WO2010010223A1 - Use of microparticles containing genetically modified cells in the treatment of neurodegenerative diseases - Google Patents

Use of microparticles containing genetically modified cells in the treatment of neurodegenerative diseases Download PDF

Info

Publication number
WO2010010223A1
WO2010010223A1 PCT/ES2009/070309 ES2009070309W WO2010010223A1 WO 2010010223 A1 WO2010010223 A1 WO 2010010223A1 ES 2009070309 W ES2009070309 W ES 2009070309W WO 2010010223 A1 WO2010010223 A1 WO 2010010223A1
Authority
WO
WIPO (PCT)
Prior art keywords
microparticle
factor
growth factor
cells
microparticles
Prior art date
Application number
PCT/ES2009/070309
Other languages
Spanish (es)
French (fr)
Inventor
Rosa María Hernández Martín
Gorka Orive Arroyo
Carlos Spuch Calvar
Desiree Antequera Tienda
Félix BERMEJO-PAREJA
Eva CARRO DÍAZ
José Luis Pedraz Muñoz
Original Assignee
Universidad Del País Vasco
Fundación Investigación Biomédica Hospital Universitario 12 Octubre
Centro De Investigación Biomédica En Red De Enfermedades Neurodegenerativas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Del País Vasco, Fundación Investigación Biomédica Hospital Universitario 12 Octubre, Centro De Investigación Biomédica En Red De Enfermedades Neurodegenerativas filed Critical Universidad Del País Vasco
Priority to EP09800099A priority Critical patent/EP2322147A4/en
Publication of WO2010010223A1 publication Critical patent/WO2010010223A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/515Angiogenesic factors; Angiogenin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to the use of microparticles comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both for the treatment of neurodegenerative diseases.
  • AD Alzheimer's disease
  • PD Parkinson's disease
  • Angiogenic factors are growth factors that not only stimulate neovascularization and angiogenesis (initiated with the activation of endothelial cells of parental blood vessels) in vivo, but are also mitogenic for endothelial cells in vitro.
  • angiogenic factors are, for example, HGF, VEGF, FGF and HIF.
  • VEGF vascular endothelial growth factor
  • CNS Central Nervous System
  • studies show that cerebrovascular deficiencies occur in diseases such as AD or Huntington that They precede the onset of clinical symptoms, which suggests that such changes could contribute to the pathogenesis of these diseases.
  • Neurotrophic factors are natural proteins that play an important role at the CNS level. These factors are essential to ensure the survival and differentiation of neurons during development and to maintain normal neuronal function in the adult. Due to these physiological functions, neurotrophic factors are useful for the treatment of CNS pathologies in which survival and / or the neuronal function itself are compromised.
  • GDNF glia-derived neurotrophic factor
  • CNTF Central neurotrophic factor
  • EP0388428 describes methods in which ventral mesencephalon fragments encapsulated in tubes formed by semipermeable membranes are implanted in the parietal region of the cerebral cortex after craniotomy.
  • this type of technology has the disadvantage of being a system of a large size (of the order of millimeters), which can condition the viability and functionality of the encapsulated cells.
  • microcapsules that can comprise cells or fragments of the choroid plexus, or genetically modified cells to express proteins of therapeutic interest.
  • Skinner, SMJ et al. (Xenotransplantation, 2006 vol.13: 284-288) describe the use of microencapsulated choroid plexus cells in animal models of different CNS diseases.
  • US patent application US2004213768 describes methods for the administration of neurotrophic factors faithful to the central nervous system based on the implantation of microcapsules (preferably alginate) comprising cells isolated from the choroid plexus, where the implantation is carried out in a subdural or subarachnoid manner.
  • microcapsules preferably alginate
  • choroid plexus cells does not allow an exact control of the nature of the angiogenic / neurotrophic factors produced by the cell.
  • the invention relates to a microparticle comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both for the treatment of neurodegenerative diseases, wherein the administration of The microparticle is made at the level of the cerebral cortex.
  • Figure 1 shows three photographs of microparticles containing genetically modified fibroblasts to produce VEGF.
  • a and B optical microscopy images.
  • C fluorescence microscopy image.
  • Figure 2 is a graph showing the proliferation of BMVEC cells in the presence of VEGF secreted by the microparticles (33 ng / mL) and the stock solution of VEGF (500 ng / mL) on days 7 and 20.
  • Figure 3 is a graph showing the density of blood vessels stimulated by the production of VEGF from microparticles implanted in normal C57BL / 6 mice.
  • Figure 4 is a photograph showing the double BrdUrd-lectin staining of new blood vessels induced by the production of VEGF from microparticles implanted in normal C57BL / 6 mice.
  • Figure 5 is a graph representing the results obtained in the T-maze test in APP / PS1 mice.
  • Figure 6 is a graph showing the results of the object recognition test in APP / PS1 mice.
  • Figure 7 is a graph depicting the levels of BDNF measured in different tissues of old (18-24 month) control rats (treated empty microparticles) and rats treated with microparticles containing BDNF producing cells.
  • Figure 8 is a graph depicting the results of the determination of caspase 3, caspase 9 and PMAPK in cortex of old control rats (treated with empty microparticles) and with the microparticles that release BDNF.
  • the inventors have discovered that the administration at the level of the cerebral cortex of microparticles comprising genetically modified cells to express neurotrophic or angiogenic factors allows, surprisingly, the treatment not only of lesions located in the cerebral cortex, but also lesions located in other areas of the brain thanks to the diffusion of the neurotrophic or angiogenic factors administered.
  • the invention relates to a microparticle comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both, for the treatment of neurodegenerative diseases, wherein the administration of the Microparticle is made at the level of the cerebral cortex.
  • the microparticle of the invention is a spherical particle or not, which includes (i) microcapsules, which are defined as vesicular systems in which genetically modified cells are confined in a cavity surrounded by a single membrane (usually polymeric) ; and (ii) microspheres, which are matrix systems in which cells are dispersed throughout the particle.
  • microparticle is understood as that particle comprising a diameter of less than 1 mm, preferably between 1 and 0.9, between 0.9 and 0.8, between 0.8 and 0.7, between 0.7 and 0.6, between 0.6 and 0.5, between 0.5 and 0.4, between 0.4 and 0.3, between 0.3 and 0.2, between 0.2 and 0.1 or less than 0.1 mm in diameter.
  • the microparticle of the invention has a diameter between 0.380 and 0.404 mm, preferably 0.392 mm.
  • said microparticle is called the pharmaceutical micro-biosystem.
  • the average size of the microparticle of the invention is influenced by different technological factors of the method of producing said microparticle, such as the concentration of the different components of the microparticle, stirring speed. , etc.
  • the microparticle of the invention can be formed by any biocompatible polymeric material that allows the continuous secretion of the therapeutic products and that acts as a support for the genetically modified cells.
  • said biocompatible polymeric material can be, for example, thermoplastic polymers or hydrogel polymers.
  • thermoplastic polymers are acrylic acid, acrylamide, 2-aminoethyl methacrylate, poly (tetrafluoroethylene-cohexafluoropropylene), methacrylic acid- (7- cumaroxy) ethyl ester, N-isopropyl acrylamide, polyacrylic acid, polyacrylamide, polyamidoamia -p-xylylene, poly (chloroethyl vinyl ether), polycaprolactone, poly (caprlactone-co-trimethylene carboanto), poly (carbonate urea) urethane, poly (carbonate) urethane, polyethylene, polyethylene and archylamide co-polymer, polyethylene glycol, polyethylene glycol methacrylate ethylene terephthalate), poly (4-hydroxybutyl acrylate), poly (hydroxyethyl methacrylate), poly (N-2-hydroxypropyl methacrylate), poly (lactic acid-glycolic acid), poly (lactic acid L), poly
  • polymers of the hydrogel type are natural materials such as alginate, agarose, collagen, starch, hyaluronic acid, bovine serum albumin, cellulose and its derivatives, pectin, chondroitin sulfate, fibrin and fibroin, as well as synthetic hydrogels such as sepharose and sephadex .
  • the polymer that is part of the microparticle of the invention is linked to, or functionalized with, a specific ligand for a cell surface receptor.
  • a specific ligand for a cell surface receptor is understood to be the molecule or peptide that is capable of recognizing a cell surface receptor and specifically binding to it.
  • said ligand allows the specific interaction between the polymer of the microparticle and the genetically modified cells contained within it.
  • any molecule or peptide that possesses specific binding sites that can be recognized by cell surface receptors can be used in the present invention as a specific ligand for a cell surface receptor.
  • the specific ligand for a cell surface receptor can come from cell adhesion molecules that interact with the extracellular matrix such as fibronectin, the different members of the selectin families, the caderins, lectins, integrins, immunoglobulins, the collective and the galectinas.
  • the specific ligand for a cell surface receptor employed in the present invention can be a peptide derived from a region selected from the fibronectin regions that are involved in binding with the integrins found in the cell membrane.
  • said peptides are derived from the region of the tenth repetition type III of fibronectin containing the RGD peptide, from the region of the fourteenth repetition type III of the fibronectin containing the peptide IDAPS (SEQ ID NO : 1), of the CSI region of fibronectin containing the LDV peptide and the CS5 region of fibronectin containing the REDV peptide (SEQ ID NO: 2).
  • These peptides may consist of fragments of the corresponding regions that retain their adhesive capacity, such as, for example, the QAGDV peptide (SEQ ID NO: 3) of the fibrinogen, the LDV peptide of the fibronectin and the peptide IDSP (SEQ ID NO: 4 ) of VCAM-I.
  • the present invention also contemplates the use of integrin binding peptides as a specific ligand for a cell surface receptor, which are derived from the region of the tenth type III fibronectin repeat comprising the RGD sequence, such as, for example, a peptide selected from the group of RGD, RGDS (SEQ ID NO: 5), GRGD (SEQ ID NO: 6), RGDV (SEQ ID NO: 7), RGDT (SEQ ID NO: 8), GRGDG (SEQ ID NO: 9), GRGDS (SEQ ID NO: 10), GRGDY (SEQ ID NO : 11), GRGDF (SEQ ID NO: 12), YRGDS (SEQ ID NO: 13), YRGDDG (SEQ ID NO: 14), GRGDSP (SEQ ID NO: 15), GRGDSG (SEQ ID NO: 16), GRGDSY (SEQ ID NO: 17), GRGDVY (SEQ ID NO: 18), GRGDSPK (SEQ ID NO: 19), CGRG
  • the specific ligand for a cell surface receptor is a peptide comprising the RGD sequence.
  • the peptide comprising the RGD sequence may be attached to the polymer of the microparticle through the N-terminal or C-terminal end and, regardless of the anchor point, may be directly attached to the polymer or, alternatively, may be attached to through a spacer element. Virtually any peptide with structural flexibility can be used.
  • said flexible peptide may contain amino acid residue repeats, such as (GIy) 4 (SEQ ID NO: 28), Gly-Gly-Gly-Ser (SEQ ID NO: 29), (GIy) n (SEQ ID NO: 30) (Beer, JH et al, 1992, Blood, 79, 117-128), SGGTSGSTSGTGST (SEQ ID NO: 31), AGSSTGSSTGPGSTT (SEQ ID NO: 32), GGSGGAP (SEQ ID NO: 33), GGGVEGGG (SEQ ID NO: 34) or any other suitable amino acid residue repeat, or the hinge region of an antibody.
  • amino acid residue repeats such as (GIy) 4 (SEQ ID NO: 28), Gly-Gly-Gly-Ser (SEQ ID NO: 29), (GIy) n (SEQ ID NO: 30) (Beer, JH et al, 1992, Blood, 79, 117-128), SGGTSGSTSGTGST (SEQ ID NO: 31), AGS
  • the specific ligand for a cell surface receptor can be bound to the polymer with varying degrees of substitution, so that the concentrations of both components can vary and thus control the number of specific ligands for a cell surface receptor that are bound to the polymer of the microparticle
  • the invention contemplates polymers containing between 1 and 100, between 100 and 200, between 200 and 300, between 300 and 400, between 400 and 500, between 500 and 600, between 600 and 700, between 700 and 800, between 800 and 900 and between 900 and 1000 molecules of said specific ligand for each polymer molecule.
  • the microparticle of the invention can be formed by any biocompatible polymeric material that allows the continuous secretion of the therapeutic products and acts as a support for the genetically modified cells.
  • the polymer of the microparticle of the invention is alginate.
  • Example 1 of the present patent application one of the different methods that exist in the state of the art to produce microparticles comprising alginate as a biopolymeric material is described.
  • the microparticle can contain alginate formed mostly by manuronic acid regions (MM blocks), by guluronic acid regions (GG blocks) and by mixed sequence regions (MG blocks).
  • MM blocks manuronic acid regions
  • GG blocks guluronic acid regions
  • MG blocks mixed sequence regions
  • the percentage and distribution of uronic acids differ according to the origin of the alginate and contribute to the properties of the alginate. The person skilled in the art knows the percentages of each of the different blocks that appear in the different biological sources of alginates.
  • the invention contemplates the use of alginates from Laminaria hyperborea, Lithuania nigrescens, Lessonia trabeculata, Durvillaea antarctica, Laminaria digitata, Eclonia maxim, Macrocystis pyrifera, Ascophyllum nodosum and / or Laminaria japanica as well as mixtures of alginates of different species until the desired content in GG, MM or GM blocks.
  • the GG blocks contribute to the rigidity of the hydrogel, while the MM monomers maintain a high resistance to fracture, so that by using a suitable combination of alginate polymers, a mixture whose modulus of elasticity has a value can be obtained adequate while the viscosity of the pre-gel solution is maintained at sufficiently low levels to allow adequate cell manipulation and immobilization.
  • the alginates that can be used in the present invention include GG alginates, MM alginates or combinations of both in a ratio of 90: 10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 or 10:90.
  • the invention also contemplates the use of alginates derived from the treatment of natural alginates with enzymes that are capable of modifying the integral blocks to give rise to alginates with improved properties.
  • the invention contemplates the use of alginates that have been modified by different physical treatments, in particular, gamma rays, irradiation with ultrasound or with ultraviolet light as described by Wasikiewicz, J. M. et al. (Radiation Physics and Chemistry, 2005, 73: 287-295).
