WO2009154299A1 - Steel t-bar - Google Patents

Steel t-bar Download PDF

Info

Publication number
WO2009154299A1
WO2009154299A1 PCT/JP2009/061437 JP2009061437W WO2009154299A1 WO 2009154299 A1 WO2009154299 A1 WO 2009154299A1 JP 2009061437 W JP2009061437 W JP 2009061437W WO 2009154299 A1 WO2009154299 A1 WO 2009154299A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
web
roll
fillet
steel
Prior art date
Application number
PCT/JP2009/061437
Other languages
French (fr)
Japanese (ja)
Inventor
竹正峰康
堀田知夫
高嶋由紀雄
高橋英樹
山口陽一郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN200980122823.9A priority Critical patent/CN102066014B/en
Publication of WO2009154299A1 publication Critical patent/WO2009154299A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/092T-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally

Definitions

  • the present invention relates to a T-bar used in the fields of shipbuilding, bridges, construction, and the like.
  • the T-shaped steel of the present invention is particularly suitable as a shipbuilding material, and particularly suitable for use as a T-longitudinal material.
  • the force S which used to be a spherical plate (bulb plate), was used as a reinforcing steel for the hull structure in the past.
  • scalene unequal thickness angle steel having a cross-sectional shape shown in (NAB: unequal leg and thickness angle ) is c, however it has many summer and used, scalene unequal thickness angle steel is the asymmetry of the cross section Therefore, when reinforcing the hull, it has directionality in the cross-sectional performance, and when it receives a force such as water pressure from the outside of the hull, a torsional force (torsional stress) is generated in the cross section. For this reason, in order to satisfy the structural performance requirements, it is necessary to use a section steel with a cross-sectional performance that can withstand the torsional force described above. May result in a demerit that increases.
  • a T-longi material with a T-shaped cross-sectional shape (cross-sectional shape in the width direction of the steel shape) as shown in Fig. 10 and a cross-sectional shape that is axisymmetric about the web is used as a hull-capturing member. It has come to be used.
  • a thick plate cut and welded assembly is widely used, and such a T longi material (hereinafter sometimes referred to as “welded T_bar”) is a web. There is a weld at the joint between the web and flange.
  • the weld bead when this weld is painted, the weld bead has a concave shape, resulting in non-uniform coating thickness and as-weld surface concave portions and edge portions. This will cause selective corrosion and a serious problem of corrosion deterioration of the hull structural members.
  • the welded longe material is repaired with a grinder or the like so that the surface of the weld bead becomes smooth, and then painted. Is called.
  • This kind of repair of the weld bead before painting is time-consuming because it requires manual inspection with the grinder etc. after inspecting the part that needs to be repaired over the entire length of the shape steel. And increased costs due to increased labor costs.
  • Patent Document 1 describes a T-shaped steel (hereinafter referred to as “cut T-bar”) that is manufactured by forming a H-shaped steel by hot rolling and then cutting the web part in half (divided into two parts). Is used as T-longi material.
  • T-steel obtained directly by hot rolling hereinafter sometimes referred to as “rolled T-bar” is used as T-longier material. It is shown.
  • Patent Document 1 JP 2002-301501 A
  • Patent Document 2 Japanese Patent Laid-Open No. 11-342401
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-331027 Summary of the Invention
  • ⁇ Longji is often used as a longitudinal along the length of the hull.
  • multiple T-longages T-shaped steel
  • T-longages T-shaped steel
  • the welded part between such T-longages is the hull structural material! / Due to the nature, all must have the proper strength.
  • conventional cut T-section steel or rolled T-section steel is used, there is a possibility that a crack will occur at the welded joint between T-longi materials and that the strength of the joint may be reduced. is there. In order to prevent this, preparatory work that would significantly reduce the work efficiency of welding work has been required.
  • the object of the present invention is to solve such problems of the prior art and to be applied to structural materials etc. in the fields of shipbuilding, bridges, construction, etc., especially for ⁇ longi materials for hull structures.
  • the object is to provide a T-shaped steel with excellent workability for welding joints between the longines.
  • the inventors of the present invention have studied the problems that occur in welding joining of T-longi materials and their countermeasures when the conventional cut T-shaped steel and rolled T-shaped steel are applied to T longi materials. The following knowledge was obtained.
  • Fig. 11 shows an example of groove processing of the joint of T-longi material (T-section steel).
  • the left side of the figure is T-longi material W
  • the right side is a front view of the end of the T-longi material, and the part surrounded by the broken line is the scalloped part.
  • each of the flange and web butt portions is grooved.
  • cut T-section steel and rolled T-section steel have a fillet section (arc section indicated by fi in Fig. 11 and Fig. 1 described later) at the joint between the web and flange.
  • fi in Fig. 11 and Fig. 1 described later it is necessary to remove the fillet portion so that the inner surface of the flange becomes flat.
  • cracks occur in the weld joint due to the problems described above, i.e., stress concentration and strain concentration. As a result, there is a possibility that the strength of the joint is lowered.
  • cut T-section steel is manufactured by cutting the H-section steel (rolled H-section steel) obtained by hot rolling in half (divided into two parts). Have.
  • the size of fillet R in the fillet part of rolled H-section steel is standardized by the Japanese Industrial Standard (JIS).
  • Fillet R increases as the size of H-section steel increases.
  • T-longages for hull structures often have a web height of 150 mm or more and a web height of more than twice the flange width.
  • the fillet R of a rolled H-section steel with a web height of 300 mm is 13 mm. Therefore, the cut T-section steel for a T-longier material with a web height of 150 mm or more is obtained.
  • the fillet R is 13mm or more.
  • the problems as described above are particularly remarkable in a rough universal rolling mill having a large number of rolling operations and a high rolling reduction.
  • the roll corner R of the horizontal roll is configured to have a sufficiently large dimension so as not to cause the above problems (a) to (c), and as a result, the dimension of the fillet R of the rolled T-shaped steel to be manufactured. Is also the corresponding size.
  • hot rolling of the T-section steel is performed using a two-roll type mill equipped with upper and lower rolls.
  • the portion that should become the fillet part of the T-shaped steel is rolled at a specific part of the upper and lower rolls constituting the hole mold.
  • seizure occurs between the arc tip of the roll part and the inner surface of the flange. For this reason, seizure flaws occur on the inner surface of the flange, making it impossible to produce a product shape steel of appropriate quality.
  • the arc radius of the roll part where the fillet part is to be rolled is configured to have a sufficiently large dimension so as not to cause the above-mentioned problems. It becomes the size to do.
  • the shape steel of Patent Document 2 has a T-shaped cross section, but the cross-sectional shape has a taper that is thinner at the tip of the flange. It is not possible to produce uniform T-shaped steel.
  • the larger the fillet R (fillet R is indicated by rl in FIG. 11), the larger the volume and width of the fillet part.
  • the width of the power part will increase.
  • the scalloped finishing area is large, and it is easy to produce a portion where the finishing accuracy is not sufficient. It has been found that this causes the problem of reduced work efficiency.
  • the gas cut surface is generally finished by manual grinder finishing. Therefore, the larger the finished area, the longer it takes to remove the gas notch, which tends to have variations in finishing accuracy, and the efficiency of the welding work is greatly reduced. Also, in the case of machining with a grinding machine, since the area of the finishing process is large, the wear of the grinding tip increases, and the machining efficiency decreases as the replacement frequency increases. However, if there is a part with insufficient finishing accuracy, cracks will occur due to stress concentration or strain concentration after welding joining and the strength of the welded joint will be reduced, resulting in poor welding work efficiency. However, the machined surface must be finished with high accuracy.
  • the optimum shape-size of the T-section steel fillet used as T-longi material was examined.
  • the fillet R of the fillet with an arc-shaped cross section was 10 mm or less, preferably 8 m. It was concluded that by setting it to m or less, the work efficiency of scallop processing is greatly improved without causing a decrease in the strength of the welded joint due to poor finish of scallop processing.
  • the force required to bend the T longi material along the hull When the fillet R is small, the cross-section of the fillet becomes smaller, which improves the bending workability. It was found that the work efficiency during bending can be improved.
  • the present invention has been made on the basis of such findings and has the following gist.
  • T-shaped steel with a web height of 150 mm or more and no welded portion and the cross-sectional shape in the cross-section direction of the billet formed at the joint between the web and the flange is T-section steel, characterized in that it is arcuate in contact with the flange and the radius r1 of the arc is 2 to: LOmm.
  • the cross-sectional shape in the shape steel width direction of the corner portion at the flange tip is an arc shape, and the radial force of the arc is not less than mm.
  • T-shaped steel as defined in any one of the above (ii) to (5), which is a T-shaped steel for ship structure
  • the T-shaped steel of the present invention has an optimized shape and size of the fillet formed at the joint between the tube and the flange, and has a smaller fillet R than the conventional T-shaped steel.
  • the work efficiency of scalloping is greatly improved without causing a decrease in the strength of the welded joint due to poor finish of the scalloping performed when the ends are welded together as a T longi material.
  • the longi material is bent along the hull, the bending workability is also improved. For this reason, it is particularly suitable as a T-section steel for hull structures, especially as a T-longi material.
  • FIG. 1 is an explanatory view showing an example of a cross-sectional shape of a T-section steel of the present invention.
  • Fig. 2 compares the relationship between the modulus of section with welded plate and the unit weight of the T-shaped steel of the present invention shown in Table 2 with the conventional unequal non-uniform thickness steel. It is a graph shown.
  • FIG. 3 is an explanatory view showing an example of rolling equipment for producing the T-section steel of the present invention.
  • FIG. 4 is a front view schematically showing the roll configuration of the first rough universal rolling mill in the rolling equipment of FIG. 3.
  • FIG. 5 is a front view schematically showing a roll configuration of an edger rolling mill (edger mill) in the rolling equipment of FIG. 3. -
  • FIG. 6 is a front view schematically showing a roll configuration of a second coarse universal rolling mill in the rolling equipment of FIG. 3.
  • FIG. 7 is a front view schematically showing a roll configuration of a finishing universal rolling mill in the rolling equipment of FIG. 3. W
  • FIG. 8A is a side view of the horizontal roll showing a state in which the lubricating oil supply device X is installed in the vicinity of the horizontal roll corner of the rough universal rolling mill shown in FIG.
  • FIG. 8B is a front view showing a state in which the lubricating oil supply device X is installed in the vicinity of the horizontal roll corner of the rough universal rolling mill shown in FIG.
  • FIG. 9 is an explanatory view showing an example of a cross-sectional shape of an unequal side unequal thick angle steel.
  • FIG. 10 is an explanatory diagram showing an example of a rough cross-sectional shape of a T-section steel.
  • Fig. 11 is a side view (left side) and front view (right side) of the end of the T-longi material, showing an example of groove processing when the ends of the T-long material are welded together. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 1 shows an example of the cross-sectional shape of the T-shaped steel of the present invention in the cross-section direction, where f is a flange, w is a web, fi is a joint between a web w and a flange f, that is, a web w This is a buillet formed at the corner composed of the flange f.
  • A is the web length
  • B is the flange width
  • tl is the web thickness
  • t2 is the flange thickness.
  • rl is the arc radius of the fillet part fi (arc radius of the cross section in the section width direction)
  • r2 is the arc radius of the corner on the inner surface side of the flange tip (arc radius of the section in the section width direction)
  • r3 is the flange. This is the arc radius of the corner portion on the outer surface side of the tip (the arc radius of the cross section in the width direction of the section).
  • the T-section steel of the present invention is a T-section steel that does not have a weld with a web height A of 150 mm or more, and the cross-sectional shape of the violet portion fi in the section width direction is a circle that contacts the web w and the flange f. It is arc-shaped and its arc radius rl (hereinafter sometimes referred to as “Builet R”) is 2 to 10 mm.
  • the fact that it does not have a welded part is not a so-called welded T-section steel obtained by welding and assembling thick plates, but it is obtained by cutting the H-section steel web obtained by hot rolling in half (two divisions). It may be a so-called cut T-section steel.
  • the flange thickness is a T-shaped steel that is uniform over the entire width excluding the vicinity of the bullet portion and the flange tip.
  • the web height A and the flange width B of the T-section steel are arbitrary. However, when it is used as a hull structural member, it is at least twice the web height A It is preferable that it is above.
  • the combination of web height A and flange width B is arbitrary, for example, 250mm x 100mm, 300mm x 100mm, 300mm x 125mm, 350mm x 125mm, 400mm x 125mm 500mm x 150mm, 600mm x 150mm, 700mm x 150mm, 800mm x 150mm It can be selected by the combination of.
  • the combination of web thickness tl and flange thickness t2 is also arbitrary.
  • the force that can be selected according to the thickness of cut T-section steel (standardized thickness of H-section steel and flange thickness)
  • the flange thickness t2 is the web thickness tl Is preferably larger.
  • the web length A is less than 10 times the flange width B.
  • the fillet R (arc radius rl) of the fillet part fi is 2 to 10 ⁇ , preferably 2 to 8 mm, regardless of the web length A or the flange width B.
