, a protection signaling detection unit for detecting first protection signaling generated on both sides of the network element node, a protection signaling sending unit for transmitting protection signaling to other network element nodes, and a state according to the state of the local network element node And a protection signaling pre-transmission processing unit, where the protection signaling pre-transmission processing unit is connected to the protection signaling detection unit and the protection signaling sending unit, respectively.
  • the pre-transfer processing unit is configured to perform pre-transmission determination on the first protection signaling received by the protection signaling detection unit, and use the protection signaling sending unit to forward the first protection signaling that needs to be pre-transmitted to other The NE node forwards.
  • the device wherein the condition that the first protection signaling that needs to be pre-delivered meets includes that all the conditions listed below are simultaneously satisfied: the first protection signaling is effective signaling, and the first protection signaling indicates long/short
  • the path identifier is a long path
  • the source node identifier or the destination node identifier indicated by the first protection signaling is not the local node
  • the bridge switching request indicated by the first protection signaling is a valid bridging switching request
  • the bridging switching indicated by the first protection signaling The priority of the request is higher than the priority of the bridging switching request indicated in the protection signaling sent by the node when forwarding.
  • the device where the sending direction of the first protection signaling sent by the local node when forwarding is opposite to the direction of receiving the first protection signaling.
  • the present invention also provides a processing method for network node protection switching, and the processing method includes the following steps:
  • the node detects the first protection signaling generated on both sides of the network element node, and receives the first protection signaling.
  • the second protection signaling is transmitted by the protection signaling sending unit to other network element nodes, and the status information of the local node is sent to the cross configuration unit for service cross configuration.
  • the received first protection signaling is to be sent as protection signaling in a reverse direction of the receiving direction, by the protection signaling sending unit to other network element nodes. Forward.
  • the first protection signaling is effective signaling
  • the long/short path identifier indicated by the first protection signaling is a long path
  • the source node identifier or the destination node identifier indicated by the first protection signaling is not the local node
  • the bridging switching request indicated by the first protection signaling is valid.
  • the bridging switching request, the priority of the bridging switching request indicated by the first protection signaling is higher than the priority of the bridging switching request indicated by the protection signaling sent by the local node during forwarding.
  • the method wherein the sending direction of the first protection signaling sent by the local node when forwarding is opposite to the direction of receiving the first protection signaling.
  • the intermediate node outside the network node where the problem occurs is used to send protection signaling first, and then perform calculation of the protection protocol, so that the protocol calculation of the intermediate node is performed. It can be performed in parallel, which can save the processing time of the protection switching protocol unit at the intermediate node, thereby improving the processing efficiency of the protection switching.
  • Figure 1 shows a typical ring network structure
  • FIG. 2 is a schematic diagram of a general process of ring network protection switching
  • FIG. 3 is a schematic diagram showing a model structure of a protection protocol device of an existing network node
  • FIG. 4 is a schematic structural diagram of a protection protocol device of a network node according to the present invention.
  • FIG. 5 is a schematic diagram of an improved processing procedure of a ring network protection switching according to the present invention
  • FIG. 6 is a flowchart of a protection switching process according to the present invention.
  • the present invention provides a protection protocol device for a network node, and the protection protocol device includes several parts, as shown in FIG. 4, based on an improved idea of transmitting protection signaling in the intermediate node and then performing protection protocol calculation.
  • a protection switching protocol unit configured to calculate a current network condition by using a protection protocol algorithm according to the alarm information input to the node and the first protection signaling, and output the status information of the node and the node to be sent by the node.
  • the fault information detecting unit is configured to detect alarm information generated on both sides of the network element node, and send the alarm information to the protection switching protocol unit for protocol calculation;
  • a protection signaling detection unit configured to detect the first protection signaling generated on both sides of the network element node, and send the protection signaling to the protection switching protocol unit for protocol calculation;
  • a protection signaling sending unit configured to transmit the second protection signaling output by the protection switching protocol unit to other network element nodes
  • a cross-configuration unit configured to perform service cross-configuration according to status information of the local network element output by the protection switching protocol unit;
  • a protection signaling pre-transmission processing unit the unit being connected to the protection signaling detection unit and the protection signaling sending unit, respectively, configured to pre-transmit the first protection signaling received by the protection signaling detection unit Determining, and forwarding, by the protection signaling sending unit, the first protection signaling that needs to be pre-transmitted to other network element nodes.
  • first protection signaling is the protection signaling received by the node
  • second protection signaling refers to the protection switching protocol unit of the node.
  • first protection signaling one of the results of the protocol calculation, the name will be used uniformly to distinguish the difference.
  • the present invention is mainly designed for the first protection signaling. As can be seen from FIG.
  • the present invention adds a protection signaling pre-transmission processing unit based on the protection protocol model structure of the existing network node, and protects
  • the signaling detection unit detects the signaling change, it will receive the first
  • the first protection signaling is sent to the protection signaling pre-transfer processing unit for processing, and the protection signaling pre-transmission processing unit determines that if the pre-transmission protection signaling is needed, the protection signaling sending unit directly sends the protection signaling, otherwise deal with.
  • the protection signaling detection unit sends the received first protection signaling to the protection protocol unit for processing according to the original process, generates second protection signaling, and passes the protection signaling.
  • the sending unit passes to other network element nodes.
  • the present invention specifically performs a modification of the corresponding protection switching processing method, as shown in Fig. 6.
  • Step 100 The fault information detecting unit of the node in the ring network detects whether alarm information is generated on both sides of the network element node. When the fault information detecting unit of a node in the ring network detects the fault, the fault information is sent to the node. Protection switching protocol unit, otherwise, end the test;
  • Step 110 The protection switching protocol unit performs protocol calculation according to the fault information and the state of the current node, and outputs new protection signaling information to the protection signaling sending unit.
  • Step 120 The protection signaling sending unit sends the signaling information including the protection switching request to the long path and the short path direction according to the new protection signaling generated as described above.
  • Step 130 The protection signaling detection unit of other nodes in the network detects protection signaling generated on both sides of the network element node.
  • the protection signaling detection unit of an intermediate node detects the protection signaling sent by the node, the protection signaling is received, and is used as the first protection signaling defined in the foregoing, and is first sent to the protection signaling of the local node.
  • the pre-delivery processing unit determines whether the first protection signaling needs to be pre-transmitted or transmitted by the protection signaling pre-delivery processing unit. If pre-transmission or delivery is required, step 140 is performed; if not, it is not processed, and is directly executed. Step 150.
  • Step 140 The first protection signaling received by the local node is pre-transmitted to the other network element node by using the protection signaling sending unit of the local node, that is, forwarded.
  • the protection signaling when the protection signaling is pre-transmitted, the first protection signaling received by the local node will be used as the protection signaling to be sent in the opposite direction of the receiving direction, and the protection signaling sending unit of the local node sends the protection signaling unit to other network elements. The node forwards.
