WO2009157028A1 - Process and plant for building tyres for vehicle wheels - Google Patents

Process and plant for building tyres for vehicle wheels Download PDF

Info

Publication number
WO2009157028A1
WO2009157028A1 PCT/IT2008/000437 IT2008000437W WO2009157028A1 WO 2009157028 A1 WO2009157028 A1 WO 2009157028A1 IT 2008000437 W IT2008000437 W IT 2008000437W WO 2009157028 A1 WO2009157028 A1 WO 2009157028A1
Authority
WO
WIPO (PCT)
Prior art keywords
tyre
building
work station
tyres
processed
Prior art date
Application number
PCT/IT2008/000437
Other languages
French (fr)
Inventor
Fiorenzo Mariani
Pierangelo Misani
Original Assignee
Pirelli Tyre S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pirelli Tyre S.P.A. filed Critical Pirelli Tyre S.P.A.
Priority to CN200880130035.XA priority Critical patent/CN102076488B/en
Priority to US13/001,297 priority patent/US10759129B2/en
Priority to PCT/IT2008/000437 priority patent/WO2009157028A1/en
Priority to JP2011515740A priority patent/JP5789509B2/en
Priority to PL08790026T priority patent/PL2291282T3/en
Priority to EP08790026A priority patent/EP2291282B1/en
Priority to KR1020107029240A priority patent/KR101463868B1/en
Priority to BRPI0822832A priority patent/BRPI0822832B1/en
Publication of WO2009157028A1 publication Critical patent/WO2009157028A1/en
Priority to US16/934,898 priority patent/US11241850B2/en
Priority to US17/645,929 priority patent/US20230013972A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/005General arrangement or lay-out of plants for the processing of tyres or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/20Building tyres by the flat-tyre method, i.e. building on cylindrical drums
    • B29D30/24Drums
    • B29D30/26Accessories or details, e.g. membranes, transfer rings
    • B29D30/2607Devices for transferring annular tyre components during the building-up stage, e.g. from the first stage to the second stage building drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0016Handling tyres or parts thereof, e.g. supplying, storing, conveying
    • B29D2030/0022Handling green tyres, e.g. transferring or storing between tyre manufacturing steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/10Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre
    • B29D2030/105Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre the cores being movable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/20Building tyres by the flat-tyre method, i.e. building on cylindrical drums
    • B29D2030/202Building tyres by the flat-tyre method, i.e. building on cylindrical drums the building drums being movable, i.e. not permanently connected to a fixed frame

Definitions

  • WO 01/32409 in the name of the same Applicant, describes a tyre building line provided with working stations, each arranged to make and assemble at least one structural component of the tyre being processed, wherein at least one series of tyres is treated at the same time, comprising at least one first and a second model of tyres differing from each other, and wherein the tyre transfer to the vulcanization line is carried out through robotized arms and according to a transferring rate equal to the transferring rate of the tyres to each of said working stations.
  • the Applicant has found that avoiding the sequential passage of the tyres being processed in all the work stations of a building line, passing from one work station to the adjacent and subsequent one, and introducing a logic of selection and transfer of the tyres depending on the technological requirements of the tyre to be built and on the availability of the work stations, it is possible to improve both the flexibility and the productivity of known processes and plants for building different tyres, as well as avoiding the standstill of the entire plant in the case of failure of a single work station.
  • said building step b) comprises the steps of:
  • carcass structure comprising at least one carcass ply and a pair of annular anchoring structures
  • said first and second tyre models differ by size.
  • the carcass structure building work stations of the tyre building plant are two.
  • At least one work station is adapted for building at least one structural component of each tyre assembling at least one elementary component.
  • an under-belt layer application unit provided with devices for applying an under-belt layer in a position radially external to said carcass structure.
  • such belt layer application units are two.
  • the tyre building plant may further comprise a liner application work station provided with a liner application unit.
  • the plurality of work stations 4, 4', 5, 5', 6, 12, 14 comprises:
  • a second belt structure building work station 5' of the tyre building plant shown in the figure comprises two belt layer application units 10.
  • said second belt structure building work station 5' is adapted for applying at least one belt layer comprising a layer of textile or metal cords, oriented circumferentially at 0°.
  • the tread band building work station 6 of the building line 1 comprises at least one tread band application unit 11.
  • tyre B being processed is transferred from the first carcass structure building work station 4 to the second belt structure building work station 5' without passing through the work stations 4' and 5.

Abstract

There is described a plant for building tyres for vehicle wheels, said tyres being of at least two different models, comprising at least a tyre building line (1) which in turn comprises: - a plurality of work stations (4, 4', 5, 5', 6, 12, 14) arranged according to a sequential series, each work station (4, 4', 5, 5', 6, 12, 14) being adapted for building at least one structural component of each tyre, assembling at least one elementary component; - at least one handling device (3) for the tyres being processed on the respective forming supports associated to each work station (4, 4', 5, 5', 6, 12, 14); and - at least one transfer device (2) adapted for transferring the tyre being processed on its forming support from any first work station (4, 4', 5, 5', 6, 12, 14) of said sequential series to any other second work station (4, 4', 5, 5', 6, 12, 14) not adjacent thereto of said sequential series, so that the tyre being processed on its forming support only passes in said first and second work station (4, 4', 5, 5', 6, 12, 14). There are also described a process for manufacturing tyres for vehicle wheels and a method for selecting work stations (4, 4', 5, 5', 6, 12, 14) of a tyre building plant.