  • the welding is performed after the butt portion is grooved.
  • a scalloping force is applied to cut out part of the web and fillet part in contact with the flange into a fan shape (see Fig. 11).
  • the fillet R exceeds 10 mm, the volume and width of the fillet portion will increase, so in this scalloping process, a finishing process will be performed so as not to cause a defective finish that leads to a decrease in the strength of the welded joint.
  • the work efficiency of the scalloping process including, and the bending processability when bending the T-longi material along the hull are also reduced.
  • Table 1 shows that Bullet R is 13mn! Shows the fillet cross-sectional area and fillet width of a T-steel of ⁇ 2mm.
  • the fillet cross-sectional area refers to the cross-sectional area of the fillet part fi (excluding the web part and the flange part) on the right side of FIG. 11 or in FIG. 1, and the fillet R is zero and the web and flange are If it is formed at right angles, the fillet cross-sectional area is zero.
  • the fillet width refers to the length from the beginning of one side bullet portion fi to the end of the opposite fillet portion fi across the web.
  • the fillet R when the fillet R is reduced to 10 mm, the cross-sectional area of the burette is reduced by 41% and the fillet width is 17 It turns out that it decreases by%. If the cross-sectional area and width of the billet portion to be removed in the scalloped cabinet are reduced to such a degree, the work efficiency in the scallop processing including the finishing process is greatly improved. Also, when the fillet R is reduced to 8mm, the fillet cross-sectional area is 6mm compared to the fillet R of 13mm. By reducing the fillet width by 2% and by 28%, and further reducing the bouillette radius to 5mm, the fillet area is also reduced by 85% and the fillet width by 44%.
  • the T-shaped steel of the present invention is manufactured by a manufacturing method that adopts a method different from the conventional technology as will be described later, so that the fillet R can be reduced to 10 mm or less. Therefore, it is difficult to make the fillet R less than 2 mm.
  • the fillet portion is the roll corner portion of a horizontal roll.
  • Roll corner R of the roll corner portion is reduced, the force that can reduce the fillet R.
  • the roll corner R simply by reducing the roll corner R, (a) the roll corner
  • the contact condition between the flange and the inner surface of the flange becomes severe, and seizure occurs between the two, resulting in seizure flaws on the inner surface of the flange, making it impossible to produce a product shape steel of appropriate quality.
  • the present inventors have specified a specific roll part during rolling of the rough rolling universal rolling mill. Even if the size of the fillet R is made sufficiently small by reducing the roll corner R of the horizontal roll by injecting rolling lubricant (lubricant) into the position (this manufacturing method will be described in detail later) It has been found that rolling can be performed without causing problems. However, even if this manufacturing method is adopted, if the roll corner of the horizontal roll is less than !!!, it is impossible to prevent the occurrence of seizure flaws on the inner surface of the flange. As a result, it is difficult to mass-produce T-shaped steel by hot rolling. For this reason, in the T-shaped steel of the present invention, the lower limit of fillet R is 2 mm.
  • the size of the buillet R is 2 to 10 mm in the T-shaped steel of the present invention.
  • the billet part has an arc shape in contact with the web and flange in the cross-sectional shape in the cross-section direction (the cross-sectional shape on the right side of Fig. 11).
  • the arc shape does not need to be a strictly accurate arc shape, but it is remarkable as seen in welded T-shaped steel and rolled ⁇ -shaped steel 'cut T-shaped steel obtained by horizontal rolls with rough corners.
  • an arc that has a radius of rl is defined as a deviation from the arc of radius rl that falls within ⁇ 20% of rl.
  • the fillet R of the left and right fillet portions fi is constant over the entire length of the shape steel.
  • the left and right fillet portions fi are rolled and formed at the roll corner portion of the horizontal roll of the universal rolling mill, so that it is possible to obtain a fillet portion fi having the same radius over the entire length. it can. That is, there is an advantage that a uniform fillet portion fi is obtained in which the joint portion such as a welded T-shaped steel is not uneven in the longitudinal direction, and the quality control of the member becomes easy.
  • the fluctuation of fillet R is within a range of ⁇ 20%, it can be regarded as constant over the entire length of the shape steel.
  • the T-shaped steel of the present invention has four corners on the flange tip (a total of four corners on the flange tip inner surface side and flange tip outer surface side corner) to ensure the perfection of the coating.
  • the cross-sectional shape in the cross-section direction of the shape of the corner of the corner is an arc shape and the arc radii r2, r3 (see FIG. 1) are 2 mm or more.
  • the upper limit of r2 and r3 does not need to be set in particular, and there is no problem even if it reaches half of the flange thickness t2. This arc is also allowed to be slightly deformed.
  • a steel bar is manufactured by hot rolling using a rough universal rolling mill or a finishing universal rolling mill.
  • T-shaped steel pieces obtained by a rough down mill (brake down mill), etc. are used as the first coarse universal mill, edger mill, second coarse universal mill, and finish universal.
  • a steel bar is manufactured by rolling sequentially with a rolling mill.
  • the fillet portion fi is rolled and formed at the roll corner portion of the horizontal roll of the universal rolling mill.
  • the roll corner R (radius) of the horizontal roll of the roughing and finishing universal rolling mill is set to a dimension capable of forming the fillet R (2 to 10 mm) of the T-shaped steel of the present invention to be manufactured.
  • rolling lubricant lubricating oil for hot rolling
  • the seizure prevention effect is further improved, and seizure of the roll corner portion and the flange inner surface can be more effectively prevented.
  • Cooling water injection nozzles are arranged, and cooling water is sprayed from the cooling water injection nozzles to the horizontal roll corners to enhance cooling of the roll corners, thereby preventing excessive roll temperature rise and roll damage. Can be prevented.
  • the T-section steel of the present invention having a small fillet R can be produced by the production method as described above. Needless to say, the method for manufacturing the T-shaped steel of the present invention is not limited to the above-described manufacturing method. As described above, the T-shaped steel of the present invention is most suitable as a T-longage material for hull structures, but it can also be used as a structural material in the fields of bridges and construction. Example 1
  • Tables 2 and 3 show examples of cross-sectional dimensions of the T-shaped steel of the present invention (hull shaped steel for hull structures).
  • the standard external dimensions are the web height ⁇ is 300 mm and the flange width B is 125 mm.
  • the web thickness tl is 9-12 mm, and the flange thickness t2 is 16-25 mm.
  • Table 2 shows that the length obtained by subtracting the flange thickness t2 from the web height A (the web tip force length to the inner surface of the flange) and the length obtained by subtracting the web thickness tl from the flange width B are constant.
  • Such a series of products with a fixed internal law is the distance between the vertical roll 42b on the web tip side and the horizontal rolls 41a and 41b in the second rough universal rolling mill 4 shown in FIG. 6 described later. Can be produced by rolling with a constant value.
  • Table 3 Also shown in Table 3 is an outside dimension—fixed product where the web height A and flange width B are constant—the web height even if the web thickness tl and flange thickness t2 change.
  • a and flange width B are constant.
  • Such a product series with a constant outer method is a second rough universal rolling mill 4 shown in FIG. 6 to be described later, in which the distance between the roll 42b on the tip side of the web and the horizontal rolls 41a, 41b is set as the web of the material to be rolled. It can be manufactured by adjusting the height to be constant and rolling.
  • each part is the arc radius rl (fillet R) of the fillet part is 8 mm
  • the arc radius r2 of the corner part on the inner side of the flange tip is 5 mm
  • the corner part of the corner part on the outer side of the flange tip is The arc radius r3 is 3mm.
  • the cross-sectional characteristics of the T-section steel of the present invention shown in Table 2 are shown in Fig. 2 in comparison with the conventional unequal side unequal thickness angle steel (NAB).
  • NAB unequal side unequal thickness angle steel
  • the shape steel is mainly used to reinforce the thick plate.
  • the thick plate portion where the same stress as the shape steel is applied can be considered as a part of the shape steel. Therefore, when considering the cross-sectional performance of a section steel, the section modulus of a plate with a certain width is important. Therefore, the section modulus with a plate of 610 mm width x 15 mm thickness was used as an index here.
  • the section modulus with a plate is calculated by calculating the second moment of section with respect to the centroid axis in the section where a plate of the specified area is joined to the outer surface of the flange of the T-shaped steel, and the value is the farthest in the section of the centroid axis force. Divided by the distance to the point.
  • the cross-section coefficient of the T-section steel plate with web height A of 300mm and flange width B of 125mm is 300mm x 90min, 350mm x 100mm, 400mm x 100mm
  • a series of 300 mm X 125 mm T-section steel, and 300 mm X It can be seen that 3 series of 90mm, 350mm X 100mm, 400mm X 100mm can be force par.
  • T-shaped steel rolled vertical steel
  • the equipment configuration, rolling mill structure, roll shape, dimensions, etc. are examples, and are not limited to these.
  • T-shaped steel with a target height of 300mm in web height, 100mm in flange width, 9mm in web thickness and 16mm in flange thickness Rolled.
  • the arc radius rl (fillet R) of the buillet was 8 mm.
  • 1 is a rough shaping rolling mill
  • 2 is a first rough universal rolling mill
  • 3 is an edger rolling mill
  • 4 is a second rough universal rolling mill
  • 5 is a finishing universal rolling mill
  • 6 is an intermediate rolling process. is there.
  • the rough shaping rolling mill 1 is usually a double rolling mill equipped with a roll having a hole shape.
  • FIG. 4 schematically shows the roll configuration of the first rough universal rolling mill 2.
  • This roughing mill 2 has a pair of opposed horizontal rolls 21a, 21b and a pair of opposed hard rolls 22a, 22b. Is larger than the internal dimension L (distance from the flange inner surface to the web tip on the opposite side). The side surfaces of the horizontal rolls 21a and 21b are inclined.
  • FIG. 5 schematically shows the roll configuration of the edger rolling mill 3.
  • the edger rolling mill 3 includes a pair of opposed horizontal rolls 31a and 31b, and each horizontal roll 31a and 31b has a large-diameter roll portion 33 and a small-diameter roll portion 32, respectively.
  • FIG. 6 schematically shows the roll configuration of the second rough universal rolling mill 4.
  • This second rough universal rolling mill 4 includes a pair of opposed horizontal rolls 41a and 41b and a pair of opposed hard rolls 42a and 42b.
  • the width W2 of the roll surface of the horizontal rolls 41a and 41b The inner dimension of w is less than L (preferably less).
  • the side surfaces of the horizontal rolls 41a and 41b that are in contact with the flange f are inclined.
  • FIG. 7 schematically shows a roll configuration of the finishing universal rolling mill 5.
  • the finishing mill 5 is provided with a pair of opposed horizontal rolls 51a and 51b and a pair of opposed hard rolls 52a and 52b.
  • the sides of the horizontal roll 5 la, 5 lb are vertical.
  • a raw steel piece (not shown) carried out of a heating furnace (not shown) was first rolled into a T-shaped steel piece having a substantially T-shaped cross section by a rough shaping rolling mill 1.
  • This T-shaped slab had a web thickness of 40 mm, a flange thickness of 75 min, a web height of 375 mm, and a flange width of 130 mm.
  • this T-shaped slab was subjected to 5-pass reciprocal rolling in a rolling equipment row in which the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 were arranged close to each other. ⁇ Rolled down the T-shaped billet web and flange (intermediate rolling process 6).
  • the T-shaped steel obtained in the intermediate rolling process was finish-rolled to product dimensions with a finishing universal rolling mill 5.
  • this finishing universal rolling mill 5 as shown in FIG. 7, the entire length of the web w is lightly reduced in the thickness direction by horizontal rolls 51a and 51b, and flanges are formed on the side surfaces of the hard roll 52a and the horizontal rolls 51a and 51b.
  • the slope of f was shaped vertically.
  • the roll corner R (radius) of the horizontal roll corner is 2 rough universal rolling mills 2, For No.4, it was 9 min, and for Finishing universal rolling mill 5, it was 8 mm.
  • Figure 8A near the horizontal roll corners established the lubricating oil supply device X as shown in FIG. 8B, the lubricating oil supply device rolling lubrication oil to the horizontal roll corners from X (for hot rolling lubricant X l) supplied.
  • 8A and 8B show a state in which the lubricant supply device X is installed in the first rough universal rolling mill 2
  • FIG. 8B is a front view
  • 8A is a side view of the horizontal roll. 2 rough universal rolling mills 2 and 4
  • a lubricating oil supply device X is installed on each of the front surface (upstream side) and rear surface (downstream side) of the rolling mill, and rolling lubricating oil is injected from the lubricating oil supply device X on the rolling entry side. Then, rolling was performed in a state where the rolling lubricant was adhered to a part of the horizontal roll corner.
  • the finishing universal rolling mill 5 performs rolling in only one pass, the lubricating oil supply device X is installed only on the front surface (upstream side) of the rolling mill, and rolling is performed on the rolling entry side in the same manner as the rough universal rolling mill.
  • the roll corner R (radius) of the horizontal roll corner was 6 mm for the two coarse universal rolling mills and 5 mm for the finishing universal rolling mill.
  • the horizontal roll and the flange inner surface were seized. Although it could be prevented, after rolling a product of about 150 tons, cracks occurred in the horizontal roll corners of the two rough universal rolling mills 2 and 4, so rolling was interrupted.
  • the T-section steel of the present invention has an arcuate fillet and a properly reduced fillet radius compared to conventional T-sections.
  • the work efficiency of scalloping without significantly reducing the strength of welded joints due to poor scalloping finish is greatly improved.
  • the bending addability when bending the T-longier material along the hull is improved.