  • Step 150 The protection signaling detection unit sends the detected first protection signaling to the protection switching protocol module for protection protocol calculation, and generates status information of the local node and second protection signaling that the local node needs to send, and then The second protection signaling is sent to the protection signaling sending unit of the local node to perform protection signaling, and the status information of the point is sent to the cross-configuration unit of the local node.
  • the configuration of the cross relationship
  • steps 100 to 120 and step 150 belong to a conventional processing flow, and steps 100 to 120 indicate the generation process of the initial protection signaling including the protection switching request, that is, the protection signaling source node is generated. work process.
  • the purpose of the present invention is to add a pre-processing judging step of protection signaling between steps 120 and 150, which is mainly performed by an intermediate node in the ring network.
  • the pre-processing judging step is used to determine whether the protection signaling received by the intermediate node needs to be pre-processed, that is, whether the protection signaling received by the node satisfies the forwarding condition, and if necessary, that the forwarding condition is met, the network element node may be firstly sent to other network element nodes.
  • a node may be either the source node of the protection signaling or the intermediate node, so each node in the ring network should have the structure shown in Figure 4 above.
  • a pre-delivery judging process that is, determining whether the first protection signaling received by the node satisfies the forwarding condition, and the forwarding conditions here include the following:
  • Condition 1 The received protection signaling is valid signaling
  • Condition 3 The source node identifier or the destination node identifier indicated by the received protection signaling is not the local node;
  • the bridge switching request indicated by the received protection signaling is a valid bridging switching request, and its priority is higher than the priority of the bridging switching request indicated by the protection signaling sent by the local node during forwarding. All of the above four conditions meet the requirements, and are determined to be protection signaling that needs to be pre-transmitted. It can be seen from the description of the above step 140 that the direction of transmission of the protection signaling sent by the local node when forwarding is opposite to the direction of receiving the first protection signaling.
  • each span of the ring has two fibers.
  • Each fiber carries both a working channel and a protection channel.
  • One half of each fiber is defined as the working channel and the other half is defined as the protection channel.
  • the normal traffic carried by the working channel of one fiber is protected by the protection channel transmitted in the opposite direction of the ring.
  • the multiplex section 4 fiber shared protection ring there are four fibers in each span on the ring, and the working and protection channels are different.
  • the fiber-optic bearer two multiplex sections that are opposite each other carry the working channel, and the other two multiplex sections that are opposite each other carry the protection channel.
  • the protection signaling is transmitted by the K1 and K2 bytes in the SDH frame structure.
  • the K1 byte contains the protection switching request and the destination node identification ID.
  • K2 contains the source node identification ID and the node status.
  • the K1 K2 information is only The transmission in the protection channel, wherein the state of the node is: an idle state (ie, an Idle state, no generation or receipt of any switching request or bridge request status, and it receives a null code or ET code from both reverses), the punch-through state (Pass state, when a node's highest priority switching request is not for the purpose of this point or the bridging request or bridging request status sent by this point, it is in the through state), the switching state (ie, the Switch state, A node is in a state of being switched when it is not in an empty state or a through state.
  • an idle state ie, an Idle state, no generation or receipt of any switching request or bridge request status, and it receives a null code or ET code from both reverses
  • the punch-through state Pass state, when a node's highest priority switching request is not for the purpose of this point or the bridging request or bridging request status sent by this point, it is in the through state
  • each node uses the structure shown in FIG. 4, and the cross-ring switching of the multiplex section 2 fiber/4 fiber shared protection ring is described in detail with reference to FIG. 5 as follows:
  • Step 1 multiplex section A network node in the 2 fiber/4 fiber shared protection ring network detects the fault information and sends the protection switch protocol unit to node D.
  • Step 2 The protection switching protocol unit of the node D performs protocol calculation according to the fault information and the current state, and outputs a protection signaling sending unit that includes the K1/K2 byte of the current bridge switching request to the local node;
  • Step 3 The protection signaling sending unit of the node D sends the K-byte information of the protection switching request to the long-path and the short-path direction according to the K1/K2 byte.
  • Step 4 When other nodes in the network, such as nodes E, F, etc., receive the K-byte information, the K-byte information is first sent to the protection signaling pre-transfer processing unit of the node; The pre-transfer processing unit determines whether the K-byte protection signaling needs to be pre-transmitted, that is, whether the foregoing forwarding condition is met. If pre-transmission is required, the received K-byte protection signaling is used as the opposite direction of the receiving direction. The K bytes to be sent are sent to the corresponding protection signal sending unit of the local node to be sent to the corresponding optical fiber to implement forwarding function to other network element nodes; To pre-send, it will not be processed.
  • the received K1/K2 information is valid information.
  • the specific valid information includes: non-all zero information, non-all 1 information, destination network element identifier indicated by K1, and source network indicated by K2 in this multiplex section protection group.
  • the meta tag is in this multiplex section protection group.
  • this K1/K2 is the information received through the protection fiber.
  • the destination node ID of the received K1 byte is not the ID of the node E of the local network element.
  • the node ID of the source network element of the received K2 byte is not the ID of the node E of the local network element.
  • the bridge switching request indicated by the received K1 byte is the bridge switching request above the practice switching request, and its priority is higher than the priority of the K1 byte bridge switching request sent in the reverse direction of receiving the K1 byte direction. high.
  • Step 5 The protection signaling detection unit of the intermediate node sends the detected K-byte information of the change to the protection switching protocol module of the local node for calculation, and according to the calculation result (such as the state of the node and the K1/K2 word sent) Section), transmitting the new K1/K2 byte information to the protection signaling sending unit of the node for transmitting the new K1 K2 byte, and transmitting the state of the node (such as punch-through/idle/switching, etc.) to the cross-configuration unit Complete the configuration of the cross relationship of this node.
  • the calculation result such as the state of the node and the K1/K2 word sent
  • the switching processing time of the present invention is mainly affected by the ⁇ and T2', which is the long path from the node D.
  • the T2' is the short-path switching signaling sent from the node D
  • the node E sends the long-path switching signaling
  • the node D completes the processing time of the bridge switching.
  • the ⁇ in FIG. 5 is smaller than T1 in FIG. 2, and T2' in FIG. 5 is smaller than T2 in FIG. 2. It can be seen that the method and device of the present invention do improve the ring network. The processing efficiency is reduced and the processing time is shortened.
  • the present invention adds only one protection signaling pre-transfer processing unit based on the existing network node model, so that the protection switching of the ring network in the optical network can be effectively shortened.
  • the processing time greatly improves the processing efficiency of the ring network protection switching of the optical network equipment.
  • the invention can construct the above implementation method and its device structure on the basis of the hardware of the existing network element node by software programming.
  • the invention is particularly applicable to the technical field of ring network protection, and can also be extended to the field of protection processing of other similar ring networks.
  • the invention only adds a protection signaling pre-transfer processing unit based on the existing network node model, so that the protection switching processing time of the ring network in the optical network can be effectively shortened, and the optical network equipment ring network is greatly improved.
  • the invention is particularly applicable to the technical field of ring network protection, and can also be extended to the field of protection processing of other similar ring networks.

