WO2009157200A1 - 空気調和装置の冷媒量判定方法および空気調和装置 - Google Patents

空気調和装置の冷媒量判定方法および空気調和装置 Download PDF

Info

Publication number
WO2009157200A1
WO2009157200A1 PCT/JP2009/002913 JP2009002913W WO2009157200A1 WO 2009157200 A1 WO2009157200 A1 WO 2009157200A1 JP 2009002913 W JP2009002913 W JP 2009002913W WO 2009157200 A1 WO2009157200 A1 WO 2009157200A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
degree
heat exchanger
value
supercooling
Prior art date
Application number
PCT/JP2009/002913
Other languages
English (en)
French (fr)
Inventor
山口貴弘
山田拓郎
山田昌弘
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2009263640A priority Critical patent/AU2009263640B2/en
Priority to EP09769910.2A priority patent/EP2314958B1/en
Priority to US12/999,734 priority patent/US20110088414A1/en
Priority to CN2009801248092A priority patent/CN102077042B/zh
Publication of WO2009157200A1 publication Critical patent/WO2009157200A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to a function for determining the suitability of the amount of refrigerant charged in the refrigerant circuit of the air conditioner, in particular, in the refrigerant circuit of the air conditioner in which the heat source unit and the utilization unit are connected via a refrigerant communication pipe. It is related with the function which determines the suitability of the refrigerant
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-23072
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-23072
  • the refrigerant amount determination operation is performed for the first time (for example, when the air conditioner is installed) and periodically (for example, every year from the time of installation). Etc.).
  • control is performed so that the degree of superheat and the evaporation pressure of the evaporator are constant in the cooling operation state, and the degree of supercooling of the condenser is measured.
  • the refrigerant amount determination operation it is determined whether or not the refrigerant is leaking based on the difference between the degree of supercooling measured at that time and the degree of supercooling measured at the first time or before.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-23072 If the superheat degree control is performed in the same manner as the air conditioning apparatus described in Japanese Patent Publication No. Gazette, a sufficiently large value may not be secured as a reference index (for example, the degree of supercooling).
  • An object of the present invention is to reduce detection errors by controlling the degree of supercooling as a reference index and a conversion value based on the degree of supercooling to a value that makes it easy to determine whether the refrigerant amount is appropriate.
  • a refrigerant amount determination method for an air conditioner includes a heat source unit having a compressor, a heat source side heat exchanger, an expansion mechanism, and an accumulator capable of adjusting an operating dose, and a utilization unit having a utilization side heat exchanger.
  • a liquid refrigerant communication pipe and a gas refrigerant communication pipe connecting the heat source unit and the utilization unit, the heat source side heat exchanger as a refrigerant condenser to be compressed in the compressor, and the utilization side heat exchanger as the heat source
  • the air conditioner having a refrigerant circuit capable of performing at least a cooling operation for functioning as an evaporator of refrigerant condensed in the side heat exchanger, a refrigerant amount determination method for determining suitability of the refrigerant amount in the refrigerant circuit.
  • an initial operation step a storage step, a normal operation transition step, a stable state reproduction step, and a refrigerant amount suitability determination step.
  • the cooling operation is performed and the superheat degree of the refrigerant at the outlet of the utilization side heat exchanger becomes a positive value.
  • the degree of supercooling of the refrigerant at the outlet of the heat source side heat exchanger or the amount of operating state that fluctuates according to the fluctuation of the degree of subcooling is detected, and the degree of subcooling is equal to or greater than the first predetermined value.
  • a stable state in which the operation state quantity is equal to or greater than the second predetermined value is set.
  • the compressor frequency in the stable state is set as the first frequency
  • the superheat degree of the refrigerant at the outlet of the use side heat exchanger in the stable state is set as the first superheat degree
  • the degree of supercooling or the operating state quantity in the stable state is calculated. Stored as the first index value.
  • the normal operation transition step the normal operation mode is switched again after the storage step.
  • the stable state reproduction step after a predetermined period of time has elapsed from the normal operation transition step, the compressor is controlled so as to be the first frequency stored in the storing step, and the expansion mechanism is controlled so as to be the first superheat degree.
  • the subcooling degree of the refrigerant at the outlet of the heat source side heat exchanger or the operating state quantity that fluctuates according to the fluctuation of the subcooling degree is detected as a detected value.
  • the index value and the detected value are compared to determine the suitability of the refrigerant amount filled in the refrigerant circuit.
  • the index value for determining the suitability of the refrigerant amount is greater than or equal to the first predetermined value (in the case of the degree of supercooling) or the second predetermined value (in the case of the operation state amount) preset in the initial operation step.
  • the degree of superheat of the refrigerant at the outlet of the compressor and the use side heat exchanger is controlled so that the frequency of the compressor at that time (stable state) is set as the first frequency, and the use side heat exchanger at that time (stable state)
  • the degree of superheat of the refrigerant at the outlet is stored as the first degree of superheat, and the degree of supercooling or the amount of operating state at that time (stable state) is stored as the first index value.
  • the compressor is controlled to the first frequency, and the superheat degree of the refrigerant at the outlet of the use side heat exchanger is controlled to the first superheat degree.
  • the degree of supercooling or the amount of operating state of the refrigerant is detected as a detected value, and in the refrigerant amount suitability determining step, the index value and the detected value are compared to determine the suitability of the refrigerant amount charged in the refrigerant circuit. .
  • the index employed for determining the suitability of the refrigerant amount is equal to or greater than the first predetermined value when the degree of supercooling is set, and the second predetermined value is set when the operation state amount is set. Because it is set in advance so that it will exceed the value, even in an air conditioner that does not basically assume additional refrigerant charging, a certain degree of large value is set for the degree of supercooling or the operating state quantity when determining the refrigerant quantity suitability When the refrigerant amount decreases, it becomes easy to detect that those values become small, and the refrigerant amount determination error can be reduced.
  • a refrigerant amount determination method for an air conditioner according to a second aspect of the present invention is the refrigerant amount determination method for an air conditioner according to the first aspect of the present invention, wherein the first predetermined value is a degree of supercooling that can determine that the refrigerant has leaked. It is an appropriate value not less than the size of. Further, the second predetermined value is an appropriate value that is equal to or larger than the amount of the operating state quantity that can determine that the refrigerant has leaked. Therefore, even in an air conditioner that basically does not assume additional refrigerant charging, it is possible to ensure a certain degree of large value for the degree of supercooling or the amount of operating state when determining the appropriateness of the refrigerant amount. It becomes easy to detect that those values become small, and the determination error of the refrigerant amount can be reduced.
  • the first predetermined value is a degree of supercooling that can determine that the refrigerant has leaked. It is an appropriate value not less than the size of.
  • the second predetermined value
  • An air conditioner includes a refrigerant circuit, initial operation means, storage means, stable state reproduction means, and refrigerant quantity suitability determination means.
  • the refrigerant circuit includes a heat source unit, a utilization unit, a liquid refrigerant communication pipe and a gas refrigerant communication pipe.
  • the heat source unit includes a compressor capable of adjusting an operating dose, a heat source side heat exchanger, an expansion mechanism, and an accumulator.
  • the utilization unit has a utilization side heat exchanger.
  • the liquid refrigerant communication pipe and the gas refrigerant communication pipe connect the heat source unit and the utilization unit.
  • the refrigerant circuit is a cooling operation in which the heat source side heat exchanger functions as a condenser for refrigerant compressed in the compressor, and the use side heat exchanger functions as an evaporator for refrigerant condensed in the heat source side heat exchanger. Can be performed at least.
  • the initial operation means starts the cooling operation from the normal operation mode in which the heat source unit and each device of the utilization unit are controlled according to the operation load of the utilization unit, and the superheat degree of the refrigerant at the outlet of the utilization side heat exchanger becomes a positive value.
  • the degree of supercooling of the refrigerant at the outlet of the heat source side heat exchanger or the amount of operating state that fluctuates according to the fluctuation of the degree of subcooling is detected, and the degree of subcooling is equal to or greater than the first predetermined value.
  • a stable state in which the operation state quantity is equal to or greater than the second predetermined value is set.
  • the storage means uses the compressor frequency in the stable state as the first frequency, sets the superheat degree of the refrigerant at the outlet of the use side heat exchanger in the stable state as the first superheat degree, and determines the degree of supercooling or the operating state quantity in the stable state. Stored as the first index value.
  • the normal operation transition means switches to the normal operation mode again after the storage step is completed.
  • the stable state reproduction means controls the compressor so that the first frequency stored in the storing step is reached after a predetermined period has elapsed from the normal operation transition step, and controls the expansion mechanism so that the first superheat degree is reached.
  • the subcooling degree of the refrigerant at the outlet of the heat source side heat exchanger or the operating state quantity that fluctuates according to the fluctuation of the subcooling degree is detected as a detected value.
  • the refrigerant amount suitability determining means compares the index value and the detected value to determine the suitability of the refrigerant amount filled in the refrigerant circuit.
  • the index value for determining the suitability of the refrigerant amount is greater than or equal to the first predetermined value (in the case of the degree of supercooling) or the second predetermined value (in the case of the operation state amount) preset in the initial operation step.
  • the degree of superheat of the refrigerant at the outlet of the compressor and the use side heat exchanger is controlled so that the frequency of the compressor at that time (stable state) is set as the first frequency, and the use side heat exchanger at that time (stable state)
  • the degree of superheat of the refrigerant at the outlet is stored as the first degree of superheat, and the degree of supercooling or the amount of operating state at that time (stable state) is stored as the first index value.
  • the compressor is controlled to the first frequency, and the superheat degree of the refrigerant at the outlet of the use side heat exchanger is controlled to the first superheat degree.
  • the degree of supercooling or the amount of operating state of the refrigerant is detected as a detected value, and in the refrigerant amount suitability determining step, the index value and the detected value are compared to determine the suitability of the refrigerant amount charged in the refrigerant circuit. .
  • the index employed for determining the suitability of the refrigerant amount is equal to or greater than the first predetermined value when the degree of supercooling is set, and the second predetermined value is set when the operation state amount is set. Because it is set in advance so that it will exceed the value, even in an air conditioner that does not basically assume additional refrigerant charging, a certain degree of large value is set for the degree of supercooling or the operating state quantity when determining the refrigerant quantity suitability When the refrigerant amount decreases, it becomes easy to detect that those values become small, and the refrigerant amount determination error can be reduced.
  • the first predetermined value or more is set in the initial operation step.
  • the operating state quantity is set, it is set in advance so as to be equal to or more than the second predetermined value. Therefore, even in an air conditioner that basically does not assume additional charging of refrigerant, the supercooling is performed when determining the appropriateness of the refrigerant quantity.
  • the refrigerant amount decreases, it becomes easy to detect that those values become small, and the refrigerant amount determination error can be reduced.
  • the degree of subcooling or the operating state amount is set to a somewhat large value when determining the refrigerant amount suitability. It can be ensured, and when the amount of refrigerant decreases, it becomes easy to detect that those values become small, and the determination error of the refrigerant amount can be reduced.
  • the operation state amount is set to be equal to or greater than the first predetermined value.
  • the degree of supercooling or the amount of operating state is determined when determining whether or not the refrigerant amount is appropriate. Can be secured to some extent, and when the amount of refrigerant decreases, it becomes easy to detect that those values become small, and the determination error of the refrigerant amount can be reduced.
  • FIG. 1 is a schematic refrigerant circuit diagram of an air-conditioning apparatus according to an embodiment of the present invention. It is a schematic diagram which shows the state of the refrigerant
  • FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner 1 according to an embodiment of the present invention.
  • the air conditioner 1 is a device used for indoor air conditioning such as a building by performing a vapor compression refrigeration cycle operation.
