WO2010011589A1 - Managed biometric-based notification system and method - Google Patents

Managed biometric-based notification system and method Download PDF

Info

Publication number
WO2010011589A1
WO2010011589A1 PCT/US2009/051107 US2009051107W WO2010011589A1 WO 2010011589 A1 WO2010011589 A1 WO 2010011589A1 US 2009051107 W US2009051107 W US 2009051107W WO 2010011589 A1 WO2010011589 A1 WO 2010011589A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
notifying
computer
image acquiring
additional instructions
Prior art date
Application number
PCT/US2009/051107
Other languages
French (fr)
Inventor
Joseph Ethan Rosenkrantz
Original Assignee
Airborne Biometrics Group, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airborne Biometrics Group, Inc. filed Critical Airborne Biometrics Group, Inc.
Priority to KR1020117003861A priority Critical patent/KR101723244B1/en
Priority to CN2009801283626A priority patent/CN102099813A/en
Priority to CA2731250A priority patent/CA2731250C/en
Priority to EP09800840.2A priority patent/EP2329428A4/en
Priority to JP2011520118A priority patent/JP5666441B2/en
Publication of WO2010011589A1 publication Critical patent/WO2010011589A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/94Hardware or software architectures specially adapted for image or video understanding
    • G06V10/95Hardware or software architectures specially adapted for image or video understanding structured as a network, e.g. client-server architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/51Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the invention relates to a notification system. More particularly, the invention relates to systems and methods of managed biometric-based notification.
  • Biometrics is the study of methods for characterizing and recognizing an individual based upon physical and behavioral traits, or in other words, a system which uses measurable biological properties to identify individuals.
  • Physical traits are those related to the characteristics of the human body, e.g. fingerprints, iris geometry, and face recognition. Behavioral traits are those linked to a signature, voice or keystroke. It is because biometrics measures qualities that an individual cannot change, that it is most effective for authentication and identification purposes. Biometrics have become an increasingly important part of an overall set of tools for securing a wide range of retail stores, facilities, areas, information, and environments. The use of biometric-based identification systems are becoming popular because such systems can provide substantially more security than many traditional security systems (e.g., usernames, passwords or personal identification numbers). Face recognition technologies can be used, for example, to determine whether an individual is permitted entry into a home, office, or similar environment, or to determine if an individual is wanted.
  • biometric capture device an analog or digital representation of biometric characteristics are obtained from a biometric capture device.
  • Many conventional systems rely on digital imaging technologies to capture data, which can include optics, a camera, or other electronic equipment.
  • the digital representation of the images i.e., the raw or unprocessed image data
  • an algorithm that converts the image data into a particular representation (i.e., a biometric marker or template).
  • Biometric features are information processed or extracted from a biometric sample or samples, which can then be used for comparison with a stored biometric reference. From the recognition sample, the biometric feature extraction creates a template which is compared with one or multiple biometric templates from a database. Due to the statistical nature of biometric samples, there is generally no exact match possible. For that reason, the decision process will only assign the biometric data subject to a biometric template and confirm recognition if the comparison score exceeds an adjustable threshold. Face recognition works by using a computer to analyze an individual's facial structure. The biometric software takes a number of points and measurements, including the distances between characteristics such as eyes, nose and mouth. This may also include angles of certain features such as the jaw and forehead, and lengths of various portions of the face.
  • Figure l is a block diagram of a managed biometric-based notification system.
  • Figure 2 is a block diagram of at least one image acquiring system of the managed biometric-based notification system, adapted to capture a first content.
  • Figure 3 is a block diagram of the managed biometric-based notification system including at least one image acquiring system, a comparison module, and a notification component.
  • Figure 4 is a block diagram of the managed biometric-based notification system including the comparison module, a content management module, and the at least one notification component including at least one transmitted data point.
  • FIG. 5 is a detailed block diagram of the content management module.
  • Figure 6 is a block diagram of at least one pre-selected receiving node.
  • Figure 7 is a block diagram of an embodiment of the at least one pre-selected receiving node.
  • Figure 8 is a block diagram of an embodiment of the managed biometric-based notification system.
  • Figure 9 is a block diagram of an embodiment of the managed biometric-based notification system.
  • Figure 10 is a block diagram of the managed biometric-based notification system including an image server.
  • Figure 11 is a block diagram of the managed biometric-based notification system including a web server.
  • Figure 12 is a flow chart of a process of the comparison module.
  • Figure 13 is a block diagram of an embodiment of the managed biometric-based notification system.
  • Figure 14 is a flow chart of a process of the at least one image acquiring system and comparison module.
  • Figure 15 is a block diagram an embodiment of the managed biometric-based notification system providing access to a third-party database.
  • Figure 16 is a block diagram of a process of enrollment.
  • Figure 17 is a block diagram of including an associated data to the process of enrollment.
  • Figure 18 is a block diagram of the content management module activating an event.
  • a managed biometric-based notification system 100 is provided. What is disclosed herein can include, among other things, an user interactive feedback system which is over a communication medium such as the Internet.
  • the techniques described below include a computer software application which, when executed on the computer system of an user, configures that computer system so that the user can receive and provide information to other selected users or groups of users based on the result of a content comparison.
  • the Internet refers at least to the worldwide collection of networks and gateways that use the transmission control protocol/Internet protocol (TCP/IP) to communicate.
  • the World Wide Web refers to the total set of inter-linked hypertext documents residing on hypertext transport protocol (HTTP) servers, wherein web servers can be any type of web server, e.g. APACHE.
  • HTTP hypertext transport protocol
  • the WWW also refers at least to documents accessed on secure servers, such as HTTP servers (HTTPS), which provide for encryption and transmission through a secure port.
  • HTTPS HTTP servers
  • the term "web site” refers at least to one or more related HTML documents and associated files, scripts, and databases that can be presented by an HTTP or HTTPS server on the WWW.
  • the term "web browser” refers at least to software that lets a user view HTML documents and access files and software related to those documents.
  • any one or more elements of the system illustrated in the following embodiments can be located remotely from any or all of the other elements, and that any of the elements of a given embodiment can, in fact, be part of another system altogether.
  • many aspects of the invention are usable with other biometric technologies, including but not limited to fingerprint recognition systems, iris recognition systems, hand geometry systems, and signature recognition systems. At least some embodiments of the invention are especially advantageous for biometric applications that utilize information captured from an image.
  • FIG. 1 illustrates the managed biometric-based notification system 100.
  • the managed biometric-based notification system 100 includes at least one image acquiring system 105 which is adapted to capture a first content 110, a comparison module 140 for comparing and distributing content within the system 100, a content management module 180 for controlling and managing the system 100, and at least one pre-selected receiving node 220.
  • FIG. 2 illustrates the at least one image acquiring system 105 in more detail.
  • the at least one image acquiring system 105 includes a lens 120, a processing unit 125, a digital sensor chip 130, a memory 135, and is adapted to capture the first content 110.
  • the first content 110 is captured the by the at least one image acquiring system 105 and transmitted to the comparison module 140 of the managed biometric-based notification system 100.
  • FIG. 3 illustrates the comparison module 140 in more detail, and a notification component 170.
  • the comparison module 140 is configured to receive the first content 110, and includes at least one processor 145, at least one database 150, at least one search engine 160, and an associated memory 165.
  • the at least one search engine 160 is operative Iy coupled with the at least one image acquiring system 105 and the at least one database 150.
  • the at least one processor 145 is operatively coupled with the at least one image acquiring system 105 and the at least one search engine 160, wherein the notification component 170 is generated provided a statistical threshold is satisfied between compared content.
  • Figure 4 illustrates the comparison module 140, the content management module 180, the notification component 170, and at least one transmitted data point 175.
  • the notification component 170 is transmitted by the comparison module 140 after the first content 110, and a second content 155, located in at least one database 150 are compared.
  • the content management module 180 is configured to manage and control the distribution of the notification component 170 including the at least one transmitted data point 175, to the user or users of the system 100.
  • FIG. 5 illustrates the content management module 180 in detail.
  • the content management module 180 provides the means for managing and controlling the managed biometric-based notification system 100 functioning by interacting with the comparison module 140.
  • the content management module 180 includes a case module (“CM”) 185, a notification module (“NM”) 190, a database browsing and reporting module (“DBRM”) 195, a subscription content module (“SCM”) 200, a support module (“SM”) 205, and an account management module 210 ("AMM").
  • CM case module
  • NM notification module
  • DBRM database browsing and reporting module
  • SCM subscription content module
  • SCM subscription content module
  • SM support module
  • AAMM account management module
  • the content management module 180 serves as a graphical user interface (GUI), and provides the user interaction, feedback functionality, and the ability to control and manage the managed biometric-based notification system 100.
  • GUI graphical user interface
  • the content management module 180 is accessed through a network via a web portal.
  • the content management module 180 is embodied in a computer-readable executable program comprising computer executable instructions stored on computer readable media, and is usable with a general purpose computer system.
  • the content management module 180 is embodied in a transmission medium, such as one or more carrier wave signals transmitted between computers and a server, on a wireless network.
  • the CM 185 is a module configured to allow the user to manage and create content and information for the managed biometric-based notification system 100.
  • the CM 185 provides the ability to create case information and associated case identification numbers ("CIN"), and also provide the user the ability to modify case information.
  • CIN case information and associated case identification numbers
  • the user is able to create cases by "enrollment" of the first content 110 captured from the at least one image acquiring system 105. Enrollment is a process of collecting biometric data from an individual and subsequently storing the data in a reference template representing the individual's identity. The procedure is crucial where the user is familiar with an individual who is not otherwise recognized by the system 100.
  • the created content is then stored in the at least one database 150 of the comparison module 140.
  • CM 185 provides the ability to also update the second content 155 with the first content 110, provided the threshold or substantial similarity requirement is met. This feature is essential where the managed biometric-based notification system 100 has outdated information and current information is available from the environment.
  • the CM 185 is also configured to allow the user to group case information based on specific criteria. For example, a "case group" can be labeled “shoplifters,” very important persons," or “persons with records.” Generally, the case group can be defined as any group where identification is important to the surrounding environment.
  • the CM 185 also manages stored content.
  • the CM 185 generally contains all the functionality of an arrangement module within a database.
  • the functionality contains fields, which can also used to search stored content (see DBRM 195), use menus, and tab functionality for arranging information.
  • the contained fields can include name, date of birth, sex, offense list, history, observations, transactions, and interactions in the environment. However, more fields can be added that may be specific to an individual or the environment, in order to better define the content and enhance search capabilities (see DBRM 195).
  • the NM 190 is a module configured to provide the user the means for notifying at least one user of the biometric-based notification system 100.
  • the NM 190 in conjunction with the comparison module 140, allows the user to select different methods of interacting with the users of the system 100.
  • the notification component 170 can be transmitted based on user preferences or pre-selected input into the NM 190 of user(s) or user group(s) in which to receive the information.
  • the user(s) or user group(s) defined in the NM 190 can be attached to single or multiple case groups (configured by the CM 185).
  • the NM 190 allows the user to determine which user(s) or user group(s) receive the at least one notification component(s) 170 and transmitted data point(s) 175 based on time intervals, such as day, week, month and year.
  • the NM 190 also provides the user the ability to send a variety of notification components 170.
  • the notification component 170 can be transmitted from the comparison module 140, which in an embodiment can include a notification server, based on different preferences or methods of delivery, e.g. SMS, MMS, Email, Instant Messaging, Voicemail, and the like.
  • the NM 190 also allows the user to select several different types of content within the at least one database 150 in which to be transmitted with the notification component 170.
  • the user is also able to control the threshold in which the first and second content, 110 and 155, respectively, are compared.
  • this function can also be implemented within the AMM 210.
  • the user is able to send a non-threshold comparison to an operator or automated operator module e.g. administrative authority, to determine substantial similarity, as a primary or secondary measure in validating the comparison. This function can be utilized in cases where an "unconfirmed" or non-threshold comparison or comparisons result.
  • the DBRM 195 is a module configured to provide the user the ability to develop reports and search the at least one database 150 within the managed biometric-based notification system 100.
  • the at least one database 150 is searchable by any case information filed within the system 100 through the fields created in the CM 185.
  • the information can include records, notes, observations, details, and other information which can apprise the user(s) as to the status or propensities of an individual in an environment.
  • the user is able to access and view cases, generate reports, which include, but are not limited to, match, enrollment and notification logs, as well as other internal statistics.
  • the DBRM 195 also provides the ability to export these logs and reports in any general format.
  • the SCM 200 is a module configured to provide the user the ability to subscribe, manage, and browse current and available database subscriptions. This module increases the referenced content, or second content 155, within the managed biometric-based notification system 100.
  • the system 100 also centralizes available databases and provides subscription information to the user, such as a description of the available database(s), associated pricing for each database, and a reference to the overall content.
  • the SCM 200 also provides the user the ability to share databases, or form "Alliances," with other subscribers within the system 100. However, this functionality, in an embodiment, can be included in the CM 185.
  • the functionality of this module also provides for the ability to request the authority who implements the system 100, to data mine other databases.
  • the process of data mining includes the ability to process data from other third party databases, and will create a database or databases based on processed or extracted feature sets from facial images and other information found within those databases.
  • the SM 205 is a module configured to provide customer interaction and support to the user of the content management module 180 with the managed biometric-based notification system 100 administrator, or authority, who implements the system 100.
  • the SM 205 provides an interactive program configured to aid the user in resolving issues with the system 100.
  • the issues presented within the SM 205 can also be tracked and managed.
  • the SM 205 includes a frequently asked questions application providing answers to commonly filed questions, and also includes other methods of support including live help and chat programs.
  • the AMM 210 is a module configured to provide the administrator or authority who implements the managed biometric-based notification system 100, an interface to manage user accounts, access, and data within the system 100. Through the AMM 210, is the ability to set up preferences, as well as rights to and within the system 100, including adding, deleting, modifying access for other users and sub-users of the CM 185.
  • the AMM 210 is also configured to add, edit, and remove the at least one image acquiring system 105, the at least one pre-selected receiving node 220, as well as other components associated with the system 100. This feature is particularly important where more components are added due to an increase in employees and/or areas in which to implement at least one image capturing device 105.
  • the AMM 210 can be implemented with the comparison module 140 by a single authority, having control over multiple implemented managed biometric- based notification systems 100.
  • remaining modules of the content management system 180 can be implemented into an environment or be provided to the user through a web portal.
  • the users of the system 100 are able to interact with the comparison module 140 through the modules described herein. This functionality allows for the control of implemented systems 100 within a plurality of environments and interaction between one or more of those environments.
  • Figure 6 illustrates the at least one pre-selected receiving node 220.
  • the node is a terminal, which can be a plurality, with a motherboard on a computer network, including a central processor 230, associated memory 240 (e.g., DRAM, ROM, EPROM, EEPROM, SRAM, SDRAM, and Flash RAM) for storing programs and or data, an input/output controller 250, optional special purpose logic devices (e.g., ASICs) or configurable logic devices (e.g., GAL and reprogrammable FPGA, a network interface 260, a display device 280, one or more input devices 290, a hard disk drive 300, a floppy disk drive 310, and a data bus 270 (e.g., a SCSI bus, an Enhanced IDE bus, or a Ultra DMA bus) coupling these components, allowing communication therein.
  • a data bus 270 e.g., a SCSI bus, an Enhanced IDE bus, or a Ultra
  • the central processor 230 can be any type of microprocessor.
  • the display device 280 can be any type of display, such as a liquid crystal display (LCD), cathode ray tube display (CRT), or light emitting diode (LED), capable of displaying the generated outputs.
  • the input device 290 can be any type-of device capable of providing the inputs described herein, such as keyboards, numeric keypads, touch screens, pointing devices, switches, styluses, and light pens.
  • the network interface 260 can be any type of a device, card, adapter, or connector that provides the at least one pre-selected receiving node 220 with network access to a computer or other networked enabled device. In one embodiment, the network interface 260 enables the at least one pre-selected receiving node 220 to connect to a computer network such as the Internet.
  • the content management module 180 in an embodiment, is loaded into the pre-selected receiving node 220 via the hard disk drive 300, the floppy disk drive 310, or the network interface 260, wherein in another embodiment, is included within the comparison module 140.
  • the program can reside in a permanent memory portion (e.g., a read-only-memory (ROM)) chip) of the main memory 240.
  • ROM read-only-memory
  • the at least one pre-selected receiving node 220 can be implemented on at least one of client and server.
  • a "client” can be broadly construed to mean one who requests or receives a file
  • server can be broadly construed to be the entity that sends or forwards the file.
  • the at least one pre-selected receiving node 220 operates in a networked environment using a communication connection to connect to one or more remote computers.
  • the remote computer can include a personal computer, server, router, network PC, a peer device, or other common network node.
  • the communication connection can include a Local Area Network (LAN), a Wide Area Network (WAN), or other networks.
  • LAN Local Area Network
  • WAN Wide Area Network
  • Figure 7 illustrates an embodiment of the at least one pre-selected receiving node 220.
  • the at least one pre-selected receiving node 220 is a transceiver or other similar means for receiving the at least one notification component 170.
  • the receiving means can include, but is not limited to, a cell phone, a personal digital assistant (PDA) or other similar handheld portable device.
  • the at least one pre-selected receiving node 220 can function as at least one image acquiring system 105, allowing the user means to capture the first content 110 and receive the notification component 170 and the at least one transmitted data point 175.