  • the microparticle of the invention comprising alginate as a biocompatible polymeric material can be used as is.
  • alginate is a poorly stable polymer that tends to lose calcium and therefore, lose its gel character.
  • alginate particles are relatively porous which results in antibodies being able to access inside and damage cells.
  • the microparticle of the invention may be surrounded by a semipermeable membrane that confers stability to the particles and forms a barrier impermeable to antibodies.
  • Semi-permeable membrane means a membrane that allows the entry of all those solutes necessary for cell viability and that allows the therapeutic proteins produced by the cells contained within the microparticle to be exited, but which is substantially impermeable to antibodies, so that the cells are protected from the immune response produced by the organism that hosts the microparticle.
  • Suitable materials for forming the semipermeable membrane are materials insoluble in biological fluids, preferably polyamino acids, such as poly-L-lysine, poly-L-ornithine, poly-L-arginine, poly-L-asparagine, poly-L-aspartic cop benzyl-L-aspartate, poly-S-benzyl-L-cysteine, poly-gamma-benzyl-L-glutamate, poly-S-CBZ-L-cysteine, poly- ⁇ -CBZ-D-lysine, poly- ⁇ - CBZ-DL-Ornithine, poly-O-CBZ-L-serine, poly-O-CBZ-D-tyrosine, poly ( ⁇ -ethyl-L-glutamate), poly-D-glutamic, polyglycine, poly- ⁇ - N -hexyl L-glutamate, poly-L-histidine, poly ( ⁇ , ⁇ - [
  • the microparticle of the invention further comprises a poly-L-lysine membrane.
  • the membrane that covers the microparticle is usually of a polycationic material, which results in the formation of a polyanion-polycation complex that contributes to the stabilization of the alginate and to reduce the porosity of the microparticle and to form an immune barrier that is impervious to antibodies.
  • the positive charge of said membrane favors cell adhesion to the surface of the microparticle resulting in a lower biocompatibility thereof. Therefore, if desired, the poly-L-Lysine membrane that surrounds the microparticle is, in turn, surrounded by a second membrane formed mostly of a material that inhibits cell adhesion, preferably alginate (see Example 1 of the present patent application).
  • any eukaryotic cell that has been genetically modified to express at least one neurotrophic factor, at least one angiogenic factor or a combination of both, can be used in the present invention, but the mouse, rat, primate and human cells are the preferred ones.
  • suitable cells for carrying out the invention are cardiomyocytes, endothelial cells, epithelial cells, lymphocytes (B and T cells), mast cells, eosinophils, vascular intimal cells, primary cultures of isolated cells of different organs, preferably isolated cells of the islets of Langerhans, hepatocytes, leukocytes, including mononuclear leukocytes, stem cells of embryonic origin, mesenchymal, umbilical cord or adult (skin, lung, kidney and liver), osteoclasts, chondrocytes and other tissue cells connective.
  • cells of established lines such as Jurkat T cells, NIH-3T3, CHO, Cos, VERO, BHK, HeLa, COS, MDCK, 293,
  • the number of cells that must be part of the microparticle is not essential for the invention as long as there is a sufficient number of cells to contribute to the formation of the lattice.
  • the amount of cells per mL of polymer solution is between 1 and 10 x 6 6 , preferably between 2 and 9 x 6 , more preferably between 3 and 8 x 6 , even more preferably between 4 and 7 x 6 and even more preferably between 5 and 6 x 6 6 .
  • the number of cells in the initial mixture is 5; 3.75; 2.5 or 1.25 xl O 6 per mL of polymer solution.
  • the eukaryotic cell contained within the microparticle of the invention can be modified with any neurotrophic factor, for example, and not limited to, neurotrophins (NT), such as NT-3, NT-4, NT-5 or NT-6; Brain-derived neurotrophic factor (BDNF, Brain-derived neurotrophic factor); ciliary neurotrophic factor (CNTF); insulin growth factor type 1 (IGF-I); insulin growth factor type 2 (IGF-2); Nerve Growth Factor (NGF); neurturin (NTN); persefinas; artemines, pleiotrophin (PTN), efrines, netrins, semaphoreins, slits, reelins, glia-derived neurotrophic factor (GDNF), conserved dopamine neurotrophic factor (CDNF) (conserved dopamine neurotrophic factor), mesothalic astrocyte-derived neurotrophic factor (MANF, mesencephalic astrocyte-derived neurotrophic factor (MANF, me
  • the eukaryotic cell contained within the microparticle of the invention can be modified with any angiogenic factor, for example, and not limited to, angiopoietin (Ang), such as Ang-1, Ang- 2, Ang-3 or Ang-4; basic fibroblast growth factor (bFGF / FGF2), such as fibroblast growth factor 20 (FGF20); transforming growth factor beta (TGF ⁇ ), transforming growth factor alpha (TGF ⁇ ), placental growth factor (PIGF); epidermal growth factor (EGF, epidemic grothw factor); vascular endothelial growth factor (VEGF), such as VEGF-A, VEGF-B or VEGF-C; platelet derived growth factor (PDGF, Platelet-derived growth factor), such as PDGF-A and PDGF-B; vasoactive intestinal polypeptide (VIP); hepatocyte growth factor (HGF), cardiotrophins, bone morphogenetic proteins (BMP), sonic hedgehog
  • Ang angiopoi
  • the genetic modification of the cells to be encapsulated within the microparticle of the invention can be carried out by any method known in the art.
  • the gene or the vector containing the gene can be administered by electroporation, transfection using liposomes or polycationic proteins or using viral vectors, including adenoviral and retroviral vectors and also non-viral vectors.
  • nucleotide sequences that encode neurotrophic factors or angiogenic factors are associated with sequences that regulate the expression of said factors.
  • sequences that regulate the expression of said factors can be sequences that regulate transcription, as promoters, constitutive or inducible, enhancers, transcriptional terminators and sequences that regulate translation, such as untranslated sequences located 5 'or 3' with respect to the coding sequence.
  • Suitable promoters for the expression of neurotrophic factors or angiogenic factors include, but are not necessarily limited to, constitutive promoters such as those derived from eukaryotic virus genomes such as polyoma virus, adenovirus, SV40, CMV, avian sarcoma virus, hepatitis B virus, the metallothionein gene promoter, the herpes simplex virus thymidine kinase gene promoter, retrovirus LTR regions, the immunoglobuin gene promoter, the actin gene promoter, the promoter of the EF-I alpha gene as well as inducible promoters in which protein expression depends on the addition of a molecule or an exogenous exogenous signal, such as the tetracycline system, the NFkappaB / UV light system, the Cre system / Lox and the heat shock gene promoter.
  • constitutive promoters such as those derived from eukaryotic virus genomes such as polyoma virus, a
  • neurotrophic factors or angiogenic factors expressed by the cells that are part of the microparticle of the invention can be expressed as temporarily or stably.
  • Stable expression requires the transformation of the polynucleotide that encodes neurotrophic factors or angiogenic factors be performed in conjunction with a polynucleotide that encodes a protein that allows to select transformed cells.
  • Suitable selection systems are, without limitation, the herpes virus thymidine kinase, the phosphoribosyltransferase hypoxanthine guanine, adenine phosphoribosyltransferase, genes encoding proteins that confer resistance to an antimetabolite such as dihydrofolate reduced, pyruvate transaminase, the resistance gene to Neomycin and hygromycin.
  • the invention relates to a microparticle comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both, for the treatment of neurodegenerative diseases, where the administration of the microparticle is performed at the level of the cerebral cortex.
  • any neurodegenerative disease that can be treated with neurotrophic factors, angiogenic factors or a combination of both, can also be treated with the microparticle of the invention.
  • neurodegenerative disease is understood as that disease that is distinguished by being the result of a progressive death of neurons in the nervous system, primarily in the brain, resulting in the worsening of bodily activities, such as balance , movement, speech, breathing, cardiac function, etc.
  • Examples of neurodegenerative diseases are, without limitation, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, dementia with Lewy bodies, Parkinson's disease, spinal muscular atrophy, etc.
  • neurodegenerative disease is selected from Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease.
  • administration of the microparticle is performed at the level of the cerebral cortex, allowing the diffusion of neurotrophic or angiogenic factors to other areas of the brain.
  • administration "at the level of the cerebral cortex” means, in the context of the present invention, a method in which the administration is carried out by perforation of the skull and one or several meninges but without damaging the cerebral cortex.
  • the preferred method of administration is by craniotomy.
  • craniotomy is understood as surgery of the brain consisting of the opening of the skull to expose the meninges, allowing the administration of the microparticles in a subdural or subarachnoid manner.
  • administration of the microparticle at the level of the cerebral cortex is carried out in a subdural or subarachnoid manner.
  • the procedure for administering the microparticles is described in Example 2 that accompanies the present description.
  • Cerebral cortex or “cerebral cortex” is understood as the mantle of nerve tissue that covers the surface of the cerebral hemispheres.
  • administration of the microparticle at the level of the cerebral cortex is carried out by bilateral craniotomy.
  • the invention in another aspect, relates to a method for the treatment of neurodegenerative diseases by administering microparticles comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of the foregoing, wherein the Administration of the microparticles is done at the level of the cerebral cortex.
  • BHK cells fibroblasts from hamster kidney
  • VEGF vascular endothelial growth factor
  • DMEM fetal bovine serum
  • FBS fetal bovine serum
  • antibiotic / antifungal 1% antibiotic / antifungal. They pass the cells every 2 or 3 days were made, remaining in the incubator at 37 0 C in an atmosphere of 5% CO 2. All components of the culture media used were from the Gibco BRL house (Invitrogen SA, Spain).
  • the encapsulation process comprises several stages. First, the cells, genetically modified to secrete the therapeutic product, are suspended in an alginate solution. Subsequently, the cell suspension is passed through the tip of the electrostatic dripper by means of a flow pump, the droplets formed falling into the gelling solution of calcium chloride. Furthermore, by applying a difference in electrostatic potential between the drip tip and the calcium chloride solution, the formation and gelation of small droplets from the cell suspension is achieved. Once the solid alginate cores are formed, they are coated, applying a first coating with a 0.05% poly-L-lysine solution for 5 minutes and a second coating with a 0.1% alginate solution for 5 minutes.
  • microparticles were determined using an inverted optical microscope (NikonTSM) equipped with a camera (Sony CCD-Iris).
  • the microparticles obtained are spherical in shape and have a smooth and uniform surface whose average size was 392 ⁇ 12 ⁇ m ( Figure 1). Viability and functionality of VEGF producing fibroblasts in microparticles
  • VEGF vascular endothelial growth factor
  • the BMVEC cell line are cells that are derived from brain endothelial cells. They are maintained in DMEM medium (Sigma), 10% FBS (Gibco) and 1% antifungal antibiotic (Gibco).
  • BMVEC brain endothelial cells were cultured in the presence of different concentrations of VEGF prepared from the pure product, stock solution (500 ng / mL) and secreted from the microparticles, functional VEGF (33 ng / mL).
  • Cell proliferation was determined by the XTT Proliferation Kit (Roche) at 7 and 20 days ( Figure 2). This test allows to determine the functionality of the VEGF released from the microparticles.
  • the concentration of 33 ng / mL is similar to that produced by about 200 microparticles and its effect was compared with a high concentration of VEGF such as 500 ng / mL.
  • Mice anesthetized by inhaled isofluorane had a bilateral craniotomy at the posterior 0.6 mm and 1.1 mm lateral coordinates at the bregma point (Paxinos & Watson, 1986.
  • VEGF-producing microparticles were administered on the surface of the brain and empty microparticles were administered to the control mice, each mouse was administered between 20-30 microparticles per hole.
  • the holes were closed with nitrocellulose membranes impregnated in a dilute iodine solution (Betadine), which prevents the capsules from leaving the holes and isolates the brain from a possible infection.
  • Betadine dilute iodine solution
  • the animals were sacrificed at 2 weeks, 1 month and 3 months and immunohistochemical studies were performed. Vessel formation was determined using biotinylated tomato lectin and factor VIII.
  • Double transgenic mice Amyloid precursor protein / presenilin-1 (APP / Psl) resulting from the cross between the Tg2576 mouse (overexpresses the human APP695 protein) and the mutant mouse (M 146L mouse) for presenilin-1 (PsI). These mice are a model of amyloidosis for Alzheimer's disease.
  • APP / Psl Amyloid precursor protein / presenilin-1
  • mice anesthetized by inhaled isofluorane had a bilateral craniotomy at the posterior coordinates 0.6 mm and lateral 1.1 mm at the bregma point (Paxinos and Watson, 1982). Once the craniotomy was performed, they were administered on the surface of the brain at a subdural level, to a group of mice, VEGF-producing microparticles and to another group of mice, microparticles with non-transfected fibroblasts (this group of mice were called "sham” ). In addition, a group of control littermate mice was included. Each mouse (6 per group) was administered between 20-30 microparticles per hole. Once the surgery was completed, the holes were closed with nitrocellulose membranes impregnated in a dilute iodine solution (Betadine), which prevents the microparticles from leaving the holes and isolates the brain from a possible infection
  • Betadine dilute iodine
  • mice were kept for 3 months in the animal farm until they were tested for behavior: T-Maze (T labyrinth) and object recognition. At the end of the behavioral tests, the mice were perfused transcardiacally with 0.9% saline. Half of the brain was fixed with 4% paraformaldehyde in 0.1 M saline solution pH 7.4, and the other half was frozen at -8O 0 C for subsequent biochemical tests.
  • Wistar rats between 24 and 30 months were used to carry out this experiment, conducting a pilot study with control rats and treated rats.
  • Genetically modified cells to produce BDNF were encapsulated using the same methodology as in Example 1.
  • the microparticles were implanted in the rats by bilateral craniotomy.
  • Control rats were treated in the same manner but were given empty microparticles.
  • the rats remained in the stable until their sacrifice, at 2 months, to carry out the appropriate analyzes.

