WO2010007980A1 - Alloys for soft magnetic film layers in vertical magnetic recording media, sputtering target materials and manufacturing method therefore - Google Patents

Alloys for soft magnetic film layers in vertical magnetic recording media, sputtering target materials and manufacturing method therefore Download PDF

Info

Publication number
WO2010007980A1
WO2010007980A1 PCT/JP2009/062716 JP2009062716W WO2010007980A1 WO 2010007980 A1 WO2010007980 A1 WO 2010007980A1 JP 2009062716 W JP2009062716 W JP 2009062716W WO 2010007980 A1 WO2010007980 A1 WO 2010007980A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
target material
raw material
soft magnetic
powder
Prior art date
Application number
PCT/JP2009/062716
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 俊之
敦 岸田
長谷川 浩之
彰彦 柳谷
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to CN200980135768.7A priority Critical patent/CN102149836B/en
Publication of WO2010007980A1 publication Critical patent/WO2010007980A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/657Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing inorganic, non-oxide compound of Si, N, P, B, H or C, e.g. in metal alloy or compound
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a Co—Fe—Ni alloy used for forming a soft magnetic layer film in a perpendicular magnetic recording medium, a sputtering target material using the same, and a method for manufacturing the same.
  • the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy magnetization axis is oriented in the perpendicular direction with respect to the medium surface in the magnetic film of the perpendicular magnetic recording medium.
  • a two-layer recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed.
  • a CoCrPt—SiO 2 alloy is used for the magnetic recording film layer.
  • JP-A-2005-320627 contains Zr: 1 to 10 atomic%, Nb and / or Ta: 1 to 10 atomic%, and the balance is substantially Discloses a method for producing a Co alloy target material made of Co. After the alloy powder is prepared by rapid solidification of a molten Co alloy, the alloy powder having a powder particle size of 500 ⁇ m or less is pressure-sintered to obtain CoZrNb. / Ta alloy target material has been proposed. The soft magnetic film layer of this perpendicular magnetic recording medium is required to have high saturation magnetic flux density and high amorphousness.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-284741
  • Fe A soft magnetic target material has been proposed in which the Co at ratio is 100: 0 to 20:80 and one or two of Al or Cr are contained in an amount of 0.2 to 5 at%.
  • amorphous property means the ease of becoming amorphous when the alloy is rapidly solidified or formed by sputtering, and the corrosion resistance is a level that does not occur in a normal environment where electronic components are used. Say the weather resistance.
  • the sputtering target material for forming the alloy also has a high saturation magnetic flux density, resulting in a magnetron.
  • the PTF value is lowered, which affects the deposition rate during sputtering and the stability of the deposition process.
  • the PTF value is a ratio of magnetic lines of force from the magnet arranged on the back surface of the sputtering target material leaking to the surface of the sputtering target material during magnetron sputtering, and is related to the sputtering efficiency and the yield of the formed thin film. It is an influencing factor.
  • a Co—Fe—Ni alloy having a predetermined composition has a high saturation magnetic flux density, a high amorphous property, and a high corrosion resistance.
  • the present inventors have used a predetermined mixed powder as a raw material powder of a sputtering target material for forming a film of this alloy, thereby producing a uniform internal quality of the same composition manufactured with a single composition raw material powder. It has been found that the PTF value can be significantly improved as compared with the sputtering target material having the above.
  • the object of the present invention is to provide a soft magnetic alloy for perpendicular magnetic recording media excellent in saturation magnetic flux density, amorphousness and corrosion resistance, and efficiently used during magnetron sputtering while having this excellent alloy composition as a whole.
  • An object of the present invention is to provide a sputtering target material having a high PTF value.
  • Fe 10 to 45%, Ni: 1-25%, One or more of Zr, Hf, Nb, Ta, B: 5 to 10% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less), One or two of Al and Cr: 0 to 5% in the total amount of Al + Cr, and the balance Co and unavoidable impurities: 37% or more, and in atomic ratio, Fe / (Co + Fe + Ni): 0.10 to 0.50, and Ni / (Co + Fe + Ni): 0.01 to 0.25
  • An alloy for a soft magnetic film layer in a perpendicular magnetic recording medium that satisfies the above is provided.
  • a method for producing a sputtering target material for a soft magnetic film layer in a perpendicular magnetic recording medium (A) a step of preparing two or more kinds of raw material powders having different compositions so that their total composition constitutes the soft magnetic film layer alloy according to claim 1, wherein at least one of the raw material powders Different types of raw material powder Atomic% Ni: 20 to 34%, Co: 0-6% One or more of Zr, Hf, Nb, Ta, B: 3 to 12% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less), One or two of Al and Cr: Al + Cr: 0 to 5%, and the balance Fe and inevitable impurities, and in atomic ratio, Ni / (Fe + Ni): 0.27 to 0.35 Which satisfies
  • a method comprising the steps of (b) mixing the two or more raw material powders to obtain a mixture, and (c
  • a sputtering target material produced by the above method is provided.
  • the alloy for soft magnetic film layer in the perpendicular magnetic recording medium according to the present invention is atomic%, Fe: 10 to 45%, Ni: 1 to 25%, Zr, Hf, Nb. , Ta, B, one or more: 5 to 10% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less), one or two types of Al, Cr: total amount of Al + Cr 0 to 5%, and the balance Co and unavoidable impurities: 37% or more, preferably only these constituent elements.
  • the alloy satisfies Fe / (Co + Fe + Ni): 0.10 to 0.50 and Ni / (Co + Fe + Ni): 0.01 to 0.25 in atomic ratio.
  • Fe / (Co + Fe + Ni) 0.10 to 0.50
  • Ni / (Co + Fe + Ni) 0.01 to 0.25 in atomic ratio.
  • Fe is an element having ferromagnetism together with Co and Ni. On the other hand, it is an element that degrades the corrosion resistance compared to Co and Ni. However, when the Fe content is less than 10%, the saturation magnetic flux density is small, and when it exceeds 45%, the corrosion resistance deteriorates. Therefore, the Fe content in the alloy is 10 to 45%, preferably 20 to 40%.
  • Ni is an element having ferromagnetism together with Co and Fe, but has a lower saturation magnetic flux density than Co and Fe.
  • the corrosion resistance is much higher than Fe and slightly better than Co.
  • the Ni content in the alloy is 1 to 25%, preferably 10 to 22%.
  • Zr, Hf, Nb, Ta, and B are elements that have an eutectic phase diagram with respect to Co and Fe and form an amorphous phase.
  • the concentration of these elements in the eutectic composition is 8 to 13% excluding B, and B is less than 20%. This is almost similar to Ni. Therefore, the total amount of Zr, Hf, Nb, Ta, and B / 2 can be handled. However, if Zr + Hf + Nb + Ta + B / 2 is less than 5%, the amorphous property is not sufficient, and if it exceeds 10%, the amorphous property is saturated and the saturation magnetic flux density is lowered.
  • the total amount of Zr + Hf + Nb + Ta + B / 2 in the alloy is 5 to 10%, preferably 7.0 to 9.5. Moreover, since corrosion resistance will deteriorate when B exceeds 7%, B content in an alloy shall be 7% or less.
  • both Al and Cr are elements that improve corrosion resistance, they are added in a total amount of Al + Cr of 5% or less. However, if the total amount exceeds 5%, the saturation magnetic flux density decreases greatly, so the upper limit was made 5%.
  • Fe is an element having ferromagnetism together with Co and Ni. On the other hand, it is an element that degrades the corrosion resistance compared to Co and Ni.
  • the atomic ratio of Fe / (Co + Fe + Ni) is set to 0.10 to 0.50%, preferably 0.23 to 0.43%.
  • Ni is an element having ferromagnetism together with Co and Fe, but has a lower saturation magnetic flux density than Co and Fe.
  • the corrosion resistance is much higher than Fe and slightly better than Co.
  • the atomic ratio of Ni / (Co + Fe + Ni) is set to 0.01 to 0.25, preferably 0.11 to 0.17.
  • the remaining Co is required to be 37% or more, and if it is less than 37%, the corrosion resistance is deteriorated.
  • the manufacturing method of the sputtering target material for the soft magnetic film layer in the perpendicular magnetic recording medium according to the present invention comprises (a) two or more kinds of raw material powders having different compositions, the total composition of which is A step of preparing the alloy for the film layer, (b) a step of mixing the two or more kinds of raw material powders to obtain a mixture, and (c) a step of solidifying and forming the mixture to form a sputtering target material. Comprising.
  • the soft magnetic film layer alloy is an excellent alloy having high saturation magnetic flux density, high amorphousness, and high corrosion resistance.
  • the PTF value will be low, so the film formation speed will be low, and film formation will be reduced. The stability of will also be low.
  • the raw material powder of at least one composition is atomic%, Ni: 20 to 34%, Co: 0 to 6%, Zr, Hf, Nb. , Ta, B or more: 3 to 12% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less), Al or Cr: 1 or 2 types: Al + Cr: 0 to 5% and the balance Fe and unavoidable impurities and satisfy the atomic ratio of Ni / (Fe + Ni): 0.27 to 0.35. By doing so, the saturation magnetic flux density can be made extremely low.
  • An alloy powder in which Ni and Ni / (Fe + Ni) fall within the above range has a very low saturation magnetic flux density.
  • this alloy powder as at least a part of the raw material powder and solidifying and forming a sputtering target material, Compared with a uniform sputtering target material having the same composition, the PTF value can be remarkably improved.
  • Ni and Ni / (Fe + Ni) are out of the above range, the saturation magnetic flux density of the alloy powder becomes high, and the effect of improving the PTF value is reduced. Therefore, Ni is set to 20 to 34% and Ni / (Fe + Ni) is set to 0.27 to 0.35.
  • the powder having Ni: 20 to 34%, Ni / (Fe + Ni): 0.27 to 0.35, Co: 0 to 6%, Zr + Hf + Nb + Ta + B / 2: 3 to 12% is the balance Fe
  • the composition of the raw material powder (hereinafter referred to as the remaining composition) becomes Co-rich. Therefore, the remaining Fe raw material powder (low corrosion resistance) and Co-rich raw material powder (high corrosion resistance) are mixed and solidified to form a kind of local battery between the two powders. It becomes easy to do.
  • Al + Cr is added to the remaining Fe powder having at least Ni: 20 to 34%, Ni / (Fe + Ni): 0.27 to 0.35, Co: 0 to 6%, Zr + Hf + Nb + Ta + B / 2: 3 to 12%.
  • Ni 20 to 34%
  • Ni / (Fe + Ni) 0.27 to 0.35
  • Co 0 to 6%
  • Zr + Hf + Nb + Ta + B / 2 3 to 12%.
  • Solidification molding is preferably performed by an upset method in which molding is performed in a few seconds in the hot state, thereby suppressing the diffusion of elements in the raw material powder and maintaining the original low saturation magnetic flux density after the molding. .