  • the use of the transceiver supplies mobility and versatility to the user in the environment.
  • the transceiver can be networked to other devices, such as in a client-server or peer to peer system, allowing the user to receive and send information to another transceiver in the environment.
  • the first content 110 is captured by the at least one image acquiring system 105.
  • the first content 110 is an image of a person, wherein the image substantially includes the facial region.
  • the first content 110 is an electronic translation of handwritten or printed images into machine text or optical character recognition (OCR), wherein the use of machine vision cameras or digital video cameras and computers is used to read and analyze alphanumeric characters.
  • OCR optical character recognition
  • the first content 110 can generally be any type of information important to the environment, and while only certain types of information is recognized by the comparison module 140, the remainder of the information can be categorized, stored, and retrieved upon request by the user in the same manner as compared content.
  • Figure 8 illustrates, in one embodiment, the at least one image acquiring system 105 disposed in a commercial environment 320.
  • commercial establishments are able to implement the managed biometric-based notification system 100 to reduce the amount of "shrinkage" or other crimes occurring in the commercial environment 320.
  • the illustrated configuration will allow the sharing of information, via configuring the content management module 180, pertinent to a certain store or stores, placing other "Alliances" on notice of a specific activity or person specific to the chain of stores or community.
  • the at least one image acquiring system 105 includes a machine vision camera.
  • Machine cameras incorporate frames rates of either 15 fps (SXGA) or 34 fps (VGA), and include camera features such as a standard processor, operating system, SDRAM and I/O connectivity via Ethernet, USB serial port and monitor out.
  • Components of a machine vision system will comprise several of the following: at least one digital or analog camera with optics for acquiring images.
  • An interface for digitizing images (widely known, in the case of CCTV cameras, as a "frame grabber").
  • a processor (often a PC or embedded processor, such as a DSP) (In some cases, all of the above are combined within a single device, called a smart camera).
  • Input/Output hardware e.g.
  • the machine vision camera includes a synchronizing sensor for detection (often an optical or magnetic sensor) to trigger image acquisition and processing. It can be understood by those skilled in the art that many available digital video and digital cameras can be used in conjunction with the managed biometric-based notification system 100 as a means for acquiring images, as such, the examples are not limiting in any way.
  • the at least one image acquiring system 105 due to the large amounts of collected data, which can be uncompressed video, includes at least one server 385 on site to handle the large quantities of data collection.
  • the at least one image acquiring system 105 transmits the first content 110 to a image server 385, wherein the image server 385 would store the first content 110 and transmit to the comparison module 140 after comparison of the first and second content, 110 and 155, respectively, yields threshold level similarity (process illustrated in Figure 14).
  • the at least one image acquiring system 105 transmits the first content 110 to a web server 390 of the comparison module 140. This configuration allows elements of the system 100 to be in various locations connected to a network.
  • Image Acquisition refers to how a computer gets image data from a camera into the computer.
  • the at least one image acquiring system 105 transmits uncompressed video to the comparison module 140.
  • the at least one image acquiring system 105 is on a network.
  • Figure 12 illustrates the process of the comparison module 140.
  • the comparison module 140 is configured to generate a set of descriptors or the feature set 110a from the received first content 110.
  • the comparison module 140 includes the at least one search engine 160, operatively coupled with the at least one image acquiring system 105 and the at least one database 150.
  • the at least one search engine 160 is programmed to execute a series of instructions, stored on the memory 165, to process a feature set 110a of the first content 110 and a substantially similar feature set 155a of the second content 155.
  • the comparison module 140 determines the comparison to be a match.
  • the notification component 170 is then transmitted, which in an embodiment, can include the notification server operatively coupled to the comparison module 140. In another embodiment, the notification component 170 can also be transmitted if a comparison does not result in a match. As stated previously, the operator can be employed at this juncture to determining substantial similarity. However, regardless of whether a match occurs, the content is stored within the at least one database 150.
  • the notification component 170 can be comprised of any variety of notification made available by the NM 190, delivered at any preference presented by the same module.
  • the at least one transmitted data point 175 is also transmitted along with the notification component 170, and its form and timing are determined by the same.
  • the comparison module 140 receives the feature set 110a of the first content 110. However, the first content 110 remains stored on the image server 385 or web server 390, as illustrated in Figures 10 and 11.
  • an extraction process is implemented within the local environment 320 at the at least one image acquiring system 105.
  • the processor 125 of the at least one image acquiring system is programmed to execute a series of instructions, stored on the memory 135, to process the feature set 110a of the first content 110.
  • an algorithm or extraction module found in the comparison module 140 is implemented at the at least one image acquiring system 105.
  • the comparison module 140 is then configured to compare the feature set 110a with the processed feature set 155a of the second content 155, also illustrated in Figure 10. If the statistical threshold or substantial similarity is satisfied the first content 110 is transmitted to the comparison module 140 upon request.
  • the comparison module 140 includes a facial recognition algorithm designed to process the feature set 110a of the first content 110 and a feature set 155a of the second content 155.
  • a process algorithm, or modules therein are implemented within the commercial environment at the at least one image acquiring system 105 and processes the feature set 110a, and comprise the comparison module 140.
  • the series of instructions used by the comparison module 140 can include the "FACE-IT" facial recognition system from Identix® Inc. (Merged with L- 1 Identity Solutions Company) or "Face VACS”® from Cognitec Systems.
  • the widely available technology can identify individuals independent of variances in human faces, including mimicry and aging variances, as well as variances coming from a new hair style, glasses, or lighting changes.
  • the algorithms involved in comparing content are implemented to determine the statistical closeness of the data involved, as such, multiple algorithms can be implemented for the determination of facial identification, as well as algorithms identifying other features of an individual in the environment, e.g. textual, to further limit the statistical closeness of an individual. It can be understood by those skilled in the art that many available algorithms can be used in conjunction with the managed biometric- based notification system 100 for comparison of content, as such, the examples are not limiting in any way.
  • the comparison module 140 draws from the at least one database 150.
  • the comparison module 140 in conjunction with the content management module 180 provides access to a variety of different content forms, databases and servers.
  • the database content can be predetermined, in that, it is the result of subscriptions to public or third party databases, e.g. government, law enforcement agencies, state databases, or databases the user requests to data mine.
  • the second content 155 is predetermined by the local environment 320, which can be based off internal company records and documents. As such, database content can be built from generated content within the system 100 through user input and feedback. The second content 155 can also be generated from outside the system 100 environment.
  • Illustrated in Figure 16 is the enrollment process through the CM 185.
  • the user is able to enroll an individual into the managed biometric-based notification system 100.
  • the system 100 comprehends the creation or enrollment when the feature set 110a is processed and stored in the at least one database 155.
  • the CM 185 provides the ability to the user, to upload associated data 110b with the first content 110, e.g. notes on interactions and/or observations related to the first content 110, as provided by the utility in Figure 6.
  • the comparison module 140 includes databases dedicated to the associated data 155b, and in another embodiment, includes databases dedicated to each type of associated data 155b described herein.
  • the second content 155 can then be manipulated via the content management module 180 by the user.
  • the managed biometric-based notification system 100 generally provides for the identification of an individual already retained in the system 100 and image retention for those individuals who are not within the system 100 but are to be identified at a future date.
  • the degree in which the first and second content, 110 and 155, respectively, must match is deemed “substantial similarity.”
  • This level of similarity is a threshold or a predefined set of parameters set forth by the user of the managed biometric-based notification system 100. These parameters may be modified by users, and in an embodiment, users who have been given authority within the system 100, such as that defined by AMM 210.
  • the comparison module 140 determines the substantial similarity of the feature sets of 110a and 155a, and the notification component 170 and at least one transmitted data point 175 are transmitted as determined by the content management module 180 if that similarity threshold is met.
  • the comparison module 140 transmits a plurality of second content 155 corresponding to varying degrees of similarity among compared feature sets or where the feature sets of 110a and 155a do not meet the predetermined threshold of the system 100, the operator determines substantial similarity. And as mentioned above, the operator can also be implemented as a primary or secondary measure in determining substantial similarity.
  • the comparison module 140 transmits the notification component 170 based on pre-selected criteria inputted into the content management module 180 via the NM 190 by the user.
  • the notification component 170 can be comprised of many different forms as set forth in the NM 190.
  • the notification component 170 can be wirelessly communicated including but not limited to utilizing short messaging service (SMS), multimedia messaging service (MMS), email, instant messaging or an Email to SMS, SMS to Email, MMS to Email, or Computer to SMS applications.
  • the at least one transmitted data point 175 is information transmitted along with the notification component 170, and is comprised of information which, in an embodiment, includes an image, e.g. the comparison image of the comparison module 140 or any form of the second content 155 described herein.
  • the at least one transmitted data point 175 includes the associated data 155b, or the associated data 155b along with the recently compared second content 155.
  • content can also be transmitted that describes the individual's record or other persons that individual is known to associate with, known accomplices, any other form mentioned herein.
  • the at least one notification component 170 is sent out detailing the identification of that criminal, and can include associated data 155b, e.g. prior criminal history, bench warrant, state prison, jail, conviction(s), arrest(s), charge(s), involved agencies, previous stolen items, treatment of staff, and gang affiliation.
  • the at least one transmitted data point 175 can include audio and/or textual information, e.g. instructions, guides, and/or user manuals specific to a product in the environment, which can be recorded through the CM 185.
  • the specifics of the at least one transmitted data point 175 is dependent to large degree on the content which is compared within the system 100.
  • general information about actions or events local to the commercial environment, or other individuals can also be transmitted. This feature can aid in providing customized service based on previous buying habits, amounts, and frequently asked questions.
  • the notification component 170 serves more than one function in the managed biometric-based notification system 100.
  • the notification component 170 can activate or initiate an event.
  • the comparison module 140 transmits the notification component 170 as an instruction signal to an actuator 330 which functions to perform an event, e.g. motor, or activate in application another networked device.
  • an actuator 330 which functions to perform an event, e.g. motor, or activate in application another networked device.
  • a servomechanism can be connected which supplies and transmits a measured amount of energy for the operation of another mechanism or system.
  • functional interfaces can interact with an SMS gateway to perform functions in the environment.
  • the notification component 170 can take a variety of forms in activating events, and as such, the form is not limited by the provided examples.
  • Figure 18 illustrates an embodiment, where a transducer or an actuator module 330 is included, which typically includes a clock 335, a processing unit 345, and a receiver 340, and is able to receive an input signal from the content management module 180 via the NM 190.
  • the actuator module 330 supplies as an output, a command via dry contact to control a motor and the circuitry of a door e.g. gate controller or lock via door strike or other similar device, in activating an event.
  • control over the environment can occur via a controller which can send an output command to a plurality of devices within a network.
  • a switch can be used to either turn on or off a device.
  • a binary command can be sent over a network to an interface, or remotely connect, to receivers controlling other devices and/or software in the environment.
  • the purpose of the at least one notification component 170 is to activate an event and/or notify the user of an individual.
  • the notification of an individual or activation of an event can take a variety of forms and activate a variety and plurality of users and devices, depending on the context, as such, the examples are not limiting in any way.
  • the receipt of the at least one notification component 170 can occur on a stationary terminal and/or transceiver or other mobile device.
  • the pre-selected receiving node 220 is a plurality of transceivers.
  • the plurality of transceivers transmit to other transceivers and/or retransmit information to other transceivers within the environment.
  • employees within a commercial environment 320 are able to communicate and also send image data and enroll content in the content management module 180.
  • the transceiver can also serve as a "local" remote control, operating by sending a wireless (e.g. infra-red or radio frequency) signal to a transceiver which is connected to a motor or application via another pre-selected receiving node 220 and a receiver. This embodiment provides the user of the system 100 another level of control in the environment.
  • the managed biometric-based notification system 100 provides the ability to control and manage information gathered in a real-time environment, and interact that environment with up to date information from a variety of external sources.
  • the system 100 provides the user with an interactive system component which includes the ability to transmit information to available resources using a variety of technologies and provide real-time feedback in a dynamic environment.
  • An advantage of the managed biometric-based notification system 100 is the content management module 180 element of the system 100.
  • the content management module 180 controls the distribution of content into an environment in which identification of information is crucial.
  • the content management module 180 allows the user to interact with the reminder of the system 100, through, in an embodiment, a browser-based interface. The user is also provided control over received, stored, and compared content within the system 100.
  • an advantage of the managed biometric-based notification system 100 is the ability to manage the transmission of the at least one notification component 170.
  • the content management module 180 allows the user the ability to manage events in the environment, such as the activation of applications or actuators linked to other devices, and also users and user groups in receiving information. This advantage intersects the resources in the environment with the result of the implemented algorithm in a real-time scenario.
  • the system 100 also provides the user with the ability to manage the type of notification, e.g. the mode of transmission.
  • the time of transmission is can also managed.
  • the notification component 170 can be directed based a variety of predetermined factors e.g. time and date intervals. While the transmission of at least one notification component 170 containing at least one data point 175 of an individual who is known for shoplifting can be transmitted to the available security guards, there are many more uses directed to the system 100, such as, the purchase history of an individual transmitted to a sales associate or a person who is known to have a heart condition to someone on staff who understands Cardio Pulmonary Resuscitation.
  • the application also can be used in allowing specialized or certain persons into a variety of areas in the environment. As such, it can be understood by those skilled in the art that many situations are possible in an environment requiring information specific for that situation, which can be used in conjunction with the managed biometric-based notification system 100, therefore the above examples are not designed to be limiting in any way.
  • Another advantage supplied by the content management module 180 is the ability to allow the user the option of creating a variety of databases and content within the managed biometric-based notification system 100.
  • the content management module 180 includes the ability to create databases by subscription, data mining or create content from the local environment 320. This option allows the user of the system 100 control over the organization of the content.
  • the creation of content within the managed biometric-based notification system 100 can also include a variety additional data referencing created content.
  • an additional advantage of the system 100 is the ability to include associated data e.g. including images, notes, within the system 100.
  • the associated data can be uploaded by a variety of methods identical or equivalent to the at least one notification component 170.
  • another advantage of the system 100 is the ability to modify the stored content.
  • the content management module 180 provides security measures via the AMM 210, for those who modify content within the system 100. Updated information about an individual is important where an individual has had certain hostile interactions with staff, maybe increasing in hostility, or is known to carry a weapon, or has previously targeted a specific area of the store. Thus, if given authority, modification of content is crucial to maintaining an updated system 100.
  • the at least one pre-selected receiving node 220 is a transceiver.
  • the transceiver provides the user the ability, not only to communicate crucial information to the next user or staff member in the environment, and provide mobility, but also activate applications or events based on that information. This places an added level of control to those within the environment.
  • the transceiver is able to communicate to another transceiver in the environment, the transceiver is also able to communicate an image to the comparison module 140 and receive the at least one notification component 170 based on the content transmitted.
  • the managed biometric-based notification system 100 can be used in a variety of environments.
  • the system 100 can be implemented in the commercial environment 320, in perimeter surveillance, automated entry, customer recognition or pre-authorized visitor identification. In a retail environment, the system 100 will reduce operational costs and increase the efficiency of the staff.
  • the managed biometric-based notification system 100 After being placed in strategic locations, the managed biometric-based notification system 100 will also reduce shrinkage.
  • the system 100 accomplishes this result by increasing the probability in matching an individual with a comprehensive image in a database.
  • the system 100 is constantly being updated and connected with content, coming from a variety of sources, e.g. the environment in which it is placed , third party databases, watchlists, requested data mined sites. As such, retrieved information is being compared against current data from a variety of sources, increasing the probability of a match.
  • the managed biometric-based notification system 100 is designed to be employed in a plurality of locations and including a central station or headquarters. As such, first content 110 acquired from the plurality of locations networked to the system 100 generally would be transmitted to the central station wherein the comparison module 140 would start the process illustrated in Figure 10, however, an advantage of the system 100 is the implementation of the process within the at least one image acquiring system 105 as illustrated in Figures 13 and 14.
  • the advantage of processing the feature set 110a at the at least one image acquiring system 105 is that it allows for only the feature set 110a to be transmitted for comparison. If the comparison achieves the desired threshold of the system 100, the comparison module 140 requests the first content 100 from the at least one image acquiring system 105. This is particularly important where a large number of users of the system 100 are networked. This advantage reduces the amount of data transmitted over a network, and thus reduces the amount of strain on the available bandwidth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Library & Information Science (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Collating Specific Patterns (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Telephonic Communication Services (AREA)
  • Burglar Alarm Systems (AREA)
  • Alarm Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Image Analysis (AREA)