Description

"Process and plant for building tyres for vehicle wheels"
The present invention relates to a process for building tyres for vehicle wheels.
The present invention also relates to a plant for building tyres for vehicle wheels, usable for carrying out the above mentioned building process.
Tyre production cycles comprise a building process, wherein the various components of the tyre itself are made and/or assembled in one or more building lines, and subsequently a moulding and vulcanization process is carried out in a suitable vulcanization line, adapted for defining the tyre structure according to a desired geometry and tread pattern.
A tyre generally comprises a toroidally ring-shaped carcass including one or more carcass plies, strengthened with reinforcing cords lying, in the so-called "radial" tyres, in substantially radial planes (a radial plane contains the rotation axis of the tyre). Each carcass ply has its ends integrally associated with at least one metal reinforcing annular structure, known as bead core, constituting the reinforcing at the beads, i.e. at the radially inner ends of the tyre, having the function of enabling the assembling of the tyre with a corresponding mounting rim. Placed crown wise to said carcass is a band of elastomeric material, called tread band, within which, at the end of the moulding and vulcanization steps, a raised pattern is formed for ground contact. A reinforcing structure, generally known as belt structure, is arranged between the carcass and the tread band. Such structure usually comprises, in the case of car tyres, at least two radially superposed layers of rubberised fabric provided with reinforcing cords, usually of metal material, arranged parallel to each other in each layer and in a crossed relationship with the cords of the adjacent layer, preferably symmetrically arranged with respect to the equatorial plane of the tyre. Preferably, the belt structure further comprises at a radially outer position thereof, at least on the ends of the underlying belt layers, also a third layer of textile or metallic cords, circumferentially disposed (at zero degrees).
The belt structure and the tread band together form the so-called "crown structure" of the tyre.
Finally, in tyres of the tubeless type, a radially inner layer, called liner, is present which has imperviousness features for ensuring the air-tightness of the tyre itself.
To the aims of the present invention and in the following claims, by the term "elastomeric material" it is intended a composition comprising at least one elastomeric polymer and at least one reinforcing filler. Preferably, such composition further comprises additives such as cross-linking and/or plasticizing agents. By virtue of the cross-linking agents, such material may be cross-linked by heating, so as to form the final manufactured article.
In the present context, by the term "green tyre" it is indicated a tyre obtained by the building process and not vulcanized and moulded yet.
As already illustrated, in the so-called "radial" tyres each of the cords arranged in the carcass ply or plies lies in a plane substantially radial to the axis of rotation of the tyre, that it, exhibits an orientation substantially orthogonal to the circumferential development direction. On the contrary, in the so-called "crossed ply" tyres, the carcass structure generally comprises at least one first carcass ply having cords slanting oriented relative to the circumferential development direction of the tyre, and a second carcass ply the cords whereof exhibit a slanting orientation and symmetrically crossed relative to the cords of the first ply.
Compared to the tyres for four wheel vehicles, the tyres for two wheel vehicles are required to have totally peculiar performance, which imply several structural differences. The most important differences result from the fact that when driving along a curve, a motorbike must tilt significantly relative to the position when driving on straight road, forming an angle with the perpendicular to the ground (called camber angle) which usually reaches 45° but which can reach 65° in extreme driving conditions. This, when the motorbike makes a curve, the tyre contact area progressively moves from the central zone of the tread band towards the axially outermost zone in the direction of the centre of the curve. For this reason, the tyres for two-wheel vehicles are characterised by a strong cross bending. Such cross bending is normally defined by the particular value of the bending ratio R between the distance between the radially external point of the tread band and the line passing by the laterally opposite ends of the tread band itself, measured on the equatorial plane of the tyre, and the distance measured along the tyre chord between said ends. In tyres for two-wheel vehicles, the value of the bending ratio R generally is not less than 0.15 and is normally in the order of about 0.3 in the case of rear tyres, and even higher, up to about 0.45, in the case of front tyres, compared to a value usually of the order of about 0.05 in tyres for motor vehicles.
Presently, tyres for two-wheel vehicles usually have a radial carcass structure associated to a belt structure that may comprise one or more belt layers shaped as a closed ring, essentially consisting of textile or metal cords suitably oriented relative to the cords belonging to the adjacent carcass structure.
In particular, the belt structure may be made by one or more continuous cords wound according to axially side by side coils and substantially parallel to the circumferential development direction of the tyre itself (the so-called "belt at zero degrees"). As an alternative, the belt structure may consist of two radially overlapped layers, each consisting of elastomeric material reinforced with cords arranged parallel to each other, said layers being arranged in such a way that the cords of the first belt layer are slanting oriented relative to the equatorial plane of the tyre, whereas the cords of the second layer also exhibit a slanting orientation but symmetrically crossed relative to the cords of the first layer (the so-called "crossed belt").
Thus the tyres for vehicles, and in particular those for two-wheel vehicles, may be of very different types from one another. This implies a considerable complication from the point of view of the tyre building plants and processes.
WO 01/32409, in the name of the same Applicant, describes a tyre building line provided with working stations, each arranged to make and assemble at least one structural component of the tyre being processed, wherein at least one series of tyres is treated at the same time, comprising at least one first and a second model of tyres differing from each other, and wherein the tyre transfer to the vulcanization line is carried out through robotized arms and according to a transferring rate equal to the transferring rate of the tyres to each of said working stations.
WO 01/39963, in the name of the same Applicant, illustrates a process for producing tyres that are different from each other, comprising a building unit having a plurality of working stations, each adapted for assembling at least one structural component on at least one type of tyre being processed, a vulcanization unit, and a device for transferring and moving the tyre being processed, operating between the working stations and the vulcanization unit.
EP 1 481 791 A2 describes a method of simultaneously producing tyres, the tyres being selected from a group of tyres with different build specifications in different sizes. The method comprises the steps of: selecting the tyre building equipment and materials required for constructing the respective type of tyre; calculating the corresponding number of cycles that each building equipment must perform to build a given lot; and automatically changing to a second building specification at a lot change, by switching to the second building specification after the last tyre of the first building specification passes; repeating the automatic changing to the next building specification at each station as each last tyre of each prior lot passes until a final lot is produced. The production system has at least four carcass building stations, each station being spaced at a predetermined distance, and preferably a crown structure building line, having working stations, separate from the carcass building line, wherein the carcass and the crown structures are joined in a segmented self-locking mould.
The processes of the type described in WO 01/32409 and in WO 01/39963 are aimed at increasing productivity in manufacturing processes of tyres built on a toroidal forming support and using elementary semi-finished products for building by automated, standardised steps, synchronised with each other. Such processes, however, do not allow obtaining a high technological flexibility, that is, the possibility of using for each tyre elementary semi-finished products differing by type of elastomeric material or by type of textile or metal reinforcing cord. In fact, such methods are suitable for producing tyres that differ in limited features, such as dimensions, optional presence of some structural components of the tyre - such as one or two carcass plies, reinforcing elements in bead zone - , arrangement of the coils of rubber metal wires forming the bead cores in the bead zone, more or less extended belt layer at zero degrees, presence of a layer and underlayer in the tread band.
This problem is even more felt in the case of building tyres for two-wheel vehicles. In this case, in fact, in most cases a same vehicle requires tyres of different models so the possibility of achieving a suitable technological flexibility becomes fundamental.
The method illustrated in EP 1 481 791 is technologically flexible as it allows obtaining tyres with semi-finished products having different features from one another, but it is limited in terms of productivity, for example as the model of tyre to be produced changes and require large sized plants for carrying out them.
Moreover, the Applicant has noted that in the production systems of this latter type, the management of a large number of materials and/or semi-finished products causes problems in synchronising the production steps of the various portions making up the tyre and thereby problems in the general management of the production system with negative consequences on productivity.
Finally, the Applicant has found that in all the plants illustrated in the aforementioned documents, in the event of failure of a single work station, the entire building plant must be blocked with the obvious drawbacks of the case.
In the present description and in the following claims, by "sequential series" of work stations it is means a set of at least three work stations arranged according to a predetermined installation sequence, wherein each work station between the first and the last is adjacent to two different work stations, a preceding and a subsequent one, the first work station of said set being adjacent and preceding the second work station of said set and the last work station of said set being adjacent and subsequent to the penultimate work station of said set.
Thus, subsequent and adjacent work stations and subsequent and not adjacent work stations are found in a sequential series.
Of course, if the work stations are three, the second and the penultimate work station coincide.
In the present description and in the following claims, by "elementary component" it is meant an elementary semi-finished product in the form of: a continuous elongated element of elastomeric material; a rubber metal or textile reinforcing cord, that is, coated with elastomeric material; a ribbon-like element of elastomeric material cut to size comprising at least two textile or metal cords, hereinafter called "strip-like element".
hi the present description and in the following claims, by "structural component" of the tyre it is meant any part of the tyre suitable for carrying out a function or a portion thereof. Therefore, structural components are, for example, the liner, the under-liner, the abrasion-proof element, the bead core, the bead filler, the carcass ply, the belt strip, the belt underlayer, the tread band underlayer, the sidewall inserts, the sidewalls, the tread band, the reinforcing inserts.