Abstract

Provided is a steel T-bar having a web height of at least 150 mm and having no welds. The cross-sectional shape, in the bar width direction, of a fillet section formed at the joint between the web and the flange is an arc that contacts the web and the flange. The radius of the arc is between 2 and 10 mm, and the shape and size of the fillet section are optimized. This configuration allows substantial improvement in work efficiency when welding ends together, when the T-bars are used as T-longitudinals in shipbuilding.

Description

明 細 書 発明の名称: T形鋼 技術分野  Description Title of invention: T-section steel Technical field
[0001]  [0001]
本発明は、造船、橋梁、建築等の分野で用いられる T形鋼 (T-bar)に関するものである。本発 明の T形鋼は、特に船体構造用(shipbuilding)材料として好適であり、なかでも Tロンジ (longitudinal)材に用いるに好適である。 背景技術  The present invention relates to a T-bar used in the fields of shipbuilding, bridges, construction, and the like. The T-shaped steel of the present invention is particularly suitable as a shipbuilding material, and particularly suitable for use as a T-longitudinal material. Background art
[0002] [0002]
船体構造の補強用形鋼としては、古くは球平形鋼 (bulb plate)が用いられていた力 S、船体の大 型化により断面性能の向上と使用鋼材の重量低減とを目的として、図 9に示す断面形状を有する 不等辺不等厚山形鋼 (NAB : unequal leg and thickness angle)が用いられることが多くなつてきた c しかし、不等辺不等厚山形鋼は、左右非対称の断面形状であるため、船体を補強する場合に断 面性能に方向性を有し、船体外部からの水圧などの力を受けると断面内でねじり力(torsional stress)が発生する。 そのため、構造上要求される性能を満たすために、上記ねじり力に耐え得 る断面性能の形鋼を使用しなければならず、より断面積の大きい寸法のものを使用することによ つて船体重量が増加するというデメリットをもたらす場合がある。 In order to improve the cross-sectional performance and reduce the weight of the steel used by increasing the size of the hull, the force S, which used to be a spherical plate (bulb plate), was used as a reinforcing steel for the hull structure in the past. scalene unequal thickness angle steel having a cross-sectional shape shown in (NAB: unequal leg and thickness angle ) is c, however it has many summer and used, scalene unequal thickness angle steel is the asymmetry of the cross section Therefore, when reinforcing the hull, it has directionality in the cross-sectional performance, and when it receives a force such as water pressure from the outside of the hull, a torsional force (torsional stress) is generated in the cross section. For this reason, in order to satisfy the structural performance requirements, it is necessary to use a section steel with a cross-sectional performance that can withstand the torsional force described above. May result in a demerit that increases.
[0003] [0003]
さらに、近年新造される原油タンカーでは、近年改正された海洋汚染防止条約により、(a)二 重船殻 (ダブルハル)構造 (double hull type) (船底と船側の構造を二重にして座礁や衝突等によ り船体が破れても原油が流出し難いように構成したもの)、(b)ミツドデッキ構造 (mid-deck type) (原油タンクを上下の二層に分けて船側だけを二重構造にするとともに、上下のタンクを分ける中 聞デッキを喫水線より下に配置することにより、下側のタンクの原油の圧力が常に周囲の水圧より も低く保たれるようにし、座礁等により船底に穴が開いても下側のタンクの原油が浸入する海水の 圧力で上に押し上げられてタンク内に閉じ込められるようにしたもの)、のいずれかを採用すること が義務づけられている。 特に二重船殻内は、積荷がない時に海水を注入して船舶の安定航行 を可能とするバラストウォータータンクとして使用される。 このため、船底や船壁に配置されるロン ジ材は、海水に直接的に浸漬されるので、十分な耐食性を備えるようにするための防鲭塗装が施 され、この塗膜の密着性を確保することが要求される。 In addition, crude oil tankers that are newly built in recent years are subject to (a) a double hull type (double hull type) Etc.) (b) Mid-deck type (crude oil tank is divided into two layers, upper and lower, and only the ship side has a double structure. At the same time, by placing an intermediary deck that separates the upper and lower tanks below the water line, the crude oil pressure in the lower tank is always kept lower than the surrounding water pressure. Even if it is opened, it is obliged to adopt one of the following, which is pushed up by the pressure of the seawater into which the crude oil in the lower tank enters and trapped in the tank). In particular, the double hull is used as a ballast water tank that allows stable vessel navigation by injecting seawater when there is no cargo. For this reason, the long materials placed on the bottom of the ship and the ship wall are directly immersed in seawater, so anti-corrosion coating is applied to ensure sufficient corrosion resistance. Therefore, it is required to ensure the adhesion of the coating film.
[0004]  [0004]
近年では、図 10に示すような T形の断面形状 (形鋼幅方向での断面形状)で、ウェブを中心と して線対称な横断面形状を有する Tロンジ材が船体捕強用部材として用いられるようになつてき た。 この Tロンジ材としては、厚板を切断し、溶接組立したものが広く使用されており、このような Tロンジ材(以下、「溶接 Tロンジ材」(welded T_bar)という場合がある)はウェブ (web)とフランジ (flange)との接合部に溶接部を有する。 しかし、この溶接部上に塗装を行った場合、溶接ビード が凹 ώを有する形状であるため、塗膜厚みが不均一となり、溶接まま(as- welded)の表面凹 ώ部 分やエッジ部分が選択的に腐食される原因となり、船体構造部材の腐食劣化という重大な問題 が発生する。 このような不健全 (imperfection)な塗膜の形成を防ぐため、溶接 Τロンジ材につい ては、溶接ビード部表面が滑らかになるようにグラインダー等を用いた補修が行われ、その後に 塗装が行われる。 このような塗装前の溶接ビード部の補修は、形鋼の長手方向の全長にわたつ て補修が必要な部位を検査した上で、人手をかけてグラインダー等で手入れをするため、補修に 時間がかかるとともに、人件費の増加によるコスト上昇を招いていた。  In recent years, a T-longi material with a T-shaped cross-sectional shape (cross-sectional shape in the width direction of the steel shape) as shown in Fig. 10 and a cross-sectional shape that is axisymmetric about the web is used as a hull-capturing member. It has come to be used. As this T longi material, a thick plate cut and welded assembly is widely used, and such a T longi material (hereinafter sometimes referred to as “welded T_bar”) is a web. There is a weld at the joint between the web and flange. However, when this weld is painted, the weld bead has a concave shape, resulting in non-uniform coating thickness and as-weld surface concave portions and edge portions. This will cause selective corrosion and a serious problem of corrosion deterioration of the hull structural members. In order to prevent the formation of such an imperfection coating film, the welded longe material is repaired with a grinder or the like so that the surface of the weld bead becomes smooth, and then painted. Is called. This kind of repair of the weld bead before painting is time-consuming because it requires manual inspection with the grinder etc. after inspecting the part that needs to be repaired over the entire length of the shape steel. And increased costs due to increased labor costs.
[0005] [0005]
一方、このような溶接 Tロンジ材に対して、熱間圧延で得られる形鋼を Tロンジ材に利用するこ とが行われており、この Tロンジ材の場合は、溶接 Tロンジ材のような溶接組立がないため、上述 したような溶接部の塗装による問題は生じない。 特許文献 1には、熱間圧延で H形鋼に成形し た後に、ウェブ部を半裁 (2分割)して製造される T形鋼 (以下、「カット T形鋼」(cut T - bar)という場 合がある)を Tロンジ材として使用することが示されている。 また、特許文献 2、 3には、熱間圧延 により直接得られた T形鋼 (以下、「圧延 T形鋼」 (rolled T - bar)という場合がある)を Tロンジ材とし て使用することが示されている。 先行技術文献  On the other hand, the shape steel obtained by hot rolling is used for such a welded T-longage material, and in the case of this T-longage material, Since there is no proper welding assembly, there is no problem with painting the weld as described above. Patent Document 1 describes a T-shaped steel (hereinafter referred to as “cut T-bar”) that is manufactured by forming a H-shaped steel by hot rolling and then cutting the web part in half (divided into two parts). Is used as T-longi material. In Patent Documents 2 and 3, T-steel obtained directly by hot rolling (hereinafter sometimes referred to as “rolled T-bar”) is used as T-longier material. It is shown. Prior art documents
特許文献  Patent Literature
特許文献 1 :特開 2002— 301501号公報  Patent Document 1: JP 2002-301501 A
特許文献 2:特開平 11― 342401号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-342401
特許文献 3 :特開 2007— 331027号公報 発明の概要  Patent Document 3: Japanese Patent Laid-Open No. 2007-331027 Summary of the Invention
発明が解決しょうとする課題 [0006] Problems to be solved by the invention [0006]
しかし、上述した従来技術のカット T形鋼や圧延 T形鋼による Tロンジ材には、以下のような問 題がある。  However, there are the following problems with T-longages made of the above-mentioned conventional cut T-section steel and rolled T-section steel.
[0007] [0007]
Τロンジ材は、船体の長手方向に沿った長尺部材 (longitudinal)として使用されることが多い。 この場合、長さ 10〜20m程度の Tロンジ材 (T形鋼)を長手方向で複数本溶接接合し、長尺の船 体構造材 (補強材)としてレ、る。 このような Tロンジ材どうしの溶接 ¾合部は、船体構造材と!/、う性 質上、すべてに適正な強度を有することが求められる。 しかしながら、従来技術のカット T形鋼 や圧延 T形鋼を使用した場合、 Tロンジ材どうしの溶接接合部に亀裂が発生'進展し、接合部の 強度低下を招くという問題が発生する可能性がある。 これを防ぐために、従来は溶接施工の作 業能率が大幅に低下するような予備作業が必須とされていた。  ΤLongji is often used as a longitudinal along the length of the hull. In this case, multiple T-longages (T-shaped steel) with a length of about 10 to 20m are welded and joined in the longitudinal direction to obtain a long hull structural material (reinforcing material). The welded part between such T-longages is the hull structural material! / Due to the nature, all must have the proper strength. However, when conventional cut T-section steel or rolled T-section steel is used, there is a possibility that a crack will occur at the welded joint between T-longi materials and that the strength of the joint may be reduced. is there. In order to prevent this, preparatory work that would significantly reduce the work efficiency of welding work has been required.
[0008] [0008]
し力もながら、本発明者らによる検討の結果、圧延 T形鋼における形状を適正化すれば前記 の予備作業の負担が大幅に改善されることが判明した。  However, as a result of investigations by the present inventors, it has been found that if the shape of the rolled T-section steel is optimized, the burden of the preliminary work is greatly improved.
[0009] [0009]
したがって本発明の目的は、このような従来技術の課題を解決し、造船、橋梁、建築等の分野 で構造材等に適用できる τ形鋼であって、特に船体構造用の τロンジ材に適用した場合に、丁ロ ンジ材どうしの溶接接合の施工性に優れた T形鋼を提供することにある。 課題を解決するための手段  Therefore, the object of the present invention is to solve such problems of the prior art and to be applied to structural materials etc. in the fields of shipbuilding, bridges, construction, etc., especially for τ longi materials for hull structures. In such a case, the object is to provide a T-shaped steel with excellent workability for welding joints between the longines. Means for solving the problem
[0010]  [0010]
本発明者らは;従来技術のカット T形鋼や圧延 T形鋼を Tロンジ材に適用した場合に、 Tロンジ 材どうしの溶接接合において生じる問題とその対策について検討を行レ、、以下のような知見を得 た。  The inventors of the present invention have studied the problems that occur in welding joining of T-longi materials and their countermeasures when the conventional cut T-shaped steel and rolled T-shaped steel are applied to T longi materials. The following knowledge was obtained.
[0011]  [0011]
Tロンジ材の端部どうしを溶接接合する場合、突き合わせ部を開先加工した上で溶接が行わ れる。 この際、フランジとウェブの溶接線が交差することによる材質劣化おょぴ溶接欠陥発生を 避ける目的で、フランジと接するウェブ P—部を扇形状に切り抜くスカラップ (scallop)加工が施さ れる。  When the ends of T-longi materials are welded together, welding is performed after the butt portion is grooved. At this time, the scallop process is performed to cut out the web P- part in contact with the flange into a fan shape in order to avoid material deterioration and weld defects due to the intersection of the weld line between the flange and the web.
[0012]  [0012]
図 11に Tロンジ材 (T形鋼)の接合部の開先加工例を示す。 同図において左側は Tロンジ材 W Fig. 11 shows an example of groove processing of the joint of T-longi material (T-section steel). The left side of the figure is T-longi material W
4 Four
の端部の側面図、右側は Tロンジ材の端部の正面図であり、破線で囲まれた部分がスカラップ加 ェ部である。 なお、図示されているようにフランジおよびウェブの突合せ部にはそれぞれ、開先 加工が施されて 、る。 ここで、カット T形鋼や圧延 T形鋼では、ウェブとフランジの結合部に断面 円弧状のフィレット部(fillet) (図 11や後述の図 1において fiで示す円弧部)を有しており、上記ス 力ラップ加工では、フランジ内面が平坦になるようにフィレット部を除去する必要がある。 このフィ レット部を除去した加工面の仕上げが不十分で凹凸がある粗い加工面となった場合に、上述した ような問題、すなわち応力集中やひずみ集中などにより溶接接合部に亀裂が発生.進展し、接合 部の強度が低下する問題を生じる可能性がある。 The right side is a front view of the end of the T-longi material, and the part surrounded by the broken line is the scalloped part. As shown in the figure, each of the flange and web butt portions is grooved. Here, cut T-section steel and rolled T-section steel have a fillet section (arc section indicated by fi in Fig. 11 and Fig. 1 described later) at the joint between the web and flange. In the above-described force lapping process, it is necessary to remove the fillet portion so that the inner surface of the flange becomes flat. When the processed surface with the fillet removed is insufficiently rough and has a rough processed surface, cracks occur in the weld joint due to the problems described above, i.e., stress concentration and strain concentration. As a result, there is a possibility that the strength of the joint is lowered.
[0013] [0013]
Tロンジ材に使用される従来のカット T形鋼や圧延 T形鋼は、以下に述べるような理由から、断 面円弧状で且つその円弧の半径 (一般にフィレット Rと称される)が 13mm程度以上のフィレット部 を有している。  Conventional cut T-section steel and rolled T-section steel used for T-longages have a circular arc shape with a radius of about 13 mm (generally referred to as fillet R) for the reasons described below. It has the above fillet part.
[0014] [0014]
まず、カット T形鋼については、熱間圧延で得られた H形鋼 (圧延 H形鋼)のウェブ部を半裁(2 分割)して製造されるため、圧延 H形鋼相当のフィレット部を有している。 圧延 H形鋼の.フィレット 部のフィレット Rの寸法は日本工業規格 (JIS)に規格化されており、 H形鋼のサイズが大きくなる ほどフィレット Rも大きくなる。 一般に船体構造用の Tロンジ材は、ウェブ高さが 150mm以上であ つて且つウェブ高さがフランジ幅の 2倍以上の寸法であることが多い。 日本工業規格 (JIS)では ウェブ高さ 300mmの圧延 H形鋼のフィレット Rは 13mmであるので、圧延 H形鋼力 得られるゥェ ブ高さ 150mm以上の Tロンジ材用のカット T形鋼は、フィレット Rが 13mm以上である。  First, cut T-section steel is manufactured by cutting the H-section steel (rolled H-section steel) obtained by hot rolling in half (divided into two parts). Have. The size of fillet R in the fillet part of rolled H-section steel is standardized by the Japanese Industrial Standard (JIS). Fillet R increases as the size of H-section steel increases. In general, T-longages for hull structures often have a web height of 150 mm or more and a web height of more than twice the flange width. According to the Japanese Industrial Standard (JIS), the fillet R of a rolled H-section steel with a web height of 300 mm is 13 mm. Therefore, the cut T-section steel for a T-longier material with a web height of 150 mm or more is obtained. The fillet R is 13mm or more.