Abstract

A managed biometric-based notification system and method is provided. The system includes at least one image acquiring system adapted to capture a first content comprising a feature set, a comparison module including at least one processor, at least one database comprising a second content, the second content comprising a feature set, at least one search engine operatively coupled with the at least one image acquiring system and the at least one database, a memory, the at least one processor operatively coupled with the at least one image acquiring system and the at least one search engine, programmed to execute a series of instructions, stored on the memory, to process the feature set of the first content and a feature set of the second content, at least one notification component including at least one transmitted data point, a content management module, and at least one pre-selected receiving node.

Description

MANAGED BIOMETRIC-BASED NOTIFICATION SYSTEM AND METHOD
BACKGROUND
1) Field of the Invention
The invention relates to a notification system. More particularly, the invention relates to systems and methods of managed biometric-based notification.
2) Discussion of the Related Art
Retail crime, shoplifting, and fraud are increasing in the United States. This increase brings a rising incidence of violence. In 2006, it was reported that the value of property lost in such cases, excluding shoplifting, was $ 18 billion. Shoplifting resulted in a $40 billion loss that same year, totaling $58 billion in 2006. Some suggest that part of the problem has been the "professionalism" of retail theft, which is essentially well organized individuals or gangs stealing large quantities of merchandise. Many surveillance systems are currently being used to combat this level of crime, however, the most effective systems are those which utilize biometric components.
Biometrics is the study of methods for characterizing and recognizing an individual based upon physical and behavioral traits, or in other words, a system which uses measurable biological properties to identify individuals. Physical traits are those related to the characteristics of the human body, e.g. fingerprints, iris geometry, and face recognition. Behavioral traits are those linked to a signature, voice or keystroke. It is because biometrics measures qualities that an individual cannot change, that it is most effective for authentication and identification purposes. Biometrics have become an increasingly important part of an overall set of tools for securing a wide range of retail stores, facilities, areas, information, and environments. The use of biometric-based identification systems are becoming popular because such systems can provide substantially more security than many traditional security systems (e.g., usernames, passwords or personal identification numbers). Face recognition technologies can be used, for example, to determine whether an individual is permitted entry into a home, office, or similar environment, or to determine if an individual is wanted.
Generally, in what is known as "one -to-many match," and prior to a biometric feature extraction process, an analog or digital representation of biometric characteristics are obtained from a biometric capture device. Many conventional systems rely on digital imaging technologies to capture data, which can include optics, a camera, or other electronic equipment. The digital representation of the images (i.e., the raw or unprocessed image data) is then processed by an algorithm that converts the image data into a particular representation (i.e., a biometric marker or template).
Biometric features are information processed or extracted from a biometric sample or samples, which can then be used for comparison with a stored biometric reference. From the recognition sample, the biometric feature extraction creates a template which is compared with one or multiple biometric templates from a database. Due to the statistical nature of biometric samples, there is generally no exact match possible. For that reason, the decision process will only assign the biometric data subject to a biometric template and confirm recognition if the comparison score exceeds an adjustable threshold. Face recognition works by using a computer to analyze an individual's facial structure. The biometric software takes a number of points and measurements, including the distances between characteristics such as eyes, nose and mouth. This may also include angles of certain features such as the jaw and forehead, and lengths of various portions of the face.
Research today is centered around the software aspect or algorithm development of biometric identification. The developing algorithms aim to reduce a known problem in the art, namely, the high numbers of false positives and negatives, which are called the False Acceptance Rate (FAR) and the False Recognition Rate (FRR), considered Type I and Type II errors in statistical models. The technologies involved in biometric identification include Segmentation, Decomposition Methods, namely, Eigenface, Local Feature Analysis (LFA), and Independent Component Analysis (ICA), and also include Support Vector Machines, Elastic Bunch Grapes, Implicit 3-D models and methods.
While more accurate and precise algorithms are essential to the identification of an individual, the implementation of current systems generally result in an inability to properly disseminate information. Furthermore, current systems are deficient in their implementation in a real-time environment using current technology network components. This deficiency stems from a lack of control over the environment, user integration and management over the system network. BRIEF DESCRIPTION OF THE DRAWINGS
The invention is described by way of example with reference to the accompanying drawings wherein:
Figure l is a block diagram of a managed biometric-based notification system.
Figure 2 is a block diagram of at least one image acquiring system of the managed biometric-based notification system, adapted to capture a first content.
Figure 3 is a block diagram of the managed biometric-based notification system including at least one image acquiring system, a comparison module, and a notification component.
Figure 4 is a block diagram of the managed biometric-based notification system including the comparison module, a content management module, and the at least one notification component including at least one transmitted data point.
Figure 5 is a detailed block diagram of the content management module.
Figure 6 is a block diagram of at least one pre-selected receiving node.
Figure 7 is a block diagram of an embodiment of the at least one pre-selected receiving node.
Figure 8 is a block diagram of an embodiment of the managed biometric-based notification system.
Figure 9 is a block diagram of an embodiment of the managed biometric-based notification system.
Figure 10 is a block diagram of the managed biometric-based notification system including an image server. Figure 11 is a block diagram of the managed biometric-based notification system including a web server.
Figure 12 is a flow chart of a process of the comparison module.
Figure 13 is a block diagram of an embodiment of the managed biometric-based notification system.
Figure 14 is a flow chart of a process of the at least one image acquiring system and comparison module.
Figure 15 is a block diagram an embodiment of the managed biometric-based notification system providing access to a third-party database.
Figure 16 is a block diagram of a process of enrollment.
Figure 17 is a block diagram of including an associated data to the process of enrollment.
Figure 18 is a block diagram of the content management module activating an event.
DETAILED DESCRIPTION OF THE INVENTION
A managed biometric-based notification system 100 is provided. What is disclosed herein can include, among other things, an user interactive feedback system which is over a communication medium such as the Internet. The techniques described below include a computer software application which, when executed on the computer system of an user, configures that computer system so that the user can receive and provide information to other selected users or groups of users based on the result of a content comparison.
As used herein, the Internet refers at least to the worldwide collection of networks and gateways that use the transmission control protocol/Internet protocol (TCP/IP) to communicate. The World Wide Web (WWW) refers to the total set of inter-linked hypertext documents residing on hypertext transport protocol (HTTP) servers, wherein web servers can be any type of web server, e.g. APACHE. As used herein, the WWW also refers at least to documents accessed on secure servers, such as HTTP servers (HTTPS), which provide for encryption and transmission through a secure port. As used herein, the term "web site" refers at least to one or more related HTML documents and associated files, scripts, and databases that can be presented by an HTTP or HTTPS server on the WWW. The term "web browser" refers at least to software that lets a user view HTML documents and access files and software related to those documents.
It should be appreciated that any one or more elements of the system illustrated in the following embodiments can be located remotely from any or all of the other elements, and that any of the elements of a given embodiment can, in fact, be part of another system altogether. Furthermore, it should be understood that, for the following embodiments, although they are described in connection with the managed biometric- based identification system 100, many aspects of the invention are usable with other biometric technologies, including but not limited to fingerprint recognition systems, iris recognition systems, hand geometry systems, and signature recognition systems. At least some embodiments of the invention are especially advantageous for biometric applications that utilize information captured from an image.
Figure 1 illustrates the managed biometric-based notification system 100. The managed biometric-based notification system 100 includes at least one image acquiring system 105 which is adapted to capture a first content 110, a comparison module 140 for comparing and distributing content within the system 100, a content management module 180 for controlling and managing the system 100, and at least one pre-selected receiving node 220.
Figure 2 illustrates the at least one image acquiring system 105 in more detail. The at least one image acquiring system 105 includes a lens 120, a processing unit 125, a digital sensor chip 130, a memory 135, and is adapted to capture the first content 110. The first content 110 is captured the by the at least one image acquiring system 105 and transmitted to the comparison module 140 of the managed biometric-based notification system 100.
Figure 3 illustrates the comparison module 140 in more detail, and a notification component 170. The comparison module 140 is configured to receive the first content 110, and includes at least one processor 145, at least one database 150, at least one search engine 160, and an associated memory 165. The at least one search engine 160 is operative Iy coupled with the at least one image acquiring system 105 and the at least one database 150. The at least one processor 145 is operatively coupled with the at least one image acquiring system 105 and the at least one search engine 160, wherein the notification component 170 is generated provided a statistical threshold is satisfied between compared content.
Figure 4 illustrates the comparison module 140, the content management module 180, the notification component 170, and at least one transmitted data point 175. The notification component 170 is transmitted by the comparison module 140 after the first content 110, and a second content 155, located in at least one database 150 are compared. The content management module 180 is configured to manage and control the distribution of the notification component 170 including the at least one transmitted data point 175, to the user or users of the system 100.
Figure 5 illustrates the content management module 180 in detail. The content management module 180 provides the means for managing and controlling the managed biometric-based notification system 100 functioning by interacting with the comparison module 140. In providing the necessary functionality to the user of the system 100, the content management module 180 includes a case module ("CM") 185, a notification module ("NM") 190, a database browsing and reporting module ("DBRM") 195, a subscription content module ("SCM") 200, a support module ("SM") 205, and an account management module 210 ("AMM").
The content management module 180 serves as a graphical user interface (GUI), and provides the user interaction, feedback functionality, and the ability to control and manage the managed biometric-based notification system 100. In an embodiment, the content management module 180 is accessed through a network via a web portal. The content management module 180 is embodied in a computer-readable executable program comprising computer executable instructions stored on computer readable media, and is usable with a general purpose computer system. In another embodiment, the content management module 180 is embodied in a transmission medium, such as one or more carrier wave signals transmitted between computers and a server, on a wireless network.
The CM 185 is a module configured to allow the user to manage and create content and information for the managed biometric-based notification system 100. The CM 185 provides the ability to create case information and associated case identification numbers ("CIN"), and also provide the user the ability to modify case information. The user is able to create cases by "enrollment" of the first content 110 captured from the at least one image acquiring system 105. Enrollment is a process of collecting biometric data from an individual and subsequently storing the data in a reference template representing the individual's identity. The procedure is crucial where the user is familiar with an individual who is not otherwise recognized by the system 100. The created content is then stored in the at least one database 150 of the comparison module 140.
CM 185 provides the ability to also update the second content 155 with the first content 110, provided the threshold or substantial similarity requirement is met. This feature is essential where the managed biometric-based notification system 100 has outdated information and current information is available from the environment. The CM 185 is also configured to allow the user to group case information based on specific criteria. For example, a "case group" can be labeled "shoplifters," very important persons," or "persons with records." Generally, the case group can be defined as any group where identification is important to the surrounding environment.
The CM 185 also manages stored content. The CM 185 generally contains all the functionality of an arrangement module within a database. The functionality contains fields, which can also used to search stored content (see DBRM 195), use menus, and tab functionality for arranging information. The contained fields can include name, date of birth, sex, offense list, history, observations, transactions, and interactions in the environment. However, more fields can be added that may be specific to an individual or the environment, in order to better define the content and enhance search capabilities (see DBRM 195).
The NM 190 is a module configured to provide the user the means for notifying at least one user of the biometric-based notification system 100. The NM 190, in conjunction with the comparison module 140, allows the user to select different methods of interacting with the users of the system 100. The notification component 170 can be transmitted based on user preferences or pre-selected input into the NM 190 of user(s) or user group(s) in which to receive the information. The user(s) or user group(s) defined in the NM 190 can be attached to single or multiple case groups (configured by the CM 185). In an embodiment, the NM 190 allows the user to determine which user(s) or user group(s) receive the at least one notification component(s) 170 and transmitted data point(s) 175 based on time intervals, such as day, week, month and year. The NM 190 also provides the user the ability to send a variety of notification components 170. In an embodiment, the notification component 170 can be transmitted from the comparison module 140, which in an embodiment can include a notification server, based on different preferences or methods of delivery, e.g. SMS, MMS, Email, Instant Messaging, Voicemail, and the like. Furthermore, the NM 190 also allows the user to select several different types of content within the at least one database 150 in which to be transmitted with the notification component 170.