In the present description and in the following claims, by "model" of tyre it is meant the set of geometrical features (such as for example tread band width, sidewall height, fitting diameter), structural (such as for example one- or two-ply structure, radial or with crossed carcass plies, with or without belt structure, type of belt structure — with crossed belts, zero degrees, crossed belts and zero degrees -, type of tread band with one or more layers etc.), and technological (such as for example mixture of the various structural components, material constituting the textile or metal reinforcing cords, type of formation of the reinforcing cords, etcetera).
The Applicant has therefore perceived that to build tyres with very different technological requirements, avoiding standstills of the entire plant, improving flexibility and even productivity of the processes of the type of those illustrated in WO 01/32409 and in WO 01/39963, and avoiding production plants of large overall dimensions and difficult to manage and synchronise like those illustrated in EP 1 481 791 A2, it is necessary to have a building plant provided with at least one device adapted for transferring the tyre being processed from any work station of the building line to any other work station of the same building line.
The Applicant has thus perceived that having at least one tyre building line for vehicle wheels on forming supports, comprising a plurality of work stations in a sequential series, each associated to at least one handling device of the tyres being processed, and at least one transfer device adapted for transferring the tyre being processed from any work station of said sequential series to any other work station not adjacent thereto of said sequential series, it is possible to produce at the same time batches of tyres with a high differentiation and technological complexity achieving high productivity and quality of the finished product.
Finally, the Applicant has found that in a process for building tyres of different models on respective forming supports building a plurality of structural components at a plurality of work stations arranged in a sequential series, wherein there is provided at least one step of transferring the tyre being processed from one work station to a work station not adjacent thereto, it is possible to obtain tyres with a high technological flexibility also increasing productivity.
hi other words, the Applicant has found that avoiding the sequential passage of the tyres being processed in all the work stations of a building line, passing from one work station to the adjacent and subsequent one, and introducing a logic of selection and transfer of the tyres depending on the technological requirements of the tyre to be built and on the availability of the work stations, it is possible to improve both the flexibility and the productivity of known processes and plants for building different tyres, as well as avoiding the standstill of the entire plant in the case of failure of a single work station.
More precisely, according to a first aspect thereof, the invention relates to a method for selecting work stations in a line for building tyres for vehicle wheels, said tyres being at least of two different models, said building line comprising a plurality of work stations arranged according to a sequential series, each work station being adapted for building at least one structural component of each tyre, comprising the step of:
ii) selecting at least two work stations not adjacent to one another wherein a tyre being processed is transferred based on the tyre model, on the structural component to be built and on the availability of the work stations themselves, wherein the above transfer takes place in such a way that the tyre being processed only passes in said at least two work stations.
According to a second aspect thereof, the invention relates to a process for manufacturing tyres for vehicle wheels, said tyres being of at least two different models, comprising the steps of:
b) building at least a first and a second model of tyre on respective forming supports, by building each structural component at a plurality of work stations arranged according to a sequential series in a tyre building line, wherein the tyres being processed on the respective forming supports are transferred from one work station to the other by a transfer device;
- wherein the step b) of building at least a first and a second tyre model comprises at least one step c) of transferring a tyre being processed on its own forming support from a first work station of the building line to a second work station not adjacent thereto in said sequential series;
- wherein each step c) of transfer takes place in such a way that the tyre being processed on its forming support only passes in said first and second work station.
Since the process according to the invention is compatible with the use of elementary semi-finished products differing for each tyre produced, it allows obviating the aforementioned disadvantages of reduced technological flexibility and/or productivity, keeping high performance quality of the finished product.
The process according to the present invention therefore is technologically flexible and efficient. The Applicant in fact has verified that in a process of this type the productivity increases by a minimum of about 50% for each building line, if the flexibility required is maximum, to a maximum of about 80% for each building line, if the flexibility required is limited.
According to a third aspect thereof, the invention relates to a plant for building tyres for vehicle wheels, said tyres being of at least two different models, comprising at least a tyre building line which in turn comprises:
- a plurality of work stations arranged according to a sequential series, each work station being adapted for building at least one structural component of each tyre;
- at least one handling device for the tyres being processed on the respective forming supports associated to each work station; and
- at least one transfer device adapted for transferring the tyre being processed on its forming support from any first work station of said sequential series to any other second work station not adjacent thereto of said sequential series, so that the tyre being processed on its forming support only passes in said first and second work station.
Carrying out the above process, said plant achieves the same advantages mentioned above.
The Applicant has further verified that since the building plant is provided with a device for transferring the tyre being processed from any work station of said sequential series to any other work station not adjacent thereto of the same sequential series, it also allows overcoming the aforementioned disadvantages related to the need of interrupting the plant in the case of failure of a single work station.
Finally, the Applicant has verified that avoiding the use of the handling devices associated to the single work stations, also for transferring the tyres from one work station to the other, and assigning a special transfer device of such operation, it is also possible to optimise the cycle times of the different work stations and increase the building plant productivity.
The present invention, in at least one of the above aspects thereof, can exhibit at least one of the following preferred features.
Said step of selecting at least two work stations is preferably preceded by the step of receiving information on the tyre model to be built and on the availability of the work stations. In this way it is possible to process such information and select the most appropriate work stations in order to optimise production costs and times.
Preferably, the building step b) is preceded by a step of:
a) arranging a plurality of elementary components of the tyres to be built at said plurality of work stations.
Advantageously, the building step b) comprises, upstream of the transfer step c), a step of:
d) selecting the work station whereto a tyre being processed is transferred based on the tyre model, on the structural component to be built and on the availability of the work stations themselves.
This allows a complete assessment of the situation at the time of building a tyre and thus the selection of the most suitable work stations.
Preferably, the building step b) is carried out by transferring the tyre being processed on its forming support from a work station to a subsequent work station of said sequential series. In other words, the process for building tyres provides for the transfer of the tyre being processed along a single travelling direction of the sequential series, hi this way, it is prevented that the tyre is moved forward and backward in said sequential series with advantages from the point of view of the process times and management.
According to a preferred embodiment, said building step b) comprises the steps of:
i) building a carcass structure, said carcass structure comprising at least one carcass ply and a pair of annular anchoring structures;
ii) building a belt structure, said belt structure comprising at least one belt layer; and
iii) building a tread band. Preferably, in at least one model of tyre to be built the bending ratio R between the distance between the radially outer distance of the tread band and the line passing by the laterally opposite ends of the tread band itself, measured on the equatorial plane of the tyre, and the distance measured along the tyre chord between said ends is more than or equal to, about 0.15. hi this way it is possible to obtain tyres for two- wheel vehicles.
According to preferred embodiments, said bending ratio R is less than or equal to, about 0.3. In this way it is possible to obtain rear tyres of two- wheel vehicles.
According to other preferred embodiments, said bending ratio R is less than or equal to, about 0.45. hi this way it is possible to obtain front tyres of two-wheel vehicles.
Advantageously, in the above step ii), said at least one belt layer comprises a layer of textile or metal cords, oriented circumferentially at 0°.
Preferably, the step iii) of building the tread band comprises a step iii') of applying a tread band in a position radially external to said belt structure.
Advantageously, there is provided a step iv) of applying at least a portion of sides of the tyre being processed in a position axially external to the tyre being processed.
The step iii) of building the tread band may comprise, prior to the step iii') of applying the tread band, the step iii") of applying at least one tread band underlayer in a position radially external to said belt structure.
Preferably, at least one between the above steps iii'), iii") or iv) is carried out by applying at least one continuous elongated element of elastomeric material according to side by side or at least partially overlapped coils.
Preferably, at least one structural component is built by assembling at least one elementary component.
The process for manufacturing tyres may further comprise a pre-step of feeding elementary components to at least one work station.
Advantageously, the forming support is a toroidal support.
Preferably, said toroidal support has a radially external surface corresponding to a radially internal surface of the tyre being processed.
According to preferred embodiments, said first and second tyre models differ by size.
According to other preferred embodiments, said first and second tyre models differ by structural components.
According to different preferred embodiments, said first and second tyre models differ by elementary components used.
Preferably, said plurality of work stations comprises:
- at least one carcass structure building work station, said carcass structure comprising at least one carcass ply and a pair of annular anchoring structures;
- at least one belt structure building work station, said belt structure comprising at least one belt layer; and
- at least one tread band building work station.
Advantageously, the carcass structure building work stations of the tyre building plant are two.
Preferably, a first carcass structure building work station is adapted for building a carcass structure differing from the carcass structure built by a second carcass structure building work station.
According to a preferred embodiment of the building plant, each carcass structure building work station comprises at least:
- a ply application unit; and - a bead core application unit.
Preferably, at least one work station is adapted for building at least one structural component of each tyre assembling at least one elementary component.