[0015] [0015]
一方、圧延 T形鋼のブイレット Rの寸法については、圧延 H形鋼のような規格化されたものはな いが、従来の圧延 T形鋼の製造方法では、圧延 H形鋼と同様に相当程度大きいものとならざるを 得ない。 例えば、特許文献 3の圧延 T形鋼を製造する方法では、粗ユニバーサル圧延機 (universal mill)と仕上ユニバーサル圧延機を使用して、 T形鋼の熱間圧延が行われる。 この熱 聞圧延では、 T形鋼のブイレット部となるべき部分は、粗ユニバーサル圧延機の水平ロール (horizontal roll)のロールコーナー部(フランジ側ロールコーナー部)で圧延され、さらに仕上ュニ バーサル圧延機の水平ロールのロールコーナー部(フランジ側ロールコーナー部)で成形されて 断面円弧状に作り込まれる。 これら粗ユニバーサル圧延機おょぴ仕上ユニバーサル圧延機の 水平ロールコーナー R (半径)はほぼ同じ大きさとすることが多レ、が、そのロールコーナー Rは、以 下のような理由からあまり小さくすることができない。 [0016] On the other hand, there is no standardized bullet R dimension of rolled T-section steel like rolled H-section steel, but the conventional manufacturing method of rolled T-section is equivalent to that of rolled H-section steel. It must be large. For example, in the method of producing a rolled T-section steel disclosed in Patent Document 3, hot rolling of the T-section steel is performed using a coarse universal mill and a finishing universal mill. In this hot rolling, the portion of the T-shaped steel to be a buillet is rolled at the roll corner (flange-side roll corner) of the horizontal roll of the coarse universal rolling mill, and then finished universal rolling. Formed at the roll corner (flange-side roll corner) of the horizontal roll of the machine and built into a circular arc shape. The horizontal roll corner R (radius) of these coarse universal rolling mills and finishing universal rolling mills is often the same size, but the roll corner R should be made very small for the following reasons. I can't. [0016]
(a)ロールコーナー Rを小さくすると、ロールコーナー部とフランジ内面との接触条件が厳しくな り、両者の間に焼き付き(scoring)が発生する。 このためフランジ内面に焼き付き疵が発生し、適 正な品質の製品形岡が製造できなくなる。  (a) When roll corner R is reduced, the contact condition between the roll corner and the inner surface of the flange becomes severe, and scoring occurs between the two. For this reason, seizure flaws occur on the inner surface of the flange, making it impossible to produce a product of the proper quality.
(b)ロールコーナー部でのロール摩耗が大きくなり、圧延を続けるにしたがってロールコーナー Rが大きくなる上に、円弧形状が崩れて滑らかな単一半径の円弧が成形できなくなる。 そのため、 ロール交換を頻繁に行う必要が生じ、生産性が低下するとともに、製造コストが増加する。 すな わち、製品を低コストに大量生産することが困難となる。  (b) Roll wear at the roll corner increases, roll corner R increases as rolling continues, and the arc shape collapses, making it impossible to form a smooth single-radius arc. For this reason, it is necessary to frequently perform roll exchange, which reduces productivity and increases manufacturing costs. In other words, it becomes difficult to mass-produce products at low cost.
(c)ロールコーナー Rを小さくするほどロールコーナー部の温度が上昇しやすくなるため、熱に よるロールの材質劣化や損傷が発生する。 ロールコーナー部に亀裂や欠け落ちなどが発生し た場合には、ロールの交換を余儀なくされ、生産性が低下する。  (c) Roll corner The temperature of the roll corner becomes easier to rise as R is smaller, so the roll material deteriorates or is damaged by heat. If cracks or chipping occurs at the roll corner, the roll must be replaced, and productivity is reduced.
[0017]  [0017]
以上のような問題は、圧延回数が多く且つ圧下率が高い粗ユニバーサル圧延機において特 に顕著である。 このため水平ロールのロールコーナー Rは、上記(a)〜(c)の問題を生じさせな いような十分に大きい寸法に構成され、その結果、製造される圧延 T形鋼のフィレット Rの寸法も 相当する大きさになる。  The problems as described above are particularly remarkable in a rough universal rolling mill having a large number of rolling operations and a high rolling reduction. For this reason, the roll corner R of the horizontal roll is configured to have a sufficiently large dimension so as not to cause the above problems (a) to (c), and as a result, the dimension of the fillet R of the rolled T-shaped steel to be manufactured. Is also the corresponding size.
[0018] [0018]
また、特許文献 2の圧延 T形鋼を製造する方法では、上下ロールを備えた孔型圧延機 (two-roll type mill)を使用して、 T形鋼の熱間圧延が行われる。この熱間圧延では、 T形鋼のフィ レット部となるべき部分は、孔型を構成する上下ロールの特定部位で圧延されるが、この特定の口 ール部位の円弧半径を小さくすると、フランジ内面が垂直に近い角度となる上ロールにおいて、 そのロール部位の円弧先端とフランジ内面に焼き付きが生じる。 このためフランジ内面に焼き付 き疵が発生し、適正な品質の製品形鋼が製造できない。 このためフィレット部を圧延すべきロー ル部位の円弧半径は、上記の問題を生じさせないような十分に大きい寸法に構成され、その結 果、製造される圧延 T形鋼のブイレット Rの寸法も相当する大きさになる。 なお、特許文献 2の形 鋼は T形断面ではあるが、フランジの厚みが先端ほど薄いテーパが付与された断面形状であり、 特許文献 2に記載の形鋼の製造方法では、フランジ厚が全幅で均一な T形鋼を製造することは できない。  Further, in the method for producing a rolled T-section steel of Patent Document 2, hot rolling of the T-section steel is performed using a two-roll type mill equipped with upper and lower rolls. In this hot rolling, the portion that should become the fillet part of the T-shaped steel is rolled at a specific part of the upper and lower rolls constituting the hole mold. In the upper roll where the inner surface has an angle close to vertical, seizure occurs between the arc tip of the roll part and the inner surface of the flange. For this reason, seizure flaws occur on the inner surface of the flange, making it impossible to produce a product shape steel of appropriate quality. For this reason, the arc radius of the roll part where the fillet part is to be rolled is configured to have a sufficiently large dimension so as not to cause the above-mentioned problems. It becomes the size to do. The shape steel of Patent Document 2 has a T-shaped cross section, but the cross-sectional shape has a taper that is thinner at the tip of the flange. It is not possible to produce uniform T-shaped steel.
[0019] [0019]
さて、上述したスカラップ加工では、フィレット R (図 11においてフィレット Rを rlで示す)が大き いほどフィレット部の体積と幅が大きくなり、スカラップ加工で除去すべき体積と平坦に仕上げる べき部分の幅が増大することになる。 すなわち、従来のカット T形鋼や圧延 T形鋼のような大きな フィレット Rを有するものでは、スカラップ加工の仕上げ面積が大きいため仕上げ精度が十分でな い部分が生じやすく、これが上述したような溶接作業能率の低下という問題を生じさせる原因とな ることが判った。 In the scalloping process described above, the larger the fillet R (fillet R is indicated by rl in FIG. 11), the larger the volume and width of the fillet part. The width of the power part will increase. In other words, with a large fillet R such as a conventional cut T-shaped steel or rolled T-shaped steel, the scalloped finishing area is large, and it is easy to produce a portion where the finishing accuracy is not sufficient. It has been found that this causes the problem of reduced work efficiency.
[0020] [0020]
具体的には、スカラップ加工でのウェブおよぴフィレット部の除去を例えばガス切断で行った場 合、一般にガス切断面の仕上げは手作業によるグラインダー仕上げで行う。 従って、仕上げ面 積が大きいほど仕上げ精度にバラツキも出易ぐガスノッチを十分に除去するための作業時間が 長くかかり、溶接作業の能率が大きく低下する。 また、研削機械による加工の場合は、仕上げ加 ェの面積が大きいために研削チップの損耗が多くなり、交換頻度が増すことで加工能率が低下 する。 しかし、仮に仕上げ精度が不十分な部分があると、溶接接合後に応力集中や歪み集中 により亀裂が発生'進展して溶接接合部の強度低下を招いてしまうため、溶接作業の能率が悪化 しても加工面を高精度に仕上げなければならない。  Specifically, when the web and fillet are removed by scalloping, for example, by gas cutting, the gas cut surface is generally finished by manual grinder finishing. Therefore, the larger the finished area, the longer it takes to remove the gas notch, which tends to have variations in finishing accuracy, and the efficiency of the welding work is greatly reduced. Also, in the case of machining with a grinding machine, since the area of the finishing process is large, the wear of the grinding tip increases, and the machining efficiency decreases as the replacement frequency increases. However, if there is a part with insufficient finishing accuracy, cracks will occur due to stress concentration or strain concentration after welding joining and the strength of the welded joint will be reduced, resulting in poor welding work efficiency. However, the machined surface must be finished with high accuracy.
[0021] [0021]
以上のような知見に基づき、 Tロンジ材として使用される T形鋼のフィレット部の最適な形状-大 きさについて検討した結果、断面円弧状のフィレット部のフィレット Rを 10mm以下、好ましくは 8m m以下とすることにより、スカラップ加工の仕上げ不良による溶接接合部の強度低下を招くことなぐ スカラップ加工の作業能率が大幅に向上するという結論を得た。 さらに、 Tロンジ材は船殻に沿 うように曲げ加工を施すことも必要となる力 フィレット Rが小さいとフィレット部の断面が小さくなる ことで曲げ加工性が向上し、このため Tロンジ材を曲げ加工する際の作業効率も高められることが 判った。  Based on the above findings, the optimum shape-size of the T-section steel fillet used as T-longi material was examined. As a result, the fillet R of the fillet with an arc-shaped cross section was 10 mm or less, preferably 8 m. It was concluded that by setting it to m or less, the work efficiency of scallop processing is greatly improved without causing a decrease in the strength of the welded joint due to poor finish of scallop processing. In addition, the force required to bend the T longi material along the hull. When the fillet R is small, the cross-section of the fillet becomes smaller, which improves the bending workability. It was found that the work efficiency during bending can be improved.
[0022] [0022]
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。  The present invention has been made on the basis of such findings and has the following gist.
(1)ウェブ高さが 150mm以上であって溶接部を有しない T形鋼であって、ウェブとフランジと の結合部に形成されるブイレット部の、形鋼幅方向での断面形状が、ウェブとフランジとに接する 円弧状であり、且つその円弧の半径 r 1が 2〜: LOmmであることを特徴とする T形鋼。  (1) T-shaped steel with a web height of 150 mm or more and no welded portion, and the cross-sectional shape in the cross-section direction of the billet formed at the joint between the web and the flange is T-section steel, characterized in that it is arcuate in contact with the flange and the radius r1 of the arc is 2 to: LOmm.
(2)上記(1)の T形鋼において、前記ウェブの高さが前記フランジの幅の 2倍以上であることを 特徴とする T形鋼。  (2) The T-section steel according to (1), wherein the height of the web is at least twice the width of the flange.
(3)上記(1)または (2)の T形鋼において、熱間圧延により T形鋼に加工されて成ることを特徴 とする T形鋼。  (3) The T-section steel according to (1) or (2) above, which is processed into a T-section steel by hot rolling.
とくに、素材鋼片にユニバーサル圧延機を用いた熱間圧延を施して T形鋼に加工することが好 ましい。 In particular, it is preferable to heat the raw steel slab using a universal rolling mill and process it into a T-shaped steel. Good.
(4)上上記(1)〜(3)上のレ、ずれかの T形鋼にお!/ヽて、ウェブ両面側のフィレット部の円弧の半 径力 それぞれ形鋼全長にわたって一定であることを特徴とする T形鋼。 (4) Above the above (1) to ( 3 ) above, either of the T-shape steels! / ず れ, the half-diameter force of the arc of the fillet on both sides of the web must be constant over the entire length of the shape steel. T-shaped steel characterized by
(5)上記(1)〜(4)のいずれかの T形鋼において、フランジ先端のコーナー部の形鋼幅方向で の断面形状が円弧状であり、且つその円弧の半径力 mm以上であることを特徴とする T形鋼。  (5) In the T-section steel of any of the above (1) to (4), the cross-sectional shape in the shape steel width direction of the corner portion at the flange tip is an arc shape, and the radial force of the arc is not less than mm. T-shaped steel characterized by
(6)上記ひ)〜 (5)のいずれかの T形鋼であって、船体構造用 T形鋼であることを特徴とする T形  (6) T-shaped steel as defined in any one of the above (ii) to (5), which is a T-shaped steel for ship structure
発明の効果 The invention's effect
[0023] [0023]
本発明の T形鋼は、ゥヱブとフランジとの結合部に形成されるフィレット部の形状と大きさを最 適化し、従来の T形鋼に較べてフィレット Rを小さくしたものである。 本発明により、 Tロンジ材とし て端部どうしを溶接接合する場合に行われるスカラップ加工の仕上げ不良による溶接接合部の 強度低下を招くことなく、スカラップ加工の作業能率が大幅に向上するとともに、 Tロンジ材を船殻 に沿うように曲げ加工する際の曲げ加工性も向上するとレ、う効果がある。 このため船体構造用 T 形鋼として、とりわけ Tロンジ材として特に好適である。 図面の簡単な説明  The T-shaped steel of the present invention has an optimized shape and size of the fillet formed at the joint between the tube and the flange, and has a smaller fillet R than the conventional T-shaped steel. According to the present invention, the work efficiency of scalloping is greatly improved without causing a decrease in the strength of the welded joint due to poor finish of the scalloping performed when the ends are welded together as a T longi material. When the longi material is bent along the hull, the bending workability is also improved. For this reason, it is particularly suitable as a T-section steel for hull structures, especially as a T-longi material. Brief Description of Drawings
[0024] [0024]
[図 1]図 1は、本発明の T形鋼の断面形状の一例を示す説明図である。  FIG. 1 is an explanatory view showing an example of a cross-sectional shape of a T-section steel of the present invention.
[図2〕図 2は、表 2に示す本発明の T形鋼の板付断面係数(modulus of section with welded plate)と製品単重との関係を、従来の不等辺不等厚山形鋼と比較して示すグラフである。 [Fig. 2 ] Fig. 2 compares the relationship between the modulus of section with welded plate and the unit weight of the T-shaped steel of the present invention shown in Table 2 with the conventional unequal non-uniform thickness steel. It is a graph shown.
[図 3]図 3は、本発明の T形鋼を製造するための圧延設備の一例を示す説明図である。  FIG. 3 is an explanatory view showing an example of rolling equipment for producing the T-section steel of the present invention.
[図 4]図 4は、図 3の圧延設備における第 1の粗ユニバーサル圧延機のロール構成を模式的 に示す正面図である。  FIG. 4 is a front view schematically showing the roll configuration of the first rough universal rolling mill in the rolling equipment of FIG. 3.
[図 5]図 5は、図 3の圧延設備におけるエッジャ圧延機(edger mill)のロール構成を模式的に 示す正面図である。 - FIG. 5 is a front view schematically showing a roll configuration of an edger rolling mill (edger mill) in the rolling equipment of FIG. 3. -