  • the air conditioner 1 mainly includes one outdoor unit 2, an indoor unit 4, a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7 that connect the outdoor unit 2 and the indoor unit 4. That is, the vapor compression refrigerant circuit 10 of the air conditioner 1 of the present embodiment is configured by connecting the outdoor unit 2, the indoor unit 4, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7. ing.
  • the indoor unit 4 is installed by embedding or hanging in a ceiling of a room such as a building or by hanging on a wall surface of the room.
  • the indoor unit 4 is connected to the outdoor unit 2 via a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7 and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4 mainly has an indoor refrigerant circuit 11 that constitutes a part of the refrigerant circuit 10.
  • This indoor refrigerant circuit 11 mainly has an indoor heat exchanger 41 as a use side heat exchanger.
  • the indoor heat exchanger 41 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. It is a heat exchanger that cools indoor air and functions as a refrigerant condenser during heating operation to heat indoor air.
  • the indoor heat exchanger 41 is a cross-fin type fin-and-tube heat exchanger, but is not limited thereto, and may be another type of heat exchanger.
  • the indoor unit 4 sucks indoor air into the unit, exchanges heat with the refrigerant in the indoor heat exchanger 41, and then supplies the indoor fan 42 as a blower fan to be supplied indoors as supply air.
  • the indoor fan 42 is a fan capable of changing the air volume supplied to the indoor heat exchanger 41.
  • the indoor fan 42 is a centrifugal fan or a multiblade fan driven by a motor 42m such as a DC fan motor.
  • the indoor unit 4 is provided with an indoor temperature sensor 43 that detects the temperature of indoor air flowing into the unit (that is, the indoor temperature) on the indoor air inlet side of the indoor unit 4.
  • the room temperature sensor 43 is a thermistor.
  • the indoor unit 4 has an indoor side control unit 44 that controls the operation of each part constituting the indoor unit 4.
  • the indoor side control part 44 has the microcomputer, memory, etc. which were provided in order to control the indoor unit 4, and is with the remote control (not shown) for operating the indoor unit 4 separately. Control signals and the like can be exchanged between them, and control signals and the like can be exchanged with the outdoor unit 2 via the transmission line 8a.
  • the outdoor unit 2 is installed outside a building or the like, and is connected to the indoor unit 4 via a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7, and constitutes a refrigerant circuit 10 together with the indoor unit 4. .
  • the outdoor unit 2 mainly has an outdoor refrigerant circuit 12 that constitutes a part of the refrigerant circuit 10.
  • This outdoor refrigerant circuit 12 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23 as a heat source side heat exchanger, an outdoor expansion valve 33 as an expansion mechanism, an accumulator 24, A liquid side closing valve 25 and a gas side closing valve 26 are provided.
  • the compressor 21 is a compressor whose operating capacity can be varied.
  • the compressor 21 is a positive displacement compressor driven by a motor 21m whose rotation speed is controlled by an inverter.
  • the compressor 21 is only one unit, it is not limited to this, Two or more compressors may be connected in parallel according to the number of connected indoor units or the like. .
  • the four-way switching valve 22 is a valve for switching the flow direction of the refrigerant.
  • the outdoor heat exchanger 23 is used as a refrigerant condenser compressed by the compressor 21 and the indoor heat exchanger 41.
  • Connects the accumulator 24) and the gas refrigerant communication pipe 7 side (cooling operation state: refer to the solid line of the four-way switching valve 22 in FIG. 1), and compresses the indoor heat exchanger 41 by the compressor 21 during heating operation.
  • the discharge side of the compressor 21 and the gas refrigerant communication pipe 7 side are Connect It is possible to connect the gas side of the suction side and the outdoor heat exchanger 23 of the compressor 21 together with the (heating operation state: see the broken lines of the four-way switching valve 22 in FIG. 1).
  • the outdoor heat exchanger 23 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant condenser during cooling operation. It is a heat exchanger that functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 23 has a gas side connected to the four-way switching valve 22 and a liquid side connected to the liquid refrigerant communication pipe 6.
  • the outdoor heat exchanger 23 is a cross-fin fin-and-tube heat exchanger, but is not limited to this, and may be another type of heat exchanger.
  • the outdoor expansion valve 33 is configured to perform outdoor heat exchange in the refrigerant flow direction in the refrigerant circuit 10 during the cooling operation in order to adjust the pressure, flow rate, and the like of the refrigerant flowing in the outdoor refrigerant circuit 12. It is an electric expansion valve disposed on the downstream side of the vessel 23 (connected to the liquid side of the outdoor heat exchanger 23 in this embodiment).
  • the outdoor unit 2 has an outdoor fan 27 as a blower fan for sucking outdoor air into the unit, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air outside.
  • the outdoor fan 27 is a fan capable of changing the air volume supplied to the outdoor heat exchanger 23.
  • the outdoor fan 27 is a propeller fan or the like driven by a motor 27m such as a DC fan motor.
  • the accumulator 24 is connected between the four-way selector valve 22 and the compressor 21 and is a container capable of storing surplus refrigerant generated in the refrigerant circuit 10 in accordance with fluctuations in the operating load of the indoor unit 4. It is.
  • the liquid side shutoff valve 25 and the gas side shutoff valve 26 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7).
  • the liquid side closing valve 25 is connected to the outdoor heat exchanger 23.
  • the gas side closing valve 26 is connected to the four-way switching valve 22.
  • the outdoor unit 2 is provided with various sensors.
  • the outdoor unit 2 includes an evaporating pressure sensor 28 that detects the pressure of the gas refrigerant flowing from the indoor heat exchanger 41 and a condensing pressure sensor that detects the condensing pressure condensed by the outdoor heat exchanger 23. 29, a suction temperature sensor 30 for detecting the suction temperature of the compressor 21, and a liquid side temperature sensor 31 for detecting the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state on the liquid side of the outdoor heat exchanger 23. Is provided.
  • An outdoor temperature sensor 32 that detects the temperature of the outdoor air flowing into the unit (that is, the outdoor temperature) is provided on the outdoor air inlet side of the outdoor unit 2.
  • the suction temperature sensor 30, the liquid side temperature sensor 31, and the outdoor temperature sensor 32 are composed of thermistors.
  • the outdoor unit 2 includes an outdoor side control unit 34 that controls the operation of each unit constituting the outdoor unit 2.
  • the outdoor control unit 34 includes a microcomputer provided for controlling the outdoor unit 2, a memory, an inverter circuit for controlling the motor 21m, and the like. Control signals and the like can be exchanged between them. That is, the control part 8 which performs operation control of the whole air conditioning apparatus 1 is comprised by the transmission line 8a which connects between the indoor side control part 44, the outdoor side control part 34, and the control parts 34 and 44.
  • the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the indoor-side refrigerant circuit 11, the outdoor-side refrigerant circuit 12, and the refrigerant communication pipes 6 and 7.
  • the air conditioner 1 of the present embodiment performs the operation by switching between the cooling operation and the heating operation by the four-way switching valve 22, and each of the outdoor unit 2 and the indoor unit 4 according to the operation load of the indoor unit 4. The device is controlled.
  • movement of an air conditioning apparatus Next, operation
  • the operation mode of the air conditioner 1 of the present embodiment the normal operation mode for controlling each device of the outdoor unit 2 and the indoor unit 4 according to the operation load of the indoor unit 4 and the cooling of all the indoor units 4 are performed.
  • the normal operation mode includes a cooling operation and a heating operation
  • the refrigerant amount determination operation mode includes a refrigerant leakage detection operation.
  • the degree of refrigerant supercooling at the outlet of the outdoor heat exchanger 23 is determined by using the refrigerant pressure (condensation pressure) value on the outlet side of the outdoor heat exchanger 23 detected by the condensation pressure sensor 29 as the saturation temperature value of the refrigerant. And is detected by subtracting the refrigerant temperature value detected by the liquid side temperature sensor 31 from the saturation temperature value of the refrigerant.
  • the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the outdoor heat exchanger 23 via the four-way switching valve 22 and is condensed by exchanging heat with outdoor air supplied by the outdoor fan 27. Become.
  • the high-pressure liquid refrigerant is decompressed by the outdoor expansion valve 33 to become a low-pressure gas-liquid two-phase refrigerant, and is sent to the indoor unit 4 via the liquid-side closing valve 25 and the liquid refrigerant communication pipe 6.
  • the outdoor expansion valve 33 controls the flow rate of the refrigerant flowing in the outdoor heat exchanger 23 so that the degree of supercooling at the outlet of the outdoor heat exchanger 23 becomes a predetermined value
  • the outdoor heat exchanger 23 is controlled.
  • the high-pressure liquid refrigerant condensed in step 1 has a predetermined degree of supercooling.
  • the low-pressure gas-liquid two-phase refrigerant sent to the indoor unit 4 is sent to the indoor heat exchanger 41, where it is evaporated by exchanging heat with indoor air in the indoor heat exchanger 41 to become a low-pressure gas refrigerant. .
  • required in the air-conditioning space in which the indoor unit 4 was installed flows through the indoor heat exchanger 41.
  • This low-pressure gas refrigerant is sent to the outdoor unit 2 via the gas refrigerant communication pipe 7 and flows into the accumulator 24 via the gas-side closing valve 26 and the four-way switching valve 22. Then, the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
  • the operating load of the indoor unit 4 for example, when the operating load of the indoor unit 4 is small or when it is stopped, excess refrigerant is accumulated in the accumulator 24.
  • the distribution state of the refrigerant in the refrigerant circuit 10 during the cooling operation in the normal operation mode is as follows. As shown in FIG. 2, the refrigerant is in the liquid state (the hatched portion in FIG.
  • the gas-liquid The two-phase states (lattice hatched portions in FIG. 2) and gas states (hatched hatched portions in FIG. 2) are distributed and distributed.
  • the portion from the vicinity of the outlet of the outdoor heat exchanger 23 to the outdoor expansion valve 33 is filled with a liquid refrigerant.
  • the intermediate portion of the outdoor heat exchanger 23 and the portion between the outdoor expansion valve 33 and the vicinity of the inlet of the indoor heat exchanger 41 are filled with the gas-liquid two-phase refrigerant.
  • the portion from the middle portion of the indoor heat exchanger 41 to the portion excluding a part of the gas refrigerant communication pipe 7 and the accumulator 24 and the vicinity of the inlet of the outdoor heat exchanger 23 via the compressor 21 is in a gas state.
  • FIG. 2 is a schematic diagram showing a state of the refrigerant flowing in the refrigerant circuit 10 in the cooling operation.
  • the heating operation in the normal operation mode will be described.
  • the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the indoor heat exchanger 41, and the suction side of the compressor 21 is the outdoor heat. It is connected to the gas side of the exchanger 23.
  • the degree of opening of the outdoor expansion valve 33 is adjusted so as to reduce the refrigerant flowing into the outdoor heat exchanger 23 to a pressure at which the refrigerant can evaporate in the outdoor heat exchanger 23 (that is, evaporation pressure). .
  • the liquid side closing valve 25 and the gas side closing valve 26 are opened.
  • the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant, and the four-way switching valve 22 and the gas side closing are performed. It is sent to the indoor unit 4 via the valve 26 and the gas refrigerant communication pipe 7.
  • the high-pressure gas refrigerant sent to the indoor unit 4 is condensed by exchanging heat with indoor air in the indoor heat exchanger 41, and then becomes high-pressure liquid refrigerant, and then passes through the liquid refrigerant communication pipe 6. Sent to the outdoor unit 2.
  • the high-pressure liquid refrigerant is reduced in pressure by the outdoor expansion valve 33 via the liquid-side closing valve 25 to become a low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with outdoor air supplied by the outdoor fan 27 to evaporate into a low-pressure gas refrigerant, and the four-way switching valve 22. And flows into the accumulator 24.
  • the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
  • the operation load of the indoor unit 4 for example, when the surplus refrigerant amount is generated in the refrigerant circuit 10 as in the case where the operation load of the indoor unit 4 is small, as in the cooling operation, Excess refrigerant is accumulated in the accumulator 24.
  • the refrigerant leakage detection operation is performed, and the operation that is performed only after the air conditioner 1 is installed (hereinafter referred to as the initial setting operation) and the second and subsequent operations ( Hereinafter, the driving method is different from that of the determination operation. For this reason, the first setting operation and the determination operation will be described below separately.
  • step S1 when an instruction to start the initial setting operation is made, the refrigerant circuit 10 is in a state (cooling operation state) in which the four-way switching valve 22 of the outdoor unit 2 is indicated by a solid line in FIG. Then, the compressor 21 and the outdoor fan 27 are activated, and the cooling operation is forcibly performed for all the indoor units 4 (the control method of the outdoor fan 27 is different from the cooling operation in the normal operation mode) (FIG. 2). reference). At this time, the rotational speed of the motor 27m is maximized in the outdoor fan 27 so that the air volume is maximized.
  • step S1 since the air volume of the outdoor fan 27 is maximized in the cooling operation state, the heat transfer efficiency on the air side of the heat exchange efficiency performed by the outdoor heat exchanger 23 can be maximized, and the influence of disturbance can be reduced. Can be reduced. The verification of this effect will be described later. Further, the “disturbance” referred to here is contamination of the outdoor heat exchanger 23, installation status of the outdoor unit 2, presence or absence of wind and rain, and the like. Then, when the air volume of the outdoor fan 27 becomes maximum, the process proceeds to the next step S2.