Preferably, the bead core application unit comprises at least one device having a dispenser of a continuous elongated element shaped as a rubber metal reinforcing cord.
Even more preferably, at least one actuator is connected to the handling device associated to said carcass structure building work station, for moving the forming support so as to apply said continuous elongated element according to radially overlapped coils.
Preferably, the belt structure building work station comprises:
- an under-belt layer application unit provided with devices for applying an under-belt layer in a position radially external to said carcass structure.
Advantageously, said belt structure building work station comprises at least one belt layer application unit provided with devices for applying at least a first belt layer to a position radially external to said carcass structure.
Preferably, such belt layer application units are two.
Preferably, the belt structure building work stations are at least two.
Advantageously, a first belt structure building work station is adapted for applying at least two radially overlapped belt layers, said layers being arranged in such a way that the cords of the first belt layer are slanting oriented relative to the equatorial plane of the tyre being processed, whereas the cords of the second layer also exhibit a slanting orientation but symmetrically crossed relative to the cords of the first layer.
Preferably, a second belt structure building work station is adapted for applying at least one belt layer comprising a layer of textile or metal cords, oriented circumferentially at 0°.
According to an embodiment of the building plant, the tread band building work station comprises at least one tread band application unit.
Preferably, the tread band application units are two.
Advantageously, the plant further comprises at least one sidewall building work station provided with a sidewall application unit for building at least a sidewall portion in a position axially external to the tyre being processed.
Preferably, the building plant further comprises at least one tread band underlayer application unit provided with devices for applying at least one tread band underlayer.
Such unit is preferably arranged into the tread band building work station.
The tyre building plant may further comprise a liner application work station provided with a liner application unit.
The tyre building plant may further comprise at least one elementary component feeding unit.
According to preferred embodiments, at least one of the said work stations comprises at least one device exhibiting a dispenser of a continuous elongated element of elastomeric material.
Even more preferably, at least one actuator is connected to the handling device associated to said work station for moving the forming support so as to apply said continuous elongated element according to side by side or at least partially overlapped coils.
Optionally, the building plant may comprise a step of preparing elementary components adapted for being fed to at least one work station.
Preferably, the transfer device adapted for transferring the tyre being processed on its forming support from a work station to another work station of said sequential series comprises at least one robotized arm.
Moreover, said transfer device is preferably adapted for moving on a guiding track.
Advantageously, the handling device for the tyres being processed on the respective forming supports comprises at least one robotized arm.
Further features and advantages of invention will appear more clearly from the following description of some preferred examples of methods for selecting work stations, processes for manufacturing tyres and tyre building plants according to the invention, made by way of an indicative non-limiting example with reference to the annexed drawings, wherein:
- figure 1 shows a schematic layout of a plant for building tyres for vehicle wheels wherein the method for selecting work stations and the process for manufacturing tyres according to an embodiment of the present invention are carried out.
With reference to such figure, reference numeral 1 globally indicates a building line of a plant for building tyres for vehicle wheels according to the present invention. The tyres to be built are at least of two different models. Such models may differ in terms of size, structural components and/or elementary components.
The building line 1 of the plant comprises a plurality of work stations 4, 4', 5, 5', 6, 12,
14, each of which is adapted for building at least one structural component of each tyre, by assembling at least one elementary component. The work stations 4, 4', 5, 5', 6, 12, 14 are arranged according to a sequential series, according to the definition given above.
The building line 1 of the system further comprises at least one handling device 3 for the tyres being processed on the respective forming supports associated to each work station 4, 4', 5, 5', 6, 12, 14. Each handling device 3 is adapted for cooperating with the respective work station 4, 4', 5, 5', 6, 12, 14 for assembling said elementary components.
The building line 1 also comprises at least one transfer device 2, which is adapted for transferring the tyre being processed on its forming support from any first work station of the sequential series to any other second work station even not adjacent to the first one, so that the tyre being processed on its forming support only passes in said first and second work station along a transfer path.
Said transfer path is the path followed by the forming support 2 and may be of any type (rectilinear, zigzag, etc.). If the transfer takes place from one work station 4, 4', 5, 5', 6, 12, 14 to a subsequent one and not adjacent thereto, said transfer path is generally different from the path that would be followed by the transfer support 2 for moving from one work station 4, 4', 5, 5', 6, 12, 14 to the work station 4, 4', 5, 5', 6, 12, 14 adjacent and subsequent thereto in said sequential series.
hi particular, the plurality of work stations 4, 4', 5, 5', 6, 12, 14 comprises:
- at least one carcass structure building work station 4, 4';
- at least one belt structure building work station 5, 5'; and
- at least one tread band building work station 6;
wherein the carcass structure comprises at least one carcass ply and a pair of annular anchoring structures and the belt structure comprises at least one belt layer.
As shown in the figure, the first carcass structure building work stations 4, 4' are two, a first carcass structure building work station 4 adapted for building a carcass structure which may be different from the carcass structure built by a second carcass structure building work station 4'. As an alternative, the first carcass structure building work station 4 and the second carcass structure building work station 4' may carry out the building of the same carcass structure on a respective forming drum, for example in the case of two-ply tyres.
Each carcass structure building work station 4, 4' comprises a ply application unit 7 and a bead core application unit 8.
The bead core application unit 8 is preferably provided with a device exhibiting a dispenser of a continuous elongated element shaped as a rubber metal reinforcing cord, whereas actuators preferably connected to each handling device 3 associated to the carcass structure building work stations 4, 4', move the forming support so as to wind said continuous elongated element according to preferably radially overlapped coils for manufacturing annular anchoring structures.
In the embodiment shown in the figure, said belt structure building work stations 5, 5' are two (whereof only one is detailed in figure 1). Each of them comprises an under-belt layer application unit 9 provided with devices for applying an under-belt layer in a position radially external to said carcass structure.
Each belt structure building work station 5, 5' further comprises at least one belt layer application unit 10 provided with devices for applying at least a first belt layer in a position radially external to said carcass structure.
A first belt structure building work station 5 is preferably adapted for applying at least two radially overlapped belt layers, said layers being arranged in such a way that the cords of the first belt layer are oriented sideways relative to the equatorial plane of the tyre being processed, whereas the cords of the second layer also exhibit a slanting orientation but symmetrically crossed relative to the cords of the first layer.
A second belt structure building work station 5' of the tyre building plant shown in the figure comprises two belt layer application units 10.
Preferably, said second belt structure building work station 5' is adapted for applying at least one belt layer comprising a layer of textile or metal cords, oriented circumferentially at 0°. The tread band building work station 6 of the building line 1 comprises at least one tread band application unit 11.
In the embodiment shown in the figure, the tread band building work station 6 comprises two tread band application units 11 and one tread band underlayer application unit 13. The latter is provided with devices for applying at least one tread band underlayer.
However, such tread band underlayer application unit 13 may be arranged outside the tread band building work station 6 in a dedicated building work station.
The building plant 1 further comprises at least one sidewall building work station 12 provided with a sidewall application unit 17 for building at least a sidewall portion in a position axially external to the tyre being processed.
The building plant 1 shown in figure 1 further comprises work station for applying a liner 14 provided with a liner application unit 18.
The building line 1 is provided with a strip-like element feeding unit 16 for each carcass structure building work station 4, 4'. Similar strip-like element feeding units may be provided for each belt structure building work station 5, 5'.
Preferably, at least one of the above work stations 4, 4', 5, 5', 6, 12, 14 in sequential series comprises a device that exhibits a dispenser of a continuous elongated element of elastomeric material. In this case, each work station provided with such device also comprises one or more actuators for moving the forming support so as to wind the continuous elongated element according to side by side and/or at least partially overlapped coils. Even more preferably, at least the under-belt layer application unit 9, the tread band underlayer application unit 13, the tread band application units 11, the sidewall application unit 17, the liner application unit 18, comprise each the above device.
The tyre building plant according to an embodiment of the invention may comprise a preparation line for some elementary components (generally strip-like elements and/or rubber cords) adapted for being fed to the work stations 4, 4', 5, 5'. Such line is not shown in the figure.
The transfer device 2 adapted for transferring the tyre being processed on its forming support from a work station to another work station of the sequential series comprises a robotized arm. Preferably, the transfer device 2 is associated to a guiding track 15 whereon such robotized arm moves. Preferably, each handling device 3 for the tyres being processed on the respective forming supports comprises at least one robotized arm.
According to preferred embodiments of the present invention, at least one model of tyre to be built is for two-wheel vehicles, wherein the bending ratio R between the distance between the radially outer distance of the tread band and the line passing by the laterally opposite ends of the tread band itself, measured on the equatorial plane of the tyre, and the distance measured along the tyre chord between said ends is more than or equal to, about 0.15.
hi particular, said bending ratio R is less than or equal to, about 0.3 or less than or equal to, about 0.45, based on the fact that the tyre to be built is of the rear or front type.
Preferably, the forming support is a toroidal support. Even more preferably, the toroidal support has a radially external surface corresponding to a radially internal surface of the tyre being processed (and built).