  • the mixed powder is solidified and formed for several hours with heat as in the HIP method or the hot press method, atomic diffusion occurs between different types of powder, and a diffusion layer having elements of both powder compositions is generated.
  • the generated diffusion layer has a high saturation magnetic flux density, which hinders a sufficient PTF improvement effect.
  • a preferable temperature in the upset method is 900 to 1250 ° C., more preferably 930 to 1070 ° C., and a preferable pressure is 400 to 1400 MPa, more preferably 500 to 900 MPa.
  • the pressing time is not limited, but 1 to 10 seconds is preferable.
  • a soft magnetic film layer in a perpendicular magnetic recording medium can be formed on a glass substrate or the like by sputtering a sputtering target material having the same component as that component.
  • the thin film formed by sputtering is rapidly cooled.
  • the quenching thin strip produced with the single roll type liquid quenching apparatus is used as a test material of an Example and a comparative example. This is a simple evaluation of the influence of the components on various properties of a thin film formed by quenching by sputtering in a simple manner using a liquid quenching ribbon.
  • Example 1 30 g of raw materials weighed to the component composition shown in Table 1 were arc-melted in a reduced pressure Ar using a water-cooled copper mold of about ⁇ 10 ⁇ 40 mm to obtain a rapidly cooled ribbon base material.
  • the conditions for preparing the quenched ribbon are the single roll method, set in this molten base material in a ⁇ 15 mm quartz tube, the diameter of the hot water nozzle is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, and the copper roll ( ⁇ 300 mm) is rotated.
  • Hot water was discharged at several 3000 rpm with a gap of 0.3 mm between the copper roll and the hot water nozzle. The hot water temperature was set immediately after each molten base material was melted. The following items were evaluated using the thus prepared quenched ribbon as a test material.
  • Evaluation 1 Saturation magnetic flux density The saturation magnetic flux density of the quenched ribbon was measured with an applied magnetic field of 15 kOe using a VSM apparatus (vibrating sample magnetometer). The weight of the test material at that time was 15 mg.
  • Evaluation 2 amorphous Usually, when measuring the X-ray diffraction pattern of an amorphous material, showed no diffraction peaks, the amorphous characteristic halo pattern. In addition, when it is not completely amorphous, a diffraction peak is seen, but the peak height is lower than that of the crystalline material, and a broad peak with a large half-value width (half height of the diffraction peak) Become. This half-value width correlates with the amorphous nature of the material, and the higher the amorphous nature, the more the diffraction peak becomes broader and the half-value width becomes larger. Therefore, the amorphous property of the quenched ribbon was evaluated by the following method.
  • the test material was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer. At this time, the test material was affixed on the glass plate so that the measurement surface was a copper roll contact surface of a quenched ribbon.
  • the X-ray source was Cu—K ⁇ ray, and measurement was performed at a scan speed of 4 ° / min. The width of the half height of the main peak of this diffraction pattern was image-analyzed to find the half width, which was evaluated as amorphous. *
  • Evaluation 3 Corrosion resistance
  • the sample material was attached to a glass plate with a double-sided tape, and a salt spray test of 5% NaCl-35 ° C-16h was conducted.
  • Each evaluation result is shown in Table 2.
  • Comparative Example No. No. 12 has a low content of Fe as a component composition and a low value of Fe / (Co + Fe + Ni), so that the saturation magnetic flux density is low.
  • Comparative Example No. No. 13 has a high Fe content as a component composition, a high value of Fe / (Co + Fe + Ni), and a small amount of Co, so that the corrosion resistance is inferior.
  • Comparative Example No. No. 14 has a low Ni content as a component composition and a low value of Ni / (Co + Fe + Ni), so that the corrosion resistance is inferior.
  • Comparative Example No. No. 15 has a high Ni content as a component composition and a high value of Ni / (Co + Fe + Ni), so that the saturation magnetic flux density is low.
  • Comparative Example No. 16 has a small half width because the content of Zr + Hf + Nb + Ta + B / 2 is low. That is, the amorphous property is low. Comparative Example No. Since No. 17 has a high content of Zr + Hf + Nb + Ta + B / 2, the saturation magnetic flux density is low. Comparative Example No. Since No. 18 has high B content as a component composition, its corrosion resistance is inferior. Comparative Example No. Since No. 19 has a high Al + Cr content, the saturation magnetic flux density is low.
  • Example 2 Next, examples relating to the influence of the raw material powder on the PTF value of the sputtering target material will be described.
  • an alloy powder used as a raw material was prepared by a gas atomizing method, and a saturation magnetic flux density was measured to examine a raw material powder composition having a low saturation magnetic flux density. The results are shown in Table 3.
  • these raw material powders and the raw material powder of the remaining composition shown in Table 4 are mixed so as to have the composition of the target material of Table 5, and the PTF value of the sputtering target material prepared by solidification molding and machining is measured. The influence of the raw material powder composition on the PTF value was examined. The results are shown in Table 5. At the same time, the corrosion resistance of the sputtering target material was evaluated.
  • the raw material powder and the sputtering target material were prepared as follows.
  • raw material powders having respective compositions shown in Tables 3 and 4 were prepared by a gas atomization method.
  • the gas atomization method was performed under the conditions that the gas type was Ar, the nozzle diameter was 6 mm, and the gas pressure was 5 MPa. Thereafter, No. 1 shown in Table 3 was obtained.
  • the powders 1 to 11 and the alloy powder having the corresponding residual composition shown in Table 4 were mixed at the residual composition powder mixing ratio shown in Table 4.
  • the raw material powders were mixed by stirring in a V-type mixer.
  • the vacuum-enclosed mixed powder was molded by the upset method.
  • the upset method was performed under the conditions of a heating temperature of 950 ° C., a pressure of 540 MPa, and a processing time of 5 seconds.
  • the upset method is a method in which a billet filled with raw material powder, deaerated, and sealed in a metal outer can is heated to a predetermined temperature, charged into a container, and pressure-formed by a punch.
  • the molding pressure can be increased, and the molding can be performed by pressurizing for a short time.
  • Evaluation 1 Saturation magnetic flux density The saturation magnetic flux density of the raw material powder was measured with an applied magnetic field of 15 kOe with a VSM apparatus (vibrating sample magnetometer). The weight of the test material at that time was 200 mg.
  • Evaluation 2 PTF value
  • the PTF value of the sputtering target material was measured according to ASTM F1761-00.
  • a sputtering target material having the same composition was solidified and formed from a single component powder under the same conditions, and the PTF value was measured. In that case, it evaluated by the difference of the PTF which deducted the PTF value (unit:%) of the sputtering target material by a single powder from the PTF (unit:%) of the sputtering target material by mixed powder.
  • Evaluation 3 Corrosion resistance As a corrosion resistance evaluation of the sputtering target material, as a salt spray test using the sputtering target material, the appearance of the sputtering target material after spraying a NaCl: 5 mass% solution for 24 hours based on JIS Z 2371 is visually observed. The presence or absence of fire was confirmed.
  • the evaluation criteria were as follows. ⁇ : No occurrence ⁇ : Occurred on part of sputtering target material ⁇ : Generated on the entire surface of the sputtering target material
  • Table 5 shows the components (at.%) Of the sputtering target material, the raw material powder, the difference in PTF value (%), and the corrosion resistance.
  • B to D, F, and J are examples of the present invention, and A, E, G to I, and K are comparative examples.
  • Comparative Examples A, E, and G are the raw material powder Nos. Used. Since the saturation magnetic flux density of 1, 5, and 7 is high, the effect of improving the PTF is small.
  • sputtering was performed using the sputtering target material of Comparative Examples H and I at an Ar pressure of 0.5 Pa and a DC power of 500 W, many irregularities were generated on the surface of the sputtering target material, and the formed thin film had many particles, Compared with the thin film using the same composition sputtering target material shape
  • the powder of No. 11 has Al + Cr of 6 at%, and No. 11 used for the production of the sputtering target material of Example J of the present invention. Compared to 10 powder, Cr is only 1 at% higher. As a result, the evaluation of the corrosion resistance of both the sputtering target materials of Invention Example J and Comparative Example K is ⁇ , and it can be seen that the effect of improving the corrosion resistance of the sputtering target material by adding Al + Cr is saturated.
  • a sputtering target material having a composition of B, C, and D is designated as No. 2+ Residual composition 2, No. 3 + residual composition 3, no.
  • the mixed powder of 4 + residual composition 4 was used and HIP treatment molding was performed at 950 ° C., 147 MPa, and 2 hours, the difference from the PTF of the sputtering target material produced from each single raw material powder was 8, 11, and It was 9%. From this, it can be seen that the PTF improvement effect is higher in the case of molding by the upset method than in the case of molding by the HIP method.
  • the alloy powder in which Ni / (Fe + Ni) falls within the range of 0.27 to 0.35 has a very low saturation magnetic flux density, and this alloy powder is used as at least a part of the raw material powder to be solidified and molded. It can be seen that by obtaining a sputtering target material, the PTF value could be remarkably improved as compared with a uniform sputtering target material having the same composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided are soft magnetic alloys for vertical magnetic recording media with superior saturation magnetic flux density, non-crystallinity and corrosion resistance, and sputtering target materials that, while having the superior alloy composition overall, have high PTF values that can be used effectively during magnetron sputtering. The alloys comprise, in atom%, Fe in an amount of 10-45%, Ni in an amount of 1-25%, one, two or more of Zr, Hf, Nb, Ta, and B in a total amount of 5-10% for Zr+Hf+Nb+Ta+B/2 (provided B is greater than 0% and less than 7%), one or both of Al and Cr in a total amount of 0-5% for Al+Cr, and residual Co and unavoidable impurities in a total amount of 37% or more. By atomic ratios, these alloys satisfy Fe/(Co+Fe+Ni): 0.10-0.50 and Ni/(Co+Fe+Ni): 0.01-0.25.