In an embodiment, the user is also able to control the threshold in which the first and second content, 110 and 155, respectively, are compared. However, this function can also be implemented within the AMM 210. In an embodiment, the user is able to send a non-threshold comparison to an operator or automated operator module e.g. administrative authority, to determine substantial similarity, as a primary or secondary measure in validating the comparison. This function can be utilized in cases where an "unconfirmed" or non-threshold comparison or comparisons result.
Numerous scenarios can be detailed in which specific information is transmitted to appropriate users at pre-selected times and methods, who are selected to handle that type of information, or have requested specific information to be transmitted, based on a variety of factors specific to those individuals, as such, examples above are not designed to be limiting in any way.
The DBRM 195 is a module configured to provide the user the ability to develop reports and search the at least one database 150 within the managed biometric-based notification system 100. The at least one database 150 is searchable by any case information filed within the system 100 through the fields created in the CM 185. The information can include records, notes, observations, details, and other information which can apprise the user(s) as to the status or propensities of an individual in an environment. The user is able to access and view cases, generate reports, which include, but are not limited to, match, enrollment and notification logs, as well as other internal statistics. The DBRM 195 also provides the ability to export these logs and reports in any general format.
The SCM 200 is a module configured to provide the user the ability to subscribe, manage, and browse current and available database subscriptions. This module increases the referenced content, or second content 155, within the managed biometric-based notification system 100. The system 100 also centralizes available databases and provides subscription information to the user, such as a description of the available database(s), associated pricing for each database, and a reference to the overall content. The SCM 200 also provides the user the ability to share databases, or form "Alliances," with other subscribers within the system 100. However, this functionality, in an embodiment, can be included in the CM 185. The functionality of this module also provides for the ability to request the authority who implements the system 100, to data mine other databases. The process of data mining, includes the ability to process data from other third party databases, and will create a database or databases based on processed or extracted feature sets from facial images and other information found within those databases. The SM 205 is a module configured to provide customer interaction and support to the user of the content management module 180 with the managed biometric-based notification system 100 administrator, or authority, who implements the system 100. The SM 205 provides an interactive program configured to aid the user in resolving issues with the system 100. The issues presented within the SM 205 can also be tracked and managed. The SM 205 includes a frequently asked questions application providing answers to commonly filed questions, and also includes other methods of support including live help and chat programs.
The AMM 210 is a module configured to provide the administrator or authority who implements the managed biometric-based notification system 100, an interface to manage user accounts, access, and data within the system 100. Through the AMM 210, is the ability to set up preferences, as well as rights to and within the system 100, including adding, deleting, modifying access for other users and sub-users of the CM 185. The AMM 210 is also configured to add, edit, and remove the at least one image acquiring system 105, the at least one pre-selected receiving node 220, as well as other components associated with the system 100. This feature is particularly important where more components are added due to an increase in employees and/or areas in which to implement at least one image capturing device 105.
In an embodiment, the AMM 210 can be implemented with the comparison module 140 by a single authority, having control over multiple implemented managed biometric- based notification systems 100. In this embodiment, remaining modules of the content management system 180 can be implemented into an environment or be provided to the user through a web portal. In this embodiment, the users of the system 100 are able to interact with the comparison module 140 through the modules described herein. This functionality allows for the control of implemented systems 100 within a plurality of environments and interaction between one or more of those environments.
Figure 6 illustrates the at least one pre-selected receiving node 220. In an embodiment, the node is a terminal, which can be a plurality, with a motherboard on a computer network, including a central processor 230, associated memory 240 (e.g., DRAM, ROM, EPROM, EEPROM, SRAM, SDRAM, and Flash RAM) for storing programs and or data, an input/output controller 250, optional special purpose logic devices (e.g., ASICs) or configurable logic devices (e.g., GAL and reprogrammable FPGA, a network interface 260, a display device 280, one or more input devices 290, a hard disk drive 300, a floppy disk drive 310, and a data bus 270 (e.g., a SCSI bus, an Enhanced IDE bus, or a Ultra DMA bus) coupling these components, allowing communication therein.
The central processor 230 can be any type of microprocessor. The display device 280 can be any type of display, such as a liquid crystal display (LCD), cathode ray tube display (CRT), or light emitting diode (LED), capable of displaying the generated outputs. The input device 290 can be any type-of device capable of providing the inputs described herein, such as keyboards, numeric keypads, touch screens, pointing devices, switches, styluses, and light pens.
The network interface 260 can be any type of a device, card, adapter, or connector that provides the at least one pre-selected receiving node 220 with network access to a computer or other networked enabled device. In one embodiment, the network interface 260 enables the at least one pre-selected receiving node 220 to connect to a computer network such as the Internet. The content management module 180, in an embodiment, is loaded into the pre-selected receiving node 220 via the hard disk drive 300, the floppy disk drive 310, or the network interface 260, wherein in another embodiment, is included within the comparison module 140. Alternatively, the program can reside in a permanent memory portion (e.g., a read-only-memory (ROM)) chip) of the main memory 240.
The at least one pre-selected receiving node 220 can be implemented on at least one of client and server. A "client" can be broadly construed to mean one who requests or receives a file, and "server" can be broadly construed to be the entity that sends or forwards the file. In an embodiment, the at least one pre-selected receiving node 220 operates in a networked environment using a communication connection to connect to one or more remote computers. The remote computer can include a personal computer, server, router, network PC, a peer device, or other common network node. The communication connection can include a Local Area Network (LAN), a Wide Area Network (WAN), or other networks.
Figure 7 illustrates an embodiment of the at least one pre-selected receiving node 220. In an embodiment, the at least one pre-selected receiving node 220 is a transceiver or other similar means for receiving the at least one notification component 170. The receiving means can include, but is not limited to, a cell phone, a personal digital assistant (PDA) or other similar handheld portable device. Further, in this embodiment the at least one pre-selected receiving node 220 can function as at least one image acquiring system 105, allowing the user means to capture the first content 110 and receive the notification component 170 and the at least one transmitted data point 175. The use of the transceiver supplies mobility and versatility to the user in the environment. The transceiver can be networked to other devices, such as in a client-server or peer to peer system, allowing the user to receive and send information to another transceiver in the environment.
In use, upon implementation of the managed biometric-based notification system 100 into an environment, the first content 110 is captured by the at least one image acquiring system 105. In an embodiment, the first content 110 is an image of a person, wherein the image substantially includes the facial region. In another embodiment, the first content 110 is an electronic translation of handwritten or printed images into machine text or optical character recognition (OCR), wherein the use of machine vision cameras or digital video cameras and computers is used to read and analyze alphanumeric characters. However, the first content 110 can generally be any type of information important to the environment, and while only certain types of information is recognized by the comparison module 140, the remainder of the information can be categorized, stored, and retrieved upon request by the user in the same manner as compared content.
Figure 8 illustrates, in one embodiment, the at least one image acquiring system 105 disposed in a commercial environment 320. In this embodiment, commercial establishments are able to implement the managed biometric-based notification system 100 to reduce the amount of "shrinkage" or other crimes occurring in the commercial environment 320. Illustrated in Figure 9, in another embodiment, stores within the same community or stores within the same chain, who are subscribers to the system 100, are able to share at least one central database 325. The illustrated configuration will allow the sharing of information, via configuring the content management module 180, pertinent to a certain store or stores, placing other "Alliances" on notice of a specific activity or person specific to the chain of stores or community.
In an embodiment, the at least one image acquiring system 105 includes a machine vision camera. Machine cameras incorporate frames rates of either 15 fps (SXGA) or 34 fps (VGA), and include camera features such as a standard processor, operating system, SDRAM and I/O connectivity via Ethernet, USB serial port and monitor out. Components of a machine vision system will comprise several of the following: at least one digital or analog camera with optics for acquiring images. An interface for digitizing images (widely known, in the case of CCTV cameras, as a "frame grabber"). A processor (often a PC or embedded processor, such as a DSP) (In some cases, all of the above are combined within a single device, called a smart camera). Input/Output hardware (e.g. digital I/O) or communication links (e.g. network connection) to report results. Lenses to focus the desired field of view onto the image sensor. A program to process images and detect relevant features. In an embodiment, the machine vision camera includes a synchronizing sensor for detection (often an optical or magnetic sensor) to trigger image acquisition and processing. It can be understood by those skilled in the art that many available digital video and digital cameras can be used in conjunction with the managed biometric-based notification system 100 as a means for acquiring images, as such, the examples are not limiting in any way. In this embodiment, as illustrated in Figure 10, the at least one image acquiring system 105, due to the large amounts of collected data, which can be uncompressed video, includes at least one server 385 on site to handle the large quantities of data collection. In this embodiment, the at least one image acquiring system 105 transmits the first content 110 to a image server 385, wherein the image server 385 would store the first content 110 and transmit to the comparison module 140 after comparison of the first and second content, 110 and 155, respectively, yields threshold level similarity (process illustrated in Figure 14). In another embodiment, as illustrated in Figure 11, the at least one image acquiring system 105 transmits the first content 110 to a web server 390 of the comparison module 140. This configuration allows elements of the system 100 to be in various locations connected to a network.
After capturing the first content 110 from an environment, or otherwise called a "tracking environment," the first content 110 is then transmitted to the comparison module 140. This step is generally called "Image Acquisition." Image Acquisition refers to how a computer gets image data from a camera into the computer. In an embodiment, the at least one image acquiring system 105 transmits uncompressed video to the comparison module 140. In another embodiment, the at least one image acquiring system 105 is on a network.
Figure 12 illustrates the process of the comparison module 140. The comparison module 140 is configured to generate a set of descriptors or the feature set 110a from the received first content 110. The comparison module 140 includes the at least one search engine 160, operatively coupled with the at least one image acquiring system 105 and the at least one database 150. The at least one search engine 160 is programmed to execute a series of instructions, stored on the memory 165, to process a feature set 110a of the first content 110 and a substantially similar feature set 155a of the second content 155.
If the feature sets 110a and 155a meet a predetermined threshold, the comparison module 140 determines the comparison to be a match. The notification component 170 is then transmitted, which in an embodiment, can include the notification server operatively coupled to the comparison module 140. In another embodiment, the notification component 170 can also be transmitted if a comparison does not result in a match. As stated previously, the operator can be employed at this juncture to determining substantial similarity. However, regardless of whether a match occurs, the content is stored within the at least one database 150. The notification component 170 can be comprised of any variety of notification made available by the NM 190, delivered at any preference presented by the same module. Furthermore, the at least one transmitted data point 175 is also transmitted along with the notification component 170, and its form and timing are determined by the same.
Illustrated in Figure 13, and in connection with Figures 10 and 11, is an embodiment of the managed biometric-based notification system 100. In this embodiment, the comparison module 140 receives the feature set 110a of the first content 110. However, the first content 110 remains stored on the image server 385 or web server 390, as illustrated in Figures 10 and 11. In an embodiment, an extraction process is implemented within the local environment 320 at the at least one image acquiring system 105. In this embodiment, as illustrated in Figure 14, the processor 125 of the at least one image acquiring system is programmed to execute a series of instructions, stored on the memory 135, to process the feature set 110a of the first content 110. Here, an algorithm or extraction module found in the comparison module 140 is implemented at the at least one image acquiring system 105. The comparison module 140 is then configured to compare the feature set 110a with the processed feature set 155a of the second content 155, also illustrated in Figure 10. If the statistical threshold or substantial similarity is satisfied the first content 110 is transmitted to the comparison module 140 upon request.
In an embodiment, the comparison module 140 includes a facial recognition algorithm designed to process the feature set 110a of the first content 110 and a feature set 155a of the second content 155. In another embodiment, a process algorithm, or modules therein, are implemented within the commercial environment at the at least one image acquiring system 105 and processes the feature set 110a, and comprise the comparison module 140. The series of instructions used by the comparison module 140 can include the "FACE-IT" facial recognition system from Identix® Inc. (Merged with L- 1 Identity Solutions Company) or "Face VACS"® from Cognitec Systems. Generally, the widely available technology can identify individuals independent of variances in human faces, including mimicry and aging variances, as well as variances coming from a new hair style, glasses, or lighting changes.