Abstract

The invention relates to methods for the treatment of neurodegenerative diseases, comprising the use of microparticles containing genetically modified cells expressing neurotrophic and/or angiogenic factors, in which said microparticles are administered by means of implantation into the cerebral cortex.

Description

EMPLEO DE MICROPARTÍCULAS QUE COMPRENDEN CÉLULAS EMPLOYMENT OF MICROPARTURES THAT INCLUDE CELLS
MODIFICADAS GENÉTICAMENTE EN EL TRATAMIENTO DEGENETICALLY MODIFIED IN THE TREATMENT OF
ENFERMEDADES NEURODEGENERATIVASNEURODEGENERATIVE DISEASES
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se relaciona con el empleo de micropartículas que comprenden células modificadas genéticamente que expresan al menos un factor neurotrófico, al menos un factor angiogénico o una combinación de ambos para el tratamiento de enfermedades neurodegenerativas.The present invention relates to the use of microparticles comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both for the treatment of neurodegenerative diseases.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Las enfermedades neurodegenerativas, entre las que se incluyen la enfermedad de Alzheimer (EA) y la enfermedad de Parkinson (EP) entre otras, constituyen un grave problema desde el punto de vista médico, asistencial, social y económico al que deben enfrentarse los países desarrollados.Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), among others, constitute a serious problem from the medical, care, social and economic point of view that developed countries must face .
En la actualidad existen varios medicamentos que proporcionan un tratamiento sintomático de estas enfermedades, pero ninguno que haya demostrado utilidad con relevancia clínica para frenar la progresión del proceso degenerativo.There are currently several medications that provide symptomatic treatment of these diseases, but none that have proven useful with clinical relevance to slow the progression of the degenerative process.
Los factores angiogénicos son factores de crecimiento que no solo estimulan la neovascularización y la angiogénesis (iniciada con la activación de las células endoteliales de los vasos sanguíneos parentales) in vivo, sino que también son mitogénicos para las células endoteliales in vitro. Ejemplos de factores angiogénicos son, por ejemplo, HGF, VEGF, FGF y HIF. El VEGF (factor de crecimiento del endotelio vascular) es el prototipo de los factores angiogénicos, cuyo papel a nivel de Sistema Nervioso Central (SNC) no esta únicamente relacionado con el crecimiento de los vasos sanguíneos, como regulador fisiológico de la angiogénesis cerebral y de la integridad de la barrera hematoencefálica, sino que posee además un efecto directo sobre distintos tipos de células neuronales, incluyendo incluso a las células madre neuronales (NSCs). Por otro lado, estudios realizados ponen de manifiesto que en enfermedades como EA o Huntington se producen deficiencias cerebrovasculares que preceden a la aparición de los síntomas clínicos, lo cual sugiere que dichas alteraciones podrían contribuir a la patogénesis de estas enfermedades.Angiogenic factors are growth factors that not only stimulate neovascularization and angiogenesis (initiated with the activation of endothelial cells of parental blood vessels) in vivo, but are also mitogenic for endothelial cells in vitro. Examples of angiogenic factors are, for example, HGF, VEGF, FGF and HIF. VEGF (vascular endothelial growth factor) is the prototype of angiogenic factors, whose role at the level of the Central Nervous System (CNS) is not only related to the growth of blood vessels, as a physiological regulator of cerebral angiogenesis and the integrity of the blood brain barrier, but also has a direct effect on different types of neuronal cells, including even neuronal stem cells (NSCs). On the other hand, studies show that cerebrovascular deficiencies occur in diseases such as AD or Huntington that They precede the onset of clinical symptoms, which suggests that such changes could contribute to the pathogenesis of these diseases.
Los factores neurotróficos son proteínas naturales que desempeñan un papel importante a nivel de SNC. Dichos factores son esenciales para asegurar la supervivencia y la diferenciación de las neuronas durante el desarrollo y para mantener en el adulto la normalidad de la función neuronal. Debido a estas funciones fisiológicas los factores neurotróficos son útiles para el tratamiento de las patologías del SNC en las cuales la supervivencia y/o la propia función neuronal se encuentran comprometidas. Dentro de los factores neurotróficos se encuentra el GDNF (Factor neurotrófico derivado de la glia) que fue aislado por Lin y cois en 1930 y desde entonces se ha ensayado su utilización en diferentes enfermedades que afectan al SNC.Neurotrophic factors are natural proteins that play an important role at the CNS level. These factors are essential to ensure the survival and differentiation of neurons during development and to maintain normal neuronal function in the adult. Due to these physiological functions, neurotrophic factors are useful for the treatment of CNS pathologies in which survival and / or the neuronal function itself are compromised. Among the neurotrophic factors is GDNF (glia-derived neurotrophic factor) that was isolated by Lin and cois in 1930 and since then its use has been tested in different diseases that affect the CNS.
Un problema importante a resolver es el sistema y el lugar de administración de estos factores angiogénicos y neurotróficos, ya que es necesario que el factor atraviese la barrera hemato-encefálica para que pueda ejercer su acción y además el tratamiento de estas enfermedades puede conllevar una administración crónica durante largos periodos de tiempo.An important problem to solve is the system and the place of administration of these angiogenic and neurotrophic factors, since it is necessary that the factor crosses the blood-brain barrier so that it can exert its action and also the treatment of these diseases can lead to an administration chronic for long periods of time.
En base a los conocimientos previos se dispone de una gran cantidad de productos terapéuticos, como son, por ejemplo, los factores neurotróficos y angiogénicos citados anteriormente, para el tratamiento de enfermedades del SNC. No obstante la liberación de dichos productos a nivel cerebral está limitada por la dificultad que supone el acceso al lugar de administración. En la práctica clínica la liberación controlada de estos productos terapéuticos se realiza mediante bombas de infusión o cánulas a nivel intraventricular. Estas vías de administración requieren inyecciones continuadas o bien recargas de la bomba de infusión para mantener los niveles del fármaco y evitar la degradación de la sustancia terapéutica. Además, debido a la tecnología que presentan las bombas de infusión actuales es difícil administrar dosis bajas de fármacos durante prolongados períodos de tiempos.Based on previous knowledge, a large number of therapeutic products are available, such as, for example, the neurotrophic and angiogenic factors mentioned above, for the treatment of CNS diseases. However, the release of these products at the brain level is limited by the difficulty of accessing the site of administration. In clinical practice, the controlled release of these therapeutic products is performed by infusion pumps or cannulas at the intraventricular level. These routes of administration require continuous injections or refills of the infusion pump to maintain drug levels and prevent degradation of the therapeutic substance. In addition, due to the technology presented by current infusion pumps, it is difficult to administer low doses of drugs for prolonged periods of time.
Una de las estrategias terapéuticas que más importancia está adquiriendo en el tratamiento de enfermedades neurodegenerativas y del SNC es la terapia celular. La utilización de células como medicamento es una alternativa terapéutica de interés creciente en la comunidad científica, con la que se pretende desarrollar sistemas farmacéuticos que liberen el fármaco secretado por las células durante largos periodos de tiempo y de forma segura y fisiológica, siendo especialmente adecuados para el tratamiento de enfermedades crónicas. No obstante, una de las principales limitaciones que presenta este tipo de terapia es el rechazo por parte de la respuesta inmunitaria del huésped a las células implantadas, siempre y cuando el injerto objeto del transplante no proceda del propio huésped. De ahí que la administración de células alo- y xenogénicas secretoras de productos terapéuticos, ofrezca resultados poco satisfactorios a medio- largo plazo como consecuencia de la acción de los mecanismos defensivos del paciente. Debido a este inconveniente se han diseñado sistemas que permiten la administración de células y que evitan el rechazo provocado por la respuesta inmune, entre dichos sistemas destacan las fibras huecas y las microcápsulas.One of the therapeutic strategies that is becoming more important in the treatment of neurodegenerative diseases and CNS is cell therapy. The The use of cells as a medicine is a therapeutic alternative of growing interest in the scientific community, with which it is intended to develop pharmaceutical systems that release the drug secreted by the cells for long periods of time and in a safe and physiological way, being especially suitable for Treatment of chronic diseases. However, one of the main limitations of this type of therapy is the rejection by the host's immune response to the implanted cells, as long as the transplant graft does not come from the host itself. Hence, the administration of allogeneic and xenogeneic cells secreting therapeutic products, offers unsatisfactory results in the medium to long term as a result of the action of the patient's defensive mechanisms. Due to this disadvantage, systems have been designed that allow the administration of cells and that avoid the rejection caused by the immune response, among these systems, hollow fibers and microcapsules stand out.
La utilización fibras huecas que contienen células modificadas genéticamente para producir CNTF (Factor neurotrófico ciliar) es un sistema de administración que se ha utilizado en el tratamiento de pacientes con ALS. Asimismo, también se han descrito procedimientos que comprenden la encapsulación de células productoras de GDNF o VEGF en fibras huecas e implantadas a nivel del estriado (Yasuhara, T. y Date, I. 2007. CeIl transplantation, vol. 16: 1-8; Lindvall, O. y Wahlberg, L.U. 2008, Experimental Neurology, vol. 209:82-88). La solicitud de patente europea EP0388428 describe métodos en los que fragmentos de mesencéfalo ventral encapsulados en tubos formados por membranas semipermeables se implantan en la región parietal del córtex cerebral tras craneotomía. No obstante, este tipo de tecnología presenta la desventaja de ser un sistema de un tamaño elevado (del orden de milímetros), lo cual puede condicionar la viabilidad y funcionalidad de las células encapsuladas.The use of hollow fibers containing genetically modified cells to produce CNTF (Ciliary neurotrophic factor) is an administration system that has been used in the treatment of patients with ALS. Likewise, procedures have also been described which include the encapsulation of GDNF or VEGF producing cells in hollow fibers and implanted at the striatum level (Yasuhara, T. and Date, I. 2007. CeIl transplantation, vol. 16: 1-8; Lindvall, O. and Wahlberg, LU 2008, Experimental Neurology, vol. 209: 82-88). European patent application EP0388428 describes methods in which ventral mesencephalon fragments encapsulated in tubes formed by semipermeable membranes are implanted in the parietal region of the cerebral cortex after craniotomy. However, this type of technology has the disadvantage of being a system of a large size (of the order of millimeters), which can condition the viability and functionality of the encapsulated cells.
Una alternativa a las fibras huecas, es el empleo de microcápsulas que pueden comprender células o fragmentos del plexo coroideo, o células modificadas genéticamente para expresar proteínas de interés terapéutico. Skinner, S.M.J. et al. (Xenotransplantation, 2006 vol.13: 284-288) describen la utilización de células de plexos coroideos microencapsulados en modelos animales de distintas enfermedades del SNC.An alternative to hollow fibers is the use of microcapsules that can comprise cells or fragments of the choroid plexus, or genetically modified cells to express proteins of therapeutic interest. Skinner, SMJ et al. (Xenotransplantation, 2006 vol.13: 284-288) describe the use of microencapsulated choroid plexus cells in animal models of different CNS diseases.
Borlongan et al. (Neurochemistry Int. 2004 vol. 24: 495-503) describen un método para el tratamiento de la isquemia cerebral mediante la implantación subdural de microcápsulas que comprenden células del plexo coroideo.Borlongan et al. (Neurochemistry Int. 2004 vol. 24: 495-503) describe a method for the treatment of cerebral ischemia by subdural implantation of microcapsules comprising choroid plexus cells.
La solicitud de patente estadounidense US2004213768 describe métodos para la administración de factores neurotró fieos al sistema nervioso central basados en la implantación de microcápsulas (preferiblemente de alginato) que comprenden células aisladas del plexo coroideo, en donde la implantación se efectúa de forma subdural o subaracnoidea.US patent application US2004213768 describes methods for the administration of neurotrophic factors faithful to the central nervous system based on the implantation of microcapsules (preferably alginate) comprising cells isolated from the choroid plexus, where the implantation is carried out in a subdural or subarachnoid manner.
Sin embargo, el empleo de células de plexo coroideo no permite controlar de forma exacta la naturaleza de los factores angiogénicos/neurotróficos producidos por la célula.However, the use of choroid plexus cells does not allow an exact control of the nature of the angiogenic / neurotrophic factors produced by the cell.
Por otro lado, respecto al empleo de microcápsulas que pueden comprender células modificadas genéticamente, Meysinger, D. et al. (Neurochem. Int. 1994 vol. 24(5): 495- 503) describen microcápsulas de alginato-polilisina-alginato que comprenden fibroblastos modificados genéticamente para producir factor de crecimiento nervioso (NGF). En un trabajo publicado por Grandoso, L . et al. (Internal Journal of Pharmaceutics, 2007 vol. 343:69-78) se estudia la utilización de microcápsulas de alginato-poli-L-lisina en las que se inmovilizan fibroblastos productores de GDNF para el tratamiento de la EP en un modelo de rata parkinsonizada. Las microcápsulas se administraron a nivel del estriado mediante esterotaxia y se observó una mejora en el comportamiento rotacional de los animales.On the other hand, regarding the use of microcapsules that can comprise genetically modified cells, Meysinger, D. et al. (Neurochem. Int. 1994 vol. 24 (5): 495-503) describe alginate-polylysine-alginate microcapsules comprising genetically modified fibroblasts to produce nerve growth factor (NGF). In a work published by Grandoso, L. et al. (Internal Journal of Pharmaceutics, 2007 vol. 343: 69-78) the use of alginate-poly-L-lysine microcapsules in which GDNF-producing fibroblasts for the treatment of PD in a parkinsonized rat model is studied . The microcapsules were administered at the striatum level by sterotaxy and an improvement in the rotational behavior of the animals was observed.
Sin embargo, ambos trabajos emplean técnicas demasiado invasivas que pueden conducir a efectos secundarios no deseados en el paciente.However, both works employ overly invasive techniques that can lead to unwanted side effects in the patient.
Por tanto, existe una necesidad en el estado de la técnica de encontrar sistemas que permitan controlar el producto terapéutico y/o los factores angiogénicos y neurotróficos administrados y que sean menos invasivos, mejorando de este modo el tratamiento de las enfermedades neurodegenerativas, entre las que se incluyen la EA y la EP.Therefore, there is a need in the state of the art to find systems that allow to control the therapeutic product and / or the angiogenic and neurotrophic factors administered and that are less invasive, thereby improving the treatment of neurodegenerative diseases, including AD and PD.
COMPENDIO DE LA INVENCIÓN En un aspecto, la invención se relaciona con una micropartícula que comprende células modificadas genéticamente que expresan al menos un factor neurotrófico, al menos un factor angiogénico o una combinación de ambos para el tratamiento de enfermedades neurodegenerativas, en donde la administración de la micropartícula se realiza a nivel del córtex cerebral.SUMMARY OF THE INVENTION In one aspect, the invention relates to a microparticle comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both for the treatment of neurodegenerative diseases, wherein the administration of The microparticle is made at the level of the cerebral cortex.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