Description

垂直磁気記録媒体における軟磁性膜層用合金およびスパッタリングターゲット材並びにその製造方法Alloy for soft magnetic film layer in perpendicular magnetic recording medium, sputtering target material, and manufacturing method thereof 関連出願の相互参照Cross-reference of related applications
 この出願は、2008年7月14日に出願された日本国特許出願第2008-182645号に基づいて優先権の利益を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。 This application claims the benefit of priority based on Japanese Patent Application No. 2008-182645 filed on Jul. 14, 2008, the entire disclosure of which is incorporated herein by reference. It is.
 本発明は、垂直磁気記録媒体における軟磁性層膜の形成に用いられるCo-Fe-Ni系合金およびそれを用いたスパッタリングターゲット材並びにその製造方法に関するものである。 The present invention relates to a Co—Fe—Ni alloy used for forming a soft magnetic layer film in a perpendicular magnetic recording medium, a sputtering target material using the same, and a method for manufacturing the same.
 近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、従来の面内磁気記録媒体より更に高記録密度が実現できる、垂直磁気記録方式が実用化されている。ここに垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する2層記録媒体が開発されている。この磁気記録膜層には一般的にCoCrPt-SiO系合金が用いられている。 In recent years, magnetic recording technology has been remarkably advanced, and in order to increase the capacity of the drive, the recording density of the magnetic recording medium has been increased, and a higher recording density than that of the conventional in-plane magnetic recording medium can be realized. A magnetic recording system has been put into practical use. Here, the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy magnetization axis is oriented in the perpendicular direction with respect to the medium surface in the magnetic film of the perpendicular magnetic recording medium. In the perpendicular magnetic recording system, a two-layer recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed. In general, a CoCrPt—SiO 2 alloy is used for the magnetic recording film layer.
 一方、軟磁性膜層に関しては、例えば特開2005-320627号公報(特許文献1)に、Zr:1~10原子%、Nbおよび/またはTa:1~10原子%含有し、残部が実質的にCoからなるCo合金ターゲット材の製造方法が開示されており、Co合金の溶湯を急冷凝固処理して合金粉末を作製した後、粉末粒径500μm以下の合金粉末を加圧焼結してCoZrNb/Ta合金ターゲット材を得ることが提案されている。この垂直磁気記録媒体の軟磁性膜層には高い飽和磁束密度および高い非晶質性が求められる。 On the other hand, regarding the soft magnetic film layer, for example, JP-A-2005-320627 (Patent Document 1) contains Zr: 1 to 10 atomic%, Nb and / or Ta: 1 to 10 atomic%, and the balance is substantially Discloses a method for producing a Co alloy target material made of Co. After the alloy powder is prepared by rapid solidification of a molten Co alloy, the alloy powder having a powder particle size of 500 μm or less is pressure-sintered to obtain CoZrNb. / Ta alloy target material has been proposed. The soft magnetic film layer of this perpendicular magnetic recording medium is required to have high saturation magnetic flux density and high amorphousness.
 しかしながら、特許文献1におけるCoZrNb/Ta合金は、垂直磁気記録媒体の軟磁性膜層に要求される飽和磁束密度と比較して低いレベルの飽和磁束密度となってしまうという課題がある。そこで、例えば特開2007-284741号公報(特許文献2)に開示されているように、高い飽和磁束密度、非晶質性、耐食性をバランスよく実現させるべく、Fe-Co系合金において、Fe:Coのat比が100:0~20:80とし、かつ、AlまたはCrの1種または2種を0.2~5at%含有させた軟磁性ターゲット材が提案されている。なお、上述した非晶質性とは、合金を急冷凝固あるいはスパッタ成膜した時に、非晶質になる容易さを言い、耐食性とは、電子部品が使用される通常の環境で発銹しないレベルの耐候性を言う。 However, the CoZrNb / Ta alloy in Patent Document 1 has a problem that the saturation magnetic flux density is lower than that required for the soft magnetic film layer of the perpendicular magnetic recording medium. Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-284741 (Patent Document 2), in order to realize a high saturation magnetic flux density, amorphousness, and corrosion resistance in a balanced manner, Fe: A soft magnetic target material has been proposed in which the Co at ratio is 100: 0 to 20:80 and one or two of Al or Cr are contained in an amount of 0.2 to 5 at%. The above-mentioned amorphous property means the ease of becoming amorphous when the alloy is rapidly solidified or formed by sputtering, and the corrosion resistance is a level that does not occur in a normal environment where electronic components are used. Say the weather resistance.
 ところが、上述した特許文献2のように飽和磁束密度の高い合金を軟磁性膜層として使用する場合、これを成膜するためのスパッタリングターゲット材も高飽和磁束密度となってしまい、結果的にマグネトロンスパッタ時の成膜速度や成膜工程の安定性を左右する、PTF値が低くなってしまう問題がある。なお、PTF値とは、マグネトロンスパッタの際に、スパッタリングターゲット材の背面に配置された磁石からの磁力線がスパッタリングターゲット材の表面に漏れる割合であり、スパッタリングの効率や成膜された薄膜の歩留りに影響する因子である。 However, when an alloy having a high saturation magnetic flux density is used as the soft magnetic film layer as in Patent Document 2 described above, the sputtering target material for forming the alloy also has a high saturation magnetic flux density, resulting in a magnetron. There is a problem that the PTF value is lowered, which affects the deposition rate during sputtering and the stability of the deposition process. Note that the PTF value is a ratio of magnetic lines of force from the magnet arranged on the back surface of the sputtering target material leaking to the surface of the sputtering target material during magnetron sputtering, and is related to the sputtering efficiency and the yield of the formed thin film. It is an influencing factor.
 本発明者らは、今般、所定の組成を有するCo-Fe-Ni系合金が高い飽和磁束密度、高い非晶質性、および高い耐食性を有するとの知見を得た。その上、本発明者らは、この合金を成膜するためのスパッタリングターゲット材の原料粉末として所定の混合粉末を用いることによって、単一組成の原料粉末で製造された同組成の均一な内質を持つスパッタリングターゲット材よりもPTF値を大幅に向上できるとの知見を得た。 The present inventors have now found that a Co—Fe—Ni alloy having a predetermined composition has a high saturation magnetic flux density, a high amorphous property, and a high corrosion resistance. In addition, the present inventors have used a predetermined mixed powder as a raw material powder of a sputtering target material for forming a film of this alloy, thereby producing a uniform internal quality of the same composition manufactured with a single composition raw material powder. It has been found that the PTF value can be significantly improved as compared with the sputtering target material having the above.
 したがって、本発明の目的は、飽和磁束密度、非晶質性および耐食性に優れた垂直磁気記録媒体用軟磁性合金、およびこの優れた合金組成を全体としては有しながらもマグネトロンスパッタ時に効率よく使用できる高PTF値を有するスパッタリングターゲット材を提供することにある。 Accordingly, the object of the present invention is to provide a soft magnetic alloy for perpendicular magnetic recording media excellent in saturation magnetic flux density, amorphousness and corrosion resistance, and efficiently used during magnetron sputtering while having this excellent alloy composition as a whole. An object of the present invention is to provide a sputtering target material having a high PTF value.
 本発明の一態様によれば、原子%で、
 Fe:10~45%、
 Ni:1~25%、
 Zr,Hf,Nb,Ta,Bの1種または2種以上:Zr+Hf+Nb+Ta+B/2の合計量で5~10%(ただし、Bは0%以上7%以下)、
 Al,Crの1種または2種:Al+Crの合計量で0~5%、および
 残部Coおよび不可避的不純物:37%以上
からなり、かつ原子比で、
  Fe/(Co+Fe+Ni):0.10~0.50、および
  Ni/(Co+Fe+Ni):0.01~0.25
を満たす、垂直磁気記録媒体における軟磁性膜層用合金が提供される。
According to one aspect of the invention, in atomic%,
Fe: 10 to 45%,
Ni: 1-25%,
One or more of Zr, Hf, Nb, Ta, B: 5 to 10% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less),
One or two of Al and Cr: 0 to 5% in the total amount of Al + Cr, and the balance Co and unavoidable impurities: 37% or more, and in atomic ratio,
Fe / (Co + Fe + Ni): 0.10 to 0.50, and Ni / (Co + Fe + Ni): 0.01 to 0.25
An alloy for a soft magnetic film layer in a perpendicular magnetic recording medium that satisfies the above is provided.
 本発明の別の態様によれば、垂直磁気記録媒体における軟磁性膜層用スパッタリングターゲット材の製造方法であって、
(a)異なる組成を有する2種類以上の原料粉末をそれらの合計組成が請求項1に記載の軟磁性膜層用合金を構成するように用意する工程であって、前記原料粉末のうち少なくとも1種類の原料粉末が、
 原子%で、
 Ni:20~34%、
 Co:0~6%、
 Zr,Hf,Nb,Ta,Bの1種または2種以上:Zr+Hf+Nb+Ta+B/2の合計量で3~12%(ただし、Bは0%以上7%以下)、
 Al,Crの1種または2種:Al+Cr:0~5%、および
 残部Feおよび不可避的不純物
からなり、かつ原子比で、
 Ni/(Fe+Ni):0.27~0.35
を満たすものであり、
(b)前記2種類以上の原料粉末を混合して混合物を得る工程、および
(c)前記混合物を固化成形してスパッタリングターゲット材を形成する工程
を含んでなる、方法が提供される。
According to another aspect of the present invention, there is provided a method for producing a sputtering target material for a soft magnetic film layer in a perpendicular magnetic recording medium,
(A) a step of preparing two or more kinds of raw material powders having different compositions so that their total composition constitutes the soft magnetic film layer alloy according to claim 1, wherein at least one of the raw material powders Different types of raw material powder
Atomic%
Ni: 20 to 34%,
Co: 0-6%
One or more of Zr, Hf, Nb, Ta, B: 3 to 12% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less),
One or two of Al and Cr: Al + Cr: 0 to 5%, and the balance Fe and inevitable impurities, and in atomic ratio,
Ni / (Fe + Ni): 0.27 to 0.35
Which satisfies
There is provided a method comprising the steps of (b) mixing the two or more raw material powders to obtain a mixture, and (c) solidifying and forming the mixture to form a sputtering target material.
 本発明の別の態様によれば、上記方法により製造されたスパッタリングターゲット材が提供される。 According to another aspect of the present invention, a sputtering target material produced by the above method is provided.
 垂直磁気記録媒体における軟磁性膜層用合金
 本発明による垂直磁気記録媒体における軟磁性膜層用合金は、原子%で、Fe:10~45%、Ni:1~25%、Zr,Hf,Nb,Ta,Bの1種または2種以上:Zr+Hf+Nb+Ta+B/2の合計量で5~10%(ただし、Bは0%以上7%以下)、Al,Crの1種または2種:Al+Crの合計量で0~5%、および残部Coおよび不可避的不純物:37%以上からなり、好ましくはこれらの構成元素のみからなる。そして、この合金は、原子比で、Fe/(Co+Fe+Ni):0.10~0.50、およびNi/(Co+Fe+Ni):0.01~0.25を満たす。以下、本発明に係る垂直磁気記録媒体における軟磁性膜層用合金の成分組成の限定理由を述べる。
Alloy for Soft Magnetic Film Layer in Perpendicular Magnetic Recording Medium The alloy for soft magnetic film layer in the perpendicular magnetic recording medium according to the present invention is atomic%, Fe: 10 to 45%, Ni: 1 to 25%, Zr, Hf, Nb. , Ta, B, one or more: 5 to 10% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less), one or two types of Al, Cr: total amount of Al + Cr 0 to 5%, and the balance Co and unavoidable impurities: 37% or more, preferably only these constituent elements. The alloy satisfies Fe / (Co + Fe + Ni): 0.10 to 0.50 and Ni / (Co + Fe + Ni): 0.01 to 0.25 in atomic ratio. The reasons for limiting the component composition of the soft magnetic film layer alloy in the perpendicular magnetic recording medium according to the present invention will be described below.