Description

一种网络节点的保护协议装置及其保护倒换处理方法 技术领域
本发明涉及光通信技术领域, 特别是涉及一种可以提高环网保护倒换处 理时间的网络节点的保护协议装置及其保护倒换处理方法。
背景技术
随着光网络技术的发展, 采用光纤承载网络业务传输应用越来越广泛。 在光纤的传输过程中, 难免会出现断纤、 设备断电等影响业务传输的异常情 况, 为了提高传输的可靠性和安全性, I-TUT (国际电联 )针对影响业务传输 的情况提供了标准的保护倒换机制 (比如 G.841、 G.783、 G.808等) , 以保 证当网络的光纤或者设备等资源出现异常的时候能够将业务自动切换到备用 资源进行正常传输。
目前比较普遍的一种保护组网方式是釆用环型组网结构, 通过将多个网 络设备通过光纤互连组成环型网络, 当环网中某一段光纤或者设备出现异常 的时候,通过在其余设备间传递一套标准的保护信令来完成保护倒换的建立。 为了保证保护倒换的及时性, 标准还对保护倒换的时间进行了规定, 要求对 于环型网络结构,在环上没有额外业务的情况下,所有节点处于空闲状态(即 没有检测到故障、 没有活动的自动或外部命令、 只收到空保护信令)且光纤 长度少于 1200km情况下, 单个区段故障时, 倒换完成时间应少于 50ms。
对于一个如附图 1所示的环型网络组网结构, 当网络节点 D、 E之间出 现故障时, 保护倒换处理的过程如下: 节点 D点先检测到故障, 并向两个方 向发送倒换请求的保护信令给节点 E点,节点 E点收到节点 D点短径方向(与 发生故障相近的方向)发送来的保护信令请求后, 也会从两个方向发送桥接 倒换或者反向请求的保护信令给节点 D点,节点 E点收到节点 D点从长径方 向 (与发生故障相反的方向)发送的桥接倒换请求的保护信令后, 完成本节 点的桥接倒换, 节点 D点收到节点 E点从长径发送的倒换信令后, 完成本节 点的桥接倒换, 其余中间节点在收到长径的保护信息后, 即进入双向穿通状 态如附图 2所示。从上述倒换过程可以看出,保护倒换处理时间主要受 Tl(即, 从节点 D点发出长径倒换信令到节点 E点完成桥接倒换的处理时间)和 T2 (即, 从节点 D点发出短径倒换信令到节点 E点发出长径倒换信令到节点 D 点完成桥接倒换的处理时间)影响, 由于向两个方向的两条路径一般可以并 行进行, 因此, 倒换时间主要由 T2决定。
单个网络节点的保护协议器的模型如附图 3所示, 其主要包含: ( 1 )故 障信息检测单元, 用于检测网元节点两侧是否有新的告警产生, 如果有, 发 送给保护倒换协议单元进行协议计算; ( 2 )保护信令检测单元, 用于检测网 元节点两侧是否有新的保护信令字节产生, 如果有, 发送给保护倒换协议单 元进行协议计算; ( 3 )保护倒换协议单元, 用于根据输入的告警和保护信令 信息, 用标准的保护协议算法对当前的网络情况进行计算, 并输出本网元节 点状态和需要发送的保护信令字节; (4 )保护信令发送单元, 用于根据保护 协议单元输出的保护信令字节向其他网元节点传递; (5 )交叉配置单元, 用 于根据保护倒换协议单元输出的本网元节点的状态进行具体的业务交叉的配 置。 支设每个网元节点的上述单元的处理时间差别不大, 上述的 T2时间可以 细分为: 1 X故障信息检测单元处理时间 + 6χ保护信令检测单元处理时间 + 7χ 保护协议单元处理时间 + 6χ保护信令发送单元处理时间 + l x交叉配置单元处 理时间, 扩展到 N个节点的情况, 可以推导出:
N个节点的倒换处理时间 = l x故障信息检测单元处理时间 + Νχ(保护信 令检测单元处理时间 +保护信令发送单元处理时间) + ( Ν+1 ) X保护倒换协议 单元处理时间 + 1 交叉配置单元处理时间。
目前, 一般保护协议单元处理时间一般在 3毫秒左右, 在硬件配置 (如 CPU主频)不高的情况下甚至在 3 ~ 6毫秒左右。保护信令的检测和发送单元 的处理比较简单, 处理时间一般远低于 1 毫秒。 因此, 在网絡节点数目很多 的情况下(目前的标准要求最大可支持到 16个节点), 其保护倒换时间仅保 护协议单元处理时间就在 ( 16 + 1 ) X ( 3 ~ 6 ) = 51 ~ 102 毫秒, 存在很大的 处理瓶颈。 再考虑到硬件传输的因素, 比如: 1200km光纤传输信令信息就至 少需要 6毫秒, 倒换时间基本不能满足标准要求。
可见, 现有技术中存在一定的问题, 需要进一步地改进。 发明内容
本发明的目的在于提供一种网絡节点的保护协议装置及其保护倒换处理 方法, 其提高了保护倒换的处理效率, 并可以保证环网保护倒换的时间满足 标准规定的要求。
为了实现上述目的, 本发明采用如下技术方案:
本发明提供了一种网络节点的保护协议装置, 所述保护协议装置包括: 用于进行保护协议计算的保护倒换协议单元, 用于检测网元节点两侧产生的 告警信息的故障信息检测单元, 用于检测网元节点两侧产生的第一保护信令 的保护信令检测单元, 用于向其他网元节点传递保护信令的保护信令发送单 元; 及用于根据本网元节点的状态信息进行业务交叉配置的交叉配置单元; 所述保护协议装置还包括: 一分别与所述保护信令检测单元和所述保护信令 发送单元相连的保护信令预传递处理单元, 所述保护信令预传递处理单元用 于对所述保护信令检测单元接收的第一保护信令进行预传递判断, 并通过所 述保护信令发送单元将需要预传递的所述第一保护信令向其他网元节点进行 转发。
所述的装置, 其中, 所述需要预传递的第一保护信令满足的条件包括以 下所列条件全部同时满足: 第一保护信令为有效信令, 第一保护信令指示的 长 /短径标识为长径, 第一保护信令指示的源节点标识或者目的节点标识不是 本节点, 第一保护信令指示的桥接倒换请求为有效的桥接倒换请求, 第一保 护信令指示的桥接倒换请求的优先级高于本节点在转发时发送的保护信令中 指示的桥接倒换请求的优先级。
所述的装置, 其中, 所述本节点在转发时发送的所述第一保护信令的发 送方向与接收所述第一保护信令的方向相反。
本发明还提供了一种网络节点保护倒换的处理方法, 所述处理方法包括 以下步骤:
A、 本节点检测网元节点两侧产生的第一保护信令, 并接收该第一保护 信令;
B、将接收到的第一保护信令进行预传递判断,若该第一保护信令需要预 传递, 则将该第一保护信令发送至本节点的保护信令发送单元, 由所述保护 信令发送单元向其他网元节点进行转发;
C、将接收到的第一保护信令发送至本节点的保护倒换协议单元进行协议 计算, 产生本节点的状态信息及本节点需要发送的第二保护信令;
D、 所述第二保护信令由所述保护信令发送单元向其他网元节点传递, 本节点的状态信息发送至交叉配置单元进行业务交叉配置。
所述的方法, 其中, 所述步骤 B中, 所述接收到的第一保护信令将作为 接收方向的反方向要发送的保护信令, 由所述保护信令发送单元向其他网元 节点进行转发。
所述的方法, 其中, 所述步骤 B中, 所述需要预传递的第一保护信令满 足的条件包括以下所列条件全部同时满足: 所述第一保护信令为有效信令, 所述第一保护信令指示的长 /短径标识为长径, 所述第一保护信令指示的源节 点标识或者目的节点标识不是本节点, 所述第一保护信令指示的桥接倒换请 求为有效的桥接倒换请求, 第一保护信令指示的桥接倒换请求的优先级高于 本节点在转发时发送的保护信令中指示的桥接倒换请求的优先级。
所述的方法, 其中, 所述本节点在转发时发送的所述第一保护信令的发 送方向与接收所述第一保护信令的方向相反。
有益效果: 本发明在环型网络的保护倒换的建立过程中, 在出现问题的 网络节点之外的中间节点, 釆用先发送保护信令, 再进行保护协议的计算, 使得中间节点的协议计算可以并行进行, 这样可以节约在中间节点的保护倒 换协议单元的处理时间, 从而提高保护倒换的处理效率。 附图概述
图 1为典型的环型组网结构;
图 2为环网保护倒换的一般处理过程示意图;
图 3为现有网络节点的保护协议器的模型结构示意图;
图 4为本发明网絡节点的保护协议装置的结构示意图;
图 5为本发明环网保护倒换的改进处理过程示意图; 图 6为本发明的保护倒换处理流程图。 本发明的较佳实施方式
以下结合附图详细描述本发明的技术方案。
基于在中间节点釆用先发送保护信令,后进行保护协议计算的改进思想, 如图 4所示, 本发明提供了一种网络节点的保护协议装置, 所述保护协议装 置包括几个部分:
( 1 )保护倒换协议单元, 用于根据输入本节点的告警信息和第一保护信 令, 用保护协议算法对当前的网络情况进行计算, 并输出本节点的状态信息 及本节点需要发送的第二保护信令;
( 2 )故障信息检测单元, 用于检测网元节点两侧产生的告警信息, 并将 该告警信息发送至保护倒换协议单元进行协议计算;
( 3 )保护信令检测单元, 用于检测网元节点两侧产生的所述第一保护信 令, 并将该保护信令发送至所述保护倒换协议单元进行协议计算;
( 4 )保护信令发送单元, 用于将保护倒换协议单元输出的第二保护信令 向其他网元节点传递;
( 5 )交叉配置单元, 用于根据保护倒换协议单元输出的本网元节点的状 态信息进行业务交叉配置;
( 6 )保护信令预传递处理单元, 该单元分别与保护信令检测单元和保护 信令发送单元相连, 该单元用于对所述保护信令检测单元接收的第一保护信 令进行预传递判断, 并通过所述保护信令发送单元将需要预传递的所述第一 保护信令向其他网元节点进行转发。