[図 6]図 6は、図 3の圧延設備における第 2の粗ユニバーサル圧延機のロール構成を模式的 に示す正面図である。 FIG. 6 is a front view schematically showing a roll configuration of a second coarse universal rolling mill in the rolling equipment of FIG. 3.
[図 7]図 7は、図 3の圧延設備における仕上ユニバーサル圧延機のロール構成を模式的に示 す正面図である。 W FIG. 7 is a front view schematically showing a roll configuration of a finishing universal rolling mill in the rolling equipment of FIG. 3. W
8 8
[図 8A]図 8Aは、図 4に示す粗ユニバーサル圧延機の水平ロールコーナー部近傍に潤滑油 供給装置 Xを設置した状態を示す、水平ロールの側面図である。  [FIG. 8A] FIG. 8A is a side view of the horizontal roll showing a state in which the lubricating oil supply device X is installed in the vicinity of the horizontal roll corner of the rough universal rolling mill shown in FIG.
[図 8B]図 8Bは、図 4に示す粗ユニバーサル圧延機の水平ロールコーナー部近傍に潤滑油 供給装置 Xを設置した状態を示す、正面図である。  FIG. 8B is a front view showing a state in which the lubricating oil supply device X is installed in the vicinity of the horizontal roll corner of the rough universal rolling mill shown in FIG.
[図 9]図 9は、不等辺不等厚山形鋼の断面形状の一例を示す説明図である。  FIG. 9 is an explanatory view showing an example of a cross-sectional shape of an unequal side unequal thick angle steel.
[図 10]図 10は、 T形鋼の大まかな断面形状の一例を示す説明図である。  FIG. 10 is an explanatory diagram showing an example of a rough cross-sectional shape of a T-section steel.
[図 11]図 11は、 Tロンジ材の端部どうしを溶接接合する際の開先加工の一例を、 Tロンジ材 端部の側面図(左側)および正面図 (右側)にて示した図である。 発明を実施するための形態 .  [Fig. 11] Fig. 11 is a side view (left side) and front view (right side) of the end of the T-longi material, showing an example of groove processing when the ends of the T-long material are welded together. It is. BEST MODE FOR CARRYING OUT THE INVENTION
[0025] [0025]
図 1は、本発明の T形鋼の形鋼幅方向断面形状の一例を示すものであり、 fがフランジ、 wがゥ エブ、 fiがウェブ wとフランジ fとの結合部、すなわちウェブ wとフランジ fとで構成されるコーナー部 に形成されるブイレット部である。 また、寸法として示す Aがウェブ髙さ、 Bがフランジ幅、 tlがゥェ ブ厚、 t2がフランジ厚である。 さらに、 rlがフィレット部 fiの円弧半径 (形鋼幅方向断面の円弧半 径)、 r2がフランジ先端内面側のコーナー部の円弧半径 (形鋼幅方向断面の円弧半径)、 r3がフ ランジ先端外面側のコーナー部の円弧半径 (形鋼幅方向断面の円弧半径)である。 Fig. 1 shows an example of the cross-sectional shape of the T-shaped steel of the present invention in the cross-section direction, where f is a flange, w is a web, fi is a joint between a web w and a flange f, that is, a web w This is a buillet formed at the corner composed of the flange f. In addition, A is the web length, B is the flange width, tl is the web thickness, and t2 is the flange thickness. Furthermore, rl is the arc radius of the fillet part fi (arc radius of the cross section in the section width direction), r2 is the arc radius of the corner on the inner surface side of the flange tip (arc radius of the section in the section width direction), and r3 is the flange. This is the arc radius of the corner portion on the outer surface side of the tip (the arc radius of the cross section in the width direction of the section).
[0026] [0026]
本発明の T形鋼は、ウェブ高さ Aが 150mm以上の溶接部を有しない T形鋼であって、ブイレツ ト部 fiの形鋼幅方向での断面形状がウェブ wとフランジ fに接する円弧状であり、且つその円弧半 径 rl (以下、「ブイレット R」という場合がある)を 2〜10mmとする。  The T-section steel of the present invention is a T-section steel that does not have a weld with a web height A of 150 mm or more, and the cross-sectional shape of the violet portion fi in the section width direction is a circle that contacts the web w and the flange f. It is arc-shaped and its arc radius rl (hereinafter sometimes referred to as “Builet R”) is 2 to 10 mm.
[0027] [0027]
溶接部を有しないということは、厚板を溶接組み立てして得られる、いわゆる溶接 T形鋼ではな いが、熱間圧延で得られた H形鋼のウェブを半裁(2分割)して得られる、いわゆるカット T形鋼で あってもよい。 但し、生産性やウェブを半裁する工程を追加することによるコストの増加という観 点からは、熱間圧延により T形鋼に加工されて得られる、いわゆる圧延 T形鋼であることが好まし い。 また、溶接施工性の観点から、フランジ厚がブイレット部やフランジ先端付近を除く全幅で均 —な T形鋼であることが好ましレ、。  The fact that it does not have a welded part is not a so-called welded T-section steel obtained by welding and assembling thick plates, but it is obtained by cutting the H-section steel web obtained by hot rolling in half (two divisions). It may be a so-called cut T-section steel. However, from the viewpoint of productivity and cost increase by adding a half-cutting process to the web, it is preferable to use a so-called rolled T-shaped steel obtained by processing into a T-shaped steel by hot rolling. . In addition, from the viewpoint of weldability, it is preferable that the flange thickness is a T-shaped steel that is uniform over the entire width excluding the vicinity of the bullet portion and the flange tip.
[0028] [0028]
本発明の効果はフィレット Rの規定により得られるので、 T形鋼のウェブ高さ Aとフランジ幅 Bは 任意である。 ただし、船体構造用部材として用いる場合は、ウェブ高さ Aカ ランジ幅 Bの 2倍以 上であることが好ましい。 ウェブ高さ Aとフランジ幅 Bの組合せは、例えば、 250mm X 100mm, 300mm X 100mm, 300mm X 125mm, 350mmX 125mm、 400mm X 125mm 500mm X 150mm, 600mm X 150mm, 700mm X 150mm, 800mm X 150mmなど、任意の組合せ で罕択できる。 ウェブ厚 tlとフランジ厚 t2の組合せも任意である。 例えば、カット T形鋼の板厚 (規格化されている H形鋼のゥヱプ厚とフランジ厚)に準じて選択することができる力 船体構造用 部材として用いる場合は、フランジ厚 t2はウェブ厚 tlよりも大きいことが好ましい。 なお、一般に はウェブ髙さ Aはフランジ幅 Bの 10倍以下である。 Since the effect of the present invention is obtained by the definition of the fillet R, the web height A and the flange width B of the T-section steel are arbitrary. However, when it is used as a hull structural member, it is at least twice the web height A It is preferable that it is above. The combination of web height A and flange width B is arbitrary, for example, 250mm x 100mm, 300mm x 100mm, 300mm x 125mm, 350mm x 125mm, 400mm x 125mm 500mm x 150mm, 600mm x 150mm, 700mm x 150mm, 800mm x 150mm It can be selected by the combination of. The combination of web thickness tl and flange thickness t2 is also arbitrary. For example, the force that can be selected according to the thickness of cut T-section steel (standardized thickness of H-section steel and flange thickness) When used as a hull structural member, the flange thickness t2 is the web thickness tl Is preferably larger. In general, the web length A is less than 10 times the flange width B.
[0029] [0029]
本発明の T形鋼では、フィレット部 fiのフィレット R (円弧半径 rl)は、ウェブ髙さ Aやフランジ幅 Bにかかわらず 2〜10ππη、好ましくは 2〜 8mmとする。 さきに述べたように、 Tロンジ材の端部 どうしを溶接接合する場合、突き合わせ部を開先加工した上で溶接が行われる力 フランジとゥヱ プの溶接線が交差することによる材質劣化おょぴ溶接欠陥発生を避ける目的で、フランジと接す るウェブおよびフィレット部の一部を扇形状に切り抜くスカラップ力卩ェが施される(図 11参照)。 フ ィレット Rが 10mmを超えると、フィレット部の体積と幅が大きくなるため、このスカラップ加工にお いて、溶接接合部の強度低下を招くような仕上げ不良を生じさせないようにするために、仕上げ 工程を含めたスカラップ加工の作業効率が低下してしまい、また、 Tロンジ材を船殻に沿うように 曲げ加工する際の曲げ加ェ性も低下する。  In the T-shaped steel of the present invention, the fillet R (arc radius rl) of the fillet part fi is 2 to 10ππη, preferably 2 to 8 mm, regardless of the web length A or the flange width B. As mentioned earlier, when welding the ends of T-longi materials, the welding is performed after the butt portion is grooved. In order to avoid welding defects, a scalloping force is applied to cut out part of the web and fillet part in contact with the flange into a fan shape (see Fig. 11). If the fillet R exceeds 10 mm, the volume and width of the fillet portion will increase, so in this scalloping process, a finishing process will be performed so as not to cause a defective finish that leads to a decrease in the strength of the welded joint. The work efficiency of the scalloping process including, and the bending processability when bending the T-longi material along the hull are also reduced.
[0030] [0030]
表 1に、ブイレット Rが 13mn!〜 2mmの T形鋼のフィレット部断面積とフィレット幅を示す。 ここ で、フィレット断面積は、図 11右の正面図あるいは図 1における、片側のフィレット部 fi (ウェブ部と フランジ部を除いたもの)の断面積を指し、フィレット Rがゼロでウェブとフランジが直角に形成され ている場合、フィレット部断面積はゼロとする。 また、フィレット幅は、同図において片側のブイレ ット部 fiの始まりから、ウェブを挟んで反対側のフィレット部 fiの終わりまでの長さをさす。  Table 1 shows that Bullet R is 13mn! Shows the fillet cross-sectional area and fillet width of a T-steel of ~ 2mm. Here, the fillet cross-sectional area refers to the cross-sectional area of the fillet part fi (excluding the web part and the flange part) on the right side of FIG. 11 or in FIG. 1, and the fillet R is zero and the web and flange are If it is formed at right angles, the fillet cross-sectional area is zero. In addition, the fillet width refers to the length from the beginning of one side bullet portion fi to the end of the opposite fillet portion fi across the web.
[0031] [0031]
表 1によれば、ブイレット Rが 13mmの場合(従来のカット T形鋼の最小のフィレット R)に比べ、 フィレット Rを 10mmまで小さくすると、ブイレット部断面積は 41%減少し、フィレット幅は 17%減少 することが判る。 スカラップカ卩ェにおいて除去すべきブイレット部の断面積と幅がこの程度小さく なると、仕上げ工程を含めたスカラップ加工における作業の効率化に大きな効果がある。 また、 フィレット Rを 8mmまで小さくすると、フィレット Rが 13mmの場合に比べ、フィレット部断面積は 6 2%、フィレット幅は 28%減少し、さらにブイレット Rを 5mmまで小さくすると、同じくフィレット部断 面積は 85%、フィレット幅は 44%減少し、より一層大きな効果が得られる。 According to Table 1, when the fillet R is reduced to 10 mm, the cross-sectional area of the burette is reduced by 41% and the fillet width is 17 It turns out that it decreases by%. If the cross-sectional area and width of the billet portion to be removed in the scalloped cabinet are reduced to such a degree, the work efficiency in the scallop processing including the finishing process is greatly improved. Also, when the fillet R is reduced to 8mm, the fillet cross-sectional area is 6mm compared to the fillet R of 13mm. By reducing the fillet width by 2% and by 28%, and further reducing the bouillette radius to 5mm, the fillet area is also reduced by 85% and the fillet width by 44%.
[0032] [0032]
[表 1]  [table 1]
Figure imgf000012_0001
Figure imgf000012_0001
ウェブ厚 1 0mmの場合  For web thickness 10 mm
[0033] [0033]
一方、本発明の T形鋼は、後述するように従来技術とは異なる手法を取り入れた製造方法で 製造されることにより、フィレット Rを 10mm以下とすることが可能となる力 そのような製造方法に よっても、フィレット Rを 2mm未満とすることは困難である。  On the other hand, the T-shaped steel of the present invention is manufactured by a manufacturing method that adopts a method different from the conventional technology as will be described later, so that the fillet R can be reduced to 10 mm or less. Therefore, it is difficult to make the fillet R less than 2 mm.
[0034] [0034]
通常、本発明の T形鋼を熱間圧延で製造するには、粗および仕上ユニバーサル圧延機を使 用し、これらユニバーサル圧延機による圧延の際に、フィレット部は水平ロールの ·ロールコーナー 部で圧延、成形される。 したがって、このロールコーナー部のロールコーナー Rを小さくすれば、 フィレット Rを小さくできることになる力 さきに特許文献 3に関して述べたように、単純にロールコ ーナー Rを小さくしただけでは、(a)ロールコーナー部とフランジ内面との接触条件が厳しくなり、 両者の間に焼き付きが発生することにより、フランジ内面に焼き付き疵が発生し、適正な品質の製 品形鋼が製造できない、 (b)ロールコーナー部でのロール摩耗が大きくなり、圧延を続けるにした がってロールコーナー Rが大きくなる上に、円弧形状が崩れて滑らかな単一半径の円弧が成形 できなくなる、などの問題を生じるので、従来技術ではロールコーナー Rを小さくできず、結果とし て、フィレット Rも本発明のような小さい寸法にすることができな力つた。  Usually, to manufacture the T-shaped steel of the present invention by hot rolling, rough and finish universal rolling mills are used, and when rolling with these universal rolling mills, the fillet portion is the roll corner portion of a horizontal roll. Rolled and molded. Therefore, if the roll corner R of the roll corner portion is reduced, the force that can reduce the fillet R. As described above with respect to Patent Document 3, simply by reducing the roll corner R, (a) the roll corner The contact condition between the flange and the inner surface of the flange becomes severe, and seizure occurs between the two, resulting in seizure flaws on the inner surface of the flange, making it impossible to produce a product shape steel of appropriate quality. (B) Roll corner As the roll wear increases, the roll corner R increases as rolling continues, and the arc shape collapses, making it impossible to form a smooth single-radius arc. With the technology, the roll corner R cannot be reduced, and as a result, the fillet R cannot be made as small as the present invention.
[0035]  [0035]
これに対して本発明者らは、粗おょぴ仕上ユニバーサル圧延機の圧延時に特定のロール部 位に圧延潤滑油(lubricant)を噴射することなど (この製造方法については後に詳述する)により、 水平ロールのロールコーナー Rを小さくすることでフィレット Rの寸法を十分に小さくしても、上記 問題を生じることなく圧延できることを見出した。 しカゝしながら、このような製造方法を採用したと しても、水平ロールのロールコーナー カ^ !!!未満では、フランジ内面の焼き付き疵の発生を防 止することができず、またロールの摩耗や損傷が大きぐ実質的に熱間圧延で T形鋼を量産する ことができなくなる。このため本発明の T形鋼では、フィレット Rの下限は 2mmとする。 On the other hand, the present inventors have specified a specific roll part during rolling of the rough rolling universal rolling mill. Even if the size of the fillet R is made sufficiently small by reducing the roll corner R of the horizontal roll by injecting rolling lubricant (lubricant) into the position (this manufacturing method will be described in detail later) It has been found that rolling can be performed without causing problems. However, even if this manufacturing method is adopted, if the roll corner of the horizontal roll is less than !!!, it is impossible to prevent the occurrence of seizure flaws on the inner surface of the flange. As a result, it is difficult to mass-produce T-shaped steel by hot rolling. For this reason, in the T-shaped steel of the present invention, the lower limit of fillet R is 2 mm.
[0036] [0036]
以上の理由から、本発明の T形鋼は、ブイレット Rの大きさを 2〜 10mmとする。 [0037]  For the above reasons, the size of the buillet R is 2 to 10 mm in the T-shaped steel of the present invention. [0037]