The method for selecting work stations 4, 4', 5, 5', 6, 12, 14 in a building line 1 of tyres in at least two different models, wherein said building line 1 comprises a plurality of work stations 4, 4', 5, 5', 6, 12, 14 arranged according to a sequential series, wherein each work station 4, 4', 5, 5', 6, 12, 14 is adapted for building at least one structural component of each tyre, preferably by assembling at least one elementary component, according to the present invention, comprises the step of:
- selecting at least two work stations 4, 4', 5, 5', 6, 12, 14 not adjacent to each other whereto a tyre being processed is transferred based on the tyre model, on the structural component to be built and on the availability of the work stations themselves.
The transfer is carried out so that the tyre being processed only passes in said at least two work stations 4, 4', 5, 5', 6, 12, 14 along a transfer path.
The method for selecting work stations 4, 4', 5, 5', 6, 12, 14 comprises, prior to the selection step, the step of receiving information on the model of tyre to be built and on the availability of the work stations 4, 4', 5, 5', 6, 12, 14.
In other words, the selection method according to the invention provides for the reception of the above information and the processing thereof so as to select the most suitable work stations 4, 4', 5, 5', 6, 12, 14 to transfer the tyres being processed.
Preferably, according to a step a), the tyre building process provides for arranging a plurality of elementary components of the tyres to be built at a plurality of work stations 4, 4', 5, 5', 6, 12, 14.
Afterwards, the process provides for a step b) of building at least a first and a second model of tyre on respective forming supports, building each structural component, preferably by assembling at least one of said elementary components, at the work stations 4, 4', 5, 5', 6, 12, 14. The latter are arranged according to a sequential series in a tyre building line 1, wherein the tyres being processed on the respective forming supports are transferred from one work station 4, 4', 5, 5', 6, 12, 14 to the other by a transfer device 2.
According to the invention, the step b) of building at least a first and a second tyre model comprises at least one step c) of transferring a tyre being processed on its own forming support from a first work station 4, 4', 5, 5', 6, 12, 14 of the building line 1 to a second work station 4, 4', 5, 5', 6, 12, 14 not adjacent thereto in said sequential series.
Moreover, according to the process of the invention, each transfer step c) is carried out so that the tyre being processed on its forming support only passes in said first and second work station 4, 4', 5, 5', 6, 12, 14 along a transfer path.
According to a preferred embodiment, the building step b) comprises, upstream of the transfer step c), a step of:
d) selecting the work station 4, 4', 5, 5', 6, 12, 14 whereto a tyre being processed is transferred based on the tyre model, on the structural component to be built and on the availability of the work stations 4, 4', 5, 5', 6, 12, 14 themselves.
The building step b) is preferably carried out by transferring the tyre being processed from a work station 4, 4', 5, 5', 6, 12, 14 to a subsequent work station 4, 4', 5, 5', 6, 12, 14 of said sequential series. That is, the transfer takes place according to a travelling direction of the building line 1.
In particular, the building step c) comprises the steps of:
i) building a carcass structure, which comprises at least one carcass ply and a pair of annular anchoring structures;
ii) building a belt structure, which comprises at least one belt layer; and
iii) building a tread band.
According to a preferred embodiment, the above step ii) comprises building a belt structure provided with a layer of textile or metal cords, oriented circumferentially at 0°. The process for manufacturing tyres further comprises a pre-step of feeding elementary components into the corresponding work station.
With reference to the tyre building line 1, an operating example of the plant illustrated in figure 1 shall now be described, for example in the case of two models of tyres A and B, where A is a one-ply tyre and B is a two-ply tyre, A and B having both a layer of metal cords at 0° as belt structure.
A forming support for tyre A being processed is transferred to the liner application work station 14 wherein the liner application unit 18 applies a liner layer thereon, preferably by the application of at least one continuous elongated element of elastomeric material according to side by side and/or overlapped coils. Such liner application step may be preceded by an application step of at least one bead reinforcing fabric and/or by an application step of an abrasion-proof element on the forming support of tyre A.
Afterwards it is also possible to apply a under-liner layer in a position radially external to the liner layer.
Tyre A being processed is transferred to a carcass structure building work station 4 or 4' — according to the type of ply required by tyre A or to the availability of said work stations 4, 4' - where, according to step i), the building of the carcass structure is carried out. hi this example, the one-ply tyre A is carried by the transfer device 2 from the liner application work station 14 directly to the second carcass structure building work station 4' as the latter is free, without passing by the first carcass structure building work station 4, according to what provided in the selection step of said method and with step c) of the process according to the invention.
hi said second carcass structure building work station 4', a carcass ply is applied in a position radially external to the liner layer or to the under-liner layer (if provided), by the ply application unit 7, preferably by laying a plurality of strip-like elements side by side to each other. According to different project specifications, further elementary components may be applied to manufacture further structural components of the carcass structure.
Afterwards, step i) provides for applying at least a pair of annular anchoring structures at the axially opposite ends of the carcass ply. Such step is carried out by the bead core application unit 8, the operation whereof has been illustrated hereinbefore.
Afterwards it is possible to apply, at the carcass ply of tyre A being processed, a plurality of inside and/or outside reinforcing elements and/or an abrasion-proof element. At the same time as the building of tyre A, also tyre B is built according to step b) of the process illustrated above.
More precisely, the forming support of tyre B being processed is transferred to the liner application work station 14 as soon as this is left free by tyre A being processed. The same process described above for tyre A is carried out in the above liner application work station 14.
According to step i) of the present invention, the carcass structure building is then carried out: Tyre B being processed is transferred by the transfer device 2 into the first carcass structure building work station 4 for applying the first carcass ply, such work station is free since tyre A has been transferred to the second carcass structure building station 4'. After that, the transfer device 2 transfers tyre B into the second carcass structure building work station 4' for applying the second carcass ply once that tyre A, completed its carcass structure building step, has been transferred from the above work station.
In particular, in the second carcass structure building work station 4' a second carcass ply is applied in a position radially external to the first carcass ply of tyre B with methods similar to those of application of the first carcass ply. Such step is followed by the application of at least a further pair of annular anchoring structures at the axially opposite ends of the second carcass ply.
According to step c), tyre A being processed is then transferred by the transfer device 2 into the second belt structure building work station 5'.
In other words, in the example illustrated herein, tyre A being processed is transferred from the second carcass structure building work station 4' to the second belt structure building work station 5' without passing through the first belt structure building work station 5.
In such second belt structure building work station 5' there is carried out the step ii) of building the belt structure which, in this specific example, provides first for the application of an under-belt layer in a position radially external to tyre A being processed by the under-belt layer application unit 9, preferably by the application of at least one continuous elongated element of elastomeric material according to side by side and/or partially overlapped coils, then the application of a belt layer obtained by the application of a rubber metal cord layer oriented circumferentially at 0°, in a special belt layer application unit 10. According to the above step c), tyre B being processed is transferred by the transfer device 2 into the second belt structure building work station 5'.
In other words, tyre B being processed is transferred from the first carcass structure building work station 4 to the second belt structure building work station 5' without passing through the work stations 4' and 5.
Moreover, it should be noted that thanks to the preferred configuration of the second belt structure building work station 5' (two belt layer application units 10), the transfer of tyre B in the above work station can advantageously take place even if in said work station there is still tyre A.
The step ii) of building the belt structure of tyre B is carried out in such work station 5' similarly to what described above for building tyre A.
Tyre A being processed is then transferred by the transfer device 2 into the tread band building work station 6 wherein the tread band building step iii) is carried out. Such step iii) may comprise the sub-step iii") of applying at least one tread band underlayer in a position radially external to the belt structure, in the tread band underlayer application unit 13. The step iii) finally comprises the sub-step iii") of applying at least one tread band layer in a position radially external to said tread band underlayer, if provided, or to said belt structure, in a tread band application unit 11. If the tread band layers are two, these are preferably applied in a sequence in the two respective tread band application units 11. Preferably, at least one between the above steps iii') and iii") are carried out by applying at least one continuous elongated element of elastomeric material according to side by side and/or at least partially overlapped coils.
At the end of the building of the belt structure, also tyre B being processed is transferred by the transfer device 2 into the tread band building work station 6 wherein the tread band building step iii) is carried out with methods similar to those described for building the tread band of tyre A.
Also in this case, thanks to the preferred configuration of the tread band building work station 6 (two tread band application units 11), tyre B can be transferred to the above tread band building work station 6 while tyre A is still present, further improving productivity.
Afterwards, tyre A being processed is transferred by the transfer device 2 into the sidewall building work station 12. In such work station 12 the sidewall application unit 17 provides to applying at least one portion of sidewalls of tyre A in a position axially external to said tread band, carrying out step iv), by the application of at least one continuous elongated element of elastomeric material according to side by side and/or partially overlapped coils.
After that, also tyre B being processed is transferred by the transfer device 2 into the sidewall building work station 12 wherein the sidewall application unit 17 provides to applying at least one portion of sidewalls of tyre B with methods similar to those described for tyre A.
Tyres A and B thus built are transferred to optional further work stations for the application of optional elements such as barcodes, labels, etc. or in output from the building line 1 to proceed towards a moulding and vulcanisation unit, not shown herein.
Within the scope of the above present description and in the following claims, all numerical values indicating amounts, parameters, percentages and so on are always to be deemed as preceded by the term "about", if not otherwise stated. Moreover, all numerical value ranges include all possible combinations of the maximum and minimum numerical values and all possible intermediate ranges, besides those specifically indicated in the text.