上述为了区别不同的保护信令, 特在名称添加不同的标示, 如"第一保护 信令"是本节点接收的保护信令, "第二保护信令"是指本节点的保护倒换协议 单元根据第一保护信令进行协议计算后的结果之一, 以下将统一使用该名称 以示区别。 本发明主要是针对第一保护信令来设计的, 从图 4中可以看出, 本发明在现有网络节点的保护协议器模型结构的基础上增加了一个保护信令 预传递处理单元, 保护信令检测单元检测到信令变化的时候, 先将接收到的 第一保护信令发送给保护信令预传递处理单元进行处理, 保护信令预传递处 理单元判断如果需要预传递保护信令, 则直接发送给保护信令发送单元发送 此保护信令, 否则不处理。 经保护信令预传递处理单元处理后, 保护信令检 测单元再将接收到的第一保护信令发送给保护协议单元按原有的流程进行处 理, 生成第二保护信令并通过保护信令发送单元向其他网元节点传递。
基于图 4所示的结构特点, 本发明特进行相应的保护倒换处理方法的修 改, 如图 6所示。
步骤 100 , 环网中节点的故障信息检测单元检测网元节点两侧是否产生 有告警信息, 当环网中某节点的故障信息检测单元检测到故障时, 将该故障 的告警信息发送给本节点的保护倒换协议单元, 否则, 结束此次检测;
步骤 110 , 保护倒换协议单元才艮据故障信息和当前节点的状态进行协议 计算, 输出新的保护信令信息给保护信令发送单元;
步骤 120 , 保护信令发送单元根据上述产生的新的保护信令, 同时向长 径和短径方向发送含有保护倒换请求的信令信息。
步骤 130 , 网络中其他节点的保护信令检测单元检测网元节点两侧产生 的保护信令。 当某一中间节点的保护信令检测单元检测到上述节点发出的保 护信令时, 接收该保护信令, 并将其作为前述定义的第一保护信令, 首先发 送给本节点的保护信令预传递处理单元, 由保护信令预传递处理单元判断此 第一保护信令是否需要预发送或传递, 如果需要预发送或传递, 则执行步骤 140; 如果不需要, 则不处理, 并直接执行步骤 150。
步骤 140 , 通过本节点的保护信令发送单元将本节点接收到的第一保护 信令向其他网元节点进行预传递, 即进行转发。 在此步骤中, 在保护信令进 行预传递时, 本节点接收到的第一保护信令将作为接收方向的反方向要发送 的保护信令, 由本节点的保护信令发送单元向其他网元节点进行转发。
步骤 150 , 保护信令检测单元将检测到的第一保护信令发送给保护倒换 协议模块进行保护协议计算, 并产生本节点的状态信息及本节点需要发送的 第二保护信令, 然后, 将该第二保护信令发送给本节点的保护信令发送单元 进行保护信令的发送, 将本点的状态信息发送给本节点的交叉配置单元进行 交叉关系的配置。
从上述过程可见, 上述步骤 100至步骤 120以及步骤 150属于常规的处 理流程, 并且步骤 100至步骤 120指出了含有保护倒换请求的初始保护信令 的产生过程, 也就是产生保护信令源节点的工作过程。 而本发明的目的在于 在上述步骤 120与步骤 150之间增加一个保护信令的预处理判断步骤, 这个 判断步骤主要是由环网中的中间节点完成的。 预处理判断步骤用于判断中间 节点接收的保护信令是否需要预处理, 即判断本节点接收到的保护信令是否 满足转发条件, 如果需要, 即满足转发条件, 则可以先向其他网元节点发送 含有保护倒换请求的第一保护信令, 然后再在本节点内针对接收的第一保护 信令进行保护协议计算, 实现本节点的桥接倒换, 从而使保护倒换请求与节 点的协议计算能并行进行, 节约了中间节点的保护协议处理时间, 整体上提 高了环网保护倒换的处理效率。 针对不同的网络故障情况, 某一节点既可能 是保护信令的源节点, 也可能是中间节点, 所以环网中的每一个节点均应该 具有上述图 4所示的结构。
上述均提到一个预传递的判断过程, 即对本节点接收到的第一保护信令 判断是否满足转发条件, 这里的转发条件包括以下几点:
条件一: 接收到的保护信令为有效信令;
条件二: 接收到的保护信令指示的长 /短径标识为长径;
条件三: 接收到的保护信令指示的源节点标识或者目的节点标识不是本 节点;
条件四:接收到的保护信令指示的桥接倒换请求为有效的桥接倒换请求, 且其优先级高于本节点在转发时发送的保护信令中指示的桥接倒换请求的优 先级。 上述四个条件均满足要求, 才被判定为需要预发送的保护信令。 从上 述步骤 140的说明可以看出, 这里所指的本节点在转发时发送的保护信令的 发送方向应与接收所述第一保护信令的方向相反。
下面以 SDH (同步数字序列 )领域的复用段共享保护环为例 , 来详细说 明本发明所述解决方案的具体实现方式。