 Feは、CoおよびNiと共に強磁性を有する元素である。一方、CoおよびNiと比較し、耐食性を劣化させる元素である。しかし、Fe含有量が10%未満では飽和磁束密度が小さく、45%を超えると耐食性が劣化する。したがって、合金中のFe含有量を10~45%、好ましくは20~40%とする。 Fe is an element having ferromagnetism together with Co and Ni. On the other hand, it is an element that degrades the corrosion resistance compared to Co and Ni. However, when the Fe content is less than 10%, the saturation magnetic flux density is small, and when it exceeds 45%, the corrosion resistance deteriorates. Therefore, the Fe content in the alloy is 10 to 45%, preferably 20 to 40%.
 Niは、CoおよびFeと共に強磁性を有する元素であるが、CoおよびFeと比較すると、飽和磁束密度が低い。一方、耐食性はFeより極めて高く、Coよりも若干優れる。しかし、Ni含有量が1%未満では耐食性が劣り、25%を超えると飽和磁束密度が低くなる。したがって、合金中のNi含有量を1~25%、好ましくは10~22%とする。 Ni is an element having ferromagnetism together with Co and Fe, but has a lower saturation magnetic flux density than Co and Fe. On the other hand, the corrosion resistance is much higher than Fe and slightly better than Co. However, if the Ni content is less than 1%, the corrosion resistance is poor, and if it exceeds 25%, the saturation magnetic flux density is lowered. Therefore, the Ni content in the alloy is 1 to 25%, preferably 10 to 22%.
 Zr、Hf、Nb、Ta、およびBは、CoおよびFeに対していずれも共晶系の状態図を持ち、アモルファス相を形成させる元素である。また、共晶組成におけるこれらの元素の濃度はBを除いて8~13%であり、Bは20%弱である。これはNiに対してもほぼ類似している。したがって、Zr、Hf、Nb、Ta、およびB/2の合計量で扱うことができる。しかし、Zr+Hf+Nb+Ta+B/2が5%未満では非晶質性が充分でなく、10%を超えると非晶質性が飽和し、飽和磁束密度が低下する。したがって、合金中のZr+Hf+Nb+Ta+B/2合計量を5~10%、好ましくは7.0~9.5とする。また、Bが7%を超えると耐食性が劣化することから、合金中のB含有量を7%以下とする。 Zr, Hf, Nb, Ta, and B are elements that have an eutectic phase diagram with respect to Co and Fe and form an amorphous phase. The concentration of these elements in the eutectic composition is 8 to 13% excluding B, and B is less than 20%. This is almost similar to Ni. Therefore, the total amount of Zr, Hf, Nb, Ta, and B / 2 can be handled. However, if Zr + Hf + Nb + Ta + B / 2 is less than 5%, the amorphous property is not sufficient, and if it exceeds 10%, the amorphous property is saturated and the saturation magnetic flux density is lowered. Therefore, the total amount of Zr + Hf + Nb + Ta + B / 2 in the alloy is 5 to 10%, preferably 7.0 to 9.5. Moreover, since corrosion resistance will deteriorate when B exceeds 7%, B content in an alloy shall be 7% or less.
 AlおよびCrは、いずれも耐食性を改善する元素であるため、5%以下のAl+Crの合計量で添加する。しかし、合計量が5%を超えると飽和磁束密度の低下が大きくなることから、その上限を5%とした。 Since both Al and Cr are elements that improve corrosion resistance, they are added in a total amount of Al + Cr of 5% or less. However, if the total amount exceeds 5%, the saturation magnetic flux density decreases greatly, so the upper limit was made 5%.
 Fe/(Co+Fe+Ni)に関して、上述したように、Feは、CoおよびNiと共に強磁性を有する元素である。一方、CoおよびNiと比較し、耐食性を劣化させる元素である。しかし、Fe/(Co+Fe+Ni)の原子比が0.10%未満では飽和磁束密度が小さく、0.50%を超えると耐食性が劣化する。したがって、Fe/(Co+Fe+Ni)の原子比を0.10~0.50%、好ましくは0.23~0.43%とする。 Regarding Fe / (Co + Fe + Ni), as described above, Fe is an element having ferromagnetism together with Co and Ni. On the other hand, it is an element that degrades the corrosion resistance compared to Co and Ni. However, when the atomic ratio of Fe / (Co + Fe + Ni) is less than 0.10%, the saturation magnetic flux density is small, and when it exceeds 0.50%, the corrosion resistance deteriorates. Therefore, the atomic ratio of Fe / (Co + Fe + Ni) is set to 0.10 to 0.50%, preferably 0.23 to 0.43%.
 Ni/(Co+Fe+Ni)に関して、上述したように、Niは、CoおよびFeと共に強磁性を有する元素であるが、CoおよびFeと比較すると、飽和磁束密度が低い。一方、耐食性はFeより極めて高く、Coよりも若干優れる。しかし、Ni/(Co+Fe+Ni)の原子比が0.01%未満では耐食性が劣り、0.25%を超えると飽和磁束密度が低くなる。したがって、Ni/(Co+Fe+Ni)の原子比を0.01~0.25、好ましくは0.11~0.17とする。しかし、残部Coが37%以上必要で、37%未満では耐食性の劣化が見られる。 Regarding Ni / (Co + Fe + Ni), as described above, Ni is an element having ferromagnetism together with Co and Fe, but has a lower saturation magnetic flux density than Co and Fe. On the other hand, the corrosion resistance is much higher than Fe and slightly better than Co. However, when the atomic ratio of Ni / (Co + Fe + Ni) is less than 0.01%, the corrosion resistance is inferior, and when it exceeds 0.25%, the saturation magnetic flux density is lowered. Therefore, the atomic ratio of Ni / (Co + Fe + Ni) is set to 0.01 to 0.25, preferably 0.11 to 0.17. However, the remaining Co is required to be 37% or more, and if it is less than 37%, the corrosion resistance is deteriorated.
 スパッタリングターゲット材およびその製造方法
 本発明による垂直磁気記録媒体における軟磁性膜層用スパッタリングターゲット材の製造方法は、(a)異なる組成を有する2種類以上の原料粉末をそれらの合計組成が上記軟磁性膜層用合金を構成するように用意する工程、(b)前記2種類以上の原料粉末を混合して混合物を得る工程、および(c)前記混合物を固化成形してスパッタリングターゲット材を形成する工程を含んでなる。
Sputtering target material and manufacturing method thereof The manufacturing method of the sputtering target material for the soft magnetic film layer in the perpendicular magnetic recording medium according to the present invention comprises (a) two or more kinds of raw material powders having different compositions, the total composition of which is A step of preparing the alloy for the film layer, (b) a step of mixing the two or more kinds of raw material powders to obtain a mixture, and (c) a step of solidifying and forming the mixture to form a sputtering target material. Comprising.
 このように、本発明の製造方法にあっては、ターゲット材の原料粉末として、異なる組成を有する2種類以上の原料粉末をそれらの合計組成が上記軟磁性膜層用合金を構成するように用意する。その理由は以下の通りである。すなわち、上記軟磁性膜層用合金は高い飽和磁束密度と高い非晶質性および高い耐食性を有する優れた合金である。ただし、高い飽和磁束密度を有していることから、この合金を単にスパッタリングターゲット材として用いてマグネトロンスパッタ成膜を行ったのでは、PTF値が低くなるため、成膜速度が低くなり、成膜の安定性も低くなってしまう。 As described above, in the production method of the present invention, two or more kinds of raw material powders having different compositions are prepared as the raw material powder of the target material so that the total composition thereof constitutes the soft magnetic film layer alloy. To do. The reason is as follows. That is, the soft magnetic film layer alloy is an excellent alloy having high saturation magnetic flux density, high amorphousness, and high corrosion resistance. However, since it has a high saturation magnetic flux density, if this alloy is simply used as a sputtering target material to perform magnetron sputtering film formation, the PTF value will be low, so the film formation speed will be low, and film formation will be reduced. The stability of will also be low.
 この点を改良するため、単一組成の原料粉末を固化成形するのではなく、飽和磁束密度の比較的低い粉末を所定の割合で混合して固化成形することにより、均一組成では高い飽和磁束密度を有する軟磁性膜層用合金組成を全体としては有しながらも、スパッタリングターゲット材としては比較的低い飽和磁束密度を有する材料を得ることができ、結果としてPTF値の高いスパッタリングターゲット材を得ることが出来る。 In order to improve this point, instead of solidifying and molding the raw material powder of a single composition, by mixing and solidifying and molding a powder with a relatively low saturation magnetic flux density at a predetermined ratio, a high saturation magnetic flux density is achieved with a uniform composition. As a sputtering target material, it is possible to obtain a material having a relatively low saturation magnetic flux density, and as a result, to obtain a sputtering target material having a high PTF value. I can do it.
 このとき、スパッタリングターゲット材の全体組成を少なくとも2組成の原料粉末に分ける際、少なくとも1組成の原料粉末を原子%で、Ni:20~34%、Co:0~6%、Zr,Hf,Nb,Ta,Bの1種または2種以上:Zr+Hf+Nb+Ta+B/2の合計量で3~12%(ただし、Bは0%以上7%以下)、Al,Crの1種または2種:Al+Cr:0~5%、および残部Feおよび不可避的不純物からなり、かつ原子比で、Ni/(Fe+Ni):0.27~0.35を満たすものとする。こうすることで飽和磁束密度を極めて低くすることができる。 At this time, when the total composition of the sputtering target material is divided into at least two raw material powders, the raw material powder of at least one composition is atomic%, Ni: 20 to 34%, Co: 0 to 6%, Zr, Hf, Nb. , Ta, B or more: 3 to 12% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less), Al or Cr: 1 or 2 types: Al + Cr: 0 to 5% and the balance Fe and unavoidable impurities and satisfy the atomic ratio of Ni / (Fe + Ni): 0.27 to 0.35. By doing so, the saturation magnetic flux density can be made extremely low.
 NiおよびNi/(Fe+Ni)が上記の範囲に入る合金粉末は、飽和磁束密度が極めて低くなり、この合金粉末を原料粉末の少なくとも一部として用い、固化成形し、スパッタリングターゲット材を得ることにより、同組成の均一なスパッタリングターゲット材と比較し、著しくPTF値を改善することが可能である。逆に、NiおよびNi/(Fe+Ni)が上記範囲を外れると、その合金粉末の飽和磁束密度が高くなってしまい、PTF値改善の効果が少なくなる。したがって、Niを20~34%、Ni/(Fe+Ni)を0.27~0.35の範囲とした。 An alloy powder in which Ni and Ni / (Fe + Ni) fall within the above range has a very low saturation magnetic flux density. By using this alloy powder as at least a part of the raw material powder and solidifying and forming a sputtering target material, Compared with a uniform sputtering target material having the same composition, the PTF value can be remarkably improved. Conversely, if Ni and Ni / (Fe + Ni) are out of the above range, the saturation magnetic flux density of the alloy powder becomes high, and the effect of improving the PTF value is reduced. Therefore, Ni is set to 20 to 34% and Ni / (Fe + Ni) is set to 0.27 to 0.35.
 Coを6%超えて添加すると合金粉末の飽和磁束密度が高くなり、PTF値改善の効果が小さくなることから、その上限を6%とした。 When adding over 6% Co, the saturation magnetic flux density of the alloy powder increases and the effect of improving the PTF value decreases, so the upper limit was made 6%.
 Zr+Hf+Nb+Ta+B/2が3%未満または12%を超える原料粉末を用いると、パーティクルの発生が多くなることから、その範囲を3~12%とした。すなわち、Zr、Hf、Nb、Ta、およびBはFe、Co、およびNiとのスパッタ率に差があるため、各原料粉末の添加量に大きな差がある場合、スパッタが進むに連れ、スパッタリングターゲット材表面に凹凸が発生し、パーティクルなどの不具合を発生するが、上記範囲内であるとそのような問題を低減できる。 When a raw material powder with Zr + Hf + Nb + Ta + B / 2 of less than 3% or more than 12% is used, the generation of particles increases, so the range was made 3 to 12%. That is, since Zr, Hf, Nb, Ta, and B have a difference in sputtering rate with Fe, Co, and Ni, when there is a large difference in the addition amount of each raw material powder, as sputtering proceeds, a sputtering target Concavities and convexities are generated on the surface of the material, and defects such as particles are generated. However, such a problem can be reduced within the above range.