La Figura 1 muestra tres fotografías de las micropartículas que contienen fibroblastos modificados genéticamente para producir VEGF. A y B: imágenes de microscopía óptica. C: imagen de microscopía de fluorescencia.Figure 1 shows three photographs of microparticles containing genetically modified fibroblasts to produce VEGF. A and B: optical microscopy images. C: fluorescence microscopy image.
La Figura 2 es una gráfica que muestra la proliferación de células BMVEC en presencia de VEGF secretado por las micropartículas (33 ng/mL) y de la solución stock de VEGF (500 ng/mL) a los días 7 y 20.Figure 2 is a graph showing the proliferation of BMVEC cells in the presence of VEGF secreted by the microparticles (33 ng / mL) and the stock solution of VEGF (500 ng / mL) on days 7 and 20.
La Figura 3 es un gráfico que muestra la densidad de vasos sanguíneos estimulada por la producción de VEGF a partir de las micropartículas implantadas en ratones C57BL/6 normales.Figure 3 is a graph showing the density of blood vessels stimulated by the production of VEGF from microparticles implanted in normal C57BL / 6 mice.
La Figura 4 es una fotografía que muestra la doble tinción BrdUrd-lectina de los nuevos vasos sanguíneos inducidos por la producción de VEGF a partir de las micropartículas implantadas en ratones C57BL/6 normales.Figure 4 is a photograph showing the double BrdUrd-lectin staining of new blood vessels induced by the production of VEGF from microparticles implanted in normal C57BL / 6 mice.
La Figura 5 es una gráfica que representa los resultados obtenidos en el ensayo T-maze en ratones APP/PS1.Figure 5 is a graph representing the results obtained in the T-maze test in APP / PS1 mice.
La Figura 6 es una gráfica que muestra los resultados del test de reconocimiento de objetos en ratones APP/PS1. La Figura 7 es una gráfica que representa los niveles de BDNF medidos en diferentes tejidos de ratas viejas (18-24 meses) control (tratadas micropartículas vacías) y ratas tratadas con micropartículas que contenían células productoras de BDNF.Figure 6 is a graph showing the results of the object recognition test in APP / PS1 mice. Figure 7 is a graph depicting the levels of BDNF measured in different tissues of old (18-24 month) control rats (treated empty microparticles) and rats treated with microparticles containing BDNF producing cells.
La Figura 8 es una gráfica que representa los resultados de la determinación de caspasa 3, caspasa 9 y PMAPK en cortex de ratas viejas control (tratadas con micropartículas vacías) y con las micropartículas que liberan BDNF.Figure 8 is a graph depicting the results of the determination of caspase 3, caspase 9 and PMAPK in cortex of old control rats (treated with empty microparticles) and with the microparticles that release BDNF.
DESCRIPCIÓN DETA LLADA DE LA INVENCIÓN Los inventores han descubierto que la administración a nivel del córtex cerebral de micropartículas que comprenden células modificadas genéticamente para expresar factores neurotróficos o angiogénicos permite, sorprendentemente, el tratamiento no sólo de lesiones localizadas en el córtex cerebral, sino también lesiones localizadas en otras áreas del cerebro gracias a la difusión de los factores neurotróficos o angiogénicos administrados.DETA CALL DESCRIPTION OF THE INVENTION The inventors have discovered that the administration at the level of the cerebral cortex of microparticles comprising genetically modified cells to express neurotrophic or angiogenic factors allows, surprisingly, the treatment not only of lesions located in the cerebral cortex, but also lesions located in other areas of the brain thanks to the diffusion of the neurotrophic or angiogenic factors administered.
Así, en un aspecto, la invención se relaciona con una micropartícula que comprende células modificadas genéticamente que expresan al menos un factor neurotrófico, al menos un factor angiogénico o una combinación de ambos, para el tratamiento de enfermedades neurodegenerativas, en donde la administración de la micropartícula se realiza a nivel del córtex cerebral.Thus, in one aspect, the invention relates to a microparticle comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both, for the treatment of neurodegenerative diseases, wherein the administration of the Microparticle is made at the level of the cerebral cortex.
La micropartícula de la invención es una partícula esférica o no, dentro de la que se incluyen (i) microcápsulas, que se definen como sistemas vesiculares en los que las células modificadas genéticamente están confinadas en una cavidad rodeada de una única membrana (habitualmente polimérica); y (ii) microesferas, que son sistemas matriciales en los que las células están dispersas por toda la partícula.The microparticle of the invention is a spherical particle or not, which includes (i) microcapsules, which are defined as vesicular systems in which genetically modified cells are confined in a cavity surrounded by a single membrane (usually polymeric) ; and (ii) microspheres, which are matrix systems in which cells are dispersed throughout the particle.
En la presente invención, se entiende por "micropartícula" a aquella partícula que comprende un diámetro inferior a 1 mm, preferentemente, entre 1 y 0,9, entre 0,9 y 0,8, entre 0,8 y 0,7, entre 0,7 y 0,6, entre 0,6 y 0,5, entre 0,5 y 0,4, entre 0,4 y 0,3, entre 0,3 y 0,2, entre 0,2 y 0,1 o menos de 0,1 mm de diámetro. En una realización particular, la micropartícula de la invención posee un diámetro entre 0,380 y 0,404 mm, preferentemente, 0.392 mm. Asimismo, en el contexto de la presente invención y debido a la capacidad de la micropartícula de producir de forma continua productos terapéuticos, dicha micropartícula se denomina micro-biosistema farmacéutico.In the present invention, "microparticle" is understood as that particle comprising a diameter of less than 1 mm, preferably between 1 and 0.9, between 0.9 and 0.8, between 0.8 and 0.7, between 0.7 and 0.6, between 0.6 and 0.5, between 0.5 and 0.4, between 0.4 and 0.3, between 0.3 and 0.2, between 0.2 and 0.1 or less than 0.1 mm in diameter. In a particular embodiment, the microparticle of the invention has a diameter between 0.380 and 0.404 mm, preferably 0.392 mm. Also, in the context of the present invention and due to the ability of the microparticle to continuously produce therapeutic products, said microparticle is called the pharmaceutical micro-biosystem.
No obstante, como entiende el experto en la materia, el tamaño medio de la micropartícula de la invención se ve influenciado por diferentes factores tecnológicos del procedimiento de producción de dicha micropartícula, tales como la concentración de los distintos componentes de la micropartícula, velocidad de agitación, etc.However, as the person skilled in the art understands, the average size of the microparticle of the invention is influenced by different technological factors of the method of producing said microparticle, such as the concentration of the different components of the microparticle, stirring speed. , etc.
La micropartícula de la invención puede estar formada por cualquier material polimérico biocompatible que permita la secreción continua de los productos terapéuticos y que actúe como soporte de las células modificadas genéticamente. Así, dicho material polimérico biocompatible puede ser, por ejemplo, los polímeros termoplásticos o los polímeros hidrogeles.The microparticle of the invention can be formed by any biocompatible polymeric material that allows the continuous secretion of the therapeutic products and that acts as a support for the genetically modified cells. Thus, said biocompatible polymeric material can be, for example, thermoplastic polymers or hydrogel polymers.
Entre los polímeros termoplásticos se encuentran ácido acrílico, acrilamida, 2-aminoetil metacrilato, poli(tetrafluoroetileno-cohexafluorpropileno), ácido metacrílico-(7- cumaroxi) etil éster, N-isopropyl acrilamda, ácido poliacrílico, poliacrilamida, poliamidoamia, poli(amino)-p-xilileno, poli(cloroetilvonileter), policaprolactona, poli(caprlactona-co-trimethylene carboanto), poli(carbonato urea) uretano, poli(carbonato) uretano, polietileno, coplímero de polietileno y archilamida, polietilenglicol, polietilenglicol metacrilato, poli(etilene tereftalato), poli(4-hidroxibutil acrilato), poli(hidroxietil metacrilato), poli(N-2-hidroxipropil metacrilato), poli(ácido láctico-ácido glicólico), poli(ácido L láctico), poli(gamma-metil, L-glutamato), poli(metilmetacrilato), polipropileno fumarato), polipropileno óxido), polipirrol, poliestirene, poli(tetrafuoro etileno), poliuretano, polivinil alcohol, polietileno de peso molecular ultraalto, 6-(p-vinilbenzamido)-ácido hexanoico y N-p-vinilbenzil-D- maltonamida y copolímeros que contienen más de uno de dichos polímeros.Among the thermoplastic polymers are acrylic acid, acrylamide, 2-aminoethyl methacrylate, poly (tetrafluoroethylene-cohexafluoropropylene), methacrylic acid- (7- cumaroxy) ethyl ester, N-isopropyl acrylamide, polyacrylic acid, polyacrylamide, polyamidoamia -p-xylylene, poly (chloroethyl vinyl ether), polycaprolactone, poly (caprlactone-co-trimethylene carboanto), poly (carbonate urea) urethane, poly (carbonate) urethane, polyethylene, polyethylene and archylamide co-polymer, polyethylene glycol, polyethylene glycol methacrylate ethylene terephthalate), poly (4-hydroxybutyl acrylate), poly (hydroxyethyl methacrylate), poly (N-2-hydroxypropyl methacrylate), poly (lactic acid-glycolic acid), poly (lactic acid L), poly (gamma-methyl), L-glutamate), poly (methyl methacrylate), polypropylene fumarate), polypropylene oxide), polypyrrole, polystyrene, poly (tetrafluoro ethylene), polyurethane, polyvinyl alcohol, ultra high molecular weight polyethylene, 6- (p-vinylbenzamido) -hexan acid oico and N-p-vinylbenzyl-D-maltonamide and copolymers containing more than one of said polymers.
Entre los polímeros del tipo hidrogel se encuentran materiales naturales del tipo alginato, agarosa, colágeno, almidón, ácido hialurónico, albúmina de suero bovina, celulosa y sus derivados, pectina, condroitin sulfato, fibrina y fibroina, así como hidrogeles sintéticos como sefarosa y sefadex. En una realización particular, el polímero que forma parte de la micropartícula de la invención se encuentra ligado a, o funcionalizado con, un ligando específico para un receptor de superficie celular. En la presente invención, se entiende por "ligando específico para un receptor de superficie celular" a la molécula o péptido que es capaz de reconocer un receptor de la superficie celular y unirse a él de forma específica. De este modo, dicho ligando permite la interacción específica entre el polímero de la micropartícula y las células modificadas genéticamente contenidas dentro de la misma.Among the polymers of the hydrogel type are natural materials such as alginate, agarose, collagen, starch, hyaluronic acid, bovine serum albumin, cellulose and its derivatives, pectin, chondroitin sulfate, fibrin and fibroin, as well as synthetic hydrogels such as sepharose and sephadex . In a particular embodiment, the polymer that is part of the microparticle of the invention is linked to, or functionalized with, a specific ligand for a cell surface receptor. In the present invention, "specific ligand for a cell surface receptor" is understood to be the molecule or peptide that is capable of recognizing a cell surface receptor and specifically binding to it. Thus, said ligand allows the specific interaction between the polymer of the microparticle and the genetically modified cells contained within it.
En principio, cualquier molécula o péptido que posea sitios de unión específicos que puedan ser reconocidos por receptores de superficie de las células puede ser usado en la presente invención como un ligando específico para un receptor de superficie celular.In principle, any molecule or peptide that possesses specific binding sites that can be recognized by cell surface receptors can be used in the present invention as a specific ligand for a cell surface receptor.
Así, el ligando específico para un receptor de superficie celular puede proceder de moléculas de adhesión celular que interaccionan con la matriz extracelular como la fibronectina, los distintos miembros de la familias de las selectinas, las caderinas, las lectinas, las integrinas, las inmunoglobulinas, las colectinas y las galectinas.Thus, the specific ligand for a cell surface receptor can come from cell adhesion molecules that interact with the extracellular matrix such as fibronectin, the different members of the selectin families, the caderins, lectins, integrins, immunoglobulins, the collective and the galectinas.
Así, el ligando específico para un receptor de superficie celular empleado en la presente invención puede ser un péptido derivado de una región seleccionada de las regiones de la fibronectina que intervienen en la unión con las integrinas que se encuentran en la membrana celular. Por ejemplo, y sin limitar la invención, dichos péptidos derivan de la región de la décima repetición tipo III de fibronectina que contiene el péptido RGD, de la región de la decimocuarta repetición tipo III de la fibronectina que contiene el péptido IDAPS (SEQ ID NO: 1), de la región CSI de fibronectina que contiene el péptido LDV y la región CS5 de la fibronectina que contiene el péptido REDV (SEQ ID NO: 2). Estos péptidos pueden consistir en fragmentos de las regiones correspondientes que conservan su capacidad adhesiva, como, por ejemplo, el péptido QAGDV (SEQ ID NO: 3) del fibrinógeno, el péptido LDV de la fibronectina y el péptido IDSP (SEQ ID NO: 4) de VCAM-I.Thus, the specific ligand for a cell surface receptor employed in the present invention can be a peptide derived from a region selected from the fibronectin regions that are involved in binding with the integrins found in the cell membrane. For example, and without limiting the invention, said peptides are derived from the region of the tenth repetition type III of fibronectin containing the RGD peptide, from the region of the fourteenth repetition type III of the fibronectin containing the peptide IDAPS (SEQ ID NO : 1), of the CSI region of fibronectin containing the LDV peptide and the CS5 region of fibronectin containing the REDV peptide (SEQ ID NO: 2). These peptides may consist of fragments of the corresponding regions that retain their adhesive capacity, such as, for example, the QAGDV peptide (SEQ ID NO: 3) of the fibrinogen, the LDV peptide of the fibronectin and the peptide IDSP (SEQ ID NO: 4 ) of VCAM-I.
La presente invención también contempla el uso de péptidos de unión a integrinas como un ligando específico para un receptor de superficie celular, que derivan de la región de la décima repetición tipo III de fibronectina que comprende la secuencia RGD, como, por ejemplo, un péptido seleccionado del grupo de RGD, RGDS (SEQ ID NO: 5), GRGD (SEQ ID NO: 6), RGDV (SEQ ID NO: 7), RGDT (SEQ ID NO: 8), GRGDG (SEQ ID NO: 9), GRGDS (SEQ ID NO: 10), GRGDY (SEQ ID NO: 11), GRGDF (SEQ ID NO: 12), YRGDS (SEQ ID NO: 13), YRGDDG (SEQ ID NO: 14), GRGDSP (SEQ ID NO: 15), GRGDSG (SEQ ID NO: 16), GRGDSY (SEQ ID NO: 17), GRGDVY (SEQ ID NO: 18), GRGDSPK (SEQ ID NO: 19), CGRGDSPK (SEQ ID NO: 20), CGRGDSPK (SEQ ID NO: 21), CGRGDSY (SEQ ID NO: 22), ciclo(RGDfK) (SEQ ID NO: 23), YAVTGRGD (SEQ ID NO: 24), AcCGGNGEPRGDYRAY-NH2 (SEQ ID NO: 25), AcGCGYGRGDSPG (SEQ ID NO: 26) and RGDPASSKP (SEQ ID NO: 27), variantes cíclicas de dichos péptidos, variantes multivalentes tanto lineales como ramificadas (ver por ejemplo Dettin et al. 2002, J. Biomed. Mater. Res. 60:466- 471; Monaghan et al. 2001, Arkivoc, 2: U42-49; Thumshirn et al. 2003, Chemistry 9: 2717-2725; Scott et al, 2001, J. Gene Med. 3: 125-134) así como combinaciones de dos o más de dichos péptidos.The present invention also contemplates the use of integrin binding peptides as a specific ligand for a cell surface receptor, which are derived from the region of the tenth type III fibronectin repeat comprising the RGD sequence, such as, for example, a peptide selected from the group of RGD, RGDS (SEQ ID NO: 5), GRGD (SEQ ID NO: 6), RGDV (SEQ ID NO: 7), RGDT (SEQ ID NO: 8), GRGDG (SEQ ID NO: 9), GRGDS (SEQ ID NO: 10), GRGDY (SEQ ID NO : 11), GRGDF (SEQ ID NO: 12), YRGDS (SEQ ID NO: 13), YRGDDG (SEQ ID NO: 14), GRGDSP (SEQ ID NO: 15), GRGDSG (SEQ ID NO: 16), GRGDSY (SEQ ID NO: 17), GRGDVY (SEQ ID NO: 18), GRGDSPK (SEQ ID NO: 19), CGRGDSPK (SEQ ID NO: 20), CGRGDSPK (SEQ ID NO: 21), CGRGDSY (SEQ ID NO: 22), cycle (RGDfK) (SEQ ID NO: 23), YAVTGRGD (SEQ ID NO: 24), AcCGGNGEPRGDYRAY-NH2 (SEQ ID NO: 25), AcGCGYGRGDSPG (SEQ ID NO: 26) and RGDPASSKP (SEQ ID NO: 27), cyclic variants of said peptides, both linear and branched multivalent variants (see for example Dettin et al. 2002, J. Biomed. Mater. Res. 60: 466-471; Monaghan et al. 2001, Arkivoc, 2: U42 -49; Thumshirn et al. 2003, Chemistry 9: 2717-2725; Scott et al., 2001, J. Gene Med. 3: 125-134) as well as combinations of two or more of said peptides.
Por tanto, en otra realización particular, el ligando específico para un receptor de superficie celular es un péptido que comprende la secuencia RGD.Therefore, in another particular embodiment, the specific ligand for a cell surface receptor is a peptide comprising the RGD sequence.
