WO2010000036A1 - Wireless localisation system - Google Patents

Wireless localisation system Download PDF

Info

Publication number
WO2010000036A1
WO2010000036A1 PCT/AU2009/000863 AU2009000863W WO2010000036A1 WO 2010000036 A1 WO2010000036 A1 WO 2010000036A1 AU 2009000863 W AU2009000863 W AU 2009000863W WO 2010000036 A1 WO2010000036 A1 WO 2010000036A1
Authority
WO
WIPO (PCT)
Prior art keywords
nodes
location
anchor
node
range
Prior art date
Application number
PCT/AU2009/000863
Other languages
French (fr)
Inventor
Mark Hedley
David Eric Humphrey
Original Assignee
Commonwealth Scientific And Industrial Research Organisation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008903441A external-priority patent/AU2008903441A0/en
Application filed by Commonwealth Scientific And Industrial Research Organisation filed Critical Commonwealth Scientific And Industrial Research Organisation
Priority to US13/002,640 priority Critical patent/US20110188389A1/en
Priority to AU2009266425A priority patent/AU2009266425B2/en
Priority to EP09771853.0A priority patent/EP2307902B1/en
Publication of WO2010000036A1 publication Critical patent/WO2010000036A1/en
Priority to US15/255,011 priority patent/US10338194B2/en
Priority to US16/454,841 priority patent/US11061106B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/876Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/017Detecting state or type of motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0218Multipath in signal reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks

Definitions

  • the present invention relates generally to wireless localisation, and in particular to tracking objects using radio signals based on measurement of the time-of-arrival.
  • a wireless localisation system refers to any system that uses transmission of electromagnetic signals (e.g. radio frequency or microwave) to localise (estimate the location of) an object, in two dimensions or three dimensions.
  • Mobile objects can be localised and/or tracked by attaching a signal-enabled tag to the object and using a set of fixed 'anchor' nodes in the area to be monitored.
  • Inaccuracies in the location estimates arise due to (1) the properties of the radio propagation environment (e.g. multipath reflections and diffraction) and (2) limitations in the system hardware (e.g. lack of time/frequency synchronisation and propagation delays in hardware that are time varying). The latter issues are particularly severe in applications where the anchor nodes have wireless connections and must consist of low-cost hardware.
  • RSS received signal strength
  • TOA time-of-arrival
  • AOA angle-of-arrival
  • the most common TOA-based localisation system uses receiving anchor nodes that are hard- wired (cabled) to the processing hardware (e.g. US Patent 6,831,603). This greatly simplifies the system as a common clock can be shared, eliminating the problem of frequency and time synchronisation. In some situations, such as where rapid installation is required or the region between receiving nodes is inaccessible or inappropriate for cable installation, cabled connections between anchor nodes are impractical.
  • the frequency and time synchronisation problem is often handled by using two way (also known as round trip) localisation, and usually also by the use of a reference node (e.g. US Patent 2003/0092448).
  • This approach transmits a signal from one node to another, followed immediately by a return signal.
  • the time between receiving the forward message and transmitting the reverse message is often assumed to be constant, which is not the case in many practical systems.
  • the location of the mobile nodes is estimated in a process known as 'multilateration'.
  • the most common technique uses a minimum mean squared error (MMSE) approach. With this technique, 'bad' range data can severely affect the estimated locations of the mobile nodes.
  • MMSE minimum mean squared error
  • Another technique with a different assumption on the error distribution is based on Projections onto Convex Sets (POCS); however, conventional POCS algorithms do not handle well the case where there is a large intersection region. As with MMSE, the POCS approach is susceptible to bad data due to effects such as multipath reflections, radio interference and fading phenomena.
  • a method of computing a round trip delay between a pair of nodes comprising: transmitting at least one beacon at a known transmit time from each of said nodes; measuring the times-of-arrival of said beacons at other of said nodes; estimating a round trip delay between said nodes from said measured times-of-arrival and said transmit times; and correcting said round trip delay for either or both of a frequency offset between the nodes and relative motion between the nodes.
  • a method of estimating the location of a mobile object using a plurality of ranges between a node associated with said object and respective anchor nodes comprising: estimating, for a current said range, the location of said object and an error in said location estimate from said range excluding said current range; discarding the range whose exclusion gave the lowest error estimate, if said lowest error estimate is less than a threshold; repeating said estimating and said discarding until said lowest error estimate is not less than said threshold or the number of undiscarded ranges reaches a minimum number; and estimating the location of said object from the undiscarded ranges.
  • a method of estimating the location of a mobile object using a plurality of ranges between a node associated with said object and respective anchor nodes comprising: projecting a starting point onto a sequence of constraint sets in turn, each said constraint set being a circle centred on one said anchor node with radius equal to the corresponding range, to obtain an end point; increasing, if said end point is not less than said corresponding range from each said anchor node, at least one said range, and repeating said projecting and said increasing until said location is less than said corresponding range from each said anchor node, wherein said end point is said estimated location of said mobile object.
  • a method of time synchronising a plurality of anchor nodes comprising: measuring a plurality of trip delays of beacons transmitted between said anchor nodes; correcting said trip delays for propagation delays at said anchor nodes and frequency offsets between local clocks at respective said anchor nodes; and determining a time offset of each said local clock from said corrected trip delays.
  • a method of estimating the location of a mobile object using a plurality of anchor nodes comprising: synchronising said plurality of anchor nodes; measuring a plurality of times-of-arrival of beacons transmitted from said object to respective said anchor nodes; and estimating the location of said object relative to said anchor nodes using said measured times-of-arrival, corrected for a propagation delay at each said anchor node.
  • a system for estimating the location of one or more objects comprising: a plurality of anchor nodes; one or more mobile nodes coincident with respective said objects; beacons transmitted by some or all of said nodes according to a predetermined or dynamically determined schedule; and data capability to send measured times-of-arrival of said beacons, and transmit times of said beacons, to a location server adapted to compute the location of said objects.
  • a system for estimating the location of an object comprising: a plurality of anchor nodes adapted to communicate wirelessly with each other by either transmitting or receiving beacons; a mobile node coincident with said object, the mobile node being adapted to communicate wirelessly with said anchor nodes by either transmitting or receiving said beacons; a localisation server adapted to: receive measurements of time-of-arrival of said beacons at said nodes, select one of a plurality of localisation algorithms dependent on attributes of said anchor nodes and said mobile node, and estimate the location of said object using said measured times-of-arrival using said selected localisation algorithm.
  • the disclosed arrangements include a system for wireless localisation and tracking, and methods that can be used in the disclosed system or other systems.
  • the disclosed arrangements estimate object location using multilateration based on measured time-of- arrival (TOA) of radio signals.
  • TOA time-of- arrival
  • the disclosed arrangements enable more robust processing and hence more accurate location estimation compared to existing systems and methods in the face of bad data due to typical sources of error such as TOA measurement errors (e.g. due to multipath interference or propagation effects), unsynchronised clocks in nodes, time varying propagation delay through the node electronics, and object motion.
  • the disclosed system using only low-cost consumer electronic components, is capable of covering large areas (i.e. is not limited to direct radio communication links between all nodes) and is capable of rapid deployment as cabling is not required between any nodes.
  • Fig. 1 shows an example of a tracking system within which the disclosed arrangements may be practised
  • Fig. 2 is a flow diagram illustrating a general method of localisation according to the preferred embodiment
  • Fig. 3 is a schematic block diagram of a general purpose computer upon which disclosed methods can be practised;
  • Fig. 4a is an illustration of a beaconing node according to the preferred embodiment
  • Fig. 4b is an illustration of the format of a beacon according to the preferred embodiment
  • Fig. 5 is an illustration of an exemplary TDMA beacon schedule
  • Fig. 6 is an illustration of a location server according to the preferred embodiment
  • Fig. 7 is a flow diagram illustrating a method of estimating the location of mobile nodes according to the preferred embodiment
  • Fig. 8a illustrates a sequence of beacon transmissions
  • Fig. 8b illustrates the motion of a mobile node during the beacon transmissions of Fig. 8a
  • Fig. 9 illustrates the estimation of the location of a node according to the POCS algorithm in an example scenario
  • Appendix A contains pseudocode for a robust MMSE algorithm for estimating the location of a mobile node.
  • FIG. 1 shows an example of a tracking system 100 within which the disclosed arrangements may be practised, comprising one soccer player 110, several fixed anchor nodes, e.g. 120, surrounding the field, and a location server 130.
  • a tracking system 100 within which the disclosed arrangements may be practised, comprising one soccer player 110, several fixed anchor nodes, e.g. 120, surrounding the field, and a location server 130.
  • the anchor nodes 120 are wirelessly connected to the location server to simplify deployment (although where convenient a cable or fibre connection can be used and will usually improve system performance).
  • the disclosed tracking system comprises:
  • Mobile Nodes are devices attached to the objects to be tracked.
  • a mobile node contains a radio transceiver and computational resources, and optionally sensors or other sinks or sources of data.
  • Anchor Nodes These are devices scattered through the area being monitored at known locations, and communicate wirelessly with mobile nodes and other anchor nodes.
  • Each anchor node contains a radio transceiver and computational resources, and optionally sensors or other sinks or sources of data.
  • Location Server This is where the locations of the mobile nodes are estimated using data measured and transmitted by the nodes. The location estimates and other data are made available to other systems not described herein.
  • the location server is preferably a separate physical entity from the anchor nodes, but need not be, and the estimation computations could be performed in one of the anchor nodes, or even be distributed over multiple anchor nodes.
  • the wireless data communication is preferably performed using direct sequence spread spectrum signalling; however, it could be equally well performed using any radio communication protocol (e.g. the 802.11 family of standards).
  • Fig. 2 is a flow diagram illustrating a general method 200 of localisation according to the preferred embodiment.
  • step 210 certain nodes called beaconing nodes periodically transmit radio signals called beacons that are received by some other nodes called TOA reception nodes that are able to measure the TOA of the beacon.
  • the beacons contain a localisation signal designed for accurate measurement of TOA and an optional data payload. While the localisation signal could be a data symbol, better results are obtained using a specially designed localisation signal.
  • the mobile nodes may be beaconing nodes and/or TOA reception nodes, and likewise the anchor nodes may be beaconing nodes and/or TOA reception nodes. For example:
  • the mobile nodes are beaconing nodes and the anchor nodes are TOA reception nodes;
  • the mobile nodes are TOA reception nodes and the anchor nodes are beaconing nodes (this is similar to GPS);
  • both anchor nodes and mobile nodes are both beaconing nodes and TOA reception nodes.
  • a TDMA (time division multiple access) scheme is used for the transmission of the beacons such that only one beacon is sent in each time slot.
  • TDMA is superior to CDMA (code division multiple access) or FDMA (frequency division multiple access) as the former reduces the signal to noise ratio (SNR) at the receivers due to multiple simultaneous transmissions, reducing localisation accuracy, and the latter reduces bandwidth available for the localisation signal, again reducing localisation accuracy.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • the TOA reception nodes measure the TOA for each received beacon, and at step 230 the TOA reception nodes send the TOA data to the location server (preferably via the data payload in their own beacons, or alternatively via other means such as cable, particularly if a TOA reception node is not also a beaconing node).
  • the transmit time of beacons is also required, and beaconing nodes can send this to the location server as a data field in the beacon or by other means. There may be other data such as that related to system operation, for protocols, or from sensors, that is also sent to the location server.
  • the location server at step 240 applies a localisation algorithm to the received data to estimate the location of the mobile nodes.
  • Localisation is based on a single beacon transmission by a mobile node, and mobile nodes can be simpler than for round trip localisation as they only need to be beaconing nodes. Mobile nodes do not measure TOA, but still need to have a receiver for TDMA synchronisation. Anchor nodes only need to be TOA reception nodes for localisation, but will preferably also be beaconing nodes for time synchronisation amongst themselves and possibly measurement of their propagation delay.
  • Errors in the measured TOA can arise due to noise, propagation effects, interference or signal processing artefacts.
  • Each node has a local clock, and in general the node clocks are not time or frequency synchronised. Time synchronisation is not required for round trip localisation, but correction for frequency offset is still required.
  • a mobile node may be in motion during the localisation measurement. As discussed below, this is particularly relevant for round trip localisation.
  • a beaconing node 400 according to the preferred embodiment is illustrated in Fig. 4a.
  • the beaconing node 400 has digital electronics 430 to generate a beacon and a module 420 to convert the beacon to analog form for radio transmission using a radio transceiver 410 in step 210 of the method 200.
  • the beaconing node 400 also receives data at least to allow synchronisation of TDMA slots, so the data flow in the beaconing node 400 is bidirectional.
  • a beacon 450 comprising a header 460, a data field (payload) 470, and a TOA localisation signal 480
  • the TOA localisation signal 480 is specially designed to maximise the accuracy with which the TOA of the signal is measured by a TOA reception node.
  • a separate TOA localisation signal 480 is not used and instead a known signal pattern in the header 460 is used to measure the TOA.
  • the data field 470 is optional.
  • the beacons 450 are scheduled to minimise self- interference and hence maximise localisation accuracy.
  • the update rate of a mobile node's location estimate is limited to the rate at which that node transmits beacons.
  • Previous schemes for round trip localisation involved a beacon being sent to a node and a reply being immediately generated. For all nodes involved in the measurement (for time synchronisation, propagation delay measurement or mobile node localisation), there is a beacon sent from each node to each of the other nodes. By contrast, according to the disclosed arrangements for round trip localisation, each beaconing node transmits just one beacon per measurement.
  • the advantage is that the number of localisation signal transmissions is greatly reduced, which can reduce power consumption and/or increase the number of nodes the system can support. Under the disclosed arrangements, there can be large and variable time intervals between the transmissions of beacons between pairs of nodes. As described in detail below, this time interval is measured and adequately corrected for.
  • the preferred TDMA scheme 500 with an exemplary schedule, is illustrated in Fig. 5.
  • Time is divided into slots, e.g. 510, with a beacon being sent in each slot by the node corresponding to the slot label (Ml is mobile node 1, Al is anchor node 1, etc).
  • a slot can be used by plural nodes, provided the minimum radio link hop count between the nodes using the same slot is greater than two (hence not all nodes have the same schedule).
  • the slot size will generally be as small as possible, preferably adjustable between 1 ms and 10 ms.
  • the update rate of the beacons is determined by the localisation algorithm category.
  • all nodes should transmit at least at the minimum localisation update rate.
  • the mobile nodes For mobile transmit localisation, the mobile nodes should transmit at the minimum localisation update rate; however the anchor nodes should transmit at the required rate to maintain time synchronisation, which is in turn dependent upon the stability of the local oscillators in each node.
  • the slots are grouped in superframes, e.g. 520, as this simplifies the TDMA scheme; however, it is not necessary.
  • the schedule of each superframe is generally the same, except for dynamic behaviour in the network (e.g. mobile nodes moving in and out of range).
  • the scheduling of beacons into slots can be static or dynamic.
  • Static allocation in which the schedule is known in advance by all nodes, is simpler but does not allow slot reuse in multi-hop networks.
  • Dynamic allocation entails additional communication overhead, either mutually among the nodes according to a distributed algorithm, or between a scheduling controller (e.g. the location server) and the nodes.
  • Coarse time synchronisation is required between all nodes for the TDMA scheme; however, this only needs to be within a fraction of the slot duration (e.g. one percent, or 10 ⁇ s for 1 ms slots), which is readily achieved in nodes designed to measure TOA with high accuracy (typically better than 1 ns).
  • the synchronisation time reference is provided by one of the nodes either by fixed allocation or selection by the nodes themselves (the latter alternative providing robustness should the time reference node fail). This time synchronisation is too coarse to be of any assistance for localisation.
  • TOA reception nodes are adapted to receive a beacon, convert it to digital form, and process it to measure with high resolution the TOA of the beacon (step 220 of the method 200).
  • a TOA reception node also preferably uses wireless communication to transmit the TOA values to the location server (step 230 of the method 200).
  • the TOA data is sent to the location server in the data field 470 of the beacon format 450 shown in Fig. 4b.
  • 400 in Fig. 4a equally well represents a TOA reception node according to the preferred embodiment.
  • the measurement of the TOA is preferably carried out by a TOA reception node according to the method described in the PCT patent application no. PCT/AU2009/000647.
  • any technique for the measurement of TOA may alternatively be used.
  • a location server 600 according to the preferred embodiment is illustrated in Fig. 6.
  • the location server 600 comprises an analog radio receiver 610, an analog to digital converter 620, and digital processing electronics 630.
  • the location server 600 processes the received data from the TOA reception nodes and uses this information to estimate the location of mobile nodes (step 240).
  • the location server 600 may also perform other functions such as performing and/or reporting system diagnostics and recording and formatting sensor data from the system.
  • the digital processing electronics 630 on which the location estimation and any other processing are implemented, are therefore more powerful than the digital processing electronics 430 of either an anchor node or a beacon node.
  • the digital processing electronics 630 comprises the digital processing electronics 430 of an anchor node connected via a USB interface to a general purpose computer system 300 such as that shown in Fig. 3, wherein the processing of step 240 may be implemented as software, such as one or more application programs executable within the computer system 300.
  • the processing of step 240 is effected by instructions in the software that are carried out within the computer system 300.
  • the instructions may be formed as one or more code modules, each for performing one or more particular tasks.
  • the software may also be divided into two separate parts, in which a first part and the corresponding code modules performs the location estimation processing and a second part and the corresponding code modules manage an interface between the first part and other systems.
  • the software may be stored in a computer readable medium, including the storage devices described below, for example.
  • the software is loaded into the computer system 300 from the computer readable medium, and then executed by the computer system 300.
  • a computer readable medium having such software or computer program recorded on it is a computer program product.
  • the use of the computer program product in the computer system 300 preferably effects an advantageous apparatus for estimating the location of mobile nodes.
  • the computer system 300 is formed by a computer module 301, input devices such as a keyboard 302 and a mouse pointer device 303, and output devices including a printer 315, a display device 314 and loudspeakers 317.
  • An external Modulator-Demodulator (Modem) transceiver device 316 may be used by the computer module 301 for communicating to and from a communications network 320 via a connection 321.
  • the computer module 301 typically includes at least one processor unit 305, and a memory unit 306 for example formed from semiconductor random access memory (RAM) and read only memory (ROM).
  • the module 301 also includes a number of input/output (I/O) interfaces including an audio-video interface 307 that couples to the video display 314 and loudspeakers 317, an I/O interface 313 for the keyboard 302 and mouse 303 and optionally a joystick (not illustrated), and an interface 308 for the external modem 316 and printer 315.
  • the modem 316 may be incorporated within the computer module 301, for example within the interface 308.
  • the computer module 301 also has a local network interface 311 which, via a connection 323, permits coupling of the computer system 300 to a local computer network 322, known as a Local Area Network (LAN).
  • LAN Local Area Network
  • the local network 322 may also couple to the wide network 320 via a connection 324, which would typically include a so-called "firewall” device or similar functionality.