  • step S2 temperature reading- In step S2, the indoor temperature Tb detected by the indoor temperature sensor 43 and the outdoor temperature Ta detected by the outdoor temperature sensor are read.
  • the process proceeds to the next step S3.
  • step S3 if the indoor temperature Tb and the outdoor temperature Ta are within the predetermined temperature range, the process proceeds to the next step S4, and if they are not within the predetermined temperature range, the cooling operation of step S1 is performed. Will continue.
  • step S4 Determination of whether or not the relative degree of supercooling is a predetermined value or more
  • a relative supercooling degree value is derived, and it is determined whether or not the relative supercooling degree value is a predetermined value or more (for example, 0.3 or more).
  • the “relative supercooling value” refers to a value obtained by dividing the supercooling value at the outlet of the outdoor heat exchanger 23 by a value obtained by subtracting the outdoor temperature from the condensation temperature value.
  • the relative supercooling degree is expressed as relative SC. The “relative supercooling degree value” will be described in detail later.
  • the condensation temperature value is a value obtained by converting the outlet pressure (condensation pressure) value of the outdoor heat exchanger 23 detected by the condensation pressure sensor 29 into the refrigerant saturation temperature. If it is determined in step S4 that the relative supercooling value is less than the predetermined value, the process proceeds to the next step S5, and if it is determined that the relative subcooling value is less than the predetermined value, the process proceeds to step S6.
  • the value of the relative supercooling degree is set to 0.3 or more as an example. That is, the predetermined value is desirably at least 0.3 or more.
  • step S5 control of relative supercooling- In step S5, since the relative supercooling degree value is less than the predetermined value, the rotational frequency of the compressor 21 and the superheating degree at the outlet of the indoor heat exchanger 41 are set so that the relative supercooling degree value is equal to or greater than the predetermined value.
  • the cooling operation in step S1 is performed with the rotational frequency of the compressor 21 being 40 Hz and the degree of superheat at the outlet of the indoor heat exchanger 41 being 5 ° C., and whether or not the relative supercooling degree value is equal to or higher than a predetermined value. judge.
  • the rotational frequency of the compressor 21 is increased from 40 Hz to, for example, 50 Hz
  • the superheat degree of the refrigerant at the outlet of the indoor heat exchanger 41 is lowered to 5 ° C.
  • the relative supercool degree value is equal to or higher than a predetermined value. It is determined whether or not.
  • the degree of relative supercooling is controlled to be equal to or higher than a predetermined value by repeatedly increasing the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger 41 by 5 ° C. again. And if a relative supercooling degree value becomes more than predetermined value, it will transfer to Step S6.
  • Control of the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger 41 is controlled by narrowing the outdoor expansion valve 33 from the open state. ing. Further, the control of the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger 41 is not limited to this, and may be performed by controlling the air volume of the indoor fan 42, or the control of the valve opening degree of the outdoor expansion valve 33. And control of the air volume of the indoor fan 42 may be performed in combination.
  • the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger 41 is converted from the refrigerant temperature value detected by the suction temperature sensor 30 to the evaporation pressure value detected by the evaporation pressure sensor 28 into the saturation temperature value of the refrigerant.
  • the detected value is detected by subtracting.
  • step S6 Since the degree of superheat is controlled to be a positive value in step S5, as shown in FIG. 4, the accumulator 24 is in a state where excess refrigerant is not accumulated, and the refrigerant accumulated in the accumulator 24 is subjected to outdoor heat exchange. It will move to the container 23. -Step S6, memorize relative degree of supercooling- In step S6, the relative supercooling degree value that is equal to or greater than the predetermined value in step S4 or step S6 is stored as the initial relative supercooling degree value, and the process proceeds to the next step S7.
  • step S7 parameter storage- In step S7, the rotational frequency of the compressor 21, the rotational frequency of the indoor fan 42, the outdoor temperature Ta, and the indoor temperature Tb in the operating state at the supercooling degree value stored in step S6 are stored. End the initial setting operation.
  • FIG. 3 is a flowchart at the time of determination operation.
  • This judgment operation is switched from the cooling operation or the heating operation in the normal operation mode periodically (for example, when a load is not required for the air-conditioned space once every year) after the initial setting operation is performed.
  • This is an operation for detecting whether or not the refrigerant in the refrigerant circuit has leaked to the outside due to the cause.
  • Step S11 Judgment whether normal operation mode has passed for a certain period of time- First, it is determined whether or not the operation in the normal operation mode such as the cooling operation or the heating operation has elapsed for a certain period of time, and when the operation in the normal operation mode has elapsed for a certain period of time, the process proceeds to the next step S12.
  • -Step S12 cooling the indoor unit-
  • the refrigerant circuit 10 and the four-way switching valve 22 of the outdoor unit 2 are in the state indicated by the solid line in FIG.
  • the compressor 21 and the outdoor fan 27 are activated, and the cooling operation is forcibly performed for all the indoor units 4.
  • -Step S13 temperature reading- In step S13, the room temperature and the outdoor temperature are read in the same manner as in step S2 of the initial setting operation.
  • the process proceeds to the next step S14.
  • step S14 Determining whether or not Detectable Range- In step S14, whether or not the detected indoor temperature Tb and outdoor temperature Ta are within a predetermined temperature range suitable for the preset refrigerant amount determination operation mode, as in step S3 of the initial setting operation. Determine whether. In step S14, if the room temperature Tb and the outdoor temperature Ta are within the predetermined temperature range, the process proceeds to the next step S15. If the room temperature Tb and the outdoor temperature Ta are not within the predetermined temperature range, the cooling operation of step S12 is performed. Will continue.
  • step S15 Control to conditions in step S15, initial setting operation-
  • the compressor 21 and the indoor fan 42 are controlled based on the rotation frequency of the compressor 21 and the rotation frequency of the indoor fan 42 stored in step S7 of the initial setting operation.
  • coolant inside the refrigerant circuit 10 is the same state as an initial setting driving
  • step S15 ends, the process proceeds to the next step S16.
  • step S16 Determination of Adequacy of Refrigerant Quantity-
  • the degree of relative supercooling is derived as in step S4 of the initial setting operation. Then, it is determined whether or not a value obtained by subtracting the relative supercooling degree from the initial relative supercooling degree (hereinafter referred to as a relative supercooling degree difference) is equal to or greater than a second predetermined value. If it is determined in step S16 that the relative subcooling degree difference is less than the second predetermined value, the determination operation is terminated, and if it is determined that the relative subcooling degree difference is greater than or equal to the second predetermined value, the process proceeds to step S17. To do.
  • FIG. 6 is a graph showing the condensation temperature Tc and the outdoor heat exchanger outlet temperature Tl when the outdoor temperature Ta is constant with respect to the outdoor fan air volume. Referring to FIG. 6, under the condition where the outdoor temperature Ta is constant, the condensation temperature Tc and the outdoor heat exchanger outlet temperature Tl decrease as the outdoor fan air volume increases. The drop of the decrease is that the condensation temperature Tc is larger than the outdoor heat exchanger outlet temperature Tl. That is, it is understood that when the outdoor fan air volume increases, the degree of supercooling, which is the difference between the condensation temperature Tc and the outdoor heat exchanger outlet temperature Tl, decreases.
  • FIG. 7 is a graph showing the distribution of the supercooling degree value with respect to the outdoor fan air volume, as the outdoor fan air volume increases, the supercooling degree value decreases.
  • the variation in the degree of supercooling is greater when the outdoor fan air volume is smaller than when the outdoor fan air volume is large. This is because when the outdoor fan airflow is small, it is more susceptible to disturbances such as dirt from the outdoor heat exchanger, outdoor unit installation, and wind and rain, and when the outdoor fan airflow is large, it is more susceptible to disturbances. This is thought to be because it is difficult. For this reason, by maximizing the outdoor fan air volume, it is possible to suppress variations in the detected supercooling degree value and reduce detection errors.
  • FIG. 7 is a graph showing the distribution of the supercooling degree value with respect to the outdoor fan air volume, as the outdoor fan air volume increases, the supercooling degree value decreases.
  • the variation in the degree of supercooling is greater when the outdoor fan air volume is smaller than when the outdoor fan air volume is large. This is because when the outdoor
  • the relative supercooling degree value is a value obtained by dividing the supercooling degree value by the value obtained by subtracting the outdoor temperature from the condensation temperature value. Referring to FIG. 8, it can be seen that regardless of the magnitude of the outdoor fan air volume, the value is approximately between 0.3 and 0.4, and there is little variation. Therefore, by using this relative supercooling degree value as an index when determining the suitability of the refrigerant amount, it is possible to determine the suitability of the refrigerant amount without being affected by disturbance as much as possible, and to suppress detection errors. Can do. Therefore, it is useful to use the relative supercooling degree value for determining the suitability of the refrigerant amount.
  • a predetermined value for example, 0.3
  • the degree of relative supercooling detected in the initial setting operation is used as an index value for determining the appropriateness of the refrigerant amount.
  • the degree of superheat of the refrigerant at the outlet of the compressor 21 and the indoor heat exchanger 41 is controlled.
  • the frequency of the compressor is set as the first frequency, and the use side heat exchanger at that time (stable state)
  • the degree of superheat of the refrigerant at the outlet is stored, and the degree of relative supercooling at that time is stored as an index value, and in the determination operation performed after a predetermined period (one year in this embodiment) has elapsed since the initial setting operation,
  • the frequency of the compressor 21 is controlled to the frequency stored by the initial setting operation, and the superheat degree of the refrigerant at the outlet of the indoor heat exchanger 41 is controlled to the superheat degree stored by the initial setting operation, and the relative supercooling degree at that time is detected.
  • the detected value is compared with the index value stored in the initial setting operation to determine the suitability of the amount of refrigerant charged in the refrigerant circuit.
  • the index used for determining the suitability of the refrigerant amount is set in advance so that the relative supercooling degree is adopted and this value is, for example, 0.3 or more. Even in an air conditioner that basically does not assume the above, it is possible to secure a certain degree of large value for the degree of supercooling or the amount of operation state when determining the suitability of the refrigerant amount, and when the refrigerant amount decreases, these values decrease. This makes it easier to detect the difference in the amount of refrigerant and can reduce the determination error of the refrigerant amount.
  • the degree of refrigerant supercooling at the outlet of the outdoor heat exchanger 23 is the refrigerant pressure (corresponding to the condensation pressure) value on the outlet side of the outdoor heat exchanger 23 detected by the condensation pressure sensor 29.
  • the present invention is not limited to this.
  • an outdoor heat exchange sensor capable of detecting the temperature of the refrigerant in the outdoor heat exchanger 23 is provided to detect the condensation temperature value as the saturation temperature value of the refrigerant, and the refrigerant temperature value detected by the liquid-side temperature sensor 31 is the refrigerant temperature value. It may be detected by subtracting from the saturation temperature value.
  • the relative supercooling degree value is used as an index for determining the appropriateness of the refrigerant amount, but the present invention is not limited to this, and the supercooling degree value may be used as an index for determining the appropriateness of the refrigerant amount.
  • Modification 3 In the present embodiment, as shown in FIG. 5 and the description thereof, a case where control is performed to switch between the normal operation mode and the refrigerant amount determination operation mode at a constant time interval is given as an example. Is not to be done.
  • the air conditioner 1 is provided with a switch or the like for switching to the refrigerant amount determination operation mode, and a serviceman or facility manager operates the switch or the like locally.
  • the refrigerant leakage detection operation may be performed periodically.
  • Air conditioner Outdoor unit (heat source unit) 4 Indoor units (units used) 6 Liquid refrigerant communication pipe 7 Gas refrigerant communication pipe 10 Refrigerant circuit 21 Compressor 23 Outdoor heat exchanger (heat source side heat exchanger) 24 accumulator 27 outdoor fan (cooling heat source adjusting means) 33 Outdoor expansion valve (expansion mechanism) 41 Indoor heat exchanger (use side heat exchanger)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本発明の課題は、指標となる過冷却度および過冷却度に基づいた換算値が冷媒量適否の判定し易い値になるように制御することにより検知誤差を低減させることにある。本発明の空気調和装置(1)の冷媒量判定方法は、圧縮機(21)と熱源側熱交換器(23)と冷却熱源調節手段(27)とを有する熱源ユニット(2)と、利用側熱交換器(41)を有する利用ユニット(4)と、膨張機構(33)と、液冷媒連絡配管(6)およびガス冷媒連絡配管(7)を含み、冷房運転を少なくとも行うことが可能な冷媒回路(10)を有する空気調和装置において、冷媒回路内の冷媒量の適否を判定する冷媒量判定方法であって、過冷却度が第1所定値以上にした安定状態における圧縮機周波数と過熱度と過冷却度とを記憶する。所定期間経過後に、記憶された圧縮機周波数と過熱度になるように各種制御を行いつつ冷媒の過冷却度を検出し、記憶した過冷却度と比較して、冷媒回路内の冷媒量の適否を判定する。