I-TUT发布的 G.841和 G.842标准建议对 SDH的复用段 2纤 /4纤共享保 护环的协议算法进行了规定。 其中, 对于复用段 2纤共享保护环, 环的每个 跨段有两根光纤。 每根光纤既承载工作信道, 又承载保护信道。 每根光纤的 一半信道定义为工作信道, 另一半定义为保护信道。 一根光纤的工作信道承 载的正常业务由环上相反方向传送的保护信道进行保护; 对于复用段 4纤共 享保护环, 环上的每个跨段有四根光纤, 工作和保护信道由不同的光纤承载: 互为反向的两个复用段承载工作信道, 而互为反向的另外两个复用段承载保 护信道。 保护信令釆用 SDH帧结构中 K1和 K2字节来传递, K1字节包含保 护倒换请求和目的节点标识 ID, K2包含源节点标识 ID和节点状态, 对于 4 纤环, K1 K2信息只在保护信道中传输, 其中, 节点的状态有: 空闲状态(即 Idle 状态, 没有产生或收到任何倒换请求或桥接请求状态、 并且它从两个反 向收到空码或 ET码) 、 穿通状态 (即 Pass状态, 当一个节点的最高优先级 的倒换请求是不以本点为目的也非本点发送的桥接请求或桥接请求状态时, 它就是处于穿通状态)、 倒换状态 (即 Switch状态, 一个节点没有处于空状态 或穿通状态就处于倒换状态)。
应用本发明后, 每个节点釆用如图 4所示的结构, 对于复用段 2纤 /4纤 共享保护环的跨环倒换, 结合图 5详细说明实现步骤如下:
步骤一: 复用段 2纤 /4纤共享保护环网络中某网络节点 D检测到故障信 息, 发送给节点 D的保护倒换协议单元;
步骤二: 节点 D的保护倒换协议单元根据故障信息和当前状态进行协议 计算, 输出包含有当前桥接倒换请求的 K1/K2字节给本节点的保护信令发送 单元;
步骤三: 节点 D的保护信令发送单元根据 K1/K2字节向长径和短径方向 发送保护倒换请求的 K字节信息;
步骤四: 当网络中的其他节点, 如节点 E、 F等等中间节点收到此 K字 节信息时, 首先将此 K字节信息发送给本节点的保护信令预传递处理单元; 保护信令预传递处理单元判断此 K字节保护信令是否需要预发送, 也就 是判断是否满足上述转发条件, 如果需要预发送, 则把此接收到的 K字节保 护信令作为接收方向的反方向要发送的 K字节, 发送给本节点的保护信令发 送单元发送到相应的光纤中, 用以向其他网元节点实现转发功能; 如果不需 要预发送, 则不处理。
这一步骤中,具体的判断含有 K1/K2字节信息的 K字节保护信令是否需 要提前发送的条件为:
条件 1 : 接收的 K1/K2信息为有效信息, 具体的有效信息包括: 非全零 信息、 非全 1信息、 K1指示的目的网元标识在此复用段保护组内、 K2指示 的源网元标识在此复用段保护组内、 对于 4纤环此 K1/K2是通过保护光纤接 收到的信息。
条件 2: 接收的 K2字节的 bit5指示为长径 1。
条件 3: 接收的 K1字节的目的节点标识 ID不是本网元的节点 E的标识 ID, 接收的 K2字节的源网元的节点标识 ID不是本网元的节点 E的标识 ID。
条件 4:接收的 K1字节所指示的桥接倒换请求为练习倒换请求以上的桥 接倒换请求, 且其优先级比接收此 K1字节方向的反方向发送的 K1字节的桥 接倒换请求的优先级高。
上述四个条件均满足要求, 才被判定为需要预发送的保护信令。
步骤五: 上述中间节点的保护信令检测单元将检测到的变化的 K字节信 息发送给本节点的保护倒换协议模块进行计算, 并根据计算结果(如本节点 状态以及发送的 K1/K2字节), 将新的 K1/K2字节信息发送给本节点的保护 信令发送单元进行新的 K1 K2 字节的发送, 把本节点状态 (如穿通 /空闲 /倒 换等)发送给交叉配置单元完成本节点的交叉关系的配置。
如图 5所示, 当节点 D和节点 E之间出现故障时, 从上述倒换过程可以 看出, 本发明倒换处理时间主要受 ΤΓ和 T2'的影响, 该 ΤΓ是从节点 D发出 的长径倒换信令到节点 E完成桥接倒换的处理时间, 该 T2'是从节点 D发出 的短径倒换信令, 到节点 E发出长径倒换信令, 再到节点 D完成桥接倒换的 处理时间。 相比现有技术而言, 明显地, 图 5中的 ΤΓ小于图 2中的 T1 , 图 5中的 T2'小于图 2中的 T2, 可见, 本发明的方法及其装置确实提高了环网 倒换处理效率, 缩短了处理时间。
综上所述, 本发明在不改变现有网络节点模型的基础上仅增加一个保护 信令预传递处理单元, 使其可以有效的缩短光网络中环型网络的保护倒换处 理时间, 极大提高了光网络设备环网保护倒换的处理效率。 本发明可以通过 软件编程的方式在现有网元节点的硬件基础上构建上述实现方法及其装置结 构。 本发明特别适用于环网保护的技术领域, 也可以扩展到其他类似环型网 络的保护处理领域。
上述各具体步骤的举例说明较为具体, 并不能因此而认为是对本发明的 专利保护范围的限制, 本发明的专利保护范围应以所附权利要求为准。
工业实用性
本发明在不改变现有网络节点模型的基础上仅增加一个保护信令预传递 处理单元, 使其可以有效的缩短光网络中环型网络的保护倒换处理时间, 极 大提高了光网络设备环网保护倒换的处理效率。 本发明特别适用于环网保护 的技术领域, 也可以扩展到其他类似环型网络的保护处理领域。