  • the interface 311 may be formed by an EthernetTM circuit card, a wireless BluetoothTM or an IEEE 802.11 wireless arrangement.
  • the interfaces 308 and 313 may afford both serial and parallel connectivity, the former typically being implemented according to the Universal Serial Bus (USB) standards and having corresponding USB connectors (not illustrated).
  • Storage devices 309 are provided and typically include a hard disk drive (HDD) 310. Other devices such as a floppy disk drive, a flash memory drive, and a magnetic tape drive (not illustrated) may also be used.
  • An optical disk drive 312 is typically provided to act as a non- volatile source of data. Portable memory devices, such optical disks (eg: CD-ROM, DVD), USB-RAM, and floppy disks for example may then be used as appropriate sources of data to the system 300.
  • the components 305, to 313 of the computer module 301 typically communicate via an interconnected bus 304 and in a manner which results in a conventional mode of operation of the computer system 300 known to those in the relevant art.
  • Examples of computers on which the described arrangements can be practised include IBM-PC's and compatibles, Sun Sparcstations, Apple MacTM or like computer systems evolved therefrom.
  • the application programs discussed above are resident on the hard disk drive 310 and read and controlled in execution by the processor 305. Intermediate storage of such programs and any data fetched from the networks 320 and 322 may be accomplished using the semiconductor memory 306, possibly in concert with the hard disk drive 310. In some instances, the application programs may be supplied to the user encoded on one or more CD-ROM and read via the corresponding drive 312, or alternatively may be read by the user from the networks 320 or 322. Still further, the software can also be loaded into the computer system 300 from other computer readable media.
  • Computer readable media refers to any storage medium that participates in providing instructions and/or data to the computer system 300 for execution and/or processing.
  • Examples of such media include floppy disks, magnetic tape, CD-ROM 5 a hard disk drive, a ROM or integrated circuit, a magneto-optical disk, or a computer readable card such as a PCMCIA card and the like, whether or not such devices are internal or external of the computer module 301.
  • Examples of computer readable transmission media that may also participate in the provision of instructions and/or data include radio or infra-red transmission channels as well as a network connection to another computer or networked device, and the Internet or Intranets including e-mail transmissions and information recorded on Websites and the like.
  • the second part of the application programs and the corresponding code modules mentioned above may be executed to implement one or more graphical user interfaces (GUIs) to be rendered or otherwise represented upon the display 314.
  • GUIs graphical user interfaces
  • a user of the computer system 300 and the application may manipulate the interface to provide controlling commands and/or input to the applications associated with the GUI(s).
  • the digital processing electronics 630 may alternatively be dedicated hardware such as one or more integrated circuits performing the functions or sub functions of the step 240.
  • Such dedicated hardware may include graphic processors, digital signal processors, or one or more microprocessors and associated memories with data interfaces (e.g. WLAN or USB or serial interface) but no user interface devices.
  • the digital processing electronics 430 of the beaconing / TOA reception node 400 is also preferably dedicated hardware of this kind.
  • the location server 600 can utilise round trip or mobile transmit localisation, depending on the specifics of the application.
  • An advantage of mobile transmit localisation for tracking objects moving at high velocity is that this approach only uses a single beacon, and is thus only affected by motion for the duration of the beacon (preferably about 0.5 ms).
  • the estimation requires all beacons to and from the mobile node in a superframe, which may be extended over a significant period of time (up to 100 ms where 20 slots of 5 ms are used). It is described below how the effect of constant velocity motion can be corrected for under round trip localisation.
  • a tradeoff in the choice of the localisation algorithm is that round trip localisation results are degraded by non-constant velocity motion over the superframe, while mobile transmit localisation results are degraded by errors in anchor node time synchronisation.
  • the location server 600 can implement multiple localisation algorithms simultaneously, as in the following exemplary scenarios:
  • the system may have more than one type of mobile node, one capable of measurement of TOA in real time (TOA reception node) and another not (beaconing node).
  • the former type is more accurate but is larger and has a shorter battery life. Both use the same beacon format 450; however, the latter type does not put the measured TOA values into the beacon data payload 470.
  • the location server detects from the received beacon whether the mobile node is a TOA reception node or not, and selects either round trip or mobile transmit localisation respectively.
  • a mobile node may not be capable of measuring TOA at the normal update rate, due to constraints in processing capability, but may be able to measure TOA at a reduced rate.
  • the location server uses mobile transmit localisation, but occasionally uses round trip localisation so that the propagation delay of the mobile node can be determined.
  • a mobile node may both a beaconing node and a TOA reception node, and with any change in data from the mobile node the location server 600 can select whether to use round trip or mobile transmit localisation. The selection could be made based on estimated mobile velocity, or it could be based on an estimate of the localisation accuracy for both algorithms as determined by the location server.
  • Fig. 7 is a flow diagram illustrating a method 700 according to the preferred embodiment of estimating the location of mobile nodes.
  • the main decisions in the method 700 are whether the propagation delay of the anchor nodes is known from prior calibration, and whether mobile transmit or round trip localisation is used.
  • round trip localisation with known anchor node propagation delay values there is the further choice of using a MMSE-based or POCS-based localisation algorithm. These choices may be made dynamically, each time the method 700 is executed, or in advance, in which case only the relevant portions of the method 700 need be implemented.
  • the steps of the method 700 are mostly carried out by the location server 600, except for TOA measurement steps 715, 752, 735, 770, and 775 which are done by beaconing nodes and TOA reception nodes 400, and the results sent to the location server 600, as shown by the method 200.
  • the method 700 starts at step 710 where it is determined whether the propagation delay of the anchor nodes is known from prior calibration. If not, the method 700 proceeds to step 715 at which the TOA at each anchor node from all other anchor nodes is measured. In step 720 the corrected round trip delay between each pair of anchor nodes is computed as described below. Step 725 follows, at which the propagation delay at each anchor node is computed as described below. Next, it is checked at step 730 whether round trip localisation is to be used.
  • step 735 measures the TOA at each anchor node from each mobile node.
  • Step 740 follows, at which the anchor nodes are time synchronised as described below.
  • the Pseudo-Range (see below) between all anchor and mobile nodes is then computed at step 745 as described below, after which at step 750 a robust MMSE-based Time Difference of Arrival (TDOA) algorithm described below is used to estimate the location of each mobile node.
  • TDOA Time Difference of Arrival
  • step 752 measures the TOA at each anchor node from each mobile node, and vice versa. Then at step 754, the method 700 computes the Corrected Round Trip Delay between each anchor node and each mobile node as described below. Step 756 follows, at which the Pseudo-Range between all anchor and mobile nodes is computed as described below. Finally at step 758 a robust MMSE-based TOA algorithm, described below, is used to estimate the location of each mobile node.
  • step 756 computes range rather than pseudo-range, and step 758 would use either a robust MMSE-based or a POCS-based TOA algorithm, to be described below, to estimate the location of each mobile node from the computed ranges.
  • the propagation delay at the mobile nodes is unlikely to be known as the propagation delay of the anchor nodes was initially unknown. The method 700 then concludes at step 795.
  • step 765 checks whether round trip localisation is to be used. If not, step 770 measures the TOA at each anchor node from all other anchor nodes and all mobile nodes. The method 700 then continues from step 740 as described above.
  • step 775 measures the TOA at each anchor node from each mobile node, and vice versa. Then at step 780, the method 700 computes the Corrected Round Trip Delay between each anchor node and each mobile node as in step 754. Step 785 follows, at which the range between all anchor and mobile nodes is computed (assuming the propagation delay at the mobile nodes is known, which is likely since the propagation delay at the anchor nodes is known). Finally at step 790 the robust MMSE- or POCS-based TOA algorithm is used to estimate the location of each mobile node, as in step 758.
  • step 785 computes Pseudo-Range rather than range, and step 790 can only use the robust MMSE- based TOA algorithm, as in step 758.
  • the method 700 then concludes at step 795. Round trip localisation
  • the two nodes are labelled as M (typically, but not necessarily, a mobile node) and B (an anchor node).
  • Node M transmits a beacon first, followed by node B after a delay of TMB determined by the beacon schedule (see Fig. 5). After a delay of T S F (the superframe length), this sequence is repeated, as illustrated in Fig. 8a.
  • the beacons are transmitted at times ti, ts, t$ and t ⁇ , and received at times f ⁇ , U * h and tg.
  • the difference between the transmit time and the receive time e.g.
  • t ⁇ - ti is the sum of the propagation delay through the transmitter electronics ( ⁇ '* where / can be M or B), the propagation time through the air ( d u Ic where d y is distance between the two nodes, c is speed of light, and / can be B or M), and the propagation delay through the receiver electronics ( ⁇ ' j ).
  • Time measurements are with respect to the local clock on the respective nodes.
  • a node can only measure its own transmit and receive times, so for example t% does not exist.
  • the mobile node may be moving, with a significant displacement occurring between the transmissions of the beacons from both nodes. This is illustrated in Fig. 8b where M 1 is the location of the mobile node at time % It can be assumed that the motion of the mobile node is negligible in the short time interval between transmission (tj) and reception (f ⁇ ) of a beacon.
  • iv is a vector between nodes i and j and
  • An estimate of the frequency difference between the pair of nodes can be made at node M as follows:
  • a m is the frequency offset of the local clocks of the node pair
  • ⁇ m is the Doppler frequency shift due to the radial component of the relative motion between the node pair.
  • the round trip delay measurement requires measurements in both directions between the pair of nodes.
  • the uncorrected round trip delay, using the first pair of beacons in Fig. 8a, is:
  • the quantity 2— — is the corrected round trip delay.
  • Equation (I) are directly determined from the measured data, and ⁇ m is known from the
  • beacon TDMA schedule if not, it can be readily estimated from the TOA data as follows:
  • the location of the mobile node (hence is unknown, and the propagation delay
  • ⁇ ,- for each node may be unknown.
  • corrected round trip delay measurements are first made between anchor nodes and mobile nodes (steps 754 and 780).
  • the use of round trip delay measurements for removing the requirement for time synchronisation is well known, but using the corrected round trip delay computed as below, the effects of frequency offset and relative motion can also be removed.
  • An important feature of this correction for motion and frequency offset is that it is applied locally to each node pair, and no global processing is required. Note that the motion is corrected to the time at which the mobile node transmits, hence all ranges between this mobile node and multiple anchor nodes are corrected to the same time, compensating for the effect of constant velocity motion.
  • the propagation delay AB of the anchor nodes is either known from prior calibration
  • round trip measurements between mobile nodes are not used, but these measurements may be used for other purposes, e.g. cooperative localisation.
  • corrected round trip delay 2 - 5 ⁇ (step 780 or 754) is T m -A M ⁇ A B - ⁇ m D M .
  • the c range between the pair of nodes is therefore computed (step 785 or 756) as:
  • the location of the mobile node is estimated (step 790 or 758).
  • the corrected round trip delay 2— mL + A M (step 754 or 780) is T m - A B - ⁇ m D M .
  • the c pseudo-range between the pair of nodes is therefore computed (step 756 or 785) as:
  • TDOA Time Difference of Arrival
  • MMSE Minimum Mean Square Error
  • Pre-f ⁇ ltering of the range data improves localisation accuracy by eliminating bad measurements prior to the localisation steps 758 and 790.
  • an improved estimate of the true range at any given time can be determined by a variety of filtering and interpolation operations. Applying these operations prior to estimation of the node location using either the POCS or MMSE approaches described below can result in improved estimation accuracy. Because these operations act on the range data before the localisation step, the result is quite different to applying a filter (such as a Kalman filter or non-linear filter) to the estimated locations.
  • a filter such as a Kalman filter or non-linear filter
  • any of a number of filtering operations can be applied to the range data, taking into account a priori information about the characteristics of the motion of the mobile node.
  • filtering may include for example linear filters (e.g. low pass filter and Kalman filter) or non-linear filters (e.g. median filter).
  • linear filters e.g. low pass filter and Kalman filter
  • non-linear filters e.g. median filter
  • a nonlinear filter which replaces infeasible measurements with a value extrapolated from past measurements can be used.
  • One embodiment of such a filter limits the maximum difference in range between the minimum range from of any of the previous 5 superframes and the range from the current superframe.
  • the MMSE cost function to estimate the mobile node location using the range measurements between a mobile node and K anchor nodes is
  • w is an optional weight that is preferably inversely proportional to the noise variance in the range measurement.
  • the locations x,- of the anchor nodes are known.
  • Finding the minimising argument of either cost function is a non-linear problem with many solution strategies.
  • An initial linear solution followed by one or more non-linear iterations using a Taylor expansion (usually less than five iterations are required) is preferable.
  • bad range measurements e.g. ones with a significant bias due to multipath
  • An algorithm for doing this is given by the pseudocode in Appendix A.
  • the location and the error in the location estimate are computed at line 5. If the error is less than a threshold, or the number of ranges is less than or equal to a minimum number, the "repeat" loop at line 4 terminates. Each range or pseudo-range measurement is then excluded in turn at line 9, which recomputes the location and the error in the location estimate with the remaining range or pseudo-range measurements.
  • the location error estimate is computed as the product of an estimate of the range error and the GDOP (geometric dilution of precision) and is given by:
  • Equation (9) is based on the simplifying assumption that the noise in the range (or pseudo-range) measurements is independent and identically distributed, which while not strictly true has been found to work very well with real data.
  • the GDOP is calculated as a Cramer-Rao lower bound (see e.g. Larsson, E.G., "Cramer-Rao bound analysis of distributed positioning in sensor networks," IEEE Signal Processing Letters, vol. 11, no. 3, pp. 334 - 337, March 2004). This calculation depends upon the location of the anchor nodes, and whether or not the mobile node propagation delay is being estimated. Round trip localisation using POCS
  • the other round-trip localisation approach is the Projection Onto Convex Sets (POCS) algorithm (step 758 or 790), where each constraint set is a circle centred on an anchor node with the radius given by the estimated range to that anchor node.
  • the POCS algorithm may be extended to 3 dimensional locations by taking the constraint sets as spheres rather than circles.
  • the POCS algorithm applies no penalty for the range to the mobile node being less than or equal to the estimated range.
  • the POCS algorithm gives good results when large positive errors are likely, such as in indoor environments where the direct path may be severely attenuated by intervening walls.
  • a point in the intersection of the constraint sets is found by an iterative process, illustrated in Fig. 9.
  • Constraints sets for three anchor nodes labelled Bl, B2 and B3 are shown as circles centred at each anchor node, with radii equal to the respective ranges from each anchor node.
  • a random starting point e.g. 900 or 910
  • the end point of the path is recorded.
  • the path 915 is taken by the starting point 910 as it is projected onto the constraint sets associated with Bl, B2 and B3 in turn.
  • a second path 905 is taken by a starting point 900 as it is projected onto the sets associated with B3, Bl and B2 in turn.
  • the intersection of the constraint sets may be empty. This can be detected by determining whether the end point is not inside all the constraint sets after a substantial number of iterations (preferably 20). There are several possible ways of dealing with this case. In one approach, the ranges to one or more of the anchor nodes are increased by a small amount and the constraint set intersection is recomputed. This is repeated until the intersection of the constraint sets is non-empty. In an alternative approach, a number of different starting points are chosen, and the POCS algorithm is run for a fixed number of iterations for each starting point, and the resulting end points are averaged. In yet another approach, only a single starting point is used, and the solution point is given by the average of the end points over a number of steps of the iterative algorithm.
  • intersection of the constraint sets may be empty, it may also be very large, indicated by determining whether multiple end points are widely dispersed. This can be dealt with using strategies similar to those for the case of an empty intersection discussed above.
  • the range to at least one of the anchor nodes is decreased and the POCS algorithm run again. This is repeated until the intersection region shrinks to a small size.
  • the end point for multiple different starting points may be averaged to estimate the centroid of the constraint set intersection region. In Fig. 9, the end point for two different starting points is shown. Taking the median of several such end points gives a point near the centroid of the shaded intersection region. The median is the location estimate for the mobile node.
  • step 750 the location of a mobile node is estimated based on a single beacon from the mobile node to each anchor node. This requires time synchronisation of the anchor nodes (step 740) at the time at which the beacon is sent. If the propagation delay of the mobile node is known, it is possible to time synchronise the mobile node to the other nodes and what is generally called a TOA localisation algorithm may be used.
  • TDOA Time Difference Of Arrival
  • the mobile node is time synchronised, given the transmit time from the mobile f ⁇ and a receive time at each anchor node i of t rx j the measured range between the node pairs is given by
  • a set of such measurements can be used as input for the robust MMSE algorithm based on range described above with reference to equation (7). Note that it is not usually convenient to calculate the separate transmit and receive delays, so this localisation algorithm is preferably not used.
  • the measured pseudo-range (step 745) is
  • step 725 using the corrected round trip delay 2— between anchor nodes calculated at c
  • step 720 the distance between the anchor nodes i andj is known, as are % •
  • equation (4) may be
  • the time offset between anchor nodes is continually changing due to the offset in node clock frequencies (which themselves vary over time). Hence, for the calculation of mobile node location using TDOA, the time offset between the anchor nodes needs to be determined at the time that the mobile node transmitted its beacon (step 740). Assume that anchor node i transmits a beacon at ⁇ 1 that is received by anchor node/ at ⁇ 2 . The difference between the measured receive and transmit times at time t ⁇ is
  • d tJ is known as the anchor node
  • ⁇ '* and ⁇ TM can be solved for, but are actually known from previous calibration or separate anchor node propagation delay calculation (step 725).
  • the value TM can be measured using the receive time of the beacon from the mobile node at node i, however a more robust measurement is to form a least squares estimate of all beacon transmit times over all measurements in a superframe. Variations
  • temporal filter e.g. Kalman or particle filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Disclosed is method of computing a round trip delay between a pair of nodes, the method comprising transmitting at least one beacon at a known transmit time from each of the nodes; measuring the times-of- arrival of the beacons at other of the nodes; and estimating a round trip delay between the nodes from the measured times-of-arrival and the transmit times; and correcting the round trip delay for either or both of a frequency offset between the nodes and relative motion between the nodes.