Description

空気調和装置の冷媒量判定方法および空気調和装置
 本発明は、空気調和装置の冷媒回路内に充填されている冷媒量の適否を判定する機能、特に、熱源ユニットと利用ユニットとが冷媒連絡配管を介して接続された空気調和装置の冷媒回路内に充填されている冷媒量の適否を判定する機能に関する。
 従来、凝縮器の過冷却度にもとづいて冷媒量を判定する冷媒量判定運転、を行う特許文献1(特開2006-23072号公報)のような空気調和装置がある。特許文献1(特開2006-23072号公報)のような技術では、冷媒量判定運転は空気調和装置の初回(例えば、空気調和装置の設置時)および定期的(例えば、設置時から1年ごとなど)に行われる。この冷媒量判定運転では、冷房運転状態において蒸発器の過熱度と蒸発圧力が一定になるように制御を行い、凝縮器の過冷却度を測定する。そして、冷媒量判定運転において、その時に測定された過冷却度と初回またはそれ以前に測定された過冷却度との差に基づいて冷媒が漏れているか否かを判定している。
 しかしながら、特許文献1のような冷媒追加充填のある空気調和装置の冷媒漏洩検知では、過熱度一定制御を行うことにより、熱源側熱交換器の出口における冷媒の過冷却度をある程度自動的に確保できるが、冷媒追加充填を基本的に想定していないような空気調和装置では、冷媒回路の回路ボリュームに対して充填冷媒量が大きく変化する可能性のあり、特許文献1(特開2006-23072号公報)の記載の空気調和装置と同様に過熱度一定制御をすると基準指標(例えば、過冷却度など)として十分に大きな値が確保できなくなる恐れがある。
 本発明の課題は、基準指標となる過冷却度および過冷却度に基づいた換算値が冷媒量の適否の判定がし易い値になるように制御することにより検知誤差を低減させることにある。
 第1発明にかかる空気調和装置の冷媒量判定方法は、運転用量を調節可能な圧縮機と熱源側熱交換器と膨張機構とアキュムレータとを有する熱源ユニットと、利用側熱交換器を有する利用ユニットと、熱源ユニットと利用ユニットとを接続する液冷媒連絡配管およびガス冷媒連絡配管を含み、熱源側熱交換器を圧縮機において圧縮される冷媒の凝縮器として、かつ、利用側熱交換器を熱源側熱交換器において凝縮される冷媒の蒸発器として機能させる冷房運転を少なくとも行うことが可能な冷媒回路を有する空気調和装置において、冷媒回路内の冷媒量の適否を判定する冷媒量判定方法であって、初期運転ステップと、記憶ステップと、通常運転移行ステップと、安定状態再現ステップと、冷媒量適否判定ステップとを備える。初期運転ステップでは、利用ユニットの運転負荷に応じて熱源ユニットおよび利用ユニットの各機器の制御を行う通常運転モードから、冷房運転し利用側熱交換器の出口における冷媒の過熱度が正値になるように膨張機構を制御しつつ熱源側熱交換器の出口における冷媒の過冷却度または過冷却度の変動に応じて変動する運転状態量を検出して、過冷却度が第1所定値以上に、または、運転状態量が第2所定値以上にした安定状態にする。記憶ステップでは、安定状態における圧縮機の周波数を第1周波数として、安定状態における利用側熱交換器の出口の冷媒の過熱度を第1過熱度として、安定状態における過冷却度または運転状態量を第1指標値として記憶する。通常運転移行ステップでは、記憶ステップ終了後に通常運転モードへ再び切り換える。安定状態再現ステップでは、通常運転移行ステップから所定期間経過後に、記憶ステップにより記憶された第1周波数になるように圧縮機の制御を行い、かつ、第1過熱度になるように膨張機構の制御を行いつつ熱源側熱交換器の出口における冷媒の過冷却度または過冷却度の変動に応じて変動する運転状態量を検出値として検出する。冷媒量適否判定ステップでは、指標値と検出値とを比較して、冷媒回路内に充填されている冷媒量の適否を判定する。
 本発明では、冷媒量の適否を判定するための指標値を初期運転ステップにおいて予め設定された第1所定値(過冷却度の場合)以上または第2所定値(運転状態量の場合)以上になるように圧縮機および利用側熱交換器の出口の冷媒の過熱度が制御され、その時(安定状態)の圧縮機の周波数を第1周波数として、その時(安定状態)の利用側熱交換器の出口の冷媒の過熱度を第1過熱度として記憶し、さらにその時(安定状態)の過冷却度または運転状態量を第1指標値として記憶している。そして、通常運転以降ステップから所定期間経過後に行われる安定状態再現ステップにおいて、圧縮機を第1周波数に、利用側熱交換器の出口における冷媒の過熱度を第1過熱度に制御して、その時の過冷却度または運転状態量を検出値として検出し、冷媒量適否判定ステップにおいて、指標値と検出値とを比較して、冷媒回路内に充填されている冷媒量の適否を判定している。
 このように、初期運転ステップにおいて、冷媒量の適否の判定に採用する指標を、過冷却度にする場合には第1所定値以上になるように、運転状態量にする場合には第2所定値以上になるように、予め設定しているため、冷媒追加充填を基本的に想定していないような空気調和装置においても冷媒量適否判定に際して過冷却度または運転状態量をある程度大きな値を確保することができ、冷媒量が減少した場合にそれらの値が小さくなることを検出しやすくなり、冷媒量の判定誤差を低減することができる。
 第2発明に係る空気調和装置の冷媒量判定方法は、第1発明に係る空気調和装置の冷媒量判定方法であって、第1所定値は、冷媒が漏洩したことを判断可能な過冷却度の大きさ以上の適当な値である。また、第2所定値は、冷媒が漏洩したことを判断可能な運転状態量の大きさ以上の適当な値である。
 したがって、冷媒追加充填を基本的に想定していないような空気調和装置においても冷媒量適否判定に際して過冷却度または運転状態量をある程度大きな値を確保することができ、冷媒量が減少した場合にそれらの値が小さくなることを検出しやすくなり、冷媒量の判定誤差を低減することができる。
 第3発明に係る空気調和装置は、冷媒回路と、初期運転手段と、記憶手段と、安定状態再現手段と、冷媒量適否判定手段とを備える。冷媒回路は、熱源ユニットと、利用ユニットと、液冷媒連絡配管およびガス冷媒連絡配管とを含む。熱源ユニットは、運転用量を調節可能な圧縮機と熱源側熱交換器と膨張機構とアキュムレータとを有する。利用ユニットは、利用側熱交換器を有する。液冷媒連絡配管およびガス冷媒連絡配管は、熱源ユニットと利用ユニットとを接続する。また、冷媒回路は、熱源側熱交換器を圧縮機において圧縮される冷媒の凝縮器として、かつ、利用側熱交換器を熱源側熱交換器において凝縮される冷媒の蒸発器として機能させる冷房運転を少なくとも行うことが可能である。初期運転手段は、利用ユニットの運転負荷に応じて熱源ユニットおよび利用ユニットの各機器の制御を行う通常運転モードから、冷房運転し利用側熱交換器の出口における冷媒の過熱度が正値になるように膨張機構を制御しつつ熱源側熱交換器の出口における冷媒の過冷却度または過冷却度の変動に応じて変動する運転状態量を検出して、過冷却度が第1所定値以上に、または、運転状態量が第2所定値以上にした安定状態にする。記憶手段は、安定状態における圧縮機の周波数を第1周波数として、安定状態における利用側熱交換器の出口の冷媒の過熱度を第1過熱度として、安定状態における過冷却度または運転状態量を第1指標値として記憶する。通常運転移行手段は、記憶ステップ終了後に通常運転モードへ再び切り換える。安定状態再現手段は、通常運転移行ステップから所定期間経過後に、記憶ステップにより記憶された第1周波数になるように圧縮機の制御を行い、かつ、第1過熱度になるように膨張機構の制御を行いつつ熱源側熱交換器の出口における冷媒の過冷却度または過冷却度の変動に応じて変動する運転状態量を検出値として検出する。冷媒量適否判定手段は、指標値と検出値とを比較して、冷媒回路内に充填されている冷媒量の適否を判定する。
 本発明では、冷媒量の適否を判定するための指標値を初期運転ステップにおいて予め設定された第1所定値(過冷却度の場合)以上または第2所定値(運転状態量の場合)以上になるように圧縮機および利用側熱交換器の出口の冷媒の過熱度が制御され、その時(安定状態)の圧縮機の周波数を第1周波数として、その時(安定状態)の利用側熱交換器の出口の冷媒の過熱度を第1過熱度として記憶し、さらにその時(安定状態)の過冷却度または運転状態量を第1指標値として記憶している。そして、通常運転以降ステップから所定期間経過後に行われる安定状態再現ステップにおいて、圧縮機を第1周波数に、利用側熱交換器の出口における冷媒の過熱度を第1過熱度に制御して、その時の過冷却度または運転状態量を検出値として検出し、冷媒量適否判定ステップにおいて、指標値と検出値とを比較して、冷媒回路内に充填されている冷媒量の適否を判定している。
 このように、初期運転ステップにおいて、冷媒量の適否の判定に採用する指標を、過冷却度にする場合には第1所定値以上になるように、運転状態量にする場合には第2所定値以上になるように、予め設定しているため、冷媒追加充填を基本的に想定していないような空気調和装置においても冷媒量適否判定に際して過冷却度または運転状態量をある程度大きな値を確保することができ、冷媒量が減少した場合にそれらの値が小さくなることを検出しやすくなり、冷媒量の判定誤差を低減することができる。
 第1発明に係る空気調和装置の冷媒量判定方法では、初期運転ステップにおいて、冷媒量の適否の判定に採用する指標を、過冷却度にする場合には第1所定値以上になるように、運転状態量にする場合には第2所定値以上になるように、予め設定しているため、冷媒追加充填を基本的に想定していないような空気調和装置においても冷媒量適否判定に際して過冷却度または運転状態量をある程度大きな値を確保することができ、冷媒量が減少した場合にそれらの値が小さくなることを検出しやすくなり、冷媒量の判定誤差を低減することができる。
 第2発明に係る空気調和装置の冷媒量判定方法では、冷媒追加充填を基本的に想定していないような空気調和装置においても冷媒量適否判定に際して過冷却度または運転状態量をある程度大きな値を確保することができ、冷媒量が減少した場合にそれらの値が小さくなることを検出しやすくなり、冷媒量の判定誤差を低減することができる。