 ところで、Ni:20~34%、Ni/(Fe+Ni):0.27~0.35、Co:0~6%、Zr+Hf+Nb+Ta+B/2:3~12%を有する粉末は、残部Feであり、その他の原料粉末の組成(以下、残組成という)はCoリッチになってしまう。そのため、残部Feの原料粉末(低耐食性)とCoリッチな原料粉末(高耐食性)を混合し固化成形するため、両粉末間で一種の局部電池が成立し、スパッタリングターゲット材としては比較的発銹しやすい材料となってしまう。そこで、少なくともNi:20~34%、Ni/(Fe+Ni):0.27~0.35、Co:0~6%、Zr+Hf+Nb+Ta+B/2:3~12%を有する残部Feの粉末に、Al+Crを5%以下で添加することにより、この粉末の耐食性を向上させスパッタリングターゲット材として発銹しにくい材料とすることができる。Al+Crが5%を超えると効果が飽和する。また、ターゲット材全体として5%を超えると、このターゲットをスパッタ成膜した薄膜の飽和磁束密度を低下させてしまう。 By the way, the powder having Ni: 20 to 34%, Ni / (Fe + Ni): 0.27 to 0.35, Co: 0 to 6%, Zr + Hf + Nb + Ta + B / 2: 3 to 12% is the balance Fe, The composition of the raw material powder (hereinafter referred to as the remaining composition) becomes Co-rich. Therefore, the remaining Fe raw material powder (low corrosion resistance) and Co-rich raw material powder (high corrosion resistance) are mixed and solidified to form a kind of local battery between the two powders. It becomes easy to do. Therefore, Al + Cr is added to the remaining Fe powder having at least Ni: 20 to 34%, Ni / (Fe + Ni): 0.27 to 0.35, Co: 0 to 6%, Zr + Hf + Nb + Ta + B / 2: 3 to 12%. By adding it in an amount of not more than%, it is possible to improve the corrosion resistance of this powder and to make it a material that is difficult to start as a sputtering target material. When Al + Cr exceeds 5%, the effect is saturated. Moreover, if it exceeds 5% as a whole target material, the saturation magnetic flux density of the thin film which carried out sputter deposition of this target will be reduced.
 次いで、上記のようにして用意した2種類以上の原料粉末を混合して混合物を得た後、この混合物を固化成形してスパッタリングターゲット材を形成する。固化成形は熱間において数秒で成形するアップセット法により行われるのが好ましく、これにより、原料粉末中の元素の拡散を抑え、原料粉末本来の低い飽和磁束密度を成形後も維持することができる。通常、HIP法やホットプレス法のように混合粉末を熱間で数時間固化成形すると、異種粉末間で原子拡散が起こり、両粉末組成の元素を有する拡散層が生成される。特に、本発明のように低い飽和磁束密度の原料粉末を使用することで高いPTFを実現する技術においては、生成される拡散層は高飽和磁束密度となり、充分なPTF改善効果を妨げてしまうが、アップセット法によればそのような問題を低減できる。アップセット法における好ましい温度は900~1250℃であり、より好ましくは930~1070℃であり、好ましい圧力は400~1400MPa、より好ましくは500~900MPaである。加圧時間は限定されないが、1~10秒が好ましい。 Next, two or more kinds of raw material powders prepared as described above are mixed to obtain a mixture, and then the mixture is solidified and formed to form a sputtering target material. Solidification molding is preferably performed by an upset method in which molding is performed in a few seconds in the hot state, thereby suppressing the diffusion of elements in the raw material powder and maintaining the original low saturation magnetic flux density after the molding. . Usually, when the mixed powder is solidified and formed for several hours with heat as in the HIP method or the hot press method, atomic diffusion occurs between different types of powder, and a diffusion layer having elements of both powder compositions is generated. In particular, in a technique for realizing a high PTF by using a raw powder having a low saturation magnetic flux density as in the present invention, the generated diffusion layer has a high saturation magnetic flux density, which hinders a sufficient PTF improvement effect. According to the upset method, such a problem can be reduced. A preferable temperature in the upset method is 900 to 1250 ° C., more preferably 930 to 1070 ° C., and a preferable pressure is 400 to 1400 MPa, more preferably 500 to 900 MPa. The pressing time is not limited, but 1 to 10 seconds is preferable.
 以下、本発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
 通常、垂直磁気記録媒体における軟磁性膜層は、その成分と同じ成分のスパッタリングターゲット材をスパッタし、ガラス基板などの上に成膜し得られる。ここでスパッタにより成膜された薄膜は急冷されている。これに対し、本発明では実施例および比較例の供試材として、単ロール式の液体急冷装置にて作製した急冷薄帯を用いている。これは実際にスパッタにより急冷され成膜された薄膜の、成分による諸特性への影響を、簡易的に液体急冷薄帯により評価したものである。 Usually, a soft magnetic film layer in a perpendicular magnetic recording medium can be formed on a glass substrate or the like by sputtering a sputtering target material having the same component as that component. Here, the thin film formed by sputtering is rapidly cooled. On the other hand, in this invention, the quenching thin strip produced with the single roll type liquid quenching apparatus is used as a test material of an Example and a comparative example. This is a simple evaluation of the influence of the components on various properties of a thin film formed by quenching by sputtering in a simple manner using a liquid quenching ribbon.
 実施例1
 表1に示す成分組成に秤量した原料30gをφ10×40mm程度の水冷銅鋳型にて減圧Ar中でアーク溶解し、急冷薄帯の溶解母材とした。急冷薄帯の作製条件は、単ロール方式で、φ15mmの石英管中にこの溶解母材にセットし、出湯ノズル径を1mmとし、雰囲気圧61kPa、噴霧差圧69kPa、銅ロール(φ300mm)の回転数3000rpm、銅ロールと出湯ノズルのギャップ0.3mmにて出湯した。出湯温度は各溶解母材の溶け落ち直後とした。このようにして作製した急冷薄帯を供試材とし、以下の項目を評価した。
Example 1
30 g of raw materials weighed to the component composition shown in Table 1 were arc-melted in a reduced pressure Ar using a water-cooled copper mold of about φ10 × 40 mm to obtain a rapidly cooled ribbon base material. The conditions for preparing the quenched ribbon are the single roll method, set in this molten base material in a φ15 mm quartz tube, the diameter of the hot water nozzle is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, and the copper roll (φ300 mm) is rotated. Hot water was discharged at several 3000 rpm with a gap of 0.3 mm between the copper roll and the hot water nozzle. The hot water temperature was set immediately after each molten base material was melted. The following items were evaluated using the thus prepared quenched ribbon as a test material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 評価1:飽和磁束密度
 急冷薄帯の飽和磁束密度を、VSM装置(振動試料型磁力計)にて、印加磁場15kOeで測定した。そのときの供試材の重量は15mgとした。
Evaluation 1: Saturation magnetic flux density The saturation magnetic flux density of the quenched ribbon was measured with an applied magnetic field of 15 kOe using a VSM apparatus (vibrating sample magnetometer). The weight of the test material at that time was 15 mg.
 評価2:非晶質性
 通常、非晶質材料のX線回折パターンを測定すると、回折ピークが見られず、非晶質特有のハローパターンとなる。また、完全な非晶質でない場合は、回折ピークは見られるものの、結晶材料と比較しピーク高さが低くなり、半値幅(回折ピークの1/2高さの幅)の大きいブロードなピークとなる。この半値幅は、材料の非晶質性と相関があり、非晶質性が高いほど回折ピークは、よりブロードとなり半値幅が大きくなる特徴がある。そこで、下記の方法にて急冷薄帯の非晶質性を評価した。
Evaluation 2: amorphous Usually, when measuring the X-ray diffraction pattern of an amorphous material, showed no diffraction peaks, the amorphous characteristic halo pattern. In addition, when it is not completely amorphous, a diffraction peak is seen, but the peak height is lower than that of the crystalline material, and a broad peak with a large half-value width (half height of the diffraction peak) Become. This half-value width correlates with the amorphous nature of the material, and the higher the amorphous nature, the more the diffraction peak becomes broader and the half-value width becomes larger. Therefore, the amorphous property of the quenched ribbon was evaluated by the following method.
 ガラス板に両面テープで供試材を貼り付け、X線回折装置にて回折パターンを得た。このとき、測定面は急冷薄帯の銅ロール接触面となるように供試材をガラス板に貼り付けた。X線源はCu-Kα線で、スキャンスピード4°/minで測定した。この回折パターンのメインピークの1/2高さの幅を画像解析し、半値幅を求め、非晶質性の評価とした。  The test material was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer. At this time, the test material was affixed on the glass plate so that the measurement surface was a copper roll contact surface of a quenched ribbon. The X-ray source was Cu—Kα ray, and measurement was performed at a scan speed of 4 ° / min. The width of the half height of the main peak of this diffraction pattern was image-analyzed to find the half width, which was evaluated as amorphous. *
 評価3:耐食性
 急冷薄帯の耐食性を評価するために、ガラス板に両面テープで供試材を貼り付け、5%NaCl-35℃-16hの塩水噴霧試験を行い、全面発銹:×、一部発銹:○として評価した。各評価結果を表2に示す。
Evaluation 3: Corrosion resistance In order to evaluate the corrosion resistance of the quenched ribbon, the sample material was attached to a glass plate with a double-sided tape, and a salt spray test of 5% NaCl-35 ° C-16h was conducted. Club departure: Evaluated as ○. Each evaluation result is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、No.1~11は本発明例であり、No.12~19は比較例である。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, no. Nos. 1 to 11 are examples of the present invention. 12 to 19 are comparative examples.
 比較例No.12は成分組成としてのFe含有量が低く、かつFe/(Co+Fe+Ni)の値が低いために、飽和磁束密度が低い。比較例No.13は成分組成としてのFe含有量が高く、かつFe/(Co+Fe+Ni)の値が高く、かつCo量が少ないために、耐食性が劣る。比較例No.14は成分組成としてのNi含有量が低く、かつNi/(Co+Fe+Ni)の値が低いために、耐食性が劣る。比較例No.15は成分組成としてのNi含有量が高く、かつNi/(Co+Fe+Ni)の値が高いために、飽和磁束密度が低い。 Comparative Example No. No. 12 has a low content of Fe as a component composition and a low value of Fe / (Co + Fe + Ni), so that the saturation magnetic flux density is low. Comparative Example No. No. 13 has a high Fe content as a component composition, a high value of Fe / (Co + Fe + Ni), and a small amount of Co, so that the corrosion resistance is inferior. Comparative Example No. No. 14 has a low Ni content as a component composition and a low value of Ni / (Co + Fe + Ni), so that the corrosion resistance is inferior. Comparative Example No. No. 15 has a high Ni content as a component composition and a high value of Ni / (Co + Fe + Ni), so that the saturation magnetic flux density is low.
 比較例No.16はZr+Hf+Nb+Ta+B/2の含有量が低いために、半値幅が小さい。すなわち、非晶質性が低い。比較例No.17はZr+Hf+Nb+Ta+B/2の含有量が高いために、飽和磁束密度が低い。比較例No.18は成分組成としてのB含有量が高いために、耐食性が劣る。比較例No.19はAl+Cr含有量が高いために、飽和磁束密度が低い。 Comparative Example No. No. 16 has a small half width because the content of Zr + Hf + Nb + Ta + B / 2 is low. That is, the amorphous property is low. Comparative Example No. Since No. 17 has a high content of Zr + Hf + Nb + Ta + B / 2, the saturation magnetic flux density is low. Comparative Example No. Since No. 18 has high B content as a component composition, its corrosion resistance is inferior. Comparative Example No. Since No. 19 has a high Al + Cr content, the saturation magnetic flux density is low.
 実施例2