Description

WIRELESS LOCALISATION SYSTEM Field of the Invention
The present invention relates generally to wireless localisation, and in particular to tracking objects using radio signals based on measurement of the time-of-arrival.
Background
There are many applications in which it is desirable to track or locate objects or people, such as: tracking athletes for training or providing event information in real time; tracking emergency services or military personnel in buildings and urban environments; tracking staff, patients, and equipment in hospitals and nursing homes; and tracking staff and equipment in industrial, hazardous or mining environments for safety and automation.
A wireless localisation system refers to any system that uses transmission of electromagnetic signals (e.g. radio frequency or microwave) to localise (estimate the location of) an object, in two dimensions or three dimensions. Mobile objects can be localised and/or tracked by attaching a signal-enabled tag to the object and using a set of fixed 'anchor' nodes in the area to be monitored. Inaccuracies in the location estimates arise due to (1) the properties of the radio propagation environment (e.g. multipath reflections and diffraction) and (2) limitations in the system hardware (e.g. lack of time/frequency synchronisation and propagation delays in hardware that are time varying). The latter issues are particularly severe in applications where the anchor nodes have wireless connections and must consist of low-cost hardware.
There are numerous systems for wireless localisation of objects or people. Optical, infra-red and ultrasonic localisation do not work through walls. Amongst radio localisation systems, the various techniques rely on measurement of received signal strength (RSS)5 time-of-arrival (TOA), and/or angle-of-arrival (AOA). It is well known that in difficult radio propagation environments, RSS techniques have poor accuracy. AOA techniques require expensive hardware to determine the direction of arrival, and may perform poorly in multipath environments where reflections arrive from many directions. A common TOA-based technique is satellite navigation (e.g. GPS); however, this is not possible in indoor environments or even in outdoor environments where the accuracy is significantly degraded by multipath signals (e.g. urban canyons).
The most common TOA-based localisation system uses receiving anchor nodes that are hard- wired (cabled) to the processing hardware (e.g. US Patent 6,831,603). This greatly simplifies the system as a common clock can be shared, eliminating the problem of frequency and time synchronisation. In some situations, such as where rapid installation is required or the region between receiving nodes is inaccessible or inappropriate for cable installation, cabled connections between anchor nodes are impractical.
Where there is wireless connection between anchor nodes, the frequency and time synchronisation problem is often handled by using two way (also known as round trip) localisation, and usually also by the use of a reference node (e.g. US Patent 2003/0092448). This approach transmits a signal from one node to another, followed immediately by a return signal. The time between receiving the forward message and transmitting the reverse message is often assumed to be constant, which is not the case in many practical systems.
Once the distance or 'range' between each mobile node and the anchor nodes has been determined, the location of the mobile nodes is estimated in a process known as 'multilateration'. The most common technique uses a minimum mean squared error (MMSE) approach. With this technique, 'bad' range data can severely affect the estimated locations of the mobile nodes. Another technique with a different assumption on the error distribution is based on Projections onto Convex Sets (POCS); however, conventional POCS algorithms do not handle well the case where there is a large intersection region. As with MMSE, the POCS approach is susceptible to bad data due to effects such as multipath reflections, radio interference and fading phenomena.
Summary
It is an object of the present invention to substantially overcome, or at least ameliorate, one or more disadvantages of existing arrangements.
According to a first aspect of the present disclosure, there is provided a method of computing a round trip delay between a pair of nodes, the method comprising: transmitting at least one beacon at a known transmit time from each of said nodes; measuring the times-of-arrival of said beacons at other of said nodes; estimating a round trip delay between said nodes from said measured times-of-arrival and said transmit times; and correcting said round trip delay for either or both of a frequency offset between the nodes and relative motion between the nodes.
According to another aspect of the present disclosure, there is provided a method of estimating the location of a mobile object using a plurality of ranges between a node associated with said object and respective anchor nodes, the method comprising: estimating, for a current said range, the location of said object and an error in said location estimate from said range excluding said current range; discarding the range whose exclusion gave the lowest error estimate, if said lowest error estimate is less than a threshold; repeating said estimating and said discarding until said lowest error estimate is not less than said threshold or the number of undiscarded ranges reaches a minimum number; and estimating the location of said object from the undiscarded ranges.
According to another aspect of the present disclosure, there is provided a method of estimating the location of a mobile object using a plurality of ranges between a node associated with said object and respective anchor nodes, the method comprising: projecting a starting point onto a sequence of constraint sets in turn, each said constraint set being a circle centred on one said anchor node with radius equal to the corresponding range, to obtain an end point; increasing, if said end point is not less than said corresponding range from each said anchor node, at least one said range, and repeating said projecting and said increasing until said location is less than said corresponding range from each said anchor node, wherein said end point is said estimated location of said mobile object.
According to another aspect of the present disclosure, there is provided a method of time synchronising a plurality of anchor nodes, the method comprising: measuring a plurality of trip delays of beacons transmitted between said anchor nodes; correcting said trip delays for propagation delays at said anchor nodes and frequency offsets between local clocks at respective said anchor nodes; and determining a time offset of each said local clock from said corrected trip delays. According to another aspect of the present disclosure, there is provided a method of estimating the location of a mobile object using a plurality of anchor nodes, the method comprising: synchronising said plurality of anchor nodes; measuring a plurality of times-of-arrival of beacons transmitted from said object to respective said anchor nodes; and estimating the location of said object relative to said anchor nodes using said measured times-of-arrival, corrected for a propagation delay at each said anchor node.
According to another aspect of the present disclosure, there is provided a system for estimating the location of one or more objects, the system comprising: a plurality of anchor nodes; one or more mobile nodes coincident with respective said objects; beacons transmitted by some or all of said nodes according to a predetermined or dynamically determined schedule; and data capability to send measured times-of-arrival of said beacons, and transmit times of said beacons, to a location server adapted to compute the location of said objects.
According to another aspect of the present disclosure, there is provided a system for estimating the location of an object, the system comprising: a plurality of anchor nodes adapted to communicate wirelessly with each other by either transmitting or receiving beacons; a mobile node coincident with said object, the mobile node being adapted to communicate wirelessly with said anchor nodes by either transmitting or receiving said beacons; a localisation server adapted to: receive measurements of time-of-arrival of said beacons at said nodes, select one of a plurality of localisation algorithms dependent on attributes of said anchor nodes and said mobile node, and estimate the location of said object using said measured times-of-arrival using said selected localisation algorithm.
The disclosed arrangements include a system for wireless localisation and tracking, and methods that can be used in the disclosed system or other systems. The disclosed arrangements estimate object location using multilateration based on measured time-of- arrival (TOA) of radio signals. The disclosed arrangements enable more robust processing and hence more accurate location estimation compared to existing systems and methods in the face of bad data due to typical sources of error such as TOA measurement errors (e.g. due to multipath interference or propagation effects), unsynchronised clocks in nodes, time varying propagation delay through the node electronics, and object motion. The disclosed system, using only low-cost consumer electronic components, is capable of covering large areas (i.e. is not limited to direct radio communication links between all nodes) and is capable of rapid deployment as cabling is not required between any nodes.
Brief Description of the Drawings
One or more embodiments of the present invention will now be described with reference to the drawings and appendices, in which:
Fig. 1 shows an example of a tracking system within which the disclosed arrangements may be practised;
Fig. 2 is a flow diagram illustrating a general method of localisation according to the preferred embodiment; Fig. 3 is a schematic block diagram of a general purpose computer upon which disclosed methods can be practised;
Fig. 4a is an illustration of a beaconing node according to the preferred embodiment;
Fig. 4b is an illustration of the format of a beacon according to the preferred embodiment;
Fig. 5 is an illustration of an exemplary TDMA beacon schedule;
Fig. 6 is an illustration of a location server according to the preferred embodiment;
Fig. 7 is a flow diagram illustrating a method of estimating the location of mobile nodes according to the preferred embodiment;
Fig. 8a illustrates a sequence of beacon transmissions;
Fig. 8b illustrates the motion of a mobile node during the beacon transmissions of Fig. 8a;
Fig. 9 illustrates the estimation of the location of a node according to the POCS algorithm in an example scenario; and
Appendix A contains pseudocode for a robust MMSE algorithm for estimating the location of a mobile node.
Detailed Description including Best Mode
Where reference is made in any one or more of the accompanying drawings to steps and/or features, which have the same reference numerals, those steps and/or features have for the purposes of this description the same function(s) or operation(s), unless the contrary intention appears.
One application for wireless tracking is in sports such as soccer. Fig. 1 shows an example of a tracking system 100 within which the disclosed arrangements may be practised, comprising one soccer player 110, several fixed anchor nodes, e.g. 120, surrounding the field, and a location server 130. Through the exchange of radio signals between the player 110 and the anchor nodes 120, and the exchange of data between the anchor nodes 120 and the location server 130, it is possible for the location of the player 110 to be estimated at the location server 130. A key feature of the system 100 is that the anchor nodes 120 are wirelessly connected to the location server to simplify deployment (although where convenient a cable or fibre connection can be used and will usually improve system performance).
There are many other applications for such a system, including tracking and communicating with emergency services personnel and hospital staff and patients. Although the present disclosure refers to a single hop network as shown in Fig. 1, the disclosed arrangements are readily extendable to other network topologies including multi- hop and mesh.
The disclosed tracking system comprises:
• Mobile Nodes (or tags): These are devices attached to the objects to be tracked. A mobile node contains a radio transceiver and computational resources, and optionally sensors or other sinks or sources of data.
• Anchor Nodes: These are devices scattered through the area being monitored at known locations, and communicate wirelessly with mobile nodes and other anchor nodes. Each anchor node contains a radio transceiver and computational resources, and optionally sensors or other sinks or sources of data.
• Location Server: This is where the locations of the mobile nodes are estimated using data measured and transmitted by the nodes. The location estimates and other data are made available to other systems not described herein. The location server is preferably a separate physical entity from the anchor nodes, but need not be, and the estimation computations could be performed in one of the anchor nodes, or even be distributed over multiple anchor nodes.
The wireless data communication is preferably performed using direct sequence spread spectrum signalling; however, it could be equally well performed using any radio communication protocol (e.g. the 802.11 family of standards).
Fig. 2 is a flow diagram illustrating a general method 200 of localisation according to the preferred embodiment. In step 210 certain nodes called beaconing nodes periodically transmit radio signals called beacons that are received by some other nodes called TOA reception nodes that are able to measure the TOA of the beacon. The beacons contain a localisation signal designed for accurate measurement of TOA and an optional data payload. While the localisation signal could be a data symbol, better results are obtained using a specially designed localisation signal. Depending upon the application, the hardware capability, and the choice of localisation algorithm, the mobile nodes may be beaconing nodes and/or TOA reception nodes, and likewise the anchor nodes may be beaconing nodes and/or TOA reception nodes. For example:
• for tracking, the mobile nodes are beaconing nodes and the anchor nodes are TOA reception nodes;
• for navigation, in which the mobile nodes need to estimate their own location, the mobile nodes are TOA reception nodes and the anchor nodes are beaconing nodes (this is similar to GPS);
• for round trip localisation, both anchor nodes and mobile nodes are both beaconing nodes and TOA reception nodes. In the disclosed arrangements, a TDMA (time division multiple access) scheme is used for the transmission of the beacons such that only one beacon is sent in each time slot. TDMA is superior to CDMA (code division multiple access) or FDMA (frequency division multiple access) as the former reduces the signal to noise ratio (SNR) at the receivers due to multiple simultaneous transmissions, reducing localisation accuracy, and the latter reduces bandwidth available for the localisation signal, again reducing localisation accuracy.
At step 220 of the method 200, the TOA reception nodes measure the TOA for each received beacon, and at step 230 the TOA reception nodes send the TOA data to the location server (preferably via the data payload in their own beacons, or alternatively via other means such as cable, particularly if a TOA reception node is not also a beaconing node). For some localisation algorithms, the transmit time of beacons is also required, and beaconing nodes can send this to the location server as a data field in the beacon or by other means. There may be other data such as that related to system operation, for protocols, or from sensors, that is also sent to the location server. The location server at step 240 applies a localisation algorithm to the received data to estimate the location of the mobile nodes.
There are three main categories of localisation algorithm:
• Round Trip Localisation: Based on bidirectional beacon transmission between pairs of nodes (mobile and anchor): eliminates the requirement for time synchronisation, but requires both mobile and anchor nodes to be both beaconing and TOA reception nodes.
• Mobile Transmit Localisation: Localisation is based on a single beacon transmission by a mobile node, and mobile nodes can be simpler than for round trip localisation as they only need to be beaconing nodes. Mobile nodes do not measure TOA, but still need to have a receiver for TDMA synchronisation. Anchor nodes only need to be TOA reception nodes for localisation, but will preferably also be beaconing nodes for time synchronisation amongst themselves and possibly measurement of their propagation delay.
• Mobile Receive Localisation: As with GPS, it is possible for the anchor nodes to be beaconing nodes and the mobile nodes to be TOA reception nodes. This category is generally inferior to the previous two localisation algorithm categories, so will not be further described below.
When using wireless localisation and tracking, there are a number of factors that adversely affect the accuracy of the estimation of the location of the mobile nodes, some of which are only relevant for particular localisation algorithms or circumstances:
• Errors in the measured TOA can arise due to noise, propagation effects, interference or signal processing artefacts.
• Each node has a local clock, and in general the node clocks are not time or frequency synchronised. Time synchronisation is not required for round trip localisation, but correction for frequency offset is still required.
• There is a propagation delay of radio signals through the electronics at both the transmitter and receiver nodes. This can be larger than the propagation delay of the radio signals over the air between nodes and must be corrected for.
• A mobile node may be in motion during the localisation measurement. As discussed below, this is particularly relevant for round trip localisation.
A beaconing node 400 according to the preferred embodiment is illustrated in Fig. 4a. The beaconing node 400 has digital electronics 430 to generate a beacon and a module 420 to convert the beacon to analog form for radio transmission using a radio transceiver 410 in step 210 of the method 200. The beaconing node 400 also receives data at least to allow synchronisation of TDMA slots, so the data flow in the beaconing node 400 is bidirectional.
The format of a beacon 450 according to the preferred embodiment, comprising a header 460, a data field (payload) 470, and a TOA localisation signal 480, is illustrated in Fig. 4b. The TOA localisation signal 480 is specially designed to maximise the accuracy with which the TOA of the signal is measured by a TOA reception node. In another embodiment, a separate TOA localisation signal 480 is not used and instead a known signal pattern in the header 460 is used to measure the TOA. The data field 470 is optional.
In the preferred embodiment, the beacons 450 are scheduled to minimise self- interference and hence maximise localisation accuracy. The update rate of a mobile node's location estimate is limited to the rate at which that node transmits beacons.