El péptido que comprende la secuencia RGD puede estar unido al polímero de la micropartícula a través del extremo N-terminal o del extremo C-terminal e, independientemente del punto de anclaje, puede estar unido directamente al polímero o, alternativamente, puede estar unido a través de un elemento espaciador. Prácticamente, cualquier péptido con flexibilidad estructural puede ser utilizado. A modo ilustrativo, dicho péptido flexible puede contener repeticiones de restos de aminoácidos, tales como (GIy)4 (SEQ ID NO: 28), Gly-Gly-Gly-Ser (SEQ ID NO: 29), (GIy)n (SEQ ID NO: 30) (Beer, J.H. et al, 1992, Blood, 79, 117-128), SGGTSGSTSGTGST (SEQ ID NO: 31), AGSSTGSSTGPGSTT (SEQ ID NO: 32), GGSGGAP (SEQ ID NO: 33), GGGVEGGG (SEQ ID NO: 34) o cualquier otra repetición de restos de aminoácidos adecuada, o bien la región bisagra de un anticuerpo.The peptide comprising the RGD sequence may be attached to the polymer of the microparticle through the N-terminal or C-terminal end and, regardless of the anchor point, may be directly attached to the polymer or, alternatively, may be attached to through a spacer element. Virtually any peptide with structural flexibility can be used. By way of illustration, said flexible peptide may contain amino acid residue repeats, such as (GIy) 4 (SEQ ID NO: 28), Gly-Gly-Gly-Ser (SEQ ID NO: 29), (GIy) n (SEQ ID NO: 30) (Beer, JH et al, 1992, Blood, 79, 117-128), SGGTSGSTSGTGST (SEQ ID NO: 31), AGSSTGSSTGPGSTT (SEQ ID NO: 32), GGSGGAP (SEQ ID NO: 33), GGGVEGGG (SEQ ID NO: 34) or any other suitable amino acid residue repeat, or the hinge region of an antibody.
Asimismo, el ligando específico para un receptor de superficie celular puede estar ligado al polímero con distintos grados de sustitución, de forma que las concentraciones de ambos componentes pueden variar y de este modo controlar el número de ligandos específicos para un receptor de superficie celular que están ligados al polímero de la micropartícula. Así, la invención contempla polímeros que contienen entre 1 y 100, entre 100 y 200, entre 200 y 300, entre 300 y 400, entre 400 y 500, entre 500 y 600, entre 600 y 700, entre 700 y 800, entre 800 y 900 y entre 900 y 1000 moléculas de dicho ligando específico por cada molécula de polímero.Also, the specific ligand for a cell surface receptor can be bound to the polymer with varying degrees of substitution, so that the concentrations of both components can vary and thus control the number of specific ligands for a cell surface receptor that are bound to the polymer of the microparticle Thus, the invention contemplates polymers containing between 1 and 100, between 100 and 200, between 200 and 300, between 300 and 400, between 400 and 500, between 500 and 600, between 600 and 700, between 700 and 800, between 800 and 900 and between 900 and 1000 molecules of said specific ligand for each polymer molecule.
Tal como se ha indicado anteriormente, la micropartícula de la invención puede estar formada por cualquier material polimérico biocompatible que permita la secreción continua de los productos terapéuticos y que actúe como soporte de las células modificadas genéticamente. Así, en una realización particular, el polímero de la micropartícula de la invención es alginato. En el Ejemplo 1 de la presente solicitud de patente se describe uno de los distintos procedimientos que existen en el estado de la técnica para producir micropartículas que comprenden alginato como material biopolimérico.As indicated above, the microparticle of the invention can be formed by any biocompatible polymeric material that allows the continuous secretion of the therapeutic products and acts as a support for the genetically modified cells. Thus, in a particular embodiment, the polymer of the microparticle of the invention is alginate. In Example 1 of the present patent application one of the different methods that exist in the state of the art to produce microparticles comprising alginate as a biopolymeric material is described.
En principio, cualquier tipo de alginato capaz de formar un hidrogel es adecuado para ser usado en la micropartícula de la invención. Así, la micropartícula puede contener alginato formado mayoritariamente por regiones de ácido manurónico (bloques MM), por regiones de ácido gulurónico (bloques GG) y por regiones de secuencia mixta (bloques MG). El porcentaje y distribución de los ácidos urónicos difieren según el origen del alginato y contribuyen a las propiedades del alginato. El experto en la materia conoce los porcentajes de cada uno de los distintos bloques que aparecen en las distintas fuentes biológicas de los alginatos. Así, la invención contempla el uso de alginatos procedentes de Laminaria hyperborea, Letonia nigrescens, Lessonia trabeculata, Durvillaea antárctica, Laminaria digitata, Eclonia máxima, Macrocystis pyrifera, Ascophyllum nodosum y/o Laminaria japónica así como mezclas de alginatos de distintas especies hasta conseguir el contenido deseado en bloques GG, MM o GM. Los bloques GG contribuyen a la rigidez del hidrogel, mientras que los monómeros MM mantienen una gran resistencia a la fractura, de forma que mediante el uso de una combinación adecuada de polímeros de alginato, se puede obtener una mezcla cuyo módulo de elasticidad presenta una valor adecuado mientras que la viscosidad de la solución pre-gel se mantiene a niveles suficientemente bajos como para permitir una adecuada manipulación e inmovilización celular. Así, los alginatos que pueden usarse en la presente invención incluyen alginatos GG, alginatos MM o combinaciones de ambos en una relación de 90: 10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 o 10:90.In principle, any type of alginate capable of forming a hydrogel is suitable for use in the microparticle of the invention. Thus, the microparticle can contain alginate formed mostly by manuronic acid regions (MM blocks), by guluronic acid regions (GG blocks) and by mixed sequence regions (MG blocks). The percentage and distribution of uronic acids differ according to the origin of the alginate and contribute to the properties of the alginate. The person skilled in the art knows the percentages of each of the different blocks that appear in the different biological sources of alginates. Thus, the invention contemplates the use of alginates from Laminaria hyperborea, Latvia nigrescens, Lessonia trabeculata, Durvillaea antarctica, Laminaria digitata, Eclonia maxim, Macrocystis pyrifera, Ascophyllum nodosum and / or Laminaria japanica as well as mixtures of alginates of different species until the desired content in GG, MM or GM blocks. The GG blocks contribute to the rigidity of the hydrogel, while the MM monomers maintain a high resistance to fracture, so that by using a suitable combination of alginate polymers, a mixture whose modulus of elasticity has a value can be obtained adequate while the viscosity of the pre-gel solution is maintained at sufficiently low levels to allow adequate cell manipulation and immobilization. Thus, the alginates that can be used in the present invention include GG alginates, MM alginates or combinations of both in a ratio of 90: 10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 or 10:90.
Adicionalmente, la invención también contempla el uso de alginatos derivados del tratamiento de alginatos naturales con enzimas que son capaces de modificar los bloques integrantes para dar lugar a alginatos con propiedades mejoradas. Así, alginatos resultantes del tratar alginatos con C5-epimerasas, que convierten bloques M en bloques G, así como con la enzima AlgE4 de la bacteria Azotobacter vinelandii que es capaz de convertir los bloques M relativamente rígidos en bloques MG. Alternativamente, la invención contempla el uso de alginatos que han sido modificados por distintos tratamientos físicos, en particular, rayos gamma, irradiación con ultrasonidos o con luz ultravioleta según ha sido descrito por Wasikiewicz, J. M. et al. (Radiation Physics and Chemistry, 2005, 73:287-295).Additionally, the invention also contemplates the use of alginates derived from the treatment of natural alginates with enzymes that are capable of modifying the integral blocks to give rise to alginates with improved properties. Thus, alginates resulting from treating alginates with C5-epimerases, which convert M blocks into G blocks, as well as with the AlgE4 enzyme of the bacterium Azotobacter vinelandii which is capable of converting the relatively rigid M blocks into MG blocks. Alternatively, the invention contemplates the use of alginates that have been modified by different physical treatments, in particular, gamma rays, irradiation with ultrasound or with ultraviolet light as described by Wasikiewicz, J. M. et al. (Radiation Physics and Chemistry, 2005, 73: 287-295).
La micropartícula de la invención que comprende alginato como material polimérico biocompatible puede usarse tal cual. Sin embargo, como es conocido del estado de la técnica, el alginato es un polímero poco estable que tiende a perder calcio y por tanto, a perder su carácter de gel. Además, las partículas de alginato son relativamente porosas lo que resulta en que los anticuerpos pueden acceder a su interior y dañar las células. Por estos motivos, opcionalmente, la micropartícula de la invención puede estar rodeada de una membrana semipermeable que confiera estabilidad a las partículas y que forme una barrera impermeable a los anticuerpos.The microparticle of the invention comprising alginate as a biocompatible polymeric material can be used as is. However, as is known from the state of the art, alginate is a poorly stable polymer that tends to lose calcium and therefore, lose its gel character. In addition, alginate particles are relatively porous which results in antibodies being able to access inside and damage cells. For these reasons, optionally, the microparticle of the invention may be surrounded by a semipermeable membrane that confers stability to the particles and forms a barrier impermeable to antibodies.
Por membrana semipermeable se entiende una membrana que permite la entrada de todos aquellos solutos necesarios para la viabilidad celular y que permitan la salida de las proteínas terapéuticas producidas por las células contenidas dentro de la micropartícula, pero que es sustancialmente impermeable a los anticuerpos, de forma que las células quedan protegidas de la respuesta inmune producida por el organismo que alberga la micropartícula.Semi-permeable membrane means a membrane that allows the entry of all those solutes necessary for cell viability and that allows the therapeutic proteins produced by the cells contained within the microparticle to be exited, but which is substantially impermeable to antibodies, so that the cells are protected from the immune response produced by the organism that hosts the microparticle.
Materiales adecuados para formar la membrana semipermeable son materiales insolubles en fluidos biológicos, preferentemente poliamino ácidos, como por ejemplo poli-L-lisina, poli-L-ornitina, poli-L-arginina, poli-L-asparagina, poli-L-aspártico, poli benzil-L-aspartate, poli-S-benzil-L-cisteina, poli-gamma-bencil-L-glutamato, poli-S- CBZ-L-cisteina, poli- ε-CBZ-D-lisina, poli-δ-CBZ-DL-ornitina, poli-O-CBZ-L-serina, poli-O-CBZ-D-tirosine, poli(γ-etil-L-glutamate), poli-D-glutámico, poliglicine, poli-γ- N-hexil L-glutamato, poli-L-histidina, poli (α,β-[N-(2-hidroxyetil)-DL-aspartamida]), poli-L-hidroxiprolina, poli (α,β-[N-(3-hidroxipropil)-DL-aspartamide]), poli-L- isoleucina, poli-L-leucina, poli-D-lisina, poli-L-fenilalanina, poli-L-prolina, poli-L- serina, poli-L-threonina, poli-DL-triptófano, poli-D-tirosine o una combinación de los mismos. Preferiblemente,Suitable materials for forming the semipermeable membrane are materials insoluble in biological fluids, preferably polyamino acids, such as poly-L-lysine, poly-L-ornithine, poly-L-arginine, poly-L-asparagine, poly-L-aspartic cop benzyl-L-aspartate, poly-S-benzyl-L-cysteine, poly-gamma-benzyl-L-glutamate, poly-S-CBZ-L-cysteine, poly-ε-CBZ-D-lysine, poly-δ- CBZ-DL-Ornithine, poly-O-CBZ-L-serine, poly-O-CBZ-D-tyrosine, poly (γ-ethyl-L-glutamate), poly-D-glutamic, polyglycine, poly-γ- N -hexyl L-glutamate, poly-L-histidine, poly (α, β- [N- (2-hydroxyethyl) -DL-aspartamide]), poly-L-hydroxyproline, poly (α, β- [N- (3 -hydroxypropyl) -DL-aspartamide]), poly-L-isoleucine, poly-L-leucine, poly-D-lysine, poly-L-phenylalanine, poly-L-proline, poly-L-serine, poly-L- threonine, poly-DL-tryptophan, poly-D-tyrosine or a combination thereof. Preferably,
Por tanto, en una realización particular, la micropartícula de la invención comprende, además, una membrana de poli-L-lisina.Therefore, in a particular embodiment, the microparticle of the invention further comprises a poly-L-lysine membrane.
La membrana que recubre la micropartícula es habitualmente de un material policatiónico, que da lugar a la formación de un complejo polianión-policatión que contribuye a la estabilización del alginato y a reducir la porosidad de la micropartícula y a formar una barrera inmunológica impermeable a los anticuerpos. Sin embargo, la carga positiva de dicha membrana favorece la adhesión celular a la superficie de la micropartícula lo que resulta en una menor biocompatibilidad de la misma. Por ello, si se desea, la membrana de poli-L-Lisina que rodea la micropartícula está rodeada, a su vez, de una segunda membrana formada mayoritariamente por un material que inhibe la adhesión celular, preferiblemente, alginato (ver Ejemplo 1 de la presente solicitud de patente).The membrane that covers the microparticle is usually of a polycationic material, which results in the formation of a polyanion-polycation complex that contributes to the stabilization of the alginate and to reduce the porosity of the microparticle and to form an immune barrier that is impervious to antibodies. However, the positive charge of said membrane favors cell adhesion to the surface of the microparticle resulting in a lower biocompatibility thereof. Therefore, if desired, the poly-L-Lysine membrane that surrounds the microparticle is, in turn, surrounded by a second membrane formed mostly of a material that inhibits cell adhesion, preferably alginate (see Example 1 of the present patent application).
Cualquier célula eucariota que haya sido modificada genéticamente para expresar, al menos, un factor neurotrófico, al menos, un factor angiogénico o una combinación de ambos, puede ser utilizada en la presente invención, pero las células de ratón, rata, primate y humanas son las preferidas. Así células adecuadas para llevar a cabo la invención son cardiomiocitos, células endoteliales, células epiteliales, linfocitos (células B y T), mastocitos, eosinófilos, células de la intima vascular, cultivos primarios de células aisladas de distintos órganos, preferentemente de células de aisladas de los islotes de Langerhans, hepatocitos, leucocitos, incluyendo leucocitos mononucleares, células madre de origen embrionario, mesenquimales, de cordón umbilical o adultas (de piel, pulmón, riñon e hígado), osteoclastos, condrocitos y otras células del tejido conectivo. También son adecuadas células de líneas establecidas tales como células T de Jurkat, células NIH-3T3, CHO, Cos, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, mioblastos C2C12 y células W138.Any eukaryotic cell that has been genetically modified to express at least one neurotrophic factor, at least one angiogenic factor or a combination of both, can be used in the present invention, but the mouse, rat, primate and human cells are the preferred ones. Thus suitable cells for carrying out the invention are cardiomyocytes, endothelial cells, epithelial cells, lymphocytes (B and T cells), mast cells, eosinophils, vascular intimal cells, primary cultures of isolated cells of different organs, preferably isolated cells of the islets of Langerhans, hepatocytes, leukocytes, including mononuclear leukocytes, stem cells of embryonic origin, mesenchymal, umbilical cord or adult (skin, lung, kidney and liver), osteoclasts, chondrocytes and other tissue cells connective. Also suitable are cells of established lines such as Jurkat T cells, NIH-3T3, CHO, Cos, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, C2C12 myoblasts and W138 cells.
En principio, el número de células que deben formar parte de la micropartícula no es esencial para la invención siempre que exista un número de células suficiente para que se contribuya a la formación de la retícula. Así, la cantidad de células por cada mL de solución de polímero es entre 1 y 10 xlO6, preferiblemente entre 2 y 9 xlO6, más preferiblemente entre 3 y 8 xlO6, todavía más preferiblemente entre 4 y 7 xlO6 y todavía más preferiblemente entre 5 y 6 xlO6. Preferiblemente, el número de células en la mezcla inicial es de 5; 3,75; 2,5 ó 1,25 xl O6 por cada mL de solución de polímero.In principle, the number of cells that must be part of the microparticle is not essential for the invention as long as there is a sufficient number of cells to contribute to the formation of the lattice. Thus, the amount of cells per mL of polymer solution is between 1 and 10 x 6 6 , preferably between 2 and 9 x 6 , more preferably between 3 and 8 x 6 , even more preferably between 4 and 7 x 6 and even more preferably between 5 and 6 x 6 6 . Preferably, the number of cells in the initial mixture is 5; 3.75; 2.5 or 1.25 xl O 6 per mL of polymer solution.