 第3発明に係る空気調和装置では、初期運転ステップにおいて、冷媒量の適否の判定に採用する指標を、過冷却度にする場合には第1所定値以上になるように、運転状態量にする場合には第2所定値以上になるように、予め設定しているため、冷媒追加充填を基本的に想定していないような空気調和装置においても冷媒量適否判定に際して過冷却度または運転状態量をある程度大きな値を確保することができ、冷媒量が減少した場合にそれらの値が小さくなることを検出しやすくなり、冷媒量の判定誤差を低減することができる。
本発明にかかる一実施形態の空気調和装置の概略の冷媒回路図である。 冷房運転における冷媒回路内を流れる冷媒の状態を示す模式図である。 初期設定運転のフローチャートである。 冷媒量判定運転モード(初期設定運転および判定運転)における冷媒回路内を流れる冷媒の状態を示す模式図である。 判定運転のフローチャートである。 室外ファン風量に対する室外温度Taが一定の際の凝縮温度Tcおよび室外熱交換器出口温度Tlを表すグラフである。 室外ファン風量に対する過冷却度値の分布を表すグラフである。 室外ファン風量に対する相対過冷却度値の分布を表すグラフである。
 以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明する。
 (1)空気調和装置の構成
 図1は、本発明にかかる一実施形態の空気調和装置1の概略の冷媒回路図である。空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の屋内の冷暖房に使用される装置である。空気調和装置1は、主として、1台の室外ユニット2と、室内ユニット4と、室外ユニット2と室内ユニット4とを接続する液冷媒連絡配管6およびガス冷媒連絡配管7とを備えている。すなわち、本実施形態の空気調和装置1の蒸気圧縮式の冷媒回路10は、室外ユニット2と、室内ユニット4と、液冷媒連絡配管6およびガス冷媒連絡配管7とが接続されることによって構成されている。
 <室内ユニット>
 室内ユニット4は、ビル等の室内の天井に埋め込みや吊り下げ等により、または、室内の壁面に壁掛け等により設置されている。室内ユニット4は、液冷媒連絡配管6およびガス冷媒連絡配管7を介して室外ユニット2に接続されており、冷媒回路10の一部を構成している。
 次に、室内ユニット4の構成について説明する。
 室内ユニット4は、主として、冷媒回路10の一部を構成する室内側冷媒回路11を有している。この室内側冷媒回路11は、主として、利用側熱交換器としての室内熱交換器41を有している。
 本実施形態において、室内熱交換器41は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内空気を加熱する熱交換器である。なお、本実施形態において、室内熱交換器41は、クロスフィン式のフィン・アンド・チューブ型熱交換器であるが、これに限定されず、他の型式の熱交換器であってもよい。
 本実施形態において、室内ユニット4は、ユニット内に室内空気を吸入して、室内熱交換器41において冷媒と熱交換させた後に、供給空気として室内に供給するための送風ファンとしての室内ファン42を有している。室内ファン42は、室内熱交換器41に供給する空気の風量を可変することが可能なファンであり、本実施形態において、DCファンモータ等からなるモータ42mによって駆動される遠心ファンや多翼ファン等である。
 また、室内ユニット4には、室内ユニット4の室内空気の吸入口側には、ユニット内に流入する室内空気の温度(すなわち、室内温度)を検出する室内温度センサ43が設けられている。本実施形態において、室内温度センサ43は、サーミスタからなる。また、室内ユニット4は、室内ユニット4を構成する各部の動作を制御する室内側制御部44を有している。そして、室内側制御部44は、室内ユニット4の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室内ユニット4を個別に操作するためのリモコン(図示せず)との間で制御信号等のやりとりを行ったり、室外ユニット2との間で伝送線8aを介して制御信号等のやりとりを行ったりすることができるようになっている。
 <室外ユニット>
 室外ユニット2は、ビル等の室外に設置されており、液冷媒連絡配管6およびガス冷媒連絡配管7を介して室内ユニット4に接続されており、室内ユニット4とともに冷媒回路10を構成している。
 次に、室外ユニット2の構成について説明する。室外ユニット2は、主として、冷媒回路10の一部を構成する室外側冷媒回路12を有している。この室外側冷媒回路12は、主として、圧縮機21と、四路切換弁22と、熱源側熱交換器としての室外熱交換器23と、膨張機構としての室外膨張弁33と、アキュムレータ24と、液側閉鎖弁25と、ガス側閉鎖弁26とを有している。
 圧縮機21は、運転容量を可変することが可能な圧縮機であり、本実施形態において、インバータにより回転数が制御されるモータ21mによって駆動される容積式圧縮機である。なお、本実施形態において、圧縮機21は、1台のみであるが、これに限定されず、室内ユニットの接続台数等に応じて、2台以上の圧縮機が並列に接続されていてもよい。
 四路切換弁22は、冷媒の流れの方向を切り換えるための弁であり、冷房運転時には、室外熱交換器23を圧縮機21によって圧縮される冷媒の凝縮器として、かつ、室内熱交換器41を室外熱交換器23において凝縮される冷媒の蒸発器として機能させるために、圧縮機21の吐出側と室外熱交換器23のガス側とを接続するとともに圧縮機21の吸入側(具体的には、アキュムレータ24)とガス冷媒連絡配管7側とを接続し(冷房運転状態:図1の四路切換弁22の実線を参照)、暖房運転時には、室内熱交換器41を圧縮機21によって圧縮される冷媒の凝縮器として、かつ、室外熱交換器23を室内熱交換器41において凝縮される冷媒の蒸発器として機能させるために、圧縮機21の吐出側とガス冷媒連絡配管7側とを接続するとともに圧縮機21の吸入側と室外熱交換器23のガス側とを接続することが可能である(暖房運転状態:図1の四路切換弁22の破線を参照)。
 本実施形態において、室外熱交換器23は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、そのガス側が四路切換弁22に接続され、その液側が液冷媒連絡配管6に接続されている。なお、本実施形態において、室外熱交換器23は、クロスフィン式のフィン・アンド・チューブ型熱交換器であるが、これに限定されず、他の型式の熱交換器であってもよい。
 本実施形態において、室外膨張弁33は、室外側冷媒回路12内を流れる冷媒の圧力や流量等の調節を行うために、冷房運転を行う際の冷媒回路10における冷媒の流れ方向において室外熱交換器23の下流側に配置された(本実施形態においては、室外熱交換器23の液側に接続されている)電動膨張弁である。
 本実施形態において、室外ユニット2は、ユニット内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、室外に排出するための送風ファンとしての室外ファン27を有している。この室外ファン27は、室外熱交換器23に供給する空気の風量を可変することが可能なファンであり、本実施形態において、DCファンモータ等からなるモータ27mによって駆動されるプロペラファン等である。
 アキュムレータ24は、四路切換弁22と圧縮機21との間に接続されており、室内ユニット4の運転負荷の変動等に応じて冷媒回路10内に発生する余剰冷媒を溜めることが可能な容器である。
 液側閉鎖弁25およびガス側閉鎖弁26は、外部の機器・配管(具体的には、液冷媒連絡配管6およびガス冷媒連絡配管7)との接続口に設けられた弁である。液側閉鎖弁25は、室外熱交換器23に接続されている。ガス側閉鎖弁26は、四路切換弁22に接続されている。
 また、室外ユニット2には、各種のセンサが設けられている。具体的には、室外ユニット2には、室内熱交換器41から流入してきたガス冷媒の圧力を検出する蒸発圧力センサ28と、室外熱交換器23により凝縮される凝縮圧力を検出する凝縮圧力センサ29と、圧縮機21の吸入温度を検出する吸入温度センサ30と、室外熱交換器23の液側には液状態または気液二相状態の冷媒の温度を検出する液側温度センサ31とが設けられている。室外ユニット2の室外空気の吸入口側には、ユニット内に流入する室外空気の温度(すなわち、室外温度)を検出する室外温度センサ32が設けられている。本実施形態において、吸入温度センサ30、液側温度センサ31、および室外温度センサ32は、サーミスタからなる。また、室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外側制御部34を備えている。そして、室外側制御部34は、室外ユニット2の制御を行うために設けられたマイクロコンピュータ、メモリやモータ21mを制御するインバータ回路等を有しており、室内ユニット4の室内側制御部44との間で制御信号等のやりとりを行うことができるようになっている。すなわち、室内側制御部44と室外側制御部34と制御部34、44間を接続する伝送線8aとによって、空気調和装置1全体の運転制御を行う制御部8が構成されている。
 以上のように、室内側冷媒回路11と、室外側冷媒回路12と、冷媒連絡配管6、7とが接続されて、空気調和装置1の冷媒回路10が構成されている。そして、本実施形態の空気調和装置1は、四路切換弁22により冷房運転および暖房運転を切り換えて運転を行うとともに、室内ユニット4の運転負荷に応じて、室外ユニット2および室内ユニット4の各機器の制御を行うようになっている。
 (2)空気調和装置の動作
 次に、本実施形態の空気調和装置1の動作について説明する。
 本実施形態の空気調和装置1の運転モードとしては、室内ユニット4の運転負荷に応じて、室外ユニット2および室内ユニット4の各機器の制御を行う通常運転モードと、室内ユニット4の全てを冷房運転しつつ凝縮器として機能する室外熱交換器23の出口における冷媒の過冷却度を検出して冷媒回路10内に充填されている冷媒量の適否を判断する冷媒量判定運転モードとがある。そして、通常運転モードには冷房運転と暖房運転とがあり、冷媒量判定運転モードには冷媒漏洩検知運転がある。
 以下、空気調和装置1の各運転モードにおける動作について説明する。
 <通常運転モード>
 まず、通常運転モードにおける冷房運転について説明する。