 次に、スパッタリングターゲット材のPTF値に及ぼす原料粉末の影響に関する実施例について述べる。先ず、原料として使用する合金粉末をガスアトマイズ法にて作製し、飽和磁束密度を測定することで、飽和磁束密度の低い原料粉末組成を検討した。その結果を表3に示す。次にそれらの原料粉末と表4に示す残組成の原料粉末を表5のターゲット材の組成となるように混合し、固化成形し機械加工にて作製したスパッタリングターゲット材のPTF値を測定し、PTF値におよぼす原料粉末組成の影響を検討した。その結果を表5に示す。また、同時にスパッタリングターゲット材の耐食性を評価した。
Example 2
Next, examples relating to the influence of the raw material powder on the PTF value of the sputtering target material will be described. First, an alloy powder used as a raw material was prepared by a gas atomizing method, and a saturation magnetic flux density was measured to examine a raw material powder composition having a low saturation magnetic flux density. The results are shown in Table 3. Next, these raw material powders and the raw material powder of the remaining composition shown in Table 4 are mixed so as to have the composition of the target material of Table 5, and the PTF value of the sputtering target material prepared by solidification molding and machining is measured. The influence of the raw material powder composition on the PTF value was examined. The results are shown in Table 5. At the same time, the corrosion resistance of the sputtering target material was evaluated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 原料粉末およびスパッタリングターゲット材は以下の通りにして作製した。
Figure JPOXMLDOC01-appb-T000005
The raw material powder and the sputtering target material were prepared as follows.
(1)原料粉末作製
 まず、表3および表4に示される各組成の原料粉末をガスアトマイズ法により作製した。ガスアトマイズ法は、ガス種がAr、ノズル径が6mm、ガス圧が5MPaの条件で行った。その後、表3に示されるNo.1~11の粉末と表4に示される対応の残組成の合金粉末とを、表4に示される残組成粉末混合比で混合した。原料粉末の混合は、V型混合機内で攪拌することにより行った。
(1) Preparation of raw material powder First, raw material powders having respective compositions shown in Tables 3 and 4 were prepared by a gas atomization method. The gas atomization method was performed under the conditions that the gas type was Ar, the nozzle diameter was 6 mm, and the gas pressure was 5 MPa. Thereafter, No. 1 shown in Table 3 was obtained. The powders 1 to 11 and the alloy powder having the corresponding residual composition shown in Table 4 were mixed at the residual composition powder mixing ratio shown in Table 4. The raw material powders were mixed by stirring in a V-type mixer.
(2)分級
 作製した混合粉末を目開き500μmのふるいにかけて、500μm以下に分級した。
(2) Classification The prepared mixed powder was sieved with a sieve having an opening of 500 μm and classified to 500 μm or less.
(3)真空封入
 分級された混合粉末を直径200mm、高さ100mmのSC材質からなる封入缶に充填し、到達真空度:>1.3×10-1Pa(10-3torr)で真空封入した。
(3) Vacuum encapsulation The classified powder mixture is filled into a sealed can made of SC material having a diameter of 200 mm and a height of 100 mm, and vacuum sealed at an ultimate vacuum of> 1.3 × 10 −1 Pa (10 −3 torr). did.
(4)成形工法
 真空封入した混合粉末をアップセット法により成形した。アップセット法は、加熱温度950℃、圧力540MPa、加工時間5秒の条件で行った。アップセット法とは、金属製の外筒缶に原料粉末を充填、脱気、封入したビレットを所定の温度に加熱し、コンテナー内に装入し、パンチにより加圧成形する方法であり、HIP法やホットプレス法と比較し、成形圧が高くでき、短時間の加圧により成形できることに特徴がある。
(4) Molding method The vacuum-enclosed mixed powder was molded by the upset method. The upset method was performed under the conditions of a heating temperature of 950 ° C., a pressure of 540 MPa, and a processing time of 5 seconds. The upset method is a method in which a billet filled with raw material powder, deaerated, and sealed in a metal outer can is heated to a predetermined temperature, charged into a container, and pressure-formed by a punch. Compared to the hot pressing method and the hot press method, the molding pressure can be increased, and the molding can be performed by pressurizing for a short time.
(5)機械加工
 得られた成形体に、ワイヤーカット、旋盤加工、および平面研磨を施して、直径180mm、厚さ7mmの最終形状に加工して、スパッタリングターゲット材を得た。
(5) Machine processing The obtained molded body was subjected to wire cutting, lathe processing, and plane polishing, and processed into a final shape having a diameter of 180 mm and a thickness of 7 mm, to obtain a sputtering target material.
 得られた原料粉末およびスパッタリングターゲット材について以下の評価を行った。 The following evaluation was performed about the obtained raw material powder and sputtering target material.
 評価1:飽和磁束密度
 原料粉末の飽和磁束密度を、VSM装置(振動試料型磁力計)にて、印加磁場15kOeで測定した。そのときの供試材の重量は200mgとした。
Evaluation 1: Saturation magnetic flux density The saturation magnetic flux density of the raw material powder was measured with an applied magnetic field of 15 kOe with a VSM apparatus (vibrating sample magnetometer). The weight of the test material at that time was 200 mg.
 評価2:PTF値
 スパッタリングターゲット材のPTF値を、ASTM F1761-00に従って測定した。比較のため、同組成のスパッタリングターゲット材を単一成分粉末から同条件で固化成形したものを作製し、PTF値を測定した。その際に、混合粉末によるスパッタリングターゲット材のPTF(単位:%)から単一粉末によるスパッタリングターゲット材のPTF値(単位:%)を差し引いたPTFの差でもって評価した。
Evaluation 2: PTF value The PTF value of the sputtering target material was measured according to ASTM F1761-00. For comparison, a sputtering target material having the same composition was solidified and formed from a single component powder under the same conditions, and the PTF value was measured. In that case, it evaluated by the difference of the PTF which deducted the PTF value (unit:%) of the sputtering target material by a single powder from the PTF (unit:%) of the sputtering target material by mixed powder.
 評価3:耐食性
 スパッタリングターゲット材の耐食性評価としては、スパッタリングターゲット材を用いた塩水噴霧試験として、JIS Z 2371に基づき、NaCl:5質量%溶液を24時間噴霧した後のスパッタリングターゲット材外観を目視により発銹の有無を確認した。その評価基準として下記で評価した。
 ○:発銹なし 
 △:スパッタリングターゲット材の一部に発銹 
 ×:スパッタリングターゲット材の全面に発銹
Evaluation 3: Corrosion resistance As a corrosion resistance evaluation of the sputtering target material, as a salt spray test using the sputtering target material, the appearance of the sputtering target material after spraying a NaCl: 5 mass% solution for 24 hours based on JIS Z 2371 is visually observed. The presence or absence of fire was confirmed. The evaluation criteria were as follows.
○: No occurrence
Δ: Occurred on part of sputtering target material
×: Generated on the entire surface of the sputtering target material
 表5に、スパッタリングターゲット材の成分(at.%)、原料粉末、PTF値の差(%)、および耐食性を示す。 Table 5 shows the components (at.%) Of the sputtering target material, the raw material powder, the difference in PTF value (%), and the corrosion resistance.
 表5に示すように、B~D、F、Jは本発明例であり、A、E、G~I、Kは比較例である。比較例A、E、Gは使用した原料粉末No.1、5、7の飽和磁束密度が高いためPTFの改善効果が小さい。比較例H、Iのスパッタリングターゲット材を用い、Ar圧:0.5Pa、DC電力:500Wでスパッタリングしたところ、スパッタリングターゲット材表面に凹凸が多数発生し、成膜した薄膜にはパーティクルが多く、単一粉末から同条件で成形した同組成スパッタリングターゲット材を用いた薄膜と比較し、3倍のパーティクル数となった。これは用いた混合粉末(No.8と残組成8、No.9と残組成9)のZr+Nb量に、大きな差異があるためであると推測される。(Co,Fe,Niに対し、Zr,Hf,Nb,Ta,Bのスパッタ率は低いことが知られており、このスパッタ率の差異により、表面の凹凸が成長するものと推測される)。 As shown in Table 5, B to D, F, and J are examples of the present invention, and A, E, G to I, and K are comparative examples. Comparative Examples A, E, and G are the raw material powder Nos. Used. Since the saturation magnetic flux density of 1, 5, and 7 is high, the effect of improving the PTF is small. When sputtering was performed using the sputtering target material of Comparative Examples H and I at an Ar pressure of 0.5 Pa and a DC power of 500 W, many irregularities were generated on the surface of the sputtering target material, and the formed thin film had many particles, Compared with the thin film using the same composition sputtering target material shape | molded on the same conditions from one powder, it became 3 times the number of particles. This is presumably because there is a large difference in the amount of Zr + Nb of the mixed powders used (No. 8 and residual composition 8, No. 9 and residual composition 9). (It is known that the sputtering rate of Zr, Hf, Nb, Ta, and B is lower than that of Co, Fe, and Ni, and it is assumed that the unevenness of the surface grows due to the difference in the sputtering rate).
 比較例Kのスパッタリングターゲット材の作製に使用したNo.11の粉末は、Al+Crが6at%であり、本発明例Jのスパッタリングターゲット材の作製に使用したNo.10の粉末と比較し、Crが1at%高いだけである。その結果、本発明例J、比較例Kのスパッタリングターゲット材共に耐食性の評価は○であり、Al+Cr添加によるスパッタリングターゲット材の耐食性向上効果が飽和していることが分かる。 No. used in the production of the sputtering target material of Comparative Example K. The powder of No. 11 has Al + Cr of 6 at%, and No. 11 used for the production of the sputtering target material of Example J of the present invention. Compared to 10 powder, Cr is only 1 at% higher. As a result, the evaluation of the corrosion resistance of both the sputtering target materials of Invention Example J and Comparative Example K is ○, and it can be seen that the effect of improving the corrosion resistance of the sputtering target material by adding Al + Cr is saturated.
 さらに、B,C,Dの組成のスパッタリングターゲット材を、No.2+残組成2、No.3+残組成3、No.4+残組成4の混合粉末を用い、950℃、147MPa、および2時間のHIP処理成形を行なったところ、それぞれの単一原料粉末から作製したスパッタリングターゲット材のPTFとの差は8、11、および9%であった。このことから、アップセット法による成形が、HIP法により成形した場合より、さらにPTF改善効果が高いことが分かる。 Furthermore, a sputtering target material having a composition of B, C, and D is designated as No. 2+ Residual composition 2, No. 3 + residual composition 3, no. When the mixed powder of 4 + residual composition 4 was used and HIP treatment molding was performed at 950 ° C., 147 MPa, and 2 hours, the difference from the PTF of the sputtering target material produced from each single raw material powder was 8, 11, and It was 9%. From this, it can be seen that the PTF improvement effect is higher in the case of molding by the upset method than in the case of molding by the HIP method.
 以上のように、Ni/(Fe+Ni)が0.27~0.35の範囲に入る合金粉末は、飽和磁束密度が極めて低くなり、この合金粉末を原料粉末の少なくとも一部として用い、固化成形し、スパッタリングターゲット材を得ることにより、同組成の均一なスパッタリングターゲット材と比較し、著しくPTF値を改善することが出来たことが分かる。 As described above, the alloy powder in which Ni / (Fe + Ni) falls within the range of 0.27 to 0.35 has a very low saturation magnetic flux density, and this alloy powder is used as at least a part of the raw material powder to be solidified and molded. It can be seen that by obtaining a sputtering target material, the PTF value could be remarkably improved as compared with a uniform sputtering target material having the same composition.