ブイレット部は形鋼幅方向での断面形状(図 11右側の断面形状)において、ウェブとフランジと に接する円弧状とする。 ここで円弧状とは厳密に正確な円弧状である必要は無いが、溶接 T形 鋼や、コーナーの荒れた水平ロールにより得られる圧延 τ形鋼 'カット T形鋼に見られるように著し く円弧力 逸脱した場合は除くものとする。 好ましくは、半径 rlの円弧からの逸脱が rlの ±20% の範囲内に収まるものを、半径 rlの円弧状と定義するものとする。  The billet part has an arc shape in contact with the web and flange in the cross-sectional shape in the cross-section direction (the cross-sectional shape on the right side of Fig. 11). Here, the arc shape does not need to be a strictly accurate arc shape, but it is remarkable as seen in welded T-shaped steel and rolled τ-shaped steel 'cut T-shaped steel obtained by horizontal rolls with rough corners. When the arc force deviates, it shall be excluded. Preferably, an arc that has a radius of rl is defined as a deviation from the arc of radius rl that falls within ± 20% of rl.
[0038] [0038]
本発明の T形鋼は、図 1における左右のフィレット部 fi (ウェブ両面側のフィレット部)のフィレット Rが、それぞれ形鋼全長にわたって一定であることが好ましい。 熱間圧延により本発明の T形鋼 を製造すると、左右のフィレット部 fiはユニバーサル圧延機の水平ロールのロールコーナー部で 圧延、成形されるため、全長にわたって同じ半径のフィレット部 fiを得ることができる。 すなわち、 溶接 T形鋼のような接合部が長手方向に不均一な形状でない、均一なフィレット部 fiが得られ、部 材の品質管理が容易になるという利点がある。 ここでフィレット Rの変動が ± 20%の範囲内であ れば、形鋼全長に渡って一定と看做すことができる。  In the T-section steel of the present invention, it is preferable that the fillet R of the left and right fillet portions fi (fillet portions on both sides of the web) in FIG. 1 is constant over the entire length of the shape steel. When the T-shaped steel of the present invention is manufactured by hot rolling, the left and right fillet portions fi are rolled and formed at the roll corner portion of the horizontal roll of the universal rolling mill, so that it is possible to obtain a fillet portion fi having the same radius over the entire length. it can. That is, there is an advantage that a uniform fillet portion fi is obtained in which the joint portion such as a welded T-shaped steel is not uneven in the longitudinal direction, and the quality control of the member becomes easy. Here, if the fluctuation of fillet R is within a range of ± 20%, it can be regarded as constant over the entire length of the shape steel.
[0039] [0039]
また、本発明の T形鋼は、塗装の健全性 (perfection)を確保するために、フランジ先端のコー ナ一部(フランジ先端内面側のコーナー部とフランジ先端外面側のコーナー部の計 4箇所のコー ナ一部)の形鋼幅方向での断面形状が円弧状であり、且つその円弧半径 r2, r3 (図 1参照)が 2 mm以上であることが好ましい。 r2、 r3の上限はとくに定める必要はなぐ例えばフランジ厚 t2の 半分に達しても問題はない。 この円弧も、多少の変形は許容されるものとする。 [0040] In addition, the T-shaped steel of the present invention has four corners on the flange tip (a total of four corners on the flange tip inner surface side and flange tip outer surface side corner) to ensure the perfection of the coating. It is preferable that the cross-sectional shape in the cross-section direction of the shape of the corner of the corner is an arc shape and the arc radii r2, r3 (see FIG. 1) are 2 mm or more. The upper limit of r2 and r3 does not need to be set in particular, and there is no problem even if it reaches half of the flange thickness t2. This arc is also allowed to be slightly deformed. [0040]
次に、本発明の T形鋼 (圧延 Τ形鋼)を得るのに好適な製造方法にっレ、て説明する。  Next, a production method suitable for obtaining the T-shaped steel (rolled vertical steel) of the present invention will be described.
[0041] [0041]
この製造方法では、粗ユニバーサル圧延機おょぴ仕上ユニバーサル圧延機などを用いて、熱 間圧延により Τ形鋼を製造する。 具体的には、例えば、粗造形圧延機 (brake down mill)などで 得られた T形鋼片を、第 1の粗ユニバーサル圧延機、エッジャ圧延機、第 2の粗ユニバーサル圧 延機、仕上ユニバーサル圧延機で順次圧延することにより、 Τ形鋼を製造する。 このような粗ュ 二バーサル圧延機および仕上ユニバーサル圧延機を用いた製造方法では、ユニバーサル圧延 機の水平ロールのロールコーナー部でフィレット部 fiが圧延、成形される。  In this manufacturing method, a steel bar is manufactured by hot rolling using a rough universal rolling mill or a finishing universal rolling mill. Specifically, for example, T-shaped steel pieces obtained by a rough down mill (brake down mill), etc. are used as the first coarse universal mill, edger mill, second coarse universal mill, and finish universal. A steel bar is manufactured by rolling sequentially with a rolling mill. In such a manufacturing method using a rough universal rolling mill and a finishing universal rolling mill, the fillet portion fi is rolled and formed at the roll corner portion of the horizontal roll of the universal rolling mill.
[0042] [0042]
そこで、粗および仕上ユニバーサル圧延機の水平ロールのロールコーナー R (半径)を、製造 しょうとする本発明の T形鋼のフィレット R(2〜 10mm)を成形できる寸法とした上で、粗および仕 上ユニバーサル圧延機での圧延中に水平ロールのロールコーナー部に、潤滑油供給装置から 圧延潤滑油(熱間圧延用潤滑油)を噴射し、水平ロールコーナー部を潤滑する。 このときフラン ジ内面にも圧延潤滑油を噴射すれば、焼き付き防止効果がさらに向上し、ロールコーナー部とフ ランジ内面の焼き付きをより一層効果的に防止することができる。  Therefore, the roll corner R (radius) of the horizontal roll of the roughing and finishing universal rolling mill is set to a dimension capable of forming the fillet R (2 to 10 mm) of the T-shaped steel of the present invention to be manufactured. During rolling on the upper universal rolling mill, rolling lubricant (lubricating oil for hot rolling) is sprayed from the lubricant supply device onto the roll corner of the horizontal roll to lubricate the horizontal roll corner. At this time, if the rolling lubricating oil is sprayed onto the flange inner surface, the seizure prevention effect is further improved, and seizure of the roll corner portion and the flange inner surface can be more effectively prevented.
[0043] [0043]
また、ロールコーナー部の温度がロールコーナー Rを小さくするほど上昇しやすくなり、ロール の損傷が発生しやすくなる問題への対策として、少なくとも粗ユニバーサル圧延機の圧延出側に 水平ロールコーナー部専用の冷却水噴射ノズルを配置し、この冷却水噴射ノズルから水平ロー ルコーナー部に冷却水を噴射してロールコーナー部の冷却を強化することにより、過度のロール の温度上昇を防止し、ロールの損傷を防止することができる。  In addition, as a countermeasure to the problem that the roll corner portion temperature tends to rise as roll corner R becomes smaller and the roll is more likely to be damaged, at least on the rolling exit side of the rough universal rolling mill, Cooling water injection nozzles are arranged, and cooling water is sprayed from the cooling water injection nozzles to the horizontal roll corners to enhance cooling of the roll corners, thereby preventing excessive roll temperature rise and roll damage. Can be prevented.
[0044] [0044]
以上のような製造方法により、フィレット Rが小さい本発明の T形鋼を製造することができる。 なお、本発明の T形鋼の製造方法は、上述した製造方法に限定されないことは言うまでもない。 以上述ぺたように本発明の T形鋼は、船体構造用として、なかでも Tロンジ材として最適なもの であるが、橋梁、建築等の分野において構造材等として使用することもできる。 実施例 1  The T-section steel of the present invention having a small fillet R can be produced by the production method as described above. Needless to say, the method for manufacturing the T-shaped steel of the present invention is not limited to the above-described manufacturing method. As described above, the T-shaped steel of the present invention is most suitable as a T-longage material for hull structures, but it can also be used as a structural material in the fields of bridges and construction. Example 1
[0045] 本発明の T形鋼 (船体構造用 Τ形鋼)の断面寸法の一例を表 2、表 3に示す。 基準となる外形 寸法(図 1参照)は、ウェブ高さ Αは 300mm、フランジ幅 Bは 125mmである。また、ウェブ厚 tlは 9〜12讓、フランジ厚 t2は 16〜25mmである。 [0045] Tables 2 and 3 show examples of cross-sectional dimensions of the T-shaped steel of the present invention (hull shaped steel for hull structures). The standard external dimensions (see Fig. 1) are the web height 高 is 300 mm and the flange width B is 125 mm. The web thickness tl is 9-12 mm, and the flange thickness t2 is 16-25 mm.
[0046]  [0046]
表 2に示されるのは、ウェブ高さ Aからフランジ厚 t2を差し引いた長さ(ウェブ先端力 フランジ 内面までの長さ)と、フランジ幅 Bからウェブ厚 tlを差し引いた長さが一定である内法(inside dimension)—定の製品であり、ウェブ厚 tlとフランジ厚 t2の変化に伴ってウェブ髙さ Aとフランジ 幅 Bに数ミリの違いがある。 このような内法一定の製品シリーズは、後述する図 6に示す第 2の粗 ユニバーサル圧延機 4にお 、て、ウェブ先端側の竪ロール (vertical roll) 42bと水平ローノレ 41a, 41bとの間隔を一定にして圧延することにより製造することができる。 また、表 3に示されるのは、 ウェブ高さ Aとフランジ幅 Bが一定である外法(outside dimension)—定の製品であり、ウェブ厚 tl とフランジ厚 t2が変化してもウェブ高さ Aとフランジ幅 Bは一定である。 このような外法一定の製 品シリーズは、後述する図 6に示す第 2の粗ユニバーサル圧延機 4において、ウェブ先端側の竪 ロール 42bと水平ロール 41a, 41bとの間隔を被圧延材のウェブ高さが一定となるように調整して 圧延することにより製造することができる。  Table 2 shows that the length obtained by subtracting the flange thickness t2 from the web height A (the web tip force length to the inner surface of the flange) and the length obtained by subtracting the web thickness tl from the flange width B are constant. Inside dimension—a definite product with a difference of several millimeters in web length A and flange width B with changes in web thickness tl and flange thickness t2. Such a series of products with a fixed internal law is the distance between the vertical roll 42b on the web tip side and the horizontal rolls 41a and 41b in the second rough universal rolling mill 4 shown in FIG. 6 described later. Can be produced by rolling with a constant value. Also shown in Table 3 is an outside dimension—fixed product where the web height A and flange width B are constant—the web height even if the web thickness tl and flange thickness t2 change. A and flange width B are constant. Such a product series with a constant outer method is a second rough universal rolling mill 4 shown in FIG. 6 to be described later, in which the distance between the roll 42b on the tip side of the web and the horizontal rolls 41a, 41b is set as the web of the material to be rolled. It can be manufactured by adjusting the height to be constant and rolling.
[0047] [0047]
なお、表 2、表 3において、各部の R寸法は、フィレット部の円弧半径 rl (フィレット R)が 8mm、 フランジ先端内面側のコーナー部の円弧半径 r2が 5mm、フランジ先端外面側のコーナー部の 円弧半径 r3が 3mmである。  In Tables 2 and 3, the R dimension of each part is the arc radius rl (fillet R) of the fillet part is 8 mm, the arc radius r2 of the corner part on the inner side of the flange tip is 5 mm, and the corner part of the corner part on the outer side of the flange tip is The arc radius r3 is 3mm.
[0048] [0048]
表 2に示す本発明の T形鋼の断面特性を、従来の不等辺不等厚山形鋼 (NAB)と比較して図 2に示す。 船体構造では、形鋼は主に厚板を捕強するために使用され、船体設計に当たっては、 形鋼と同じ応力が働く厚板部分についても、形鋼の一部として考えられる。 したがって、形鋼の 断面性能を考える上では、ある幅の板を接合した断面係数が重要となるため、ここでは 610mm 幅 X 15mm厚の板付き断面係数を指標として用いた。 板付き断面係数とは T形鋼のフランジ外 面に所定面積の板を接合した場合の断面において、図心軸に関する断面二次モーメントを算出 し、その値を当該図心軸力 断面の最も遠い点までの距離で割っ 値である。  The cross-sectional characteristics of the T-section steel of the present invention shown in Table 2 are shown in Fig. 2 in comparison with the conventional unequal side unequal thickness angle steel (NAB). In the hull structure, the shape steel is mainly used to reinforce the thick plate. In the hull design, the thick plate portion where the same stress as the shape steel is applied can be considered as a part of the shape steel. Therefore, when considering the cross-sectional performance of a section steel, the section modulus of a plate with a certain width is important. Therefore, the section modulus with a plate of 610 mm width x 15 mm thickness was used as an index here. The section modulus with a plate is calculated by calculating the second moment of section with respect to the centroid axis in the section where a plate of the specified area is joined to the outer surface of the flange of the T-shaped steel, and the value is the farthest in the section of the centroid axis force. Divided by the distance to the point.
[0049] [0049]
図 2に示すように、ウェブ高さ Aが 300mm、フランジ幅 Bが 125mmの T形鋼の板付き断面係 数は、不等辺不等厚山形鋼の 300mm X 90min、 350mm X 100mm, 400mm X 100mmに近 い性能が得られ、 T形鋼 300mm X 125mmの 1シリーズで、不等辺不等厚山形鋼の 300mm X 90mm, 350mm X 100mm, 400mm X 100mmの 3シリーズを力パーできることが判る。 As shown in Figure 2, the cross-section coefficient of the T-section steel plate with web height A of 300mm and flange width B of 125mm is 300mm x 90min, 350mm x 100mm, 400mm x 100mm A series of 300 mm X 125 mm T-section steel, and 300 mm X It can be seen that 3 series of 90mm, 350mm X 100mm, 400mm X 100mm can be force par.
[0050] [0050]
[表 2]  [Table 2]
Figure imgf000016_0001
Figure imgf000016_0001
[0051] [0051]
[表 3]  [Table 3]
断面寸法 (mm) Sectional dimensions (mm)
シリーズ  Series
A B t1 t2 r1 r2 r3 A B t1 t2 r1 r2 r3
300 125 300 124 9 16 8 5 3 300 125 300 124 9 16 8 5 3
303 124 - 9 19 8 5 3 303 124-9 19 8 5 3
300 125 10 16 8 5 3300 125 10 16 8 5 3
303 125 10 19 8 5 3303 125 10 19 8 5 3
303 126 1 1 19 8 5 3303 126 1 1 19 8 5 3
306 126 1 1 22 8 5 3306 126 1 1 22 8 5 3
306 127 12 22 8 5 3306 127 12 22 8 5 3
309 127 12 25 8 5 3 [0052] 309 127 12 25 8 5 3 [0052]
本発明の T形鋼 (圧延 Τ形鋼)の熱間圧延による製造例を以下に示す。 設備構成、圧延機の 構造、ロール形状、各寸法などは一例であり、これらに限定されるものではない。  An example of production by hot rolling of the T-shaped steel (rolled vertical steel) of the present invention is shown below. The equipment configuration, rolling mill structure, roll shape, dimensions, etc. are examples, and are not limited to these.
[0053] [0053]
図 3に示す圧延設備を用いて、厚さ 25.0mm、幅 310mmの長方形断面を有するプルームから. ウェブ高さ 300mm、フランジ幅 100mm、ウェブ厚 9mm、フランジ厚 16mmを目標寸法とする T 形鋼を圧延した。 この T形鋼では、ブイレット部の円弧半径 rl (フィレット R)を 8mmとした。 図 3 において、 1は粗造形圧延機、 2は第 1の粗ユニバーサル圧延機、 3はエッジャ圧延機、 4は第 2 の粗ユニバーサル圧延機、 5は仕上ユニバーサル圧延機、 6は中間圧延工程である。  From a plume with a rectangular cross section of 25.0mm in thickness and 310mm in width using the rolling equipment shown in Fig. 3. T-shaped steel with a target height of 300mm in web height, 100mm in flange width, 9mm in web thickness and 16mm in flange thickness Rolled. In this T-shaped steel, the arc radius rl (fillet R) of the buillet was 8 mm. In FIG. 3, 1 is a rough shaping rolling mill, 2 is a first rough universal rolling mill, 3 is an edger rolling mill, 4 is a second rough universal rolling mill, 5 is a finishing universal rolling mill, and 6 is an intermediate rolling process. is there.
[0054] [0054]
粗造形圧延機 1は、通常、孔型を有するロールが装備された二重式圧延機である。  The rough shaping rolling mill 1 is usually a double rolling mill equipped with a roll having a hole shape.
[0055] [0055]