Claims

1. A method for selecting work stations (4, 4', 5, 5', 6, 12, 14) in a building line (1) of tyres for vehicle wheels, said tyres being at least of two different models, said building line (1) comprising a plurality of work stations (4, 4', 5, 5', 6, 12, 14) arranged according to a sequential series, each work station (4, 4', 5, 5', 6, 12, 14) being adapted for building at least one structural component of each tyre, comprising the step of:
- selecting at least two work stations (4, 4', 5, 5', 6, 12, 14) not adjacent to one another wherein a tyre being processed is transferred based on the tyre model, on the structural component to be built and on the availability of the work stations themselves, wherein the above transfer takes place in such a way that the tyre being processed only passes in said at least two work stations (4, 4', 5, 5', 6, 12, 14).
2. Method for selecting work stations (4, 4', 5, 5', 6, 12, 14) according to claim 1, wherein the selection step is preceded by the step of:
- receiving information on the model of tyre to be built and on the availability of the work stations (4, 4' , 5 , 5 ' , 6, 12, 14).
3. A process for manufacturing tyres for vehicle wheels, said tyres being of at least two different models, comprising the steps of:
b) building at least a first and a second model of tyre on respective forming supports, by building each structural component at a plurality of work stations (4, 4', 5, 5', 6, 12, 14) arranged according to a sequential series in a tyre building line (1), wherein the tyres being processed on the respective forming supports are transferred from one work station (4, 4\ 5, 5', 6, 12, 14) to the other by a transfer device (2);
- wherein the step b) of building at least a first and a second tyre model comprises at least one step c) of transferring a tyre being processed on its own forming support from a first work station (4, 4', 5, 5', 6, 12, 14) of the building line (1) to a second work station (4, 4', 5, 5', 6, 12, 14) not adjacent thereto in said sequential series;
- wherein each step c) of transfer takes place in such a way that the tyre being processed on its forming support only passes in said first and second work station (4, 4', 5, 5', 6, 12, 14).
4. Process for manufacturing tyres according to claim 3, wherein the building step b) is preceded by a step of: a) arranging a plurality of elementary components of the tyres to be built at said plurality of work stations (4, 4', 5, 5', 6, 12, 14).
5. Process for manufacturing tyres according to claim 3 or 4, wherein the building step b) comprises, upstream of the transfer step c), a step of:
d) selecting the work station (4, 4', 5, 5', 6, 12, 14) whereto a tyre being processed is transferred based on the tyre model, on the structural component to be built and on the availability of the work stations (4, 4', 5, 5', 6, 12, 14) themselves.
6. Process for manufacturing tyres according to claim 3, 4 or 5, wherein the building step b) is carried out by transferring the tyre being processed on its own forming support from a work station (4, 4', 5, 5', 6, 12, 14) to a subsequent work station (4, 4', 5, 5', 6, 12, 14) of said sequential series.
7. Process for manufacturing tyres according to one of claims 3 - 6, wherein said building step b) comprises the steps of:
i) building a carcass structure, said carcass structure comprising at least one carcass ply and a pair of annular anchoring structures;
ii) building a belt structure, said belt structure comprising at least one belt layer; and
iii) building a tread band.
8. Process for manufacturing tyres according to claim 7, wherein in at least one model of tyre to be built the bending ratio R between the distance between the radially outer distance of the tread band and the line passing by the laterally opposite ends of the tread band itself, measured on the equatorial plane of the tyre, and the distance measured along the tyre chord between said ends is more than or equal to, about 0.15.
9. Process for manufacturing tyres according to claim 8, wherein said bending ratio R is less than or equal to, about 0.3.
10. Process for manufacturing tyres according to claim 8, wherein said bending ratio R is less than or equal to, 0.45.
11. Process for manufacturing tyres according to any one of claims 7 - 10, wherein in said step ii), said at least one belt layer comprises a layer of textile or metal cords, oriented circumferentially at 0°.
12. Process for manufacturing tyres according to claim 7 or 11, wherein said step iii) of building the tread band comprises a step iii') of applying a tread band in a position radially external to said belt structure.
13. Process for manufacturing tyres according to claim 7 or 12, comprising a step of:
iv) applying at least one portion of sidewalls of the tyre being processed in a position axially external to said tyre being processed.
14. Process for manufacturing tyres according to claim 12 or 13, wherein said step iii) of building the tread band comprises, prior to step iii') of application of the tread band, the step of:
iii") applying at least one tread band underlayer in a position radially external to said belt structure.
15. Process for manufacturing tyres according to any one of claims 12 - 14, wherein at least one between said steps iii'), iii") or iv) is carried out by applying at least one continuous elongated element of elastomeric material according to side by side or at least partially overlapped coils.
16. Process for manufacturing tyres according to any one of claims 3 - 15, wherein at least one structural component is built by assembling at least one elementary component.
17. Process for manufacturing tyres according to any one of claims 3 - 16, further comprising a pre-step of feeding elementary components to at least one work station (4, 4', 5, 5', 6, 12, 14).
18. Process for manufacturing tyres according to any one of claims 3 - 17, wherein said forming support is a toroidal support.
19. Process for manufacturing tyres according to claim 18, wherein said toroidal support has a radially external surface corresponding to a radially internal surface of the tyre being processed.
20. Process for manufacturing tyres according to any one of claims 3 - 19, wherein said first and second tyre models differ by size.
21. Process for manufacturing tyres according to any one of claims 3 - 20, wherein said first and second tyre models differ by structural components.
22. Process for manufacturing tyres according to any one of claims 3 - 21, wherein said fϊrst and second tyre models differ by elementary components.
23. Plant for building tyres for vehicle wheels, said tyres being of at least two different models, comprising at least a tyre building line (1) which in turn comprises:
- a plurality of work stations (4, 4', 5, 5', 6, 12, 14) arranged according to a sequential series, each work station (4, 4', 5, 5', 6, 12, 14) being adapted for building at least one structural component of each tyre;
- at least one handling device (3) for the tyres being processed on respective forming supports associated to each work station (4, 4', 5, 5', 6, 12, 14); and
- at least one transfer device (2) adapted for transferring the tyre being processed on its forming support from any first work station (4, 4', 5, 5', 6, 12, 14) of said sequential series to any other second work station (4, 4', 5, 5', 6, 12, 14) not adjacent thereto of said sequential series, so that the tyre being processed on its forming support only passes in said first and second work station (4, 4', 5, 5', 6, 12, 14).
24. Tyre building plant according to claim 23, wherein the plurality of work stations (4, 4', 5, 5', 6, 12, 14) comprises:
- at least one carcass structure building work station (4, 4'), said carcass structure comprising at least one carcass ply and a pair of annular anchoring structures;
- at least one belt structure building work station (5, 5'), said belt structure comprising at least one belt layer; and
- at least one tread band building work station (6).
25. Tyre building plant according to claim 23, wherein said forming support is a toroidal support.
26. Tyre building plant according to claim 25, wherein said toroidal support has a radially external surface corresponding to a radially internal surface of the tyre being processed.