En el contexto de la presente invención, la célula eucariota contenida dentro de la micropartícula de la invención puede ser modificada con cualquier factor neurotrófico, por ejemplo, y sin limitarse a, neurotrofinas (NT), como la NT-3, NT-4, NT-5 ó NT-6; factor neurotrófico derivado del cerebro (BDNF, Brain-derived neurotrophic factor); factor neurotrófico ciliar (CNTF); factor de crecimiento insulínico tipo 1 (IGF-I); factor de crecimiento insulínico tipo 2 (IGF-2); factor de crecimiento nervioso (NGF, del inglés Nerve Growth Factor); neurturina (NTN); persefinas; arteminas, pleiotrofina (PTN), efrinas, netrinas, semaforinas, slits, reelinas, factor neurotrófico derivado de la glía (GDNF), factor neurotrófico conservado de dopamina (CDNF) (conserved dopamine neurotrophic factor), factor neurotrófico derivado de los astrocitos mesencefálicos (MANF, mesencephalic astrocyte-derived neurotrophic factor) etc.In the context of the present invention, the eukaryotic cell contained within the microparticle of the invention can be modified with any neurotrophic factor, for example, and not limited to, neurotrophins (NT), such as NT-3, NT-4, NT-5 or NT-6; Brain-derived neurotrophic factor (BDNF, Brain-derived neurotrophic factor); ciliary neurotrophic factor (CNTF); insulin growth factor type 1 (IGF-I); insulin growth factor type 2 (IGF-2); Nerve Growth Factor (NGF); neurturin (NTN); persefinas; artemines, pleiotrophin (PTN), efrines, netrins, semaphoreins, slits, reelins, glia-derived neurotrophic factor (GDNF), conserved dopamine neurotrophic factor (CDNF) (conserved dopamine neurotrophic factor), mesothalic astrocyte-derived neurotrophic factor ( MANF, mesencephalic astrocyte-derived neurotrophic factor) etc.
Asimismo, en el contexto de la presente invención, la célula eucariota contenida dentro de la micropartícula de la invención puede ser modificada con cualquier factor angiogénico, por ejemplo, y sin limitarse a, angiopoyetinas (Ang), tales como Ang-1, Ang-2, Ang-3 o Ang-4; factor básico de crecimiento de fibroblastos (bFGF/FGF2), como por ejemplo, el factor de crecimiento de fibroblastos 20 (FGF20); factor de crecimiento transformador beta (TGFβ), factor de crecimiento transformador alfa (TGFα), factor de crecimiento de placenta (PIGF); factor de crecimiento epidérmico (EGF, epidemial grothw factor); factor de crecimiento del endotelio vascular (VEGF), como VEGF-A, VEGF-B o VEGF-C; factor de crecimiento derivado de plaquetas (PDGF, Platelet-derived growth factor), como PDGF-A y PDGF-B; el polipéptido intestinal vasoactivo (VIP); factor de crecimiento de hepatocitos (HGF), cardiotrofinas, proteínas morfogenéticas del hueso (BMP, bone morphogenetic protein), sonic hedgehog (SHH), etc.Also, in the context of the present invention, the eukaryotic cell contained within the microparticle of the invention can be modified with any angiogenic factor, for example, and not limited to, angiopoietin (Ang), such as Ang-1, Ang- 2, Ang-3 or Ang-4; basic fibroblast growth factor (bFGF / FGF2), such as fibroblast growth factor 20 (FGF20); transforming growth factor beta (TGFβ), transforming growth factor alpha (TGFα), placental growth factor (PIGF); epidermal growth factor (EGF, epidemic grothw factor); vascular endothelial growth factor (VEGF), such as VEGF-A, VEGF-B or VEGF-C; platelet derived growth factor (PDGF, Platelet-derived growth factor), such as PDGF-A and PDGF-B; vasoactive intestinal polypeptide (VIP); hepatocyte growth factor (HGF), cardiotrophins, bone morphogenetic proteins (BMP), sonic hedgehog (SHH), etc.
Como entiende el experto en la materia, la modificación genética de las células que van a ser encapsuladas dentro de la micropartícula de la invención puede ser llevado a cabo mediante cualquier método de los conocidos en la técnica. Así, el gen o el vector que contiene el gen pueden ser administrados mediante electroporación, transfección usando liposomas o proteínas policatiónicas o usando vectores virales, incluyendo vectores adenovirales y retrovirales y también vectores no virales.As the person skilled in the art understands, the genetic modification of the cells to be encapsulated within the microparticle of the invention can be carried out by any method known in the art. Thus, the gene or the vector containing the gene can be administered by electroporation, transfection using liposomes or polycationic proteins or using viral vectors, including adenoviral and retroviral vectors and also non-viral vectors.
Asimismo, las secuencias de nucleótidos que codifican los factores neurotróficos o los factores angiogénicos se encuentran asociadas a secuencias que regulan la expresión de dichos factores. Estas secuencias pueden ser secuencias que regulan la transcripción, como promotores, constitutivos o inducibles, enhancers, terminadores transcripcionales y secuencias que regulan la traducción, como secuencias no traducidas localizadas 5 ' o 3' con respecto a la secuencia codificante.Likewise, the nucleotide sequences that encode neurotrophic factors or angiogenic factors are associated with sequences that regulate the expression of said factors. These sequences can be sequences that regulate transcription, as promoters, constitutive or inducible, enhancers, transcriptional terminators and sequences that regulate translation, such as untranslated sequences located 5 'or 3' with respect to the coding sequence.
Promotores adecuados para la expresión de los factores neurotróficos o factores angiogénicos incluyen, sin estar necesariamente limitados a, promotores constitutivos tales como los derivados de los genomas de virus eucariotas tales como el virus del polioma, adenovirus, SV40, CMV, virus del sarcoma aviar, virus de la hepatitis B, el promotor del gen de la metalotioneina, el promotor del gen de la timidina kinasa del virus del herpes simplex, regiones LTR de los retrovirus, el promotor del gen de la inmunoglobuina, el promotor del gen de la actina, el promotor del gen EF-I alfa así como promotores inducibles en los que la expresión de la proteína depende de la adición de una molécula o de una señal exógena exógena, tales como el sistema tetraciclina, el sistema NFkappaB/luz UV, el sistema Cre/Lox y el promotor de los genes de choque térmico.Suitable promoters for the expression of neurotrophic factors or angiogenic factors include, but are not necessarily limited to, constitutive promoters such as those derived from eukaryotic virus genomes such as polyoma virus, adenovirus, SV40, CMV, avian sarcoma virus, hepatitis B virus, the metallothionein gene promoter, the herpes simplex virus thymidine kinase gene promoter, retrovirus LTR regions, the immunoglobuin gene promoter, the actin gene promoter, the promoter of the EF-I alpha gene as well as inducible promoters in which protein expression depends on the addition of a molecule or an exogenous exogenous signal, such as the tetracycline system, the NFkappaB / UV light system, the Cre system / Lox and the heat shock gene promoter.
Por otro lado, los factores neurotróficos o factores angiogénicos expresados por las células que forman parte de la micropartícula de la invención pueden ser expresados de forma transitoria o de forma estable. En caso de que la micropartícula permanezca un tiempo prolongado en el paciente, es preferible usar células que expresen dichos factores de forma estable. La expresión estable requiere la transformación del polinucleótido que codifica los factores neurotróficos o factores angiogénicos se realice conjuntamente con un polinucleótido que codifica una proteína que permite seleccionar células transformadas. Sistemas de selección adecuados son, sin limitación, la timidina quinasa del virus del herpes, la fosforribosiltransferase hipoxantina guanina, adenina fosforibosiltransferasa, genes que codifican para proteínas que confieren resistencia a un antimetabolito como la dihidrofolato reducíase, la piruvato transaminasa, el gen de resistencia a la neomicina y a la higromicina.On the other hand, neurotrophic factors or angiogenic factors expressed by the cells that are part of the microparticle of the invention can be expressed as temporarily or stably. In the event that the microparticle remains a prolonged time in the patient, it is preferable to use cells that express said factors stably. Stable expression requires the transformation of the polynucleotide that encodes neurotrophic factors or angiogenic factors be performed in conjunction with a polynucleotide that encodes a protein that allows to select transformed cells. Suitable selection systems are, without limitation, the herpes virus thymidine kinase, the phosphoribosyltransferase hypoxanthine guanine, adenine phosphoribosyltransferase, genes encoding proteins that confer resistance to an antimetabolite such as dihydrofolate reduced, pyruvate transaminase, the resistance gene to Neomycin and hygromycin.
Tal como se ha indicado al comienzo de la presente descripción, la invención se relaciona con una micropartícula que comprende células modificadas genéticamente que expresan al menos un factor neurotrófico, al menos un factor angiogénico o una combinación de ambos, para el tratamiento de enfermedades neurodegenerativas, en donde la administración de la micropartícula se realiza a nivel del córtex cerebral.As indicated at the beginning of the present description, the invention relates to a microparticle comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both, for the treatment of neurodegenerative diseases, where the administration of the microparticle is performed at the level of the cerebral cortex.
Como entiende el experto en la materia, cualquier enfermedad neurodegenerativa que pueda ser tratada con factores neurotróficos, factores angiogénicos o una combinación de ambos, puede ser tratada igualmente con la micropartícula de la invención.As the person skilled in the art understands, any neurodegenerative disease that can be treated with neurotrophic factors, angiogenic factors or a combination of both, can also be treated with the microparticle of the invention.
En la presente invención, se entiende por "enfermedad neurodegenerativa" a aquella enfermedad que se distingue por ser el resultado de una muerte progresiva de neuronas en el sistema nervioso, fundamentalmente en el cerebro, dando lugar al empeoramiento de las actividades corporales, como el equilibrio, el movimiento, el habla, la respiración, la función cardiaca, etc. Ejemplos de enfermedades neurodegenerativas son, sin limitarse a, la enfermedad de Alzheimer, la esclerosis lateral amiotrófica, la ataxia de Friedreich, la enfermedad de Huntington, demencia con cuerpos de Lewy, la enfermedad de Parkinson, atrofia muscular espinal, etc.In the present invention, "neurodegenerative disease" is understood as that disease that is distinguished by being the result of a progressive death of neurons in the nervous system, primarily in the brain, resulting in the worsening of bodily activities, such as balance , movement, speech, breathing, cardiac function, etc. Examples of neurodegenerative diseases are, without limitation, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, dementia with Lewy bodies, Parkinson's disease, spinal muscular atrophy, etc.
En una realización particular, la enfermedad neurodegenerativa se selecciona entre la enfermedad de Alzheimer, la enfermedad de Parkinson, la esclerosis lateral amiotrófica y la enfermedad de Huntington. En el contexto de la presente invención, la administración de la micropartícula se realiza a nivel del córtex cerebral, permitiendo la difusión de los factores neurotróficos o angiogénicos a otras áreas del cerebro. Por administración "a nivel del córtex cerebral" se entiende, en el contexto de la presente invención, un método en el que la administración se lleva mediante perforación del cráneo y una o varias meninges pero sin dañar el córtex cerebral.In a particular embodiment, neurodegenerative disease is selected from Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. In the context of the present invention, administration of the microparticle is performed at the level of the cerebral cortex, allowing the diffusion of neurotrophic or angiogenic factors to other areas of the brain. By administration "at the level of the cerebral cortex" means, in the context of the present invention, a method in which the administration is carried out by perforation of the skull and one or several meninges but without damaging the cerebral cortex.
En el contexto de la presente invención, el método de administración preferido es mediante una craneotomía.In the context of the present invention, the preferred method of administration is by craniotomy.
En la presente invención, se entiende por "craneotomía" a la cirugía del cerebro que consiste en la abertura del cráneo para exponer las meninges, permitiendo la administración de las micropartículas de forma subdural o subaracnoidea.In the present invention, "craniotomy" is understood as surgery of the brain consisting of the opening of the skull to expose the meninges, allowing the administration of the microparticles in a subdural or subarachnoid manner.
En una realización particular de la invención, la administración de la micropartícula a nivel del córtex cerebral se lleva a cabo de forma subdural o subaracnoidea. El procedimiento para administrar las micropartículas está descrito en el Ejemplo 2 que acompaña a la presente descripción.In a particular embodiment of the invention, administration of the microparticle at the level of the cerebral cortex is carried out in a subdural or subarachnoid manner. The procedure for administering the microparticles is described in Example 2 that accompanies the present description.
En la presente invención se entiende por "córtex cerebral" o "corteza cerebral" al manto de tejido nervioso que cubre la superficie de los hemisferios cerebrales.In the present invention, "cerebral cortex" or "cerebral cortex" is understood as the mantle of nerve tissue that covers the surface of the cerebral hemispheres.
En una realización particular, la administración de la micropartícula a nivel del córtex cerebral se lleva a cabo mediante craneotomía bilateral.In a particular embodiment, administration of the microparticle at the level of the cerebral cortex is carried out by bilateral craniotomy.
En otro aspecto, la invención se relaciona con un método para el tratamiento de enfermedades neurodegenerativas mediante la administración de micropartículas que comprenden células modificadas genéticamente que expresan al menos un factor neurotrófico, al menos un factor angiogénico o una combinación de los anteriores, en donde la administración de las micropartículas se realiza a nivel del córtex cerebral.In another aspect, the invention relates to a method for the treatment of neurodegenerative diseases by administering microparticles comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of the foregoing, wherein the Administration of the microparticles is done at the level of the cerebral cortex.
Los siguientes Ejemplos son ilustrativos de la invención y no pretenden ser limitativos de la misma. EJEMPLO 1The following Examples are illustrative of the invention and are not intended to be limiting thereof. EXAMPLE 1
Elaboración y caracterización de las micropartículasDevelopment and characterization of microparticles
Cultivo de las células productoras de VEGFCultivation of VEGF producing cells
Las células BHK (fibroblastos procedentes de riñon de hámster) modificadas genéticamente para producir VEGF se hicieron crecer en medio DMEM con un 2% de L-glutamina, 10% de suero fetal bovino (FBS) y 1% de antibiótico/antimicótico. Se realizaron pases de las células cada 2 o 3 días, manteniéndose en el incubador a 370C en una atmósfera de CO2 al 5%. Todos los componentes de los medios de cultivo utilizados fueron de la casa Gibco BRL (Invitrogen S.A., España).BHK cells (fibroblasts from hamster kidney) genetically modified to produce VEGF were grown in DMEM medium with 2% L-glutamine, 10% fetal bovine serum (FBS) and 1% antibiotic / antifungal. They pass the cells every 2 or 3 days were made, remaining in the incubator at 37 0 C in an atmosphere of 5% CO 2. All components of the culture media used were from the Gibco BRL house (Invitrogen SA, Spain).
Encapsulaciόn de las células en las micropartículasEncapsulation of the cells in the microparticles
El procedimiento de encapsulación comprende varias etapas. En primer lugar se suspenden las células, modificadas genéticamente para que secreten el producto terapéutico, en una solución de alginato. Posteriormente se hace pasar la suspensión celular a través de la punta del goteador electrostático mediante una bomba de flujo, cayendo las gotículas formadas en la solución gelificante de cloruro calcico. Además mediante la aplicación de una diferencia de potencial electrostático entre la punta del goteador y la solución de cloruro calcico, se consigue la formación y gelificación de pequeñas gotículas a partir de la suspensión celular. Una vez formados los núcleos sólidos de alginato se recubren, aplicándose un primer recubrimiento con una solución de poli-L-lisina al 0,05% durante 5 minutos y un segundo recubrimiento con una solución de alginato al 0,1% durante 5 minutos.The encapsulation process comprises several stages. First, the cells, genetically modified to secrete the therapeutic product, are suspended in an alginate solution. Subsequently, the cell suspension is passed through the tip of the electrostatic dripper by means of a flow pump, the droplets formed falling into the gelling solution of calcium chloride. Furthermore, by applying a difference in electrostatic potential between the drip tip and the calcium chloride solution, the formation and gelation of small droplets from the cell suspension is achieved. Once the solid alginate cores are formed, they are coated, applying a first coating with a 0.05% poly-L-lysine solution for 5 minutes and a second coating with a 0.1% alginate solution for 5 minutes.