The algorithms involved in comparing content are implemented to determine the statistical closeness of the data involved, as such, multiple algorithms can be implemented for the determination of facial identification, as well as algorithms identifying other features of an individual in the environment, e.g. textual, to further limit the statistical closeness of an individual. It can be understood by those skilled in the art that many available algorithms can be used in conjunction with the managed biometric- based notification system 100 for comparison of content, as such, the examples are not limiting in any way.
As indicated above, in comparing the first and second content, 110 and 155, respectively, the comparison module 140 draws from the at least one database 150. However, the comparison module 140 in conjunction with the content management module 180 provides access to a variety of different content forms, databases and servers. As Figure 15 illustrates, in an embodiment, the database content can be predetermined, in that, it is the result of subscriptions to public or third party databases, e.g. government, law enforcement agencies, state databases, or databases the user requests to data mine. In another embodiment, as indicated above, the second content 155 is predetermined by the local environment 320, which can be based off internal company records and documents. As such, database content can be built from generated content within the system 100 through user input and feedback. The second content 155 can also be generated from outside the system 100 environment.
Illustrated in Figure 16 is the enrollment process through the CM 185. In this embodiment, the user is able to enroll an individual into the managed biometric-based notification system 100. The system 100 comprehends the creation or enrollment when the feature set 110a is processed and stored in the at least one database 155. As illustrated in Figure 17, the CM 185 provides the ability to the user, to upload associated data 110b with the first content 110, e.g. notes on interactions and/or observations related to the first content 110, as provided by the utility in Figure 6.
After the first content 110 and associated data 110b are within the at least one database 150, it becomes second content 155 and associated data 155b. In an embodiment, the comparison module 140 includes databases dedicated to the associated data 155b, and in another embodiment, includes databases dedicated to each type of associated data 155b described herein. The second content 155 can then be manipulated via the content management module 180 by the user. The managed biometric-based notification system 100 generally provides for the identification of an individual already retained in the system 100 and image retention for those individuals who are not within the system 100 but are to be identified at a future date.
The degree in which the first and second content, 110 and 155, respectively, must match is deemed "substantial similarity." This level of similarity is a threshold or a predefined set of parameters set forth by the user of the managed biometric-based notification system 100. These parameters may be modified by users, and in an embodiment, users who have been given authority within the system 100, such as that defined by AMM 210. The comparison module 140 determines the substantial similarity of the feature sets of 110a and 155a, and the notification component 170 and at least one transmitted data point 175 are transmitted as determined by the content management module 180 if that similarity threshold is met. In an embodiment, if the comparison module 140 transmits a plurality of second content 155 corresponding to varying degrees of similarity among compared feature sets or where the feature sets of 110a and 155a do not meet the predetermined threshold of the system 100, the operator determines substantial similarity. And as mentioned above, the operator can also be implemented as a primary or secondary measure in determining substantial similarity.
After a comparison meets the predetermined threshold, the comparison module 140 transmits the notification component 170 based on pre-selected criteria inputted into the content management module 180 via the NM 190 by the user. The notification component 170 can be comprised of many different forms as set forth in the NM 190. The notification component 170 can be wirelessly communicated including but not limited to utilizing short messaging service (SMS), multimedia messaging service (MMS), email, instant messaging or an Email to SMS, SMS to Email, MMS to Email, or Computer to SMS applications.
The at least one transmitted data point 175 is information transmitted along with the notification component 170, and is comprised of information which, in an embodiment, includes an image, e.g. the comparison image of the comparison module 140 or any form of the second content 155 described herein. In another embodiment, the at least one transmitted data point 175 includes the associated data 155b, or the associated data 155b along with the recently compared second content 155. However, content can also be transmitted that describes the individual's record or other persons that individual is known to associate with, known accomplices, any other form mentioned herein. Furthermore, in the criminal context, where a comparison of first and second content, 110 and 155, respectively, yields a substantially similar threshold, the at least one notification component 170 is sent out detailing the identification of that criminal, and can include associated data 155b, e.g. prior criminal history, bench warrant, state prison, jail, conviction(s), arrest(s), charge(s), involved agencies, previous stolen items, treatment of staff, and gang affiliation. In an embodiment, the at least one transmitted data point 175 can include audio and/or textual information, e.g. instructions, guides, and/or user manuals specific to a product in the environment, which can be recorded through the CM 185. However, the specifics of the at least one transmitted data point 175 is dependent to large degree on the content which is compared within the system 100. As such, general information about actions or events local to the commercial environment, or other individuals can also be transmitted. This feature can aid in providing customized service based on previous buying habits, amounts, and frequently asked questions.
The notification component 170 serves more than one function in the managed biometric-based notification system 100. In another embodiment, the notification component 170 can activate or initiate an event. The comparison module 140 transmits the notification component 170 as an instruction signal to an actuator 330 which functions to perform an event, e.g. motor, or activate in application another networked device. In activating a motorized event, a servomechanism can be connected which supplies and transmits a measured amount of energy for the operation of another mechanism or system. In an embodiment, functional interfaces can interact with an SMS gateway to perform functions in the environment. However, the notification component 170 can take a variety of forms in activating events, and as such, the form is not limited by the provided examples.
Figure 18 illustrates an embodiment, where a transducer or an actuator module 330 is included, which typically includes a clock 335, a processing unit 345, and a receiver 340, and is able to receive an input signal from the content management module 180 via the NM 190. The actuator module 330 supplies as an output, a command via dry contact to control a motor and the circuitry of a door e.g. gate controller or lock via door strike or other similar device, in activating an event. In this embodiment, control over the environment can occur via a controller which can send an output command to a plurality of devices within a network. In another embodiment, a switch can be used to either turn on or off a device. In this embodiment, a binary command can be sent over a network to an interface, or remotely connect, to receivers controlling other devices and/or software in the environment.
Generally, the purpose of the at least one notification component 170 is to activate an event and/or notify the user of an individual. However, it can be understood by those skilled in the art that the notification of an individual or activation of an event can take a variety of forms and activate a variety and plurality of users and devices, depending on the context, as such, the examples are not limiting in any way.
In an embodiment, wherein the at least one notification component 170 is then sent to a pre-selected receiving node 220, the receipt of the at least one notification component 170 can occur on a stationary terminal and/or transceiver or other mobile device. In an embodiment, the pre-selected receiving node 220 is a plurality of transceivers. The plurality of transceivers transmit to other transceivers and/or retransmit information to other transceivers within the environment. In this embodiment, employees within a commercial environment 320 are able to communicate and also send image data and enroll content in the content management module 180. In another embodiment, the transceiver can also serve as a "local" remote control, operating by sending a wireless (e.g. infra-red or radio frequency) signal to a transceiver which is connected to a motor or application via another pre-selected receiving node 220 and a receiver. This embodiment provides the user of the system 100 another level of control in the environment.
The managed biometric-based notification system 100 provides the ability to control and manage information gathered in a real-time environment, and interact that environment with up to date information from a variety of external sources. The system 100 provides the user with an interactive system component which includes the ability to transmit information to available resources using a variety of technologies and provide real-time feedback in a dynamic environment.
An advantage of the managed biometric-based notification system 100 is the content management module 180 element of the system 100. The content management module 180 controls the distribution of content into an environment in which identification of information is crucial. The content management module 180 allows the user to interact with the reminder of the system 100, through, in an embodiment, a browser-based interface. The user is also provided control over received, stored, and compared content within the system 100. Specifically, an advantage of the managed biometric-based notification system 100 is the ability to manage the transmission of the at least one notification component 170. The content management module 180 allows the user the ability to manage events in the environment, such as the activation of applications or actuators linked to other devices, and also users and user groups in receiving information. This advantage intersects the resources in the environment with the result of the implemented algorithm in a real-time scenario.
The system 100 also provides the user with the ability to manage the type of notification, e.g. the mode of transmission. The time of transmission is can also managed. Here, the notification component 170 can be directed based a variety of predetermined factors e.g. time and date intervals. While the transmission of at least one notification component 170 containing at least one data point 175 of an individual who is known for shoplifting can be transmitted to the available security guards, there are many more uses directed to the system 100, such as, the purchase history of an individual transmitted to a sales associate or a person who is known to have a heart condition to someone on staff who understands Cardio Pulmonary Resuscitation.
The application also can be used in allowing specialized or certain persons into a variety of areas in the environment. As such, it can be understood by those skilled in the art that many situations are possible in an environment requiring information specific for that situation, which can be used in conjunction with the managed biometric-based notification system 100, therefore the above examples are not designed to be limiting in any way. Another advantage supplied by the content management module 180 is the ability to allow the user the option of creating a variety of databases and content within the managed biometric-based notification system 100. The content management module 180 includes the ability to create databases by subscription, data mining or create content from the local environment 320. This option allows the user of the system 100 control over the organization of the content.
The creation of content within the managed biometric-based notification system 100 can also include a variety additional data referencing created content. As such, an additional advantage of the system 100 is the ability to include associated data e.g. including images, notes, within the system 100. The associated data can be uploaded by a variety of methods identical or equivalent to the at least one notification component 170. Furthermore, another advantage of the system 100 is the ability to modify the stored content. Towards this end, the content management module 180 provides security measures via the AMM 210, for those who modify content within the system 100. Updated information about an individual is important where an individual has had certain hostile interactions with staff, maybe increasing in hostility, or is known to carry a weapon, or has previously targeted a specific area of the store. Thus, if given authority, modification of content is crucial to maintaining an updated system 100.
Another advantage of the managed biometric-based notification system 100 is the at least one pre-selected receiving node 220. In an embodiment, the at least one preselected receiving node is a transceiver. The transceiver provides the user the ability, not only to communicate crucial information to the next user or staff member in the environment, and provide mobility, but also activate applications or events based on that information. This places an added level of control to those within the environment. Moreover, while the transceiver is able to communicate to another transceiver in the environment, the transceiver is also able to communicate an image to the comparison module 140 and receive the at least one notification component 170 based on the content transmitted.
The managed biometric-based notification system 100 can be used in a variety of environments. The system 100 can be implemented in the commercial environment 320, in perimeter surveillance, automated entry, customer recognition or pre-authorized visitor identification. In a retail environment, the system 100 will reduce operational costs and increase the efficiency of the staff.
After being placed in strategic locations, the managed biometric-based notification system 100 will also reduce shrinkage. The system 100 accomplishes this result by increasing the probability in matching an individual with a comprehensive image in a database. The system 100 is constantly being updated and connected with content, coming from a variety of sources, e.g. the environment in which it is placed , third party databases, watchlists, requested data mined sites. As such, retrieved information is being compared against current data from a variety of sources, increasing the probability of a match.
The managed biometric-based notification system 100 is designed to be employed in a plurality of locations and including a central station or headquarters. As such, first content 110 acquired from the plurality of locations networked to the system 100 generally would be transmitted to the central station wherein the comparison module 140 would start the process illustrated in Figure 10, however, an advantage of the system 100 is the implementation of the process within the at least one image acquiring system 105 as illustrated in Figures 13 and 14.
The advantage of processing the feature set 110a at the at least one image acquiring system 105 is that it allows for only the feature set 110a to be transmitted for comparison. If the comparison achieves the desired threshold of the system 100, the comparison module 140 requests the first content 100 from the at least one image acquiring system 105. This is particularly important where a large number of users of the system 100 are networked. This advantage reduces the amount of data transmitted over a network, and thus reduces the amount of strain on the available bandwidth.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described since modification can occur to those ordinarily skilled in the art.