 冷房運転時は、四路切換弁22が図1の実線で示される状態、すなわち、圧縮機21の吐出側が室外熱交換器23のガス側に接続され、かつ、圧縮機21の吸入側が室内熱交換器41のガス側に接続された状態となっている。ここで、液側閉鎖弁25およびガス側閉鎖弁26は、開状態にされている。また、室外膨張弁33は、室外熱交換器23の出口における冷媒の過冷却度が所定値になるように開度調節されるようになっている。本実施形態において、室外熱交換器23の出口における冷媒の過冷却度は、凝縮圧力センサ29により検出される室外熱交換器23の出口側の冷媒圧力(凝縮圧力)値を冷媒の飽和温度値に換算し、液側温度センサ31により検出される冷媒温度値をこの冷媒の飽和温度値から差し引くことによって検出される。
 この冷媒回路10の状態で、圧縮機21および室外ファン27を起動すると、低圧のガス冷媒は、圧縮機21に吸入されて圧縮されて高圧のガス冷媒となる。その後、高圧のガス冷媒は、四路切換弁22を経由して室外熱交換器23に送られて、室外ファン27によって供給される屋外空気と熱交換を行って凝縮されて高圧の液冷媒となる。そして、高圧の液冷媒は、室外膨張弁33によって減圧されて低圧の気液二相状態の冷媒となり、液側閉鎖弁25および液冷媒連絡配管6を経由して、室内ユニット4に送られる。ここで、室外膨張弁33は、室外熱交換器23の出口における過冷却度が所定値になるように室外熱交換器23内を流れる冷媒の流量を制御しているため、室外熱交換器23において凝縮された高圧の液冷媒は、所定の過冷却度を有する状態となる。
 室内ユニット4に送られた低圧の気液二相状態の冷媒は、室内熱交換器41に送られ、室内熱交換器41で屋内空気と熱交換を行って蒸発されて低圧のガス冷媒となる。そして、室内熱交換器41には、室内ユニット4が設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。
 この低圧のガス冷媒は、ガス冷媒連絡配管7を経由して室外ユニット2に送られ、ガス側閉鎖弁26および四路切換弁22を経由して、アキュムレータ24に流入する。そして、アキュムレータ24に流入した低圧のガス冷媒は、再び、圧縮機21に吸入される。ここで、室内ユニット4の運転負荷に応じて、例えば、室内ユニット4の運転負荷が小さい場合や停止している場合には、アキュムレータ24に余剰冷媒が溜まるようになっている。
 ここで、通常運転モードの冷房運転を行っている際における冷媒回路10の冷媒の分布状態は、図2に示されるように、冷媒が、液状態(図2における塗りつぶしのハッチング部分)、気液二相状態(図2における格子状のハッチング部分)、ガス状態(図2における斜線のハッチング部分)の各状態をとって分布している。具体的には、室外熱交換器23の出口付近から室外膨張弁33までの部分は、液状態の冷媒で満たされている。そして、室外熱交換器23の中間の部分、および、室外膨張弁33から室内熱交換器41の入口付近までの間の部分は、気液二相状態の冷媒で満たされている。また、室内熱交換器41の中間部分から、ガス冷媒連絡配管7、アキュムレータ24の一部を除く部分、圧縮機21を介して室外熱交換器23の入口付近までの間の部分は、ガス状態の冷媒で満たされている。なお、ここで除外されているアキュムレータの一部には、余剰冷媒として溜まり込んだ液冷媒が溜まっている場合がある。ここで、図2は、冷房運転における冷媒回路10内を流れる冷媒の状態を示す模式図である。
 次に、通常運転モードにおける暖房運転について説明する。
 暖房運転時は、四路切換弁22が図1の破線で示される状態、すなわち、圧縮機21の吐出側が室内熱交換器41のガス側に接続され、かつ、圧縮機21の吸入側が室外熱交換器23のガス側に接続された状態となっている。室外膨張弁33は、室外熱交換器23に流入する冷媒を室外熱交換器23において蒸発させることが可能な圧力(すなわち、蒸発圧力)まで減圧するために開度調節されるようになっている。また、液側閉鎖弁25およびガス側閉鎖弁26は、開状態にされている。
 この冷媒回路10の状態で、圧縮機21および室外ファン27を起動すると、低圧のガス冷媒は、圧縮機21に吸入されて圧縮されて高圧のガス冷媒となり、四路切換弁22、ガス側閉鎖弁26およびガス冷媒連絡配管7を経由して、室内ユニット4に送られる。
 そして、室内ユニット4に送られた高圧のガス冷媒は、室内熱交換器41において、屋内空気と熱交換を行って凝縮されて高圧の液冷媒となった後、液冷媒連絡配管6を経由して室外ユニット2に送られる。
 この高圧の液冷媒は、液側閉鎖弁25を経由して、室外膨張弁33によって減圧されて低圧の気液二相状態の冷媒となり、室外熱交換器23に流入する。そして、室外熱交換器23に流入した低圧の気液二相状態の冷媒は、室外ファン27によって供給される屋外空気と熱交換を行って蒸発されて低圧のガス冷媒となり、四路切換弁22を経由してアキュムレータ24に流入する。そして、アキュムレータ24に流入した低圧のガス冷媒は、再び、圧縮機21に吸入される。ここで、室内ユニット4の運転負荷に応じて、例えば、室内ユニット4の運転負荷が小さい場合等のように、冷媒回路10内に余剰冷媒量が発生する場合には、冷房運転時と同様、アキュムレータ24に余剰冷媒が溜まるようになっている。
 <冷媒量判定運転モード>
 冷媒量判定運転モードでは、冷媒漏洩検知運転が行われることになりその中に、空気調和装置1が設置されて初めて行われる運転(以下、初回設定運転とする)と、2回目以降の運転(以下、判定運転とする)とでは運転方法が異なる。このため、以下に初回設定運転と、判定運転とに分けて説明する。
 (初回設定運転)
 現地において、冷媒が予め充填された室外ユニット2と、室内ユニット4とを液冷媒連絡配管6およびガス冷媒連絡配管7を介して接続して冷媒回路10を構成した後に、リモコン(図示せず)を通じて、または、室内ユニット4の室内側制御部44や室外ユニット2の室外側制御部34に対して直接に、冷媒量判定運転モードの1つである冷媒自動充填運転を行うように指令を出すと、下記のステップS1からステップS7の手順で初回設定運転が行われる(図2参照)。
 -ステップS1、室内ユニットを冷房運転(室外ファン風量が最大)-
 まず、ステップS1では、初回設定運転の開始指令がなされると、冷媒回路10は、室外ユニット2の四路切換弁22が図1の実線で示される状態(冷房運転状態)となる。そして、圧縮機21、室外ファン27が起動されて、室内ユニット4の全てについて強制的に冷房運転(通常運転モードにおける冷房運転とは室外ファン27の制御方法などが異なる)が行われる(図2参照)。なお、このとき室外ファン27は、その風量が最大になるように、モータ27mの回転数が最大となっている。ステップS1では、冷房運転状態において室外ファン27の風量を最大にしているため、室外熱交換器23により行われる熱交換効率の空気側における熱伝達率を最大にすることができ、外乱による影響を低減させることができる。なお、この効果についての検証は後述する。また、ここにいう「外乱」とは、室外熱交換器23の汚れ、室外ユニット2の設置状況、風雨の有無などである。そして、この室外ファン27の風量が最大になった時に、次のステップS2へ移行する。
 -ステップS2、温度の読込-
 ステップS2では、室内温度センサ43により検出される室内温度Tbと、室外温度センサにより検出される室外温度Taとの読込が行われる。室内温度Tbと室外温度Taとが検出されると次のステップS3へ移行する。
 -ステップS3、検知可能範囲か否かの判定-
 ステップS3では、検出された室内温度Tbと室外温度Taとが、予め設定されている冷媒量判定運転モードに適した所定の温度範囲内にあるか否かを判定する。ステップS3で、室内温度Tbと室外温度Taとが、所定の温度範囲内にあった場合には次のステップS4へ移行し、所定の温度範囲内になかった場合にはステップS1の冷房運転を継続することになる。
 -ステップS4、相対過冷却度が所定値以上であるか否かの判定-
 ステップS4では、相対過冷却度値を導出し、相対過冷却度値が所定値以上(例えば、0.3以上)であるか否かを判定する。なお、ここにいう「相対過冷却度値」とは、室外熱交換器23の出口における過冷却度値を、凝縮温度値から室外温度を差し引いた値により除した値のことを言う。また、図面上では、相対過冷却度を相対SCと表記することにする。「相対過冷却度値」については、後に詳述する。本実施形態では、凝縮温度値は、凝縮圧力センサ29により検出される室外熱交換器23の出口側の圧力(凝縮圧力)値を冷媒の飽和温度に換算した値を用いている。ステップS4において、相対過冷却度値が所定値未満であると判定されると次のステップS5へ移行し、所定値未満であると判定されるとステップS6へ移行する。なお、冷媒回路内の充填冷媒が10%漏れたときに相対過冷却度は0.3低下するため、本実施形態においては、相対過冷却度の値を例として0.3以上としている。すなわち、この所定値は少なくとも0.3以上であることが望ましい。
 -ステップS5、相対過冷却度の制御-
 ステップS5では、相対過冷却度値が所定値未満であるため、相対過冷却度値が所定値以上になるように、圧縮機21の回転周波数と室内熱交換器41の出口における過熱度とを制御する。例えば、圧縮機21の回転周波数が40Hz、室内熱交換器41の出口における過熱度を5℃の状態でステップS1における冷房運転を行い、相対過冷却度値が所定値以上であるか否かを判定する。この運転状態において、相対過冷却度値が所定値未満である場合には、圧縮機21の回転周波数をそのままにして、室内熱交換器41の出口における冷媒の過熱度を5℃上げて10℃にして相対過冷却度値を導出し、相対過冷却度値が所定値以上になるか否かを判定する。そして、相対過冷却度値が所定値未満である場合には、これを繰り返し、室内熱交換器41の出口における冷媒の過熱度が上がりきっても相対過冷却度値が所定値未満である場合には、圧縮機21の回転周波数を40Hzから例えば50Hzに上げて、室内熱交換器41の出口における冷媒の過熱度を5℃に下げて、同様に相対過冷却度値が所定値以上であるか否かを判定する。そして、上述したように室内熱交換器41の出口における冷媒の過熱度を再び5℃ずつ上げることを繰り返すことにより、相対過冷却度値が所定値以上になるように制御する。そして、相対過冷却度値が所定値以上になったら、ステップS6へ移行する。なお、室内熱交換器41の出口における冷媒の過熱度の制御(例えば過熱度を5℃から5℃ずつ上げていく制御)は、室外膨張弁33を開の状態から絞っていくことによって制御している。また、室内熱交換器41の出口における冷媒の過熱度の制御は、これに限らずに、室内ファン42の風量を制御することにより行っても構わないし、室外膨張弁33の弁開度の制御と室内ファン42の風量の制御とを併用して行っても構わない。なお、ここで室内熱交換器41の出口における冷媒の過熱度は、吸入温度センサ30により検出される冷媒温度値から、蒸発圧力センサ28により検出される蒸発圧力値を冷媒の飽和温度値に換算した値を、差し引くことによって検出される。