Caracterización de las micropartículasCharacterization of the microparticles
El tamaño y las características superficiales de las micropartículas se determinó utilizando un microscopio óptico invertido (NikonTSM) equipado con una cámara (Sony CCD-Iris). Las micropartículas obtenidas son de forma esférica y superficie lisa y uniforme cuyo tamaño medio fue de 392 ± 12 μm (Figura 1). Viabilidad y funcionalidad de los fibroblastos productores de VEGF en las microparticulasThe size and surface characteristics of the microparticles were determined using an inverted optical microscope (NikonTSM) equipped with a camera (Sony CCD-Iris). The microparticles obtained are spherical in shape and have a smooth and uniform surface whose average size was 392 ± 12 μm (Figure 1). Viability and functionality of VEGF producing fibroblasts in microparticles
Para caracterizar la viabilidad y funcionalidad de los fibroblastos en el interior las microparticulas, se estudió in vitro la actividad metabólica celular y la liberación de VEGF durante un periodo de tres semanas. La viabilidad celular fue determinada utilizando en ensayo del MTT. La determinación de la producción de VEGF se realizó mediante una técnica de ELISA (Amersham Biosciences, USA). Tras 21 días en cultivo, la secreción de VEGF a partir de las microparticulas cargadas con 106 células por mililitro de alginato fue de aproximadamente 174 ng de VEGF/24 horas. Estos resultados sugieren que las células se adaptaron satisfactoriamente al nuevo micro ambiente.To characterize the viability and functionality of the fibroblasts inside the microparticles, the cellular metabolic activity and the release of VEGF were studied in vitro over a period of three weeks. Cell viability was determined using the MTT assay. VEGF production was determined using an ELISA technique (Amersham Biosciences, USA). After 21 days in culture, the secretion of VEGF from the microparticles loaded with 10 6 cells per milliliter of alginate was approximately 174 ng of VEGF / 24 hours. These results suggest that the cells successfully adapted to the new micro environment.
Ensayo de proliferación in vitroIn vitro proliferation assay
La línea celular BMVEC son células que derivan de células endoteliales cerebrales. Son mantenidas en medio DMEM (Sigma), FBS 10% (Gibco) y antibiótico antimicótico 1% (Gibco).The BMVEC cell line are cells that are derived from brain endothelial cells. They are maintained in DMEM medium (Sigma), 10% FBS (Gibco) and 1% antifungal antibiotic (Gibco).
Las células endoteliales cerebrales BMVEC fueron cultivadas en presencia de diferentes concentraciones de VEGF preparado a partir del producto puro, solución stock (500 ng/mL) y secretado a partir de las microparticulas, VEGF funcional (33 ng/mL). La proliferación celular fue determinada mediante el Kit Proliferation XTT (Roche) a los 7 y 20 días (Figura 2). Este ensayo permite determinar la funcionalidad del VEGF liberado a partir de las microparticulas. La concentración de 33 ng/mL es similar a la producida por unas 200 microparticulas y se comparó su efecto con una concentración alta de VEGF como es 500 ng/mL. Los resultados obtenidos ponen de manifiesto que a los 7 días tanto el tratamiento con la solución stock como con el VEGF funcional estimulan la proliferación celular y que esta es significativamente superior a la producida por los controles. Sorprendentemente a los 20 días se observa que concentraciones bajas de VEGF inducen una proliferación celular superior que las concentraciones altas, lo cual pone de manifiesto que la dosis de VEGF secretada por las microparticulas podría ser suficiente para inducir la respuesta proliferativa sin que existan riesgos de aparición de edema producido por una concentración excesivamente alta de VEGF. EJEMPLO 2BMVEC brain endothelial cells were cultured in the presence of different concentrations of VEGF prepared from the pure product, stock solution (500 ng / mL) and secreted from the microparticles, functional VEGF (33 ng / mL). Cell proliferation was determined by the XTT Proliferation Kit (Roche) at 7 and 20 days (Figure 2). This test allows to determine the functionality of the VEGF released from the microparticles. The concentration of 33 ng / mL is similar to that produced by about 200 microparticles and its effect was compared with a high concentration of VEGF such as 500 ng / mL. The results obtained show that at 7 days both the treatment with the stock solution and with the functional VEGF stimulate cell proliferation and that this is significantly superior to that produced by the controls. Surprisingly at 20 days it is observed that low concentrations of VEGF induce a higher cell proliferation than high concentrations, which shows that the dose of VEGF secreted by the microparticles could be sufficient to induce the proliferative response without any risk of occurrence of edema caused by an excessively high concentration of VEGF. EXAMPLE 2
Implantación de las micropartículas en ratones C57BL/6 normales y análisis histológicoImplantation of microparticles in normal C57BL / 6 mice and histological analysis
Los animales se dividieron en dos grupos de 6 ratones cada uno: control (recibió micropartículas vacías) y tratado con VEGF (n=6) a los que se le implantaron, a nivel del córtex cerebral, las micropartículas que contenían las células productoras de VEGF. A los ratones anestesiados mediante isofluorano inhalado se les realizó una craneotomía bilateral en las coordenadas posterior 0,6 mm y lateral 1,1 mm al punto bregma (Paxinos &Watson, 1986. "The rat brain in stereotaxic coordinates", 2nd edition, New York: Academia. Una vez realizada la craneotomía se les administraron en la superficie del cerebro las micropartículas productoras de VEGF y a los ratones control se les administraron micropartículas vacías. A cada ratón se le administró entre 20-30 micropartículas por orificio. Una vez terminada la intervención quirúrgica se cerraron los orificios con membranas de nitrocelulosa impregnadas en una solución de Yodo diluida (Betadine), lo cual impide la salida de las cápsulas de los orificios y aisla el cerebro de una posible infección.The animals were divided into two groups of 6 mice each: control (received empty microparticles) and treated with VEGF (n = 6) to which microparticles containing VEGF-producing cells were implanted at the level of the cerebral cortex . Mice anesthetized by inhaled isofluorane had a bilateral craniotomy at the posterior 0.6 mm and 1.1 mm lateral coordinates at the bregma point (Paxinos & Watson, 1986. "The rat brain in stereotaxic coordinates", 2nd edition, New York : Academy Once the craniotomy was performed, VEGF-producing microparticles were administered on the surface of the brain and empty microparticles were administered to the control mice, each mouse was administered between 20-30 microparticles per hole. Surgically, the holes were closed with nitrocellulose membranes impregnated in a dilute iodine solution (Betadine), which prevents the capsules from leaving the holes and isolates the brain from a possible infection.
Los animales fueron sacrificados a las 2 semanas, 1 mes y 3 meses y se realizaron estudios de inmunohistoquímica. Se determinó la formación de vasos utilizando lectina de tomate biotinilada y el factor VIII.The animals were sacrificed at 2 weeks, 1 month and 3 months and immunohistochemical studies were performed. Vessel formation was determined using biotinylated tomato lectin and factor VIII.
Los resultados obtenidos pusieron de manifiesto que la densidad de los vasos sanguíneos en los cerebros de los animales tratados con las micropartículas que contenían las células productoras de VEGF era claramente superior a la que presentaban los animales del grupo control a las dos semanas, y que el efecto se mantenía al mes y a los dos meses, lo cual indica una liberación sostenida de la molécula a partir de las micropartículas (Figura 3).The results obtained showed that the density of blood vessels in the brains of animals treated with microparticles containing VEGF-producing cells was clearly higher than that presented by animals in the control group at two weeks, and that the effect was maintained at one month and two months, which indicates a sustained release of the molecule from the microparticles (Figure 3).
Además se realizó una doble tinción con BrdUrd y lectina con el objetivo de distinguir los nuevos vasos formados tras la liberación de VEGF de los vasos pre-existentes, observándose un incremento de dichos vasos a medida que transcurre el tiempo desde la administración (Figura 4). EJEMPLO 3In addition, double staining was performed with BrdUrd and lectin in order to distinguish the new vessels formed after the release of VEGF from the pre-existing vessels, with an increase in these vessels as time elapses since administration (Figure 4) . EXAMPLE 3
Tratamiento de animales transgénicos enfermos de Alzheimer con micropartículas en las que se han encapsulado células modificadas genéticamente para producir VEGFTreatment of Alzheimer's disease transgenic animals with microparticles in which genetically modified cells have been encapsulated to produce VEGF
Los ratones doble transgénicos: Amyloid precursor protein/presenilin-1 (APP/Psl) resultante del cruce entre el ratón Tg2576 (sobreexpresa la proteína APP695 humana) y el ratón mutante (ratón M 146L) para la presenilina-1 (PsI). Estos ratones son un modelo de amiloidosis para la enfermedad de Alzheimer.Double transgenic mice: Amyloid precursor protein / presenilin-1 (APP / Psl) resulting from the cross between the Tg2576 mouse (overexpresses the human APP695 protein) and the mutant mouse (M 146L mouse) for presenilin-1 (PsI). These mice are a model of amyloidosis for Alzheimer's disease.
A los ratones anestesiados mediante isofluorano inhalado se les realizó una craneotomía bilateral en las coordenadas posterior 0,6 mm y lateral 1,1 mm al punto bregma (Paxinos y Watson, 1982). Una vez realizada la craneotomía se les administraron en la superficie del cerebro a nivel subdural, a un grupo de ratones, micropartículas productoras de VEGF y a otro grupo de ratones, micropartículas con fibroblastos no transfectados (a este grupo de ratones se les denominó "sham"). Además se incluyó un grupo de ratones littermate controles. A cada ratón (6 por grupo) se le administró entre 20-30 micropartículas por orificio. Una vez terminada la intervención quirúrgica se cerraron los orificios con membranas de nitrocelulosa impregnadas en una solución de Yodo diluida (Betadine), lo cual impide la salida de las micropartículas de los orificios y aisla el cerebro de una posible infecciónMice anesthetized by inhaled isofluorane had a bilateral craniotomy at the posterior coordinates 0.6 mm and lateral 1.1 mm at the bregma point (Paxinos and Watson, 1982). Once the craniotomy was performed, they were administered on the surface of the brain at a subdural level, to a group of mice, VEGF-producing microparticles and to another group of mice, microparticles with non-transfected fibroblasts (this group of mice were called "sham" ). In addition, a group of control littermate mice was included. Each mouse (6 per group) was administered between 20-30 microparticles per hole. Once the surgery was completed, the holes were closed with nitrocellulose membranes impregnated in a dilute iodine solution (Betadine), which prevents the microparticles from leaving the holes and isolates the brain from a possible infection
Los ratones fueron mantenidos durante 3 meses en el animalario hasta que se les realizaron las pruebas de comportamiento: T-Maze (laberinto en T) y el reconocimiento de objetos. Al acabar las pruebas de comportamiento los ratones fueron perfundidos transcardiacamente con solución salina 0,9%. La mitad del cerebro se fijó con paraformaldehído 4% en solución salina 0,1 M pH 7,4, y la otra mitad se congeló a - 8O0C para posteriores pruebas bioquímicas.The mice were kept for 3 months in the animal farm until they were tested for behavior: T-Maze (T labyrinth) and object recognition. At the end of the behavioral tests, the mice were perfused transcardiacally with 0.9% saline. Half of the brain was fixed with 4% paraformaldehyde in 0.1 M saline solution pH 7.4, and the other half was frozen at -8O 0 C for subsequent biochemical tests.
En el T-maze, que mide actividad exploratoria, hay una recuperación en la latencia o tiempo de decisión (Figura 5). La tasa de alternación espontánea también se recupera: 63% en el grupo control, 50% en los ratones tratados con las micropartículas con fibroblastos no transfectados ("sham"), y 61 % en el grupo de ratones tratados con micropartículas con fibroblastos productores de VEGF. En el test de reconocimiento de objetos, que mide memoria a corto plazo, también hay una recuperación significativa (Figura 6).In T-maze, which measures exploratory activity, there is a recovery in latency or decision time (Figure 5). The rate of spontaneous alternation is also recovered: 63% in the control group, 50% in mice treated with microparticles with non-transfected fibroblasts ("sham"), and 61% in the group of mice treated with microparticles with fibroblasts producing VEGF In the object recognition test, which measures short-term memory, there is also a significant recovery (Figure 6).
EJEMPLO 4EXAMPLE 4
Tratamiento de ratas viejas con micropartículas en las que se han inmovilizado células modificadas genéticamente para producir BDNFTreatment of old rats with microparticles in which genetically modified cells have been immobilized to produce BDNF
Para la realización de este experimento se utilizaron ratas Wistar de entre 24 y 30 meses llevándose a cabo un estudio piloto con ratas control y ratas tratadas. Las células modificadas genéticamente para producir BDNF se encapsularon utilizando la misma metodología que en el Ejemplo 1. Las micropartículas fueron implantadas en las ratas mediante craneotomía bilateral. Las ratas control se trataron de la misma manera pero se les administraron micropartículas vacías. Las ratas permanecieron en el estabulario hasta su sacrificio, a los 2 meses, para realizar los análisis oportunos.Wistar rats between 24 and 30 months were used to carry out this experiment, conducting a pilot study with control rats and treated rats. Genetically modified cells to produce BDNF were encapsulated using the same methodology as in Example 1. The microparticles were implanted in the rats by bilateral craniotomy. Control rats were treated in the same manner but were given empty microparticles. The rats remained in the stable until their sacrifice, at 2 months, to carry out the appropriate analyzes.
Los resultados que se muestran en la Figura 7 ponen de manifiesto que el BDNF liberado de las micropartículas, administradas en la superficie del cerebro, se transporta hasta la sangre, siguiendo la ruta corteza, hipocampo, plexo-coroideo, líquido cefalorraquídeo y sangre.The results shown in Figure 7 show that the BDNF released from the microparticles, administered on the surface of the brain, is transported to the blood, following the cortex, hippocampus, plexus-choroid, cerebrospinal fluid and blood route.
El análisis inmuno histoquímico para detectar caspasa 3, caspasa 9 y MAPK en distintos tejidos, muestra que las ratas tratadas con las micropartículas productoras de BDNF presentan, a nivel de cortex (Figura 8) y a nivel de cerebelo una disminución en la actividad caspasa 3 y caspasa 9 lo cual indicaría una menor muerte celular. Además puede observarse como se produce un incremento de la actividad MAPK lo cual indica la activación de la señalización por BDNF en esta región. En los plexos coroideos se observa que no hay variaciones en los niveles de BDNF aunque si hay un descenso de los niveles de caspasa 3 lo cual podría indicar un menor deterioro de la barrera hematoencefálica. Histochemical immunoassay to detect caspase 3, caspase 9 and MAPK in different tissues shows that the rats treated with the BDNF producing microparticles show, at the cortex level (Figure 8) and at the cerebellum level, a decrease in caspase 3 activity and caspase 9 which would indicate a lower cell death. In addition, it can be seen how an increase in MAPK activity occurs, which indicates the activation of BDNF signaling in this region. In the choroid plexuses it is observed that there are no variations in the levels of BDNF although there is a decrease in caspase 3 levels which could indicate a lower deterioration of the blood brain barrier.