Claims

CLAIMSWhat is Claimed:
1. A managed biometric-based notification system, comprising: at least one image acquiring system adapted to capture a first content comprising a feature set; a comparison module configured to receive the first content, the comparison module including at least one processor, at least one database comprising a second content, the second content comprising a feature set, at least one search engine operatively coupled with the at least one image acquiring system and the at least one database, a memory, the at least one processor in operatively coupled with the at least one image acquiring system and the at least one search engine, programmed to execute a series of instructions, stored on the memory, to process the feature set of the first content and a feature set of the second content; at least one notification component including at least one transmitted data point; at least one pre-selected receiving node; and a content management module arranged for controlling and managing the system, the comparison module configured to transmit the notification component to the at least one pre-selected receiving node, determined by the content management module, in response to compared feature sets of the first and second content.
2. The managed biometric-based notification system of claim 1 wherein the at least one image acquiring system is disposed in at least one commercial environment.
3. The managed biometric-based notification system of claim 2 including a central database operatively coupled to at least one commercial environment.
4. The managed biometric-based notification system of claim 1 including the at least one image acquiring system connected to at least one server.
5. The managed biometric-based notification system of claim 4 wherein the at least one image acquiring system includes a processor programmed to execute a series of instructions, stored on a memory, to process the feature set of the first content, storing the first content at the server, and transmitting the first content upon compared feature sets of the first and second content.
6. The managed biometric-based notification system of claim 1 wherein the at least one image acquiring system includes a machine vision camera.
7. The managed biometric-based notification system of claim 1 wherein the second content is predetermined.
8. The managed biometric-based notification system of claim 1 wherein the second content is determined by a local commercial environment.
9. The managed biometric-based notification system of claim 1 wherein the second content includes a plurality of associated data.
10. The managed biometric-based notification system of claim 1 wherein an operator is included in comparing the first and second content.
11. The managed biometric-based notification system of claim 1 where the at least one transmitted notification component and the at least one transmitted data point are preselected.
12. The managed biometric-based notification system of claim 1 wherein the at least one transmitted data point includes an image.
13. The managed biometric-based notification system of claim 1 wherein the at least one transmitted data point is comprised of at least one of audio and textual information.
14. The managed biometric-based notification system of claim 1 wherein the at least one notification component is transmitted via short messaging service communications protocol.
15. The managed biometric-based notification system of claim 1 wherein the at least one notification component activates an event.
16. The managed biometric-based notification system of claim 1 wherein the pre-selected receiving node is a transceiver.
17. The managed biometric-based notification system of claim 1 wherein the pre-selected receiving node generates the second content.
18. The managed biometric-based notification system of claim 1 wherein the system is operatively coupled by a network.
19. A method of notifying at least one user of a managed biometric-based notification system, comprising: receiving a first content comprising a feature set from at least one image acquiring system; processing the feature set of the first content; processing a compared feature set of a second content stored within at least one database, the at least one database included in a comparison module, the comparison module further comprising at least one processor, at least one search engine operatively coupled with the at least one image acquiring system and the at least one database, a memory, the at least one processor operatively coupled with the at least one image acquiring system and the at least one search engine, programmed to execute a series of instructions stored on the memory; and transmitting at least one notification component including at least one transmitted data point to at least one pre-selected receiving node, determined by a content management module for controlling and managing the system, in response to compared feature sets of the first and second content.
20. The method of notifying in claim 19 wherein the at least one image acquiring system is disposed in at least one commercial environment.
21. The method of notifying in claim 20 including a central database operatively coupled to at least one commercial environment.
22. The method of notifying in claim 19 including the at least one image acquiring system connected to at least one server.
23. The method of notifying in claim 22 wherein the at least one image acquiring system includes a processor programmed to execute a series of instructions, stored on a memory, further comprising: processing the feature set of the first content; storing the first content at the server; and transmitting to the comparison module the first content upon compared feature sets of the first and second content.
24. The method of notifying in claim 19 wherein the at least one image acquiring system includes a machine vision camera.
25. The method of notifying in claim 19 wherein the second content is predetermined.
26. The method of notifying in claim 19 wherein the second content is determined by a local commercial environment.
27. The method of notifying in claim 19 wherein the second content includes a plurality of associated data.
28. The method of notifying in claim 19 including comparing the first and second content by an operator.
29. The method of notifying in claim 19 including transmitting to a pre-selected notification component and at least one transmitted data point.
30. The method of notifying in claim 19 wherein transmitting the at least one transmitted data point includes an image.
31. The method of notifying in claim 19 wherein transmitting the at least one transmitted data point includes at least one of audio and textual information.
32. The method of notifying in claim 19 wherein transmitting the at least one notification component is by short messaging service communications protocol.
33. The method of notifying in claim 19 wherein transmitting the at least one notification component activates an event.
34. The method of notifying in claim 19 wherein the pre-selected receiving node is a transceiver.
35. The method of notifying in claim 19 including receiving second content from the preselected receiving node.
36. The method of notifying in claim 19 wherein the system is operatively coupled by a network.
37. A method of notifying at least one user of a client system, the method comprising: receiving a notification component including at least one transmitted data point on at least one pre-selected receiving node, determined by a content management module arranged for controlling and managing the system, transmitted from a comparison module in response to compared feature sets of a first and a second content, wherein the comparison module receives the first content comprising the feature set from at least one image acquiring system, the comparison module processing the feature set of the first content and a feature set of the second content stored in at least one database, the comparison module further comprising at least one processor, at least one search engine operatively coupled with the at least one image acquiring system and the at least one database, a memory, the at least one processor operatively coupled with the at least one image acquiring system and the at least one search engine, programmed to execute a series of instructions stored on the memory.
38. The method of notifying in claim 37 wherein the at least one image acquiring system is disposed in at least one commercial environment.
39. The method of notifying in claim 38 including a central database operatively coupled to at least one commercial environment.
40. The method of notifying in claim 37 including the at least one image acquiring system connected to at least one server.
41. The method of notifying in claim 40 wherein the at least one image acquiring system includes a processor programmed to execute a series of instructions, stored on a memory, further comprising: processing the feature set of the first content; storing the first content at the server; and transmitting to the comparison module the first content upon compared feature sets of the first and second content.
42. The method of notifying in claim 37 wherein the at least one image acquiring system includes a machine vision camera.
43. The method of notifying in claim 37 wherein the second content is predetermined.
44. The method of notifying in claim 37 wherein the second content is determined by a local commercial environment.
45. The method of notifying in claim 37 wherein the second content includes a plurality of associated data.
46. The method of notifying in claim 37 including comparing the first and second content by an operator.
47. The method of notifying in claim 37 including transmitting to a pre-selected notification component and at least one transmitted data point.
48. The method of notifying in claim 37 wherein transmitting the at least one transmitted data point includes an image.
49. The method of notifying in claim 37 wherein transmitting the at least one transmitted data point includes at least one of audio and textual information.
50. The method of notifying in claim 37 wherein transmitting the at least one notification component is by short messaging service communications protocol.
51. The method of notifying in claim 37 wherein transmitting the at least one notification component activates an event.
52. The method of notifying in claim 37 wherein the pre-selected receiving node is a transceiver.
53. The method of notifying in claim 37 including receiving second content from the preselected receiving node.
54. The method of notifying in claim 37 wherein the system is operatively coupled by a network.
55. A computer-executable program stored on a computer-readable storage medium for managing and controlling a biometric-based notification system, carrying one or more sequences of instructions, wherein execution of the one or more sequences of instructions by one or more processors embodied therein causes the one or more processors to perform the steps of: receiving a first content comprising a feature set from at least one image acquiring system; processing the feature set of the first content; processing a feature set of a second content stored within at least one database, the at least one database included in a comparison module, the comparison module further comprising at least one processor, at least one search engine operatively coupled with the at least one image acquiring system and the at least one database, a memory, the at least one processor operatively coupled with the at least one image acquiring system and the at least one search engine, programmed to execute a series of instructions stored on the memory; determining input preferences; and transmitting, according to input preferences, at least one notification component including at least one transmitted data point to at least one pre-selected receiving node in response to compared feature sets of the first and second content.
56. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing receiving of the first content from an image acquiring system in at least one commercial environment.
57. The computer-executable program of claim 56 having stored thereon additional instructions, said additional instructions when executed by a computer, causing processing of the second content from a central database operatively coupled to at least one commercial environment content.
58. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing processing of the second content from the at least one image acquiring system connected to at least one server.
59. The computer-executable program of claim 58 having stored thereon additional instructions, said additional instructions when executed by a computer, causing processing by a processor of the at least one image acquiring system, programmed to execute a series of instructions, stored on a memory, the feature set of the first content; storing the first content at the server; and transmitting to the comparison module the first content upon compared feature sets of the first and second content.
60. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing receiving the first content from a machine vision camera of the at least one image acquiring system.
61. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing processing the feature set of a predetermined second content.
62. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing processing of the second content determined by a local commercial environment.
63. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting of associated data of the second content.
64. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting of the of the first and second content to an operator.
65. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting to a pre-selected notification component and at least one transmitted data point.
66. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting of an image of the at least one transmitted data point.
67. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting at least one of audio and textual information of the at least one transmitted data point.
68. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting of the at least one notification component by short messaging service communications protocol.
69. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing activating of an event by transmitting the at least one notification component.
70. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting of the notification component and the at least one transmitted data point a transceiver.
71. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing receiving of the second content from the pre-selected receiving node.
72 . The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing transmitting over a network.
73. The managed biometric-based notification system of claim 1 wherein the at least one image acquiring system is the at least one pre-selected receiving node.
74. The managed biometric-based notification system of claim 73 wherein the at least one -pre-selected receiving node is a mobile device.
75. The method of notifying in claim 19 wherein the receiving a first content comprising a feature set is the at least one pre-selected receiving node.
76. The method of notifying in claim 75 wherein the at least one pre-selected receiving node receiving a first content comprising a feature set is a mobile device.
77. The method of notifying in claim 37 wherein the at least one image acquiring system is the at least one pre-selected receiving node.
78. The method of notifying in claim 77 wherein the at least one pre-selected receiving node is a mobile device.
79. The computer-executable program of claim 55 having stored thereon additional instructions, said additional instructions when executed by a computer, causing receiving of the first content comprising a feature set, wherein the at least one image acquiring system is the at least one pre-selected receiving node.
80. The computer-executable program of claim 79 having stored thereon additional instructions, said additional instructions when executed by a computer, causing receiving of the first content comprising a feature set, wherein the at least one pre-selected receiving node is a mobile device.
PCT/US2009/051107 2008-07-21 2009-07-20 Managed biometric-based notification system and method WO2010011589A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117003861A KR101723244B1 (en) 2008-07-21 2009-07-20 Managed biometric-based notification system and method
CN2009801283626A CN102099813A (en) 2008-07-21 2009-07-20 Managed biometric-based notification system and method
CA2731250A CA2731250C (en) 2008-07-21 2009-07-20 Managed biometric-based notification system and method
EP09800840.2A EP2329428A4 (en) 2008-07-21 2009-07-20 Managed biometric-based notification system and method
JP2011520118A JP5666441B2 (en) 2008-07-21 2009-07-20 Management biometric notification system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/177,103 US9141863B2 (en) 2008-07-21 2008-07-21 Managed biometric-based notification system and method
US12/177,103 2008-07-21

Publications (1)

Publication Number Publication Date
WO2010011589A1 true WO2010011589A1 (en) 2010-01-28

Family

ID=41530328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/051107 WO2010011589A1 (en) 2008-07-21 2009-07-20 Managed biometric-based notification system and method

Country Status (7)