 なお、ステップS5により過熱度が正値になるように制御されるため、図4で示されるように、アキュムレータ24に余剰冷媒が溜まっていない状態となり、アキュムレータ24に溜まっていた冷媒は室外熱交換器23に移動することになる。
 -ステップS6、相対過冷却度を記憶-
 ステップS6では、ステップS4またはステップS6において所定値以上である相対過冷却度値を初回相対過冷却度値として記憶し、次のステップS7へ移行する。
 -ステップS7、パラメータを記憶-
 ステップS7では、ステップS6において記憶した過冷却度値の際の運転状態における、圧縮機21の回転周波数と、室内ファン42の回転周波数と、室外温度Taと、室内温度Tbとを記憶して、初回設定運転を終了する。
 (判定運転)
 次に、冷媒量判定運転モードに1つである判定運転について図3を用いて説明する。図3は、判定運転時のフローチャートである。
 この判定運転は、初回設定運転が行われた後に定期的(例えば、毎年1回、空調空間に負荷を必要としないとき等)に、通常運転モードにおける冷房運転や暖房運転から切り換えられて、不測の原因により冷媒回路内の冷媒が外部に漏洩していないか否かを検知する運転である。
 -ステップS11、通常運転モードが一定時間経過したか否かの判定-
 まず、上記の冷房運転や暖房運転のような通常運転モードにおける運転が一定時間経過したかどうかを判定し、通常運転モードにおける運転が一定時間経過した場合には、次のステップS12に移行する。
 -ステップS12、室内ユニットを冷房運転-
 通常運転モードにおける運転が一定時間経過した場合には、上記の初回設定運転のステップS1と同様に、冷媒回路10が、室外ユニット2の四路切換弁22が図1の実線で示される状態となり、圧縮機21、室外ファン27が起動されて、室内ユニット4の全てについて強制的に冷房運転が行われる。
 -ステップS13、温度の読込-
 ステップS13では、上記の初回設定運転のステップS2と同様に、室内温度と室外温度との読込が行われる。室内温度Tbと室外温度Taとが検出されると次のステップS14へ移行する。
 -ステップS14、検知可能範囲か否かの判定-
 ステップS14では、上記の初回設定運転のステップS3と同様に、検出された室内温度Tbと室外温度Taとが予め設定されている冷媒量判定運転モードに適した所定の温度範囲内であるか否かを判定する。ステップS14で、室内温度Tbと室外温度Taとが、所定の温度範囲内にあった場合には次のステップS15へ移行し、所定の温度範囲内になかった場合にはステップS12の冷房運転を継続することになる。
 -ステップS15、初回設定運転における条件に制御-
 ステップS15では、上記の初回設定運転のステップS7において記憶した圧縮機21の回転周波数と、室内ファン42の回転周波数とに、圧縮機21および室内ファン42を制御する。これにより、冷媒回路10内部の冷媒の状態を、初回設定運転と同様の状態であると見なすことができる。すなわち、冷媒回路10内の冷媒量が変化していなければ、初回設定運転において行った冷房運転の諸条件を同一のものとして再現していることになり、過冷却度値などをほぼ同じ値にできる。ステップS15が終了すると、次のステップS16へ移行する。
 -ステップS16、冷媒量の適否の判定-
 ステップS16では、上記の初回設定運転のステップS4と同様に、相対過冷却度を導出する。そして、初回相対過冷却度から相対過冷却度を差し引いた値(以下、相対過冷却度差とする)が第2所定値以上であるか否かを判定する。ステップS16において、相対過冷却度差が第2所定値未満であると判定されると判定運転を終了し、相対過冷却度差が第2所定値以上であると判定されるとステップS17へ移行する。
 -ステップS17、警告表示-
 ステップS17では、冷媒の漏洩が発生しているものと判定して、冷媒漏洩を検知したことを知らせる警告表示を行った後に、判定運転を終了する。
 <相対過冷却度値について>
 相対過冷却度値について図6~8にもとづいて説明する。
 まず、図6は、室外ファン風量に対する室外温度Taが一定の際の凝縮温度Tcおよび室外熱交換器出口温度Tlを表すグラフである。図6を見ると、室外温度Taが一定の条件においては、室外ファン風量が増大するにしたがって、凝縮温度Tcおよび室外熱交換器出口温度Tlが減少していく。そして、その減少の落差は、凝縮温度Tcの方が室外熱交換器出口温度Tlよりも大きい。すなわち、室外ファン風量が大きくなると、凝縮温度Tcと室外熱交換器出口温度Tlとの差である過冷却度値が小さくなることが分かる。
 ここで、室外ファン風量に対する過冷却度値の分布を表すグラフである図7をみると、室外ファン風量が増大すると、過冷却度値が小さくなっていることが分かる。また、図7では、室外ファン風量が小さい場合の方が、室外ファン風量が大きい場合よりも過冷却度値のバラツキが大きくなっている。これは、室外ファン風量が小さい場合の方が、室外熱交換器の汚れ、室外機の設置状況、風雨などの外乱の影響を受けやすく、室外ファン風量が大きい場合の方が外乱の影響を受けにくいためであると考えられる。このため、室外ファン風量を最大にすることにより、検出される過冷却度値のバラツキを抑えることができ、検知誤差を低減させることができる。
 そして、図8は、室外ファン風量に対する相対過冷却度値の分布を表すグラフである。相対過冷却度値とは、上述したように、凝縮温度値から室外温度を差し引いた値により、過冷却度値を除した値である。図8を見ると、室外ファン風量の大小にかかわらず、その値はほぼ0.3から0.4の間に収まっており、バラツキが少ないことが分かる。このため、この相対過冷却度値を冷媒量の適否を判定する際に指標として利用することにより、外乱による影響を極力受けることなく冷媒量の適否を判定することができ、検知誤差を抑えることができる。したがって、相対過冷却度値を冷媒量の適否の判定に利用することは有用である。
 (3)空気調和装置の特徴
 本実施形態では、冷媒量の適否を判定するための指標値を初期設定運転において、検出される相対過冷却度が予め設定された所定値(例えば0.3)以上になるように圧縮機21および室内熱交換器41の出口の冷媒の過熱度が制御され、その時(の圧縮機の周波数を第1周波数として、その時(安定状態)の利用側熱交換器の出口の冷媒の過熱度を記憶し、さらにその時の相対過冷却度を指標値として記憶している。そして、初回設定運転から所定期間(本実施形態では1年)経過後に行われる判定運転において、圧縮機21の周波数を初期設定運転により記憶した周波数に、室内熱交換器41の出口における冷媒の過熱度を初期設定運転により記憶した過熱度に制御して、その時の相対過冷却度を検出値として検出し、検出値と初期設定運転において記憶した指標値とを比較して、冷媒回路内に充填されている冷媒量の適否を判定している。
 したがって、初期設定運転において、冷媒量の適否の判定に採用する指標を、相対過冷却度を採用してこの値が例えば0.3以上となるように、予め設定しているため、冷媒追加充填を基本的に想定していないような空気調和装置においても冷媒量適否判定に際して過冷却度または運転状態量をある程度大きな値を確保することができ、冷媒量が減少した場合にそれらの値が小さくなることを検出しやすくなり、冷媒量の判定誤差を低減することができる。
 (4)変形例1
 本実施形態において、室外熱交換器23の出口における冷媒の過冷却度は、凝縮圧力センサ29により検出される室外熱交換器23の出口側の冷媒圧力(凝縮圧力に相当)値を冷媒の飽和温度値に換算し、液側温度センサ31により検出される冷媒温度値をこの冷媒の飽和温度値から差し引くことによって検出しているが、これに限らない。
 例えば、室外熱交換器23の冷媒の温度を検出可能な室外熱交センサを設けて凝縮温度値を冷媒の飽和温度値として検出し、液側温度センサ31により検出される冷媒温度値をこの冷媒の飽和温度値から差し引くことによって検出しても構わない。
 (5)変形例2
 本実施形態において、相対過冷却度値を冷媒量の適否の判定の指標としているが、これに限らず、過冷却度値を冷媒量の適否の判定の指標としても構わない。
 (6)変形例3
 本実施形態においては、図5およびその説明に示されたように、通常運転モードと冷媒量判定運転モードとが一定の時間間隔で切り換える制御を行う場合を例として挙げているが、これに限定されるものではない。
 例えば、制御的に切り換えられるのではなく、空気調和装置1に冷媒量判定運転モードに切り換えるためのスイッチ等を設けておき、サービスマンや設備管理者が、現地において、スイッチ等を操作することにより、冷媒漏洩検知運転を定期的に行うようなものであってもよい。
 (7)他の実施形態
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 例えば、上述の実施形態では、冷暖切り換え可能な空気調和装置に本発明を適用した例を説明したが、これに限定されず、セパレートタイプの空気調和装置であれば適用可能であり、ペア型の空気調和装置や冷房専用の空気調和装置に本発明を適用してもよい。
 本発明を利用すれば、熱源ユニットと利用ユニットとが冷媒連絡配管を介して接続されたセパレートタイプの空気調和装置において、冷媒回路内に充填されている冷媒量の適否を精度良く判定できるようにすることができる。
  1 空気調和装置
  2 室外ユニット(熱源ユニット)
  4 室内ユニット(利用ユニット)
  6 液冷媒連絡配管
  7 ガス冷媒連絡配管
 10 冷媒回路
 21 圧縮機
 23 室外熱交換器(熱源側熱交換器)
 24 アキュムレータ
 27 室外ファン(冷却熱源調節手段)
 33 室外膨張弁(膨張機構)
 41 室内熱交換器(利用側熱交換器)
特開2006-23072号公報