Claims (5)

  1.  原子%で、
     Fe:10~45%、
     Ni:1~25%、
     Zr,Hf,Nb,Ta,Bの1種または2種以上:Zr+Hf+Nb+Ta+B/2の合計量で5~10%(ただし、Bは0%以上7%以下)、
     Al,Crの1種または2種:Al+Crの合計量で0~5%、および
     残部Coおよび不可避的不純物:37%以上
    からなり、かつ原子比で、
      Fe/(Co+Fe+Ni):0.10~0.50、および
      Ni/(Co+Fe+Ni):0.01~0.25
    を満たす、垂直磁気記録媒体における軟磁性膜層用合金。
    Atomic%
    Fe: 10 to 45%,
    Ni: 1-25%,
    One or more of Zr, Hf, Nb, Ta, B: 5 to 10% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less),
    One or two of Al and Cr: 0 to 5% in the total amount of Al + Cr, and the balance Co and unavoidable impurities: 37% or more, and in atomic ratio,
    Fe / (Co + Fe + Ni): 0.10 to 0.50, and Ni / (Co + Fe + Ni): 0.01 to 0.25
    An alloy for a soft magnetic film layer in a perpendicular magnetic recording medium.
  2.  垂直磁気記録媒体における軟磁性膜層用スパッタリングターゲット材の製造方法であって、
    (a)異なる組成を有する2種類以上の原料粉末をそれらの合計組成が請求項1に記載の軟磁性膜層用合金を構成するように用意する工程であって、前記原料粉末のうち少なくとも1種類の原料粉末が、
     原子%で、
     Ni:20~34%、
     Co:0~6%、
     Zr,Hf,Nb,Ta,Bの1種または2種以上:Zr+Hf+Nb+Ta+B/2の合計量で3~12%(ただし、Bは0%以上7%以下)、
     Al,Crの1種または2種:Al+Cr:0~5%、および
     残部Feおよび不可避的不純物
    からなり、かつ原子比で、
     Ni/(Fe+Ni):0.27~0.35
    を満たすものであり、
    (b)前記2種類以上の原料粉末を混合して混合物を得る工程、および
    (c)前記混合物を固化成形してスパッタリングターゲット材を形成する工程
    を含んでなる、方法。
    A method for producing a sputtering target material for a soft magnetic film layer in a perpendicular magnetic recording medium, comprising:
    (A) a step of preparing two or more kinds of raw material powders having different compositions so that their total composition constitutes the soft magnetic film layer alloy according to claim 1, wherein at least one of the raw material powders Different types of raw material powder
    Atomic%
    Ni: 20 to 34%,
    Co: 0-6%
    One or more of Zr, Hf, Nb, Ta, B: 3 to 12% in total amount of Zr + Hf + Nb + Ta + B / 2 (B is 0% or more and 7% or less),
    One or two of Al and Cr: Al + Cr: 0 to 5%, and the balance Fe and inevitable impurities, and in atomic ratio,
    Ni / (Fe + Ni): 0.27 to 0.35
    Which satisfies
    (B) A method comprising a step of mixing the two or more raw material powders to obtain a mixture, and (c) a step of solidifying and forming the mixture to form a sputtering target material.
  3.  前記固化成形がアップセット法により行われる、請求項2に記載の方法。 The method according to claim 2, wherein the solidification molding is performed by an upset method.
  4.  請求項2に記載の方法により製造された、垂直磁気記録媒体における軟磁性膜層用スパッタリングターゲット材。 A sputtering target material for a soft magnetic film layer in a perpendicular magnetic recording medium produced by the method according to claim 2.
  5.  請求項3に記載の方法により製造された、垂直磁気記録媒体における軟磁性膜層用スパッタリングターゲット材。 A sputtering target material for a soft magnetic film layer in a perpendicular magnetic recording medium produced by the method according to claim 3.
PCT/JP2009/062716 2008-07-14 2009-07-14 Alloys for soft magnetic film layers in vertical magnetic recording media, sputtering target materials and manufacturing method therefore WO2010007980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980135768.7A CN102149836B (en) 2008-07-14 2009-07-14 Sputtering target materials for soft magnetic film layers in vertical magnetic recording media, and manufacturing method therefore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008182645A JP5605787B2 (en) 2008-07-14 2008-07-14 Sputtering target material for forming an alloy for a soft magnetic film layer in a perpendicular magnetic recording medium and its manufacturing method
JP2008-182645 2008-07-14