Previous schemes for round trip localisation involved a beacon being sent to a node and a reply being immediately generated. For all nodes involved in the measurement (for time synchronisation, propagation delay measurement or mobile node localisation), there is a beacon sent from each node to each of the other nodes. By contrast, according to the disclosed arrangements for round trip localisation, each beaconing node transmits just one beacon per measurement. The advantage is that the number of localisation signal transmissions is greatly reduced, which can reduce power consumption and/or increase the number of nodes the system can support. Under the disclosed arrangements, there can be large and variable time intervals between the transmissions of beacons between pairs of nodes. As described in detail below, this time interval is measured and adequately corrected for. The preferred TDMA scheme 500, with an exemplary schedule, is illustrated in Fig. 5. Time is divided into slots, e.g. 510, with a beacon being sent in each slot by the node corresponding to the slot label (Ml is mobile node 1, Al is anchor node 1, etc). Where the nodes are distributed over a sufficiently large area to form a multi-hop network, a slot can be used by plural nodes, provided the minimum radio link hop count between the nodes using the same slot is greater than two (hence not all nodes have the same schedule). The slot size will generally be as small as possible, preferably adjustable between 1 ms and 10 ms. The update rate of the beacons is determined by the localisation algorithm category. For round trip localisation, all nodes should transmit at least at the minimum localisation update rate. For mobile transmit localisation, the mobile nodes should transmit at the minimum localisation update rate; however the anchor nodes should transmit at the required rate to maintain time synchronisation, which is in turn dependent upon the stability of the local oscillators in each node.
In Fig. 5, the slots are grouped in superframes, e.g. 520, as this simplifies the TDMA scheme; however, it is not necessary. At each node, the schedule of each superframe is generally the same, except for dynamic behaviour in the network (e.g. mobile nodes moving in and out of range). The scheduling of beacons into slots can be static or dynamic. Static allocation, in which the schedule is known in advance by all nodes, is simpler but does not allow slot reuse in multi-hop networks. Dynamic allocation entails additional communication overhead, either mutually among the nodes according to a distributed algorithm, or between a scheduling controller (e.g. the location server) and the nodes.
Coarse time synchronisation is required between all nodes for the TDMA scheme; however, this only needs to be within a fraction of the slot duration (e.g. one percent, or 10 μs for 1 ms slots), which is readily achieved in nodes designed to measure TOA with high accuracy (typically better than 1 ns). The synchronisation time reference is provided by one of the nodes either by fixed allocation or selection by the nodes themselves (the latter alternative providing robustness should the time reference node fail). This time synchronisation is too coarse to be of any assistance for localisation.
TOA reception nodes are adapted to receive a beacon, convert it to digital form, and process it to measure with high resolution the TOA of the beacon (step 220 of the method 200). A TOA reception node also preferably uses wireless communication to transmit the TOA values to the location server (step 230 of the method 200). In the preferred embodiment, the TOA data is sent to the location server in the data field 470 of the beacon format 450 shown in Fig. 4b. Thus 400 in Fig. 4a equally well represents a TOA reception node according to the preferred embodiment. However, there are greater requirements on the performance of TOA reception nodes compared to beaconing nodes in two ways. Firstly, the processing capabilities required for measuring the TOA are substantially greater than that required for generation of beacons. Secondly, a TOA reception node should have a receiver with greater sensitivity and linearity for high accuracy measurement of TOA than is required just for data reception.
The measurement of the TOA (step 220) is preferably carried out by a TOA reception node according to the method described in the PCT patent application no. PCT/AU2009/000647. However, any technique for the measurement of TOA may alternatively be used.
A location server 600 according to the preferred embodiment is illustrated in Fig. 6. The location server 600 comprises an analog radio receiver 610, an analog to digital converter 620, and digital processing electronics 630. The location server 600 processes the received data from the TOA reception nodes and uses this information to estimate the location of mobile nodes (step 240). The location server 600 may also perform other functions such as performing and/or reporting system diagnostics and recording and formatting sensor data from the system. The digital processing electronics 630, on which the location estimation and any other processing are implemented, are therefore more powerful than the digital processing electronics 430 of either an anchor node or a beacon node.
In one embodiment, the digital processing electronics 630 comprises the digital processing electronics 430 of an anchor node connected via a USB interface to a general purpose computer system 300 such as that shown in Fig. 3, wherein the processing of step 240 may be implemented as software, such as one or more application programs executable within the computer system 300. In particular, the processing of step 240 is effected by instructions in the software that are carried out within the computer system 300. The instructions may be formed as one or more code modules, each for performing one or more particular tasks. The software may also be divided into two separate parts, in which a first part and the corresponding code modules performs the location estimation processing and a second part and the corresponding code modules manage an interface between the first part and other systems. The software may be stored in a computer readable medium, including the storage devices described below, for example. The software is loaded into the computer system 300 from the computer readable medium, and then executed by the computer system 300. A computer readable medium having such software or computer program recorded on it is a computer program product. The use of the computer program product in the computer system 300 preferably effects an advantageous apparatus for estimating the location of mobile nodes. As seen in Fig. 3, the computer system 300 is formed by a computer module 301, input devices such as a keyboard 302 and a mouse pointer device 303, and output devices including a printer 315, a display device 314 and loudspeakers 317. An external Modulator-Demodulator (Modem) transceiver device 316 may be used by the computer module 301 for communicating to and from a communications network 320 via a connection 321.
The computer module 301 typically includes at least one processor unit 305, and a memory unit 306 for example formed from semiconductor random access memory (RAM) and read only memory (ROM). The module 301 also includes a number of input/output (I/O) interfaces including an audio-video interface 307 that couples to the video display 314 and loudspeakers 317, an I/O interface 313 for the keyboard 302 and mouse 303 and optionally a joystick (not illustrated), and an interface 308 for the external modem 316 and printer 315. In some implementations, the modem 316 may be incorporated within the computer module 301, for example within the interface 308. The computer module 301 also has a local network interface 311 which, via a connection 323, permits coupling of the computer system 300 to a local computer network 322, known as a Local Area Network (LAN). As also illustrated, the local network 322 may also couple to the wide network 320 via a connection 324, which would typically include a so-called "firewall" device or similar functionality. The interface 311 may be formed by an Ethernet™ circuit card, a wireless Bluetooth™ or an IEEE 802.11 wireless arrangement.
The interfaces 308 and 313 may afford both serial and parallel connectivity, the former typically being implemented according to the Universal Serial Bus (USB) standards and having corresponding USB connectors (not illustrated). Storage devices 309 are provided and typically include a hard disk drive (HDD) 310. Other devices such as a floppy disk drive, a flash memory drive, and a magnetic tape drive (not illustrated) may also be used. An optical disk drive 312 is typically provided to act as a non- volatile source of data. Portable memory devices, such optical disks (eg: CD-ROM, DVD), USB-RAM, and floppy disks for example may then be used as appropriate sources of data to the system 300.
The components 305, to 313 of the computer module 301 typically communicate via an interconnected bus 304 and in a manner which results in a conventional mode of operation of the computer system 300 known to those in the relevant art. Examples of computers on which the described arrangements can be practised include IBM-PC's and compatibles, Sun Sparcstations, Apple Mac™ or like computer systems evolved therefrom.
Typically, the application programs discussed above are resident on the hard disk drive 310 and read and controlled in execution by the processor 305. Intermediate storage of such programs and any data fetched from the networks 320 and 322 may be accomplished using the semiconductor memory 306, possibly in concert with the hard disk drive 310. In some instances, the application programs may be supplied to the user encoded on one or more CD-ROM and read via the corresponding drive 312, or alternatively may be read by the user from the networks 320 or 322. Still further, the software can also be loaded into the computer system 300 from other computer readable media. Computer readable media refers to any storage medium that participates in providing instructions and/or data to the computer system 300 for execution and/or processing. Examples of such media include floppy disks, magnetic tape, CD-ROM5 a hard disk drive, a ROM or integrated circuit, a magneto-optical disk, or a computer readable card such as a PCMCIA card and the like, whether or not such devices are internal or external of the computer module 301. Examples of computer readable transmission media that may also participate in the provision of instructions and/or data include radio or infra-red transmission channels as well as a network connection to another computer or networked device, and the Internet or Intranets including e-mail transmissions and information recorded on Websites and the like.
The second part of the application programs and the corresponding code modules mentioned above may be executed to implement one or more graphical user interfaces (GUIs) to be rendered or otherwise represented upon the display 314. Through manipulation of the keyboard 302 and the mouse 303, a user of the computer system 300 and the application may manipulate the interface to provide controlling commands and/or input to the applications associated with the GUI(s).
The digital processing electronics 630 may alternatively be dedicated hardware such as one or more integrated circuits performing the functions or sub functions of the step 240. Such dedicated hardware may include graphic processors, digital signal processors, or one or more microprocessors and associated memories with data interfaces (e.g. WLAN or USB or serial interface) but no user interface devices. The digital processing electronics 430 of the beaconing / TOA reception node 400 is also preferably dedicated hardware of this kind.
To perform the location estimation of step 240, the location server 600 can utilise round trip or mobile transmit localisation, depending on the specifics of the application. An advantage of mobile transmit localisation for tracking objects moving at high velocity is that this approach only uses a single beacon, and is thus only affected by motion for the duration of the beacon (preferably about 0.5 ms). For round trip localisation, the estimation requires all beacons to and from the mobile node in a superframe, which may be extended over a significant period of time (up to 100 ms where 20 slots of 5 ms are used). It is described below how the effect of constant velocity motion can be corrected for under round trip localisation. A tradeoff in the choice of the localisation algorithm is that round trip localisation results are degraded by non-constant velocity motion over the superframe, while mobile transmit localisation results are degraded by errors in anchor node time synchronisation.
Factors such as mobile node velocity and hardware constraints determine the selection of the localisation algorithm. The location server 600 can implement multiple localisation algorithms simultaneously, as in the following exemplary scenarios:
• The system may have more than one type of mobile node, one capable of measurement of TOA in real time (TOA reception node) and another not (beaconing node). The former type is more accurate but is larger and has a shorter battery life. Both use the same beacon format 450; however, the latter type does not put the measured TOA values into the beacon data payload 470. The location server detects from the received beacon whether the mobile node is a TOA reception node or not, and selects either round trip or mobile transmit localisation respectively.
• A mobile node may not be capable of measuring TOA at the normal update rate, due to constraints in processing capability, but may be able to measure TOA at a reduced rate. In this case the location server uses mobile transmit localisation, but occasionally uses round trip localisation so that the propagation delay of the mobile node can be determined.
• A mobile node may both a beaconing node and a TOA reception node, and with any change in data from the mobile node the location server 600 can select whether to use round trip or mobile transmit localisation. The selection could be made based on estimated mobile velocity, or it could be based on an estimate of the localisation accuracy for both algorithms as determined by the location server.
The following sections describe in detail methods for localisation and tracking of mobile nodes based on round trip localisation and mobile transmit localisation. Fig. 7 is a flow diagram illustrating a method 700 according to the preferred embodiment of estimating the location of mobile nodes. The main decisions in the method 700 are whether the propagation delay of the anchor nodes is known from prior calibration, and whether mobile transmit or round trip localisation is used. In the case of round trip localisation with known anchor node propagation delay values, there is the further choice of using a MMSE-based or POCS-based localisation algorithm. These choices may be made dynamically, each time the method 700 is executed, or in advance, in which case only the relevant portions of the method 700 need be implemented.
The steps of the method 700 are mostly carried out by the location server 600, except for TOA measurement steps 715, 752, 735, 770, and 775 which are done by beaconing nodes and TOA reception nodes 400, and the results sent to the location server 600, as shown by the method 200. The method 700 starts at step 710 where it is determined whether the propagation delay of the anchor nodes is known from prior calibration. If not, the method 700 proceeds to step 715 at which the TOA at each anchor node from all other anchor nodes is measured. In step 720 the corrected round trip delay between each pair of anchor nodes is computed as described below. Step 725 follows, at which the propagation delay at each anchor node is computed as described below. Next, it is checked at step 730 whether round trip localisation is to be used. If not, step 735 measures the TOA at each anchor node from each mobile node. Step 740 follows, at which the anchor nodes are time synchronised as described below. The Pseudo-Range (see below) between all anchor and mobile nodes is then computed at step 745 as described below, after which at step 750 a robust MMSE-based Time Difference of Arrival (TDOA) algorithm described below is used to estimate the location of each mobile node. The method 700 then concludes at step 795.
If round trip localisation is to be used in the case where anchor node propagation delays were not known from prior calibration (but were instead computed in steps 715 to 725), step 752 measures the TOA at each anchor node from each mobile node, and vice versa. Then at step 754, the method 700 computes the Corrected Round Trip Delay between each anchor node and each mobile node as described below. Step 756 follows, at which the Pseudo-Range between all anchor and mobile nodes is computed as described below. Finally at step 758 a robust MMSE-based TOA algorithm, described below, is used to estimate the location of each mobile node. If the propagation delay at the mobile nodes is known, step 756 computes range rather than pseudo-range, and step 758 would use either a robust MMSE-based or a POCS-based TOA algorithm, to be described below, to estimate the location of each mobile node from the computed ranges. However, the propagation delay at the mobile nodes is unlikely to be known as the propagation delay of the anchor nodes was initially unknown. The method 700 then concludes at step 795.
In the case where the propagation delay of the anchor nodes is known, step 765 checks whether round trip localisation is to be used. If not, step 770 measures the TOA at each anchor node from all other anchor nodes and all mobile nodes. The method 700 then continues from step 740 as described above.
If round trip localisation is to be used, step 775 measures the TOA at each anchor node from each mobile node, and vice versa. Then at step 780, the method 700 computes the Corrected Round Trip Delay between each anchor node and each mobile node as in step 754. Step 785 follows, at which the range between all anchor and mobile nodes is computed (assuming the propagation delay at the mobile nodes is known, which is likely since the propagation delay at the anchor nodes is known). Finally at step 790 the robust MMSE- or POCS-based TOA algorithm is used to estimate the location of each mobile node, as in step 758. If the propagation delay at the mobile nodes is unknown, step 785 computes Pseudo-Range rather than range, and step 790 can only use the robust MMSE- based TOA algorithm, as in step 758. The method 700 then concludes at step 795. Round trip localisation
Next, a method will be described for measurement of round trip delay between a pair of nodes, with correction for motion and frequency offset. This method is used at steps 720, 754, and 780 of the method 700, and provides the basis for round trip localisation and computation of anchor node propagation delay (step 725).
The two nodes are labelled as M (typically, but not necessarily, a mobile node) and B (an anchor node). Node M transmits a beacon first, followed by node B after a delay of TMB determined by the beacon schedule (see Fig. 5). After a delay of TSF (the superframe length), this sequence is repeated, as illustrated in Fig. 8a. The beacons are transmitted at times ti, ts, t$ and tγ, and received at times fø, U* h and tg. The difference between the transmit time and the receive time, e.g. tø - ti, is the sum of the propagation delay through the transmitter electronics (Δ'* where / can be M or B), the propagation time through the air ( du Ic where dy is distance between the two nodes, c is speed of light, and / can be B or M), and the propagation delay through the receiver electronics ( ά'j ).
The imperfections in the system are:
• Time measurements are with respect to the local clock on the respective nodes. The local clocks at the nodes are not time or frequency synchronised, and this error can be modelled using the relationship between true time t, and the measured time at node/, tf , which is // = aj(tf ~t0J) , where a} is the ratio of local clock frequency to true frequency (close to unity, since temperature compensated crystal oscillators are preferably used to set time that remain within 1 part per million of the true frequency) and t0 j is the time offset, i.e. the true time at which the local clock at node j commences its count.