Claims

权 利 要 求 书
1、 一种网絡节点的保护协议装置, 所述保护协议装置包括:
用于进行保护协议计算的保护倒换协议单元;
用于检测网元节点两侧产生的告警信息的故障信息检测单元; 用于检测网元节点两侧产生的第一保护信令的保护信令检测单元; 用于向其他网元节点传递保护信令的保护信令发送单元;
用于根据本网元节点的状态信息进行业务交叉配置的交叉配置单元; 以 及
一分别与所述保护信令检测单元和所述保护信令发送单元相连的保护信 令预传递处理单元, 所述保护信令预传递处理单元用于对所述保护信令检测 单元接收的所述第一保护信令进行预传递判断, 并通过所述保护信令发送单 元将需要预传递的所述第一保护信令向其他网元节点进行转发。
2、 根据权利要求 1所述的装置, 其中, 所述需要预传递的第一保护信令 满足的条件包括以下所列条件全部同时满足:
第一保护信令为有效信令;
第一保护信令指示的长 /短径标识为长径;
第一保护信令指示的源节点标识或者目的节点标识不是本网元节点; 第一保护信令指示的桥接倒换请求为有效的桥接倒换请求;
第一保护信令指示的桥接倒换请求的优先级高于本网元节点在转发时发 送的所述第一保护信令中指示的桥接倒换请求的优先级。
3、 根据权利要求 2所述的装置, 其中, 所述本节点在转发时发送的所述 第一保护信令的发送方向与接收所述第一保护信令的方向相反。
4、一种网络节点保护倒换的处理方法, 其中, 所述处理方法包括以下步 骤:
A、 本节点检测网元节点两侧产生的第一保护信令, 并接收该第一保护 信令; B、将接收到的所述第一保护信令进行预传递判断,若该第一保护信令需 要预传递, 则将该第一保护信令发送至本节点的保护信令发送单元, 由所述 保护信令发送单元向其他网元节点进行转发;
C、将接收到的第一保护信令发送至本节点的保护倒换协议单元进行协议 计算, 产生本节点的状态信息及本节点需要发送的第二保护信令;
D、 所述第二保护信令由所述保护信令发送单元向其他网元节点传递, 本节点的状态信息发送至交叉配置单元进行业务交叉配置。
5、 根据权利要求 4所述的方法, 其中, 所述步骤 B中, 所述接收到的第 一保护信令将作为接收方向的反方向要发送的保护信令, 由所述保护信令发 送单元向其他网元节点进行转发。
6、 根据权利要求 4或 5所述的方法, 其中, 所述步骤 B中, 所述需要预 传递的第一保护信令满足的条件包括以下所列条件全部同时满足:
所述第一保护信令为有效信令;
所述第一保护信令指示的长 /短径标识为长径;
所述第一保护信令指示的源节点标识或者目的节点标识不是本节点; 所述第一保护信令指示的桥接倒换请求为有效的桥接倒换请求; 所述第一保护信令指示的桥接倒换请求的优先级高于本节点在转发时发 送的所述第一保护信令中指示的桥接倒换请求的优先级。
7、 根据权利要求 6所述的方法, 其中, 所述本节点在转发时发送的所述 第一保护信令的发送方向与接收所述第一保护信令的方向相反。
PCT/CN2009/072718 2008-07-22 2009-07-10 一种网络节点的保护协议装置及其保护倒换处理方法 WO2010012190A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09802383.1A EP2312792B1 (en) 2008-07-22 2009-07-10 Protection protocol device for network node and method for processing protection switching thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101426398A CN101325599B (zh) 2008-07-22 2008-07-22 一种网络节点的保护协议装置及其保护倒换处理方法
CN200810142639.8 2008-07-22

Publications (1)

Publication Number Publication Date
WO2010012190A1 true WO2010012190A1 (zh) 2010-02-04

Family

ID=40188923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072718 WO2010012190A1 (zh) 2008-07-22 2009-07-10 一种网络节点的保护协议装置及其保护倒换处理方法

Country Status (3)