図 4は、第 1の粗ユニバーサル圧延機 2のロール構成を模式的に示したものである。 この粗ュ 二パーサル圧延機 2は、対向する 1対の水平ロール 21a, 21bと、対向する 1対の堅ロール 22a, 22bを備え、水平ロール 21a, 21bの圧下面の幅 W1を、ウェブ wの内法寸法 L (フランジ内面から 反対側のウェブ先端部までの距離)より大きくしてある。 水平ロール 21a, 21bの側面には傾斜 角が付けられている。 FIG. 4 schematically shows the roll configuration of the first rough universal rolling mill 2. This roughing mill 2 has a pair of opposed horizontal rolls 21a, 21b and a pair of opposed hard rolls 22a, 22b. Is larger than the internal dimension L (distance from the flange inner surface to the web tip on the opposite side). The side surfaces of the horizontal rolls 21a and 21b are inclined.
[0056] [0056]
図 5は、エッジャ圧延機 3のロール構成を模式的に示したものである。 このエッジャ圧延機 3は、 対向する 1対の水平ロール 31a, 31bを備え、各水平ロール 31a, 31bは、大径ロール部 33と小 径ロール部 32をそれぞれ有している。  FIG. 5 schematically shows the roll configuration of the edger rolling mill 3. The edger rolling mill 3 includes a pair of opposed horizontal rolls 31a and 31b, and each horizontal roll 31a and 31b has a large-diameter roll portion 33 and a small-diameter roll portion 32, respectively.
[0057] [0057]
図 6は、第 2の粗ユニバーサル圧延機 4のロール構成を模式的に示したものである。 この第 2 の粗ユニバーサル圧延機 4は、対向する 1対の水平ロール 41a, 41bと、対向する 1対の堅ロール 42a, 42bを備え、水平ロール 41a, 41bのロール面の幅 W2を、ウェブ wの内法寸法 L以下(好ま しくは未満)としてある。 水平ロール 41a, 41bのフランジ fに接する側面には傾斜角が付けられ ている。  FIG. 6 schematically shows the roll configuration of the second rough universal rolling mill 4. This second rough universal rolling mill 4 includes a pair of opposed horizontal rolls 41a and 41b and a pair of opposed hard rolls 42a and 42b. The width W2 of the roll surface of the horizontal rolls 41a and 41b The inner dimension of w is less than L (preferably less). The side surfaces of the horizontal rolls 41a and 41b that are in contact with the flange f are inclined.
[0058] [0058]
7は、仕上ユニバーサル圧延機 5のロール構成を模式的に示したものである。 この仕上ュ 二バーサル圧延機 5は、対向する 1対の水平ロール 51a, 51bと、対向する 1対の堅ロール 52a, 52bを備えている。 水平ロール 5 la, 5 lbの側面は垂直面となっている。 [0059] FIG. 7 schematically shows a roll configuration of the finishing universal rolling mill 5. The finishing mill 5 is provided with a pair of opposed horizontal rolls 51a and 51b and a pair of opposed hard rolls 52a and 52b. The sides of the horizontal roll 5 la, 5 lb are vertical. [0059]
加熱炉(図示せず)から搬出された素材鋼片(図示せず)を、まず、粗造形圧延機 1によって断 面略 T形状の T形鋼片に圧延した。 この T形鋼片は、ウェブ厚 40mm、フランジ厚 75min、ゥヱ ブ高さ 375mm、フランジ幅 130mmであった。  First, a raw steel piece (not shown) carried out of a heating furnace (not shown) was first rolled into a T-shaped steel piece having a substantially T-shaped cross section by a rough shaping rolling mill 1. This T-shaped slab had a web thickness of 40 mm, a flange thickness of 75 min, a web height of 375 mm, and a flange width of 130 mm.
[0060] [0060]
次いで、この T形鋼片を、第 1の粗ユニバーサル圧延機 2、エッジャ圧延機 3、第 2の粗ュニバ ーサル圧延機 4が近接して配置された圧延設備列で 5パスの往復圧延を行レヽ、 T形鋼片のウェブ とフランジを圧下した(中間圧延工程 6)。  Next, this T-shaped slab was subjected to 5-pass reciprocal rolling in a rolling equipment row in which the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 were arranged close to each other.ヽ Rolled down the T-shaped billet web and flange (intermediate rolling process 6).
[0061] [0061]
この中間圧延工程では、まず、第 1の粗ユニバーサル圧延機 2において、図 4に示すように水 平ローノレ 21a, 21bによりウェブ wの全長をその板厚方向で圧下し、堅ローノレ 22aと、水平ロール 21a, 21bの側面でフランジ fをその板厚方向で圧下した。次いで、エッジャ圧延機 3において、図 5に示すように水平ロール 31a, 31bの大径ロール部 33間にウェブ wを誘導し、小径ロール部 32 によりフランジ fの端面をフランジ幅方向で圧下した。次いで、第 2の粗ユニバーサル圧延機 4に おいて、図 6に示すように氷平ロール 41a, 41bによりゥヱブ wの大部分をその板厚方向で圧下す るとともに、堅ローノレ 42aと、水平ロール 41a, 41bの側面でフランジ fをその板厚方向で圧下し、 さらに、堅ロール 42bでウェブ wの先端部をウェブ高さ方向で圧下し、ウェブ高さの調整を行つ た。  In this intermediate rolling process, first, in the first rough universal rolling mill 2, as shown in FIG. 4, the entire length of the web w is reduced in the sheet thickness direction by the horizontal roll rolls 21a and 21b, and the horizontal roll roll 22a The flange f was pressed down in the thickness direction on the sides of the rolls 21a and 21b. Next, in the edger rolling mill 3, as shown in FIG. 5, the web w was guided between the large diameter roll portions 33 of the horizontal rolls 31a and 31b, and the end surface of the flange f was reduced by the small diameter roll portion 32 in the flange width direction. Next, in the second rough universal rolling mill 4, as shown in FIG. 6, most of the web w is squeezed in the thickness direction by the ice flat rolls 41a and 41b, and the hard rolls 42a and the horizontal rolls are rolled. The web f was adjusted by pressing down the flange f in the plate thickness direction on the sides of 41a and 41b, and then rolling down the tip of the web w in the web height direction with the rigid roll 42b.
[0062]  [0062]
このように中間圧延工程で得られた T形鋼を、仕上ユニバーサル圧延機 5で製品寸法に仕上 圧延した。 この仕上ユニバーサル圧延機 5では、図 7に示すように水平ロール 51a, 51bによりゥ エブ wの全長をその板厚方向で軽圧下し、堅ロール 52aと、水平ロール 51a, 51bの側面でフラン ジ fの傾斜を垂直に整形した。  Thus, the T-shaped steel obtained in the intermediate rolling process was finish-rolled to product dimensions with a finishing universal rolling mill 5. In this finishing universal rolling mill 5, as shown in FIG. 7, the entire length of the web w is lightly reduced in the thickness direction by horizontal rolls 51a and 51b, and flanges are formed on the side surfaces of the hard roll 52a and the horizontal rolls 51a and 51b. The slope of f was shaped vertically.
[0063] [0063]
以上のような一連の圧延工程で使用した粗ユニバーサル圧延機 2, 4および仕上ュニバーサ ル圧延機 5において、水平ロールコーナー部のロールコーナー R (半径)は、 2台の粗ュニバーサ ル圧延機 2, 4については 9min、仕上ユニバーサル圧延機 5については 8mmとした。 そして、 水平ロールコーナー部の近傍に図 8A、図 8Bに示すような潤滑油供給装置 Xを設置し、この潤滑 油供給装置 Xから水平ロールコーナー部に圧延潤滑油(熱間圧延用潤滑油 Xl)を供給した。 図 8A、図 8Bは、第 1の粗ユニバーサル圧延機 2に潤滑油供給装置 Xを設置した状態を示してお り、図 8Bは正面図、図 8Aは水平ロールの側面図である。 2台の粗ユニバーサル圧延機 2, 4で は往復圧延を行うため、圧延機の前面(上流側)と後面(下流側)にそれぞれ潤滑油供給装置 X を設置し、圧延入側になる方の潤滑油供給装置 Xから圧延潤滑油を噴射し、水平ロールコーナ 一部に圧延潤滑油を付着させた状態で圧延を行った。 また、仕上ユニバーサル圧延機 5では、 1パスのみの圧延が行われるため、潤滑油供給装置 Xは圧延機の前面 (上流側)のみに設置し、 粗ユニバーサル圧延機と同様に圧延入側で圧延潤滑油を噴射しつつ圧延した。 このように圧 延潤滑油を供給しながら圧延した結果、ロールとフランジ内面の焼き付きが発生せず、フランジ 内面に焼き付き疵のない、良好な表面を有する製品が圧延できた。 また、 lOOOton以上の製品 を圧延した後にも、顕著なロールコーナー部の摩耗はなぐほぼ同じフィレット Rの製品が最後ま で圧延できた。 熱間圧延用潤滑油としては、鋼材の熱間圧延等に通常用いられるものが問題な く使用できる。 本例では大同化学工業製 SH- 105を使用したが、問題なく製品を圧延できた。 In the rough universal rolling mills 2 and 4 and the finishing universal rolling mill 5 used in the series of rolling processes as described above, the roll corner R (radius) of the horizontal roll corner is 2 rough universal rolling mills 2, For No.4, it was 9 min, and for Finishing universal rolling mill 5, it was 8 mm. Then, Figure 8A near the horizontal roll corners, established the lubricating oil supply device X as shown in FIG. 8B, the lubricating oil supply device rolling lubrication oil to the horizontal roll corners from X (for hot rolling lubricant X l) supplied. 8A and 8B show a state in which the lubricant supply device X is installed in the first rough universal rolling mill 2, FIG. 8B is a front view, and FIG. 8A is a side view of the horizontal roll. 2 rough universal rolling mills 2 and 4 In order to perform reciprocating rolling, a lubricating oil supply device X is installed on each of the front surface (upstream side) and rear surface (downstream side) of the rolling mill, and rolling lubricating oil is injected from the lubricating oil supply device X on the rolling entry side. Then, rolling was performed in a state where the rolling lubricant was adhered to a part of the horizontal roll corner. In addition, since the finishing universal rolling mill 5 performs rolling in only one pass, the lubricating oil supply device X is installed only on the front surface (upstream side) of the rolling mill, and rolling is performed on the rolling entry side in the same manner as the rough universal rolling mill. Rolled while spraying lubricating oil. As a result of rolling while supplying the rolling lubricating oil in this manner, the roll and the inner surface of the flange were not seized, and a product having a good surface with no seizure flaws on the inner surface of the flange could be rolled. In addition, even after rolling products over lOOOOton, almost the same fillet R products with no noticeable roll corner wear could be rolled to the end. As the lubricating oil for hot rolling, those usually used for hot rolling of steel can be used without any problem. In this example, SH-105 manufactured by Daido Chemical Industry was used, but the product could be rolled without any problems.
[0064] [0064]
一方、圧延潤滑油を供給しないで圧延したところ、フランジ内面に焼き付き疵が発生し、十分 な品質の製品が製造できなかった。  On the other hand, when rolling without supplying rolling lubricant, seizure flaws occurred on the inner surface of the flange, and a product with sufficient quality could not be produced.
[0065] [0065]
次に、図 3に示す圧延設備を用いて、上述した製造例と同じ寸法の T形鋼であって、フィレット 部の円弧半径 rl (フィレット R)が 5mmの製品を製造した。  Next, using the rolling equipment shown in FIG. 3, a T-steel having the same dimensions as the above-described manufacturing example and having an arc radius rl (fillet R) of 5 mm in the fillet portion was manufactured.
水平ロールコーナー部のロールコーナー R (半径)は、 2台の粗ユニバーサル圧延機で 6mm、 仕上ユニバーサル圧延機で 5mmとした。 上述した製造例と同様に、各ユニバーサル圧延機 2, 4, 5の水平ロールコーナー部に潤滑油供給装置 Xから圧延潤滑油を噴射しつつ圧延を行ったと ころ、水平ロールとフランジ内面の焼き付きは防止できたものの、 150ton程度の製品を圧延した 後に 2台の粗ユニバーサル圧延機 2, 4の水平ロールコーナー部に割れが発生したため、圧延を 中断した。 この割れはロールコーナー部の過度な温度上昇が原因と考えられたため、対策とし て粗ユニバーサル圧延機 2, 4の潤滑油供給装置 Xに隣接した位置に冷却水を噴射する冷却水 噴射ノズルを設け、この冷却水噴射ノズルから圧延出側の水平ロールコーナー部に冷却水を噴 射することで、被圧延材と接触した直後の水平ロールコーナー部を水冷した。 すなわち、水平口 ールコーナー部に対して圧延入側では圧延潤滑油を、圧延出側では冷却水をそれぞれ噴射し て圧延を行った。 その結果、ブイレット部の円弧半径 rlが 5mmの製品を約 lOOOton圧延しても 水平ロールコーナー部に割れが発生していないことが確認できた。 産業上の利用可能性 The roll corner R (radius) of the horizontal roll corner was 6 mm for the two coarse universal rolling mills and 5 mm for the finishing universal rolling mill. As in the production example described above, when rolling was performed while spraying the lubricating oil from the lubricating oil supply device X to the horizontal roll corner of each of the universal rolling mills 2, 4, and 5, the horizontal roll and the flange inner surface were seized. Although it could be prevented, after rolling a product of about 150 tons, cracks occurred in the horizontal roll corners of the two rough universal rolling mills 2 and 4, so rolling was interrupted. Since this crack was thought to be caused by an excessive temperature rise at the roll corner, a cooling water injection nozzle that injects cooling water at a position adjacent to the lubricating oil supply device X of the rough universal rolling mills 2 and 4 was installed as a countermeasure. Then, the horizontal roll corner portion immediately after coming into contact with the material to be rolled was water-cooled by spraying cooling water from the cooling water injection nozzle onto the horizontal roll corner portion on the rolling exit side. That is, rolling was performed by injecting rolling lubricating oil on the rolling entrance side and cooling water on the rolling exit side with respect to the horizontal drill corner. As a result, it was confirmed that there was no crack in the horizontal roll corner even when the product with an arc radius rl of 5 mm was rolled about lOOOton. Industrial applicability
[0066] 本発明の T形鋼は、従来の T形鋼に較べてフィレット部が円弧状でかつフィレット Rが適正に小 径化されているので、 Tロンジ材として端部どうしを溶接接合する場合に行われるスカラップ加工 の仕上げ不良による溶接接合部の強度低下を招くことなぐスカラップ加工の作業能率が大幅に 向上する。 また本発明の T形鋼を用いると、 Tロンジ材を船殻に沿うように曲げカ卩ェする際の曲 げ加ェ性も向上する。 符号の説明 [0066] The T-section steel of the present invention has an arcuate fillet and a properly reduced fillet radius compared to conventional T-sections. The work efficiency of scalloping without significantly reducing the strength of welded joints due to poor scalloping finish is greatly improved. Further, when the T-shaped steel of the present invention is used, the bending addability when bending the T-longier material along the hull is improved. Explanation of symbols
[0067] [0067]
f フランジ  f Flange
w ウェブ  w web
fi フィレット部  fi Fillet section
rl フィレット部の円弧半径  rl Arc radius of fillet
r2 フランジ先端内面側のコーナー部の円弧半径  r2 Arc radius of the corner on the inner surface of the flange tip
r3 フランジ先端外面側のコーナー部の円弧半径  r3 Arc radius of the corner on the flange outer surface side
tl ウェブ厚  tl web thick
t2 フランジ厚  t2 Flange thickness
A ウェブ高さ  A Web height
B フランジ幅  B Flange width
1 粗造形圧延機  1 Rough shaping rolling mill
2 第 1の粗ユニバーサル圧延機  2 First coarse universal rolling mill
3 エッジャ圧延機  3 Edger rolling machine
4 第 2の粗ユニバーサル圧延機  4 Second coarse universal rolling mill
5 仕上ユニバーサル圧延機  5 Finishing universal rolling mill
6 中間圧延工程  6 Intermediate rolling process
21a, 21b 水平ロール  21a, 21b Horizontal roll
22a, 22b 堅ローノレ  22a, 22b firm ronole
W1 水平ロールの圧下面の幅  W1 Width of horizontal roll
L ウェブの内法寸法  L Internal dimensions of the web
31a, 31b 水平ロール  31a, 31b Horizontal roll
32 小径ロール部  32 Small diameter roll
33 大径ロール部 41a, 41b 水平ローノレ33 Large diameter roll 41a, 41b Horizontal ronole
42a, 42b 堅ローノレ42a, 42b
W2 7 平ローノレの圧下面の幅W2 7 Flat roll width
51a, 51b 水平ロール51a, 51b Horizontal roll
52a, 52b 堅ロール 52a, 52b Hard roll
X 潤滑油供給装置 xl 熱間圧延用潤滑油  X Lubricating oil supply device xl Hot rolling lubricating oil