• A node can only measure its own transmit and receive times, so for example t% does not exist.
• The mobile node may be moving, with a significant displacement occurring between the transmissions of the beacons from both nodes. This is illustrated in Fig. 8b where M1 is the location of the mobile node at time % It can be assumed that the motion of the mobile node is negligible in the short time interval between transmission (tj) and reception (fø) of a beacon. In this diagram iv is a vector between nodes i and j and
4 HHI-
An estimate of the frequency difference between the pair of nodes can be made at node M as follows:
(*M f β \ (f M _ f β \ J __ J
UM ~ JiJ -Jj - \aM ~ aB ) + CCA = aMB + 0MB > \l) ts - J4 SF
where διa = *JmZ *MΩ, . (2)
am is the frequency offset of the local clocks of the node pair, and δm is the Doppler frequency shift due to the radial component of the relative motion between the node pair. An estimate of the frequency difference at node B can likewise be made:
Figure imgf000025_0001
Note that using ZV and DB the effects of frequency offset and relative motion can be separated as follows:
Figure imgf000025_0002
_ DM + DB
*MB - 2
Using the δm terms between a mobile node and multiple anchor nodes it is possible
to estimate the velocity of the mobile node without determining range or location.
The round trip delay measurement requires measurements in both directions between the pair of nodes. The uncorrected round trip delay, using the first pair of beacons in Fig. 8a, is:
= rw(α, ~ aB) + aM (A'B +Ar M) + a3(tiM x + A™) + aM ^ + aB ^ c c
«
Figure imgf000025_0003
~ +*~ Λ ^ I 2 Bm \ Bm mx
where Δ(. = Δ^ +Δ™ . Assuming that relative velocity between the nodes is constant over
the interval TSF (i-e. between mobile node locations M1 and M5 in Fig. 8b) and that the
displacement over this interval is small relative to distance CIBM> me last term maY be approximated as
Figure imgf000025_0004
Hence Tm = τmam + AM + AB + 2^ML + Tm§m
= 2-ML + AM + AB + τMBDM ° (4)
The quantity 2— — is the corrected round trip delay. The quantities TMB and DM c
(equation (I)) are directly determined from the measured data, and τm is known from the
beacon TDMA schedule; if not, it can be readily estimated from the TOA data as follows:
τMB — (tf +tf)-(tf +'f)
The location of the mobile node (hence
Figure imgf000026_0001
is unknown, and the propagation delay
Δ,- for each node may be unknown.
In round trip localisation (steps 758 and 790 of method 700), corrected round trip delay measurements are first made between anchor nodes and mobile nodes (steps 754 and 780). The use of round trip delay measurements for removing the requirement for time synchronisation is well known, but using the corrected round trip delay computed as below, the effects of frequency offset and relative motion can also be removed. An important feature of this correction for motion and frequency offset is that it is applied locally to each node pair, and no global processing is required. Note that the motion is corrected to the time at which the mobile node transmits, hence all ranges between this mobile node and multiple anchor nodes are corrected to the same time, compensating for the effect of constant velocity motion.
The propagation delay AB of the anchor nodes is either known from prior calibration
or computed at step 725 using corrected round trip delay measurements between anchor nodes as described below. In localisation according to the present disclosure, round trip measurements between mobile nodes are not used, but these measurements may be used for other purposes, e.g. cooperative localisation.
If the propagation delay AM of the mobile node is known, then from equation (4) the
corrected round trip delay 2 -5^ (step 780 or 754) is Tm -AM ~AB - τmDM . The c range between the pair of nodes is therefore computed (step 785 or 756) as:
j ~ _ * MB ~ &M ~ AB — τM&DM .
From a set of such ranges (minimum 3 for 2D localisation or 4 for 3D localisation) to anchor nodes at known locations, the location of the mobile node is estimated (step 790 or 758).
If the propagation delay AM of the mobile node is not known, then from equation (4)
the corrected round trip delay 2— mL + AM (step 754 or 780) is Tm - AB - τmDM . The c pseudo-range between the pair of nodes is therefore computed (step 756 or 785) as:
„ - d 4. ^ ~ r . TMB ~ ΔB ~ τMBPM . .
P BM ~ a BM + 2 9 '
All pseudo-ranges are offset from genuine ranges by a constant value of CAMI2; thus
there is an extra unknown (AM) that needs to be solved for in step 758 or 790. Therefore,
the minimum number of pseudo-range measurements is 4 for 2D localisation and 5 for 3D localisation. The solution is mathematically the same as Time Difference of Arrival (TDOA) localisation used at step 750 (which solves for an unknown transmit time), described below.
Three algorithms for round trip localisation are described below: • Robust Minimum Mean Square Error (MMSE) (step 758 and 790), estimating mobile node location and mobile node propagation delay from pseudo-range values. This is good for calibration of mobile node propagation delay, but is typically not used in multipath environments.
• Robust Minimum Mean Square Error (step 790 and 758), estimating mobile node location from range values with a known value of mobile node propagation delay.
• Projection onto Convex Sets (POCS) algorithm (step 790 and 758), estimating mobile node location from range values with a known value of mobile node propagation delay. This works well when multipath causes a positive bias on many range estimates.
Pre-filtering of range data
Pre-fϊltering of the range data improves localisation accuracy by eliminating bad measurements prior to the localisation steps 758 and 790. Given multiple measurements of the range dm between an anchor node and a mobile node taken over a period of seconds, an improved estimate of the true range at any given time can be determined by a variety of filtering and interpolation operations. Applying these operations prior to estimation of the node location using either the POCS or MMSE approaches described below can result in improved estimation accuracy. Because these operations act on the range data before the localisation step, the result is quite different to applying a filter (such as a Kalman filter or non-linear filter) to the estimated locations. The benefits of pre-filtering are:
• Interpolation of missing range data. In some environments, breakdown in the data communications may result in occasional missing measurements. As a result, there may be an insufficient number of ranges to estimate the location of the mobile node. This can be overcome by interpolating or extrapolating the missing range data from previous or subsequent measurements for the anchor and mobile node pair. • Filtering of range data to reduce noise and/or remove bad measurements.
Any of a number of filtering operations can be applied to the range data, taking into account a priori information about the characteristics of the motion of the mobile node. Such filtering may include for example linear filters (e.g. low pass filter and Kalman filter) or non-linear filters (e.g. median filter). In an indoor environment with strong multipath propagation and many walls, the direct path is often lost, resulting in range estimates that are longer than the true range. To deal with this situation, a nonlinear filter which replaces infeasible measurements with a value extrapolated from past measurements can be used. One embodiment of such a filter limits the maximum difference in range between the minimum range from of any of the previous 5 superframes and the range from the current superframe.
The same filtering operations can be applied to pseudo-range data between a given mobile node and anchor nodes, as the distance offset between the pseudo-range and the (unknown) true range is the same for each of these measurements. Round trip localisation using Robust MMSE
The MMSE cost function to estimate the mobile node location using the range measurements between a mobile node and K anchor nodes (step 758 or 790) is
XM == arg min]Tw,.(rf,.M -|x;M|) (7)
% /=i where w, is an optional weight that is preferably inversely proportional to the noise variance in the range measurement. The locations x,- of the anchor nodes are known.
In the case that the propagation delay of the mobile node is not known, the mobile node location and propagation delay are estimated from the pseudo-range measurements (step 758 or 790) as cΔ xw = arg mjn ∑wJ pa, -^--|X: . - X M \ (8)
"« .ΔA/ 1 1-=1
Finding the minimising argument of either cost function is a non-linear problem with many solution strategies. An initial linear solution followed by one or more non-linear iterations using a Taylor expansion (usually less than five iterations are required) is preferable.
To make the solution more robust, bad range measurements (e.g. ones with a significant bias due to multipath) are preferably removed from consideration. An algorithm for doing this is given by the pseudocode in Appendix A. The location and the error in the location estimate are computed at line 5. If the error is less than a threshold, or the number of ranges is less than or equal to a minimum number, the "repeat" loop at line 4 terminates. Each range or pseudo-range measurement is then excluded in turn at line 9, which recomputes the location and the error in the location estimate with the remaining range or pseudo-range measurements. After applying a small bias towards using more measurements (k is less than one, with 0.9 often a good choice) at line 13, if the minimum such location error is smaller than the original, all-in error computed at line 5, then the 'bad' measurement is removed (line 14). The "repeat" loop at line 4 continues until no measurements are removed in an iteration (line 16).
The location error estimate is computed as the product of an estimate of the range error and the GDOP (geometric dilution of precision) and is given by:
Figure imgf000030_0001
cΔ Where the pseudo-range is measured, dm = pm — using the computed value of
ΔM . Equation (9) is based on the simplifying assumption that the noise in the range (or pseudo-range) measurements is independent and identically distributed, which while not strictly true has been found to work very well with real data. The GDOP is calculated as a Cramer-Rao lower bound (see e.g. Larsson, E.G., "Cramer-Rao bound analysis of distributed positioning in sensor networks," IEEE Signal Processing Letters, vol. 11, no. 3, pp. 334 - 337, March 2004). This calculation depends upon the location of the anchor nodes, and whether or not the mobile node propagation delay is being estimated. Round trip localisation using POCS
The other round-trip localisation approach is the Projection Onto Convex Sets (POCS) algorithm (step 758 or 790), where each constraint set is a circle centred on an anchor node with the radius given by the estimated range to that anchor node. The POCS algorithm may be extended to 3 dimensional locations by taking the constraint sets as spheres rather than circles. Unlike the MMSE algorithm, which penalises mobile node locations quadratically for their distance from the estimated range, the POCS algorithm applies no penalty for the range to the mobile node being less than or equal to the estimated range. As a result, the POCS algorithm gives good results when large positive errors are likely, such as in indoor environments where the direct path may be severely attenuated by intervening walls.
A point in the intersection of the constraint sets is found by an iterative process, illustrated in Fig. 9. Constraints sets for three anchor nodes labelled Bl, B2 and B3 are shown as circles centred at each anchor node, with radii equal to the respective ranges from each anchor node. A random starting point, e.g. 900 or 910, is updated by projecting onto each of the constraint sets in turn. After a small number of iterations (generally less than 10), the point will be in the (shaded) intersection region 920 of the constraint sets. The end point of the path is recorded. The path 915 is taken by the starting point 910 as it is projected onto the constraint sets associated with Bl, B2 and B3 in turn. A second path 905 is taken by a starting point 900 as it is projected onto the sets associated with B3, Bl and B2 in turn.
The intersection of the constraint sets may be empty. This can be detected by determining whether the end point is not inside all the constraint sets after a substantial number of iterations (preferably 20). There are several possible ways of dealing with this case. In one approach, the ranges to one or more of the anchor nodes are increased by a small amount and the constraint set intersection is recomputed. This is repeated until the intersection of the constraint sets is non-empty. In an alternative approach, a number of different starting points are chosen, and the POCS algorithm is run for a fixed number of iterations for each starting point, and the resulting end points are averaged. In yet another approach, only a single starting point is used, and the solution point is given by the average of the end points over a number of steps of the iterative algorithm.
Just as the intersection of the constraint sets may be empty, it may also be very large, indicated by determining whether multiple end points are widely dispersed. This can be dealt with using strategies similar to those for the case of an empty intersection discussed above. In one approach, the range to at least one of the anchor nodes is decreased and the POCS algorithm run again. This is repeated until the intersection region shrinks to a small size. Alternatively, the end point for multiple different starting points may be averaged to estimate the centroid of the constraint set intersection region. In Fig. 9, the end point for two different starting points is shown. Taking the median of several such end points gives a point near the centroid of the shaded intersection region. The median is the location estimate for the mobile node. Mobile transmit localisation
In mobile transmit localisation (step 750), the location of a mobile node is estimated based on a single beacon from the mobile node to each anchor node. This requires time synchronisation of the anchor nodes (step 740) at the time at which the beacon is sent. If the propagation delay of the mobile node is known, it is possible to time synchronise the mobile node to the other nodes and what is generally called a TOA localisation algorithm may be used. However, when the mobile node is not also a TOA reception node, it is not possible to separate the effects of clock time offset and propagation delay, and if propagation delay is not known time synchronisation of the mobile node is impossible, in which case a Time Difference Of Arrival (TDOA) algorithm can be used to estimate the mobile node location. Even if time synchronisation of the mobile node is possible, the TDOA algorithm is preferred in step 750 to avoid this synchronisation step.
If the mobile node is time synchronised, given the transmit time from the mobile fø and a receive time at each anchor node i of trxj the measured range between the node pairs is given by
diM = c(tnJ -tM -At M x -Arn . (10)
A set of such measurements can be used as input for the robust MMSE algorithm based on range described above with reference to equation (7). Note that it is not usually convenient to calculate the separate transmit and receive delays, so this localisation algorithm is preferably not used.
Not using the transmit time from the mobile node simplifies the problem, as the mobile node does not need to be time synchronised to the anchor nodes, nor is any propagation delay information for the mobile node needed. The measured pseudo-range (step 745) is
PiM = diM +c(tM +Al) = c(t . -Arn . (11)
A set of such measurements can be used as input for the robust MMSE TDOA algorithm based on pseudo-range described above with reference to equation (8), except
where above the unknown range offset was cAM 12 , in this case it is c(tM + AX M ) .
Propagation delay at anchor nodes
The propagation delay of anchor nodes at known locations can be readily computed
d..
(step 725) using the corrected round trip delay 2— between anchor nodes calculated at c
step 720. In equation (4), the distance between the anchor nodes i andj is known, as are %
and Di using equation (1), so the only unknowns are the propagation delays of the two anchor nodes. For each measurement between anchor nodes i and j, equation (4) may be
rewritten as
T11 - Id11 Ic - T11D1 = A1 + Aj (13)
where the terms on the left side are known. This can be written as a set of linear
equations in the form AΔ = b where Δ is a column vector of Δ, values and b is a column
vector of the terms on the left side of equation (13). There are generally more measurements than unknowns, so the system is overdetermined, and the least squares solution is:
Δ
Figure imgf000034_0001
. (14) Anchor node synchronisation
The time offset between anchor nodes is continually changing due to the offset in node clock frequencies (which themselves vary over time). Hence, for the calculation of mobile node location using TDOA, the time offset between the anchor nodes needs to be determined at the time that the mobile node transmitted its beacon (step 740). Assume that anchor node i transmits a beacon at ^1 that is received by anchor node/ at ^2. The difference between the measured receive and transmit times at time t\ is
t{ - 1[ = a j (dϋ lc + Δ* +tq - t0J ) + a,t0J
The error in this approximation is insignificant. dtJ is known as the anchor node
locations are known, and Δ'* and Δ™ can be solved for, but are actually known from previous calibration or separate anchor node propagation delay calculation (step 725).
This difference needs to be adjusted to the time that the mobile node transmits, which is offset from t\ by τiM. It is assumed that the frequency offset is constant over this small time interval, hence shifting t=0 to the time at which the mobile node transmits yields
toj -toj * t{ -t[ -dn . (14)
Figure imgf000035_0001
This forms a generally overdetermined linear set of equations that can be solved for the time offsets t0J by arbitrarily setting one of the nodes to have zero offset and finding the least squares solution.
The value TM can be measured using the receive time of the beacon from the mobile node at node i, however a more robust measurement is to form a least squares estimate of all beacon transmit times over all measurements in a superframe. Variations
• Two way ranging with correction for motion, frequency offsets between nodes and node propagation delay is useful in applications without also performing localisation (e.g. in underground mines).
• Gating of data to remove measurements inconsistent with expected location or range.
• Use of temporal filter (e.g. Kalman or particle filter) to reduce noise in mobile location.
• Perform localisation using filter with input range or pseudo-range, not location.
• Data fusion with other aiding sources (INS, GPS etc) to improve results.
It is apparent from the above that the arrangements described are applicable to the wireless localisation industries.
The foregoing describes only some embodiments of the present invention, and modifications and/or changes can be made thereto without departing from the scope and spirit of the invention, the embodiments being illustrative and not restrictive.
Appendix A
For each mobile node M Repeat
Compute Mobile Node Location xM and Location Error Estimate E14
If EM less than threshold or number of ranges less than or equal to threshold
Break (location of M is xM , go to next iteration of outer for loop) For each anchor node i
Compute Mobile Node Location xM h and Location Error Estimate EM h
after removing measurement dlM or plM
Keep track of result (Lm , xM/, anύ EM/t ) with lowest location error estimate
K EM hmm < kEM
Remove measurement d, M from further consideration as bad
Else
Break (location of mobile M is xM , go to next iteration of outer for loop)