Country Link
US (3) US9141863B2 (en)
EP (1) EP2329428A4 (en)
JP (2) JP5666441B2 (en)
KR (1) KR101723244B1 (en)
CN (2) CN106127130B (en)
CA (1) CA2731250C (en)
WO (1) WO2010011589A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10909400B2 (en) 2008-07-21 2021-02-02 Facefirst, Inc. Managed notification system
US9721167B2 (en) 2008-07-21 2017-08-01 Facefirst, Inc. Biometric notification system
US9141863B2 (en) 2008-07-21 2015-09-22 Facefirst, Llc Managed biometric-based notification system and method
US10043060B2 (en) 2008-07-21 2018-08-07 Facefirst, Inc. Biometric notification system
US10929651B2 (en) 2008-07-21 2021-02-23 Facefirst, Inc. Biometric notification system
US9405968B2 (en) 2008-07-21 2016-08-02 Facefirst, Inc Managed notification system
DE102010013580A1 (en) * 2010-03-31 2011-10-06 Rohde & Schwarz Gmbh & Co. Kg Device and method for identifying persons
US9165177B2 (en) 2010-10-08 2015-10-20 Advanced Optical Systems, Inc. Contactless fingerprint acquisition and processing
US8792677B2 (en) * 2012-04-19 2014-07-29 Intelligence Based Integrated Security Systems, Inc. Large venue security method
US9213781B1 (en) 2012-09-19 2015-12-15 Placemeter LLC System and method for processing image data
CN102917325A (en) * 2012-10-30 2013-02-06 曙光云计算技术有限公司 Method and terminal for transmitting short messages
CN103825921A (en) * 2012-11-19 2014-05-28 成都芯软科技发展有限公司 Bio-information interaction system based on network transmission and realization method thereof
CA2939637A1 (en) 2014-02-12 2015-08-20 Advanced Optical Systems, Inc. On-the-go touchless fingerprint scanner
CN104021655B (en) * 2014-05-14 2017-01-04 广东恒诺实业有限公司 A kind of interlink alarm system based on law enforcement information acquisition station and alarm method
JP2017525064A (en) 2014-05-30 2017-08-31 プレイスメーター インコーポレイテッドPlacemeter Inc. System and method for activity monitoring using video data
US9646227B2 (en) 2014-07-29 2017-05-09 Microsoft Technology Licensing, Llc Computerized machine learning of interesting video sections
US9934423B2 (en) * 2014-07-29 2018-04-03 Microsoft Technology Licensing, Llc Computerized prominent character recognition in videos
US20160088178A1 (en) * 2014-09-18 2016-03-24 Breezyprint Corporation System for video-based scanning and analysis
WO2016081726A1 (en) * 2014-11-19 2016-05-26 Booz Allen & Hamilton Device, system, and method for forensic analysis
US10043078B2 (en) 2015-04-21 2018-08-07 Placemeter LLC Virtual turnstile system and method
US10380431B2 (en) 2015-06-01 2019-08-13 Placemeter LLC Systems and methods for processing video streams
CN114637979A (en) * 2015-10-26 2022-06-17 维萨国际服务协会 Wireless biometric authentication system and method
TWI639130B (en) 2015-11-18 2018-10-21 財團法人資訊工業策進會 Projection system and projection method
US10397528B2 (en) 2016-02-26 2019-08-27 Amazon Technologies, Inc. Providing status information for secondary devices with video footage from audio/video recording and communication devices
US9965934B2 (en) 2016-02-26 2018-05-08 Ring Inc. Sharing video footage from audio/video recording and communication devices for parcel theft deterrence
US10748414B2 (en) 2016-02-26 2020-08-18 A9.Com, Inc. Augmenting and sharing data from audio/video recording and communication devices
AU2017223188B2 (en) * 2016-02-26 2019-09-19 Amazon Technologies, Inc. Sharing video footage from audio/video recording and communication devices
US10841542B2 (en) 2016-02-26 2020-11-17 A9.Com, Inc. Locating a person of interest using shared video footage from audio/video recording and communication devices
US10489453B2 (en) 2016-02-26 2019-11-26 Amazon Technologies, Inc. Searching shared video footage from audio/video recording and communication devices
US11393108B1 (en) 2016-02-26 2022-07-19 Amazon Technologies, Inc. Neighborhood alert mode for triggering multi-device recording, multi-camera locating, and multi-camera event stitching for audio/video recording and communication devices
US11219575B2 (en) * 2016-03-23 2022-01-11 Zoll Medical Corporation Real-time kinematic analysis during cardio-pulmonary resuscitation
US10497014B2 (en) * 2016-04-22 2019-12-03 Inreality Limited Retail store digital shelf for recommending products utilizing facial recognition in a peer to peer network
SE542124C2 (en) * 2016-06-17 2020-02-25 Irisity Ab Publ A monitoring system for security technology
US11036969B1 (en) * 2017-02-08 2021-06-15 Robert Kocher Group identification device
CN106802300B (en) * 2017-03-05 2019-08-09 北京工业大学 A kind of biology microscope operating device of view-based access control model feedback
DK179560B1 (en) * 2017-05-16 2019-02-18 Apple Inc. Far-field extension for digital assistant services
CN107179324B (en) * 2017-05-17 2019-01-01 珠海格力电器股份有限公司 Method, device and system for detecting product package
US10943088B2 (en) 2017-06-14 2021-03-09 Target Brands, Inc. Volumetric modeling to identify image areas for pattern recognition
US10867161B2 (en) * 2017-09-06 2020-12-15 Pixart Imaging Inc. Auxiliary filtering device for face recognition and starting method for electronic device
CN110298153B (en) * 2018-03-21 2022-12-27 阿里巴巴集团控股有限公司 Fingerprint identification method, mobile device and fingerprint identification system
CN109150991A (en) * 2018-07-28 2019-01-04 安徽赛迪信息技术有限公司 A kind of industrial economy data gathering system
EP3629113A1 (en) * 2018-09-28 2020-04-01 Siemens Aktiengesellschaft Projecting, configuring and maintenance of a drive device
CA3062211A1 (en) * 2018-11-26 2020-05-26 Mir Limited Dynamic verification method and system for card transactions
CN109543628B (en) * 2018-11-27 2021-05-04 北京旷视科技有限公司 Face unlocking method, bottom library inputting method, device and electronic equipment
CN110266786A (en) * 2019-06-14 2019-09-20 烟台宏远氧业股份有限公司 A kind of hyperbaric oxygen chamber data-storage system
US11296887B2 (en) * 2019-08-02 2022-04-05 Unisys Corporation Blockchain mechanism for safety-critical systems
US10946279B1 (en) 2019-08-30 2021-03-16 Sony Interactive Entertainment Inc. Context-based notifications on a user display
US10946294B1 (en) 2019-08-30 2021-03-16 Sony Interactive Entertainment Inc. Summarizing notifications on a user display
US11238554B2 (en) * 2019-11-26 2022-02-01 Ncr Corporation Frictionless security monitoring and management
USD989412S1 (en) 2020-05-11 2023-06-13 Shenzhen Liyi99.Com, Ltd. Double-tier pet water fountain
US11563705B2 (en) 2020-09-28 2023-01-24 International Business Machines Corporation Notification escalation based on visual recognition
USD1003727S1 (en) 2021-01-15 2023-11-07 Aborder Products, Inc. Container
USD994237S1 (en) 2021-01-15 2023-08-01 Shenzhen Liyi99.Com, Ltd. Pet water fountain
USD1013974S1 (en) 2021-06-02 2024-02-06 Aborder Products, Inc. Pet water fountain
US11302161B1 (en) 2021-08-13 2022-04-12 Sai Group Limited Monitoring and tracking checkout activity in a retail environment
US11308775B1 (en) 2021-08-13 2022-04-19 Sai Group Limited Monitoring and tracking interactions with inventory in a retail environment
CN117523683B (en) * 2024-01-05 2024-03-29 湖北微模式科技发展有限公司 Fraud video detection method based on biological feature recognition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030126121A1 (en) * 2001-06-21 2003-07-03 Sal Khan System and method for remotely searching biometric data
US20040031856A1 (en) * 1998-09-16 2004-02-19 Alon Atsmon Physical presence digital authentication system
US20070157018A1 (en) * 2005-12-30 2007-07-05 Honeywell International, Inc. Method and apparatus for using SMS short code messaging to facilitate the transmission of a status update for a security system