Claims

請求の範囲 The scope of the claims
[請求項 1] [Claim 1]
ウェブ髙さが 150mm以上であって溶接部を有しない T形鋼であって、  T-shaped steel with a web length of 150mm or more and no welds,
ウェブとフランジとの結合部に形成されるフィレット部の、形鋼幅方向での断面形状が、ウェブと フランジとに接する円弧状であり、  The cross-sectional shape of the fillet formed at the joint between the web and the flange in the cross-section width direction is an arc shape in contact with the web and the flange.
且つ該円弧の半径 rlが 2〜10mmであることを特徴とする T形鋼。  A T-section steel having a radius rl of the arc of 2 to 10 mm.
[請求項 2] [Claim 2]
前記ウェブの高さが、前記フランジの幅の 2倍以上であることを特徴とする、請求項 1に記載の T形鋼。  The T-section steel according to claim 1, wherein the height of the web is at least twice the width of the flange.
[請求項 3] [Claim 3]
熱間圧延により T形鋼に加工されて成ることを特徴とする請求項 1または 2に記載の T形鋼。  The T-section steel according to claim 1 or 2, wherein the T-section steel is processed into a T-section steel by hot rolling.
[請求項 4] [Claim 4]
ウェブの両面側の前記ブイレット部の円弧の半径 rlが、それぞれ形鋼全長にわたって一定であ ることを特徴とする請求項 1または 2に記載の T形鋼。  The T-section steel according to claim 1 or 2, wherein the radius rl of the arc of the buillet portion on both sides of the web is constant over the entire length of the section steel.
[請求項 5] [Claim 5]
フランジ先端のコーナー部の、形鋼幅方向での断面形状が円弧状であり、  The cross-sectional shape of the corner part of the flange tip in the shape steel width direction is an arc shape,
且つ該円弧の半径力 ½mm以上であることを特徴とする請求項 1または 2に記載の T形鋼。  3. The T-section steel according to claim 1, wherein the arc has a radial force of ½ mm or more.
[請求項 6] [Claim 6]
船体構造用 T形鋼であることを特徴とする請求項 1または 2に記載の T形鋼。  The T-section steel according to claim 1 or 2, which is a T-section steel for ship structure.
PCT/JP2009/061437 2008-06-18 2009-06-17 Steel t-bar WO2009154299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980122823.9A CN102066014B (en) 2008-06-18 2009-06-17 Steel T-bar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008158942 2008-06-18
JP2008-158942 2008-06-18
JP2009-132974 2009-06-02
JP2009132974A JP4420130B2 (en) 2008-06-18 2009-06-02 T-section steel

Publications (1)

Publication Number Publication Date
WO2009154299A1 true WO2009154299A1 (en) 2009-12-23

Family

ID=41434209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061437 WO2009154299A1 (en) 2008-06-18 2009-06-17 Steel t-bar

Country Status (5)

Country Link
JP (1) JP4420130B2 (en)
KR (1) KR101022718B1 (en)
CN (1) CN102066014B (en)
TW (1) TWI364330B (en)
WO (1) WO2009154299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512899B1 (en) * 2012-11-15 2013-12-15 Blum Gmbh Julius Method for producing a sheet metal profile for a drawer pull-out guide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581874B (en) * 2014-11-28 2017-05-11 Ying-Chun Hsieh Separate Continuous Roller Forming Process for Continuous Double - beam Steel - roof Steel Rack
CN106523889B (en) * 2016-11-22 2021-07-23 中国船舶工业集团公司第七0八研究所 T-shaped section design with optimal section shape and size
CN108435790A (en) * 2018-05-30 2018-08-24 攀钢集团攀枝花钢钒有限公司 The milling method of wide width wing T-steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747401A (en) * 1993-08-09 1995-02-21 Nippon Steel Corp Method and equipment train for shape with flange
JP2002210501A (en) * 2001-01-17 2002-07-30 Kobe Steel Ltd Method for improving surface property of cast steel
JP2007331027A (en) * 2005-11-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing hot-rolled t-shape steel for hull reinforcing member and hot-rolled t-shape steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2395819Y (en) * 1999-07-12 2000-09-13 王振海 Cambered surface T-steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747401A (en) * 1993-08-09 1995-02-21 Nippon Steel Corp Method and equipment train for shape with flange
JP2002210501A (en) * 2001-01-17 2002-07-30 Kobe Steel Ltd Method for improving surface property of cast steel
JP2007331027A (en) * 2005-11-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing hot-rolled t-shape steel for hull reinforcing member and hot-rolled t-shape steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512899B1 (en) * 2012-11-15 2013-12-15 Blum Gmbh Julius Method for producing a sheet metal profile for a drawer pull-out guide
AT512899A4 (en) * 2012-11-15 2013-12-15 Blum Gmbh Julius Method for producing a sheet metal profile for a drawer pull-out guide
US9993857B2 (en) 2012-11-15 2018-06-12 Julius Blum Gmbh Method for producing a sheet metal profile for a drawer pull-out guide and sheet metal profile produced thereby and drawer pull-out guide produced thereby

Also Published As

Publication number Publication date
KR20100131016A (en) 2010-12-14
JP4420130B2 (en) 2010-02-24
KR101022718B1 (en) 2011-03-22
TW201004723A (en) 2010-02-01
TWI364330B (en) 2012-05-21
CN102066014A (en) 2011-05-18
CN102066014B (en) 2013-12-25
JP2010023114A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US4319121A (en) Method of producing clad steel materials
JP2007331027A (en) Method of manufacturing hot-rolled t-shape steel for hull reinforcing member and hot-rolled t-shape steel
CN106269961A (en) A kind of container stainless steel double-sided composite plate and manufacture method thereof
WO2009154299A1 (en) Steel t-bar
WO2017067209A1 (en) Stainless steel/carbon steel double-metal angle steel and composite molding technology
RU178157U1 (en) MULTI-LAYER BILL FOR HOT ROLLING
JP2008254063A (en) Hot rolled t-shaped steel
CN112692514B (en) Method for producing alloy/metal-based composite material plate by using circular ingot blank
CN102784812B (en) Manufacturing method of X65 steel-grade HFW (High Frequency Welding) steel pipe for ore pulp conveying pipeline
CN107282684A (en) A kind of production method of the special thick Heterogeneous Composite plate of stainless steel and carbon steel
CN113550433B (en) Hot-rolled X-shaped steel and hot-rolling forming process thereof
RU2571029C1 (en) Production method of high-stiffness tongue-and-groove section
JP4645761B2 (en) T-section steel
CN111715692B (en) Manufacturing method for producing thin and wide super austenitic stainless steel middle plate by composite pack rolling
JP2722926B2 (en) Method and apparatus for manufacturing welded pipe
JP2852315B2 (en) Method of manufacturing hot large-diameter rectangular steel pipe in which material of corner R does not deteriorate
JP6028561B2 (en) Method for producing Cr-containing ERW steel pipe
RU2293620C2 (en) Welded straight-seam large-diameter tubes producing method
JP2852313B2 (en) Method and apparatus for manufacturing large diameter square steel pipe including hot forming
CN115990746B (en) Ultra-thin ultra-wide steel plate and production method thereof
RU2297896C2 (en) Method for producing conversion straight-seam tube blank from titanium base alloys for rolling cold rolled large and mean diameter tubes with improved accuracy of wall geometry
JP2735411B2 (en) Forming method and equipment for large diameter square steel pipe
JP2023073551A (en) Steel pipe and method for manufacturing the same
CN115446122A (en) Control method for wide-width thin-specification high-strength steel plate shape for ship
CN117282783A (en) Control method for rolling plate shape of double-phase stainless steel wide-width cold plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122823.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026752

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12010502690

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766747

Country of ref document: EP

Kind code of ref document: A1