Claims

Claims:
1. A method of computing a round trip delay between a pair of nodes, the method comprising: transmitting at least one beacon at a known transmit time from each of said nodes; measuring the times-of-arrival of said beacons at another of said nodes; estimating a round trip delay between said nodes from said measured times-of-arrival and said transmit times; and correcting said round trip delay for either or both of a frequency offset between the nodes and relative motion between the nodes.
2. The method according to claim 1 , wherein said correcting comprises: estimating a frequency difference from times-of-arrival of at least two beacons transmitted between said nodes; using an estimated or predetermined time delay between transmissions of a beacon from each of said nodes; and computing a correction term to be removed from the estimated round trip delay using the estimated frequency difference and the time delay.
3. The method according to claim 1, wherein a pseudo-range is determined from the corrected round trip delay and a propagation delay of any one of said nodes.
4. The method according to claim 1 , wherein a range is determined from the corrected round trip delay and a propagation delay of both said nodes.
5. The method according to claim 1, wherein terms due to said frequency offset and to said relative motion are computed from said correction.
6. The method according to claim 5, further comprising estimating the velocity of one of said nodes from said relative motion term.
7. The method according to claim 6, wherein said pair of nodes comprises one mobile node and a stationary anchor node at a known location.
8. A method according to claim 1 , further comprising: computing the round trip delays between further pairs of nodes; computing a propagation delay at each said node using said computed round trip delays.
9. A method of estimating the location of a mobile object using a plurality of ranges between a node associated with said object and respective anchor nodes, the method comprising: estimating, for a current said range, the location of said object and an error in said location estimate from said range excluding said current range; discarding the range whose exclusion gave the lowest error estimate, if said lowest error estimate is less than a threshold; repeating said estimating and said discarding until said lowest error estimate is not less than said threshold or the number of undiscarded ranges reaches a minimum number; and estimating the location of said object from the undiscarded ranges.
10. The method according to claim 9, wherein said threshold is a predetermined constant times the error in the location estimate from all undiscarded ranges.
11. The method according to claim 9, wherein said estimating comprises minimising a weighted sum over said anchor nodes of the squared difference between each range and the distance between a candidate location and the location of a corresponding anchor node.
12. The method according to any of claims 9-11, wherein said error in location estimate comprises an estimate of the range error and a term relating range error to location error.
13. The method according to any of claims 9-12, wherein said estimating further comprises estimating an offset common to all said ranges.
14. The method according to any of claims 9-12, wherein said ranges are computed using the method in claim 4.
15. The method according to claim 13, wherein said ranges are pseudo-ranges computed using the method in claim 3 with the propagation delay of the mobile node being unknown.
16. A method of estimating the location of a mobile object using a plurality of ranges between a node associated with said object and respective anchor nodes, the method comprising: projecting a starting point onto a sequence of constraint sets in turn, each said constraint set being a circle centred on one said anchor node with radius equal to the corresponding range, to obtain an end point; increasing, if said end point is not less than said corresponding range from each said anchor node, at least one said range, and repeating said projecting and said increasing until said location is less than said corresponding range from each said anchor node, wherein said end point is said estimated location of said mobile object.
17. The method according to claim 16, further comprising performing said projecting, increasing, and repeating for at least one other starting point, wherein said estimated location is an average of said end points.
18. The method according to claim 17, further comprising: determining whether said end points are widely dispersed, and if so, decreasing at least one said range, and repeating said performing.
19. The method according to any of claims 16-18, wherein ranges are computed using the method of claim 4.
20. A method of time synchronising a plurality of anchor nodes, the method comprising: measuring a plurality of trip delays of beacons transmitted between said anchor nodes; correcting said trip delays for propagation delays at said anchor nodes and frequency offsets between local clocks at respective said anchor nodes; and determining a time offset of each said local clock from said corrected trip delays.
21. The method according to claim 20, where said ranges are determined using the method of claim 4.
22. A method of estimating the location of a mobile object using a plurality of anchor nodes, the method comprising: synchronising said plurality of anchor nodes; measuring a plurality of times-of-arrival of beacons transmitted from said object to respective said anchor nodes; and estimating the location of said object relative to said anchor nodes using said measured times-of-arrival, corrected for a propagation delay at each said anchor node.
23. The method according to claim 22, wherein said synchronising uses the method in claim 20.
24. The method according to claim 22, wherein said estimating comprises: subtracting respective propagation delays from each of said plurality of measured times-of-arrival to give respective pseudo-ranges; using said pseudo-ranges and the method in claim 13 to estimate said location.
25. A system for estimating the location of one or more objects, the system comprising: a plurality of anchor nodes; one or more mobile nodes coincident with respective said objects; beacons transmitted by some or all of said nodes according to a predetermined or dynamically determined schedule; and data capability to send measured times-of-arrival of said beacons, and transmit times of said beacons, to a location server adapted to compute the location of said objects.
26. The system of claim 25 wherein the location server is further adapted to pre-filter range or pseudo-range values prior to said computation of location.
27. The system of claim 25 in which: round trip measurements are performed between anchor nodes and mobile nodes; the propagation delay of the anchor nodes, if not known, is computed using the method of claim 8; and said computation of location uses the method of claim 9 or the method of claim 16 for each mobile node for which the propagation delay is known, otherwise said computation of location uses the method of claim 15.
28. The system of claim 25 in which: said plurality of anchor nodes is adapted to measure the times-of-arrival of beacon signals from the mobile nodes; and said computation of location uses the method of claim 22.
29. The system of claim 25 in which said location server is adapted to use more than one method for computation of location, and the method employed for each mobile node depends upon one or more attributes of the mobile node.
30. The system of claim 29 in which said methods for computation of location include the methods of claims 9, 15, 16, and 22.
31. A system for estimating the location of an object, the system comprising: a plurality of anchor nodes adapted to communicate wirelessly with each other by either transmitting or receiving beacons; a mobile node coincident with said object, the mobile node being adapted to communicate wirelessly with said anchor nodes by either receiving or transmitting said beacons; a localisation server adapted to: receive measurements of time-of-arrival of said beacons at said nodes, select one of a plurality of localisation algorithms dependent on attributes of said anchor nodes and said mobile node, and estimate the location of said object using said measured times-of-arrival using said selected localisation algorithm.
PCT/AU2009/000863 2008-07-04 2009-07-03 Wireless localisation system WO2010000036A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/002,640 US20110188389A1 (en) 2008-07-04 2009-07-03 Wireless Localisation System
AU2009266425A AU2009266425B2 (en) 2008-07-04 2009-07-03 Wireless localisation system
EP09771853.0A EP2307902B1 (en) 2008-07-04 2009-07-03 Wireless localisation system
US15/255,011 US10338194B2 (en) 2008-07-04 2016-09-01 Wireless localisation system
US16/454,841 US11061106B2 (en) 2008-07-04 2019-06-27 Wireless localisation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2008903441A AU2008903441A0 (en) 2008-07-04 Wireless localisation system
AU2008903441 2008-07-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/002,640 A-371-Of-International US20110188389A1 (en) 2008-07-04 2009-07-03 Wireless Localisation System
US15/255,011 Continuation US10338194B2 (en) 2008-07-04 2016-09-01 Wireless localisation system

Publications (1)

Publication Number Publication Date
WO2010000036A1 true WO2010000036A1 (en) 2010-01-07

Family

ID=41465420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2009/000863 WO2010000036A1 (en) 2008-07-04 2009-07-03 Wireless localisation system

Country Status (4)

Country Link
US (3) US20110188389A1 (en)
EP (2) EP2307902B1 (en)
AU (1) AU2009266425B2 (en)
WO (1) WO2010000036A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122040A1 (en) * 2011-03-04 2012-09-13 Zih Corp. Method, apparatus, and computer program product for processing received signals for locating
CN106063317A (en) * 2014-03-27 2016-10-26 华为技术有限公司 Method and apparatus for positioning service hotspot
US10802108B2 (en) 2014-07-31 2020-10-13 Symbol Technologies, Llc Two pass detection technique for non-echo pulsed ranging
US10989531B2 (en) 2014-08-15 2021-04-27 Commonwealth Scientific And Industrial Research Organisation Method of setting-up a range-based tracking system utilizing a tracking coordinate system
CN113406612A (en) * 2021-05-28 2021-09-17 西安空间无线电技术研究所 Bidirectional real-time high-precision distance measurement method for half-duplex system
US20220128647A1 (en) * 2020-10-28 2022-04-28 Zhejiang University Method for positioning underwater glider based on virtual time difference of arrival of single beacon
EP4361661A1 (en) * 2022-10-27 2024-05-01 Thales Method for precisely time broadcasting by fuzzy position beacon network

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110188389A1 (en) 2008-07-04 2011-08-04 Commonwealth Scientific And Industrial Research Organisation Wireless Localisation System
US8265011B2 (en) 2010-11-02 2012-09-11 Diani Systems, Inc. High resolution wireless indoor positioning system for legacy standards-based narrowband mobile radios
US9014172B2 (en) 2010-11-02 2015-04-21 Diani Systems, Inc. High resolution wireless indoor positioning system for legacy standards-based narrowband mobile radios
US8577362B2 (en) * 2011-03-09 2013-11-05 Telcordia Technologies, Inc. System and method for quantifying anchor placement impact placement on location accuracy
US8547870B2 (en) 2011-06-07 2013-10-01 Qualcomm Incorporated Hybrid positioning mechanism for wireless communication devices
US8509809B2 (en) 2011-06-10 2013-08-13 Qualcomm Incorporated Third party device location estimation in wireless communication networks
US8909244B2 (en) 2011-06-28 2014-12-09 Qualcomm Incorporated Distributed positioning mechanism for wireless communication devices
US8489114B2 (en) 2011-09-19 2013-07-16 Qualcomm Incorporated Time difference of arrival based positioning system
US8457655B2 (en) 2011-09-19 2013-06-04 Qualcomm Incorporated Hybrid time of arrival based positioning system
US8521181B2 (en) 2011-09-19 2013-08-27 Qualcomm Incorporated Time of arrival based positioning system
US8755304B2 (en) 2011-10-21 2014-06-17 Qualcomm Incorporated Time of arrival based positioning for wireless communication systems
US8824325B2 (en) 2011-12-08 2014-09-02 Qualcomm Incorporated Positioning technique for wireless communication system
US10598757B2 (en) * 2013-03-15 2020-03-24 Nextnav, Llc Systems and methods for improving the performance of a timing-based radio positioning network using estimated range biases
US20140292568A1 (en) * 2013-03-26 2014-10-02 Peter Fleming Radiobeacon stations, user devices, location determination systems, methods for controlling a radiobeacon station, methods for controlling a user device, and location determination methods
JP5968536B2 (en) * 2013-05-26 2016-08-10 インテル アイピー コーポレイション Apparatus, system and method for estimating position of mobile device
US9810764B2 (en) 2013-09-30 2017-11-07 AT&T Intellectual Preoperty I, L.P. Systems and methods for high precision indoor location tracking
US9560437B2 (en) 2014-04-08 2017-01-31 Doppler Labs, Inc. Time heuristic audio control
US9648436B2 (en) 2014-04-08 2017-05-09 Doppler Labs, Inc. Augmented reality sound system
US9736264B2 (en) 2014-04-08 2017-08-15 Doppler Labs, Inc. Personal audio system using processing parameters learned from user feedback
US9825598B2 (en) 2014-04-08 2017-11-21 Doppler Labs, Inc. Real-time combination of ambient audio and a secondary audio source
US9557960B2 (en) 2014-04-08 2017-01-31 Doppler Labs, Inc. Active acoustic filter with automatic selection of filter parameters based on ambient sound
US9524731B2 (en) 2014-04-08 2016-12-20 Doppler Labs, Inc. Active acoustic filter with location-based filter characteristics
US9572125B1 (en) * 2014-09-03 2017-02-14 Symantec Corporation Systems and methods for locating unrecognized computing devices
WO2016054691A1 (en) * 2014-10-07 2016-04-14 Commonwealth Scientific And Industrial Research Organisation A method of setting up a tracking system
US9961486B2 (en) 2014-11-20 2018-05-01 At&T Intellectual Property I, L.P. Smart machine to machine behavior tracking
US9678709B1 (en) 2015-11-25 2017-06-13 Doppler Labs, Inc. Processing sound using collective feedforward
US9703524B2 (en) 2015-11-25 2017-07-11 Doppler Labs, Inc. Privacy protection in collective feedforward
US11145320B2 (en) 2015-11-25 2021-10-12 Dolby Laboratories Licensing Corporation Privacy protection in collective feedforward
US10853025B2 (en) 2015-11-25 2020-12-01 Dolby Laboratories Licensing Corporation Sharing of custom audio processing parameters
US9584899B1 (en) 2015-11-25 2017-02-28 Doppler Labs, Inc. Sharing of custom audio processing parameters
JP6702417B2 (en) * 2016-07-04 2020-06-03 株式会社村田製作所 Position detection system and receiver
US11019457B2 (en) * 2017-09-28 2021-05-25 Lg Electronics Inc. Method for reducing wireless positioning error in multi-node system and terminal therefor
EP3729123A1 (en) * 2017-12-21 2020-10-28 Ocado Innovation Limited Positioning device, communications system and method
CN108761388B (en) * 2018-06-06 2022-02-11 上海交通大学 Antenna delay calibration method based on UWB high-precision ranging positioning system
CN110007268B (en) * 2019-02-01 2022-07-08 华东师范大学 Positioning system based on anchor node differential time synchronization and Taylor cooperation
CN110022526A (en) * 2019-04-01 2019-07-16 黑龙江省科学院自动化研究所 A kind of localization method of radio node ad hoc network
CN110067598B (en) * 2019-04-29 2024-05-17 中国矿业大学(北京) Underground disaster alarm method based on personnel positioning
FR3096129B1 (en) * 2019-05-15 2021-04-23 Thales Sa method of geolocation of platforms moving in formation, computer program product and associated geolocation module
US11255980B2 (en) * 2019-06-28 2022-02-22 Sony Corporation Collaborative positioning
US10820170B1 (en) * 2019-09-25 2020-10-27 Mapsted Corp. Time offset based synchronization in mobile device localization
CN110856104B (en) * 2019-11-18 2021-02-19 哈尔滨工业大学 Ultra-wideband indoor positioning method combining least square positioning and trilateral positioning
KR102293561B1 (en) * 2019-12-31 2021-08-24 재단법인대구경북과학기술원 Mobile device and the method for measuring location
CN111277968B (en) * 2020-01-20 2022-05-03 中山大学 Wireless sensor network non-ranging positioning method based on stack self-encoder
CN114584919B (en) * 2022-02-14 2024-04-19 华东师范大学 UWB indoor positioning system using interpolation method
US20230394257A1 (en) * 2022-06-02 2023-12-07 X Development Llc Wireless anchors for asset tracking
CN115442763A (en) * 2022-09-09 2022-12-06 南京华苏科技有限公司 DV-Hop positioning method for wireless sensor network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185428B1 (en) * 1998-10-07 2001-02-06 Ericsson Inc System and method for adaptively modifying base station transceiver resources for time of arrival measurements
US20030092448A1 (en) * 2001-08-16 2003-05-15 Forstrom Howard Scott System for determining position of an emitter
US20050026563A1 (en) 2003-08-01 2005-02-03 Leeper David G. Apparatus and associated methods for precision ranging measurements in a wireless communication environment
US20060224308A1 (en) * 2005-03-31 2006-10-05 Deere & Company, A Delaware Corporation System and method for determining a position of a vehicle
WO2007002286A2 (en) * 2005-06-22 2007-01-04 The Board Of Trustees Of The Leland Stanford Jr. University Scalable sensor localization for wireless sensor networks
US20080130604A1 (en) * 2006-12-05 2008-06-05 Wherenet Corp. Location system for wireless local area network (wlan) using rssi and time difference of arrival (tdoa) processing