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2230230C (en) * 1994-08-25 2006-08-15 Geefield Pty. Ltd. Method and apparatus for providing identification
AU1084397A (en) * 1995-12-01 1997-06-19 Southwest Research Institute Methods and apparatus for traffic incident detection
US6819783B2 (en) * 1996-09-04 2004-11-16 Centerframe, Llc Obtaining person-specific images in a public venue
US5930804A (en) * 1997-06-09 1999-07-27 Philips Electronics North America Corporation Web-based biometric authentication system and method
US6185316B1 (en) * 1997-11-12 2001-02-06 Unisys Corporation Self-authentication apparatus and method
US7634662B2 (en) * 2002-11-21 2009-12-15 Monroe David A Method for incorporating facial recognition technology in a multimedia surveillance system
AU2342000A (en) * 1998-09-11 2000-04-17 Loquitor Technologies Llc Generation and detection of induced current using acoustic energy
US6442565B1 (en) * 1999-08-13 2002-08-27 Hiddenmind Technology, Inc. System and method for transmitting data content in a computer network
US7515055B2 (en) * 1999-09-28 2009-04-07 Clifford Sweatte Method and system for airport security
US20020005894A1 (en) * 2000-04-10 2002-01-17 Foodman Bruce A. Internet based emergency communication system
WO2001084380A1 (en) * 2000-05-04 2001-11-08 Song Jin Ho Automatic vehicle management apparatus and method using wire and wireless communication network
US7680912B1 (en) * 2000-05-18 2010-03-16 thePlatform, Inc. System and method for managing and provisioning streamed data
US6904408B1 (en) * 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US20040104935A1 (en) * 2001-01-26 2004-06-03 Todd Williamson Virtual reality immersion system
JP2002229955A (en) 2001-02-02 2002-08-16 Matsushita Electric Ind Co Ltd Information terminal device and authentication system
US7200755B2 (en) * 2001-05-24 2007-04-03 Larry Hamid Method and system for providing gated access for a third party to a secure entity or service
US20030084305A1 (en) * 2001-09-26 2003-05-01 Siegel William G. System and method to generate an output including a machine readable code representation of biometric information
US20030149343A1 (en) * 2001-09-26 2003-08-07 Cross Match Technologies, Inc. Biometric based facility security
US20030107650A1 (en) * 2001-12-11 2003-06-12 Koninklijke Philips Electronics N.V. Surveillance system with suspicious behavior detection
WO2003060846A2 (en) * 2001-12-21 2003-07-24 Cias, Inc. Combination casino table game imaging system for automatically recognizing the faces of players -- as well as terrorists and other undesirables -- and for recognizing wagered gaming chips
US20030133614A1 (en) * 2002-01-11 2003-07-17 Robins Mark N. Image capturing device for event monitoring
JP3726751B2 (en) * 2002-01-16 2005-12-14 オムロン株式会社 Security server device and in-vehicle terminal device
US7634531B2 (en) * 2002-01-23 2009-12-15 Ali Abdolsalehi Interactive internet browser based media broadcast
US20050128304A1 (en) * 2002-02-06 2005-06-16 Manasseh Frederick M. System and method for traveler interactions management
US7683929B2 (en) * 2002-02-06 2010-03-23 Nice Systems, Ltd. System and method for video content analysis-based detection, surveillance and alarm management
US7369685B2 (en) * 2002-04-05 2008-05-06 Identix Corporation Vision-based operating method and system
US7099899B2 (en) * 2002-04-23 2006-08-29 International Business Machines Corporation System and method for item versioning in a content mangement system
US7415605B2 (en) * 2002-05-21 2008-08-19 Bio-Key International, Inc. Biometric identification network security
JP2004013871A (en) * 2002-06-12 2004-01-15 Creer:Kk Security system
WO2004010365A2 (en) * 2002-07-19 2004-01-29 Dicut Inc. Face recognition system and method therefor
US20040064453A1 (en) * 2002-09-27 2004-04-01 Antonio Ruiz Large-scale hierarchical identification and verification for secured ingress and egress using biometrics
AU2003282943A1 (en) * 2002-10-11 2004-05-04 Digimarc Corporation Systems and methods for recognition of individuals using multiple biometric searches
US7472135B2 (en) * 2002-10-18 2008-12-30 Nokia Corporation Method and system for recalling details regarding past events
US7634063B2 (en) * 2003-01-02 2009-12-15 Technology Patents, Llc System and method for monitoring individuals
US7292723B2 (en) * 2003-02-26 2007-11-06 Walker Digital, Llc System for image analysis in a network that is structured with multiple layers and differentially weighted neurons
US20040225681A1 (en) * 2003-05-09 2004-11-11 Chaney Donald Lewis Information system
US7283644B2 (en) * 2003-06-27 2007-10-16 International Business Machines Corporation System and method for enhancing security applications
US7999857B2 (en) * 2003-07-25 2011-08-16 Stresscam Operations and Systems Ltd. Voice, lip-reading, face and emotion stress analysis, fuzzy logic intelligent camera system
JP4569471B2 (en) * 2003-09-26 2010-10-27 株式会社ニコン Electronic image storage method, electronic image storage device, and electronic image storage system
JP4615272B2 (en) * 2003-09-29 2011-01-19 富士フイルム株式会社 Authentication system, program, and building
CN1871602A (en) * 2003-10-20 2006-11-29 罗吉加利斯公司 Method, system, apparatus, and machine-readable medium for use in connection with a server that uses images or audio for initiating remote function calls
US7647595B2 (en) * 2003-10-29 2010-01-12 Oracle International Corporation Efficient event notification in clustered computing environments
US7088846B2 (en) * 2003-11-17 2006-08-08 Vidient Systems, Inc. Video surveillance system that detects predefined behaviors based on predetermined patterns of movement through zones
US7109861B2 (en) * 2003-11-26 2006-09-19 International Business Machines Corporation System and method for alarm generation based on the detection of the presence of a person
US20050138042A1 (en) * 2003-12-19 2005-06-23 Foo Chris F. Method and system for facilitating virtual exchange of documents in an internet commerce system
IL159828A0 (en) * 2004-01-12 2005-11-20 Elbit Systems Ltd System and method for identifying a threat associated person among a crowd
US7707039B2 (en) * 2004-02-15 2010-04-27 Exbiblio B.V. Automatic modification of web pages
US7697026B2 (en) * 2004-03-16 2010-04-13 3Vr Security, Inc. Pipeline architecture for analyzing multiple video streams
US20060016107A1 (en) * 2004-05-18 2006-01-26 Davis Bruce L Photo ID cards and methods of production
WO2006022977A2 (en) * 2004-07-23 2006-03-02 Digimarc Corporation Facial database methods and systems
US20060024655A1 (en) * 2004-07-28 2006-02-02 Raytheon Company Method and apparatus for structuring the process, analysis, design and evaluation of training
KR20060014765A (en) * 2004-08-12 2006-02-16 주식회사 현대오토넷 Emergency safety service system and method using telematics system
JP4687058B2 (en) * 2004-10-04 2011-05-25 オムロン株式会社 Suspicious person judgment device
JP4844795B2 (en) * 2004-11-02 2011-12-28 株式会社デンソー Vehicle image capturing device
JP4375212B2 (en) * 2004-11-18 2009-12-02 ソニー株式会社 Collation apparatus, collation method, collation system, and program
US8228299B1 (en) * 2005-01-27 2012-07-24 Singleton Technology, Llc Transaction automation and archival system using electronic contract and disclosure units
US20060190419A1 (en) * 2005-02-22 2006-08-24 Bunn Frank E Video surveillance data analysis algorithms, with local and network-shared communications for facial, physical condition, and intoxication recognition, fuzzy logic intelligent camera system
US20060212341A1 (en) * 2005-03-15 2006-09-21 Powers William D System and method for profiling jurors
US7769207B2 (en) * 2005-04-01 2010-08-03 Olivo Jr John W System and method for collection, storage, and analysis of biometric data
US8207843B2 (en) * 2005-07-14 2012-06-26 Huston Charles D GPS-based location and messaging system and method
US7720463B2 (en) * 2005-09-02 2010-05-18 Tekelec Methods, systems, and computer program products for providing third party control of access to media content available via broadcast and multicast service (BCMCS)
US20090124376A1 (en) * 2007-11-12 2009-05-14 Bally Gaming, Inc. Networked gaming system including anonymous biometric identification
CN100403331C (en) * 2005-09-16 2008-07-16 中国科学技术大学 Multi-modal biological characteristic identification system based on iris and human face
JP4876516B2 (en) * 2005-09-30 2012-02-15 富士ゼロックス株式会社 Entrance / exit management system and control method thereof
US7933451B2 (en) * 2005-11-23 2011-04-26 Leica Geosystems Ag Feature extraction using pixel-level and object-level analysis
US7555146B2 (en) * 2005-12-28 2009-06-30 Tsongjy Huang Identification recognition system for area security
US20070256615A1 (en) * 2006-01-17 2007-11-08 David Delgrosso System and method for unattended access to safe deposit boxes
US8224034B2 (en) * 2006-02-02 2012-07-17 NL Giken Incorporated Biometrics system, biologic information storage, and portable device
US8150155B2 (en) * 2006-02-07 2012-04-03 Qualcomm Incorporated Multi-mode region-of-interest video object segmentation
JP4924603B2 (en) * 2006-03-01 2012-04-25 日本電気株式会社 Face authentication device, face authentication method and program
WO2007099762A1 (en) * 2006-03-01 2007-09-07 Nikon Corporation Object-seeking computer program product, object-seeking device, and camera
JP2007241631A (en) * 2006-03-08 2007-09-20 Nec Corp Building monitoring system
JP4853063B2 (en) 2006-03-15 2012-01-11 オムロン株式会社 User device, communication device, authentication system, authentication method, authentication program, and recording medium
JP4899552B2 (en) * 2006-03-15 2012-03-21 オムロン株式会社 Authentication device, authentication method, authentication program, and computer-readable recording medium recording the same
JP4541316B2 (en) * 2006-04-06 2010-09-08 三菱電機株式会社 Video surveillance search system
JP4905657B2 (en) * 2006-05-24 2012-03-28 オムロン株式会社 Security monitoring device, security monitoring system, and security monitoring method
JP4924607B2 (en) * 2006-05-31 2012-04-25 日本電気株式会社 Suspicious behavior detection apparatus and method, program, and recording medium
JP2006260603A (en) 2006-06-14 2006-09-28 Swisscom Mobile Ag Method, system and device for authenticating person
JP4925419B2 (en) * 2006-06-21 2012-04-25 株式会社日立国際電気 Information collection system and mobile terminal
US7983451B2 (en) * 2006-06-30 2011-07-19 Motorola Mobility, Inc. Recognition method using hand biometrics with anti-counterfeiting
US8402110B2 (en) * 2006-09-28 2013-03-19 Microsoft Corporation Remote provisioning of information technology
US7881505B2 (en) * 2006-09-29 2011-02-01 Pittsburgh Pattern Recognition, Inc. Video retrieval system for human face content
US8315463B2 (en) * 2006-11-14 2012-11-20 Eastman Kodak Company User interface for face recognition
US20080148393A1 (en) * 2006-12-15 2008-06-19 Barry Myron Wendt Neural authenticator and method
JP5127237B2 (en) * 2007-01-15 2013-01-23 株式会社日立製作所 Group analysis system and group analysis apparatus
PL2118864T3 (en) * 2007-02-08 2015-03-31 Behavioral Recognition Sys Inc Behavioral recognition system
WO2008130906A1 (en) * 2007-04-17 2008-10-30 Mikos, Ltd. System and method for using three dimensional infrared imaging to provide psychological profiles of individuals
WO2009025054A1 (en) * 2007-08-23 2009-02-26 Fujitsu Limited Biometric authentication system and biometric authentication program
US20090248587A1 (en) * 2007-08-31 2009-10-01 Van Buskirk Peter C Selectively negotiated ridershare system comprising riders, drivers, and vehicles
US20090092283A1 (en) * 2007-10-09 2009-04-09 Honeywell International Inc. Surveillance and monitoring system
IL191615A (en) * 2007-10-23 2015-05-31 Israel Aerospace Ind Ltd Method and system for producing tie points for use in stereo-matching of stereoscopic images and method for detecting differences in a photographed scenery between two time points
US20090110246A1 (en) * 2007-10-30 2009-04-30 Stefan Olsson System and method for facial expression control of a user interface
US8170280B2 (en) * 2007-12-03 2012-05-01 Digital Smiths, Inc. Integrated systems and methods for video-based object modeling, recognition, and tracking
CN101187990A (en) * 2007-12-14 2008-05-28 华南理工大学 A session robotic system
US8601494B2 (en) * 2008-01-14 2013-12-03 International Business Machines Corporation Multi-event type monitoring and searching
KR101618735B1 (en) * 2008-04-02 2016-05-09 구글 인코포레이티드 Method and apparatus to incorporate automatic face recognition in digital image collections
US8308562B2 (en) * 2008-04-29 2012-11-13 Bally Gaming, Inc. Biofeedback for a gaming device, such as an electronic gaming machine (EGM)
US20090327288A1 (en) * 2008-06-29 2009-12-31 Microsoft Corporation Content enumeration techniques for portable devices
US9141863B2 (en) * 2008-07-21 2015-09-22 Facefirst, Llc Managed biometric-based notification system and method
US20100094754A1 (en) * 2008-10-13 2010-04-15 Global Financial Passport, Llc Smartcard based secure transaction systems and methods
US9373055B2 (en) * 2008-12-16 2016-06-21 Behavioral Recognition Systems, Inc. Hierarchical sudden illumination change detection using radiance consistency within a spatial neighborhood
US8406480B2 (en) * 2009-02-17 2013-03-26 International Business Machines Corporation Visual credential verification
US8483659B2 (en) * 2009-02-26 2013-07-09 Qualcomm Incorporated Methods and systems for recovering lost or stolen mobile devices
JP2010287124A (en) * 2009-06-12 2010-12-24 Glory Ltd Biometric matching system and biometric matching method
US8265613B2 (en) * 2009-06-16 2012-09-11 At&T Mobility Ii Llc Enterprise femto based kiosk
IL199657A0 (en) * 2009-07-02 2011-08-01 Carmel Haifa University Economic Corp Ltd Face representation systems for privacy aware applications and methods useful in conjunction therewith
US20110013810A1 (en) * 2009-07-17 2011-01-20 Engstroem Jimmy System and method for automatic tagging of a digital image
US8269625B2 (en) * 2009-07-29 2012-09-18 Innovalarm Corporation Signal processing system and methods for reliably detecting audible alarms
US8468348B1 (en) * 2009-09-01 2013-06-18 Amazon Technologies, Inc. Closed loop communication
US9400911B2 (en) * 2009-10-30 2016-07-26 Synaptics Incorporated Fingerprint sensor and integratable electronic display
JP5428835B2 (en) * 2009-12-21 2014-02-26 富士通株式会社 Signing device, signing method, and signing program
US20130278631A1 (en) * 2010-02-28 2013-10-24 Osterhout Group, Inc. 3d positioning of augmented reality information
US8594482B2 (en) * 2010-05-13 2013-11-26 International Business Machines Corporation Auditing video analytics through essence generation
US9183560B2 (en) * 2010-05-28 2015-11-10 Daniel H. Abelow Reality alternate
US8831677B2 (en) * 2010-11-17 2014-09-09 Antony-Euclid C. Villa-Real Customer-controlled instant-response anti-fraud/anti-identity theft devices (with true-personal identity verification), method and systems for secured global applications in personal/business e-banking, e-commerce, e-medical/health insurance checker, e-education/research/invention, e-disaster advisor, e-immigration, e-airport/aircraft security, e-military/e-law enforcement, with or without NFC component and system, with cellular/satellite phone/internet/multi-media functions
US8774471B1 (en) * 2010-12-16 2014-07-08 Intuit Inc. Technique for recognizing personal objects and accessing associated information
US20120230539A1 (en) * 2011-03-08 2012-09-13 Bank Of America Corporation Providing location identification of associated individuals based on identifying the individuals in conjunction with a live video stream
JP5561433B2 (en) * 2011-05-24 2014-07-30 日産自動車株式会社 Vehicle monitoring apparatus and vehicle monitoring method
KR101703931B1 (en) * 2011-05-24 2017-02-07 한화테크윈 주식회사 Surveillance system
JP5423740B2 (en) * 2011-08-23 2014-02-19 日本電気株式会社 Video providing apparatus, video using apparatus, video providing system, video providing method, and computer program
EP2579183B1 (en) * 2011-10-03 2019-05-01 Accenture Global Services Limited Biometric training and matching engine
US20140347479A1 (en) * 2011-11-13 2014-11-27 Dor Givon Methods, Systems, Apparatuses, Circuits and Associated Computer Executable Code for Video Based Subject Characterization, Categorization, Identification, Tracking, Monitoring and/or Presence Response
US9367869B2 (en) * 2012-02-13 2016-06-14 Dean Stark System and method for virtual display
US20130208952A1 (en) * 2012-02-13 2013-08-15 Geoffrey Auchinleck Method and Apparatus for Improving Accuracy of Biometric Identification in Specimen Collection Applications
IN2014DN08349A (en) * 2012-03-15 2015-05-08 Behavioral Recognition Sys Inc
US9152838B2 (en) * 2012-03-29 2015-10-06 Synaptics Incorporated Fingerprint sensor packagings and methods
US9317908B2 (en) * 2012-06-29 2016-04-19 Behavioral Recognition System, Inc. Automatic gain control filter in a video analysis system
US9582843B2 (en) * 2012-08-20 2017-02-28 Tautachrome, Inc. Authentication and validation of smartphone imagery
GB2499694B8 (en) * 2012-11-09 2017-06-07 Sony Computer Entertainment Europe Ltd System and method of image reconstruction
US9681103B2 (en) * 2012-11-13 2017-06-13 International Business Machines Corporation Distributed control of a heterogeneous video surveillance network
US8934754B2 (en) * 2012-11-13 2015-01-13 International Business Machines Corporation Providing emergency access to surveillance video
US9041812B2 (en) * 2012-11-13 2015-05-26 International Business Machines Corporation Automated authorization to access surveillance video based on pre-specified events
US9135499B2 (en) * 2013-03-05 2015-09-15 Tyco Fire & Security Gmbh Predictive theft notification for the prevention of theft
US9536400B2 (en) * 2013-03-14 2017-01-03 I & T Tech Co., Ltd. Alarm sound detection device
US11100334B2 (en) * 2013-04-19 2021-08-24 James Carey Video identification and analytical recognition system
EP3031004A4 (en) * 2013-08-09 2016-08-24 Behavioral Recognition Sys Inc Cognitive information security using a behavior recognition system
JP5500303B1 (en) * 2013-10-08 2014-05-21 オムロン株式会社 MONITORING SYSTEM, MONITORING METHOD, MONITORING PROGRAM, AND RECORDING MEDIUM CONTAINING THE PROGRAM
IN2014DE00332A (en) * 2014-02-05 2015-08-07 Nitin Vats
KR102206054B1 (en) * 2014-05-09 2021-01-21 삼성전자주식회사 Method for processing fingerprint and electronic device thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031856A1 (en) * 1998-09-16 2004-02-19 Alon Atsmon Physical presence digital authentication system
US20030126121A1 (en) * 2001-06-21 2003-07-03 Sal Khan System and method for remotely searching biometric data
US20070157018A1 (en) * 2005-12-30 2007-07-05 Honeywell International, Inc. Method and apparatus for using SMS short code messaging to facilitate the transmission of a status update for a security system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2329428A4 *

Also Published As

Publication number Publication date
CA2731250A1 (en) 2010-01-28
US20150154462A1 (en) 2015-06-04
KR101723244B1 (en) 2017-04-18
JP2011528838A (en) 2011-11-24
EP2329428A1 (en) 2011-06-08
US20100014717A1 (en) 2010-01-21
JP5666441B2 (en) 2015-02-12
CA2731250C (en) 2017-11-28
JP2015122066A (en) 2015-07-02
US9626574B2 (en) 2017-04-18
CN106127130A (en) 2016-11-16
US20150154440A1 (en) 2015-06-04
CN106127130B (en) 2020-09-11
KR20110050643A (en) 2011-05-16
JP5984191B2 (en) 2016-09-06
US9245190B2 (en) 2016-01-26
US9141863B2 (en) 2015-09-22
EP2329428A4 (en) 2017-07-19
CN102099813A (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US9626574B2 (en) Biometric notification system
US10049288B2 (en) Managed notification system
US11151819B2 (en) Access control method, access control apparatus, system, and storage medium
JP6911154B2 (en) Access control methods and devices, systems, electronic devices, programs and media
US6853739B2 (en) Identity verification system
US20150015365A1 (en) Point of entry authorization utilizing rfid enabled profile and biometric data
US9268904B1 (en) Systems and methods for biometric data management using relational database management systems (RDBMS)
US12039820B2 (en) Multiple-factor recognition and validation for security systems
US11921831B2 (en) Enrollment system with continuous learning and confirmation
US11532152B2 (en) Managed notification system
US20220253514A1 (en) Method and system for seamless biometric system self-enrollment
Wong et al. RFID and facemask detector attendance monitoring system
Gopi et al. Identification of Fingerprints With Help Of Advanced Biometric System Design
CN117370996A (en) Authorization method and related device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128362.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009800840

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011520118

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2731250

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003861

Country of ref document: KR

Kind code of ref document: A