Publications (1)

Publication Number Publication Date
WO2010007980A1 true WO2010007980A1 (en) 2010-01-21

Family

ID=41550383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062716 WO2010007980A1 (en) 2008-07-14 2009-07-14 Alloys for soft magnetic film layers in vertical magnetic recording media, sputtering target materials and manufacturing method therefore

Country Status (4)

Country Link
JP (1) JP5605787B2 (en)
CN (1) CN102149836B (en)
MY (1) MY159546A (en)
WO (1) WO2010007980A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885333B1 (en) * 2010-09-03 2012-02-29 Jx日鉱日石金属株式会社 Ferromagnetic sputtering target
WO2012057087A1 (en) * 2010-10-26 2012-05-03 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
WO2013047328A1 (en) * 2011-09-28 2013-04-04 山陽特殊製鋼株式会社 Alloy used in soft-magnetic thin-film layer on perpendicular magnetic recording medium, sputtering-target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403418B2 (en) * 2008-09-22 2014-01-29 日立金属株式会社 Method for producing Co-Fe-Ni alloy sputtering target material
JP5917045B2 (en) * 2011-08-17 2016-05-11 山陽特殊製鋼株式会社 Alloy and sputtering target material for soft magnetic thin film layer in perpendicular magnetic recording medium
JP5778052B2 (en) * 2012-02-03 2015-09-16 山陽特殊製鋼株式会社 Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material
US20150034483A1 (en) * 2012-06-06 2015-02-05 Hitachi Metals, Ltd. Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD OF PRODUCING SAME
JP6161991B2 (en) * 2013-08-15 2017-07-12 山陽特殊製鋼株式会社 Fe-Co alloy sputtering target material
JP6405261B2 (en) * 2014-05-01 2018-10-17 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
TWI602940B (en) * 2014-06-11 2017-10-21 光洋應用材料科技股份有限公司 Soft-magnetic sputtering target and soft-magnetic sputtering material
CN113787189A (en) * 2021-11-16 2021-12-14 西安欧中材料科技有限公司 Steel spherical powder of die for additive manufacturing and recycling method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268906A (en) * 1988-09-02 1990-03-08 Matsushita Electric Ind Co Ltd Highly saturated flux density soft magnetic film and magnetic head
JP2006265654A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-B-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007284741A (en) * 2006-04-14 2007-11-01 Sanyo Special Steel Co Ltd Soft magnetic target material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054530A (en) * 1973-09-28 1977-10-18 Graham Magnetics, Inc. Iron-nickel-cobalt magnetic powder and tape prepared therefrom
US3909240A (en) * 1973-09-28 1975-09-30 Graham Magnetics Inc Method of producing acicular metal crystals
JP2007048790A (en) * 2005-08-05 2007-02-22 Sony Corp Storage element and memory
US7524570B2 (en) * 2005-10-13 2009-04-28 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording system and medium with high-moment corrosion-resistant “soft” underlayer (SUL)
JP4101836B2 (en) * 2005-12-26 2008-06-18 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2007250094A (en) * 2006-03-16 2007-09-27 Fujitsu Ltd Magnetic recording medium, manufacturing method of magnetic recording medium and magnetic recording device
JP2007273056A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Perpendicular magnetic recording medium and magnetic storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268906A (en) * 1988-09-02 1990-03-08 Matsushita Electric Ind Co Ltd Highly saturated flux density soft magnetic film and magnetic head
JP2006265654A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-B-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007284741A (en) * 2006-04-14 2007-11-01 Sanyo Special Steel Co Ltd Soft magnetic target material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885333B1 (en) * 2010-09-03 2012-02-29 Jx日鉱日石金属株式会社 Ferromagnetic sputtering target
WO2012029331A1 (en) * 2010-09-03 2012-03-08 Jx日鉱日石金属株式会社 Ferromagnetic material sputtering target
CN103038388A (en) * 2010-09-03 2013-04-10 吉坤日矿日石金属株式会社 Ferromagnetic material sputtering target
WO2012057087A1 (en) * 2010-10-26 2012-05-03 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP2012108997A (en) * 2010-10-26 2012-06-07 Sanyo Special Steel Co Ltd Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
CN103221568A (en) * 2010-10-26 2013-07-24 山阳特殊制钢株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
CN103221568B (en) * 2010-10-26 2016-03-23 山阳特殊制钢株式会社 Magnetic recording non-retentive alloy, sputtering target material and magnetic recording media
WO2013047328A1 (en) * 2011-09-28 2013-04-04 山陽特殊製鋼株式会社 Alloy used in soft-magnetic thin-film layer on perpendicular magnetic recording medium, sputtering-target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer
JP2013072114A (en) * 2011-09-28 2013-04-22 Sanyo Special Steel Co Ltd Alloy for soft-magnetic thin-film layer of perpendicular magnetic recording medium, sputtering target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer

Also Published As

Publication number Publication date
MY159546A (en) 2017-01-13
CN102149836B (en) 2014-03-19
JP2010018869A (en) 2010-01-28
JP5605787B2 (en) 2014-10-15
CN102149836A (en) 2011-08-10

Similar Documents

Publication Publication Date Title
WO2010007980A1 (en) Alloys for soft magnetic film layers in vertical magnetic recording media, sputtering target materials and manufacturing method therefore
JP5253781B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
JP5111835B2 (en) (CoFe) ZrNb / Ta / Hf-based target material and method for producing the same
JPWO2005012591A1 (en) Sputtering target and manufacturing method thereof
TWI478183B (en) A magneto-magnetic recording medium for magnetic recording and a sputtering target, and a magnetic recording medium
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
US9293166B2 (en) Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP5797398B2 (en) Ni-based alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP2012048767A (en) Soft magnetic alloy for magnetic recording medium, sputtering target material and magnetic recording medium
JP2010095794A (en) METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
TW200932935A (en) Ni-W-B-based sputtering target material for producing intermediate layer film in vertical magnetic recording medium, and thin film produced using the same
JP5650169B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
WO2010098290A1 (en) Sputtering target material, method for manufacturing sputtering target material, and thin film manufactured using the material and the method
TWI567206B (en) Soft magnetic film and soft magnetic film forming sputtering target
TWI823989B (en) Sputtering targets for soft magnetic layers of magnetic recording media and magnetic recording media
JP5937318B2 (en) Magnetic thin film
JP7274361B2 (en) Alloy for seed layer of magnetic recording media
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
JP6502672B2 (en) Alloy for seed layer of Ni-Cu based magnetic recording medium, sputtering target material and magnetic recording medium
WO2020066114A1 (en) Sputtering target and powder for producing sputtering target
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
JP2018172762A (en) Sputtering target, magnetic film, and production method of magnetic film
JP2013011018A (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording medium
JP2009263757A (en) SPUTTERING TARGET MATERIAL FOR MANUFACTURING Ni-W-P,Zr-BASED INTERMEDIATE LAYER FILM IN PERPENDICULAR MAGNETIC RECORDING MEDIUM AND THIN FILM MANUFACTURED BY USING THE TARGET MATERIAL

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135768.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797905

Country of ref document: EP

Kind code of ref document: A1