27. Tyre building plant according to any one of claims 24 — 26, wherein the carcass structure building work stations (4, 4') are two.
28. Tyre building plant according to claim 27, wherein a first carcass structure building work station (4) is adapted for building a carcass structure differing from the carcass structure built by a second carcass structure building work station (4').
29. Tyre building plant according to any one of claims 23 - 28, wherein at least one work station (4, 4', 5, 5', 6, 12, 14) is adapted for building at least one structural component of each tyre by assembling at least one elementary component.
30. Tyre building plant according to any one of claims 24 - 29, wherein each carcass structure building work station (4, 4') comprises at least:
- a ply application unit (7); and
- a bead core application unit (8).
31. Tyre building plant according to claim 30, wherein said bead core application unit (8) comprises at least one device having a dispenser of a continuous elongated element shaped as a rubber metal reinforcing cord.
32. Tyre building plant according to claim 31, wherein at least one actuator is connected to the handling device (3) associated to said carcass structure building work station (4, 4'), for moving the forming support so as to apply said continuous elongated element according to radially overlapped coils.
33. Tyre building plant according to any one of claims 24 - 32, wherein the carcass structure building work station (5, 5') comprises:
- an under-belt layer application unit (9) provided with devices for applying an under- belt layer in a position radially external to said carcass structure.
34. Tyre building plant according to any one of claims 24 - 33, wherein the belt structure building work station (5, 5') comprises at least one belt layer application unit
(10) provided with devices for applying at least a first belt layer in a position radially external to said carcass structure.
35. Tyre building plant according to claim 34, wherein said belt layer application units (10) are two.
36. Tyre building plant according to any one of claims 24 - 35, wherein the belt structure building work stations (5, 5') are at least two.
37. Tyre building plant according to claim 36, wherein a first belt structure building work station (5) is adapted for applying at least two radially overlapped belt layers, said layers being arranged in such a way that the cords of the first belt layer are slanting oriented relative to the equatorial plane of the tyre being processed, whereas the cords of the second layer also have a slanting orientation but symmetrically crossed relative to the cords of the first layer.
38. Tyre building plant according to claim 36 or 37, wherein a second belt structure building work station (5') is adapted for applying at least one belt layer comprising a layer of textile or metal cords, oriented circumferentially at 0°.
39. Tyre building plant according to any one of claims 24 — 38, wherein the tread band building work station (6) comprises at least one tread band application unit (11).
40. Tyre building plant according to claim 39, wherein the tread band application units (11) are two.
41. Tyre building plant according to any one of claims 24 - 40, further comprising at least one tread band underlayer application unit (13) provided with devices for applying at least one tread band underlayer.
42. Tyre building plant according to claim 41, wherein said one tread band underlayer application unit (13) is arranged into the tread band building work station (6).
43. Tyre building plant according to any one of claims 24 - 42, further comprising at least one sidewall building work station (12) provided with a sidewall application unit
(17) for building at least one sidewall portion in a position axially external to the tyre being processed.
44. Tyre building plant according to any one of claims 24 - 43, further comprising a liner application work station (14) provided with a liner application unit (18).
45. Tyre building plant according to any one of claims 23 - 44, further comprising at least one strip-like element feeding unit (16).
46. Tyre building plant according to any one of claims 23 - 45, wherein at least one of said work stations (4, 4', 5, 5', 6, 12, 14) comprises at least one device exhibiting a dispenser of a continuous elongated element of elastomeric material.
47. Tyre building plant according to claim 46, wherein at least one actuator is connected to the handling device (3) associated to said work station (4, 4', 5, 5', 6, 12, 14) for moving the forming support so as to apply said continuous elongated element according to side by side or at least partially overlapped coils.
48. Tyre building plant according to any one of claims 29 - 47, comprising a line for preparing elementary components adapted for being fed to at least one work station (4,
4', 5, 5', 6, 12, 14).
49. Tyre building plant according to any one of claims 23 - 48, wherein said transfer device (2) adapted for transferring the tyre being processed on its own forming support from one work station (4, 4', 5, 5', 6, 12, 14) to another work station (4, 4', 5, 5', 6, 12, 14) of said sequential series comprises at least one robotized arm.
50. Tyre building plant according to any one of claims 23 - 49, wherein said transfer device (2) is adapted for moving on a guiding track (15).
51. Tyre building plant according to any one of claims 23 - 50, wherein said handling device (3) for the tyres being processed on the respective forming supports comprises at least one robotized arm.
PCT/IT2008/000437 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels WO2009157028A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN200880130035.XA CN102076488B (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels
US13/001,297 US10759129B2 (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels
PCT/IT2008/000437 WO2009157028A1 (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels
JP2011515740A JP5789509B2 (en) 2008-06-27 2008-06-27 Method and plant for building tires for vehicle wheels
PL08790026T PL2291282T3 (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels
EP08790026A EP2291282B1 (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels
KR1020107029240A KR101463868B1 (en) 2008-06-27 2008-06-27 Process and Plant for Building Tyres for Vehicle Wheels
BRPI0822832A BRPI0822832B1 (en) 2008-06-27 2008-06-27 method for selecting workstations in a vehicle wheel tire construction line, process for making vehicle wheel tire, and installation for building vehicle wheel tire
US16/934,898 US11241850B2 (en) 2008-06-27 2020-07-21 Process and plant for building tyres for vehicle wheels
US17/645,929 US20230013972A1 (en) 2008-06-27 2021-12-23 Process and plant for building tyres for vehicle wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IT2008/000437 WO2009157028A1 (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/001,297 A-371-Of-International US10759129B2 (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels
US16/934,898 Division US11241850B2 (en) 2008-06-27 2020-07-21 Process and plant for building tyres for vehicle wheels

Publications (1)

Publication Number Publication Date
WO2009157028A1 true WO2009157028A1 (en) 2009-12-30

Family

ID=40344888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2008/000437 WO2009157028A1 (en) 2008-06-27 2008-06-27 Process and plant for building tyres for vehicle wheels

Country Status (8)

Country Link
US (3) US10759129B2 (en)
EP (1) EP2291282B1 (en)
JP (1) JP5789509B2 (en)
KR (1) KR101463868B1 (en)
CN (1) CN102076488B (en)
BR (1) BRPI0822832B1 (en)
PL (1) PL2291282T3 (en)
WO (1) WO2009157028A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077236A1 (en) * 2009-12-22 2011-06-30 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
WO2011148283A1 (en) 2010-05-28 2011-12-01 Pirelli Tyre S.P.A. Method of controlling the management of forming drums in building tyres for vehicle wheels and plant for production of tyres for vehicle wheels
US20140144574A1 (en) * 2011-07-15 2014-05-29 Pirelli Tyre S.P.A, Method, process and apparatus for manufacturing tyres for vehicle wheels
WO2015193844A1 (en) * 2014-06-20 2015-12-23 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
US10336004B2 (en) 2015-07-06 2019-07-02 Vmi Holland B.V. Apparatus and method for stitching together leading end and trailing end of a tire component