Claims (3)

  1.  運転用量を調節可能な圧縮機(21)と熱源側熱交換器(23)と膨張機構(33)とアキュムレータ(24)とを有する熱源ユニット(2)と、利用側熱交換器(41)を有する利用ユニット(4)と、前記熱源ユニットと前記利用ユニットとを接続する液冷媒連絡配管(6)およびガス冷媒連絡配管(7)を含み、前記熱源側熱交換器を前記圧縮機において圧縮される冷媒の凝縮器として、かつ、前記利用側熱交換器を前記熱源側熱交換器において凝縮される冷媒の蒸発器として機能させる冷房運転を少なくとも行うことが可能な冷媒回路(10)を有する空気調和装置(1)において、前記冷媒回路内の冷媒量の適否を判定する冷媒量判定方法であって、
     前記利用ユニットの運転負荷に応じて前記熱源ユニットおよび前記利用ユニットの各機器の制御を行う通常運転モードから、冷房運転し前記利用側熱交換器の出口における冷媒の過熱度が正値になるように前記膨張機構を制御しつつ前記熱源側熱交換器の出口における冷媒の過冷却度または前記過冷却度の変動に応じて変動する運転状態量を検出して、前記過冷却度が第1所定値以上に、または、前記運転状態量が第2所定値以上にした安定状態にする初期運転ステップと、
     前記安定状態における前記圧縮機の周波数を第1周波数として、前記安定状態における前記利用側熱交換器の出口の冷媒の過熱度を第1過熱度として、前記安定状態における前記過冷却度または前記運転状態量を第1指標値として記憶する記憶ステップと、
     前記記憶ステップ終了後に前記通常運転モードへ再び切り換える通常運転移行ステップと、
     前記通常運転移行ステップから所定期間経過後に、前記記憶ステップにより記憶された前記第1周波数になるように前記圧縮機の制御を行い、かつ、前記第1過熱度になるように前記膨張機構の制御を行いつつ前記熱源側熱交換器の出口における冷媒の過冷却度または前記過冷却度の変動に応じて変動する運転状態量を検出値として検出する安定状態再現ステップと、
     前記指標値と前記検出値とを比較して、前記冷媒回路内に充填されている冷媒量の適否を判定する冷媒量適否判定ステップと、
    を備える空気調和装置の冷媒量判定方法。
  2.  前記第1所定値は、冷媒が漏洩したことを判断可能な前記過冷却度の大きさ以上の適当な値であり、
     前記第2所定値は、冷媒が漏洩したことを判断可能な前記運転状態量の大きさ以上の適当な値である、
    請求項1に記載の空気調和装置の冷媒量判定方法。
  3.  運転用量を調節可能な圧縮機(21)と熱源側熱交換器(23)と膨張機構(33)とアキュムレータ(24)とを有する熱源ユニット(2)と、利用側熱交換器(41)を有する利用ユニット(4)と、前記熱源ユニットと前記利用ユニットとを接続する液冷媒連絡配管(6)およびガス冷媒連絡配管(7)を含み、前記熱源側熱交換器を前記圧縮機において圧縮される冷媒の凝縮器として、かつ、前記利用側熱交換器を前記熱源側熱交換器において凝縮される冷媒の蒸発器として機能させる冷房運転を少なくとも行うことが可能な冷媒回路(10)と、
     前記利用ユニットの運転負荷に応じて前記熱源ユニットおよび前記利用ユニットの各機器の制御を行う通常運転モードから、冷房運転し前記利用側熱交換器の出口における冷媒の過熱度が正値になるように前記膨張機構を制御しつつ前記熱源側熱交換器の出口における冷媒の過冷却度または前記過冷却度の変動に応じて変動する運転状態量を検出して、前記過冷却度が第1所定値以上に、または、前記運転状態量が第2所定値以上にした安定状態にする初期運転手段と、
     前記安定状態における前記圧縮機の周波数を第1周波数として、前記安定状態における前記利用側熱交換器の出口の冷媒の過熱度を第1過熱度として、前記安定状態における前記過冷却度または前記運転状態量を第1指標値として記憶する記憶手段と、
     前記記憶ステップ終了後に前記通常運転モードへ再び切り換える通常運転移行手段と、
     前記通常運転移行ステップから所定期間経過後に、前記記憶ステップにより記憶された前記第1周波数になるように前記圧縮機の制御を行い、かつ、前記第1過熱度になるように前記膨張機構の制御を行いつつ前記熱源側熱交換器の出口における冷媒の過冷却度または前記過冷却度の変動に応じて変動する運転状態量を検出値として検出する安定状態再現手段と、
     前記指標値と前記検出値とを比較して、前記冷媒回路内に充填されている冷媒量の適否を判定する冷媒量適否判定手段と、
    を備える空気調和装置(1)。
PCT/JP2009/002913 2008-06-27 2009-06-25 空気調和装置の冷媒量判定方法および空気調和装置 WO2009157200A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2009263640A AU2009263640B2 (en) 2008-06-27 2009-06-25 Air conditioning apparatus refrigerant quantity determination method and air conditioning apparatus
EP09769910.2A EP2314958B1 (en) 2008-06-27 2009-06-25 METHOD FOR JUDGING THE QUANTITY OF REFRIGERATING AGENT IN AIR CONDITIONER AND AIR CONDITIONER
US12/999,734 US20110088414A1 (en) 2008-06-27 2009-06-25 Air conditioning apparatus refrigerant quantity determination method and air conditioning apparatus
CN2009801248092A CN102077042B (zh) 2008-06-27 2009-06-25 空气调节装置的制冷剂量判定方法及空气调节装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-169596 2008-06-27
JP2008169596A JP2010007995A (ja) 2008-06-27 2008-06-27 空気調和装置の冷媒量判定方法および空気調和装置

Publications (1)

Publication Number Publication Date
WO2009157200A1 true WO2009157200A1 (ja) 2009-12-30

Family

ID=41444272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002913 WO2009157200A1 (ja) 2008-06-27 2009-06-25 空気調和装置の冷媒量判定方法および空気調和装置

Country Status (6)

Country Link
US (1) US20110088414A1 (ja)
EP (1) EP2314958B1 (ja)
JP (1) JP2010007995A (ja)
CN (1) CN102077042B (ja)
AU (1) AU2009263640B2 (ja)
WO (1) WO2009157200A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117469865A (zh) * 2023-12-21 2024-01-30 北京环都拓普空调有限公司 一种可自动判定制冷剂充注量的直膨机及方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110219790A1 (en) * 2010-03-14 2011-09-15 Trane International Inc. System and Method For Charging HVAC System
JP5447499B2 (ja) * 2011-12-28 2014-03-19 ダイキン工業株式会社 冷凍装置
CN103388883B (zh) * 2013-07-31 2015-12-02 美的集团武汉制冷设备有限公司 变频空调器中制冷剂泄漏的判定方法及变频空调器
CN103712749A (zh) * 2013-12-26 2014-04-09 石家庄国祥运输设备有限公司 列车空调制冷剂泄漏量的检测方法
JP6238876B2 (ja) * 2014-11-21 2017-11-29 三菱電機株式会社 冷凍サイクル装置
JP6449979B2 (ja) * 2015-02-25 2019-01-09 三菱電機株式会社 冷凍装置
JP6410935B2 (ja) * 2015-06-24 2018-10-24 三菱電機株式会社 空気調和機
JP2017053566A (ja) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 冷凍サイクル装置
CN105605739B (zh) * 2016-01-12 2018-09-11 广东美的制冷设备有限公司 空调系统及其冷媒泄漏的监测方法和装置
CN106016868B (zh) * 2016-06-02 2018-10-02 珠海格力电器股份有限公司 一种空调系统的自动添加冷媒的方法
EP3324137B1 (en) * 2016-11-18 2022-01-05 LG Electronics Inc. Air conditioner and control method thereof
JP7215819B2 (ja) * 2017-01-11 2023-01-31 ダイキン工業株式会社 空気調和装置及び室内ユニット
JP2018141607A (ja) * 2017-02-28 2018-09-13 三菱重工サーマルシステムズ株式会社 冷媒量判定装置、空気調和システム、冷媒量判定方法およびプログラム
WO2019065635A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 冷媒量推定方法及び空気調和装置
CN110376005B (zh) * 2018-04-13 2023-08-22 开利公司 数据处理方法、制冷剂泄漏检测方法、系统故障检测方法以及系统性能检测方法
CN110895026B (zh) * 2018-09-12 2021-03-12 奥克斯空调股份有限公司 一种空调冷媒泄漏检测方法及使用该方法的空调
EP3816542A1 (en) * 2019-10-29 2021-05-05 Daikin Industries, Ltd. Refrigerant system
CN113405243A (zh) * 2020-03-16 2021-09-17 青岛海尔空调电子有限公司 空调系统的控制方法
JP2021156530A (ja) * 2020-03-27 2021-10-07 株式会社富士通ゼネラル 空気調和機
JP7435155B2 (ja) * 2020-03-27 2024-02-21 株式会社富士通ゼネラル 空気調和機
CN114370689B (zh) * 2022-01-27 2023-06-02 宁波奥克斯电气股份有限公司 制冷剂充注量判定方法、控制方法、空调器以及存储介质
CN118149508B (zh) * 2024-04-11 2024-08-27 宜所(广东)智能科技有限公司 一种空调冷媒自动充注系统及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023072A (ja) 2004-06-11 2006-01-26 Daikin Ind Ltd 空気調和装置
JP2006058007A (ja) * 2004-06-11 2006-03-02 Daikin Ind Ltd 空気調和装置
JP2006292214A (ja) * 2005-04-07 2006-10-26 Daikin Ind Ltd 空気調和装置の冷媒量判定機能追加方法、及び、空気調和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122711A (ja) * 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd 冷凍サイクル制御装置
JP3327215B2 (ja) * 1998-07-22 2002-09-24 三菱電機株式会社 空気調和機の冷媒充填量決定方法
JP3386780B2 (ja) * 2000-06-05 2003-03-17 松下冷機株式会社 冷凍サイクル装置
EP1852664B1 (en) * 2005-02-24 2014-08-06 Mitsubishi Electric Corporation Air conditioning system
JP3963190B2 (ja) * 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
AU2007228009B2 (en) * 2006-03-23 2010-09-30 Daikin Industries, Ltd. Refrigeration system and refrigeration system analyzer
US20070256434A1 (en) * 2006-05-04 2007-11-08 Kwangtaek Hong Monitoring System for Detecting Low-Charge Condition in a Heat-Exchange System
US8393169B2 (en) * 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
JP2010007994A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置および空気調和装置の冷媒量判定方法
DE102008056920B4 (de) * 2008-11-12 2014-02-06 Airbus Operations Gmbh Verfahren zum Warten zumindest eines Teils eines Flüssigkeitskühlsystems eines Luftfahrzeugs sowie Luftfahrzeug-Flüssigkeitskühlsystem und Luftfahrzeug-Flüssigkeitskühlungswartungseinrichtung
US20110219790A1 (en) * 2010-03-14 2011-09-15 Trane International Inc. System and Method For Charging HVAC System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023072A (ja) 2004-06-11 2006-01-26 Daikin Ind Ltd 空気調和装置
JP2006058007A (ja) * 2004-06-11 2006-03-02 Daikin Ind Ltd 空気調和装置
JP2006292214A (ja) * 2005-04-07 2006-10-26 Daikin Ind Ltd 空気調和装置の冷媒量判定機能追加方法、及び、空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117469865A (zh) * 2023-12-21 2024-01-30 北京环都拓普空调有限公司 一种可自动判定制冷剂充注量的直膨机及方法

Also Published As

Publication number Publication date
US20110088414A1 (en) 2011-04-21
CN102077042B (zh) 2013-04-17
CN102077042A (zh) 2011-05-25
JP2010007995A (ja) 2010-01-14
AU2009263640A1 (en) 2009-12-30
EP2314958A4 (en) 2014-11-26
AU2009263640B2 (en) 2012-09-06
EP2314958A1 (en) 2011-04-27
EP2314958B1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2009157200A1 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP4705878B2 (ja) 空気調和装置
JP3852472B2 (ja) 空気調和装置
JP4114691B2 (ja) 空気調和装置
JP5011957B2 (ja) 空気調和装置
WO2009157191A1 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP4124228B2 (ja) 空気調和装置
JP4270197B2 (ja) 空気調和装置
JP4075933B2 (ja) 空気調和装置
JP2007198642A (ja) 空気調和装置
JP2009079842A (ja) 冷凍サイクル装置およびその制御方法
CN112840164B (zh) 空调装置和管理装置
JP5505477B2 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP2017075760A (ja) 空気調和機
JP2010096396A (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP2007212134A (ja) 空気調和装置
JP4957243B2 (ja) 空気調和装置
JP2011012958A (ja) 冷凍サイクル装置の制御方法
JP2010007996A (ja) 空気調和装置の試運転方法および空気調和装置
JP2008064456A (ja) 空気調和装置
JP3933179B1 (ja) 空気調和装置
JP4562650B2 (ja) 空気調和装置
JP5245576B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP5245575B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP2007255738A (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124809.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009263640

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009769910

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009263640

Country of ref document: AU

Date of ref document: 20090625

Kind code of ref document: A