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1351185A (en) 1970-05-07 1974-04-24 Dynell Elec Radio navigation receivers
US5422646A (en) 1983-02-24 1995-06-06 The United States Of America As Represented By The Secretary Of The Navy High frequency MTI radar
JPS6217304A (en) 1985-07-15 1987-01-26 Mitsubishi Heavy Ind Ltd Steam turbine
US4799062A (en) * 1987-04-27 1989-01-17 Axonn Corporation Radio position determination method and apparatus
US5056106A (en) * 1990-08-02 1991-10-08 Wang James J Golf course ranging and direction-finding system using spread-spectrum radiolocation techniques
EP0638878B1 (en) * 1991-10-11 1997-05-07 Advanced Mining Software Limited Location system
US5600706A (en) * 1992-04-08 1997-02-04 U S West, Inc. Method and system for determining the position of a mobile receiver
US5583517A (en) * 1992-08-20 1996-12-10 Nexus 1994 Limited Multi-path resistant frequency-hopped spread spectrum mobile location system
WO1994023404A1 (en) * 1993-04-01 1994-10-13 Bruno Robert System for selectively positioning and tracking a movable object or individual
US5513854A (en) * 1993-04-19 1996-05-07 Daver; Gil J. G. System used for real time acquistion of data pertaining to persons in motion
US5469409A (en) * 1994-03-14 1995-11-21 Motorola, Inc. Method for clock calibration in a position determination system
FR2728415B1 (en) * 1994-12-19 1997-01-24 Commissariat Energie Atomique TRANSMISSION METHOD WITH DIFFERENTIAL SPREAD SPECTRUM PHASE MODULATION AND DEMODULATION USING ORTHOGONAL PSEUDORANDOM SEQUENCES
US5931889A (en) * 1995-01-24 1999-08-03 Massachusetts Institute Of Technology Clock-aided satellite navigation receiver system for monitoring the integrity of satellite signals
AUPN733395A0 (en) * 1995-12-22 1996-01-25 University Of Technology, Sydney Location and tracking system
US5859613A (en) * 1996-08-30 1999-01-12 Harris Corporation System and method for geolocating plural remote transmitters
US5805108A (en) * 1996-09-16 1998-09-08 Trimble Navigation Limited Apparatus and method for processing multiple frequencies in satellite navigation systems
US6215442B1 (en) * 1997-02-03 2001-04-10 Snaptrack, Inc. Method and apparatus for determining time in a satellite positioning system
AU6442798A (en) 1997-02-27 1998-09-18 Trakus, Inc. Local area multiple object tracking system
US6204813B1 (en) * 1998-02-20 2001-03-20 Trakus, Inc. Local area multiple object tracking system
US5912644A (en) * 1997-08-05 1999-06-15 Wang; James J. M. Spread spectrum position determination, ranging and communication system
US6259894B1 (en) * 1997-12-04 2001-07-10 Lucent Technologies Inc. Method for improved line-of-sight signal detection using RF model parameters
US6414634B1 (en) * 1997-12-04 2002-07-02 Lucent Technologies Inc. Detecting the geographical location of wireless units
US6054950A (en) * 1998-01-26 2000-04-25 Multispectral Solutions, Inc. Ultra wideband precision geolocation system
US6504483B1 (en) * 1998-03-23 2003-01-07 Time Domain Corporation System and method for using impulse radio technology to track and monitor animals
GB9807540D0 (en) 1998-04-09 1998-06-10 Orad Hi Tec Systems Ltd Tracking system for sports
US6795491B2 (en) * 1999-07-22 2004-09-21 Aether Wire & Location Spread spectrum localizers
US6453168B1 (en) 1999-08-02 2002-09-17 Itt Manufacturing Enterprises, Inc Method and apparatus for determining the position of a mobile communication device using low accuracy clocks
US20010030625A1 (en) * 2000-01-12 2001-10-18 Doles Daniel T. Local clock-referenced DTOA geolocation system with wireless infrastructure
WO2001066201A1 (en) 2000-03-06 2001-09-13 Cairos Technologies Ag Device for detecting the position and/or movement of objects and/or living things
GB0009830D0 (en) * 2000-04-25 2000-06-07 Koninkl Philips Electronics Nv Time of arrival estimation for positioning systems
US6483461B1 (en) * 2000-08-24 2002-11-19 Time Domain Corporation Apparatus and method for locating objects in a three-dimensional space
US6876326B2 (en) 2001-04-23 2005-04-05 Itt Manufacturing Enterprises, Inc. Method and apparatus for high-accuracy position location using search mode ranging techniques
US6804494B2 (en) * 2001-06-11 2004-10-12 Qualcomm Inc. System and method for the detection and compensation of radio signal time of arrival errors
US6522296B2 (en) * 2001-06-25 2003-02-18 Harris Corporation Method and system for calibrating wireless location systems
US6831603B2 (en) * 2002-03-12 2004-12-14 Menache, Llc Motion tracking system and method
US20040203870A1 (en) * 2002-08-20 2004-10-14 Daniel Aljadeff Method and system for location finding in a wireless local area network
KR100483801B1 (en) 2002-10-30 2005-04-20 한국철도기술연구원 System for mobile vehicle position tracking and moving management using phase of arrival
US7110777B2 (en) 2002-11-06 2006-09-19 Charles Duncan Apparatus and method for tracking the location and position of an individual using an accelerometer
US7009561B2 (en) * 2003-03-11 2006-03-07 Menache, Llp Radio frequency motion tracking system and method
US7286624B2 (en) * 2003-07-03 2007-10-23 Navcom Technology Inc. Two-way RF ranging system and method for local positioning
JP3762399B2 (en) 2003-08-28 2006-04-05 三菱電機株式会社 Tracking system and transmitter
US20060066485A1 (en) * 2004-09-24 2006-03-30 Guohua Min Wireless tracking system based upon phase differences
US7026992B1 (en) * 2005-03-31 2006-04-11 Deere & Company Method for configuring a local positioning system
US8175613B2 (en) * 2006-08-04 2012-05-08 Misonimo Chi Acquisitions L.L.C. Systems and methods for determining location of devices within a wireless network
KR101417737B1 (en) * 2007-11-13 2014-08-07 삼성전자주식회사 Indoor location system having sensor and method for checking location thereof
US20110188389A1 (en) 2008-07-04 2011-08-04 Commonwealth Scientific And Industrial Research Organisation Wireless Localisation System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185428B1 (en) * 1998-10-07 2001-02-06 Ericsson Inc System and method for adaptively modifying base station transceiver resources for time of arrival measurements
US20030092448A1 (en) * 2001-08-16 2003-05-15 Forstrom Howard Scott System for determining position of an emitter
US20050026563A1 (en) 2003-08-01 2005-02-03 Leeper David G. Apparatus and associated methods for precision ranging measurements in a wireless communication environment
US20060224308A1 (en) * 2005-03-31 2006-10-05 Deere & Company, A Delaware Corporation System and method for determining a position of a vehicle
WO2007002286A2 (en) * 2005-06-22 2007-01-04 The Board Of Trustees Of The Leland Stanford Jr. University Scalable sensor localization for wireless sensor networks
US20080130604A1 (en) * 2006-12-05 2008-06-05 Wherenet Corp. Location system for wireless local area network (wlan) using rssi and time difference of arrival (tdoa) processing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE In INFOCOM 2001.", vol. 3, 2001, IEEE, article L. DOHERTY ET AL.: "Convex Position Estimation in Wireless Sensor Networks", pages: 1655 - 1663, XP010538858 *
See also references of EP2307902A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122040A1 (en) * 2011-03-04 2012-09-13 Zih Corp. Method, apparatus, and computer program product for processing received signals for locating
US9285454B2 (en) 2011-03-04 2016-03-15 Zih Corp. Method, apparatus, and computer program product for processing received signals for locating
US9995818B2 (en) 2011-03-04 2018-06-12 Zih Corp. Method, apparatus, and computer program product for processing received signals for locating
CN106063317A (en) * 2014-03-27 2016-10-26 华为技术有限公司 Method and apparatus for positioning service hotspot
CN106063317B (en) * 2014-03-27 2019-08-16 华为技术有限公司 The localization method and device of traffic hotspots
US10802108B2 (en) 2014-07-31 2020-10-13 Symbol Technologies, Llc Two pass detection technique for non-echo pulsed ranging
US10989531B2 (en) 2014-08-15 2021-04-27 Commonwealth Scientific And Industrial Research Organisation Method of setting-up a range-based tracking system utilizing a tracking coordinate system
US20220128647A1 (en) * 2020-10-28 2022-04-28 Zhejiang University Method for positioning underwater glider based on virtual time difference of arrival of single beacon
US11719784B2 (en) * 2020-10-28 2023-08-08 Zhejiang University Method for positioning underwater glider based on virtual time difference of arrival of single beacon
CN113406612A (en) * 2021-05-28 2021-09-17 西安空间无线电技术研究所 Bidirectional real-time high-precision distance measurement method for half-duplex system
CN113406612B (en) * 2021-05-28 2023-08-11 西安空间无线电技术研究所 Bidirectional real-time high-precision ranging method and ranging device for half-duplex system
EP4361661A1 (en) * 2022-10-27 2024-05-01 Thales Method for precisely time broadcasting by fuzzy position beacon network
FR3141581A1 (en) * 2022-10-27 2024-05-03 Thales Method for broadcasting precise time by a network of imprecise position beacons

Also Published As

Publication number Publication date
EP2307902A4 (en) 2011-09-07
EP2674775B1 (en) 2017-01-11
US11061106B2 (en) 2021-07-13
US10338194B2 (en) 2019-07-02
US20110188389A1 (en) 2011-08-04
EP2307902B1 (en) 2013-09-25
US20160370455A1 (en) 2016-12-22
AU2009266425B2 (en) 2015-02-05
EP2674775A1 (en) 2013-12-18
EP2307902A1 (en) 2011-04-13
US20190317184A1 (en) 2019-10-17
AU2009266425A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
US11061106B2 (en) Wireless localisation system
US10681500B2 (en) Method and system for radiolocation asset tracking via a mesh network
US9772396B2 (en) Relative orientation angle calculation method and device as well as relative positioning method
KR100671283B1 (en) System and method for asynchronous wireless positioning by ordered transmission
US8165150B2 (en) Method and system for wireless LAN-based indoor position location
Jung et al. Distance estimation of smart device using bluetooth
Lédeczi et al. Wireless sensor node localization
AU2010304861A1 (en) Improvements in or relating to radio navigation
US20220342031A1 (en) Location determination based on phase differences
JP2011047915A (en) Radio-positioning system and positioning method
JPWO2009145325A1 (en) Mobile body relative position detection system and mobile body performing relative position detection
AU2019200145B9 (en) Wireless localisation system
JP2007533968A5 (en)
JP2007533968A (en) Wireless self-survey location determination method
US7701998B2 (en) Radio signal positioning
Moschevikin et al. The impact of nlos components in time-of-flight networks for indoor positioning systems
KR100897413B1 (en) Device and method for perceiving location of target
Ruotsalainen et al. The Present and Future of Indoor Navigation
Mautz et al. A robust indoor positioning and auto-localisation algorithm
Van Herbruggen et al. Single Anchor Localization by Combining UWB Angle-of-Arrival and Two-Way-Ranging: an Experimental Evaluation of the DW3000
Ismail et al. Comparison of wireless sensor node localisation between trilateration and multi-lateration methods using rssi
Cho et al. Performance tests for wireless real-time localization systems to improve mobile robot navigation in various indoor environments
Warnakulasuriya et al. Indoor Positioning Based on Time of Flight and Kalman Filtering Using Ultra-Wideband Sensors
Mo Enhancing Wi-Fi Based Ranging Accuracy through a Two-stage Algorithmic Approach
Johansson et al. Estimation of Orientation in a Dual-Tag Ultra Wideband Indoor Positioning System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009771853

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009266425

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009266425

Country of ref document: AU

Date of ref document: 20090703

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13002640

Country of ref document: US