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2291282T3 (en) * 2008-06-27 2013-08-30 Pirelli Process and plant for building tyres for vehicle wheels
PL2387500T3 (en) * 2008-12-17 2013-11-29 Pirelli Process and plant for building green tyres for vehicle wheels
ITMI20112370A1 (en) * 2011-12-23 2013-06-24 Pirelli PROCESS AND PACKAGING SYSTEM OF TIRES FOR VEHICLE WHEELS
ITMI20121757A1 (en) * 2012-10-17 2014-04-18 Pirelli METHOD AND PLANT FOR PACKING TIRES FOR VEHICLE WHEELS
ITMI20122214A1 (en) * 2012-12-21 2014-06-22 Pirelli METHOD AND PLANT FOR PACKING TIRES FOR VEHICLE WHEELS
KR102249240B1 (en) * 2013-11-26 2021-05-07 피렐리 타이어 소시에떼 퍼 아찌오니 Method, process and plant for building tyres
DE202014101003U1 (en) * 2014-03-06 2015-06-17 Kuka Systems Gmbh manufacturing plant
RU2690337C2 (en) * 2014-12-15 2019-05-31 Пирелли Тайр С.П.А. Method of controlling frame assembly of frame structural elements, method and apparatus for assembling frame structural components of tires
RU2735514C2 (en) * 2015-12-17 2020-11-03 Пирелли Тайр С.П.А. Method and device for handling tires

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570978A1 (en) * 2002-11-25 2005-09-07 Bridgestone Corporation Tire manufacturing method
US20050194101A1 (en) * 1999-12-01 2005-09-08 Pirelli Pneumatici S.P.A. Plant for producing types of tyres different from each other
DE102005055609A1 (en) * 2005-11-22 2007-05-24 Continental Aktiengesellschaft Transport and fabrication system for constructing tires comprises drums positioned on conveyors that move along closed paths that access construction stations, some of which have alternative stations

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB940792A (en) * 1959-05-08 1963-11-06 Dunlop Rubber Co Improvements in and relating to pneumatic tyres
US4443290A (en) * 1982-06-08 1984-04-17 The Firestone Tire & Rubber Company Work station
US5354404A (en) * 1990-05-25 1994-10-11 Cooper Tire & Rubber Company Control for integrated tire building system
JPH0811232A (en) * 1994-06-29 1996-01-16 Bridgestone Corp Tire molding system
DE19544369C2 (en) 1995-11-29 1998-05-20 Continental Ag Manufacture of pneumatic vehicle tires
ATE270957T1 (en) * 1999-10-29 2004-07-15 Pirelli METHOD AND DEVICE FOR PRODUCING DIFFERENT TYPES OF TIRE
BR0111133B1 (en) * 2000-05-26 2011-04-05 installation to produce tires of different types simultaneously and method to manufacture tires of different types in an automatic installation.
DE60138599D1 (en) * 2000-10-30 2009-06-18 Sumitomo Rubber Ind Method for producing the sidewalls of vehicle tires
US6579054B2 (en) * 2001-07-18 2003-06-17 Columbia Trailer Co., Inc. Shape-modifiable transition chute for trailer tipper
US6793752B2 (en) * 2001-09-21 2004-09-21 The Goodyear Tire & Rubber Company Precision longitudinal registration of tire building drum to automated tire building system work station
DE60224589T2 (en) * 2002-11-05 2009-01-08 Pirelli Tyre S.P.A. METHOD AND DEVICE FOR CONSTRUCTING A VEHICLE TIRE
US20040238102A1 (en) 2003-05-30 2004-12-02 Jean-Claude Girard Method for manufacturing tires on a flexible manufacturing system
TWI220077B (en) * 2003-07-15 2004-08-01 High Tech Comp Corp Multi-frequency antenna
US7305254B2 (en) * 2003-07-17 2007-12-04 Sony Ericsson Mobile Communications Ab System and method of software transfer between a mobile phone and a mobile phone accessory
US7195047B2 (en) * 2003-12-11 2007-03-27 The Goodyear Tire And Rubber Company Tire manufacturing module and method of manufacturing tires
JP4502720B2 (en) * 2004-06-15 2010-07-14 株式会社ブリヂストン Raw tire molding method and tire molding system
US20100032864A1 (en) * 2006-10-12 2010-02-11 Pirelli Tyre S.P.A. Process for Manufacturing a Pneumatic Tyre, Related Manufacturing Line and Assembling Apparatus
PL2291282T3 (en) * 2008-06-27 2013-08-30 Pirelli Process and plant for building tyres for vehicle wheels
EP3157739B1 (en) * 2014-06-20 2020-03-18 Pirelli Tyre S.p.A. Process and plant for building green tyres for vehicle wheels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050194101A1 (en) * 1999-12-01 2005-09-08 Pirelli Pneumatici S.P.A. Plant for producing types of tyres different from each other
EP1570978A1 (en) * 2002-11-25 2005-09-07 Bridgestone Corporation Tire manufacturing method
DE102005055609A1 (en) * 2005-11-22 2007-05-24 Continental Aktiengesellschaft Transport and fabrication system for constructing tires comprises drums positioned on conveyors that move along closed paths that access construction stations, some of which have alternative stations

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077236A1 (en) * 2009-12-22 2011-06-30 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
US11198266B2 (en) 2009-12-22 2021-12-14 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
WO2011148283A1 (en) 2010-05-28 2011-12-01 Pirelli Tyre S.P.A. Method of controlling the management of forming drums in building tyres for vehicle wheels and plant for production of tyres for vehicle wheels
US20140144574A1 (en) * 2011-07-15 2014-05-29 Pirelli Tyre S.P.A, Method, process and apparatus for manufacturing tyres for vehicle wheels
EP2731791B1 (en) * 2011-07-15 2016-02-03 Pirelli Tyre S.p.A. Method, process and apparatus for manufacturing tyres for vehicle wheels
US10245797B2 (en) * 2011-07-15 2019-04-02 Pirelli Tyre S.P.A. Method, process and apparatus for manufacturing tyres for vehicle wheels
WO2015193844A1 (en) * 2014-06-20 2015-12-23 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
US11001020B2 (en) 2014-06-20 2021-05-11 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
US10336004B2 (en) 2015-07-06 2019-07-02 Vmi Holland B.V. Apparatus and method for stitching together leading end and trailing end of a tire component

Also Published As

Publication number Publication date
US10759129B2 (en) 2020-09-01
JP5789509B2 (en) 2015-10-07
EP2291282B1 (en) 2013-02-27
BRPI0822832B1 (en) 2018-11-06
US11241850B2 (en) 2022-02-08
PL2291282T3 (en) 2013-08-30
US20230013972A1 (en) 2023-01-19
BRPI0822832A2 (en) 2015-06-23
CN102076488A (en) 2011-05-25
US20200346422A1 (en) 2020-11-05
KR101463868B1 (en) 2014-11-20
US20110168322A1 (en) 2011-07-14
KR20110027713A (en) 2011-03-16
JP2011525866A (en) 2011-09-29
CN102076488B (en) 2014-08-06
EP2291282A1 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
US11241850B2 (en) Process and plant for building tyres for vehicle wheels
EP2258541B9 (en) Process and plant for producing tyres for vehicle wheels
US11198266B2 (en) Process and plant for building green tyres for vehicle wheels
EP2387500B1 (en) Process and plant for building green tyres for vehicle wheels
JP2010540275A5 (en)
EP2234799B1 (en) Process and plant for building tyres for vehicle wheels
US20120138213A1 (en) Process and plant for building tyres for vehicle wheels
US20150290889A1 (en) Process and plant for building tyres for vehicle wheels
JP6155203B2 (en) Method and plant for building tires for vehicle wheels
RU2457949C1 (en) Method and device for assembly of automotive tire
JP5361789B2 (en) Method and plant for manufacturing tires for vehicle wheels
JP2016137728A (en) Method for constructing wheel tire of vehicle and plant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130035.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08790026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008790026

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011515740

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8732/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107029240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011102961

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13001297

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0822832

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101223