Country Link
EP (1) EP2312792B1 (zh)
CN (1) CN101325599B (zh)
WO (1) WO2010012190A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325599B (zh) * 2008-07-22 2012-05-23 中兴通讯股份有限公司 一种网络节点的保护协议装置及其保护倒换处理方法
CN102170397B (zh) * 2011-05-09 2016-09-28 中兴通讯股份有限公司 一种基于生存时间(ttl)控制的保护倒换优化方法和装置
CN103516540B (zh) * 2012-06-29 2018-03-13 中兴通讯股份有限公司 一种环网保护倒换装置及方法
CN106471814B (zh) * 2014-07-08 2020-02-07 索尼公司 发送装置、发送方法、接收装置和接收方法
CN106789521B (zh) * 2016-12-29 2019-07-26 瑞斯康达科技发展股份有限公司 一种环网故障倒换方法及环节点
CN108462549B (zh) 2017-11-22 2019-07-09 上海欣诺通信技术股份有限公司 保护组叠加倒换方法、控制装置及光通信设备
CN110808777B (zh) * 2019-11-15 2021-09-07 四川中电启明星信息技术有限公司 一种光纤通信网络的故障管控系统与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159392A1 (en) * 2001-04-25 2002-10-31 Adc Telecommunications Israel Ltd. Simplified ATM ring protection for access networks
CN1567805A (zh) * 2003-06-17 2005-01-19 中兴通讯股份有限公司 支持通道共享环保护的保护倒换协议实现方法
CN101075935A (zh) * 2007-06-27 2007-11-21 华为技术有限公司 一种实现环网保护的方法、系统及装置
CN101095058A (zh) * 2004-09-16 2007-12-26 以色列阿尔卡特电信公司 在使用标签交换协议的环形拓扑网络中保护多播业务的有效保护机制
US20080095047A1 (en) * 2006-06-29 2008-04-24 Nortel Networks Limited Method and system for looping back traffic in qiq ethernet rings and 1:1 protected pbt trunks
CN101217443A (zh) * 2008-01-21 2008-07-09 杭州华三通信技术有限公司 一种以太环网保护方法和传输节点
CN101325599A (zh) * 2008-07-22 2008-12-17 中兴通讯股份有限公司 一种网络节点的保护协议装置及其保护倒换处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277631B1 (en) * 2001-07-20 2007-10-02 Meriton Networks Us Inc. Method and apparatus for processing protection switching mechanism in optical channel shared protection rings
US7394758B2 (en) * 2001-09-04 2008-07-01 Rumi Sheryar Gonda Method for supporting SDH/SONET APS on Ethernet
KR100982015B1 (ko) * 2007-12-10 2010-09-14 한국전자통신연구원 폐쇄형 네트워크에서의 보호 절체 방법 및 그 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159392A1 (en) * 2001-04-25 2002-10-31 Adc Telecommunications Israel Ltd. Simplified ATM ring protection for access networks
CN1567805A (zh) * 2003-06-17 2005-01-19 中兴通讯股份有限公司 支持通道共享环保护的保护倒换协议实现方法
CN101095058A (zh) * 2004-09-16 2007-12-26 以色列阿尔卡特电信公司 在使用标签交换协议的环形拓扑网络中保护多播业务的有效保护机制
US20080095047A1 (en) * 2006-06-29 2008-04-24 Nortel Networks Limited Method and system for looping back traffic in qiq ethernet rings and 1:1 protected pbt trunks
CN101075935A (zh) * 2007-06-27 2007-11-21 华为技术有限公司 一种实现环网保护的方法、系统及装置
CN101217443A (zh) * 2008-01-21 2008-07-09 杭州华三通信技术有限公司 一种以太环网保护方法和传输节点
CN101325599A (zh) * 2008-07-22 2008-12-17 中兴通讯股份有限公司 一种网络节点的保护协议装置及其保护倒换处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2312792A4 *

Also Published As

Publication number Publication date
EP2312792B1 (en) 2017-10-11
EP2312792A1 (en) 2011-04-20
CN101325599A (zh) 2008-12-17
CN101325599B (zh) 2012-05-23
EP2312792A4 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2010012190A1 (zh) 一种网络节点的保护协议装置及其保护倒换处理方法
EP2013996B1 (en) System and method of multi-nodal aps control protocol signalling
US20080117827A1 (en) Method and system for verifying connectivity of logical link
US20100135162A1 (en) Transmission apparatus and transmission system
JP3777008B2 (ja) 障害復旧制御方法
US8315155B2 (en) Method, system and board apparatus for implementing automatic protection switching between active board and standby board
EP2207307B1 (en) Method for processing the failure of the slave port of the master node in an ethernet ring network system
WO2011140785A1 (zh) 分组传送网中复用段保护的方法及系统
CN106533811A (zh) 一种基于sdh的冗余通信系统及其冗余保护方法
KR20130055392A (ko) 점 대 다점 네트워크에서의 보호 절체 방법 및 장치
CN101702658A (zh) 一种环网保护的实现方法及系统
US7564778B2 (en) Method of and control node for detecting failure
KR20150007623A (ko) 패킷 전달 시스템에서의 보호 절체 방법 및 장치
US20070147231A1 (en) Path protection method and layer-2 switch
WO2015007134A1 (zh) 光突发交换环网中实现自动保护倒换的方法、系统及节点
WO2012065491A1 (zh) 复杂光网络保护倒换的方法及网管系统
CN101834759A (zh) 捆绑链路的检测方法及分布式设备
CN100531092C (zh) 智能光网络的业务重路由触发方法
WO2012079328A1 (zh) 复用段保护的倒换方法、系统及分组传输网设备
KR20070057786A (ko) 광전송 망의 고속 보호 방법
CN103516534A (zh) 实现双归保护倒换的方法及归属节点
WO2012041061A1 (zh) 光网络的保护方法和装置
WO2006015526A1 (fr) Procede de mise en oeuvre et dispositif de protocole de commutation de protection faisant intervenir un mode de communication ip
US20110051598A1 (en) Loss Link Forwarding
WO2011017863A1 (zh) 光数据单元环路共享保护控制方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009802383

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1240/DELNP/2011

Country of ref document: IN

Ref document number: 2009802383

Country of ref document: EP