Claims

REIVINDICACIONES
1. Una micropartícula que comprende células modificadas genéticamente que expresan al menos un factor neurotrófico, al menos un factor angiogénico o una combinación de ambos para el tratamiento de enfermedades neurodegenerativas, en donde la administración de la micropartícula se realiza a nivel del córtex cerebral.1. A microparticle comprising genetically modified cells that express at least one neurotrophic factor, at least one angiogenic factor or a combination of both for the treatment of neurodegenerative diseases, wherein the administration of the microparticle is performed at the level of the cerebral cortex.
2. Micropartícula según la reivindicación 1, en donde la micropartícula comprende un polímero unido a un ligando específico para un receptor de superficie celular.2. Microparticle according to claim 1, wherein the microparticle comprises a polymer bound to a specific ligand for a cell surface receptor.
3. Micropartícula según la reivindicación 2, en donde el ligando específico para un receptor de superficie celular es un péptido que comprende la secuencia RGD.3. Microparticle according to claim 2, wherein the specific ligand for a cell surface receptor is a peptide comprising the RGD sequence.
4. Micropartícula según la reivindicación 2 ó 3, en donde el polímero que forma parte de la micropartícula es alginato.4. Microparticle according to claim 2 or 3, wherein the polymer that is part of the microparticle is alginate.
5. Micropartícula según la reivindicación 4, en donde la micropartícula comprende, además, una membrana de poli-L-Lisina.5. Microparticle according to claim 4, wherein the microparticle further comprises a poly-L-Lysine membrane.
6. Micropartícula según cualquiera de las reivindicaciones 1 a 5, en donde el factor neurotrófico se selecciona entre neurotrofinas (NT); factor neurotrófico derivado del cerebro (BDNF); factor neurotrófico ciliar (CNTF); factor de crecimiento insulínico tipo 1 (IGF-I); factor de crecimiento insulínico tipo 2 (IGF-2); factor de crecimiento nervioso (NGF); neurturina (NTN); persefinas; arteminas, pleiotrofina (PTN), efrinas, netrinas, semaforinas, slits, reelinas ó factor neurotrófico derivado de la glía6. Microparticle according to any one of claims 1 to 5, wherein the neurotrophic factor is selected from neurotrophins (NT); brain-derived neurotrophic factor (BDNF); ciliary neurotrophic factor (CNTF); insulin growth factor type 1 (IGF-I); insulin growth factor type 2 (IGF-2); nerve growth factor (NGF); neurturin (NTN); persefinas; artemines, pleiotrophin (PTN), efrins, netrins, semaphoreins, slits, reelins or glia-derived neurotrophic factor
(GDNF), factor neurotrófico conservado de dopamina (CDNF) (conserved dopamine neurotrophic factor) y factor neurotrófico derivado de los astrocitos mesencefálicos (MANF, mesencephalic astrocyte-derived neurotrophic factor).(GDNF), preserved neurotrophic dopamine factor (CDNF) (conserved dopamine neurotrophic factor) and neurotrophic factor derived from mesencephalic astrocytes (MANF, mesencephalic astrocyte-derived neurotrophic factor).
7. Micropartícula según cualquiera de las reivindicaciones 1 a 6, en donde el factor angiogénico se selecciona entre angiopoyetinas (Ang); factor básico de crecimiento de fibroblastos (bFGF/FGF2); factor de crecimiento transformador beta (TGFβ), factor de crecimiento transformador alfa (TGFα), factor de crecimiento de placenta (PIGF); factor de crecimiento epidérmico (EGF); factor de crecimiento del endotelio vascular (VEGF); factor de crecimiento derivado de plaquetas (PDGF); el polipéptido intestinal vasoactivo (VIP); factor de crecimiento de hepatocitos (HGF), cardiotrofinas, proteínas morfogenéticas del hueso (BMP, bone morphogenetic protein) o sonic hedgehog (SHH).7. Microparticle according to any of claims 1 to 6, wherein the angiogenic factor is selected from angiopoietin (Ang); basic fibroblast growth factor (bFGF / FGF2); beta transformer growth factor (TGFβ), alpha transformer growth factor (TGFα), placenta growth factor (PIGF); epidermal growth factor (EGF); vascular endothelial growth factor (VEGF); platelet-derived growth factor (PDGF); vasoactive intestinal polypeptide (VIP); hepatocyte growth factor (HGF), cardiotrophins, bone morphogenetic proteins (BMP) or sonic hedgehog (SHH).
8. Micropartícula según cualquiera de las reivindicaciones 1 a 7, en donde la enfermedad neurodegenerativa se selecciona entre la enfermedad de Alzheimer, la enfermedad de Parkinson, la esclerosis lateral amiotrófica y la enfermedad de Huntington.8. Microparticle according to any one of claims 1 to 7, wherein the neurodegenerative disease is selected from Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease.
9. Micropartícula según cualquiera de las reivindicaciones 1 a 8, en donde la administración de la micropartícula a nivel del córtex cerebral se lleva a cabo de forma subdural o subaracnoidea.9. Microparticle according to any one of claims 1 to 8, wherein the administration of the microparticle at the level of the cerebral cortex is carried out in a subdural or subarachnoid manner.
10. Micropartícula según cualquiera de las reivindicaciones 1 a 9, en donde la administración de la micropartícula a nivel del córtex cerebral se lleva a cabo mediante craneotomía bilateral. 10. Microparticle according to any of claims 1 to 9, wherein the administration of the microparticle at the level of the cerebral cortex is carried out by bilateral craniotomy.
PCT/ES2009/070309 2008-07-24 2009-07-23 Use of microparticles containing genetically modified cells in the treatment of neurodegenerative diseases WO2010010223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09800099A EP2322147A4 (en) 2008-07-24 2009-07-23 Use of microparticles containing genetically modified cells in the treatment of neurodegenerative diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802217 2008-07-24
ES200802217A ES2332169B1 (en) 2008-07-24 2008-07-24 EMPLOYMENT OF MICROPARTICLES THAT INCLUDE GENETICALLY MODIFIED CELLS IN THE TREATMENT OF NEURODEGENERATIVE DISEASES.

Publications (1)

Publication Number Publication Date
WO2010010223A1 true WO2010010223A1 (en) 2010-01-28

Family

ID=41508649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070309 WO2010010223A1 (en) 2008-07-24 2009-07-23 Use of microparticles containing genetically modified cells in the treatment of neurodegenerative diseases

Country Status (4)

Country Link
US (1) US20110212060A1 (en)
EP (1) EP2322147A4 (en)
ES (1) ES2332169B1 (en)
WO (1) WO2010010223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034049A2 (en) * 2010-09-10 2012-03-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Implantable medical devices having double walled microspheres

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2376930B1 (en) * 2009-02-05 2013-01-24 Universidad Del Pais Vasco METHOD FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES.
US20130190395A1 (en) 2011-12-13 2013-07-25 Dartmouth College Autoimmune disorder treatment using rxr agonists
EA201491411A1 (en) 2012-01-24 2014-12-30 Юниверсити Оф Массачусетс SOLUBLE MANF IN DESTRUCTION OF BETA CELLS OF THE REFERRAL GLAND
US10195252B2 (en) 2012-08-03 2019-02-05 University of Pittsburgh—of the Commonwealth System of Higher Education Recruitment of mensenchymal cells using controlled release systems
EP3122370A1 (en) * 2014-03-28 2017-02-01 Buck Institute for Research on Aging Methods and compositions for modulating the immune system
CN104258372B (en) * 2014-09-25 2017-01-25 中山大学 Application of RGD tripeptides in preparation of medicines for treating Alzheimer disease
MX364892B (en) 2015-10-31 2019-05-10 Io Therapeutics Inc Treatment of nervous system disorders using combinations of pxr agonists and thyroid hormones.
EP4166160A1 (en) 2016-03-10 2023-04-19 IO Therapeutics, Inc. Treatment of autoimmune diseases with combinations of rxr agonists and thyroid hormones
MX2020003223A (en) 2017-09-20 2020-09-21 Io Therapeutics Inc Treatment of disease with esters of selective rxr agonists.
WO2023108012A1 (en) 2021-12-07 2023-06-15 Io Therapeutics, Inc. Use of an rxr agonist and taxanes in treating her2+ cancers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388428A1 (en) 1987-11-17 1990-09-26 Univ Brown Res Found -i(IN VIVO) DELIVERY OF NEUROTRANSMITTERS BY IMPLANTED, ENCAPSULATED CELLS.
WO2003094898A2 (en) * 2002-05-07 2003-11-20 Mcmaster University Microcapsules containing biomedical materials
US20040213768A1 (en) 1999-04-30 2004-10-28 Elliott Robert Bartlett Preparation for biotransplantation and xenotransplantion and uses thereof
WO2007046719A2 (en) * 2005-10-21 2007-04-26 Living Cell Products Pty Limited Encapsulation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9924888B2 (en) * 2004-10-15 2018-03-27 Brainlab Ag Targeted infusion of agents against parkinson's disease
ES2322637B1 (en) * 2007-06-26 2010-03-05 Universidad Del Pais Vasco ALGINATE MICROPARTICLES MODIFIED WITH RGD AS A DRUG RELEASE SYSTEM.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388428A1 (en) 1987-11-17 1990-09-26 Univ Brown Res Found -i(IN VIVO) DELIVERY OF NEUROTRANSMITTERS BY IMPLANTED, ENCAPSULATED CELLS.
US20040213768A1 (en) 1999-04-30 2004-10-28 Elliott Robert Bartlett Preparation for biotransplantation and xenotransplantion and uses thereof
WO2003094898A2 (en) * 2002-05-07 2003-11-20 Mcmaster University Microcapsules containing biomedical materials
WO2007046719A2 (en) * 2005-10-21 2007-04-26 Living Cell Products Pty Limited Encapsulation system

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BEER, J.H. ET AL., BLOOD, vol. 79, 1992, pages 117 - 128
BORLONGAN ET AL., NEUROCHEMISTRY INT., vol. 24, 2004, pages 495 - 503
DETTIN ET AL., J. BIOMED. MATER. RES., vol. 60, 2002, pages 466 - 471
GRANDOSO L. ET AL.: "Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 343, no. 1-2, 1 October 2007 (2007-10-01), pages 69 - 78, XP022223253 *
GRANDOSO, L. ET AL., INTERNAL JOURNAL OF PHARMACEUTICS, vol. 343, 2007, pages 69 - 78
LINDVALL, 0.; WAHLBERG, L.U., EXPERIMENTAL NEUROLOGY, vol. 209, 2008, pages 82 - 88
MAYSINGER D. ET AL.: "Encapsulated genetically engineered fibroblasts: release of nerve growth factor and effects in vivo on recovery of cholinergic markers after devascularizing cortical lesions", NEUROCHEMISTRY INTERNATIONAL, vol. 24, no. 5, 1994, pages 495 - 503, XP025440520 *
MEYSINGER, D. ET AL., NEUROCHEM. INT., vol. 24, no. 5, 1994, pages 495 - 503
MONAGHAN ET AL., ARKIVOC, vol. 2, 2001, pages U42 - 49
ORIVE G. ET AL.: "Biocompatibility of alginate-poli-L-lysine microcapsules for cell therapy", BIOMATERIALS, vol. 27, 2006, pages 3691 - 3700, XP025097591 *
PAXINOS; WATSON: "The rat brain in stereotaxic coordinates", 1986, ACADEMIA
ROWLEY J.A. ET AL.: "Alginate hydrogels as synthetic extracellular matrix materials", BIOMATERIALS, vol. 20, 1999, pages 45 - 53, XP009071577 *
SCOTT ET AL., J. GENE MED., vol. 3, 2001, pages 125 - 134
SKINNER S.J.M. ET AL.: "Choroid plexus transplants in the treatment of brain diseases", XENOTRANSPLANTATION, vol. 13, no. 4, 2006, pages 284 - 288, XP008144321 *
SKINNER, S.M.J. ET AL., XENOTRANSPLANTATION, vol. 13, 2006, pages 284 - 288
THUMSHIRN ET AL., CHEMISTRY, vol. 9, 2003, pages 2717 - 2725
WASIKIEWICZ, J.M. ET AL., RADIATION PHYSICS AND CHEMISTRY, vol. 73, 2005, pages 287 - 295
YASUHARA, T.; DATE, I., CELL TRANSPLANTATION, vol. 16, 2007, pages 1 - 8

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034049A2 (en) * 2010-09-10 2012-03-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Implantable medical devices having double walled microspheres
WO2012034049A3 (en) * 2010-09-10 2012-07-19 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Implantable medical devices having double walled microspheres
US9498221B2 (en) 2010-09-10 2016-11-22 University of Pittsburgh—of the Commonwealth System of Higher Education Implantable medical devices having double walled microspheres
US9750851B2 (en) 2010-09-10 2017-09-05 University of Pittsburgh—of the Commonwealth System of Higher Education Implantable medical devices having double walled microspheres
US11147904B2 (en) 2010-09-10 2021-10-19 University of Pittsburgh—of the Commonwealth System of Higher Education Implantable medical devices having double walled microspheres

Also Published As

Publication number Publication date
ES2332169A1 (en) 2010-01-27
ES2332169B1 (en) 2010-10-25
US20110212060A1 (en) 2011-09-01
EP2322147A4 (en) 2011-12-14
EP2322147A1 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
ES2332169B1 (en) EMPLOYMENT OF MICROPARTICLES THAT INCLUDE GENETICALLY MODIFIED CELLS IN THE TREATMENT OF NEURODEGENERATIVE DISEASES.
Piantino et al. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury
Matson et al. Self-assembling peptide scaffolds for regenerative medicine
Kim et al. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization
Tam et al. Regenerative therapies for central nervous system diseases: a biomaterials approach
Orive et al. Application of cell encapsulation for controlled delivery of biological therapeutics
ES2677005T3 (en) Parenteral composition comprising microspheres with a diameter between 10 and 20 microns
ES2326670T3 (en) THERAPEUTIC USE OF THE NSG33 GROWTH FACTOR.
ES2702602T3 (en) Manufacture of scalable three-dimensional elastic constructions
ES2617338T3 (en) Biocomposite for the regeneration of injured tissues and organs, a kit to manufacture the biocomposite, a biocomposite manufacturing process
Zhang Injectable biomaterials for stem cell delivery and tissue regeneration
Yu et al. Progress in self-assembling peptide-based nanomaterials for biomedical applications
ES2431297T3 (en) Composition of encapsulated liver cells
Sundar et al. Delivery of therapeutics and molecules using self-assembled peptides
Wong et al. Sustained delivery of bioactive GDNF from collagen and alginate-based cell-encapsulating gel promoted photoreceptor survival in an inherited retinal degeneration model
ES2322637B1 (en) ALGINATE MICROPARTICLES MODIFIED WITH RGD AS A DRUG RELEASE SYSTEM.
Li et al. The hetero-transplantation of human bone marrow stromal cells carried by hydrogel unexpectedly demonstrates a significant role in the functional recovery in the injured spinal cord of rats
US20170290954A1 (en) Compositions and methods for treating spinal cord injury
WO2014041231A1 (en) Hydrogel used as an injectable support for application in cell therapy and as a system for the controlled release of drugs
JP2009513584A (en) Implantable biocompatible immunoisolation vehicle for delivery of GDNF
Koutsopoulos Self-assembling peptides in biomedicine and bioengineering: Tissue engineering, regenerative medicine, drug delivery, and biotechnology
Boopathy et al. Self-assembling peptide-based delivery of therapeutics for myocardial infarction
ES2376930A1 (en) Method for treating neurodegenerative diseases
Cembran Hydrogels-based viral vectors delivery: a self-assembly strategy for targeted gene therapy
Wang Functionalised self-assembled peptide hydrogel for cell transplantation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800099

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009800099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13055554

Country of ref document: US